JP2009129855A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP2009129855A
JP2009129855A JP2007306525A JP2007306525A JP2009129855A JP 2009129855 A JP2009129855 A JP 2009129855A JP 2007306525 A JP2007306525 A JP 2007306525A JP 2007306525 A JP2007306525 A JP 2007306525A JP 2009129855 A JP2009129855 A JP 2009129855A
Authority
JP
Japan
Prior art keywords
vacuum
circuit breaker
outer peripheral
fixed
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007306525A
Other languages
Japanese (ja)
Inventor
Kunio Yokokura
邦夫 横倉
Yoshimitsu Niwa
芳充 丹羽
Ryosuke Sasaki
良輔 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007306525A priority Critical patent/JP2009129855A/en
Publication of JP2009129855A publication Critical patent/JP2009129855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Trip Switchboards (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control magnetic field interference given to arc generated between contacts, and to raise circuit break property. <P>SOLUTION: The vacuum circuit breaker uses a vacuum valve 1 including: a vacuum insulation container 2; a pair of attachable/detachable contacts 6, 7 contained in the vacuum insulation container 2; and current carrying axes 5, 8 adhered to the contacts 6, 7 respectively, and is characterized by forming a perimeter conductor 23 prepared so that the vacuum insulation container 2 may be surrounded, and connected with one of the current carrying axis 5, 8, and in which inverse current with the current carrying axis 5, 8 flows. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力系統に設置される真空遮断器に係り、特に遮断特性を向上し得る真空遮断器に関する。   The present invention relates to a vacuum circuit breaker installed in an electric power system, and more particularly to a vacuum circuit breaker that can improve a breaking characteristic.

電力系統には、短絡事故や地絡事故が発生すると、その事故電流を遮断し、事故点を電源系統から切り離す遮断器が設置されている。系統電圧3.3kV〜66kVの遮断器としては、接離自在の一対の接点を有する真空バルブを用いた真空遮断器が適用されることが多い。   In the power system, when a short-circuit accident or a ground fault occurs, a circuit breaker is installed to cut off the accident current and disconnect the accident point from the power system. As a circuit breaker having a system voltage of 3.3 kV to 66 kV, a vacuum circuit breaker using a vacuum valve having a pair of contact points that can be freely separated is often applied.

図8に示すように、真空バルブ1を構成する筒状の真空絶縁容器2の両端開口面には、固定側封着金具3と可動側封着金具4とが封着されている。固定側封着金具3には、固定側通電軸5が貫通固定され、端部に固定側接点6が固着されている。固定側接点6に対向して、接離自在の可動側接点7が可動側封着金具4の中央開口部を移動自在に貫通する可動側通電軸8端部に固着されている。また、可動側通電軸8と可動側封着金具4の開口部間には、伸縮自在のベローズ9が封着されている。   As shown in FIG. 8, a fixed-side sealing fitting 3 and a movable-side sealing fitting 4 are sealed on both end opening surfaces of a cylindrical vacuum insulating container 2 constituting the vacuum valve 1. A fixed-side energizing shaft 5 is fixed through the fixed-side sealing metal fitting 3, and a fixed-side contact 6 is fixed to the end. Opposite to the fixed contact 6, a movable contact 7 that is detachable is fixed to the end of the movable energizing shaft 8 that movably penetrates the central opening of the movable seal 4. Further, an expandable / contractible bellows 9 is sealed between the opening of the movable side energizing shaft 8 and the movable side sealing fitting 4.

これにより、真空絶縁容器2内を真空に保ちながら、可動側通電軸8がガイド10に沿って軸方向と平行に移動し、固定側接点6と可動側接点7とが接離できるようになっている。また、接点6、7間を包囲するような筒状のアークシールド11が真空絶縁容器2内面の中間部に突出した突出部に固定されている。   As a result, the movable energizing shaft 8 moves in parallel with the axial direction along the guide 10 while keeping the inside of the vacuum insulating container 2 in a vacuum, so that the fixed contact 6 and the movable contact 7 can be contacted and separated. ing. A cylindrical arc shield 11 that surrounds the contacts 6 and 7 is fixed to a protruding portion that protrudes from an intermediate portion of the inner surface of the vacuum insulating container 2.

このような真空バルブ1は、図9に示すように、図示しない操作機構を備えた真空遮断器12に組み込まれている。真空遮断器12の下部主回路は、真空バルブ1の軸方向に直交して配置された主回路断路部13aに接続されている。主回路断路部13aには、S字状の接続導体14が接続され、変流器15や変成器16が接続されている。接続導体14端には、電力ケーブル17が接続される。   As shown in FIG. 9, such a vacuum valve 1 is incorporated in a vacuum circuit breaker 12 having an operation mechanism (not shown). The lower main circuit of the vacuum circuit breaker 12 is connected to a main circuit disconnecting portion 13 a that is arranged orthogonal to the axial direction of the vacuum valve 1. An S-shaped connecting conductor 14 is connected to the main circuit disconnecting portion 13a, and a current transformer 15 and a transformer 16 are connected thereto. A power cable 17 is connected to the end of the connection conductor 14.

真空遮断器12の上部主回路は、主回路断路部13aと同様に、真空バルブ1の軸方向に直交して配置された主回路断路部13bに接続されている。主回路断路部13bには、L字状の接続導体18を介して三相の母線19が接続され、隣接盤との接続が行われる。これらの電気機器は、箱体20内に収納されている(例えば、特許文献1参照)。   The upper main circuit of the vacuum circuit breaker 12 is connected to a main circuit disconnecting portion 13b arranged orthogonal to the axial direction of the vacuum valve 1, similarly to the main circuit disconnecting portion 13a. A three-phase bus 19 is connected to the main circuit disconnecting portion 13b via an L-shaped connecting conductor 18 to be connected to an adjacent panel. These electric devices are accommodated in the box 20 (see, for example, Patent Document 1).

このようなスイッチギヤにおいて、電力ケーブル17を受電側とし、母線19を負荷側とすると、真空遮断器12の主回路には、図示矢印のように、コ字状に曲折した電流が流れ、真空バルブ1もこの電流の影響を受けることになる。   In such a switchgear, when the power cable 17 is the power receiving side and the bus 19 is the load side, a current bent in a U-shape flows through the main circuit of the vacuum circuit breaker 12 as shown by the arrow in FIG. The valve 1 is also affected by this current.

ここで、真空バルブ1には、接点6、7間のアークを制御し、大電流を遮断できるように各種の電極構造が採用されている。スパイラル電極とコントレート電極では、電極内に流れる電流とアーク電流間に発生する電磁力を用いて、アークを駆動させ、アーク熱により電極が溶損することを抑制する。縦磁界電極では、アークと平行な磁界を加えることにより、電極間全体にアークを広げ、アーク電圧を低くしてアークエネルギーを抑え、電極が溶損することを抑制する。
特開2006−238581号公報 (第4ページ、図1)
Here, the vacuum valve 1 employs various electrode structures so as to control an arc between the contacts 6 and 7 and to interrupt a large current. In the spiral electrode and the control electrode, the arc is driven using an electromagnetic force generated between the current flowing in the electrode and the arc current, and the electrode is prevented from being melted by arc heat. In the longitudinal magnetic field electrode, by applying a magnetic field parallel to the arc, the arc is spread across the entire electrode, the arc voltage is lowered to suppress the arc energy, and the electrode is prevented from being melted.
Japanese Patent Laying-Open No. 2006-238581 (Page 4, FIG. 1)

上記の従来の真空遮断器12においては、次のような問題がある。各種の電極構造を採用してアークを制御しているものの、真空遮断器12の主回路を流れる電流がコ字状に曲折しているので、接点6、7間で発生するアークにローレンツ力が加わり、アークの制御がし難くなることがある。即ち、曲折した電流経路によりアークが外部磁界の影響を受け、アークが均一な密度で発生し難く、電極面の偏った位置で発生し、遮断特性を低下させることがある。   The conventional vacuum circuit breaker 12 has the following problems. Although the arc is controlled by adopting various electrode structures, the current flowing through the main circuit of the vacuum circuit breaker 12 is bent in a U shape, so that the Lorentz force is generated in the arc generated between the contacts 6 and 7. In addition, it may be difficult to control the arc. That is, the arc is affected by the external magnetic field due to the bent current path, and the arc is difficult to be generated at a uniform density, and is generated at a biased position on the electrode surface, which may deteriorate the interruption characteristics.

本発明は上記問題を解決するためになされたもので、アークに与える外部磁界の影響を抑制し、遮断特性を向上し得る真空遮断器を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a vacuum circuit breaker capable of suppressing the influence of an external magnetic field on an arc and improving the breaking characteristics.

上記目的を達成するために、本発明の真空遮断器は、真空絶縁容器と、前記真空絶縁容器内に収納された接離自在の一対の接点と、前記接点にそれぞれ固着された通電軸とを有する真空バルブを用いた真空遮断器であって、前記真空絶縁容器を包囲するように設けられるとともに、前記通電軸の一方に接続された外周導体を設けたことを特徴とする。   In order to achieve the above object, a vacuum circuit breaker according to the present invention comprises a vacuum insulating container, a pair of contactable and separable contacts housed in the vacuum insulating container, and a current-carrying shaft fixed to each of the contacts. A vacuum circuit breaker using a vacuum valve having an outer peripheral conductor connected to one of the current-carrying shafts and provided to surround the vacuum insulating container.

本発明によれば、真空バルブの外周に真空絶縁容器を包囲するような外周導体を設けているので、固定側と可動側の通電軸に流れる電流方向と、外周導体に流れる電流方向とが逆の向きとなり、接点間で発生する磁界が相殺され、アークに与える外部磁界の影響を抑制することができ、遮断特性を向上させることができる。   According to the present invention, since the outer peripheral conductor surrounding the vacuum insulating container is provided on the outer periphery of the vacuum valve, the direction of the current flowing through the current-carrying shaft on the fixed side and the movable side is opposite to the direction of the current flowing through the outer peripheral conductor. Therefore, the magnetic field generated between the contacts is canceled out, the influence of the external magnetic field on the arc can be suppressed, and the interruption characteristic can be improved.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る真空遮断器を図1を参照して説明する。図1は、本発明の実施例1に係る真空遮断器に用いられる真空バルブの構成を示す断面図である。なお、図1において、従来と同様の構成部分については、同一符号を付した。また、真空バルブを組み込んだ真空遮断器、真空遮断器を収納するスイッチギヤは、従来と同様であるので、その説明を省略する。   First, a vacuum circuit breaker according to Embodiment 1 of the present invention will be described with reference to FIG. 1 is a cross-sectional view showing a configuration of a vacuum valve used in a vacuum circuit breaker according to Embodiment 1 of the present invention. In FIG. 1, the same components as those in the prior art are denoted by the same reference numerals. Further, since the vacuum circuit breaker incorporating the vacuum valve and the switch gear for housing the vacuum circuit breaker are the same as the conventional one, the description thereof is omitted.

図1に示すように、真空バルブ1を構成するアルミナ磁器からなる筒状の真空絶縁容器2の両端開口面には、固定側封着金具3と可動側封着金具4とが封着されている。固定側封着金具3には、固定側通電軸5が貫通固定され、端部に固定側接点6が固着されている。固定側接点6に対向して、接離自在の可動側接点7が可動側封着金具4の中央開口部を移動自在に貫通する可動側通電軸8端部に固着されている。また、可動側通電軸8と可動側封着金具4の開口部間には、伸縮自在のベローズ9の両端が封着されている。   As shown in FIG. 1, a fixed-side sealing metal fitting 3 and a movable-side sealing metal fitting 4 are sealed to both end opening surfaces of a cylindrical vacuum insulating container 2 made of alumina porcelain constituting a vacuum valve 1. Yes. A fixed-side energizing shaft 5 is fixed through the fixed-side sealing metal fitting 3, and a fixed-side contact 6 is fixed to the end. Opposite to the fixed contact 6, a movable contact 7 that is detachable is fixed to the end of the movable energizing shaft 8 that movably penetrates the central opening of the movable seal 4. Further, between the opening of the movable side energizing shaft 8 and the movable side sealing metal fitting 4, both ends of the expandable bellows 9 are sealed.

これにより、真空絶縁容器2内を真空に保ちながら、可動側通電軸8がガイド10に沿って軸方向と平行に移動し、固定側接点6と可動側接点7とが接離できるようになっている。また、接点6、7間を包囲するような筒状のアークシールド11が真空絶縁容器2内面の中間部に突出した突出部に固定されている。   As a result, the movable energizing shaft 8 moves in parallel with the axial direction along the guide 10 while keeping the inside of the vacuum insulating container 2 in a vacuum, so that the fixed contact 6 and the movable contact 7 can be contacted and separated. ing. A cylindrical arc shield 11 that surrounds the contacts 6 and 7 is fixed to a protruding portion that protrudes from an intermediate portion of the inner surface of the vacuum insulating container 2.

真空絶縁容器2外の可動側通電軸8には、中央部に環状で摺動形の接触子21を介した円板状の下部導体22が設けられている。下部導体22の外周部には、真空絶縁容器2を包囲するように設けられるとともに、真空絶縁容器2の外径よりも内径が大きく、所定の電圧に耐え得る間隔を保った筒状の外周導体23の一方端が接続されている。外周導体23の他方端の一側面には、接続端子24が設けられている。なお、接続端子24と固定側通電軸5端とには、それぞれ図示しない真空遮断器の主回路導体が接続される。   The movable energizing shaft 8 outside the vacuum insulating container 2 is provided with a disk-like lower conductor 22 via an annular and sliding contact 21 at the center. A cylindrical outer conductor that is provided on the outer peripheral portion of the lower conductor 22 so as to surround the vacuum insulating container 2, has an inner diameter larger than the outer diameter of the vacuum insulating container 2, and maintains an interval capable of withstanding a predetermined voltage. One end of 23 is connected. A connection terminal 24 is provided on one side surface of the other end of the outer conductor 23. A main circuit conductor of a vacuum circuit breaker (not shown) is connected to the connection terminal 24 and the end of the fixed side energizing shaft 5.

そして、固定側から電流が流れる場合、電流経路は、固定側通電軸5→固定側接点6→可動側接点7→可動側通電軸8→下部導体22→外周導体23となる。このように電流が流れることにより、固定側通電軸5と可動側通電軸8とに流れる電流は同軸線路の中心部を流れ、外周導体23に流れる電流は向きが逆の同軸線路の外周部を流れることになる。可動側から電流が流れる場合も同様に、中心部と外周部とで電流方向が逆となる。   When a current flows from the fixed side, the current path is fixed side energizing shaft 5 → fixed side contact 6 → movable side contact 7 → movable side energizing shaft 8 → lower conductor 22 → outer peripheral conductor 23. As the current flows in this way, the current flowing through the fixed-side energizing shaft 5 and the movable-side energizing shaft 8 flows through the center of the coaxial line, and the current flowing through the outer conductor 23 flows through the outer periphery of the coaxial line whose direction is opposite. Will flow. Similarly, when a current flows from the movable side, the current direction is reversed between the central portion and the outer peripheral portion.

このため、固定側接点6と可動側接点7間に発生する外部磁界は同軸線路の中心部と外周部とで相殺され、従来のようにコ字状に電流が曲折されることによる外部磁界の影響を抑制することができる。この結果、スパイラル電極、コントレート電極、縦磁界電極などによるアークの制御が確実なものとなり、遮断特性を向上させることができる。なお、外周導体23を固定側通電軸5、固定側接点6、可動側接点7、可動側通電軸8のそれぞれに対して同軸上に配置すると、外部磁界の影響をより一層抑えることができる。   For this reason, the external magnetic field generated between the fixed contact 6 and the movable contact 7 cancels out at the center and the outer periphery of the coaxial line, and the external magnetic field generated by bending the current in a U-shape as in the prior art. The influence can be suppressed. As a result, the arc control by the spiral electrode, the control electrode, the longitudinal magnetic field electrode and the like is ensured, and the interruption characteristic can be improved. If the outer peripheral conductor 23 is arranged coaxially with respect to each of the fixed-side energizing shaft 5, the fixed-side contact 6, the movable-side contact 7, and the movable-side energizing shaft 8, the influence of the external magnetic field can be further suppressed.

上記実施例1の真空遮断器によれば、可動側通電軸8に真空絶縁容器2を包囲するような外周導体23を接続しているので、固定側通電軸5と可動側通電軸8とに流れる電流方向と、外周導体23に流れる電流方向とが逆の向きとなり、固定側接点6と可動側接点7間で発生する磁界が相殺され、アークに与える外部磁界の影響を抑制することができ、遮断特性を向上させることができる。   According to the vacuum circuit breaker of the first embodiment, since the outer peripheral conductor 23 surrounding the vacuum insulating container 2 is connected to the movable side energizing shaft 8, the fixed side energizing shaft 5 and the movable side energizing shaft 8 are connected to each other. The direction of the flowing current and the direction of the flowing current in the outer conductor 23 are opposite to each other, so that the magnetic field generated between the fixed contact 6 and the movable contact 7 is canceled out, and the influence of the external magnetic field on the arc can be suppressed. , The cut-off characteristics can be improved.

次に、本発明の実施例2に係る真空遮断器を図2を参照して説明する。図2は、本発明の実施例2に係る真空遮断器に用いられる真空バルブの構成を示す断面図である。なお、この実施例2が実施例1と異なる点は、外周導体に絶縁補強を施したことである。図2において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum circuit breaker according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view illustrating a configuration of a vacuum valve used in the vacuum circuit breaker according to the second embodiment of the present invention. The difference between the second embodiment and the first embodiment is that the outer peripheral conductor is subjected to insulation reinforcement. In FIG. 2, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、真空絶縁容器2と外周導体23間には、絶縁材料で形成された筒状の第1の絶縁筒25を挿入し、外周導体23の外周にも筒状の第2の絶縁筒26を設けている。   As shown in FIG. 2, a cylindrical first insulating cylinder 25 made of an insulating material is inserted between the vacuum insulating container 2 and the outer peripheral conductor 23, and a cylindrical second is also formed on the outer periphery of the outer peripheral conductor 23. Insulating cylinder 26 is provided.

これにより、第1の絶縁筒25は真空絶縁容器2の外部絶縁、また、第2の絶縁筒26は外周導体23の外部絶縁を絶縁材料で絶縁補強したことになる。第1の絶縁筒25により、外周導体23を真空絶縁容器2に近接して配置することができ、下部導体22の外径を小さくすることができる。このため、下部導体22に流れる電流経路が短くなり、外周導体23を真空絶縁容器2に近接して配置することができるので、固定側接点6と可動側接点7間に与える外部磁界の影響をより抑制することができる。また、第2の絶縁筒26により、相間や対地間の絶縁距離を縮小することができる。   As a result, the first insulating cylinder 25 is externally insulated from the vacuum insulating container 2, and the second insulating cylinder 26 is reinforced by insulating material from the external insulation of the outer peripheral conductor 23. With the first insulating cylinder 25, the outer peripheral conductor 23 can be disposed close to the vacuum insulating container 2, and the outer diameter of the lower conductor 22 can be reduced. For this reason, the current path flowing through the lower conductor 22 is shortened, and the outer peripheral conductor 23 can be disposed close to the vacuum insulating container 2, so that the influence of the external magnetic field applied between the fixed side contact 6 and the movable side contact 7 is reduced. It can be suppressed more. Further, the insulation distance between the phases and the ground can be reduced by the second insulating cylinder 26.

上記実施例2の真空遮断器によれば、実施例1による効果のほかに、外部磁界の影響をより一層抑制することができるとともに、真空遮断器の全体形状の縮小化を図ることができる。   According to the vacuum circuit breaker of the second embodiment, in addition to the effects of the first embodiment, the influence of the external magnetic field can be further suppressed, and the overall shape of the vacuum circuit breaker can be reduced.

次に、本発明の実施例3に係る真空遮断器を図3を参照して説明する。図3は、本発明の実施例3に係る真空遮断器に用いられる真空バルブの構成を示す断面図である。なお、この実施例3が実施例2と異なる点は、真空絶縁容器と外周導体とを一体でモールドしたことである。図3において、実施例2と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum circuit breaker according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view showing a configuration of a vacuum valve used in a vacuum circuit breaker according to Embodiment 3 of the present invention. The third embodiment differs from the second embodiment in that the vacuum insulating container and the outer peripheral conductor are molded integrally. In FIG. 3, the same components as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、真空絶縁容器2の外周と外周導体23とをエポキシ樹脂のような絶縁樹脂27で一体モールドしている。モールド時にあたっては、真空絶縁容器2外周や外周導体23表面を脱脂などし、絶縁樹脂27との接着性を向上させているので、これらの界面での絶縁特性は向上したものになる。   As shown in FIG. 3, the outer periphery of the vacuum insulating container 2 and the outer peripheral conductor 23 are integrally molded with an insulating resin 27 such as an epoxy resin. At the time of molding, the outer periphery of the vacuum insulating container 2 and the surface of the outer peripheral conductor 23 are degreased to improve the adhesion with the insulating resin 27, so that the insulating properties at these interfaces are improved.

なお、真空絶縁容器2と外周導体23間のみをモールドしてもよく、これらは、実施例2と同様に、真空絶縁容器2および外周導体23の外部絶縁を絶縁材料で絶縁補強したことになる。   Note that only the space between the vacuum insulation container 2 and the outer conductor 23 may be molded. In the same manner as in the second embodiment, the external insulation of the vacuum insulation container 2 and the outer conductor 23 is insulated and reinforced with an insulating material. .

上記実施例3の真空遮断器によれば、実施例2と同様の効果を得ることができる。   According to the vacuum circuit breaker of the third embodiment, the same effect as that of the second embodiment can be obtained.

次に、本発明の実施例4に係る真空遮断器を図4、図5を参照して説明する。図4、図5は、本発明の実施例4に係る真空遮断器に用いられる真空バルブの構成を示す上面図である。なお、この実施例4が実施例1と異なる点は、真空バルブの外周に設ける導体の形状である。図4、5において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum circuit breaker according to Embodiment 4 of the present invention will be described with reference to FIGS. 4 and 5 are top views showing the configuration of the vacuum valve used in the vacuum circuit breaker according to Embodiment 4 of the present invention. The fourth embodiment is different from the first embodiment in the shape of the conductor provided on the outer periphery of the vacuum valve. 4 and 5, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、真空絶縁容器2の外周には、真空絶縁容器2と所定の間隔を保って、円周方向に複数本の棒状の外周棒導体28を略等間隔で設けている。外周棒導体28の一方端は下部導体22に接続され、他方端は接続端子29を設けた環状のリング導体30に接続されている。複数本の外周棒導体28は、実施例1の外周導体に相当する。   As shown in FIG. 4, on the outer periphery of the vacuum insulating container 2, a plurality of rod-shaped outer peripheral bar conductors 28 are provided at substantially equal intervals in the circumferential direction at a predetermined distance from the vacuum insulating container 2. One end of the outer peripheral bar conductor 28 is connected to the lower conductor 22, and the other end is connected to an annular ring conductor 30 provided with a connection terminal 29. The plurality of outer peripheral bar conductors 28 correspond to the outer peripheral conductors of the first embodiment.

また、図5に示すように、外周棒導体28には、絶縁材料をモールドするか、絶縁チューブで覆った絶縁被覆31を設けている。なお、真空絶縁容器2と外周棒導体28とを絶縁材料で一体でモールドしてもよい。   Further, as shown in FIG. 5, the outer peripheral bar conductor 28 is provided with an insulating coating 31 which is molded with an insulating material or covered with an insulating tube. The vacuum insulating container 2 and the outer peripheral bar conductor 28 may be integrally molded with an insulating material.

上記実施例4の真空遮断器によれば、実施例1と同様の効果を得ることができる。   According to the vacuum circuit breaker of the said Example 4, the effect similar to Example 1 can be acquired.

次に、本発明の実施例5に係る真空遮断器を図6を参照して説明する。図6は、本発明の実施例5に係る真空遮断器に用いられる真空バルブの構成を示す断面図である。なお、この実施例5が実施例1と異なる点は、外周導体を可動側に設けたことである。図6において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum circuit breaker according to Embodiment 5 of the present invention will be described with reference to FIG. FIG. 6: is sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker concerning Example 5 of this invention. The fifth embodiment differs from the first embodiment in that an outer peripheral conductor is provided on the movable side. In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に示すように、固定側通電軸5端には、円板状の上部導体32をボルト33で固定している。上部導体32の外周部には、真空絶縁容器2を包囲するように、筒状の外周導体34の一方端が接続され、他方端の一側面に接続端子35が設けられている。また、可動側通電軸8には、接触子21を介した下部導体36が設けられている。なお、接続端子35と下部導体36端とには、それぞれ図示しない真空遮断器の主回路導体が接続される。   As shown in FIG. 6, a disk-shaped upper conductor 32 is fixed to the end of the fixed side energizing shaft 5 with a bolt 33. One end of a cylindrical outer conductor 34 is connected to the outer periphery of the upper conductor 32 so as to surround the vacuum insulating container 2, and a connection terminal 35 is provided on one side of the other end. Further, a lower conductor 36 is provided on the movable side energizing shaft 8 via a contact 21. A main circuit conductor of a vacuum circuit breaker (not shown) is connected to the connection terminal 35 and the lower conductor 36 end.

そして、固定側から電流が流れる場合、電流経路は、外周導体34→上部導体32→固定側通電軸5→固定側接点6→可動側接点7→可動側通電軸8→下部導体36となる。このように電流が流れることにより、固定側通電軸5と可動側通電軸8とに流れる電流は同軸線路の中心部を流れ、外周導体34に流れる電流は逆の向きの同軸線路の外周部を流れることになる。可動側から電流が流れる場合も同様に、中心部と外周部とで電流方向が逆となる。   When a current flows from the fixed side, the current path is as follows: outer peripheral conductor 34 → upper conductor 32 → fixed side energizing shaft 5 → fixed side contact 6 → movable side contact 7 → movable side energized shaft 8 → lower conductor 36. As the current flows in this way, the current flowing through the fixed-side energizing shaft 5 and the movable-side energizing shaft 8 flows through the center of the coaxial line, and the current flowing through the outer conductor 34 passes through the outer periphery of the coaxial line in the opposite direction. Will flow. Similarly, when a current flows from the movable side, the current direction is reversed between the central portion and the outer peripheral portion.

上記実施例5の真空遮断器によれば、実施例1と同様の効果を得ることができる。   According to the vacuum circuit breaker of the fifth embodiment, the same effect as that of the first embodiment can be obtained.

次に、本発明の実施例6に係る真空遮断器を図7を参照して説明する。図7は、本発明の実施例6に係る真空遮断器に用いられる真空バルブの構成を示す断面図である。なお、この実施例6が実施例1と異なる点は、外周導体を固定側と可動側とに設けたことである。図7において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。   Next, a vacuum circuit breaker according to Embodiment 6 of the present invention will be described with reference to FIG. FIG. 7: is sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker concerning Example 6 of this invention. The sixth embodiment differs from the first embodiment in that outer peripheral conductors are provided on the fixed side and the movable side. In FIG. 7, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図7に示すように、固定側通電軸5端には、円板状の上部導体32をボルト33で固定し、その外周部に真空絶縁容器2の中間部までを包囲するような筒状の固定側外周導体37の一方端を接続している。他方端の一側面には、接続端子38が設けられている。また、可動側通電軸8には、接触子21を介して円板状の下部導体22を設け、その外周部に真空絶縁容器2の中間部までを包囲するような筒状の可動側外周導体39の一方端を接続している。他方端の一側面には、接続端子40が設けられている。固定側外部導体37端と可動側外周導体39端とは対向しており、所定の電圧に耐え得る間隔を保っている。なお、接続端子38と接続端子40とには、それぞれ図示しない真空遮断器の主回路導体が接続される。   As shown in FIG. 7, a cylindrical upper conductor 32 is fixed to the end of the fixed energizing shaft 5 with a bolt 33, and a cylindrical shape that surrounds up to the middle portion of the vacuum insulating container 2 on the outer periphery thereof. One end of the fixed outer peripheral conductor 37 is connected. A connection terminal 38 is provided on one side surface of the other end. Further, the movable energizing shaft 8 is provided with a disk-shaped lower conductor 22 via a contact 21, and a cylindrical movable outer peripheral conductor that surrounds up to an intermediate portion of the vacuum insulating container 2 on the outer peripheral portion thereof. One end of 39 is connected. A connection terminal 40 is provided on one side surface of the other end. The end of the fixed outer conductor 37 and the end of the movable outer peripheral conductor 39 face each other, and maintain an interval that can withstand a predetermined voltage. A main circuit conductor of a vacuum circuit breaker (not shown) is connected to the connection terminal 38 and the connection terminal 40, respectively.

そして、固定側から電流が流れる場合、電流経路は、固定側外周導体37→上部導体32→固定側通電軸5→固定側接点6→可動側接点7→可動側通電軸8→下部導体22→可動側外周導体39となる。このように電流が流れることにより、固定側通電軸5と可動側通電軸8とに流れる電流は同軸線路の中心部を流れ、外周導体37、39に流れる電流は向きが逆の同軸線路の外周部を流れることになる。可動側から電流が流れる場合も同様に、中心部と外周部とで電流方向が逆となる。   When the current flows from the fixed side, the current path is as follows: fixed outer peripheral conductor 37 → upper conductor 32 → fixed side energizing shaft 5 → fixed side contact 6 → movable side contact 7 → movable side energized shaft 8 → lower conductor 22 → It becomes the movable side outer peripheral conductor 39. As a result of the current flowing in this way, the current flowing through the fixed-side energizing shaft 5 and the movable-side energizing shaft 8 flows through the center of the coaxial line, and the current flowing through the outer conductors 37 and 39 is the outer periphery of the coaxial line whose direction is reversed. Will flow through the part. Similarly, when a current flows from the movable side, the current direction is reversed between the central portion and the outer peripheral portion.

また、アークシールド11は中間電位となっているが、固定側外周導体37と可動側外周導体39とが近接配置されているので、その電位を主回路電位と接地電位の中間の50%に近づけることができる。これにより、真空バルブ1内の電位分担が改善され、遮断特性や耐電圧特性を向上させることができる。   Although the arc shield 11 has an intermediate potential, the fixed outer peripheral conductor 37 and the movable outer peripheral conductor 39 are disposed close to each other, so that the potential is brought close to 50% between the main circuit potential and the ground potential. be able to. Thereby, the potential sharing in the vacuum valve 1 is improved, and the cutoff characteristic and the withstand voltage characteristic can be improved.

なお、固定側外周導体37、可動側外周導体39と真空絶縁容器2間、および固定側外周導体37、可動側外周導体39の外周に絶縁筒を設けたり、これらを一体でモールドし、外部絶縁の絶縁補強を行えば、外部磁界の影響をより一層抑制することができ、真空遮断器の全体形状の縮小化を図ることができる。   Insulating cylinders are provided between the fixed outer peripheral conductor 37, the movable outer peripheral conductor 39 and the vacuum insulating container 2, and the outer periphery of the fixed outer peripheral conductor 37 and the movable outer peripheral conductor 39. If the insulation reinforcement is performed, the influence of the external magnetic field can be further suppressed, and the overall shape of the vacuum circuit breaker can be reduced.

上記実施例6の真空遮断器によれば、実施例1と同様の効果のほかに、真空バルブ1内の電界分布を改善することができる。   According to the vacuum circuit breaker of the sixth embodiment, in addition to the same effect as that of the first embodiment, the electric field distribution in the vacuum valve 1 can be improved.

本発明の実施例1に係る真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 1 of this invention. 本発明の実施例2に係る真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 2 of this invention. 本発明の実施例3に係る真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 3 of this invention. 本発明の実施例4に係る真空遮断器に用いられる真空バルブの構成を示す上面図。The top view which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 4 of this invention. 本発明の実施例4に係る真空遮断器に用いられる真空バルブの構成を示す上面図。The top view which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 4 of this invention. 本発明の実施例5に係る真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 5 of this invention. 本発明の実施例6に係る真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the vacuum circuit breaker which concerns on Example 6 of this invention. 従来の真空遮断器に用いられる真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve used for the conventional vacuum circuit breaker. スイッチギヤの構成を示す側面図。The side view which shows the structure of a switchgear.

符号の説明Explanation of symbols

1 真空バルブ
2 真空絶縁容器
3 固定側封着金具
4 可動側封着金具
5 固定側通電軸
6 固定側接点
7 可動側接点
8 可動側通電軸
9 ベローズ
10 ガイド
11 アークシールド
12 真空遮断器
13a、13b 主回路断路部
14、18 接続導体
15 変流器
16 変成器
17 電力ケーブル
19 母線
20 箱体
21 接触子
22、36 下部導体
23、34 外周導体
24、29、35、38、40 接続端子
25 第1の絶縁筒
26 第2の絶縁筒
27 絶縁樹脂
28 外周棒導体
30 リング導体
31 絶縁被覆
32 上部導体
33 ボルト
37 固定側外周導体
39 可動側外周導体
DESCRIPTION OF SYMBOLS 1 Vacuum valve 2 Vacuum insulation container 3 Fixed side sealing metal fitting 4 Movable side sealing metal fitting 5 Fixed side energizing shaft 6 Fixed side contact 7 Movable side contact 8 Movable side energizing shaft 9 Bellows 10 Guide 11 Arc shield 12 Vacuum circuit breaker 13a, 13b Main circuit disconnection parts 14 and 18 Connection conductor 15 Current transformer 16 Transformer 17 Power cable 19 Bus 20 Box body 21 Contacts 22 and 36 Lower conductors 23 and 34 Outer conductors 24, 29, 35, 38, 40 Connection terminal 25 First insulating cylinder 26 Second insulating cylinder 27 Insulating resin 28 Outer rod conductor 30 Ring conductor 31 Insulation coating 32 Upper conductor 33 Bolt 37 Fixed outer peripheral conductor 39 Moving outer peripheral conductor

Claims (7)

真空絶縁容器と、
前記真空絶縁容器内に収納された接離自在の一対の接点と、
前記接点にそれぞれ固着された通電軸とを有する真空バルブを用いた真空遮断器であって、
前記真空絶縁容器を包囲するように設けられるとともに、前記通電軸の一方に接続された外周導体を設けたことを特徴とする真空遮断器。
A vacuum insulation container;
A pair of detachable contacts housed in the vacuum insulating container;
A vacuum circuit breaker using a vacuum valve having a current-carrying shaft fixed to each of the contacts,
A vacuum circuit breaker provided to surround the vacuum insulating container and provided with an outer peripheral conductor connected to one of the energizing shafts.
前記外周導体は、筒状の導体であることを特徴とする請求項1に記載の真空遮断器。   The vacuum circuit breaker according to claim 1, wherein the outer peripheral conductor is a cylindrical conductor. 前記外周導体は、複数本の棒状の導体であることを特徴とする請求項1に記載の真空遮断器。   The vacuum circuit breaker according to claim 1, wherein the outer peripheral conductor is a plurality of rod-shaped conductors. 前記真空絶縁容器の外部絶縁を絶縁材料で絶縁補強したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の真空遮断器。   The vacuum circuit breaker according to any one of claims 1 to 3, wherein the external insulation of the vacuum insulating container is insulated and reinforced with an insulating material. 前記外周導体の外部絶縁を絶縁材料で絶縁補強したことを特徴とする請求項1乃至請求項4のいずれか1項に記載の真空遮断器。   The vacuum circuit breaker according to any one of claims 1 to 4, wherein the outer insulation of the outer peripheral conductor is insulated and reinforced with an insulating material. 真空絶縁容器と、
前記真空絶縁容器内に収納された接離自在の一対の接点と、
前記接点にそれぞれ固着された固定側通電軸および可動側通電軸とを有する真空バルブを用いた真空遮断器であって、
前記真空絶縁容器の中間部までを包囲するように設けられるとともに、前記固定側通電軸に接続された固定側外周導体と、
前記真空絶縁容器の中間部までを包囲するように設けられるとともに、前記固定側外周導体と所定の間隔を保って対向し、且つ前記可動側通電軸に接続された可動側外周導体とを備えたことを特徴とする真空遮断器。
A vacuum insulation container;
A pair of detachable contacts housed in the vacuum insulating container;
A vacuum circuit breaker using a vacuum valve having a fixed-side energizing shaft and a movable-side energizing shaft respectively fixed to the contacts;
A fixed-side outer peripheral conductor connected to the fixed-side energizing shaft and provided so as to surround up to an intermediate portion of the vacuum insulating container;
A movable outer peripheral conductor is provided so as to surround up to an intermediate portion of the vacuum insulating container, and is opposed to the fixed outer peripheral conductor at a predetermined interval, and is connected to the movable energizing shaft. A vacuum circuit breaker characterized by that.
前記真空絶縁容器、前記固定側外周導体、前記可動側外周導体の外部絶縁を絶縁材料で絶縁補強したことを特徴とする請求項6に記載の真空遮断器。   The vacuum circuit breaker according to claim 6, wherein external insulation of the vacuum insulating container, the fixed outer peripheral conductor and the movable outer peripheral conductor is insulated and reinforced with an insulating material.
JP2007306525A 2007-11-27 2007-11-27 Vacuum circuit breaker Pending JP2009129855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306525A JP2009129855A (en) 2007-11-27 2007-11-27 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306525A JP2009129855A (en) 2007-11-27 2007-11-27 Vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2009129855A true JP2009129855A (en) 2009-06-11

Family

ID=40820557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306525A Pending JP2009129855A (en) 2007-11-27 2007-11-27 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2009129855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755925A (en) * 2019-01-08 2019-05-14 李邦华 The accurate state maintenance method of configurable circuit breaker based on existing failed storage data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755925A (en) * 2019-01-08 2019-05-14 李邦华 The accurate state maintenance method of configurable circuit breaker based on existing failed storage data
CN109755925B (en) * 2019-01-08 2021-06-25 李邦华 Configurable breaker accurate state overhauling method based on existing fault storage data

Similar Documents

Publication Publication Date Title
JP4162664B2 (en) Vacuum switchgear
JP4555857B2 (en) Vacuum insulated switchgear
US8168909B2 (en) Vacuum switchgear
CA2612730C (en) Vacuum bulb for an electrical protection apparatus, such as a switch or a circuit breaker
TW201029036A (en) Vacuum switchgear
CA2790731A1 (en) Retainer, vacuum interrupter, and electrical switching apparatus including the same
US20120200376A1 (en) Vacuum interrupter for vacuum circuit breaker
JP2020510982A (en) Vacuum switch
KR100474173B1 (en) Insulated Switchgear
US20130119021A1 (en) Vacuum switch and electrode assembly therefor
JP2009129855A (en) Vacuum circuit breaker
CN117716460A (en) Gas-insulated switchgear
JP2010041859A (en) Solid insulation switch gear
JP6837607B1 (en) Gas insulation switchgear
JP5978124B2 (en) Switchgear
JP2007305497A (en) Vacuum switch and conditioning processing method therefor
JP2013165596A (en) Switchgear
JP2011055567A (en) Switchgear and method for manufacturing the same
US9006602B2 (en) Gas insulated switchgear
KR20110076537A (en) Solid insulated type vacuum circuit breaker
JP2004356109A (en) Vacuum switching device
JP6364364B2 (en) Switchgear and manufacturing method thereof
KR200475885Y1 (en) gas insulated switchgear
AU2001268746A1 (en) Combination of a vacuum interruption device and oil-filled transformer
KR101286291B1 (en) Gas-insulated switchgear