WO2011124278A1 - Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère - Google Patents

Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère Download PDF

Info

Publication number
WO2011124278A1
WO2011124278A1 PCT/EP2010/067541 EP2010067541W WO2011124278A1 WO 2011124278 A1 WO2011124278 A1 WO 2011124278A1 EP 2010067541 W EP2010067541 W EP 2010067541W WO 2011124278 A1 WO2011124278 A1 WO 2011124278A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polymer powder
powder
aabb
temperature
Prior art date
Application number
PCT/EP2010/067541
Other languages
German (de)
English (en)
Inventor
Franz-Erich Baumann
Wolfgang Diekmann
Beatrice Küting
Heike Stemmer
Maik Grebe
Kristiane Warnke
Sylvia Monsheimer
Harald HÄGER
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of WO2011124278A1 publication Critical patent/WO2011124278A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the invention relates to co-precipitated polymer powders based on a polyamide of the AABB type, prepared by polycondensation of diamines with
  • Dicarboxylic acids with AB-type polyamides prepared on the basis of lactams and / or aminocarboxylic acids, the use of this powder in molding processes, as well as moldings produced by a layered process with which areas of a powder layer are selectively melted using these powder. After cooling and solidifying the previously melted layer by layer areas of the molded body can be removed from the powder bed.
  • the energy input is achieved via electromagnetic radiation.
  • One method which is particularly well suited for the purpose of rapid prototyping is selective laser sintering.
  • plastic powders in a chamber are selectively exposed to a short laser beam, thereby melting the powder particles that are hit by the laser beam.
  • the molten particles run into each other and quickly solidify again to a solid mass.
  • Patents US 6,136,948 and WO 96/06881 both DTM Corporation.
  • a variety of polymers and copolymers are claimed for this application, e.g. Polyacetate, polypropylene, polyethylene, ionomers and polyamide.
  • pulverulent substrates in particular polymers, can be used. preferably selected from polyester, polyvinyl chloride, polyacetal,
  • Polypropylene polyethylene, polystyrene, polycarbonate, poly (N-methylmethacrylimide) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, or mixtures thereof.
  • PMMI poly (N-methylmethacrylimide)
  • PMMA polymethyl methacrylate
  • ionomer polyamide, or mixtures thereof.
  • Dicarboxylic acids each having 10-14 carbon atoms in the respective
  • Monomer unit to produce uniformly melting powder which can be processed to impact-resistant moldings with increased heat resistance.
  • Particularly suitable are coprecipitates of PA1 1 with PA1010, PA1 1 with PA1012, PA12 with PA1012, PA12 with PA1212 and PA12 with PA1013.
  • the present invention therefore relates to a polymer powder for use in a layer-by-layer process in which areas of the respective powder layer are selectively melted by the introduction of electromagnetic energy, comprising:
  • At least one AB-type polyamide prepared by polymerization of lactams having 10 to 12 carbon atoms in the monomer or by polycondensation of the corresponding 10 to 12 of ⁇ -aminocarboxylic acids
  • Monomer units wherein the AB-type polyamide may contain up to 20 mol% of the AABB comonomer units and the AABB-type polyamide may contain up to 20 mol% of the AB monomer units.
  • PA 1 or PA 12 as the AB polyamide and one of PA 1010, PA 1012, PA 1212 and PA 1013 as the preferred AABB polyamide.
  • the co-precipitation of PA1 1 with PA1010, of PA1 1 with PA1012, of PA12 with PA1012, of PA12 with PA1212 and of PA12 with PA1013 is particularly preferred.
  • the proportion of the AABB polyamide is between 2 and 98% by mass, preferably between 10 and 90% by mass and more preferably between 30 and 70% by mass. This shows that
  • Copolyamides of the AABB type are also suitable for co-precipitation, in which up to 20 mol% of the molar equivalent diamines and dicarboxylic acids are replaced by a lactam or a w-aminocarboxylic acid having 10 -12 carbon atoms, as well as copolyamides of the AB- Type in which up to 20 mol% of lactams or ⁇ - amino carboxylic acids having 10 -12 C atoms are replaced by molar equivalents of diamines and dicarboxylic acids having 10-14 C atoms.
  • the use of copolyamide-containing Mischoniazipitate example it is advantageous if parts are to be built with low shrinkage.
  • the respective comonomer content in one or both co-precipitating polyamides to 10 mol% is limited, most preferably the comonomer content is at most 5 mol% in view of a higher heat resistance.
  • the polyamides to be used according to the invention are characterized in that the powder has at least one AABB polyamide and at least one AB polyamide. These are each homopolymers having the general formula:
  • both the AB component and the AABB component can be constructed in a completely linear manner, or be slightly branched; there can be either an excess of the acid end groups, a tie, or a deficiency in relation to the amino end groups.
  • special controllers can be added according to the prior art in the polycondensation. Particularly preferred is a balanced ratio between acid and
  • Amino end groups most preferably an excess of acid with an acid to amine ratio of 1, 2: 1 to 5: 1. Another area of preference is an excess of the amino end groups with an amine to acid ratio of 1.2: 1 to 5: 1.
  • the nomenclature of polyamides is regulated in ISO 1874-1.
  • Appendix A describes the definition and characterization of aliphatic linear polyamides.
  • Polyamides of the type XY whose use according to the invention is obtained from polycondensation of diamines with dicarboxylic acids.
  • x is meant the number of C atoms in the diamine
  • y denotes the number of C atoms in the dicarboxylic acid.
  • the preferred powder has both diamines and dicarboxylic acids of aliphatic (linear) nature.
  • diamines of the following group are used as monomer building blocks: decanediamine, undecanediamine, 1,12-diaminododecane.
  • Suitable monomers of the AB type are, for example, ⁇ -aminoundecanoic acid, ⁇ -aminododecanoic acid or ⁇ -laurolactam.
  • the powders according to the invention are preferably prepared by coprecipitation of the AB and AABB polyamides from alcoholic solution under pressure in accordance with DE-OS 3510689.
  • ethanol is used as the solvent.
  • the dissolution temperatures are maintained in the range of 135-175 ° C, preferably 140-165 ° C, the cooling rates in the range of 0.1 to 2.0 K / min, preferably in the range of 0.4 to 1, 0 K / held min.
  • Precipitation temperatures are in the range of 100-130 ° C, preferably in the range of 105-125 ° C. In the concrete individual case, those for the respective
  • Polyamide mixture favorable solubility and Desirbedingengen be determined by hand tests.
  • the polyamide concentrations to be selected are 5 to 30% by weight, based on the sum of all polyamides used, preferably 10 to 25% by weight, particularly preferably 13 to 22% by weight.
  • the dissolution temperatures required to achieve an optically clear polyamide solution are to be determined by preliminary experiments, whereby the polyamide with the highest melting temperature must also be completely dissolved.
  • the alcoholic solution 2 K to 20 K preferably 5 K to 15 K above the subsequent precipitation temperature isothermally stirred over the aforementioned time and then lowered the temperature with the above cooling rates to the precipitation temperature as constant as possible.
  • Suitable units are stirred tanks, preferably blade stirrers are used, but it is readily possible to carry out the precipitation in other pressure-resistant apparatuses and / or to use other stirrers.
  • one or more of the polyamides to be reprecipitated may be subjected to extraction beforehand.
  • the invention further co-precipitated powder of AB polyamides having 10-12 carbon atoms in the monomer unit and AABB polyamides based on diamines and dicarboxylic acids each having 10-14 carbon atoms in the respective monomer unit and the aforementioned co-precipitated uniformly melting Misch Wegzipitate on Base of one or more copolyamides containing up to 20 mol% of comonomers of the other type, which are to impact resistant molded articles with increased
  • Heat resistance can be processed.
  • Particularly suitable are coprecipitates of PA1 1 with PA1010, PA1 1 with PA1012, PA12 with PA1012, PA12 with PA1212 and PA12 with PA1013.
  • the subject of the present invention are molded articles prepared by a layered process which selectively melts regions of the respective layer, characterized in that the powders are co-precipitates of AB polyamides having 10-12 carbon atoms in the monomer unit and AABB polyamides based on of diamines and
  • Dicarboxylic acids each having 10-14 carbon atoms and the aforementioned co-precipitated uniformly melting Mischoniazipitate on the basis of one or more copolyamides containing up to 20 mol% of comonomers of the other type, represent.
  • Particularly suitable are moldings based on coprecipitates of PA1 1 with PA1010, PA1 1 with PA1012, PA12 with PA1012, PA12 with PA1212 and PA12 with PA1013.
  • the polymer powders according to the invention have the advantage that moldings having an elevated form are produced from them by a process which operates in layers and selectively melts regions of the respective layer
  • the mold body produced from the powder according to the invention in this case have similar good mechanical properties as the moldings produced from conventional powder. Also the processing ability of the
  • Powder according to the invention is obtained, for example, by a process based on DE 29 06 647 B1 or DE 19708946, where there is a
  • Polyamide of the AB-type is used as starting material.
  • Polyamide mixture of AABB and AB polyamide is dissolved in ethanol and crystallized under certain conditions. If necessary, a
  • the coprecipitated polymer powder according to the invention has a melting temperature of at least 175 ° C., determined by means of DSC, preferably one
  • the solution viscosity in 0.5% strength m-cresol solution according to ISO 307 in the case of the polyamide powders according to the invention is preferably 1.4 to 2.1, particularly preferably 1.5 to 1.9, and very particularly preferably between 1.6 and 1.7 ,
  • the polymer powder according to the invention preferably comprises polyamide powder of the AB type and of the AABB type with an average particle size of from 10 to 250 ⁇ m, preferably from 45 to 150 ⁇ m and particularly preferably from 50 to 125 ⁇ m.
  • the amount ratio of AABB to AB polyamide according to the invention is 1:99 to 99: 1, preferably 10:90 to 90:10, very preferably 30:70 to 70:30
  • the polymer powder according to the invention preferably has bulk densities measured according to DIN 53468 between 300 and 700 g / l, preferably between 400 and 600 g / l.
  • the polymer powder according to the invention preferably has BET surface areas, measured with nitrogen gas according to DIN 9277 (volumetric method), between 1 and 15 m 2 / g, particularly preferably between 2 and 10 m 2 / g, and very particularly preferably between 2.5 and 7 m 2 / g.
  • the starting granules for processing into powders according to the invention are commercially available, for example, from Evonik-Degussa, Marl, Germany
  • Polyamide 12 trade names VESTAMID L series, polyamide 1010, VESTAMID Terra DS series, polyamide 1012, VESTAMID Terra DD series
  • ARKEMA Serquigny, France
  • RILSAN B polyamide 1 1, RILSAN A, polyamide 12
  • polymer powder according to the invention less than 3% by weight, preferably from 0.001 to 2% by weight and completely
  • the fillers may e.g. Glass, metal or ceramic particles, e.g. Glass beads, steel balls or metal grit or foreign pigments, e.g. Be transition metal oxides.
  • the pigments may be, for example, titanium dioxide particles based on rutile or anatase, or soot particles.
  • the filler particles preferably have a smaller or approximately the same size as the particle size of the polyamides.
  • the average particle size d 5 o of the fillers should not exceed the average particle size d 5 o of the polyamides by more than 20%, preferably not more than 15% and most preferably not more than 5%.
  • the polymer powder according to the invention has less than 75% by weight, preferably from 0.001 to 70% by weight, particularly preferably from 0.05 to 50% by weight and very particularly preferably from 0.5 to 25% by weight of such fillers based on the sum of the existing polyamides.
  • Fillers can, depending on the filler or excipient used to clarify
  • polymer powders can be produced with a further combination of surface properties.
  • the process for preparing such mixtures may be e.g. DE 34 41 708 are taken.
  • a leveling agent such as metal soaps, preferably alkali or
  • Alkaline earth salts of the underlying alkane monocarboxylic acids or Dimer acids are added to the precipitated polyamide powder.
  • Metal soap particles can be incorporated into the polymer particles, but it can also be mixtures of finely divided metal soap particles and
  • Polymer particles are present.
  • the metal soaps are used in amounts of 0.01 to 30 wt .-%, preferably 0.5 to 15 wt .-%, based on the sum of the polyamides present in the powder.
  • metal soaps it is preferred to use the sodium or calcium salts of the basic alkane monocarboxylic acids or dimer acids.
  • Licomont NaV 101 or Licomont CaV 102 from Clariant examples of commercially available products are Licomont NaV 101 or Licomont CaV 102 from Clariant.
  • inorganic foreign pigments such as e.g.
  • Transition metal oxides stabilizers, e.g. Phenols, in particular sterically hindered phenols, flow and flow aids, such. pyrogenic
  • Polymer powder specified concentrations for fillers and / or auxiliaries are complied with.
  • the present invention also provides processes for the production of moldings by layer-by-layer processes, in which selective
  • copolyamides of the AABB type are suitable in which up to 20 mol% of the molar equivalent diamines and dicarboxylic acids are replaced by a lactam or a w-aminocarboxylic acid having 10 to 12 carbon atoms, and copolyamides of the AB type in which up to 20 mol% of the lactams or w-aminocarboxylic acids having 10 -12 C atoms are replaced by molar equivalent diamines and dicarboxylic acids having 10-14 C atoms.
  • the incorporation of these copolyamide-containing Mischgarzipitate is for example advantageous if parts are to be built with low shrinkage.
  • the respective comonomer content in one or both co-precipitating polyamides is limited to 10 mol%, most preferably the comonomer content is at most 5 mol% with respect to a higher
  • a mixed precipitate of PA1 1 or PA12 and as AABB polyamide one of the group PA1010, PA1012, PA1212 and PA1013 is used. More preferably, a powder obtained by co-precipitation of PA1 1 with PA1010, PA1 1 with PA1012, PA12 with PA1012, PA12 with PA1212 and PA12 with PA1013 is used for the layered shaping process.
  • the proportion of the AABB polyamide is between 2 and 98% by mass, preferably between 10 and 90% by mass and more preferably between 30 and 70% by mass.
  • the coprecipitated polymer powder according to the invention has a melting temperature of at least 175 ° C., determined by means of DSC, preferably one
  • the energy is introduced by electromagnetic radiation, and the selectivity is introduced, for example, by masks, application of inhibitors, absorbers, susceptors, or by focusing the radiation. After cooling of all layers of the inventive molding can be removed.
  • the following examples of such methods are illustrative without intending to limit the invention thereto.
  • the laser sintering processes are well known and rely on the selective sintering of polymer particles whereby layers of polymer particles are exposed briefly to laser light, thus bonding the polymer particles exposed to the laser light.
  • the successive sintering of layers of polymer particles produces three-dimensional objects. Details of the method of selective laser sintering are e.g. the documents US 6,136,948 and WO 96/06881.
  • the shaped bodies according to the invention which are produced by a layer-by-layer process in which regions are selectively melted, are characterized in that they comprise at least one polyamide of the AB type, prepared by polycondensation of diamines and dicarboxylic acids, preferably a polyamide of the AB type.
  • Dicarboxylic acids each having 10-14 carbon atoms in the respective
  • PA1 1 mixed with PA1010, PA1 1 with PA1012, PA12 with PA1012, PA12 with PA1212 and PA12 with PA1013.
  • the novel moldings are particularly preferably in the form of polyamide of the AABB type PA1010, PA1012, PA1013 or PA1212.
  • the molded articles may also contain fillers and / or auxiliaries, such as e.g.
  • Shaped bodies according to the invention less than 75% by weight, preferably from 0.001 to 70% by weight, particularly preferably from 0.05 to 50% by weight and very particularly preferably from 0.5 to 25% by weight of such fillers, based on the sum of the available polymers.
  • the relative solution viscosity was obtained in 0.5% strength by weight m-cresol solution according to ISO 307.
  • the BET surface was coated with nitrogen according to DIN 9277 (Volumetric
  • Modulus of elasticity and tensile strength were determined according to DIN / EN / ISO 527, impact strengths according to ISO 179/1 eA. Vicat temperatures were measured according to ISO 306/2008 in oil.
  • the product had the following characteristics: crystallite melting point T m : 186 ° C
  • the jacket temperature is reduced to 124 ° C and the internal temperature is brought to 125 ° C while continuously distilling off the ethanol at a cooling rate of 25 K / h at the same stirrer speed.
  • the jacket temperature 2K - 3 K is kept below the internal temperature.
  • the internal temperature is brought to 1 17 ° C with the same cooling rate and then kept constant for 60 minutes. Thereafter, it is distilled off further at a cooling rate of 40 K / h, bringing the internal temperature to 1 1 1 ° C. At this temperature, the precipitation begins, recognizable by the development of heat.
  • the distillation rate is increased so that the internal temperature does not rise above 1 1 1 .3 ° C. After 25 minutes, the internal temperature drops, indicating the end of the precipitation.
  • the temperature of the suspension is brought to 45 ° C and the suspension is then transferred to a paddle dryer.
  • the ethanol is distilled off at 70 ° C./400 mbar and the residue is subsequently dried at 20 mbar / 86 ° C. for 3 hours.
  • Example 6 40 kg of the PA 1010 sample obtained in Example 1 are transferred; the precipitation conditions are modified as compared to Example 10 as follows: dissolution temperature: 155 ° C, nucleation temperature / time: 128 ° C / 60 min
  • Example 6 40 kg of the PA 1012 granule sample obtained in Example 2 are precipitated in accordance with Example 6, with the precipitation conditions being modified as compared with Example 6 as follows:
  • Dissolution temperature 155 ° C
  • nucleation temperature 141 ° C
  • precipitation temperature 123 ° C
  • precipitation time 40 minutes
  • stirrer speed 1 10 rpm
  • Crystalline melting point T m 191 ° C and 202 ° C
  • Example 10 Reprecipitation of PA 1212 (not according to the invention): 40 kg of the PA 1212 granule sample obtained in Example 4 are precipitated in accordance with Example 6, the precipitation conditions being modified as follows:
  • Dissolution temperature 155 ° C.
  • nucleation temperature 123 ° C.
  • nucleation time 60 min.
  • Precipitation temperature 1 17 ° C.
  • precipitation time 60 minutes, stirrer speed: 1 10 rpm
  • Example 6 40 kg of the PA 1013 granules obtained in Example 3 are precipitated in accordance with Example 6, the precipitation conditions being modified as follows: dissolution temperature: 145 ° C., nucleation temperature: 1 13 ° C., nucleation time: 60 min precipitation temperature: 102 ° C. precipitation time: 60 minutes, stirrer speed: 1 10 rpm Bulk density 452g / l. BET: 4,40 m 2 / g
  • Example 6 20 kg of the PA 1010 granule sample obtained in Example 1 and of the RILSAN® BMNO TL used in Example 6 are precipitated in accordance with Example 6
  • Example 13 Common reprecipitation of PA 1012 with PA1 1 (according to the invention):
  • Example 6 20 kg of the PA 1012 granule sample obtained in Example 2 and of the RILSAN® BMNO TL used in Example 7 are precipitated in accordance with Example 6
  • Example 14 Common reprecipitation of PA 1012 with PA 12 (according to the invention): 20 kg of the PA 1012 granule sample obtained in Example 2 and the uncontrolled PA 12 used in Example 5 are precipitated in accordance with Example 6, the precipitation conditions being modified as follows:
  • Dissolution temperature 145 ° C
  • nucleation temperature 1 12 ° C
  • nucleation time 45 min
  • precipitation temperature 107 ° C
  • precipitation time 60 minutes
  • stirrer speed 120 rpm
  • BET 3.2 m 2 / g
  • Dissolution temperature 145 ° C
  • nucleation temperature 1 12 ° C
  • nucleation time 45 min.
  • Precipitation temperature 1 10 ° C
  • precipitation time 60 minutes
  • stirrer speed 120 rpm
  • Examples 19-22 Processing of the powders PA12 / PA1013 according to the invention from Example 15 to moldings in the SLS process. Unless otherwise stated, the following processing experiments are carried out on an EOSINT P380 machine from EOS, Krailing: Example 19:
  • Exposure speed 1 100 mm / s Hatch distance: 0.3 mm
  • Exposure speed 1 100 mm / s Hatch distance: 0.3 mm
  • Exposure speed 1 100 mm / s
  • Exposure speed 1 100 mm / s
  • Exposure speed 1 100 mm / s
  • Exposure speed 5m / s
  • Example 26 Processing of the powder PA12 / PA1212 from Example 16 to
  • Exposure speed 1 100 mm / s
  • Examples 27-28 Processing of the powders PA12 from example 6 to give shaped articles, comparative examples, not according to the invention.
  • Exposure speed 1 100 mm / s
  • Example 29 Processing of the powder PA1013 from Example 1 1 to give moldings, Comparative Examples, not according to the invention.
  • Process chamber temperature 169 ° C
  • Exposure speed 1 100 mm / s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Polyamides (AREA)

Abstract

La présente invention concerne une poudre polymère destinée à être utilisée dans un procédé reposant sur la formation de couches, procédé selon lequel des zones de chaque couche de poudre sont sélectivement fondues par application d'énergie électromagnétique, ladite poudre polymère contenant : au moins un polyamide de type AB, produit par polymérisation de lactames comportant 10 à 12 atomes de carbone dans le motif monomère ou par polycondensation des acides ω-aminocarboxyliques correspondants, comportant 10 à 12 atomes de carbone dans le motif monomère; et au moins un polyamide de type AABB, produit par polycondensation de diamines et d'acides dicarboxyliques comportant respectivement 10 à 14 atomes de carbone dans les motifs monomères, le polyamide de type AB pouvant contenir jusqu'à 20 % en moles de motifs comonomères AABB et le polyamide de type AABB pouvant contenir jusqu'à 20 % en moles de motifs monomères AB. L'invention concerne également un procédé pour produire une telle poudre, un procédé reposant sur la formation de couches pour produire un corps façonné à partir d'une telle poudre, procédé selon lequel des zones de chaque couche sont sélectivement fondues par application d'énergie électromagnétique, la sélectivité étant obtenue par l'intermédiaire de masques, par application d'inhibiteurs, d'absorbeurs ou de suscepteurs, ou par concentration de l'énergie appliquée. L'invention concerne également des corps façonnés produits selon ledit procédé.
PCT/EP2010/067541 2010-04-09 2010-11-16 Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère WO2011124278A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010014443 2010-04-09
DE102010014443.6 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011124278A1 true WO2011124278A1 (fr) 2011-10-13

Family

ID=43302077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067541 WO2011124278A1 (fr) 2010-04-09 2010-11-16 Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère

Country Status (1)

Country Link
WO (1) WO2011124278A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650106A1 (fr) 2012-04-11 2013-10-16 Evonik Industries AG Poudre de polymère présentant un comportement à la fusion adapté
WO2018019730A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélange de polyamides contenant un polyaryléther pour poudre pour frittage laser
WO2018019727A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélanges polyamide pour poudre pour frittage laser
WO2018019728A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélange polyamide contenant un agent renforçant pour poudre pour frittage laser
US10406745B2 (en) 2010-04-09 2019-09-10 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
US10968314B2 (en) 2015-12-14 2021-04-06 Evonik Operations Gmbh Polymer powder for powder bed fusion methods
FR3107060A1 (fr) * 2020-02-10 2021-08-13 Arkema France Poudre de polyamide et procédé de préparation correspondant
EP3524430B1 (fr) 2018-02-07 2021-12-15 Ricoh Company, Ltd. Poudre pour la fabrication de formes libres solides, et procédé de fabrication de formes libres solides
EP4279536A1 (fr) 2022-05-17 2023-11-22 Ems-Chemie Ag Matériaux pour frittage sélectif par laser et frittage laser utilisant de tels matériaux
EP4386036A1 (fr) 2022-12-15 2024-06-19 Ems-Chemie Ag Matériaux pour frittage sélectif par laser et frittage laser utilisant de tels matériaux

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906647B1 (de) 1979-02-21 1980-04-17 Huels Chemische Werke Ag Verfahren zur Herstellung von pulverfoermigen Beschichtungsmitteln auf der Basis von Polyamiden mit mindestens 10 aliphatisch gebundenen Kohlenstoffatomen pro Carbonamidgruppe
DE3441708A1 (de) * 1984-11-15 1986-05-15 Hüls AG, 4370 Marl Verwendung von pulverfoermigen beschichtungsmitteln auf der basis von polyamiden mit durchschnittlich mindestens neun kohlenstoffatomen pro carbonamidgruppe
DE3510689A1 (de) 1985-03-23 1986-09-25 Hüls AG, 4370 Marl Verfahren zur herstellung von pulverfoermigen beschichtungsmitteln praktisch einheitlicher korngroessen auf der basis von polyamiden mit mindestens 10 aliphatisch gebundenen kohlenstoffatomen pro carbonamidgruppe
WO1996006881A2 (fr) 1994-08-30 1996-03-07 Dtm Corporation Poudre semi-cristalline pouvant etre frittee et article obtenu au moyen de cette poudre
WO1996030195A1 (fr) 1995-03-31 1996-10-03 Dtm Corporation Materiau plastique composite pour frittage laser selectif
DE19708946A1 (de) 1997-03-05 1998-09-10 Huels Chemische Werke Ag Herstellung von Polyamid-Fällpulvern mit enger Korngrößenverteilung und niedriger Porosität
DE19747309A1 (de) 1997-10-27 1999-04-29 Huels Chemische Werke Ag Verwendung eines Polyamids 12 für selektives Laser-Sintern
EP1015214A1 (fr) 1997-04-30 2000-07-05 Ralf Larsson Procede et dispositif servant a fabriquer des elements tridimensionnels
US6136948A (en) 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
WO2001038061A1 (fr) 1999-10-26 2001-05-31 University Of Southern California Procede de fabrication d'un objet tridimensionnel
DE10356193A1 (de) 2003-03-15 2004-09-23 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung
DE102004020453A1 (de) 2004-04-27 2005-11-24 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
EP1642923A1 (fr) * 2004-10-01 2006-04-05 Degussa AG Poudre avec des propriétés de recyclage améliorées, procédé de sa production et son utilisation pour préparer des objets tridimensionnels
CN101148541A (zh) * 2007-10-26 2008-03-26 华中科技大学 一种无机纳米粒子增强尼龙选择性激光烧结成形件的方法
WO2008057844A1 (fr) * 2006-11-09 2008-05-15 Valspar Sourcing, Inc. Compositions de poudre et procédés de fabrication d'articles à partir de celles-ci

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906647B1 (de) 1979-02-21 1980-04-17 Huels Chemische Werke Ag Verfahren zur Herstellung von pulverfoermigen Beschichtungsmitteln auf der Basis von Polyamiden mit mindestens 10 aliphatisch gebundenen Kohlenstoffatomen pro Carbonamidgruppe
DE3441708A1 (de) * 1984-11-15 1986-05-15 Hüls AG, 4370 Marl Verwendung von pulverfoermigen beschichtungsmitteln auf der basis von polyamiden mit durchschnittlich mindestens neun kohlenstoffatomen pro carbonamidgruppe
DE3510689A1 (de) 1985-03-23 1986-09-25 Hüls AG, 4370 Marl Verfahren zur herstellung von pulverfoermigen beschichtungsmitteln praktisch einheitlicher korngroessen auf der basis von polyamiden mit mindestens 10 aliphatisch gebundenen kohlenstoffatomen pro carbonamidgruppe
US6136948A (en) 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
WO1996006881A2 (fr) 1994-08-30 1996-03-07 Dtm Corporation Poudre semi-cristalline pouvant etre frittee et article obtenu au moyen de cette poudre
WO1996030195A1 (fr) 1995-03-31 1996-10-03 Dtm Corporation Materiau plastique composite pour frittage laser selectif
DE19708946A1 (de) 1997-03-05 1998-09-10 Huels Chemische Werke Ag Herstellung von Polyamid-Fällpulvern mit enger Korngrößenverteilung und niedriger Porosität
EP1015214A1 (fr) 1997-04-30 2000-07-05 Ralf Larsson Procede et dispositif servant a fabriquer des elements tridimensionnels
DE19747309A1 (de) 1997-10-27 1999-04-29 Huels Chemische Werke Ag Verwendung eines Polyamids 12 für selektives Laser-Sintern
WO2001038061A1 (fr) 1999-10-26 2001-05-31 University Of Southern California Procede de fabrication d'un objet tridimensionnel
DE10356193A1 (de) 2003-03-15 2004-09-23 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung
DE102004020453A1 (de) 2004-04-27 2005-11-24 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
EP1642923A1 (fr) * 2004-10-01 2006-04-05 Degussa AG Poudre avec des propriétés de recyclage améliorées, procédé de sa production et son utilisation pour préparer des objets tridimensionnels
WO2008057844A1 (fr) * 2006-11-09 2008-05-15 Valspar Sourcing, Inc. Compositions de poudre et procédés de fabrication d'articles à partir de celles-ci
CN101148541A (zh) * 2007-10-26 2008-03-26 华中科技大学 一种无机纳米粒子增强尼龙选择性激光烧结成形件的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200904, Derwent World Patents Index; AN 2009-A80760, XP002615434 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406745B2 (en) 2010-04-09 2019-09-10 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
DE102012205908A1 (de) 2012-04-11 2013-10-17 Evonik Industries Ag Polymerpulver mit angepasstem Schmelzverhalten
CN103374223A (zh) * 2012-04-11 2013-10-30 赢创工业集团股份有限公司 具有相适应的熔融性能的聚合物粉末
EP2650106A1 (fr) 2012-04-11 2013-10-16 Evonik Industries AG Poudre de polymère présentant un comportement à la fusion adapté
US10968314B2 (en) 2015-12-14 2021-04-06 Evonik Operations Gmbh Polymer powder for powder bed fusion methods
WO2018019730A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélange de polyamides contenant un polyaryléther pour poudre pour frittage laser
WO2018019728A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélange polyamide contenant un agent renforçant pour poudre pour frittage laser
WO2018019727A1 (fr) 2016-07-29 2018-02-01 Basf Se Mélanges polyamide pour poudre pour frittage laser
EP3524430B1 (fr) 2018-02-07 2021-12-15 Ricoh Company, Ltd. Poudre pour la fabrication de formes libres solides, et procédé de fabrication de formes libres solides
FR3107060A1 (fr) * 2020-02-10 2021-08-13 Arkema France Poudre de polyamide et procédé de préparation correspondant
WO2021160959A1 (fr) * 2020-02-10 2021-08-19 Arkema France Poudre de polyamide et procédé de préparation correspondant
EP4279536A1 (fr) 2022-05-17 2023-11-22 Ems-Chemie Ag Matériaux pour frittage sélectif par laser et frittage laser utilisant de tels matériaux
EP4386036A1 (fr) 2022-12-15 2024-06-19 Ems-Chemie Ag Matériaux pour frittage sélectif par laser et frittage laser utilisant de tels matériaux

Similar Documents

Publication Publication Date Title
EP2556115B1 (fr) Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère
EP1742986B1 (fr) Poudre polymere contenant du polyamide, utilisation de cette poudre dans un procede de façonnage et corps façonne produit a partir de cette poudre polymere
EP1683820B1 (fr) Poudre polymérique contenant du polyamide, utilisation dans un procédé de façonnage et corps façonné produit à partir de cette poudre polymérique
WO2011124278A1 (fr) Poudre polymère à base de polyamides, utilisation de ladite poudre dans un procédé de façonnage et corps façonnés produits à partir de ladite poudre polymère
JP5754876B2 (ja) コポリアミド粉末及びその製造、コポリアミド粉末を成形法で用いる使用並びに前記コポリアミド粉末から製造される成形体
EP1720930B1 (fr) Procede de faconnage faisant appel a un apport d'energie non focalise, et corps moules produits a partir d'une poudre copolymere
EP1787789B1 (fr) Procédé de moulage par stéréolithographie pour la fabrication d'objets tridimensionnels en utilisant une poudre de polyester et objet obtenu par ledit procédé
EP1693415B1 (fr) Poudre de polymère avec copolyetheramide à blocs, et son utilisation dans un procédé et produit de moulage.
DE102004024440A1 (de) Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102012205908A1 (de) Polymerpulver mit angepasstem Schmelzverhalten
DE102004010160A1 (de) Polymerpulver mit Copolymer, Verwendung in einem formgebenden Verfahren mit fokussiertem Energieeintrag und Formkörper, hergestellt aus diesem Polymerpulver
EP4279536A1 (fr) Matériaux pour frittage sélectif par laser et frittage laser utilisant de tels matériaux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10778655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10778655

Country of ref document: EP

Kind code of ref document: A1