WO2011124109A1 - 一种内燃机的进气分段装置 - Google Patents

一种内燃机的进气分段装置 Download PDF

Info

Publication number
WO2011124109A1
WO2011124109A1 PCT/CN2011/072060 CN2011072060W WO2011124109A1 WO 2011124109 A1 WO2011124109 A1 WO 2011124109A1 CN 2011072060 W CN2011072060 W CN 2011072060W WO 2011124109 A1 WO2011124109 A1 WO 2011124109A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
internal combustion
combustion engine
valve
air
Prior art date
Application number
PCT/CN2011/072060
Other languages
English (en)
French (fr)
Inventor
谢国华
谢晓宇
Original Assignee
Xie Guohua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010101426126A external-priority patent/CN101858281B/zh
Priority claimed from CN201010142622.XA external-priority patent/CN101818692B/zh
Application filed by Xie Guohua filed Critical Xie Guohua
Publication of WO2011124109A1 publication Critical patent/WO2011124109A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L7/00Rotary or oscillatory slide valve-gear or valve arrangements
    • F01L7/02Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves
    • F01L7/026Rotary or oscillatory slide valve-gear or valve arrangements with cylindrical, sleeve, or part-annularly shaped valves with two or more rotary valves, their rotational axes being parallel, e.g. 4-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • F02B27/006Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes of intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0284Rotary slide valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/10Providing exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a four-stroke internal combustion engine, and more particularly to an intake and exhaust system for a four-stroke internal combustion engine.
  • External external exhaust gas recirculation Part of the exhaust gas is introduced into the cylinder for combustion again to reduce the oxygen content in the intake air; C0, N2, H20, etc. in the exhaust gas have a higher specific heat capacity, and the variable index is low, which can lower the maximum combustion temperature; An inert gas such as C02 or N2 hinders combustion and lowers the combustion rate, thereby suppressing the generation of NOx. As the exhaust gas recirculation ratio increases, the combustion rate is slowed down, the combustion duration is increased, and the degree of combustion and its stability are affected. Excessive exhaust gas recirculation makes it difficult to catch the mixture.
  • the exhaust gas and the combustible mixture are layered, the mixing of the exhaust gas and the combustible mixture is reduced, and the combustible mixture suitable for ignition is ensured at the time of the fire, thereby improving the stability of the combustion and improving the stability of the fire.
  • the external exhaust gas recirculation currently used has low control precision and also affects the uniformity of work between single cylinders.
  • Homogeneous Compression Ignition Technology The theory of homogeneous compression ignition, its basic characteristics are homogeneous, compression ignition, low temperature flame. This is a clean and efficient combustion process, but its scope of work has yet to be expanded.
  • the various combustion methods derived from the basic idea of HCCI have the characteristics of significantly widening the operating range while maintaining the high efficiency and low emission of HCCI. "Layered mixture” seems to be a contradiction with HCCI, but it is actually a "partition homogenization", while maintaining the HCCI core idea of multi-point spontaneous combustion and low-temperature combustion, thus having a fire phase controllable And low fuel consumption, low NOx effect.
  • Internal combustion engine boosting technology It uses a special compressor to pre-compress the gas before entering the cylinder, increasing the density of gas entering the cylinder and reducing the volume of the gas. Thus, the mass of the gas is greatly increased per unit volume. The gas volume can meet the combustion needs of the fuel, thereby achieving the purpose of improving the engine power.
  • supercharged internal combustion engines have the disadvantage of long acceleration process, especially turbocharged internal combustion engines. Centrifugal compressors cause compressor surge when the flow rate is small; when there are multiple joint operations, the intake pressure of diesel engines is abrupt. , control system complexity and other issues.
  • gases of different compositions such as air or combustible mixture and exhaust gas
  • gases of different pressures during a duty cycle of an internal combustion engine cylinder (if not a pressurized gas and a pressurized gas), or a gas having a different composition and pressure (such as a pressurized gas and an exhaust gas)
  • An intake segmenting device for an internal combustion engine provided by the present invention includes at least one intake port connected to an intake valve of an internal combustion engine, at least two intake pipes, and an inlet between the intake passage and the intake pipe
  • the air assist control valve, the opening and closing timing of the intake auxiliary control valve divides the intake air intake process into at least two intake air durations, and the intake passages respectively correspond to the corresponding intake durations
  • the trachea is sequentially connected.
  • the invention has the beneficial effects that: during operation, the intake assist control valve is opened and closed at an appropriate timing, so that the complete intake process of at least one intake port of the internal combustion engine is divided into at least two intake air. Duration; the intake process of the intake port of the internal combustion engine determines the intake process of the cylinder, and the internal combustion engine is equipped with one or more intake segmentation devices of the internal combustion engine, which can divide the complete intake process of at least one cylinder of the internal combustion engine into at least two The duration of the gas; at least the air intake process of one cylinder is divided into at least two intake durations, so that at least one cylinder exhaust gas and the combustible mixture (or air) of the internal combustion engine are better stratified, and the exhaust gas and the combustible mixture are reduced.
  • the blending ensuring that there is a combustible mixture suitable for ignition at the moment of ignition, can improve the stability of combustion, improve the endurance of the internal combustion engine to exhaust gas recirculation; and can significantly widen the operating range of HCCI (homogeneous charge compression ignition) .
  • At least the air intake process of one cylinder is divided into at least two intake air durations, so that at least one cylinder of the internal combustion engine has different pressures of gas to enter, thereby reducing the amount of intake air provided by the compressor (or other air supply system).
  • the power and volume required for the compressor (or other air supply system) can be reduced, and the transient response speed of the supercharged internal combustion engine can be improved.
  • the internal combustion engine only needs one cylinder to install the segmented air intake device, and the beneficial effects of the present invention can be realized; of course, the more the number of the air intake segment devices installed in the cylinder of the internal combustion engine or the intake air segment device installed in the internal combustion engine The more the lanes, that is, the more cylinders of the internal combustion engine segmented intake air, the more significant the beneficial effects of the present invention.
  • the intake pipe is provided with two, respectively a first intake pipe and a second intake pipe; the opening and closing timing of the intake auxiliary control valve corresponds to the phase of the valve timing of the connected intake valve
  • the opening and closing of the intake auxiliary control valve divides the intake process of the intake port into a first duration and a second duration according to the opening sequence.
  • the intake port is connected to the first intake pipe.
  • the intake port is connected to the second intake pipe.
  • the number of intake ports described above may be equal to the number of intake valves included in the internal combustion engine.
  • the proportion of the intake air amount of different intake air durations can be adjusted according to the engine load or the rotational speed.
  • the internal combustion engine is a non-supercharged internal combustion engine; the first intake pipe inlet is connected to the exhaust pipe, and the second intake pipe inlet is connected to the air cleaner or directly communicates with the air.
  • the internal combustion engine is a supercharged internal combustion engine or a supercharged intercooled internal combustion engine; the first intake pipe inlet is connected to the air filter outlet or the centrifugal compressor return port, and the second intake pipe inlet is increased.
  • the compressor outlet or the intercooler outlet of the press is connected.
  • a further optimization scheme of the technical solution is to increase the flow regulating device; the flow regulating device is: a flow control valve provided at an inlet portion of the intake pipe J1, and a flow control valve disposed between the two intake pipes; The device enables the supercharged internal combustion engine to have better low-speed performance, and the high-speed performance is also improved.
  • the internal combustion engine is a two-group supercharged internal combustion engine; the second intake pipe inlet is connected to the outlet of the first group of intercoolers, and the first intake pipe inlet is connected to the second group of intercooler outlets.
  • the internal combustion engine is a supercharged internal combustion engine or a supercharged intercooled internal combustion engine; an outlet of the intake passage is connected to an intake valve of the internal combustion engine; and three intake manifolds are respectively the first intake pipe and the second intake a trachea and a third intake pipe;
  • the opening and closing timing of the intake auxiliary control valve corresponds to the phase of the valve timing of the connected intake valve, and the opening and closing of the intake auxiliary control valve divides the intake process of the intake port into the first duration according to the opening sequence, a second duration, a third duration;
  • the intake passage is connected to the first intake pipe during its first duration;
  • the intake passage is connected to the second intake pipe during its second duration;
  • the intake passage is in The third intake period is connected to the third intake pipe;
  • the first intake pipe inlet is connected to the exhaust pipe, the second intake pipe inlet is connected to the air cleaner outlet, and the third intake pipe inlet is connected to the booster compressor outlet.
  • the intercooler outlet is connected.
  • the intake air auxiliary control valve may be an electronically controlled valve controlled by the ECU; or may be a mechanical valve having the following structure:
  • the outer rotor is disposed on the inner rotor and the valve body is located outside the outer rotor.
  • the inner rotor is hollow and closed at one end, and the other end is an open end.
  • the inner rotor, the outer rotor and the side of the valve body are respectively provided with corresponding at least one set of valves.
  • the closed end of the inner rotor is connected to a driven external gear via a rotating shaft, and the corresponding end of the outer rotor is provided with a driven internal gear, and a driving gear mounted at the end of the transmission shaft respectively and the driven external gear and the driven internal gear Engaged; the drive shaft is coupled to the internal combustion engine timing gear.
  • the valve port on the valve body or the open end of the inner rotor is connected to the intake port of each cylinder, and the other end is connected to the intake pipe.
  • the valve port of the intake auxiliary control valve When the inner rotor, the outer rotor and the valve port on the side of the valve body overlap or partially overlap each other, the valve port of the intake auxiliary control valve is in an open state, and in other states, the valve port of the intake auxiliary control valve is in a closed state;
  • the rotor and the outer rotor rotate in opposite directions, and the opening and closing speed of the valve is a superposition of the inner rotor and the outer rotor speed, so that the valve port of the intake auxiliary control valve can realize a large opening and can be quickly opened and closed;
  • the transmission shaft is connected with the timing gear transmission.
  • the valve ports of the plurality of intake auxiliary control valves of each single cylinder are corresponding to the timing and sequentially opened.
  • the open end of the inner rotor is connected to the corresponding intake port, and the valve ports on the side of the valve body are respectively connected to the corresponding intake pipe; the side of the valve body of the intake auxiliary control valve The sum of the number of ports is equal to the number of intake pipes.
  • the number of the intake assist control valves is equal to the number of intake pipes, and the open ends of the inner rotors of the intake auxiliary control valves are respectively connected to the intake pipe, and the number of ports on the side of each intake auxiliary control valve body and the intake air
  • the number of channels is equal and connected to the corresponding inlet.
  • the flow control of the internal combustion engine can be satisfied: for example, a gasoline engine, in order to meet the requirement of air-fuel ratio control, the flow control valve provided at the intake end of the gasoline engine intake pipe is generally a throttle valve. .
  • an angle advancement means i.e., a flow regulating device, is provided between the drive shaft and the timing mechanism of the internal combustion engine.
  • the angle advancement device is a prior art in the prior art; since the optimum angle value of the opening phase of the multi-stage intake air duration varies with the rotation speed of the internal combustion engine and the load, the angle advancement device is set so that each single cylinder The opening phase of each intake duration can be dynamically adjusted.
  • Fig. 1 is a schematic view showing the structure of an air intake segmenting device of an intake port.
  • Figure 2 is a schematic view showing the structure of an intake assist control valve.
  • Figure 3 is a cross-sectional view of M1 - Ml of Figure 2.
  • Figure 4 is a cross-sectional view of M2 - M2 of Figure 2.
  • Figure 5 is a schematic diagram of the angle value of the single cylinder intake phase and the inlet duration of the intake assist control valve.
  • Figure 6 is a schematic view showing the structure of an optimized air intake segmenting device for six intake ports.
  • Figure 7 is a schematic view showing the structure of an intake assist control valve.
  • Figure 8 is a cross-sectional view of M1 - Ml of Figure 7.
  • Figure 9 is a cross-sectional view taken along line M5-M5 of Figure 7.
  • Figure 10 is a cross-sectional view of M6-M6 of Figure 7.
  • Figure 11 is a schematic view of another optimized intake segmentation device for six intake ports of the present invention.
  • Figure 12 is a cross-sectional view of a centrifugal compressor with a return orifice.
  • Figure 13 is a schematic view of an optimized intake section of four intake ports of the present invention.
  • Figure 14 is another schematic diagram of the angle value of the single cylinder intake phase and the inlet duration of the intake assist control valve.
  • Figure 15 is a schematic view showing the structure of a supercharged diesel engine boosting system in which the present invention is installed.
  • Figure 16 is a schematic view showing the structure of another supercharged diesel engine pressurization system in which the present invention is installed.
  • FIG. 1 is an intake manifold unit of an internal combustion engine, comprising one intake port 1_J, two intake pipes J J2; an outlet of the intake port 1-J is connected to the cylinder intake valve K1;
  • the inlet of the intake pipe J1 is connected to the exhaust pipe 20, and the inlet of the intake pipe J2 is connected to the air cleaner 10 (if the air is relatively clean, the intake pipe J2 can also directly communicate with the air);
  • One intake auxiliary control valve F1 is respectively provided between Jl and J2; the opening and closing of the intake auxiliary control valve F1 of the intake port 1-J corresponds to the phase of the valve timing of the cylinder intake valve K1, so that The complete intake process of the intake port 1-J is divided into two intake air durations, and the corresponding intake port 1 - J is connected to the corresponding intake pipe during the intake of the two segments.
  • the intake assist control valve F1 (see FIGS. 2-4) includes an inner rotor 101, an outer rotor 102, and a valve body 103.
  • the inner rotor 101 is hollow and closed at one end, and the other end is an open end, the inner rotor 101, the outer rotor 102, and the valve body
  • the sides of the 103 are respectively provided with corresponding two sets of valve ports, respectively corresponding to 1-1, 1-2, and the phase angles of the valve ports on the inner rotor and the outer rotor side in the intake auxiliary control valve F1 are in phase error;
  • the closed end of the 101 is connected to a driven external gear 104 via a shaft, and the corresponding end of the outer rotor 102 is provided with a driven internal gear 105, and a drive shaft 106-1 is mounted (the corresponding drive shaft is 106-n, n respectively)
  • the drive gear 107 at the end of the intake assist control valve is meshed with the driven external gear and the driven
  • valve port angle ⁇ 1 of the inner rotor 101 and the valve port angle ⁇ 1 of the outer rotor 101 determine the angle of the intake assist control valve port 1-1 from open to closed. Scope; At the same time, the length L1 of the valve port 1-1 also affects the opening cross section of the valve port 1-1, which in turn affects the setting of the opening and closing speed (the two intake ports can also be controlled by two valve ports to accelerate the inner rotor, Outer rotor speed).
  • the two valve ports of the intake auxiliary control valve divide the complete intake process of the intake port 1-J into two consecutive intake durations, that is, the first duration and the second duration.
  • the intake port is connected to the two intake pipes J1, J2 in the divided two intake durations.
  • the intake assist control valve F1 divides the complete intake process of the intake port 1-J into two intake durations: through the relative position change of the valve port position, the opening of the intake auxiliary control valve port can be realized.
  • the air of the intake pipe J1 whose intake pressure is substantially atmospheric pressure and the air of the intake pipe J2 whose intake pressure is substantially atmospheric pressure enters the cylinder through the intake port 1-J.
  • Fig. 5 is a schematic diagram showing the angular value of the intake phase of the single cylinder internal combustion engine and the intake duration of the intake assist control valve. among them:
  • the angle difference of the opening period; ⁇ 4 indicates that the first intake air of the intake auxiliary control valve port 1 - 1 is from the opening to the closing angle, so that the exhaust gas enters the cylinder through the intake pipe through the intake pipe J1;
  • the second intake air of the gas assist control valve port 2-1 is from the opening to the closing angle, so that air enters the cylinder through the intake port from the intake pipe J2.
  • the angles of ⁇ 1, ⁇ 2, 9 4, ⁇ 5 can be selected by experiment.
  • the first-period exhaust gas and the second-period intake air pressure are basically atmospheric pressure air, which are sequentially passed through the intake air.
  • the passage enters the cylinder to better stratify the exhaust gas of the cylinder and the air, improve the endurance of the internal combustion engine to the exhaust gas recirculation, improve the stability of combustion, and reduce the emissions of the internal combustion engine.
  • a flow control valve can be installed at the inlet end of each intake pipe.
  • the flow control valve can be a throttle.
  • the embodiment of the present invention can be applied to both a single-cylinder internal combustion engine and a multi-cylinder internal combustion engine.
  • a plurality of intake segmentation devices are used for some cylinders (the number of intake segmentation devices is equal to the number of cylinders adopting the intake segmentation device), and the remaining cylinders adopt intake ports.
  • Figure 6 is an optimized six-port intake segmentation device, including six intake ports 1_J, 2-J, 3_J, 4-J,
  • 6-J and 2 intake manifolds Jl, J2 are respectively provided with 2 intake auxiliary control valves Fl, F2 ; 6 intake ports 1_J, 2_J, 3_J, 4_J, 5_J, 6-J intake assist control
  • the opening and closing of the valve corresponds to the phase of the valve timing of the intake valves connected to the six intake ports, so that the six intake ports 1_J, 2-J, 3_J, 4-J, 5_J, 6-J are complete.
  • the intake process is divided into two intake durations, and The respective intake ports are connected to the respective intake pipes during the intake of the two segments.
  • Each intake auxiliary control valve includes an inner rotor 101, an outer rotor 102 that is sleeved on the inner rotor, and a valve body 103 that is located outside the outer rotor.
  • the inner rotor 101 is hollow and closed at one end, and the other end is an open end, and the open end and the corresponding end are respectively The intake end of the trachea is connected, with an intake assist control valve F1
  • the intake assist control valve F2 has the same structure as the intake assist control valve F1; the intake assist control valve F1 includes the inner rotor 101, the outer rotor 102, and the valve body 103, the inner rotor 101, and the outer
  • the rotor 102 and the side surface of the valve body 103 respectively have corresponding 6 sets of valve ports respectively corresponding to 1 to 1 to 6-1 (the valve ports corresponding to the intake auxiliary control valve F2 are 1 to 2 to 6 to 2).
  • the position angles of the valve ports on the inner rotor and the outer rotor side of the intake assist control valve F1 are wrong; the closed end of the inner rotor 101 is connected to a driven external gear 104 via a shaft, and the corresponding end of the outer rotor 102 is driven.
  • the two valve ports of each single cylinder divide the complete air intake process of the corresponding cylinder into two consecutive intake durations, which are sequentially connected and overlapped by two adjacent processes, that is, the first continuous During the second period, the intake port is connected to the two intake pipes J J2 in the divided two intake durations, and the duration of the same sequence duration of each intake port is the same.
  • the intake assist control valve of each cylinder divides the complete intake process of each intake port into two overlapping, sequentially connected intake durations; the relative position change of the valve port position enables intake
  • the opening and closing of the auxiliary control valve port makes the intake air pressure atmospheric pressure air and the pressurized intercooled air (single-stage supercharged air-cooled air or multi-stage supercharged air-cooled air) 2 different intake durations, first and then enter the cylinder through the intake port; through the transmission axis and the timing gear transmission can be partially or fully set the angle advance device, can dynamically adjust the intake pressure to atmospheric pressure of the air and The proportion of air after supercharging and intercooling improves the discharge of different speeds and loads, as detailed below. Fig.
  • FIG. 4 is a schematic diagram showing the angle of the single cylinder exhaust phase angle of the four-stroke supercharged internal combustion engine and the valve inlet duration of the intake assist control valve, and illustrates the action of the angle advancement device, which is equally applicable to other supercharged internal combustion engines. among them:
  • ⁇ 1 indicates the angle difference between the intake valve opening and the intake valve duration of the intake assist control valve port 1-1.
  • the ratio of the air entering the cylinder to the air pressure of the atmospheric pressure can be adjusted.
  • ⁇ 1 is negative, the amount of air entering the cylinder with the inlet pressure of substantially atmospheric pressure decreases rapidly.
  • ⁇ 1 plus ⁇ 4 is equal to zero, the inlet pressure entering the cylinder from the inlet is substantially atmospheric pressure. The amount of air is zero.
  • ⁇ 1 is adjusted by the angle advancer , and the supercharged internal combustion engine can take a large value at a low speed and a small value at a high speed.
  • ⁇ 2 indicates the angle difference between the intake valve opening and the intake valve duration of the intake auxiliary control valve port 1 to 2.
  • the intake air entering the cylinder can be adjusted to the air after the intercooling pressure. proportion.
  • ⁇ 2 is adjusted by the angle advancer ⁇ 2.
  • ⁇ 4 represents the angle from the opening to the closing of the first intake air of the intake assist control valve port 1-1, and the air whose intake pressure is substantially atmospheric pressure is introduced into the cylinder through the intake port by the intake pipe J1.
  • ⁇ 5 indicates that the second intake duration of the intake assist control valve port 1 to 2 is from the opening to the closing angle, so that the supercharged and intercooled air enters the cylinder through the intake port through the intake pipe J2.
  • the angles of 9 1 , ⁇ 2, ⁇ 4, and ⁇ 5 can be selected by experiment.
  • the angle advancer can be set in the transmission shaft and the timing mechanism.
  • the angle advancer is a product existing in the prior art, and the output phase is changed by changing the relative position of the output and the input; the angle advanceer can make ⁇ 1, ⁇
  • the angle of 2 may vary with the rotational speed of the supercharged internal combustion engine or with the rotational speed and load.
  • the intake air pressure of the first duration is atmospheric pressure
  • the intake pressure of the second duration is after intercooling.
  • the air enters the cylinder through the intake passage, which reduces the air supplied by the compressor to each cylinder.
  • the turbocharger is a turbocharger or a supercharger, the power and volume required by the compressor can be reduced.
  • the device can be operated according to the operating conditions of the engine speed, load, etc., and the length of at least two intake valves at different times of the intake port can be adjusted, and the flow rate of the intake port through different gas sources can be adjusted with high precision, so that the supercharged internal combustion engine can be High speed performance is also improved with better low speed performance.
  • the embodiment of the present invention is an optimized intake segmentation device for a pressurized inlet internal combustion engine of six intake ports, but the intake segmentation device can be used for a pressurized internal combustion engine of more than six air passages at the same time (ie, partial cylinder adoption Intake segmentation device, some cylinders adopt the original air intake device directly connected to the intake pipe by the intake pipe).
  • Figure 11 is another optimized six-port air intake segmentation device, including six intake ports 1_J, 2-J, 3_J, 4-J, 5-J, 6_J, 2 intake pipes Jl, J2, intercooler 40, centrifugal compressor 30; internal combustion engine contains 6 intake valves; 6 inlets 1_J, 2-J, 3-J, 4-J, 5-J, 6-J directly It is connected with the inlet valves K1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 of each single cylinder; the inlet pipe J1 is connected with the return hole 31 of the centrifugal compressor 30 (see Fig.
  • the flow control valve F10 is disposed at a portion where the intake pipe J1 is connected to the return hole of the centrifugal compressor 30, and the flow control valve F20 is disposed between the intake pipe J1 and the intake pipe J2; 6 intake ports 1_J, 2_J, 3_J, 4-
  • the opening and closing of the intake auxiliary control valve of J, 5_J, 6-J corresponds to the phase of the valve timing of the corresponding intake valve of the internal combustion engine so that 6 intake ports 1_J, 2-J, 3_J, 4-J, 5_J , 6-J complete air intake process is divided Duration of the intake 2, and two corresponding intake passage in the intake segment of ON duration corresponding to the intake pipe.
  • Each intake auxiliary control valve includes an inner rotor 101, an outer rotor 102 that is sleeved on the inner rotor, and a valve body 103 that is located outside the outer rotor.
  • the inner rotor 101 is hollow and closed at one end, and the other end is an open end, and the open end and the corresponding end are respectively The intake end of the trachea is connected.
  • the intake auxiliary control valve F2 has the same structure as the intake auxiliary control valve F1; the intake auxiliary control valve F1 includes an inner rotor 101, an outer rotor 102, and a valve.
  • the body 103, the inner rotor 101, the outer rotor 102 and the side surface of the valve body 103 are respectively provided with corresponding ones 6 sets of valve ports, corresponding to 1 to 1 to 6 - 1 respectively (the valve port corresponding to the intake auxiliary control valve F2 is 1 to 2 to 6 - 2), the inner rotor and the outer rotor side in the intake auxiliary control valve F1
  • the valve port phase angle position is wrong; the closed end of the inner rotor 101 is connected to a driven external gear 104 via a shaft, and the corresponding end of the outer rotor 102 is provided with a driven internal gear 105, and a drive shaft 106 is mounted (corresponding to The drive gears 107 of the drive shafts are respectively 106-n, n is the number of the intake assist control valve.
  • the drive gears 107 are respectively meshed with the driven external gears and the driven internal gears, and the drive shafts are connected with the timing gears.
  • the two valve ports of each single cylinder divide the complete intake process of the corresponding cylinder into successively connected, the adjacent two process parts overlap, and the two short intake durations are the first duration, the second duration.
  • the intake passages are connected to the two intake pipes J1, J2 in the divided two intake durations, and the duration of the same sequence duration of each intake port is the same.
  • the intake assist control valve of each cylinder divides the complete intake process of each intake port into two overlapping, sequentially connected intake durations; the relative position change of the valve port position enables intake
  • the opening and closing of the auxiliary control valve port makes the air with the inlet pressure substantially atmospheric pressure and the air after the supercharged intercooling are respectively in two different intake durations, and then enter the cylinder through the intake passage first and then.
  • the flow control valve F10 When the internal combustion engine is at medium speed (or high speed), the flow control valve F10 is fully closed, the flow control valve F20 is fully open; the internal combustion engine is at low speed to medium speed (or high speed) At the time of transition, the flow control valve F10 can be fully opened, and the flow control valve F20 is fully closed; the turbocharged internal combustion engine can have better low-speed performance, and the high-speed performance is also improved.
  • the embodiment of the present invention is an optimized intake segmentation device for a pressurized inlet internal combustion engine of six intake ports, but the intake segmentation device can be used for a pressurized internal combustion engine of more than six air passages at the same time (ie, partial cylinder adoption Intake segmentation device, some cylinders adopt the original air intake device directly connected to the intake pipe by the intake pipe).
  • an optimized four-port air intake segmenting device includes four intake ports, three intake pipes J1, J2, J3, an air cleaner 10, and a smoke exhaust pipe 20.
  • Intercooler 40; 4 inlets 1-J, 2_J, 3_J, 4- J are directly connected to the inlets of each single cylinder intake valve; between each inlet and 3 intake pipes Jl, J2, J3 The intake auxiliary control valves F1, F2, and F3 are respectively provided ; the intake pipe J1 is connected to the exhaust pipe 20, the intake pipe J2 is connected to the air cleaner 10, and the intake pipe J3 is connected to the outlet 41 of the intercooler 40;
  • the opening and closing of the intake auxiliary control valve of the passage corresponds to the phase of the valve timing of the corresponding intake valve, so that the complete intake process of each single cylinder is divided into three intake durations, and the corresponding intake air
  • the track is connected to the corresponding intake pipe during the intake of the three segments.
  • Each intake auxiliary control valve includes an inner rotor 101, an outer rotor 102 that is sleeved on the inner rotor, and a valve body 103 that is located outside the outer rotor.
  • the inner rotor 101 is hollow and closed at one end, and the other end is an open end, and the open end and the corresponding end are respectively The intake end of the trachea is connected.
  • the intake auxiliary control valve F2 has the same structure as the intake auxiliary control valve F1.
  • the intake auxiliary control valve F1 includes an inner rotor 101, an outer rotor 102, and a valve.
  • the body 103, the inner rotor 101, the outer rotor 102 and the valve body 103 are respectively provided with corresponding four sets of valve ports, respectively corresponding to 1 to 1 to 4 to 1 (the valve port corresponding to the intake auxiliary control valve F2 is 1) 1 to 4-2, the valve port corresponding to the intake auxiliary control valve F3 is 1 to 3 to 4 to 3), and the position angles of the valve ports on the inner rotor and the outer rotor side in the intake auxiliary control valve F1 are wrong;
  • the closed end of the inner rotor 101 is coupled to a driven external gear 104 via a shaft.
  • the corresponding end of the outer rotor 102 is provided with a driven internal gear 105, and a drive shaft 106 is mounted (the corresponding drive shaft is 106-n, n respectively).
  • the drive gear 107 at the end of the number of the intake assist control valve is respectively driven and driven The driven gear and the internal gear meshed with the gear connected to the drive shaft positive.
  • each intake auxiliary control valve corresponds to the opening and closing angle of the valve timing of the corresponding intake valve;
  • the inner rotor speed the outer rotor speed: the internal combustion engine cam
  • the shaft speed 3: 1: 1; the opening phases of the adjacent two intake periods in which the single cylinders are sequentially opened partially overlap;
  • the angle advancement device between the drive shaft of the F1 and the timing mechanism of the diesel engine, F2
  • An angle advancement device T2 is provided between the drive shaft and the timing mechanism of the diesel engine
  • an angle advancement device ⁇ 3 is provided between the drive shaft of the F3 and the timing mechanism of the diesel engine.
  • the three valve ports of each single cylinder divide the complete intake process of the corresponding cylinder into successively connected, the adjacent two process parts overlap, and the three intake durations are the first duration, the second duration, In the third duration, the intake passages are connected to the three intake manifolds J1, J2, and J3, respectively, in the divided three intake durations, and the duration of the same sequence duration of each intake port is the same.
  • the intake assist control valve divides each intake port into three overlapping, sequentially connected intake durations; through the relative position change of the valve port position, the opening of the intake auxiliary control valve port can be realized.
  • the intake pipe of different gas sources the exhaust gas of the intake pipe J1 whose intake pressure is basically atmospheric pressure, the air of the intake pipe J2 whose intake pressure is basically atmospheric pressure, and the intake pipe whose intake pressure is the pressure after pressurization
  • the air of J3 enters the cylinder through the intake passage respectively; the angle advanceer can be partially or completely set between the transmission shaft and the timing gear transmission, which can simultaneously improve the running performance under low working conditions and high working conditions, as described below.
  • FIG. 14 is a schematic diagram showing the angular value of the single-cylinder intake phase of the four-stroke supercharged internal combustion engine and the intake duration of the intake-assisted control valve port, illustrating the action of the angular advancer, and the description is equally applicable to other internal combustion engines. among them:
  • ⁇ 1 indicates the angle difference between the intake valve opening and the intake valve duration of the intake assist control valve port 1-1.
  • the proportion of the exhaust gas entering the cylinder can be adjusted.
  • ⁇ 1 is negative
  • ⁇ 4 is equal to zero
  • ⁇ 1 is adjusted by the angle advancer ⁇ .
  • ⁇ 2 indicates the angle difference between the intake valve opening and the intake valve duration of the intake assist control valve port 1 to 2.
  • the ratio of the air entering the cylinder to the air pressure of the atmospheric pressure can be adjusted.
  • ⁇ 2 is negative, the amount of air entering the cylinder with the inlet pressure being substantially atmospheric pressure is rapidly reduced.
  • ⁇ 2 plus ⁇ 5 is equal to zero, the inlet is advanced. The amount of air in which the intake pressure into the cylinder is substantially atmospheric pressure is zero.
  • ⁇ 2 is adjusted by the angle advancer T2.
  • ⁇ 3 indicates the angle difference between the intake valve opening and the intake valve duration of the intake auxiliary control valve port 1-3.
  • the intake air entering the cylinder can be adjusted to the air after the intercooling pressure. proportion.
  • ⁇ 4 indicates that the first intake air of the intake assist control valve port 1-1 is open to closed, and the exhaust gas passes through the intake pipe J1 through the intake port.
  • ⁇ 5 indicates that the second intake of the intake assist control valve port 1 to 2 is from the opening to the closing angle, and the air is passed through the intake pipe J2 through the intake port.
  • ⁇ 6 indicates that the third intake air of the intake assist control valve port 1 to 3 is from the opening to the closing angle, so that the intercooled air passes through the intake pipe J3 through the intake port.
  • the angles of 9 1 , ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 can be optimally selected.
  • the angle advancer can be set in the transmission shaft and the timing mechanism.
  • the angle advancer is a product existing in the prior art, and the output phase is changed by changing the relative position of the output and the input; the angle advanceer can make ⁇ 1, ⁇ 2.
  • the angle of ⁇ 3 may vary with the speed of the supercharged internal combustion engine or with the speed and load.
  • the angle advancement device can dynamically adjust the length of at least two intake strokes of the single cylinder according to the operating conditions of the engine speed and load, and adjust the high precision into different air sources.
  • the ratio of the combustion process of the single cylinder is further optimized;
  • the intake pressure of the second duration is basically the air of atmospheric pressure,
  • the air of the third duration is the air of the post-intercooling pressure, and enters the cylinder through the intake passage successively. Therefore, the gas of different pressures enters the cylinder, which can reduce the power required by the turbocharger compressor and improve the transient response of the supercharged internal combustion engine.
  • the embodiment of the present invention is an optimized intake segmentation device for a supercharged internal combustion engine of four intake ports, but the intake segmentation device can be simultaneously used for a supercharged internal combustion engine with more than four air passages (ie, a partial cylinder is adopted Intake segmentation device, some cylinders adopt the original air intake device directly connected to the intake pipe by the intake pipe).
  • Figure 15 is a schematic diagram showing the structure of a supercharged diesel engine boosting system.
  • the internal combustion engine is a six-cylinder (corresponding to the cylinder number I-VI) four-stroke diesel engine optimized sequential boosting system, wherein the intake segmenting device is one. .
  • the dual boost internal combustion engine includes two sets of boosting systems, one optimized intake section device and one exhaust flow control system; the first group of boosting systems includes Intercooler 40-1, supercharger compressor 30-1 and turbine 50-1;; second set of booster system includes intercooler 40-2, supercharger compressor 30-2 and turbine 50-2;
  • the intake segmentation device includes a plurality of intake ports 1-J, 2-J, 3-J, 4-J, 5-J, 6-J, and two intake pipes Jl connected to the inlets of the intake valves of the single cylinders.
  • J2, 6 inlets 1_J, 2- J, 3- J, 4- J, 5- J, 6-J and 2 intake manifolds Jl, J2 are respectively provided with 2 intake auxiliary control valves Fl , F2 ; 6 inlets 1_J, 2_J, 3_J, 4_J, 5_J, 6-J the opening and closing of the intake auxiliary control valve corresponds to the phase of the valve timing of the corresponding intake valve of the internal combustion engine to make 6 intakes
  • the complete intake process of lanes 1_J, 2-J, 3_J, 4-J, 5_J, 6-J is divided into 2 intake durations, and the corresponding intake passages are in the two-stage intake duration.
  • the inlet of the compressor 30-1 is connected to the outlet of the air cleaner 10-1, and the outlet of the compressor 30-1 is connected to the inlet of the intercooler 40-1, the compressor 30-2
  • the inlet is connected to the outlet of the air cleaner 10-2, and the outlet of the compressor 30-2 is connected to the inlet of the intercooler 40-2.
  • the intake pipe J2 is connected to the outlet of the intercooler 40-1 of the first group of supercharging systems, and the intake pipe J1 is connected to the outlet of the intercooler 40-2 of the second group of supercharging systems;
  • the exhaust flow control system includes 6 exhaust passages connected to the outlet of each single cylinder exhaust valve 1-P, 2-P, 3-P, 4-P, 5-P, 6-P, two exhaust pipes Pl, P2; exhaust pipe The PI terminal is directly connected to 6 exhaust passages, and the other end is directly connected to the inlet of the turbine 50_1; the exhaust pipe P2 is connected to the exhaust pipe P1 through the flow control valve F30, and the other end is directly connected to the inlet of the turbine 50-2.
  • Each intake auxiliary control valve includes an inner rotor 101, an outer rotor 102 that is sleeved on the inner rotor, and a valve body 103 that is located outside the outer rotor.
  • the inner rotor 101 is hollow and closed at one end, and the other end is an open end, and the open end and the corresponding end are respectively
  • the intake end of the trachea is connected, and an intake assist control valve F1 is taken as an example.
  • the intake auxiliary control valve F2 has the same structure as the intake auxiliary control valve F1.
  • the intake auxiliary control valve F1 includes an inner rotor 101, an outer rotor 102, and a valve.
  • the body 103, the inner rotor 101, the outer rotor 102 and the valve body 103 are respectively provided with corresponding 6 sets of valve ports, respectively corresponding to 1 to 1 to 6 - 1 (the valve port corresponding to the intake auxiliary control valve F2 is 1) 1 to 6-2), the position angles of the valve ports on the sides of the inner rotor and the outer rotor in the intake auxiliary control valve F1 are wrong; the closed end of the inner rotor 101 is connected to a driven external gear 104 via the shaft, and the outer rotor 102 The corresponding end is provided with a driven internal gear 105, and a driving gear 106 is mounted (the corresponding transmission shaft is 106-n, n is the number of the intake auxiliary control valve).
  • the driving gear 107 at the end is respectively driven and driven.
  • the external gear and the driven internal gear mesh, the drive shaft and the timing tooth Wheel drive connection.
  • the two valve ports of each single cylinder divide the complete intake process of the corresponding cylinder into successively connected, the adjacent two process parts overlap, and the two short intake durations are the first duration, the second duration.
  • the intake passages are connected to the two intake pipes J2 and J1 respectively in the divided two intake durations, and the duration of the same sequence duration of each intake port is the same.
  • the intake assist control valve of each cylinder divides the complete intake process of each intake port into two overlapping, sequentially connected intake durations; the relative position change of the valve port position enables intake
  • the opening and closing of the auxiliary control valve port makes the air with the inlet pressure of the intake pipe J1 pressure and the pressure of the intake pipe pressure J2 successively enter the corresponding cylinder through each intake port, so that the two supercharging systems which are successively supercharged are successively pressurized. It works at the same time when the internal combustion engine is running at a low speed.
  • the exhaust flow control system first satisfies the needs of the turbine 50-1, that is, the energy supplied by the turbine 50-1, so that the compressor 30-1 ensures that the intake pipe J2 pressure reaches the use requirement, and at this time, the flow control valve F30 is opened.
  • the minimum degree in the process of increasing the speed of the supercharged internal combustion engine, under the condition that the pressure of the intake pipe J2 is basically kept unchanged, the opening degree of the flow control valve F30 is gradually increased, and the pressure of the intake pipe J1 is increased with the rotation speed, and the intake pipe The pressure of J2 can be kept basically unchanged.
  • the flow control valve F30 When the internal combustion engine is at the calibration point, the flow control valve F30 is fully open, and the pressure of the intake pipe J1 can be the same as the pressure of the intake pipe J2, thus eliminating the original sequential supercharging system during the rising speed.
  • the situation of the intake pressure fluctuation caused by the switching of multiple supercharging systems fundamentally solves the problem that the turbocharged internal combustion engine is a combined travel flow matching problem between the impeller rotary mechanical and the reciprocating mechanical.
  • the adjustment range of the successive supercharged internal combustion engine can be increased by providing an angle advancement device between the drive shaft and the timing gear transmission or by adding a flow control valve between the two intake pipes.
  • the exhaust flow control system of the present embodiment may also be the exhaust system of FIG. 16, including: 3 exhaust pipes P1, P2, P3, two turbocharger turbines W1, W2; 6 exhaust passages 1 -P, 2-P, 3_P, 4_P, 5_P, 6_P and 3 exhaust pipes Pl, P2, P3 are respectively provided with 3 exhaust auxiliary control valves F4, F5, F6 which can be quickly opened and closed (structure and The intake auxiliary valve structure is similar), the opening and closing of the exhaust auxiliary control valves of the six exhaust passages 1-P, 2-P, 3-P, 4-P, 5-P, 6_P and the corresponding exhaust valves
  • the phase of the gas timing corresponds to each other, so that the complete exhaust process of each single cylinder is divided into three short exhaust durations: a first exhaust duration, a second exhaust duration, and a third exhaust duration,
  • the exhaust gas of the three sections of the exhaust gas duration is respectively entered into the corresponding exhaust pipes of P1, P2 and P3, and the exhaust pipe P1 is connected with the inlet of
  • the two sets of turbochargers may be different, and when the second group is larger than the first group, the adjustment range of the successive supercharged internal combustion engines will be increased.
  • the principle of the embodiment can be expanded to more than two sets of superchargers, and the operating speed adjustment range of the successive supercharged internal combustion engines will be further increased.
  • a flow control valve may be installed at a joint portion of each intake pipe and an auxiliary control valve in the application example, and the flow control valve may be a throttle valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

一种内燃机的进气分段装置
技术领域
本发明涉及四冲程内燃机, 特别涉及四冲程内燃机的进、 排气系统。
背景技术
内燃机问世一百多年来, 其技术得到长足进步, 特别随着各国排放法规和燃油消耗法 规的逐年严格, 四冲程内燃机技术取得飞速发展。 外部废气再循环技术、 均质压燃着火技 术均是实现内燃机高效清洁燃烧的主要措施; 增压 (包括增压中冷、 二级增压、 相继增压 等增压系统, 下同) 技术是使内燃机动力性、 燃油经济性和排放都得到改善。
外部废气外部再循环: 将部分废气引入气缸内再次燃烧, 使进气中的氧含量减少; 废气中的 C0、 N2, H20等具有较高的比热容, 多变指数低,可以降低最高燃烧温度; C02, N2 等惰性气体阻碍燃烧, 使燃烧速度降低, 从而抑制了 NOx的生成。 随着废气再循环比率的 增加, 会减缓燃烧速率, 增加燃烧持续期, 并影响燃烧的完善程度及其稳定性; 过量废气 再循环, 使混合气难以着火。 如果废气与可燃混合气 (或空气)分层分布, 减少废气与可 燃混合气的掺和, 保证着火时刻有适于着火的可燃混合气, 就能够改善燃烧的稳定性, 就 能够改善着火的稳定性,提高内燃机对废气再循环的忍受力。目前使用的外部废气再循环, 控制精度低, 同时还影响单缸间工作的均勾性。
均质压燃着火技术: 即均质压燃着火理论, 它的基本特征是均质、 压燃、 低温火焰。 这是一种清洁高效的燃烧过程, 但其工作范围还有待扩展, 但基于 HCCI基本思路衍生出来 的多种燃烧方法却有可使运转范围显著拓宽, 而仍保持 HCCI高效超低排放的特点。 "分 层混合气"看起来是与 HCCI相矛盾的思路, 但它实际上是一种 "分区均质", 同时又保持 了多点自燃和低温燃烧的 HCCI核心思想, 因而具有着火相位可控和低油耗、低 NOx的效果。
内燃机增压技术: 就是采用专门的压气机将气体在进入气缸前预先进行压缩, 提高进 入气缸的气体密度, 减小气体的体积, 这样, 在单位体积里, 气体的质量就大大增加了, 进气量即可满足燃料的燃烧需要, 从而达到提高发动机功率的目的。 目前增压内燃机, 有 加速过程时间较长的缺点,尤其是涡轮增压内燃机; 而离心式压气机在流量较小时, 会引 起压气机喘振; 多个联合工作时, 柴油机进气压力有突变、 控制系统复杂等问题。
内燃机增压后, 涡后废气、 机械增压的废气由于其压力基本接近大气压, 在进行废气 再循环时, 需经过压气机加压才能进行废气再循环。 废气通过压气机, 不但需要压气机提 供能量, 还会降低压气机的使用寿命。
发明内容
本发明的目的是提供一种内燃机的进气分段装置, 其在内燃机气缸的工作循环中, 使 不同组成成份的气体 (如空气或可燃混合气与废气)、 或不同压力的气体 (如未增压的气 体和增压后的气体)、或是成份和压力均不同的气体(如增压后的气体和废气), 分时段先 后通过进气道; 从而使安装进气分段装置的气缸进气实施进气分段、 降低内燃机排放或 / 和改善增压内燃机的瞬时响应性能。
本发明提供的一种内燃机的进气分段装置,包括出口与内燃机进气阀相连的至少一个 进气道, 至少两根进气管, 所述进气道与所述进气管之间设有进气辅助控制阀, 进气辅助 控制阀的启闭定时使所述进气道进气过程划分为至少两个进气持续期,进气道在已划分的 进气持续期内分别与相应的进气管顺序接通。
与现有技术相比, 本发明的有益效果是: 其工作时, 通过进气辅助控制阀在适当时机 开启和关闭, 使内燃机至少一个进气道完整的进气过程划分为至少两个进气持续期; 内燃 机进气道的进气过程决定了气缸的进气过程, 内燃机安装一个或多个内燃机的进气分段装 置, 可使内燃机至少一个气缸完整的进气过程划分为至少两个进气持续期; 至少使一个气 缸的进气过程划分为至少两个进气持续期, 即可使内燃机至少一个气缸废气与可燃混合气 (或空气)更好地分层, 减少废气与可燃混合气的掺和, 保证着火时刻有适于着火的可燃 混合气, 就能够改善燃烧的稳定性, 提高内燃机对废气再循环的忍受力; 并可使 HCCI (均 质充量压燃)运转范围显著拓宽。至少使一个气缸的进气过程划分为至少两个进气持续期, 即可使内燃机至少一个气缸有不同压力的气体进入, 从而减小压气机 (或其它供气系统) 提供的进气量, 即可减小压气机 (或其它供气系统)所需功率、 体积, 可提高增压内燃机 瞬态响应速度。 内燃机只需一个气缸安装分段进气装置, 即可实现本发明的有益效果; 当 然, 内燃机气缸安装的进气分段装置个数越多, 或内燃机安装的进气分段装置所含进气道 越多, 即内燃机分段进气的气缸越多, 本发明的有益效果越显著。
作为本发明的进一步改进, 所述进气管设有两根, 分别为第一进气管和第二进气管; 进气辅助控制阀的启闭定时与所连进气阀配气定时的相位相对应,进气辅助控制阀的开启 和关闭使进气道的进气过程按开启先后划分为第一持续期和第二持续期, 在第一持续期 内, 进气道与第一进气管接通, 在第二持续期内, 进气道与第二进气管接通。 上述进气道 个数可与内燃机所含进气阀个数相等。该技术方案在增加流量调节装置时, 可根据内燃机 负荷或 \和转速, 调整不同进气持续期进气量的比例。
上述技术方案的具体改进之一, 所述内燃机为非增压内燃机; 第一进气管进口与排烟 管相连, 第二进气管进口与空气滤清器相连或直接与空气相通。
上述技术方案的又一具体改进, 所述内燃机为增压内燃机或增压中冷内燃机; 第一进 气管进口与空气滤清器出口或离心式压气机回流口相连,第二进气管进口与增压器的压气 机出口或中冷器出口相连。 本技术方案的进一步优化方案是, 增加流量调节装置; 流量调 节装置为: 进气管 J1的进口部位设有的流量控制阀, 和在两根进气管之间设有的流量控制 阀; 该流量调节装置使增压内燃机有较好低速性能的同时, 高速性能也得到改善。
上述技术方案的再一具体改进, 所述内燃机为二组增压内燃机; 第二进气管进口与第 一组中冷器的出口相连, 第一进气管进口与第二组中冷器出口相连。
作为本发明的又一种改进, 所述内燃机为增压内燃机或增压中冷内燃机; 进气道的出 口与内燃机进气阀相连; 进气管有三根, 分别为第一进气管、 第二进气管和第三进气管; 进气辅助控制阀的启闭定时与所连进气阀配气定时的相位相对应,进气辅助控制阀的开启 和关闭使进气道的进气过程按开启先后划分为第一持续期、 第二持续期、 第三持续期; 进 气道在其第一持续期内与第一进气管接通; 进气道在其第二持续期与第二进气管接通; 进 气道在其第三持续期内与第三进气管接通; 第一进气管进口与排烟管相连, 第二进气管进 口与空气滤清器出口相连, 第三进气管进口与增压器压气机的出口或中冷器出口相连。
为实现将进气道的进气过程分成至少两个进气持续期,所述进气辅助控制阀可以是由 ECU控制的电控阀; 还可以是如下结构的机械阀: 其包括内转子、 套装在内转子上的外转 子和位于外转子外的阀体, 内转子中空且一端封闭, 另一端为开口端, 内转子、 外转子和 阀体的侧面分别开设有相对应的至少一组阀口; 内转子的封闭端经转轴连接一从动外齿 轮, 外转子的相应端部设有从动内齿轮, 一安装在传动轴端部的主动齿轮分别与从动外齿 轮和从动内齿轮相啮合; 传动轴与内燃机正时齿轮传动连接。 使用时, 使阀体上的阀口或 内转子的开口端中的任一端接各缸进气道, 另一端接进气管, 传动轴转动时, 驱动内转子 和外转子逆向运动, 当运动到内转子、 外转子和阀体侧面的阀口相互重叠或部分重叠时, 进气辅助控制阀的阀口即处于开启状态, 其他状态下, 进气辅助控制阀的阀口处于关闭状 态; 由于内转子和外转子逆向转动, 阀的启闭速度是内转子和外转子速度的叠加, 使进气 辅助控制阀的阀口可以实现大开度并能迅速启闭; 传动轴与正时齿轮传动连接, 可使各单 缸的多个进气辅助控制阀的阀口与正时相对应并顺序开启。在具体应用时, 可有如下两种 方案: 其一, 所述内转子的开口端接相应进气道, 阀体侧面的各阀口分别接相应进气管; 进气辅助控制阀阀体侧面的阀口数目之和与进气管数目相等。其二, 所述进气辅助控制阀 的数目与进气管数目相等, 各进气辅助控制阀的内转子开口端分别接进气管, 各进气辅助 控制阀阀体侧面的阀口数目与进气道数相等并分别接相应进气道。
上述技术方案中, 进气管设有流量控制阀时, 可满足内燃机对流量控制的需要: 如汽 油机, 为满足空燃比控制的需要, 汽油机进气管进气端设有的流量控制阀一般为节气门。
作为本发明的一种优化方案, 在传动轴和内燃机的正时机构之间设有的角度提前装 置, 即流量调节装置。 角度提前装置为现有技术中的已有技术; 由于多段进气持续期的开 启相位的最佳角度值是随内燃机的转速、 负荷的变化而变化的, 角度提前装置的设置, 使 各单缸的每个进气持续期的开启相位可以动态调整。
附图说明
图 1 本发明一种一个进气道的进气分段装置结构示意图。
图 2 —种进气辅助控制阀的结构示意图。
图 3 为图 2的 Ml— Ml剖视图。
图 4 为图 2的 M2— M2剖视图。
图 5 —种单缸进气阶段角面值及进气辅助控制阀阀口进气持续期示意图。
图 6 本发明一种优化的 6个进气道的进气分段装置结构示意图。 图 7 再一种进气辅助控制阀的结构示意图。
图 8 为图 7的 Ml— Ml剖视图。
图 9 为图 7的 M5— M5剖视图。
图 10 为图 7的 M6— M6剖视图。
图 11本发明又一种优化的六个进气道的进气分段装置示意图。
图 12 带有回流孔的离心式压气机剖视图。
图 13 本发明一种优化的四个进气道的进气分段装置示意图。
图 14 另一种单缸进气阶段角面值及进气辅助控制阀阀口进气持续期示意图。
图 15 安装本发明的一种双增压柴油机增压系统结构示意图。
图 16 安装本发明的另一种双增压柴油机增压系统结构示意图。
具体实施方式
实施例 1
如图 1,为一种一个进气道的内燃机进气分段装置,包括 1个进气道 1_J, 2根进气管 J J2; 进气道 1-J的出口与气缸进气阀 K1相连; 进气管 J1进口与排烟管 20相连, 进气管 J2进 口与空气滤清器 10相连 (如空气比较清洁, 进气管 J2也可直接与空气相通); 进气道 1-J与 2 根进气管 Jl、 J2之间分别设有 1只进气辅助控制阀 F1 ; 进气道 1-J的进气辅助控制阀 F1的启 闭与气缸进气阀 K1的配气正时的相位相对应,使进气道 1-J完整的进气过程划分为 2个进气 持续期, 并使相应的进气道 1一 J在 2个分段的进气持续期与相应的进气管接通。 进气辅助 控制阀 F1 (见图 2— 4)包括内转子 101、外转子 102和阀体 103, 内转子 101中空且一端封闭, 另一端为开口端, 内转子 101、 外转子 102和阀体 103的侧面分别开设有相对应的 2组阀口, 分别对应为 1一 1、 1 -2, 进气辅助控制阀 F1内的内转子、 外转子侧面的阀口相位角位置相 错; 内转子 101的封闭端经轴连接一从动外齿轮 104, 外转子 102的相应端部设有从动内齿 轮 105, 一安装在传动轴 106— 1 (相对应的传动轴分别为 106— n, n为进气辅助控制阀的编 号) 端部的主动齿轮 107分别与从动外齿轮和从动内齿轮相啮合, 传动轴与正时齿轮传动 连接。 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭; 进气辅 助阀的内转子的开口端与进气道 1-J连接, 阀 F1阀体侧面的阀口 1-1与进气管 J1连接, 阀口 1-2与进气管 J2连接; 进气辅助控制阀 F1的阀体 103可以与进气管连为一体(根据内燃机空 间条件进气辅助控制阀亦可布置在进气管内、 或布置在进气道内), 进气辅助控制阀内的 阀口与相应进气阀的配气正时的相位相对应的启闭角度相对应; 内转子转速: 外转子的转 速: 内燃机凸轮轴转速 =3: 1: 1; 为实现进气辅助控制阀的快速启闭, 所述内转子转速: 外转子的转速: 内燃机凸轮轴转速可为 5: 1: 1、 4: 1: 1、 3: 1: 1、 2: 1: 1, 选取内转 子转速: 外转子的转速: 内燃机凸轮轴转速 =3: 1: 1, 只是因为, 在满足各进气辅助控 制阀阀口角度的条件下, 希望内转子、 外转子转速越快越好内、 外转子的转速越大, 所有 单个阀口 (如阀口 1-1 ) 启闭速度越快, 但阀口 1-1从开启到关闭的可调整范围 (角度)越 小; 内转子 101、 外转子 102转速确定后, 内转子 101上阀口角度 α 1、 外转子 102阀口角度 β 1, 确定了进气辅助控制阀阀口 1-1从开启到关闭的角度范围; 同时阀口 1-1的长度 L1也 影响到阀口 1-1开启截面, 进而影响启闭速度的设定 (也可通过两个阀口控制一个进气持 续期, 可加快内转子、 外转子转速)。 这样, 进气辅助控制阀的 2个阀口把进气道 1-J的完 整的进气过程按开启先后划分为依次相连的 2个进气持续期,即第一持续期、 第二持续期, 进气道在已分的 2个进气持续期的分别与 2根进气管 Jl、 J2接通。
工作时, 进气辅助控制阀 F1把进气道 1-J完整的进气过程分成 2个进气持续期: 通过阀 口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭, 使进气压力基本为大 气压力的进气管 J1的废气、进气压力基本为大气压力的进气管 J2的空气, 先后通过进气道 1-J进入气缸。图 5是单缸内燃机的进气阶段角面值及进气辅助控制阀阀口进气持续期示意 图。 其中:
θ 1表示进气门开启与进气辅助控制阀阀口 1一 1的进气持续期开启的角度差; Θ 2表示 进气门开启与进气辅助控制阀阀口 2— 1的进气持续期开启的角度差; Θ 4表示进气辅助控 制阀阀口 1一 1的第一进气持续期从开启到关闭的角度,使废气由进气管 J1通过进气道进入 气缸; Θ 5表示进气辅助控制阀阀口 2— 1的第二进气持续期从开启到关闭的角度, 使空气 由进气管 J2通过进气道进入气缸。 根据增压内燃机的使用用途, 可由试验选择 Θ 1、 Θ 2、 9 4、 Θ 5的角度。
通过把进气道 1-J一个完整的进气过程分成 2个进气持续期, 可使第一持续期的废气、 第二持续期的进气压力基本为大气压力的空气, 先后通过进气道进入气缸, 使气缸的废气 与空气较好的分层, 提高内燃机对废气再循环的忍受力, 改善燃烧的稳定性, 降低内燃机 排放。
对于需要控制空燃比的内燃机, 如汽油机, 则可在每根进气管进口端, 安装流量控制 阀, 该流量控制阀可为节气门。
本实施例方案既可用于单缸内燃机, 同时也可用于多缸内燃机。本实施例方案用于多 缸内燃机时, 部分气缸采用多个进气分段装置 (进气分段装置的个数与采用进气分段装置 的气缸个数相等), 剩余气缸采用进气道与含有所需补充气体的进气管直接相连的原有进 气装置; 较优方案是多缸内燃机每个气缸均采用进气分段装置。
实施例 2
如图 6,为一种优化的 6个进气道的进气分段装置,包括 6个进气道 1_J、 2-J、 3_J、 4-J、
5- J、 6-J, 2根进气管 Jl、 J2,; 内燃机含有 6个进气阀; 6个进气道 1_J、 2- J、 3- J、 4- J、 5_J、 6-J直接与各单缸的进气阀进口 Kl、 Κ2、 Κ3、 Κ4、 Κ5、 Κ6、 相连; 进气管 Jl与空气滤 清器 10相连, 进气管 J2与中冷器 40的出口 41相连; 6个进气道 1_J、 2-J、 3_J、 4_J、 5_J、
6- J与 2根进气管 Jl、 J2之间分别设有 2只进气辅助控制阀 Fl、 F2; 6个进气道 1_J、 2_J、 3_J、 4_J、 5_J、 6-J的进气辅助控制阀的启闭与 6个进气道所连进气阀的配气正时的相位相对应, 使 6个进气道 1_J、 2-J、 3_J、 4-J、 5_J、 6-J完整的进气过程均划分为 2个进气持续期, 并 使相应的进气道在 2个分段的进气持续期与相应的进气管接通。 每只进气辅助控制阀包括 内转子 101、套装在内转子上的外转子 102和位于外转子外的阀体 103, 内转子 101中空且一 端封闭, 另一端为开口端, 开口端与相应进气管进气端相连, 以一只进气辅助控制阀 F1
(见图 7— 10 ) 为例, 进气辅助控制阀 F2与进气辅助控制阀 F1结构相同; 进气辅助控制阀 F1包括内转子 101、 外转子 102和阀体 103, 内转子 101、 外转子 102和阀体 103的侧面分别开 设有相对应的 6组阀口, 分别对应为 1一 1至 6— 1 (进气辅助控制阀 F2对应的阀口为 1一 2至 6 一 2), 进气辅助控制阀 F1内的内转子、 外转子侧面的阀口相位角位置相错; 内转子 101的 封闭端经轴连接一从动外齿轮 104, 外转子 102的相应端部设有从动内齿轮 105, 一安装在 传动轴 106 (相对应的传动轴分别为 106— n, n为进气辅助控制阀的编号)端部的主动齿轮 107分别与从动外齿轮和从动内齿轮相啮合, 传动轴与正时齿轮传动连接。 通过阀口位置 的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭; 2只阀的内转子的开口端分 别接相应进气管, 阀体侧面的各阀口分别接相应各缸的进气道; 每只进气辅助控制阀内的 6组阀口与相应进气阀的配气正时的相位相对应的启闭角度相对应; 内转子转速: 外转子 的转速: 内燃机凸轮轴转速 = 3: 1: 1; 各单缸的顺序开启的相邻两进气持续期的开启相 位有部分重叠; F1的传动轴和柴油机的正时机构之间设有角度提前装置 Π, F2的传动轴和 柴油机的正时机构之间设有角度提前装置 Τ2。 这样, 每一单缸的 2个阀口把相应气缸的完 整的进气过程按开启先后划分为依次相连的、 相邻两个过程部分重叠的 2个短的进气持续 期, 即第一持续期、 第二持续期, 进气道在已分的 2个进气持续期的分别与 2根进气管 J J2接通, 并使每个进气道相同次序持续期的持续时间均一样。
工作时, 每缸的进气辅助控制阀把每个进气道完整的进气过程分成 2个有重叠的、 依 次相连的进气持续期; 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启 与关闭, 使进气压力为大气压力的空气与增压中冷后的空气(单级增压中冷后的空气或多 级增压中冷后的空气) 分别在 2个不同的进气持续期, 先、 后通过进气道进入气缸; 通过 传动轴与正时齿轮传动之间可部分或全部设置角度提前装置,可动态调整进气压力为大气 压力的空气与增压中冷后的空气的比例, 使不同转速、 不同负荷运的排放都得到改善, 具 体见以下说明。 图 4是四冲程增压内燃机的单缸排气阶段角面值及进气辅助控制阀阀口进 气持续期示意图,并说明角度提前装置的作用,该说明同样适用于其它增压内燃机。其中:
Θ 1表示进气门开启与进气辅助控制阀阀口 1一 1的进气持续期开启的角度差,对于 Θ 1 的调整, 可调整进入气缸的进气压力基本为大气压力的空气的比例, 当 Θ 1为负值时, 进 入缸内进气压力基本为大气压力的空气的量迅速减少, 当 Θ 1加 Θ 4等于零时, 由进气道进 入缸内的进气压力基本为大气压力的空气的量为零, 本实施例中 Θ 1通过角度提前器 Π调 整, 增压内燃机低速时可取大值, 高速时取小值。
Θ 2表示进气门开启与进气辅助控制阀阀口 1一 2的进气持续期开启的角度差,对于 Θ 2 的调整, 可调整进入气缸的进气压力为中冷后压力的空气的比例。 本实施例中 Θ 2通过角 度提前器 Τ2调整。 θ 4表示进气辅助控制阀阀口 1一 1的第一进气持续期从开启到关闭的角度, 使进气压 力基本为大气压力的空气由进气管 J1通过进气道进入气缸。
Θ 5表示进气辅助控制阀阀口 1一 2的第二进气持续期从开启到关闭的角度, 使增压中 冷后的空气由进气管 J2通过进气道进入气缸。
根据增压内燃机的使用用途, 可由试验选择 9 1、 Θ 2、 Θ 4、 Θ 5的角度。 如在传动轴 和正时机构可设置角度提前器, 角度提前器为现有技术中已有的产品, 通过改变输出与输 入的相对位置, 使输出相位发生变化; 角度提前器可使 Θ 1、 Θ 2的角度可随增压内燃机的 转速变化或随转速、 负荷而变化。 根据优化效果, 也可仅对部分进气辅助控制阀前安装角 度提前器, 也可在所有传动轴前端设置一个角度提前器。
通过把每个进气道的一个完整的进气过程分成 2个进气持续期, 可使第一持续期的进 气压力为大气压力的空气、第二持续期的进气压力为中冷后的空气, 先后通过进气道进入 气缸, 可减少压气机对每个气缸提供的空气, 无论增压器是涡轮增压器还是机械增压器, 均可减少压气机所需功率、 体积, 从而提高增压内燃机瞬态响应速度; 对于机械增压内燃 机, 减小机械增压器压气机所需功率的同时, 可减少增压内燃机有效功率的损失, 可提高 机械增压的效率; 通过角度提前装置, 可根据内燃机转速、 负荷等工作情况进行, 可调整 进气道不同时刻至少两个进气持续期的长短,高精度的调整进气道通过不同气源气体的流 量, 可使增压内燃机有较好低速性能的同时, 高速性能也得到改善。
本实施例方案是 6个进气道的增压内燃机的一种优化的进气分段装置, 但该进气分段 装置同时可用于多于 6个气道的增压内燃机 (即部分气缸采用进气分段装置, 部分气缸采 用进气道与进气管直接相连的原有进气装置)。
实施例 3
如图 11, 为又一种优化的 6个进气道的进气分段装置, 包括 6个进气道 1_J、 2-J、 3_J、 4- J、 5- J、 6_J, 2根进气管 Jl、 J2, 中冷器 40, 离心式压气机 30; 内燃机含有 6个进气阀; 6个进气道 1_J、 2- J、 3- J、 4- J、 5- J、 6-J直接与各单缸的进气阀进口 Kl、 Κ2、 Κ3、 Κ4、 Κ5、 Κ6、 相连; 进气管 J1与离心式压气机 30的回流孔 31 (剖视图见图 12 )相连, 进气管 J2 与中冷器 40的出口 41相连; 6个进气道 1_J、 2-J、 3_J、 4-J、 5_J、 6_J与 2根进气管 Jl、 J2 之间分别设有 2只进气辅助控制阀 Fl、 F2; 进气管 J1与离心式压气机 30的回流孔相连的部 位设置流量控制阀 F10,进气管 Jl、进气管 J2之间设置流量控制阀 F20; 6个进气道 1_J、 2_J、 3_J、 4-J、 5_J、 6-J的进气辅助控制阀的启闭与内燃机相应进气阀的配气正时的相位相对 应使 6个进气道 1_J、 2-J、 3_J、 4-J、 5_J、 6-J完整的进气过程均划分为 2个进气持续期, 并使相应的进气道在 2个分段的进气持续期与相应的进气管接通。 每只进气辅助控制阀包 括内转子 101、套装在内转子上的外转子 102和位于外转子外的阀体 103, 内转子 101中空且 一端封闭, 另一端为开口端, 开口端与相应进气管进气端相连, 以一只进气辅助控制阀 F1 为例, 进气辅助控制阀 F2与进气辅助控制阀 F1结构相同; 进气辅助控制阀 F1包括内转子 101、 外转子 102和阀体 103, 内转子 101、 外转子 102和阀体 103的侧面分别开设有相对应的 6组阀口, 分别对应为 1一 1至 6— 1 (进气辅助控制阀 F2对应的阀口为 1一 2至 6— 2), 进气辅 助控制阀 F1内的内转子、 外转子侧面的阀口相位角位置相错; 内转子 101的封闭端经轴连 接一从动外齿轮 104, 外转子 102的相应端部设有从动内齿轮 105, 一安装在传动轴 106 (相 对应的传动轴分别为 106— n, n为进气辅助控制阀的编号)端部的主动齿轮 107分别与从动 外齿轮和从动内齿轮相啮合,传动轴与正时齿轮传动连接。通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭; 2只阀的内转子的开口端分别接相应进气管, 阀体侧面的各阀口分别接相应各缸的进气道; 每只进气辅助控制阀内的 6组阀口与相应进 气阀的配气正时的相位相对应的启闭角度相对应; 内转子转速: 外转子的转速: 内燃机凸 轮轴转速 = 3: 1: 1; 各单缸的顺序开启的相邻两进气持续期的开启相位有部分重叠。 这 样, 每一单缸的 2个阀口把相应气缸的完整的进气过程分成依次相连的、 相邻两个过程部 分重叠、 2个短的进气持续期即第一持续期、 第二持续期, 进气道在已分的 2个进气持续期 的分别与 2根进气管 Jl、 J2接通, 并使每个进气道相同次序持续期的持续时间均一样。
工作时, 每缸的进气辅助控制阀把每个进气道完整的进气过程分成 2个有重叠的、 依 次相连的进气持续期; 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启 与关闭, 使进气压力基本为大气压力的空气与增压中冷后的空气分别在 2个不同的进气持 续期, 先、 后通过进气道进入气缸, 可减少压气机对每个气缸提供的空气, 即可减少压气 机所需功率、 体积, 从而提高增压内燃机瞬态响应速度; 由于第一持续期的空气是来源于 离心式压气机的回流孔的空气, 改善了小流量时气流扰动, 可减小离心式压气机最小喘振 流量。 内燃机在低速时流量控制阀 F10全开, 流量控制阀 F20全闭; 内燃机在中速(或高速) 时流量控制阀 F10全闭, 流量控制阀 F20全开; 内燃机在低速向中速 (或高速) 时过渡时, 流量控制阀 F10可全开, 流量控制阀 F20全闭; 可使增压内燃机有较好低速性能的同时, 高 速性能也得到改善。
本实施例方案是 6个进气道的增压内燃机的一种优化的进气分段装置, 但该进气分段 装置同时可用于多于 6个气道的增压内燃机 (即部分气缸采用进气分段装置, 部分气缸采 用进气道与进气管直接相连的原有进气装置)。
实施例 4
如图 13, 本发明一种优化的四个进气道的进气分段装置, 包括 4个进气道, 3根进气管 J 1、 J2、 J3, 空气滤清器 10, 排烟管 20, 中冷器 40; 4个进气道 1-J、 2_J、 3_J、 4- J 直接与各单缸进气阀进口相连; 每一进气道与 3根进气管 Jl、 J2、 J3之间分别设有进气辅 助控制阀 Fl、 F2、 F3; 进气管 J1与排烟管 20相连, 进气管 J2与空气滤清器 10相连, 进气管 J3与中冷器 40的出口 41相连;每一气道的进气辅助控制阀的启闭与相应进气阀的配气正时 的相位相对应, 使每一单缸完整的进气过程划分为 3个进气持续期, 并使相应的进气道在 3 个分段的进气持续期与相应的进气管接通。 4个进气道 1-J、 2-J、 3_J、 4-J的进气辅助控 制阀的启闭与内燃机相应进气阀的配气正时的相位相对应使 4个进气道 1_J、 2-J、 3_J、 4-J 完整的进气过程均划分为 3个进气持续期,并使相应的进气道在 3个分段的进气持续期与相 应的进气管接通。每只进气辅助控制阀包括内转子 101、套装在内转子上的外转子 102和位 于外转子外的阀体 103, 内转子 101中空且一端封闭, 另一端为开口端, 开口端与相应进气 管进气端相连, 以一只进气辅助控制阀 F1为例, 进气辅助控制阀 F2与进气辅助控制阀 F1 结构相同; 进气辅助控制阀 F1包括内转子 101、 外转子 102和阀体 103, 内转子 101、 外转子 102和阀体 103的侧面分别开设有相对应的 4组阀口, 分别对应为 1一 1至 4一 1 (进气辅助控 制阀 F2对应的阀口为 1一 2至 4一 2、 进气辅助控制阀 F3对应的阀口为 1一 3至 4一 3), 进气辅 助控制阀 F1内的内转子、 外转子侧面的阀口相位角位置相错; 内转子 101的封闭端经轴连 接一从动外齿轮 104, 外转子 102的相应端部设有从动内齿轮 105, 一安装在传动轴 106 (相 对应的传动轴分别为 106— n, n为进气辅助控制阀的编号)端部的主动齿轮 107分别与从动 外齿轮和从动内齿轮相啮合,传动轴与正时齿轮传动连接。通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭; 3只阀的内转子的开口端分别接相应进气管, 阀体侧面的各阀口分别接相应各缸的进气道; 每只进气辅助控制阀内的 4组阀口与相应进 气阀的配气正时的相位相对应的启闭角度相对应; 内转子转速: 外转子的转速: 内燃机凸 轮轴转速 = 3: 1: 1; 各单缸的顺序开启的相邻两进气持续期的开启相位有部分重叠; F1 的传动轴和柴油机的正时机构之间设有角度提前装置 Π, F2的传动轴和柴油机的正时机构 之间设有角度提前装置 T2, F3的传动轴和柴油机的正时机构之间设有角度提前装置 Τ3。这 样, 每一单缸的 3个阀口把相应气缸的完整的进气过程分成依次相连的、 相邻两个过程部 分重叠、 3个进气持续期即第一持续期、 第二持续期、 第三持续期, 进气道在已分的 3个进 气持续期的分别与 3根进气管 Jl、 J2、 J3接通, 并使每个进气道相同次序持续期的持续时 间均一样。
工作时, 进气辅助控制阀把每个进气道分成 3个有重叠的、 依次相连的进气持续期; 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭, 使不同气源的 进气管: 进气压力基本为大气压力的进气管 J1的废气、进气压力基本为大气压力的进气管 J2的空气、 进气压力为增压后的压力的进气管 J3的空气, 分别通过进气道进入气缸; 通过 传动轴与正时齿轮传动之间可部分或全部设置角度提前器, 可同时改善低工况、 高工况运 行性能, 具体见以下说明。 图 14是四冲程增压内燃机的单缸进气阶段角面值及进气辅助控 制阀阀口进气持续期示意图, 说明角度提前器的作用, 该说明同样适用于其它内燃机。 其 中:
Θ 1表示进气门开启与进气辅助控制阀阀口 1一 1的进气持续期开启的角度差,对于 Θ 1 的调整, 可调整进入气缸的废气量的比例, 当 Θ 1为负值时, 进入缸内的废气量迅速减少, 当 Θ 1加 Θ 4等于零时, 由进气道进入缸内的废气量为零, 本实施例中 θ 1通过角度提前器 Π调整。
Θ 2表示进气门开启与进气辅助控制阀阀口 1一 2的进气持续期开启的角度差,对于 Θ 2 的调整, 可调整进入气缸的进气压力基本为大气压力的空气的比例, 当 Θ 2为负值时, 进 入缸内进气压力基本为大气压力的空气的量迅速减少, 当 Θ 2加 Θ 5等于零时, 由进气道进 入缸内的进气压力基本为大气压力的空气的量为零, 本实施例中 Θ 2通过角度提前器 T2调 整。
Θ 3表示进气门开启与进气辅助控制阀阀口 1一 3的进气持续期开启的角度差,对于 Θ 3 的调整, 可调整进入气缸的进气压力为中冷后压力的空气的比例。
Θ 4表示进气辅助控制阀阀口 1一 1的第一进气持续期从开启到关闭的角度, 使废气通 过进气管 J1通过进气道。
Θ 5表示进气辅助控制阀阀口 1一 2的第二进气持续期从开启到关闭的角度, 使空气通 过进气管 J2通过进气道。
Θ 6表示进气辅助控制阀阀口 1一 3的第三进气持续期从开启到关闭的角度, 使中冷后 的空气通过进气管 J3通过进气道。
根据增压内燃机的使用用途, 可对 9 1、 Θ 2、 Θ 3、 Θ 4、 Θ 5、 θ 6的角度进行优化选 择。 如在传动轴和正时机构可设置角度提前器, 角度提前器为现有技术中已有的产品, 通 过改变输出与输入的相对位置, 使输出相位发生变化; 角度提前器可使 Θ 1、 Θ 2、 Θ 3的 角度可随增压内燃机的转速变化或随转速、 负荷而变化。 根据优化效果, 也可仅对部分进 气辅助控制阀前安装角度提前器, 也可在所有传动轴前端设置一个角度提前器。
通过把进气道一个完整的进气过程分成 3个进气持续期, 可使第一持续期的废气、 第 二持续期的进气压力基本为大气压力的空气、 第三持续期的进气压力为中冷后压力的空 气, 先后通过进气道进入气缸, 使气缸的废气与空气较好的分层, 提高内燃机对废气再循 环的忍受力或较好的实现分层均质, 改善燃烧的稳定性, 降低内燃机排放; 通过角度提前 装置, 通过角度提前装置, 可根据内燃机转速、 负荷等工作情况, 动态调整单缸至少两个 进气持续期的长短, 高精度的调整进入不同气源的比例, 进一步优化此单缸的燃烧过程; 第二持续期的进气压力基本为大气压力的空气、第三持续期的进气压力为中冷后压力的空 气, 先后通过进气道进入气缸, 从而使不同压力的气体进入气缸, 可减小增压器压气机所 需功率, 提高增压内燃机的瞬态响应速度; 对于机械增压内燃机, 减小机械增压器压气机 所需功率的同时, 可减少增压内燃机有效功率的损失, 可提高机械增压的效率; 通过角度 提前装置, 可根据内燃机转速、 负荷等工作情况, 动态调整单缸至少两个进气持续期的长 短, 较好满足低工况 (低速全负荷)、 高工况 (高速全负荷) 对运行要求, 可提高车用增 压内燃机低工况时增压压力。
本实施例方案是 4个进气道的增压内燃机的一种优化的进气分段装置, 但该进气分段 装置同时可用于多于 4个气道的增压内燃机 (即部分气缸采用进气分段装置, 部分气缸采 用进气道与进气管直接相连的原有进气装置)。
应用实施例
如图 15, 为一种双增压柴油机增压系统结构示意图, 该内燃机为六缸(对应缸号为 I -VI ) 四冲程柴油机优化的相继增压系统, 其中进气分段装置为 1个。 该双增压内燃机包 括 2组增压系统, 1个优化的进气分段装置和 1个排气流量控制系统; 第一组增压系统包括 中冷器 40-1, 增压器压气机 30-1和涡轮机 50-1 ;; 第二组增压系统包括中冷器 40-2, 增压 器压气机 30-2和涡轮机 50-2; 进气分段装置包括与各单缸的进气阀进口相连的个进气道 1-J、 2- J、 3- J、 4- J、 5- J、 6- J, 2根进气管 Jl、 J2, 6个进气道 1_J、 2- J、 3- J、 4- J、 5- J、 6-J与 2根进气管 Jl、 J2之间分别设有 2只进气辅助控制阀 Fl、 F2; 6个进气道 1_J、 2_J、 3_J、 4_J、 5_J、 6-J的进气辅助控制阀的启闭与内燃机相应进气阀的配气正时的相位相对应使 6 个进气道 1_J、 2-J、 3_J、 4-J、 5_J、 6-J完整的进气过程均划分为 2个进气持续期, 并使 相应的进气道在 2个分段的进气持续期与相应的进气管接通; 压气机 30-1的进口与空气滤 清器 10-1的出口相连, 压气机 30-1的出口与中冷器 40-1的进口相连, 压气机 30-2的进口与 空气滤清器 10-2的出口相连, 压气机 30-2的出口与中冷器 40-2的进口相连; 进气管 J2与第 一组增压系统的中冷器 40-1的出口相连,进气管 J1与第二组增压系统的中冷器 40-2出口相 连; 排气流量控制系统包括与各单缸排气阀出口相连的 6个排气道 1-P、 2-P、 3-P、 4-P、 5-P、 6-P, 二根排气管 Pl、 P2; 排气管 PI—端直接与 6个排气道相连, 另一端与涡轮机 50_1 进口直接相连; 排气管 P2—端通过流量控制阀 F30与排气管 P1相连, 另一端直接与涡轮机 50-2进口直接相连; 涡轮机 50-1的出口与排烟管 20-1相连, 涡轮机 50-2的出口与排烟管 20-2相连。每只进气辅助控制阀包括内转子 101、套装在内转子上的外转子 102和位于外转 子外的阀体 103, 内转子 101中空且一端封闭, 另一端为开口端, 开口端与相应进气管进气 端相连,以一只进气辅助控制阀 F1为例,进气辅助控制阀 F2与进气辅助控制阀 F1结构相同; 进气辅助控制阀 F1包括内转子 101、 外转子 102和阀体 103, 内转子 101、 外转子 102和阀体 103的侧面分别开设有相对应的 6组阀口, 分别对应为 1一 1至 6— 1 (进气辅助控制阀 F2对应 的阀口为 1一 2至 6— 2), 进气辅助控制阀 F1内的内转子、 外转子侧面的阀口相位角位置相 错; 内转子 101的封闭端经轴连接一从动外齿轮 104, 外转子 102的相应端部设有从动内齿 轮 105, 一安装在传动轴 106 (相对应的传动轴分别为 106— n, n为进气辅助控制阀的编号) 端部的主动齿轮 107分别与从动外齿轮和从动内齿轮相啮合,传动轴与正时齿轮传动连接。 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启与关闭; 2只阀的内转 子的开口端分别接相应进气管, 阀体侧面的各阀口分别接相应各缸的进气道; 每只进气辅 助控制阀内的 6组阀口与相应进气阀的配气正时的相位相对应的启闭角度相对应; 内转子 转速: 外转子的转速: 内燃机凸轮轴转速 = 3: 1: 1; 各单缸的顺序开启的相邻两进气持 续期的开启相位有部分重叠。 这样, 每一单缸的 2个阀口把相应气缸的完整的进气过程分 成依次相连的、 相邻两个过程部分重叠、 2个短的进气持续期即第一持续期、 第二持续期, 进气道在已分的 2个进气持续期的分别与 2根进气管 J2、 J1接通, 并使每个进气道相同次序 持续期的持续时间均一样。
工作时, 每缸的进气辅助控制阀把每个进气道完整的进气过程分成 2个有重叠的、 依 次相连的进气持续期; 通过阀口位置的相对位置变化, 可实现进气辅助控制阀阀口的开启 与关闭, 使进气压力为进气管 J1压力的空气、进气管压力 J2的压力先后通过每个进气道进 入相应气缸, 使原来相继增压的两个增压系统在内燃机低速时就同时工作。 内燃机在低速 时, 排气流量控制系统首先满足涡轮机 50-1的需要, 即通过涡轮机 50-1提供的能量, 使压 气机 30-1保证进气管 J2压力达到使用要求, 此时, 流量控制阀 F30的开度最小; 在增压内 燃机转速上升过程中, 在基本保证进气管 J2压力保持不变的情况下, 流量控制阀 F30的开 度逐渐加大, 进气管 J1的压力随转速升高, 而进气管 J2的压力可基本保持不变, 内燃机在 标定点时, 流量控制阀 F30全开, 进气管 J1的压力可与进气管 J2的压力一样, 这样就消除 了原来的相继增压系统在转速上升过程中多个增压系统切换出现的进气压力波动的情况, 从根本上解决了涡轮增压内燃机是叶轮旋转式机械和往复运动式机械的组合出行流量匹 配问题。通过传动轴与正时齿轮传动之间设置角度提前装置或两个进气管之间增加流量控 制阀, 可加大相继增压内燃机的调节范围。
本运用实施例排气流量控制系统也可为图 16的排气系统, 包括: 3根排气管 Pl、 P2、 P3, 二个涡轮增压器的涡轮机 Wl、 W2; 6个排气道 1-P、 2-P、 3_P、 4_P、 5_P、 6_P与 3根 排气管 Pl、 P2、 P3之间分别设有可快速启闭的 3只排气辅助控制阀 F4、 F5、 F6 (结构与进 气辅助阀结构相似), 6个排气道 1-P、 2-P、 3-P、 4-P、 5-P、 6_P的排气辅助控制阀的启闭 与相应排气阀的配气正时的相位相对应, 使每一单缸完整的排气过程划分为 3个短的排气 持续期: 第一排气持续期、 第二排气持续期、 第三排气持续期, 并使 3个分段的排气持续 期的废气分别进入对应的 Pl、 P2、 P3排气管, 排气管 P1与涡轮机 W1进口相连, 涡轮机 W1 的出口与排烟总管 PZ1相连, 排气管 P2与涡轮机 W2进口相连, 涡轮机 W2的出口与排烟总管 PZ2相连, 排气管 P3与排烟总管 PZ3相连。 本排气系统可减小增压内燃机的排气背压, 进一 步提高废气能量的利用。
本应用实例中, 两组涡轮增压器可以不等, 当第二组大于第一组时, 将增大相继增压 内燃机的调节范围。 当然, 本实施例原理, 可扩大至多于二组增压器的情况, 相继增压内 燃机的工作转速调节范围将进一步加大。
本应用实例中, 对于需要控制空燃比的内燃机, 如汽油机, 则可在应用实例每个进气 管与辅助控制阀的结合部位, 安装流量控制阀, 该流量控制阀可为节气门。

Claims

利 要 求 书
1、 一种内燃机的进气分段装置, 包括出口与内燃机进气阀相连的至少一个进气道, 至少两根进气管, 其特征在于: 所述进气道与所述进气管之间设有进气辅助控制阀, 进气 辅助控制阀的启闭定时使所述进气道的进气过程划分为至少两个进气持续期,进气道在已 划分的进气持续期内分别与相应的进气管顺序接通。
2、 根据权利要求 1所述的一种内燃机的进气分段装置, 其特征在于: 所述进气管设 有两根, 分别为第一进气管和第二进气管; 进气辅助控制阀的启闭定时与所连进气阀配气 定时的相位相对应,进气辅助控制阀的开启和关闭使进气道的进气过程按开启先后划分为 第一持续期和第二持续期,在第一持续期内,进气道与第一进气管接通,在第二持续期内, 进气道与第二进气管接通。
3、 根据权利要求 2所述的一种内燃机的进气分段装置, 其特征在于: 所述进气道的 个数与内燃机进气阀个数相等。
4、 根据权利要求 3所述的一种内燃机的进气分段装置, 其特征在于: 所述内燃机为 非增压内燃机; 第一进气管进口与排烟管相连, 第二进气管进口与空气滤清器相连或直接 与空气相通。
5、 根据权利要求 3所述的一种内燃机的进气分段装置, 其特征在于: 所述内燃机为 增压内燃机或增压中冷内燃机;第一进气管进口与空气滤清器出口或离心式压气机回流口 相连, 第二进气管进口与增压器的压气机出口或中冷器出口相连。
6、 根据权利 3要求所述的一种内燃机的进气分段装置, 其特征在于: 所述内燃机为 二组增压内燃机; 第二进气管进口与第一组中冷器的出口相连, 第一进气管进口与第二组 中冷器出口相连。
7、 根据权利要求 1所述的一种内燃机的进气分段装置, 其特征在于: 所述内燃机为 增压内燃机或增压中冷内燃机; 进气道的出口与内燃机进气阀相连; 进气管有三根, 分别 为第一进气管、第二进气管和第三进气管; 进气辅助控制阀的启闭定时与所连进气阀配气 定时的相位相对应,进气辅助控制阀的开启和关闭使进气道的进气过程按开启先后划分为 第一持续期、 第二持续期、 第三持续期; 进气道在其第一持续期内与第一进气管接通; 进 气道在其第二持续期与第二进气管接通; 进气道在其第三持续期内与第三进气管接通; 第 一进气管进口与排烟管相连, 第二进气管进口与空气滤清器出口相连, 第三进气管进口与 增压器压气机的出口或中冷器出口相连。
8、 根据权利要求 1-7任意一项所述的一种内燃机的进气分段装置, 其特征在于: 所 述进气辅助控制阀包括内转子、套装在内转子上的外转子和位于外转子外的阀体, 内转子 中空且一端封闭, 另一端为开口端, 内转子、 外转子和阀体的侧面分别开设有相对应的至 少一组阀口; 内转子的封闭端经转轴连接一从动外齿轮, 外转子的相应端部设有从动内齿 轮, 一安装在传动轴端部的主动齿轮分别与从动外齿轮和从动内齿轮相啮合; 所述传动轴 与内燃机正时齿轮传动连接。
9、 根据权利要求 8所述的一种内燃机的进气分段装置, 其特征在于: 所述内转子的 开口端接相应进气道, 阀体侧面的各阀口分别接相应进气管; 进气辅助控制阀阀体侧面的 阀口数目之和与进气管数目相等。
10、 根据权利要求 8所述的一种内燃机的进气分段装置, 其特征在于: 所述进气辅助 控制阀的数目至少为两只, 各进气辅助控制阀的内转子开口端分别接进气管, 各进气辅助 控制阀阀体侧面的阀口数目与进气道数相等并分别接相应进气道;传动轴和内燃机的正时 机构之间设有角度提前装置。
PCT/CN2011/072060 2010-04-09 2011-03-22 一种内燃机的进气分段装置 WO2011124109A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010142612.6 2010-04-09
CN2010101426126A CN101858281B (zh) 2010-04-09 2010-04-09 一种内燃机的进气分段装置
CN201010142622.XA CN101818692B (zh) 2010-04-09 2010-04-09 一种增压内燃机的进排气系统
CN201010142622.X 2010-04-09

Publications (1)

Publication Number Publication Date
WO2011124109A1 true WO2011124109A1 (zh) 2011-10-13

Family

ID=44762036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072060 WO2011124109A1 (zh) 2010-04-09 2011-03-22 一种内燃机的进气分段装置

Country Status (1)

Country Link
WO (1) WO2011124109A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332828A (zh) * 1998-11-09 2002-01-23 Stt伊姆特克公司 实现egr系统的方法与装置以及阀和调节方法与装置
EP1484497A2 (en) * 2003-06-03 2004-12-08 Isuzu Motors Limited Turbocharged engine and method for preventing surging in compressor
CN1944981A (zh) * 2006-10-20 2007-04-11 谢国华 一种增压内燃机的排气分段装置
CN101215989A (zh) * 2008-01-17 2008-07-09 上海交通大学 带有自然进气的内燃机废气涡轮增压系统
CN101818692A (zh) * 2010-04-09 2010-09-01 谢国华 一种增压内燃机的进排气系统
CN101858281A (zh) * 2010-04-09 2010-10-13 谢国华 一种内燃机的进气分段装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332828A (zh) * 1998-11-09 2002-01-23 Stt伊姆特克公司 实现egr系统的方法与装置以及阀和调节方法与装置
EP1484497A2 (en) * 2003-06-03 2004-12-08 Isuzu Motors Limited Turbocharged engine and method for preventing surging in compressor
CN1944981A (zh) * 2006-10-20 2007-04-11 谢国华 一种增压内燃机的排气分段装置
CN101215989A (zh) * 2008-01-17 2008-07-09 上海交通大学 带有自然进气的内燃机废气涡轮增压系统
CN101818692A (zh) * 2010-04-09 2010-09-01 谢国华 一种增压内燃机的进排气系统
CN101858281A (zh) * 2010-04-09 2010-10-13 谢国华 一种内燃机的进气分段装置

Similar Documents

Publication Publication Date Title
US8000878B2 (en) Parallel sequential turbocharger architecture using engine cylinder variable valve lift system
US8256402B2 (en) Exhaust passage structure of multi-cylinder engine
CN101818692B (zh) 一种增压内燃机的进排气系统
CN101939529B (zh) 控制在涡轮增压与排气再循环之间分开的排气流动
US20070074513A1 (en) Turbo charging in a variable displacement engine
CN102425488B (zh) 应用于v型柴油机的可调二级增压顺序系统
US8794000B2 (en) Natural gas compression system
US9062632B2 (en) Internal combustion engine for a motor vehicle
CN104879207A (zh) 用于带有停缸特征的内燃机的双级涡轮增压器系统
CN110552781B (zh) 一种无节气门进气增压直喷氢转子机控制方法
CN101858281B (zh) 一种内燃机的进气分段装置
EP3025039B1 (en) Interstage gas injection for multi-stage turbocharged natural gas engine
CN110242452A (zh) 一种汽油机进气系统及进气量控制方法
US8763395B2 (en) Engine with supercharger
JP2013524081A (ja) 内燃機関
CN205172762U (zh) 一种四冲程内燃机排气再循环装置
CN104088694A (zh) 一种多个涡轮增压器的内燃机增压系统
WO2011124109A1 (zh) 一种内燃机的进气分段装置
US20180100428A1 (en) Engine system
CN210460824U (zh) 一种用于发动机的并联双增压排气系统
CN202325786U (zh) V型发动机排气管
RU151787U1 (ru) Двигатель внутреннего сгорания
CN205013153U (zh) 一种多缸四冲程涡轮增压内燃机高压排气再循环装置
RU153135U1 (ru) Двигатель внутреннего сгорания
CN111042945B (zh) 发动机废气分层进气系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765027

Country of ref document: EP

Kind code of ref document: A1