WO2011122910A2 - 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치 - Google Patents

무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치 Download PDF

Info

Publication number
WO2011122910A2
WO2011122910A2 PCT/KR2011/002286 KR2011002286W WO2011122910A2 WO 2011122910 A2 WO2011122910 A2 WO 2011122910A2 KR 2011002286 W KR2011002286 W KR 2011002286W WO 2011122910 A2 WO2011122910 A2 WO 2011122910A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
signal
power headroom
pusch
pucch
Prior art date
Application number
PCT/KR2011/002286
Other languages
English (en)
French (fr)
Other versions
WO2011122910A3 (ko
Inventor
김민규
양석철
안준기
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/513,085 priority Critical patent/US8462705B2/en
Priority to CN201180007591.XA priority patent/CN102742331B/zh
Priority to KR1020127010870A priority patent/KR101366335B1/ko
Priority to KR1020147008139A priority patent/KR101672285B1/ko
Priority to KR1020137027809A priority patent/KR101435858B1/ko
Priority to EP11763082.2A priority patent/EP2503830B1/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2011122910A2 publication Critical patent/WO2011122910A2/ko
Publication of WO2011122910A3 publication Critical patent/WO2011122910A3/ko
Priority to US13/894,222 priority patent/US9094925B2/en
Priority to US13/894,233 priority patent/US9094926B2/en
Priority to US13/894,258 priority patent/US9107176B2/en
Priority to US14/753,601 priority patent/US9363771B2/en
Priority to US15/157,195 priority patent/US9629106B2/en
Priority to US15/455,493 priority patent/US9918287B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a communication method and apparatus used in a wireless access system.
  • the present invention relates to a method for reporting power headroom (PH) of a terminal in a multi-carrier environment and an apparatus supporting the same.
  • PH power headroom
  • a number of carriers constituting uplink and downlink may be one each, and a wireless communication system in which uplink bandwidth and downlink bandwidth are generally symmetrical to each other may be provided.
  • ITU International Telecommunication Union
  • carrier aggregation Bandwidth Aggregation
  • Spectrum Aggregation for efficient use of fragmented small bands to achieve the same effect as combining multiple bands physically in the frequency domain and using bands of logically large bands.
  • Carrier aggregation is introduced to support increased throughput, to prevent cost increases due to the introduction of wideband RF devices, and to ensure compatibility with existing systems.
  • Carrier aggregation is a technology for exchanging data between a terminal and a base station through a plurality of bundles of carriers in bandwidth units defined in a conventional wireless access system.
  • the carrier of the bandwidth unit defined in the existing wireless communication system may be referred to as a component carrier (CC).
  • the carrier aggregation technology may include a technology that supports a system bandwidth of up to 5 MHz by tying up to 5 component carriers even though one component carrier supports a bandwidth of 5 MHz, 10 MHz, or 20 MHz.
  • data may be simultaneously transmitted and received through multiple uplink / downlink component carriers.
  • the terminal can monitor and measure all component carriers.
  • a technique for reporting a power headroom (PH) of the terminal needs to be developed in a manner different from the existing method.
  • the present invention to solve this problem, it is an object of the present invention to provide various power headroom (PH) reporting method of the terminal in a carrier-matched multi-carrier environment and devices supporting the same.
  • PH power headroom
  • the present invention provides a method for reporting a power headroom (PH) of the terminal in a multi-carrier environment and devices supporting the same.
  • PH power headroom
  • a method for reporting a power headroom of a terminal in a multicarrier system includes: receiving, by a terminal, a physical downlink control channel (PDCCH) signal including uplink resource allocation information from a base station; Transmitting at least one of a physical uplink shared channel (PUSCH) signal and a physical uplink control channel (PUCCH) signal to a base station in a predetermined subframe based on the uplink resource allocation information; The method may further include calculating at least one power headroom value in a predetermined subframe, and transmitting, by the terminal, a report message including at least one power headroom value to the base station.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the terminal when the terminal operates in the transmission mode A, the first type power headroom value and the second type power headroom value of the terminal in a predetermined subframe are reported to the base station, and when the terminal operates in the transmission mode B, The first type power headroom value of the terminal in a predetermined subframe may be reported.
  • a power headroom reporting method in a multicarrier system includes transmitting a physical downlink control channel (PDCCH) signal including uplink resource allocation information to a terminal and a physical uplink according to a transmission mode of the terminal. Transmitting at least one of a shared channel (PUSCH) signal and a physical uplink control channel (PUCCH) signal in a predetermined subframe based on uplink resource allocation information and a report message including one or more power headroom values from the terminal; (Eg, extended power headroom MAC control element).
  • PUSCH shared channel
  • PUCCH physical uplink control channel
  • At least one power headroom value is calculated according to the transmission mode of the terminal, and when the terminal operates in the transmission mode A, the power headroom value is the first type power headroom value and the second type power in a predetermined subframe. If the terminal is a headroom value and the terminal operates in the transmission mode B, the power headroom value may be only the first type power headroom value.
  • a terminal for performing a power headroom report in a multicarrier system includes: a receiving module for receiving a channel signal and a transmitting module for transmitting a channel signal; And a processor supporting a function for performing the power headroom report.
  • the terminal receives a physical downlink control channel (PDCCH) signal including uplink resource allocation information from the base station using a receiving module, and according to the transmission mode, the physical uplink shared channel (PUSCH) signal and the physical uplink Transmit at least one of control channel (PUCCH) signals to a base station through a transmitting module in a predetermined subframe based on uplink resource allocation information, calculate one or more power headroom values in the predetermined subframe, and transmit a transmission mode
  • a report message including one or more power headroom values may be transmitted to the base station through the transmission module.
  • the first type power headroom value and the second type power headroom value of the terminal in a predetermined subframe are reported to the base station, and when the terminal is operating in transmission mode B, The first type power headroom value may be reported.
  • a base station supporting a power headroom reporting method in a multicarrier system supports a receiving module for receiving a channel signal, a transmitting module for transmitting a channel signal, and a function for supporting power headroom reporting. It may include a processor.
  • the base station transmits a physical downlink control channel (PDCCH) signal including uplink resource allocation information to the terminal using the transmission module, and according to a transmission mode of the terminal, a physical uplink shared channel (PUSCH) signal and a physical uplink Receive at least one of a link control channel (PUCCH) signal through a receiving module in a predetermined subframe based on uplink resource allocation information, and receive a report message including one or more power headroom values from the terminal through the receiving module. It may further comprise the step. At this time, one or more power headroom values are reported according to the transmission mode of the terminal.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • PUCCH link control channel
  • the power headroom value is a first type power headroom value and a second type power headroom value in a predetermined subframe, and the terminal operates in transmission mode B.
  • the power headroom value may be a first type power headroom value.
  • the terminal transmits the PUSCH signal and the PUCCH signal to the base station in a predetermined subframe of a primary cell, and if the terminal is in transmission mode B, the terminal The PUSCH signal may be transmitted to the base station in a predetermined subframe of the serving cell.
  • the PUCCH signal and the PUSCH signal may be transmitted through the PUCCH region and the PUSCH region, respectively.
  • transmission mode B the PUCCH signal may be piggybacked on the PUSCH signal and transmitted through the PUSCH region.
  • the first type power headroom value may be calculated using the maximum transmission power of the terminal and the transmission power of the PUSCH signal
  • the second type power headroom value is the maximum transmission power of the terminal, the transmission power of the PUSCH signal, and the PUCCH. It can be calculated using the transmit power of the signal.
  • the first power headroom value is calculated using the difference between the maximum transmit power and the transmit power of the PUCCH signal
  • the second power headroom value is the maximum transmit power, the transmit power of the PUSCH signal, and the transmit power of the PUCCH signal. It can be calculated using the difference from the sum.
  • the second type power headroom value may be calculated as in Equation 2.
  • P CMAX c represents the maximum transmission power of the terminal
  • P PUSCH_scheduled (i) may indicate the transmission power of the PUSCH signal
  • P PUCCH_scheduled (i) may indicate the transmission power of the PUCCH signal.
  • the second type power headroom value may be calculated using the transmit power of the PUCCH signal even when the PUCCH signal is not transmitted in a predetermined subframe.
  • the second type power headroom value may be calculated as in Equation 6.
  • the first type power headroom value may be calculated using Equation 1.
  • the report message may further include a maximum transmit power value in a primary cell or serving cell of the terminal.
  • uplink resources can be efficiently allocated to the terminal by using various power headroom (PH) reporting methods of the terminal for each cell.
  • PH power headroom
  • a power headroom reporting method may be used when a terminal is allocated one or more cells. Therefore, even when the PUCCH and PUSCH signals are simultaneously transmitted, the power headroom reporting method of the terminal can be efficiently used.
  • FIG. 1 is a view showing the structure of a radio frame that can be used in embodiments of the present invention.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot that can be used in embodiments of the present invention.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe that can be used in embodiments of the present invention.
  • FIG. 4 is a diagram illustrating an example of an uplink subframe structure that can be used in embodiments of the present invention.
  • FIG. 5 is a diagram illustrating an example of multi-carrier combining (carrier aggregation) used in a component carrier (CC) of the LTE system and the LTE_A system.
  • CC component carrier
  • FIG. 6 is a diagram illustrating a case in which a PUCCH signal is piggybacked in a PUSCH region.
  • FIG. 7 is a diagram illustrating a method of transmitting a PUCCH signal and a PUSCH signal of a terminal according to a transmission mode.
  • FIG. 8 is a diagram illustrating an example of a method for reporting power headroom of a terminal according to a transmission mode according to an embodiment of the present invention.
  • FIG. 9 illustrates an example of an apparatus supporting the power headroom reporting method disclosed in the present invention as an embodiment of the present invention.
  • FIG. 10 is a view showing another example of an apparatus supporting the power headroom reporting method disclosed in the present invention as an embodiment of the present invention.
  • Embodiments of the present invention disclose various power headroom (PH) reporting methods of a terminal in a multi-carrier environment and devices supporting the same.
  • PH power headroom
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a 'mobile station' may be a user equipment (UE), a subscriber station (SS), a mobile subscriber station (MSS), a mobile terminal, an advanced mobile station (AMS) or a terminal. (Terminal), etc. may be substituted.
  • UE user equipment
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • Terminal Terminal
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
  • Embodiments of may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213 and 3GPP TS 36.321 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an evolution of the 3GPP LTE system.
  • 3GPP LTE / LTE-A mainly described, but the technical idea of the present invention is not limited thereto.
  • FIG. 1 is a view showing the structure of a radio frame that can be used in embodiments of the present invention.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • the length of one subframe is 1ms
  • the length of one slot is 0.5ms.
  • One slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain, and includes a plurality of Resource Blocks (RBs) in the frequency domain.
  • the OFDM symbol is for representing one symbol period in a 3GPP LTE system using an Orthogonal Frequency Division Multiplexing Access (OFDMA) scheme in downlink. That is, the OFDM symbol may be referred to as an SC-FDMA symbol or a symbol interval according to a multiple access scheme.
  • the RB includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame of FIG. 1 is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot that can be used in embodiments of the present invention.
  • the downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block (RB) includes 12 subcarriers in a frequency domain.
  • Each element on the resource grid is called a resource element (RE), and one resource block RB includes 12 ⁇ 7 resource elements RE.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe that can be used in embodiments of the present invention.
  • the subframe includes two slots in the time domain. Up to three OFDM symbols of the first slot in the subframe are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared Channel
  • Downlink control channels used in the 3GPP LTE system include a PCFICH (Physical Control Format Indicator Channel), PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the PCFICH signal transmitted in the first OFDM symbol of the subframe carries information about the number of OFDM symbols (that is, the size of the control region) used for transmission of the control channel signal in the subframe.
  • the PHICH carries an ACK (Acknowledgement) / NACK (None-Acknowledgement) signal for an uplink HARQ (Hybrid Automatic Repeat Request). That is, the ACK / NACK signal for the uplink data transmitted by the terminal is transmitted on the PHICH.
  • the DCI includes resource allocation information and other control information for a user equipment (UE) or a terminal group. For example, it may include uplink resource allocation information, downlink resource allocation information, and uplink transmission power control command.
  • PDCCH includes transmission format and resource allocation information of downlink shared channel (DL-SCH), transmission format and resource allocation information of uplink shared channel (UL-SCH), paging channel (PCH) Paging information on a channel), system information on a DL-SCH, resource allocation information on a higher layer control message such as a random access response transmitted on a PDSCH, a transmit power control command set for individual UEs in a certain UE group, and transmission It can carry information on power control commands, activation of the Voice of Internet Protocol (VoIP), and the like.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging channel
  • PCH paging channel
  • system information on a DL-SCH resource allocation information on a higher layer control message such as a random access response transmitted on a PDSCH
  • a transmit power control command set for individual UEs in a certain UE group and transmission It can carry information on power control commands, activation of the Voice of Internet Protocol (VoIP), and the like
  • Multiple PDCCHs may be transmitted in one control region.
  • the UE can monitor multiple PDCCHs.
  • the PDCCH may be transmitted on one or more consecutive control channel elements (CCEs).
  • CCE is a logical allocation resource used to provide a PDCCH at one coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the correlation between the coding rate provided in the CCE and the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the UE, and attaches the CRC to the control information.
  • the CRC is masked with a unique identifier (RNTI: Radio Network Temporary Identifier) according to the usage or owner of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the unique identifier of the UE eg, C-RNTI: Cell-RNTI
  • the paging indicator identifier eg, P-RNTI: Paging-RNTI
  • the PDCCH is for system information (especially system information block)
  • the system information identifier and system information RNTI S-RNTI
  • a random access RNTI RA-RNTI
  • the PDCCH may be transmitted through one or more component carriers and may include resource allocation information for one or more component carriers.
  • the PDCCH is transmitted on one component carrier, but may include resource allocation information for one or more PDSCHs and PUSCHs.
  • FIG. 4 is a diagram illustrating an example of an uplink subframe structure that can be used in embodiments of the present invention.
  • the uplink subframe includes a plurality of slots (eg, two).
  • the slot may include different numbers of SC-FDMA symbols according to the CP length.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a physical uplink shared channel (PUSCH) and is used to transmit a data signal including voice information.
  • the control region includes a PUCCH (Physical Uplink Control Channel) and is used to transmit uplink control information (UCI).
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary. In the LTE system, the UE does not simultaneously transmit the PUCCH signal and the PUSCH signal in order to maintain a single carrier characteristic.
  • PUCCH for one UE is allocated as an RB pair in a subframe, and RBs belonging to the RB pair occupy different subcarriers in each of two slots. This is said that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 1 shows a mapping relationship between PUCCH format and UCI in LTE.
  • the communication environment considered in the embodiments of the present invention includes a multi-carrier support environment. That is, the multicarrier system or carrier aggregation system used in the present invention refers to one or more carriers having a bandwidth smaller than the target band when configuring a target broadband to support the broadband. Refers to a system using aggregation of carriers.
  • the multi-carrier refers to the aggregation (or carrier coupling) of the carrier, wherein carrier aggregation means not only coupling between adjacent carriers, but also coupling between non-adjacent carriers.
  • carrier combining may be used interchangeably with terms such as carrier aggregation, bandwidth combining, and the like.
  • a multicarrier ie, carrier aggregation
  • two or more component carriers CC
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the 3GPP LTE system (LTE R-8 system) supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE_advanced system (ie LTE_A) supports the above bandwidths supported by LTE. It can be used to support bandwidth greater than 20MHz.
  • the multicarrier system used in the present invention may support carrier aggregation (ie, carrier aggregation, etc.) by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • FIG. 5 is a diagram illustrating an example of multi-carrier combining (carrier aggregation) used in a component carrier (CC) of the LTE system and the LTE_A system.
  • CC component carrier
  • the component carrier includes a downlink component carrier (DL CC) and an uplink component carrier (UL CC).
  • DL CC downlink component carrier
  • UL CC uplink component carrier
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 5 (b) shows a multi-carrier structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the UE may simultaneously monitor three component carriers, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the terminal.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may give priority to L (L ⁇ M ⁇ N) DL CCs and allocate them to the UE as a main DL CC. In this case, the UE must monitor the L DL CCs. This method can also be applied to uplink transmission.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the cell is defined by a combination of downlink resources and uplink resources, and uplink resources may be selectively defined.
  • the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • multicarrier ie carrier aggregation
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource is indicated by the system information.
  • the cell used in the LTE-A system is a concept including a primary cell (PCell) and a secondary cell (SCell).
  • the P cell may mean a cell operating on a primary frequency (or primary CC)
  • the S cell may mean a cell operating on a secondary frequency (or secondary CC).
  • only one P cell is allocated to a specific terminal, and one or more S cells may be allocated.
  • the PCell is used for the UE to perform an initial connection establishment process or to perform a connection re-establishment process.
  • the Pcell may refer to a cell indicated in the handover process.
  • the SCell can be configured after the RRC connection is established and can be used to provide additional radio resources.
  • P cell and S cell may be used as a serving cell.
  • the carrier aggregation is not configured or does not support the carrier aggregation
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the Scell may operate as respective component carriers. That is, carrier matching may be understood as a combination of a Pcell and one or more Scells.
  • the primary component carrier (PCC) may be used in the same sense as the PCell, and the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • FIG. 6 is a diagram illustrating a case in which a PUCCH signal is piggybacked in a PUSCH region.
  • a first subframe indicates a case in which a PUCCH signal and a PUSCH signal are simultaneously transmitted.
  • a PUCCH signal and a PUSCH signal are transmitted in a PUCCH region and a PUSCH region, respectively. The case is shown.
  • a peak-to-average power ratio (PAPR) characteristic or a cubic metric that affects the performance of the power amplifier is used. It is desirable to maintain a single carrier property having good) properties.
  • the data to be transmitted maintains the single carrier characteristic through DFT-precoding, and when the UE transmits the PUCCH signal, the PUCCH is transmitted in a sequence having a single carrier characteristic.
  • Single carrier characteristics can be maintained by carrying a signal.
  • each terminal preferably reports its possible power headroom information to the base station.
  • the base station may use a power headroom report (PHR) received from each terminal to determine an available uplink bandwidth for each subframe.
  • PHR power headroom report
  • the power headroom report ranges from 40 dB to -23 dB in 1 dB increments.
  • the range of '-' value in the power headroom reporting range indicates a range in which each terminal can transmit a signal to the base station using more transmission power than the transmission power allocated through the UL grant.
  • the PHR enables the base station to reduce the size of the next UL grant (ie, the number of RBs in the frequency domain) and release the transmission resources to be allocated to other terminals.
  • the PHR may be transmitted in a subframe in which the UE has an uplink transmission grant.
  • PHR is related to the subframe in which the PHR is transmitted.
  • Equation 1 a method for calculating a power headroom (PHR) value by the terminal is shown in Equation 1 below.
  • P CMAX represents the theoretical maximum transmission power of the configured UE
  • M PUSCH (i) is a parameter indicating the bandwidth of the PUSCH resource allocation expressed by the number of effective resource blocks for the subframe of the index i, a value allocated by the base station to be.
  • P O_PUSCH (j) is a parameter configured by the sum of the cell-specific nominal component P O_NOMINAL_PUSCH (j) provided from the upper layer and the terminal-specific component P O_UE_PUSCH (j) provided in the upper layer. This is the value to tell.
  • ⁇ (j) is a value that the base station informs the terminal.
  • f (i) is a value indicating the current PUSCH power control adjustment state and may be expressed as a current absolute value or an accumulated value.
  • the power headroom (PH) consists of 64 levels of values 1dB apart from -23 decibels (dB) to 40dB, and is passed from the physical layer to the upper layer.
  • the PH MAC control element is identified by the MAC PDU subheader.
  • each terminal may be assigned one or more serving cells, and one of the serving cells may be a Pcell.
  • the terminal preferably performs a PHR procedure for one or more serving cells. Therefore, hereinafter, a method for performing a PHR process when a Pcell and one or more Scells are allocated to a terminal will be described in detail.
  • the PHR process refers to a process of calculating a PH for a cell allocated by the terminal in the physical layer of the terminal and reporting the PH to the base station.
  • the terminal may include information on a difference between theoretical maximum transmission power of the terminal and measured transmission power of the terminal for an uplink shared channel (UL-SCH, PDSCH, etc.) in each activated serving cell (eg, For example, the first type ePH value) may be provided to the base station.
  • UL-SCH uplink shared channel
  • PDSCH PDSCH
  • the first type ePH value may be provided to the base station.
  • information on the difference between the theoretical maximum transmission power of the terminal and the measured transmission power of the terminal for the uplink shared channel (UL-SCH) and the PUCCH in the Pcell and the terminal (for example, the second type ePH value)
  • information about a difference between the maximum transmit power and the measured transmit power of the UE for the uplink shared channel (UL-SCH, PDSCH, etc.) may be provided to the base station.
  • Embodiments of the present invention are applied to the LTE-A system, to distinguish the PHR of the present invention and the PHR of the existing LTE R-8 PHR of the present invention will be referred to as extended PHR (ePHR: extend PHR). That is, the terminal may transmit the first type ePH value to the base station in the serving cell and the first type ePH value and the second type ePH value in the Pcell to perform the ePHR process. In this case, the terminal may transmit information on the maximum transmit power of the terminal to the base station when reporting the power headroom.
  • ePHR extend PHR
  • the physical layer of the terminal calculates the power headroom (first type ePH) value for the PUSCH of the activated serving cell, and calculates the first type ePH value and the maximum transmit power (P MAX, c ) of the terminal.
  • the information is transmitted to an upper layer (eg, MAC or RRC layer) of the terminal.
  • the upper layer of the terminal may transmit information on the first type ePH and P MAX, c to the base station.
  • the physical layer of the terminal calculates information on the first type ePH, the second type ePH and the maximum transmit power (P MAX, c ) of the terminal in the activated primary cell (P cell) and transmits to the upper layer of the terminal
  • the upper layer of the terminal may transmit information on the second type PHR information and P MAX, c to the base station.
  • FIG. 7 illustrates a method in which a terminal transmits a data signal and a control signal using three serving cells (e.g. UL CC).
  • UL CC1 denotes a Pcell
  • the UE may transmit a control signal (UCI, that is, a PUCCH signal) and a data signal (eg, a PUSCH signal) through the Pcell.
  • UL CC2 and UL CC3 represents an SCell, the terminal may transmit a PUSCH signal through the SCell.
  • FIG. 7A illustrates a case in which the terminal operates in mode A
  • FIG. 7 (b) illustrates a case in which the terminal operates in mode B.
  • Mode A represents a case in which the UE can simultaneously transmit the PUSCH signal and the PUCCH signal in the same subframe.
  • a UE in mode A simultaneously transmits a PUCCH signal and a PUSCH signal in a first subframe of a PCell (ie, UL CC1), and transmits only a PUCCH signal without a PUSCH in a second subframe, and a third subframe. Transmits only the PUSCH signal without the PUCCH signal.
  • the UE may transmit the PUSCH signal through the PUSCH region in the SCell (ie, UL CC2 and UL CC3).
  • Mode B represents a case in which the UE cannot simultaneously transmit the PUSCH signal and the PUCCH signal in the same subframe.
  • the UE in mode B may piggyback or multiplex the PUCCH signal UCI to the PUSCH in UL CC1 (serving cell). That is, the UE may not transmit a control signal (e.g. UCI) through the PUCCH region but may piggyback and transmit the data signal to the PUSCH region.
  • a control signal e.g. UCI
  • the terminal when the terminal is configured in mode A, the first type power headroom value and the second type power headroom value may be calculated and reported to the base station.
  • the terminal when the terminal is configured as mode B, the terminal may calculate and report a first type power headroom value to the base station.
  • FIG. 7 a method of transmitting an uplink control signal and a data signal in a Pcell has been described.
  • the control signal and the data signal may be transmitted in any serving cell other than the Pcell.
  • the UE reports power headroom (PHR). ) Will be described.
  • FIG. 8 is a diagram illustrating an example of a method for reporting power headroom of a terminal according to a transmission mode according to an embodiment of the present invention.
  • the UE may negotiate which transmission mode to operate through higher layer signaling with the eNB. That is, the terminal may operate in the transmission mode A or B described with reference to FIG. 7 according to the negotiation result with the base station.
  • the UE may receive a PDCCH signal including uplink resource allocation information (eg UL Grant) for one or more serving cells in a carrier aggregation (CA) environment from a base station eNB (S810). .
  • uplink resource allocation information eg UL Grant
  • CA carrier aggregation
  • the terminal may be assigned one or more cells (ie, one or more CC). In this case, the terminal may operate in the same transmission mode or independent transmission mode for each assigned cell.
  • the terminal may communicate with the base station through the allocated uplink. That is, the terminal may transmit PUCCH and / or PUSCH signals with the base station as mode A or mode B in the i-th subframe in one or more cells (S820).
  • the terminal may trigger the ePHR process when any one of the following events is satisfied. That is, the terminal may (1) expire a first timer (eg, prohibitPHR-Timer) that prohibits power headroom reporting (PHR), or a first timer expires in at least one active serving cell and a transmission path loss. if the change in (pathloss) is greater than a preset value (e.g., DL_PathlossChange dB), (2) the second timer (e.g., PeriodicPHR-Timer), which is a periodic report timer, has expired, or (3) upwards When the S cell including the link is activated, the first type ePH and / or the second type ePH may be calculated (S830).
  • a first timer eg., prohibitPHR-Timer
  • PHR power headroom reporting
  • the terminal When the terminal operates in the transmission mode B, the terminal may report the first type ePH for the current subframe (i) of the serving cell c to the base station. In addition, when the terminal operates in the transmission mode A, the terminal may report the first type ePH and the second type ePH for the current subframe (i) of the primary cell to the base station.
  • step S830 the first type of ePH and / or the second type of ePH is calculated in the physical layer of the terminal and delivered to an upper layer (eg, MAC layer and / or RRC layer) of the terminal.
  • the upper layer of the terminal receives one or more ePH values from the physical layer and reports them to the base station for the PHR process.
  • the terminal may transmit the maximum transmit power value of the terminal used when calculating each ePH to the base station (S840).
  • the terminal may transmit one or more ePH to the base station using an extended power headroom MAC control element (eg, a report message).
  • an extended power headroom MAC control element eg, a report message
  • the terminal may report the ePH for each cell and the maximum transmit power of the terminal to the base station.
  • the base station may schedule uplink radio resources based on one or more ePH values received from the respective terminals and allocate them to each terminal.
  • the base station transmits a PDCCH signal including a UL grant (UL Grant) to each terminal to inform the information on the radio resources allocated to the terminal (S850).
  • UL Grant UL grant
  • step S830 in order for the UE to calculate the first type ePH, the UE may calculate an ePH for power of the PUSCH.
  • the terminal may calculate the first type of ePH by using Equation 1.
  • the parameter of Equation 1 is used in any subframe i of the serving cell c allocated to the terminal.
  • the terminal may calculate the ePH for the sum of the power of the PUSCH and the power for the PUCCH (that is, the sum of the PH of the PUSCH and the PUCCH) in order for the terminal to calculate the second type of ePH.
  • Equation 2 represents one of the formulas for calculating the second type of ePH.
  • a UE shows a method of calculating an ePH using a power amount of PUSCH (P PUSCHc_scheduled (i)) and a power amount of PUCCH (P PUCCHc_scheduled (i)). That is, the terminal may calculate one ePH value for the sum of the power amount of the PUSCH and the power amount of the PUCCH. Equation 2 shows a case in which a UE simultaneously transmits a PUSCH signal and a PUCCH signal in the same subframe in a Pcell.
  • Equation 3 shows a formula for calculating the amount of power of the PUCCH used to calculate the second type of ePH.
  • P CMAX represents the theoretical maximum transmission power of the terminal in the P cell or the serving cell
  • M PUSCH (i) is a parameter representing the bandwidth of the PUSCH resource allocation expressed as the number of effective resource blocks for the subframe of the index i, The value assigned by the base station.
  • P O_PUSCH (j) is a parameter configured by the sum of the cell-specific nominal component P O_NOMINAL_PUSCH (j) provided from the upper layer and the terminal-specific component P O_UE_PUSCH (j) provided in the upper layer. This is the value to tell.
  • ⁇ (j) is a value that the base station informs the terminal.
  • f (i) is a value indicating the current PUSCH power control adjustment state and may be expressed as a current absolute value or an accumulated value.
  • Equation 4 represents one of formulas for calculating the amount of power of the PUCCH used in Equation 2.
  • Equation 5 represents another one of formulas for calculating the amount of power of the PUCCH used in Equation 2.
  • Equations 4 and 5 are parameters provided to the physical layer from the upper layer of the terminal, The value corresponds to the PUCCH format (F) associated with the PUCCH format 1a.
  • the terminal is configured to transmit the PUCCH on two antenna ports from the upper layer.
  • the value is provided to the lower layer in each upper layer where the PUCCH format F 'is defined.
  • h (n CQI , n HARQ ) and h (n CQI , n HARQ , n SR ) are values dependent on the PUCCH format, and n CQI corresponds to the number of information bits for the CQI. If the subframe i is configured for the scheduling request for the terminal, n SR is set to 1, otherwise it is set to 0.
  • n HARQ indicates the number of HARQ bits or the number of transport blocks in subframe i.
  • P O_PUCCH represents a parameter configured by the sum of parameters P O_NOMIMAL_PUCCH and P O_UE_PUCCH provided from an upper layer.
  • g (i) represents the current PUCCH transmission control adjustment status value
  • g (0) represents the initial value after the reset.
  • Equation 6 represents another one of formulas for calculating the second type of ePH.
  • Equation 6 shows a method of calculating ePH in consideration of the amount of PUCCH power even when the UE transmits only the PUSCH signal without transmitting the PUCCH signal in the Pcell.
  • Equation 6 is a method of obtaining PH for the sum of the power of the currently transmitted PUSCH and the PUCCH power excluding the offset related to the transmission format among the allocated power of the PUCCH.
  • the power amount of the PUCCH is a closed loop parameter dynamically accumulated up to P O_PUCCH (j), which is an open loop parameter of PUCCH, and PL and i th subframe, which are path loss compensation values of the i th subframe, which is the current frame. It can be obtained as a value g (i).
  • equations (4) and (5) For descriptions of the remaining parameters, reference may be made to equations (4) and (5).
  • PUSCH and PUCCH may be simultaneously transmitted in any subframe of any serving cell.
  • the base station should properly allocate the PUSCH resource to one or more terminals, and it is preferable that the terminal is scheduled so as not to exceed the limited transmit power of the serving cell.
  • ePHR extended power headroom reporting
  • Each UE may transmit PUSCH power headroom information and PUCCH power headroom information of a corresponding serving cell to each base station in every subframe in which PHR of the UE should be transmitted.
  • a terminal configured with mode A transmits two types of PUSCH PHR and PUCCH PHR information of a Pcell (UL CC1) to a base station, and a PUSCH PHR in an S cell (UL CC2 and UL CC3) in which only PUSCH is transmitted. Only information can be given.
  • the UE When the UE is configured in mode B, the UE does not simultaneously transmit the PUSCH signal and the PUCCH signal in each PUSCH region and the PUCCH region in any subframe in order to maintain a single carrier characteristic.
  • the UE since many RBs are not used only by PUCCH transmission of the terminal, the case where the power limit of the corresponding CC will not be frequently generated.
  • a PUCCH signal as a control signal is piggybacked or multiplexed with a PUSCH signal as a data signal and transmitted through a PUSCH region, a terminal configured with mode B does not need to report power headroom for a PUCCH and power headroom for a PUSCH signal. Only information can be transmitted to the base station.
  • the UE may transmit the PUSCH and the PUCCH in the same subframe in the Pcell. That is, the terminal simultaneously transmits the PUSCH signal and the PUCCH signal in the Pcell as shown in FIG. In this case, the terminal preferably transmits the PHR for the sum of the PHR for the PUSCH and the PHR for the PUCCH to the base station.
  • the PUCCH signal may be transmitted by being piggybacked or multiplexed on the PUSCH signal in a subframe in which the PUSCH signal and the PUCCH signal are to be transmitted as shown in FIG. In this case, it is sufficient for the terminal to transmit only the PHR for the PUSCH to the base station.
  • a method of reporting an ePH for the sum of the PUSCH power amount and the PUCCH power amount may be considered. That is, even when only the PUSCH signal is transmitted, the UE may report the ePH for the sum of the PUSCH power and the PUCCH power.
  • Equation 7 shows another one of a method of calculating an ePH for a sum of a PUSCH power amount and a PUCCH power amount.
  • Equation 7 shows a method of obtaining a power headroom (PH) of the UE for a sum of the power of the currently transmitted PUSCH and the power of the most recently transmitted PUCCH. That is, in Equation 7, the power amount of the PUCCH is for the k-th (eg, k ⁇ i) subframe.
  • FIG. 9 illustrates an example of an apparatus supporting the power headroom reporting method disclosed in the present invention as an embodiment of the present invention.
  • the wireless communication system may include one or more base stations (BSs) 10 and one or more terminals (UEs).
  • BSs base stations
  • UEs terminals
  • the transmitter operates as part of the base station 10 and the receiver operates as part of the terminal 20.
  • the transmitter may operate as part of the terminal 20 and the receiver may operate as part of the base station 10.
  • Base station 10 may include a processor 11, a memory 12, and a radio frequency (RF) unit 13.
  • the processor 11 may be configured such that the procedures and / or methods proposed in the embodiments of the present invention are implemented.
  • the processor 11 of the base station may perform uplink resource scheduling in consideration of an uplink resource scheduling and allocation function for the terminal and a PHR received from the terminal.
  • the memory 12 interlocks with the processor and stores various information to be operated in the processor.
  • the RF unit 13 interworks with the processor 11 and transmits and receives wireless signals.
  • the terminal 20 may include a processor 21, a memory 22, and a radio frequency (RF) unit 23.
  • the processor 21 may be configured such that the procedures and / or methods proposed in the embodiments of the present invention are implemented.
  • the processor of the terminal may monitor the search space by using an RF unit to decode the PDCCH transmitted to it, and detect the DCI format included in the PDCCH to obtain information about the uplink resource allocated thereto. have.
  • a power headroom value according to a power amount calculation and a transmission mode in a subframe may be calculated and reported to the base station.
  • the memory 22 cooperates with the processor and stores various information to be operated in the processor.
  • the RF unit 23 interworks with the processor 11 and transmits and receives wireless signals.
  • the base station 10 and / or the terminal 20 may be provided with a single antenna or multiple antennas.
  • the wireless communication system may be referred to as a multi-input multi-output (MIMO) system.
  • MIMO multi-input multi-output
  • FIG. 10 is a view showing another example of an apparatus supporting the power headroom reporting method disclosed in the present invention as an embodiment of the present invention.
  • the mobile station UE may operate as a transmitter in uplink and as a receiver in downlink.
  • the eNB may operate as a receiver in uplink and as a transmitter in downlink.
  • the mobile terminal and the base station may include a transmission module (Tx module: 1040, 1050) and a reception module (Rx module: 1050, 1070), respectively, to control the transmission and reception of information, data, and / or messages.
  • Antennas 1000 and 1010 for transmitting and receiving information, data, and / or messages.
  • the mobile station and the base station each include a processor 1020 and 1030 for performing the above-described embodiments of the present invention and a memory 1080 and 1090 for temporarily or continuously storing the processing of the processor. can do.
  • the processors 1020 and 1030 may perform the second type ePH report and the first type ePH report method according to the transmission modes A and B of the UE in the carrier matching environment disclosed in the embodiments of the present invention.
  • the mobile terminal and the base station of FIG. 10 may further include a low power radio frequency (RF) / intermediate frequency (IF) module.
  • RF radio frequency
  • IF intermediate frequency
  • the transmission module and the reception module included in the mobile station and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission.
  • OFDMA orthogonal frequency division multiple access
  • TDD time division duplex
  • Division Duplex may perform packet scheduling and / or channel multiplexing.
  • the apparatus described in FIG. 10 is a means by which the various power headroom reporting methods disclosed herein can be implemented. Embodiments of the present invention can be performed using the components and functions of the above-described mobile terminal and base station apparatus.
  • the mobile terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, A mobile broadband band system (MBS) phone, a hand-held PC, a notebook PC, a smart phone, or a multi-mode multi-band (MM-MB) terminal may be used.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS mobile broadband band system
  • hand-held PC a notebook PC
  • smart phone or a multi-mode multi-band (MM-MB) terminal
  • MM-MB multi-mode multi-band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • software code may be stored in the memory units 1080 and 1090 and driven by the processors 1020 and 1030.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • Examples of various radio access systems include 3GPP LTE systems, 3GPP LTE-A systems, 3GPP2 and / or IEEE 802.16m systems.
  • Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예로서 멀티케리어 시스템에서 단말의 파워 헤드룸 보고방법은, 단말이 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 기지국으로부터 수신하는 단계와 단말이 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상기 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 기지국으로 전송하는 단계, 단말이 전송모드에 따라 소정 서브프레임에서의 하나 이상의 파워 헤드룸 값을 계산하는 단계와 단말이 하나 이상의 파워 헤드룸 값을 기지국으로 보고하는 단계를 더 포함할 수 있다. 이때, 단말이 전송 모드 A로 동작하는 경우에는 소정 서브프레임에서의 단말의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 보고하고, 단말이 전송 모드 B로 동작하는 경우에는 제 1 타입 파워 헤드룸 값을 보고할 수 있다.

Description

무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
본 발명은 무선 접속 시스템에서 사용되는 통신 방법 및 장치에 관한 것이다. 특히, 본 발명은 멀티 캐리어 환경에서 단말의 파워 헤드룸(PH: Power Headroom) 보고 방법 및 이를 지원하는 장치에 관한 것이다.
일반적인 무선 접속 시스템에서는 상향링크와 하향링크 간의 대역폭은 서로 다르게 설정되더라도 주로 하나의 반송파(carrier)만을 고려하고 있다. 예를 들어, 단일 반송파를 기반으로, 상향링크와 하향링크를 구성하는 반송파의 수가 각각 1개이고, 상향링크의 대역폭과 하향링크의 대역폭이 일반적으로 서로 대칭적인 무선 통신 시스템이 제공될 수 있다.
ITU(International Telecommunication Union)에서는 IMT-Advanced의 후보기술이 기존의 무선 통신 시스템에 비하여 확장된 대역폭을 지원할 것을 요구하고 있다. 그러나, 전세계적으로 일부 지역을 제외하고는 큰 대역폭의 주파수 할당이 용이하지 않다. 따라서, 조각난 작은 대역을 효율적으로 사용하기 위한 기술로 주파수 영역에서 물리적으로 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내도록 하기 위한 반송파 집성(Carrier Aggregation; 대역폭 집성(Bandwidth Aggregation) 또는 스펙트럼 집성(Spectrum Aggregation)이라고도 함) 기술이 개발되고 있다.
반송파 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 반송파 집성이란 기존의 무선 접속 시스템에서 정의되는 대역폭 단위의 반송파들의 복수 개의 묶음을 통하여 단말과 기지국 간에 데이터를 교환할 수 있도록 하는 기술이다.
여기서, 기존의 무선 통신 시스템에서 정의되는 대역폭 단위의 반송파를 컴포넌트 캐리어(CC: Component Carrier)라고 칭할 수 있다. 예를 들어, 반송파 집성 기술은 하나의 컴포넌트 캐리어가 5MHz, 10MHz 또는 20MHz의 대역폭을 지원하더라도 최대 5 개의 컴포넌트 캐리어를 묶어 최대 100MHz까지의 시스템 대역폭을 지원하는 기술을 포함할 수 있다.
반송파 집성 기술을 이용하는 경우에, 여러 개의 상향링크/하향링크 구성반송파를 통해 데이터를 동시에 송수신할 수 있다. 따라서, 단말은 모든 컴포넌트 캐리어를 모니터링하고 측정할 수 있다.
기존의 통신 시스템에서는 하나의 반송파에 대한 단말의 상향링크 전송 전력의 잔여량에 대한 보고로 충분하였다. 그러나, 통신 환경이 발전함에 따라 최대 100MHz 까지의 주파수 범위를 커버하기 위해 둘 이상의 반송파가 결합되는 반송파 정합 기술이 요구되고 있다.
따라서, 단말이 다수의 상향 컴포넌트 캐리어(즉, 서빙 셀)을 가질 경우에 기존의 방법과 다른 방식으로 단말의 파워 헤드룸(PH: Power Headroom)을 보고하는 기술이 개발될 필요가 있다.
본 발명은 이러한 문제점을 해결하기 위해, 본 발명의 목적은 반송파 정합멀티 캐리어 환경에서 단말의 다양한 파워 헤드룸(PH) 보고 방법 및 이를 지원하는 장치들을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
상기의 기술적 과제를 해결하기 위해, 본 발명은 멀티 캐리어 환경에서 단말의 파워 헤드룸(PH: Power Headroom) 보고 방법 및 이를 지원하는 장치들을 제공한다.
본 발명의 일 양태로서 멀티케리어 시스템에서 단말의 파워 헤드룸 보고방법은, 단말이 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 기지국으로부터 수신하는 단계와 단말이 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상기 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 기지국으로 전송하는 단계, 단말이 전송모드에 따라 소정 서브프레임에서의 하나 이상의 파워 헤드룸값을 계산하는 단계와 단말이 하나 이상의 파워 헤드룸 값을 포함하는 보고 메시지를 기지국으로 전송하는 단계를 더 포함할 수 있다. 이때, 단말이 전송 모드 A로 동작하는 경우에는 소정 서브프레임에서의 단말의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 기지국에 보고하고, 단말이 전송 모드 B로 동작하는 경우에는 소정 서브프레임에서의 단말의 제 1 타입 파워 헤드룸 값을 보고할 수 있다.
본 발명의 다른 양태로서 멀티케리어 시스템에서 파워 헤드룸 보고방법은, 단말에 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 전송하는 단계와 단말의 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 전송하는 단계와 단말로부터 하나 이상의 파워 헤드룸 값을 포함하는 보고 메시지(예를 들어, 확장 파워 헤드룸 MAC 제어 요소)를 수신하는 단계를 더 포함할 수 있다. 이때, 하나 이상의 파워 헤드룸 값은 단말의 전송모드에 따라 계산되고, 단말이 전송 모드 A로 동작하는 경우에는 파워 헤드룸 값은 소정 서브프레임에서의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값이고, 단말이 전송 모드 B로 동작하는 경우에는 파워 헤드룸 값은 오직 제 1 타입 파워 헤드룸 값일 수 있다.
본 발명의 또 다른 양태로서 멀티케리어 시스템에서 파워 헤드룸 보고를 수행하는 단말은, 채널 신호를 수신하기 위한 수신 모듈, 채널 신호를 전송하기 위한 송신 모듈; 및 상기 파워 헤드룸 보고를 수행하기 위한 기능을 지원하는 프로세서를 포함할 수 있다.
이때, 상기 단말은 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 수신모듈을 이용하여 기지국으로부터 수신하고, 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 송신 모듈을 통해 기지국으로 전송하고, 소정 서브프레임에서의 하나 이상의 파워 헤드룸값을 프로세서에서 계산하고, 전송모드에 따라 하나 이상의 파워 헤드룸 값을 포함하는 보고 메시지를 송신 모듈을 통해 기지국으로 전송할 수 있다. 특히, 단말이 전송 모드 A로 동작하는 경우에는 소정 서브프레임에서의 단말의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 기지국에 보고하고, 단말이 전송 모드 B로 동작하는 경우에는 제 1 타입 파워 헤드룸 값을 보고할 수 있다.
본 발명의 또 다른 양태로서 멀티케리어 시스템에서 파워 헤드룸 보고방법을 지원하는 기지국은 채널 신호를 수신하기 위한 수신 모듈, 채널 신호를 전송하기 위한 송신 모듈 및 파워 헤드룸 보고를 지원하기 위한 기능을 지원하는 프로세서를 포함할 수 있다.
기지국은, 단말에 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 상기 송신 모듈을 이용하여 전송하고, 단말의 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 수신모듈을 통해 수신하고, 단말로부터 하나 이상의 파워 헤드룸 값을 포함하는 보고 메시지를 수신모듈을 통해 수신하는 단계를 더 포함할 수 있다. 이때, 하나 이상의 파워 헤드룸 값은 단말의 상기 전송모드에 따라 보고된다. 특히, 상기 단말이 전송 모드 A로 동작하는 경우에는 상기 파워 헤드룸 값은 소정 서브프레임에서의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값이고, 단말이 전송 모드 B로 동작하는 경우에는 상기 파워 헤드룸 값은 제 1 타입 파워 헤드룸 값일 수 있다.
상기 본 발명의 양태들에 있어서, 단말이 전송 모드 A이면 단말은 P셀(Primary Cell)의 소정 서브프레임에서 PUSCH 신호 및 상기 PUCCH 신호를 상기 기지국에 전송하고, 단말이 전송 모드 B이면, 단말은 서빙 셀의 소정 서브프레임에서 PUSCH 신호를 기지국에 전송할 수 있다.
전송 모드 A에서 PUCCH 신호 및 PUSCH 신호는 각각 PUCCH 영역 및 PUSCH 영역을 통해 전송되고, 전송 모드 B에서 PUCCH 신호는 PUSCH 신호에 피기백되어 PUSCH 영역을 통해 전송될 수 있다.
이때, 제 1 타입 파워 헤드룸 값은 단말의 최대 전송 전력 및 PUSCH 신호의 전송 전력을 이용하여 계산될 수 있고, 제 2 타입 파워 헤드룸 값은 단말의 최대 전송 전력, PUSCH 신호의 전송 전력 및 PUCCH 신호의 전송 전력을 이용하여 계산되될 수 있다.
또한, 제 1 파워 헤드룸 값은 최대 전송 전력과 PUCCH 신호의 전송 전력의 차이값을 이용하여 계산되고, 제 2 파워 헤드룸 값은 최대 전송 전력과 PUSCH 신호의 전송 전력 및 PUCCH 신호의 전송 전력의 합과의 차이값을 이용하여 계산될 수 있다.
상기 본 발명의 양태들에서, 제 2 타입 파워 헤드룸 값은 수학식 2와 같이 계산될 수 있다. 이때, PCMAXc는 단말의 최대 전송전력을 나타내고, PPUSCH_scheduled(i)는 PUSCH 신호의 전송 전력을 나타내며, PPUCCH_scheduled(i)는 PUCCH 신호의 전송 전력을 나타낼 수 있다. 또한, 제 2 타입 파워 헤드룸 값은 소정 서브프레임에서 PUCCH 신호가 전송되지 않는 경우에도 PUCCH 신호의 전송 전력을 이용하여 계산될 수 있다. 이때, 제 2 타입 파워 헤드룸 값은 수학식 6과 같이 계산될 수 있다. 또한, 제 1 타입 파워 헤드룸 값은 수학식 1을 이용하여 계산될 수 있다.
상기 본 발명의 양태들에서 보고 메시지는 단말의 P셀(Primary Cell) 또는 서빙 셀에서의 최대 전송 전력 값을 더 포함할 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
단말에 하나 이상의 서빙 셀이 할당된 경우 각 셀에 대한 단말의 다양한 파워 헤드룸(PH) 보고 방법을 이용함으로써, 단말에 상향링크 자원을 효율적으로 할당할 수 있다.
또한, 반송파 집성 환경에서, 단말이 하나 이상의 셀을 할당받는 경우에 파워 헤드룸 보고 방법을 이용할 수 있다. 따라서, PUCCH와 PUSCH 신호가 동시에 전송되는 경우에도 단말의 파워 헤드룸 보고 방법을 효율적으로 이용할 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
도 1본 발명의 실시예들에서 사용될 수 있는 무선 프레임의 구조를 나타내는 도면이다.
도 2는 발명의 실시예들에서 사용될 수 있는 하나의 하향링크 슬롯에 대한 자원 그리드(Resource Grid)를 나타내는 도면이다.
도 3은 발명의 실시예들에서 사용될 수 있는 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 발명의 실시예들에서 사용될 수 있는 상향링크 서브프레임 구조의 일례를 나타내는 도면이다.
도 5는 LTE 시스템의 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 멀티 캐리어 결합(반송파 집성)의 일례를 나타내는 도면이다.
도 6은 PUCCH 신호가 PUSCH 영역에 피기백되는 경우를 나타내는 도면이다.
도 7은 전송모드에 따른 단말의 PUCCH 신호 및 PUSCH 신호 전송방법을 나타내는 도면이다.
도 8은 본 발명의 실시예로서 전송 모드에 따른 단말의 파워 헤드룸 보고 방법의 일례를 나타내는 도면이다.
도 9는 본 발명의 실시예로서, 본 발명에서 개시하는 파워헤드룸보고 방법을 지원하는 장치의 일례를 나타내는 도면이다.
도 10은 본 발명의 실시예로서, 본 발명에서 개시하는 파워헤드룸보고 방법을 지원하는 장치의 다른 일례를 나타내는 도면이다.
본 발명의 실시예들은 멀티 캐리어 환경에서 단말의 다양한 파워 헤드룸(PH: Power Headroom) 보고 방법 및 이를 지원하는 장치들을 개시한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, '이동국(MS: Mobile Station)'은 UE(User Equipment), SS(Subscriber Station), MSS(Mobile Subscriber Station), 이동 단말(Mobile Terminal), 발전된 이동단말(AMS: Advanced Mobile Station) 또는 단말(Terminal) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213 및 3GPP TS 36.321 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템의 진화이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
1. 3GPP LTE/LTE_A 시스템의 기본 구조
도 1본 발명의 실시예들에서 사용될 수 있는 무선 프레임의 구조를 나타내는 도면이다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 이때, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 이다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. OFDM 심볼은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiplexing Access) 방식을 사용하는 3GPP LTE 시스템에서 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. 즉, OFDM 심볼은 다중접속방식에 따라 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. RB는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다.
도 1의 무선 프레임의 구조는 예시에 불과하며, 무선 프레임에 포함되는 서브프레임의 수, 서브프레임에 포함되는 슬롯의 수 및 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 발명의 실시예들에서 사용될 수 있는 하나의 하향링크 슬롯에 대한 자원 그리드(Resource Grid)를 나타내는 도면이다.
하향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심볼을 포함한다. 도 2에서는 하나의 하향링크 슬롯이 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB: Resource Block)은 주파수 영역에서 12 개의 부반송파를 포함하는 것을 예시적으로 기술한다.
자원 그리드 상의 각 요소(element)를 자원요소(RE: Resource Element)라 하며, 하나의 자원블록(RB)은 12×7개의 자원요소(RE)를 포함한다. 하향링크 슬롯에 포함되는 자원블록의 수 NDL은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
도 3은 발명의 실시예들에서 사용될 수 있는 하향링크 서브프레임의 구조를 나타내는 도면이다.
서브 프레임은 시간 영역에서 2개의 슬롯을 포함한다. 서브 프레임 내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심볼들이 제어채널들이 할당되는 제어영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다.
3GPP LTE 시스템에서 사용되는 하향링크 제어채널들은 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다. 서브프레임의 첫번째 OFDM 심볼에서 전송되는 PCFICH 신호는 서브프레임 내에서 제어채널신호의 전송에 사용되는 OFDM 심볼의 수(즉, 제어영역의 크기)에 관한 정보를 나른다. PHICH는 상향링크 HARQ (Hybrid Automatic Repeat Request)에 대한 ACK (Acknowledgement)/NACK (None-Acknowledgement) 신호를 나른다. 즉, 단말이 전송한 상향링크 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(DCI: Downlink Control Information)라고 한다. DCI는 단말(UE: User Equipment) 또는 단말 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 및 상향링크 전송 전력 제어명령 등을 포함할 수 있다.
PDCCH는 하향링크 공유채널(DL-SCH: Downlink Shared Channel)의 전송포맷 및 자원할당정보, 상향링크 공유채널(UL-SCH: Uplink Shared Channel)의 전송포맷 및 자원할당정보, 페이징 채널(PCH: Paging Channel) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의접속응답과 같은 상위계층 제어 메시지에 대한 자원 할당 정보, 임의의 UE 그룹 내에서 개별 UE들에 대한 전송 전력 제어 명령 집합, 전송 전력 제어 명령, VoIP(Voice of Internet Protocol)의 활성화 등에 대한 정보를 나를 수 있다.
다수의 PDCCH는 하나의 제어 영역에서 전송될 수 있다. UE는 다수의 PDCCH를 모니터할 수 있다. PDCCH는 하나 이상의 연속된 제어채널요소(CCE: Control Channel Element)들 상에서 전송될 수 있다. CCE는 무선 채널의 상태에 기반하여 PDCCH를 하나의 코딩율로 제공하는데 사용되는 논리적 할당 자원이다. CCE는 다수의 자원요소그룹(REG)에 대응된다. PDCCH의 포맷 및 상기 PDCCH의 가용한 비트의 개수는 CCE에서 제공되는 코딩율 및 CCE의 개수 간 상관관계에 따라 결정된다. 기지국은 UE에 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC를 붙인다.
CRC는 PDCCH의 사용방법 또는 소유자에 따라 고유의 식별자(RNTI: Radio Network Temporary Identifier)와 함께 마스크된다. PDCCH가 특정 UE를 위한 것이면, UE의 고유 식별자(예를 들어, C-RNTI: Cell-RNTI)는 CRC에 마스킹된다. PDCCH가 페이징 메시지를 위한 것이면, 페이징 지시자 식별자(예를 들어, P-RNTI: Paging-RNTI)가 CRC에 마스킹된다. 또한, PDCCH가 시스템 정보(특히, 시스템 정보 블록)를 위한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(S-RNTI)가 CRC에 마스킹될 수 있다. UE의 임의접속 프리엠블의 수신에 대한 응답인 임의접속 응답을 지시하기 위해, 임의접속 RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
반송파 집성 환경에서는 PDCCH는 하나 이상의 컴포넌트 캐리어를 통해 전송될 수 있으며, 하나 이상의 컴포넌트 캐리어에 대한 자원할당정보를 포함할 수 있다. 예를 들어, PDCCH는 하나의 컴포넌트 캐리어를 통해 전송되지만, 하나 이상의 PDSCH 및 PUSCH에 대한 자원할당 정보를 포함할 수 있다.
도 4는 발명의 실시예들에서 사용될 수 있는 상향링크 서브프레임 구조의 일례를 나타내는 도면이다.
도 4를 참조하면, 상향링크 서브프레임은 복수(예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH(Physical Uplink Shared Channel)를 포함하고 음성 정보를 포함하는 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH(Physical Uplink Control Channel)를 포함하고 상향링크 제어 정보(UCI: Uplink Control Information)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍(RB pair)을 포함하며 슬롯을 경계로 호핑한다. LTE 시스템에서 단말은 단일 반송파 특성을 유지하기 위해 PUCCH 신호와 PUSCH 신호를 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH는 서브프레임에서 RB 쌍(pair)으로 할당되고, RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부반송파를 차지한다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CQI(Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output) 관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가 사용된다.
단말이 서브프레임에서 전송할 수 있는 상향링크 제어 정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 검출에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
표 1은 LTE에서 PUCCH 포맷과 UCI의 맵핑 관계를 나타낸다.
표 1
PUCCH 포맷 UCI
Format 1 스케줄링 요청(SR)
Format 1a SR을 포함하거나 포함하지 않는 1비트 HARQ ACK/NACK
Format 1b SR을 포함하거나 포함하지 않는 2비트 HARQ ACK/NACK
Format 2 CQI(20 coded Bits)
Format 2 CQI 및 확장 CP에 대한 1 또는 2 비트의 HARQ ACK/NACK
Format 2a CQI 및 1 비트의 HARQ ACK/NACK
Format 2b CQI 및 2 비트의 HARQ ACK/NACK
2. 멀티캐리어 환경
본 발명의 실시예들에서 고려하는 통신 환경은 멀티캐리어(Multi-carrier) 지원 환경을 포함한다. 즉, 본 발명에서 사용되는 멀티캐리어 시스템 또는 반송파 집성 시스템(carrier aggregation system)이라 함은 광대역을 지원하기 위해서 목표로 하는 광대역을 구성할 때, 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 캐리어(carrier)를 결합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 반송파의 집성(또는, 캐리어 결합)을 의미하며, 이때 반송파 집성은 인접한 캐리어 간의 결합뿐 아니라 비 인접한 캐리어 간의 결합을 모두 의미한다. 또한, 캐리어 결합은 반송파 집성, 대역폭 결합 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어(CC: Component Carrier)가 결합되어 구성되는 멀티캐리어(즉, 반송파 집성)는 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다.
예를 들어서 3GPP LTE 시스템(LTE R-8 시스템)에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE_advanced 시스템(즉, LTE_A)에서는 LTE에서 지원하는 상기의 대역폭들을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 멀티캐리어 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 결합(즉, 반송파 집성 등)을 지원하도록 할 수도 있다.
도 5는 LTE 시스템의 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 멀티 캐리어 결합(반송파 집성)의 일례를 나타내는 도면이다.
도 5(a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 하향링크 컴포넌트 캐리어(DL CC)와 상향링크 컴포넌트 캐리어(UL CC)가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 5(b)는 LTE_A 시스템에서 사용되는 멀티 캐리어 구조를 나타낸다. 도 5(b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. 멀티 캐리어 집성의 경우 단말은 3 개의 컴포넌트 캐리어를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 기지국(eNB: e-NodeB) 영역에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때 단말은 M 개의 제한된 DL CC 만을 모니터링하고, DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC로 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야한다. 이러한 방식은 상향링크 전송에도 적용될 수 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 선택적으로 정의될 수 있다. 예를 들어, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 멀티캐리어(즉, 캐리어 병합)가 지원되는 경우, 하향링크 자원의 캐리어 주파수(또는, DL CC)와 상향링크 자원의 캐리어 주파수(또는, UL CC) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 즉, 하나의 셀은 하나 이상의 하향링크 컴포넌트 캐리어들로 구성되며, 선택적으로 하나 이상의 상향링크 컴포넌트 캐리어들을 포함할 수 있다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함하는 개념이다. P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미하고, S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 다만, 특정 단말에는 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다.
P셀은 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용된다. P셀은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성이 가능하며 추가적인 무선 자원을 제공하는데 사용될 수 있다.
P셀과 S셀은 서빙 셀로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 멀티캐리어 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 즉, 반송파 정합은 P셀과 하나 이상의 S셀의 결합으로 이해될 수 있다. 이하의 실시예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
도 6은 PUCCH 신호가 PUSCH 영역에 피기백되는 경우를 나타내는 도면이다.
도 6을 참조하면, 도 6에서 첫 번째 서브프레임은 PUCCH 신호와 PUSCH 신호가 동시에 전송되는 경우를 나타내고, 두 번째 및 세 번째 서브프레임은 PUCCH 신호 및 PUSCH 신호가 PUCCH 영역 및 PUSCH 영역에서 각각 전송되는 경우를 나타낸다.
다만, 3GPP LTE 시스템(R-8)에서는 상향링크의 경우, 단말의 파워앰프의 효율적인 활용을 위하여, 파워 앰프의 성능에 영향을 미치는 PAPR(Peak-to-Average Power Ratio) 특성이나 CM(Cubic Metric) 특성이 좋은 싱글 캐리어 특성(Single Carrier Property)을 유지하는 것이 바람직하다.
예를 들어, 단말이 PUSCH 신호를 전송하는 경우, 전송하고자 하는 데이터를 DFT-프리코딩을 통해 싱클 캐리어 특성을 유지하고, PUCCH 신호를 전송하는 경우에는 싱글 캐리어 특성을 가지고 있는 시퀀스(sequence)에 PUCCH 신호를 실어 전송함으로써 싱글 캐리어 특성을 유지할 수 있다.
그러나, DFT-프리코딩을 수행한 데이터를 주파수축으로 비연속적으로 할당하거나 PUSCH와 PUCCH가 동시에 전송하게 되는 경우에는 이러한 싱글 캐리어 특성이 깨지게 된다. 따라서, 도 6과 같이 PUCCH 전송과 동일한 서브프레임에 PUSCH 전송을 수행하는 경우, 싱글 캐리어 특성을 유지하기 위해 PUCCH로 전송할 상향링크 제어 정보(UCI: Uplink Control Information)를 PUSCH를 통해 일반 데이터와 함께 전송(Piggyback)할 수 있다.
3. 파워 헤드룸 보고(Power Headromm Report) 방법
기지국(eNB: eNode-B)이 다수의 단말들에 대한 상향링크 전송 자원을 적절하게 스케줄하기 위해서, 각 단말은 자신의 가능한 파워 헤드룸 정보를 기지국에 보고하는 것이 바람직하다. 기지국은 각 단말이 서브프레임당 사용 가능한 상향링크 대역폭을 결정하기 위해서 각 단말로부터 수신한 파워 헤드룸 보고(PHR: Power Headroom Report)를 이용할 수 있다. 이러한 방법은 단말에 할당되는 상향링크 자원을 적절하게 분배함으로써, 각 단말이 불필요한 상향링크 자원을 할당받는 것을 방지할 수 있다.
파워 헤드룸 보고의 범위는 1dB 단위로 40dB 내지 -23dB 범위를 갖는다. 파워 헤드룸 보고 범위에서 '-' 값의 범위는 각 단말이 UL 그랜트(UL Grant)를 통해 할당받은 전송 전력보다 많은 전송 전력을 이용하여 기지국으로 신호를 전송할 수 있는 범위를 나타낸다.
PHR은 기지국이 다음 UL 그랜트의 크기(즉, 주파수 도메인에서 RB의 개수)를 줄일 수 있게 하며, 다른 단말들에 할당할 전송자원을 해제할 수 있다. PHR은 단말이 상향링크 전송 그랜트를 갖는 서브프레임에서 전송될 수 있다. PHR은 PHR이 전송되는 서브프레임과 관련있다.
3GPP LTE 시스템에서, 단말이 파워 헤드룸(PHR) 값을 계산하는 방법은 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2011002286-appb-M000001
여기서, PCMAX는 구성된 단말의 이론상의 최대 전송 파워를 나타내고, MPUSCH(i)는 인덱스 i의 서브프레임에 대해 유효한 자원 블록 수로 표현된 PUSCH 자원 할당의 대역폭을 나타내는 파라미터로서, 기지국이 할당하는 값이다.
PO_PUSCH(j)는 상위 계층으로부터 제공된 셀-특정 노미널 컴포넌트(nominal component) PO_NOMINAL_PUSCH(j)와 상위 계층에서 제공된 단말-특정 컴포넌트 PO_UE_PUSCH(j)의 합으로 구성된 파라미터로서, 기지국이 단말에게 알려주는 값이다.
α(j)는 상위 계층에서 제공되어 기지국이 3 비트로 전송해 주는 셀-특정 파라미터로서 j=0 또는 1일 때, α∈{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}이고, j=2일때, α(j)=1이다. α(j)는 기지국이 단말에게 알려주는 값이다.
PL은 단말이 dB 단위로 계산한 하향링크 경로손실(PL: PathLoss) 추정치로서, PL=referenceSignalPower - higher layer filteredRSRP 로 표현된다. f(i)는 현재 PUSCH 파워 제어 조정 상태를 나타내는 값으로서, 현재의 절대값 또는 축적된 값으로 표현될 수 있다.
파워 헤드룸(PH)은 -23 데시벨(dB)에서 40dB 사이에서 1dB간격의 64레벨 값으로 구성되며, 물리 계층에서 상위 계층으로 전달된다. PH MAC 제어 요소는 MAC PDU 서브헤더에 의해 식별된다.
4. 반송파 정합 환경에서 파워 헤드룸 보고(Power Headromm Report) 방법 I
반송파 정합 환경에서 각 단말에는 하나 이상의 서빙 셀이 할당될 수 있으며, 서빙 셀 중 하나는 P셀일 수 있다. 이러한 경우, LTE-A 시스템에서 단말은 기존 시스템에서와 달리 하나 이상의 서빙 셀에 대해서 PHR 과정(procedure)을 수행하는 것이 바람직하다. 따라서, 이하에서는 단말에 P셀 및 하나 이상의 S셀이 할당된 경우에 PHR 과정 수행 방법들에 대해서 상세히 설명한다.
PHR 과정은 단말의 물리 계층에서 단말이 할당 받은 셀에 대한 PH를 계산하고, 이를 기지국으로 보고하는 과정을 의미한다.
예를 들어, 단말은 각 활성화된 서빙 셀(Serving Cell)에서 단말의 이론상 최대 전송 전력과 상향링크 공유채널(UL-SCH, PDSCH 등)에 대한 단말의 측정된 전송 전력간의 차이에 대한 정보(예를 들어, 제 1 타입 ePH 값)를 기지국에 제공할 수 있다.
또한, 단말의 이론상 최대 전송 전력과 P셀에서의 상향링크 공유채널(UL-SCH) 및 PUCCH에 대한 단말의 측정된 전송전력간의 차이에 대한 정보(예를 들어, 제 2 타입 ePH 값) 및 단말의 이론상 최대 전송 전력과 상향링크 공유채널(UL-SCH, PDSCH 등)에 대한 단말의 측정된 전송 전력간의 차이에 대한 정보 (예를 들어, 제 2 타입 ePH 값)을 기지국에 제공할 수 있다.
본 발명의 실시예들은 LTE-A 시스템에 적용되는 것으로, 기존 LTE R-8의 PHR과 본원 발명의 PHR을 구분하기 위해 본원 발명의 PHR은 확장된 PHR(ePHR: extend PHR)로 부르기로 한다. 즉, 단말은 ePHR 과정을 수행하기 위해 서빙 셀에서는 제 1 타입 ePH 값을 기지국에 전송하고, P셀에서는 제 1 타입 ePH 값 및 제 2 타입 ePH 값을 기지국으로 전송할 수 있다. 이때, 단말은 파워 헤드룸 보고 시, 단말의 최대 전송 전력에 대한 정보를 함께 기지국으로 전송할 수 있다.
예를 들어, 단말의 물리 계층은 활성화된 서빙 셀의 PUSCH에 대한 파워 헤드룸(제 1 타입 ePH) 값을 계산하고, 제 1 타입 ePH 값 및 단말의 최대 전송 전력(PMAX,c)에 대한 정보를 단말의 상위계층(예를 들어, MAC 또는 RRC 계층)으로 전달한다. 단말의 상위 계층은 제 1 타입 ePH 및 PMAX,c에 대한 정보를 기지국으로 전송할 수 있다.
또한, 단말의 물리 계층은 활성화된 P셀(Primary Cell)에서 제 1 타입 ePH, 제 2 타입 ePH 및 단말의 최대 전송 전력(PMAX,c)에 대한 정보를 계산하여 단말의 상위계층으로 전달하고, 단말의 상위 계층은 제 2 타입 PHR 정보 및 PMAX,c에 대한 정보를 기지국으로 전송할 수 있다.
도 7은 단말이 3 개의 서빙셀(e.g. UL CC)을 이용하여 데이터 신호 및 제어신호를 전송하는 방법을 나타낸다. 도 7에서 UL CC1은 P셀을 나타내고, 단말은 P셀을 통해 제어신호(UCI, 즉 PUCCH 신호) 및 데이터 신호(예를 들어, PUSCH 신호)를 전송할 수 있다. 또한, UL CC2 및 UL CC3은 S셀을 나타내고, 단말은 S셀을 통해 PUSCH 신호를 전송할 수 있다. 이때, 도 7(a)는 단말이 모드 A로 동작하는 경우를 나타내며, 도 7(b)는 단말이 모드 B로 동작하는 경우를 나타낸다.
모드 A는 단말이 PUSCH 신호와 PUCCH 신호를 동일 서브프레임에서 동시에 전송할 수 있는 경우를 나타낸다. 예를 들어, 모드 A인 단말은 P셀(즉, UL CC1)의 첫 번째 서브프레임에서는 PUCCH 신호 및 PUSCH 신호를 동시에 전송하고, 두 번째 서브프레임에서는 PUSCH 없이 PUCCH 신호만을 전송하며, 세 번째 서브프레임에서는 PUCCH 신호없이 PUSCH 신호만을 전송한다. 또한, 단말은 S셀(즉, UL CC2 및 UL CC3)에서는 PUSCH 신호를 PUSCH 영역을 통해 전송할 수 있다.
모드 B는 단말이 PUSCH 신호와 PUCCH 신호를 동일 서브프레임에서 동시에 전송하지 못하는 경우를 나타낸다. 예를 들어, 모드 B인 단말은 UL CC1(서빙 셀)에서 PUCCH 신호(UCI)를 PUSCH에 피기백(piggyback) 또는 멀티플렉싱(multiplexing)하여 전송할 수 있다. 즉, 단말은 제어신호(e.g. UCI)를 PUCCH 영역을 통해 전송하는 것이 아니라 PUSCH 영역에 데이터 신호와 피기백하여 전송할 수 있다.
따라서, 단말이 모드 A로 구성(configuration)되는 경우에는 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 계산하여 기지국에 보고할 수 있다. 또한, 단말이 모드 B로 구성되는 경우에는 단말은 제 1 타입 파워 헤드룸 값을 계산하여 기지국에 보고할 수 있다.
도 7에서는 P셀에서 상향링크 제어신호 및 데이터 신호를 전송하는 방법에 대해서 설명하였지만, P셀이 아닌 임의의 서빙셀에서도 제어신호 및 데이터 신호가 전송될 수 있다. 이하에서는, 모드 A와 같이 특정 서빙 셀에서 PUSCH 신호와 PUCCH 신호가 동시에 전송되는 경우와 모드 B와 같이 특정 서빙 셀에서 PUSCH 신호에 PUCCH 신호가 피기백되는 경우에, 단말이 파워 헤드룸 보고(PHR)를 기지국에 전송하는 방법에 대해서 설명한다.
도 8은 본 발명의 실시예로서 전송 모드에 따른 단말의 파워 헤드룸 보고 방법의 일례를 나타내는 도면이다.
단말(UE)은 기지국(eNB)과의 상위 계층 시그널링을 통해 어떤 전송 모드로 동작할지 협상할 수 있다. 즉, 단말은 기지국과의 협상 결과에 따라 도 7에서 설명한 전송 모드 A 또는 B로 동작할 수 있다.
단말(UE)은 기지국(eNB)으로부터 반송파 집성(CA: Carrier Aggregation) 환경에서 하나 이상의 서빙 셀에 대한 상향링크 자원할당 정보(e.g. UL Grant)를 포함하는 PDCCH 신호를 수신할 수 있다.(S810).
S810 단계에서 단말은 하나 이상의 셀(즉, 하나 이상의 CC)을 할당받을 수 있다. 이때, 단말은 할당 받은 각 셀마다 동일한 전송 모드 또는 독립적인 전송모드로 동작할 수 있다.
단말은 할당된 상향링크를 통해 기지국과 통신을 수행할 수 있다. 즉, 단말은 하나 이상의 셀에서 i 번째 서브프레임에서 모드 A 또는 모드 B로서 기지국과 PUCCH 및/또는 PUSCH 신호들을 송신할 수 있다(S820).
단말은 다음과 같은 이벤트 중 어느 하나의 조건이 만족하는 경우에 ePHR 과정을 개시(triggering)할 수 있다. 즉, 단말은 (1) 파워 헤드룸 보고(PHR)를 금지시키는 제 1 타이머(예를 들어, prohibitPHR-Timer)가 만료되거나, 적어도 하나의 활성화된 서빙 셀에서 제 1 타이머가 만료되고 전송 경로손실(pathloss)의 변화가 미리 설정된 값(예를 들어, DL_PathlossChange dB)보다 큰 경우, (2) 주기적 리포트 타이머인 제 2 타이머(예를 들어, PeriodicPHR-Timer)가 만료되었을 경우, 또는 (3) 상향링크를 구비하는 S셀이 활성화되는 경우에 제 1 타입 ePH 및/또는 제 2 타입 ePH를 계산할 수 있다(S830).
단말이 전송모드 B로 동작하는 경우, 단말은 서빙 셀(Serving Cell) c의 현재 서브프레임(i)에 대한 제 1 타입의 ePH를 기지국에 보고할 수 있다. 또한, 단말이 전송모드 A로 동작하는 경우, 단말은 P셀(Primary Cell)의 현재 서브프레임(i)에 대한 제 1 타입 ePH 및 제 2 타입의 ePH를 기지국에 보고할 수 있다.
S830 단계에서 제 1 타입의 ePH 및/또는 제 2 타입의 ePH는 단말의 물리계층에서 계산되며, 단말의 상위계층(예를 들어, MAC 계층 및/또는 RRC 계층)으로 전달된다. 단말의 상위계층은 PHR 과정을 위해, 물리계층으로부터 하나 이상의 ePH 값을 수신하여 기지국에 보고한다. 이때, 단말은 각 ePH를 계산할 때 사용한 단말의 최대 전송 전력 값을 함께 기지국으로 전송할 수 있다 (S840).
S840 단계에서, 단말은 확장 파워 헤드룸 MAC 제어 요소(예를 들어, 보고 메시지)를 이용하여 하나 이상의 ePH를 기지국에 전송할 수 있다. 또한, 단말이 하나 이상의 셀을 할당 받은 경우, 단말은 각 셀에 대한 ePH 및 단말의 최대 전송 전력을 기지국에 보고할 수 있다.
기지국은 각각의 단말들로부터 수신한 하나 이상의 ePH 값을 기반으로 상향링크 무선 자원을 스케줄링하고 각 단말에 할당할 수 있다. 또한, 기지국은 단말에 할당한 무선 자원에 대한 정보를 알려주기 위해서 UL 그랜트(UL Grant)를 포함하는 PDCCH 신호를 각 단말에 전송한다(S850).
S830 단계에서 단말이 제 1 타입 ePH를 계산하기 위해, 단말은 PUSCH의 전력에 대한 ePH를 계산할 수 있다. 이때, 단말은 수학식 1을 이용하여 제 1 타입의 ePH를 계산할 수 있다. 다만, 수학식 1의 파라미터는 단말에 할당된 서빙 셀 c의 임의의 서브프레임 i에서의 파라미터들이 이용된다.
S830 단계에서 단말이 제 2 타입의 ePH를 계산하기 위해, 단말은 PUSCH의 전력과 PUCCH에 대한 전력의 합(즉, PUSCH 및 PUCCH의 PH에 대한 합)에 대한 ePH를 계산할 수 있다.
이하에서는 제 2 타입의 ePH를 계산하는 방법에 대해서 상세히 설명한다. 다음 수학식 2는 제 2 타입의 ePH를 계산하는 공식 중 하나를 나타낸다.
수학식 2
Figure PCTKR2011002286-appb-M000002
수학식 2에서는 단말은 PUSCH의 전력량(PPUSCHc_scheduled(i)) 및 PUCCH의 전력량(PPUCCHc_scheduled(i))을 이용하여 ePH를 계산하는 방법을 나타낸다. 즉, 단말은 PUSCH의 전력량과 PUCCH의 전력량의 합에 대한 하나의 ePH 값을 계산할 수 있다. 수학식 2는 P셀에서 단말이 PUSCH 신호 및 PUCCH 신호를 동일 서브프레임에서 동시에 전송하는 경우를 나타낸다.
다음 수학식 3은 제 2 타입의 ePH를 계산하기 위해 사용되는 PUCCH의 전력량을 계산하는 공식을 나타낸다.
수학식 3
Figure PCTKR2011002286-appb-M000003
여기서, PCMAX는 P셀 또는 서빙 셀에서 단말의 이론상의 최대 전송 파워를 나타내고, MPUSCH(i)는 인덱스 i의 서브프레임에 대해 유효한 자원 블록 수로 표현된 PUSCH 자원 할당의 대역폭을 나타내는 파라미터로서, 기지국이 할당하는 값이다.
PO_PUSCH(j)는 상위 계층으로부터 제공된 셀-특정 노미널 컴포넌트(nominal component) PO_NOMINAL_PUSCH(j)와 상위 계층에서 제공된 단말-특정 컴포넌트 PO_UE_PUSCH(j)의 합으로 구성된 파라미터로서, 기지국이 단말에게 알려주는 값이다.
α(j)는 상위 계층에서 제공되어 기지국이 3 비트로 전송해 주는 셀-특정 파라미터로서 j=0 또는 1일 때, α∈{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}이고, j=2일때, α(j)=1이다. α(j)는 기지국이 단말에게 알려주는 값이다.
PL은 단말이 dB 단위로 계산한 하향링크 경로손실(PL: PathLoss) 추정치로서, PL=referenceSignalPower - higher layer filteredRSRP 로 표현된다. f(i)는 현재 PUSCH 파워 제어 조정 상태를 나타내는 값으로서, 현재의 절대값 또는 축적된 값으로 표현될 수 있다.
다음 수학식 4는 수학식 2에서 사용되는 PUCCH의 전력량을 계산하는 공식 중 하나를 나타낸다.
수학식 4
Figure PCTKR2011002286-appb-M000004
다음 수학식 5는 수학식 2에서 사용되는 PUCCH의 전력량을 계산하는 공식 중 다른 하나를 나타낸다.
수학식 5
Figure PCTKR2011002286-appb-M000005
수학식 4 및 5에서
Figure PCTKR2011002286-appb-I000001
는 단말의 상위 계층에서 물리 계층에 제공하는 파라미터이며, 각
Figure PCTKR2011002286-appb-I000002
값은 PUCCH 포맷 1a와 관련된 PUCCH 포맷(F)에 대응한다.
만약, 단말이 상위 계층으로부터 두 개의 안테나 포트 상에서 PUCCH를 전송하도록 구성되면,
Figure PCTKR2011002286-appb-I000003
값은 PUCCH 포맷 F'가 정의되는 각 상위 계층에서 하위 계층에 제공된다.
h(nCQI,nHARQ) 및 h(nCQI,nHARQ,nSR)은 PUCCH 포맷에 종속하는 값으로 nCQI는 CQI에 대한 정보 비트의 개수에 대응한다. 서브프레임 i가 단말에 대한 스케줄링 요청을 위해 구성된 경우 nSR은 1로 설정되며, 그렇지 않은 경우 0으로 설정된다. nHARQ 는 서브프레임 i에서 HARQ 비트의 개수 또는 전송 블록의 개수를 나타낸다.
PO_PUCCH는 상위 계층으로부터 제공된 파라미터 PO_NOMIMAL_PUCCH 및 PO_UE_PUCCH의 합으로 구성된 파라미터를 나타낸다. 또한, g(i)는 현재 PUCCH 전송 제어 조정 상태 값을 나타내고, g(0)은 재설정 후 최초 값을 나타낸다.
다음 수학식 6은 제 2 타입의 ePH를 계산하는 공식 중 다른 하나를 나타낸다.
수학식 6
Figure PCTKR2011002286-appb-M000006
수학식 6은 단말이 P셀에서 PUCCH 신호는 전송하지 않고 PUSCH 신호만을 전송하는 경우에도 PUCCH 전력량을 고려하여 ePH를 계산하는 방법을 나타낸다. 수학식 6은 현재 전송되는 PUSCH의 전력과 PUCCH의 할당 전력 중 전송 포맷과 관련된 오프셋(Offset)을 제외한 PUCCH 전력을 합한 값에 대한 PH를 구하는 방법이다. 다시 말해서, 수학식 6에서 PUCCH의 전력량은 PUCCH의 개루프 파라미터인 PO_PUCCH(j)와 현재 프레임인 i번째 서브프레임의 경로손실 보상값인 PL 및 i번째 서브프레임까지 동적으로 축적된 폐루프 파라미터 값인 g(i)으로서 구해질 수 있다. 나머지 각 파라미터에 대한 설명은 수학식 4 및 5를 참조할 수 있다.
5. 반송파 정합 환경에서 파워 헤드룸 보고(Power Headromm Report) 방법 II
상술한 4 절에서는 제 1 타입 ePH 및 제 2 타입 ePH를 계산하여 ePHR을 기지국에 보고하는 방법에 대해서 설명하였다. 이하에서는, 4절에서 설명한 방법 이외에도 반송파 정합 환경에서 파워 헤드룸 보고(PHR) 방법들에 대해서 설명한다. 다만, 기본적인 파라미터에 대한 설명이나 단말의 전송 모드에 대한 설명은 4절의 설명을 참조할 수 있다.
단말이 모드 A로 구성되었을 경우, 임의의 서빙 셀의 임의의 서브프레임에서 PUSCH와 PUCCH가 동시에 전송될 수 있다. 이러한 경우에, 기지국은 하나 이상의 단말들에 적절하게 PUSCH 자원을 할당해야하며, 단말이 해당 서빙 셀의 제한된 전송 전력을 넘지 않도록 스케줄링하는 것이 바람직하다. 이를 위해 단말이 기지국에 전송하는 확장 전력 헤드룸 보고(ePHR) 방식은 다음 세 가지를 고려할 수 있다.
(1) 각각의 단말은 단말의 PHR를 전송해야하는 모든 서브프레임에서 해당 서빙 셀의 PUSCH 파워 헤드룸 정보와 PUCCH 파워 헤드룸 정보를 각각 기지국에 전송할 수 있다.
(2) 다른 방법으로서, 모드 A로 구성된 단말은 P셀(UL CC1)의 PUSCH PHR와 PUCCH PHR 정보 두 가지를 기지국에 전송하고, PUSCH만 전송되는 S셀(UL CC2, UL CC3)에서는 PUSCH PHR 정보만 알려줄 수 있다.
단말이 모드 B로 구성되었을 경우, 단말은 싱글 캐리어 특성을 유지하기 위해 임의의 서브프레임에서 PUSCH 신호와 PUCCH 신호를 각각의 PUSCH 영역 및 PUCCH 영역에서 동시에 전송하지 않는다. 이러한 경우에는, LTE-A 시스템에서도 LTE 시스템(R-8)과 마찬가지로 단말의 PUCCH 전송만으로는 많은 RB가 사용되지 않을 것이기 때문에 해당 CC의 전력 제한을 넘기게 될 경우가 빈번하게 발생하지는 않을 것이다. 또한, 제어신호인 PUCCH 신호가 데이터 신호인 PUSCH 신호와 피기백 또는 다중화되어 PUSCH 영역을 통해서 전송되므로, 모드 B로 구성된 단말은 PUCCH에 대한 파워 헤드룸 보고를 하지 않아도 되며 PUSCH 신호에 대한 파워 헤드룸 정보만을 기지국에 전송할 수 있다.
따라서, 단말이 모드 A로 구성되면, 단말은 P셀에서 PUSCH와 PUCCH를 동일 서브프레임에서 전송할 수 있다. 즉, 단말은 도 7(a)과 같이 P셀에서 PUSCH 신호와 PUCCH 신호를 동시에 전송한다. 이러한 경우에, 단말은 PUSCH에 대한 PHR과 PUCCH에 대한 PHR의 합에 대한 PHR을 기지국에 전송하는 것이 바람직하다.
만약, 단말이 모드 B로 구성된다면 PUSCH 신호와 PUCCH 신호가 전송되어야할 서브프레임에서는 도 7(b)와 같이 PUCCH 신호가 PUSCH 신호에 피기백 또는 멀티플렉싱되어서 전송될 수 있다. 이러한 경우에, 단말은 PUSCH에 대한 PHR만을 기지국에 전송하면 충분하다.
또한, 상술한 방법들과 달리, 현재(i번째) 서브프레임에서 PUSCH 신호와 PUCCH 신호가 동시에 전송되지 않더라도, PUSCH 전력량 및 PUCCH 전력량의 합에 대한 ePH를 보고하는 방법을 고려할 수 있다. 즉, PUSCH 신호만 전송되는 경우에도 단말은 PUSCH 전력량 및 PUCCH 전력량의 합에 대한 ePH를 보고할 수 있다.
다음 수학식 7은 PUSCH 전력량 및 PUCCH 전력량의 합에 대한 ePH를 계산하는 방법 중 또 다른 하나를 나타낸다.
수학식 7
Figure PCTKR2011002286-appb-M000007
수학식 7은 현재(i 번째 서브프레임) 전송되는 PUSCH의 전력과 가장 최근에 전송된 PUCCH에 대한 전력을 합한 값에 대한 단말의 파워 헤드룸(PH)을 구하는 방법을 나타낸다. 즉, 수학식 7에서 PUCCH의 전력량은 k번째(예를 들어, k<i) 서브프레임에 대한 것이다.
도 9는 본 발명의 실시예로서, 본 발명에서 개시하는 파워헤드룸보고 방법을 지원하는 장치의 일례를 나타내는 도면이다.
도 9를 참조하면, 무선 통신 시스템은 하나 이상의 기지국(BS: Base Station, 10) 및 하나 이상의 단말(UE: User Equipment, 20)을 포함할 수 있다. 하향링크에서 전송기는 기지국(10)의 일부로서 동작하고, 수신기는 단말(20)의 일부로서 동작한다. 상향링크에서 전송기는 단말(20)의 일부로서 동작하고, 수신기는 기지국(10)의 일부로서 동작할 수 있다.
기지국(10)은 프로세서(11), 메모리(12) 및 무선 주파수(RF) 유닛(13)을 포함할 수 있다. 프로세서(11)는 본 발명의 실시예들에서 제안된 절차들 및/또는 방법들이 구현되도록 구성될 수 있다. 예를 들어, 기지국의 프로세서(11)는 단말에 대한 상향링크 자원 스케줄링 및 할당 기능, 단말로부터 수신한 PHR을 고려하여 상향링크 자원 스케줄링을 수행할 수 있다. 메모리(12)는 프로세서와 함께 연동되며, 프로세서에서 동작될 다양한 정보들을 저장한다. RF 유닛(13)은 프로세서(11)와 연동되며, 무선 신호들을 송수신한다.
단말(20)은 프로세서(21), 메모리(22) 및 무선 주파수(RF) 유닛(23)을 포함할 수 있다. 프로세서(21)는 본 발명의 실시예들에서 제안된 절차들 및/또는 방법들이 구현되도록 구성될 수 있다. 예를 들어, 단말의 프로세서는 RF 유닛을 이용하여 서치 스페이스를 모니터링하여 자신에 전송되는 PDCCH를 디코딩하고, PDCCH에 포함된 DCI 포맷을 검출하여 자신에 할당된 상향링크 자원에 대한 정보를 획득할 수 있다. 또한, 서브프레임에서의 전력량 계산 및 전송 모드에 따른 파워 헤드룸 값을 계산하여, 이를 기지국에 보고할 수 있다. 메모리(22)는 프로세서와 함께 연동되며, 프로세서에서 동작될 다양한 정보들을 저장한다. RF 유닛(23)은 프로세서(11)와 연동되며, 무선 신호들을 송수신한다.
기지국(10) 및/또는 단말(20)은 단일 안테나 또는 다수의 안테나들을 구비할 수 있다. 기지국 및 단말 중 적어도 하나가 다수의 안테나를 가질 때, 무선 통신 시스템은 다중입출력(MIMO: Multi-Input Multi-Output) 시스템으로 불릴 수 있다.
도 10은 본 발명의 실시예로서, 본 발명에서 개시하는 파워헤드룸보고 방법을 지원하는 장치의 다른 일례를 나타내는 도면이다.
이동단말(UE)은 상향링크에서는 송신기로 동작하고, 하향링크에서는 수신기로 동작할 수 있다. 또한, 기지국(eNB)은 상향링크에서는 수신기로 동작하고, 하향링크에서는 송신기로 동작할 수 있다.
즉, 이동단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신모듈(Tx module: 1040, 1050) 및 수신모듈(Rx module: 1050, 1070)을 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(1000, 1010) 등을 포함할 수 있다. 또한, 이동단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서(Processor: 1020, 1030)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(1080, 1090)를 각각 포함할 수 있다.
특히, 프로세서(1020, 1030)는 본 발명의 실시예들에서 개시한 반송파 정합 환경에서 단말의 전송 모드 A 및 B에 따라 제 2 타입 ePH 보고 및 제 1 타입 ePH 보고 방법을 수행할 수 있다. 또한, 도 10의 이동단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 모듈을 더 포함할 수 있다.
이동단말 및 기지국에 포함된 전송 모듈 및 수신 모듈은 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다.
도 10에서 설명한 장치는 본 발명에서 개시한 다양한 파워 헤드룸 보고 방법들이 구현될 수 있는 수단이다. 상술한 이동단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다.
한편, 본 발명에서 이동단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(1080, 1090)에 저장되어 프로세서(1020, 1030)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP LTE 시스템, 3GPP LTE-A 시스템, 3GPP2 및/또는 IEEE 802.16m 시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다.

Claims (15)

  1. 멀티케리어 시스템에서 단말의 파워 헤드룸 보고방법에 있어서,
    단말이 상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 기지국으로부터 수신하는 단계;
    상기 단말이 전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상기 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 상기 기지국으로 전송하는 단계;
    상기 단말이 상기 전송모드에 따라 상기 소정 서브프레임에서의 하나 이상의 파워 헤드룸값을 계산하는 단계; 및
    상기 단말이 상기 하나 이상의 파워 헤드룸 값을 상기 기지국에 보고하는 단계를 더 포함하고,
    상기 단말이 전송 모드 A로 동작하는 경우에는 상기 소정 서브프레임에서의 상기 단말의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 보고하고, 상기 단말이 전송 모드 B로 동작하는 경우에는 상기 제 1 타입 파워 헤드룸 값을 보고하는, 파워 헤드룸 보고 방법.
  2. 제 1항에 있어서,
    상기 단말이 상기 전송 모드 A이면, 상기 단말은 P셀(Primary Cell)의 상기 소정 서브프레임에서 상기 PUSCH 신호 및 상기 PUCCH 신호를 상기 기지국에 전송하고,
    상기 단말이 상기 전송 모드 B이면, 상기 단말은 서빙 셀의 상기 소정 서브프레임에서 상기 PUSCH 신호를 상기 기지국에 전송하는, 파워 헤드룸 보고 방법.
  3. 제 2항에 있어서,
    상기 전송 모드 A에서, 상기 PUCCH 신호 및 상기 PUSCH 신호는 각각 PUCCH 영역 및 PUSCH 영역을 통해 전송되고,
    상기 전송 모드 B에서, 상기 PUCCH 신호는 상기 PUSCH 신호에 피기백되어 PUSCH 영역을 통해 전송되는, 파워 헤드룸 보고 방법.
  4. 제 2항에 있어서,
    상기 제 1 타입 파워 헤드룸 값은 상기 단말의 최대 전송 전력 및 상기 PUSCH 신호의 전송 전력을 이용하여 계산되고,
    상기 제 2 타입 파워 헤드룸 값은 상기 단말의 최대 전송 전력, 상기 PUSCH 신호의 전송 전력 및 상기 PUCCH 신호의 전송 전력을 이용하여 계산되는, 파워 헤드룸 보고 방법.
  5. 제 4항에 있어서,
    상기 제 1 파워 헤드룸 값은 상기 최대 전송 전력과 상기 PUCCH 신호의 전송 전력의 차이값을 이용하여 계산되고,
    상기 제 2 파워 헤드룸 값은 상기 최대 전송 전력과 상기 PUSCH 신호의 전송 전력 및 상기 PUCCH 신호의 전송 전력의 합과의 차이값을 이용하여 계산되는, 파워 헤드룸 보고 방법.
  6. 제 4 항에 있어서,
    상기 제 2 타입 파워 헤드룸 값은,
    Figure PCTKR2011002286-appb-I000004
    으로 계산되며,
    PCMAXc는 상기 단말의 최대 전송전력을 나타내고, 상기 PPUSCH_scheduled(i)는 상기 PUSCH 신호의 전송 전력을 나타내며, 상기 PPUCCH_scheduled(i)는 상기 PUCCH 신호의 전송 전력을 나타내는, 파워 헤드룸 보고 방법.
  7. 제 4항에 있어서,
    상기 제 2 타입 파워 헤드룸 값은,
    상기 소정 서브프레임에서 상기 PUCCH 신호가 전송되지 않는 경우에도 상기 PUCCH 신호의 전송 전력을 이용하여 계산되는, 파워 헤드룸 보고 방법.
  8. 제 4항에 있어서,
    상기 제 1 타입 파워 헤드룸 값은,
    Figure PCTKR2011002286-appb-I000005
    으로 계산되는, 파워 헤드룸 보고 방법.
  9. 제 2항에 있어서,
    상기 보고 메시지는 상기 단말의 상기 최대 전송 전력 값을 더 포함하는, 파워 헤드룸 보고 방법.
  10. 멀티케리어 시스템에서 파워 헤드룸 보고를 수행하는 단말에 있어서,
    채널 신호를 수신하기 위한 수신 모듈;
    채널 신호를 전송하기 위한 송신 모듈; 및
    상기 파워 헤드룸 보고를 수행하기 위한 기능을 지원하는 프로세서를 포함하되,
    상기 단말은,
    상향링크 자원할당 정보를 포함하는 물리하향링크 제어채널(PDCCH) 신호를 상기 수신모듈을 이용하여 기지국으로부터 수신하고,
    전송모드에 따라 물리상향링크 공유채널(PUSCH) 신호 및 물리상향링크 제어채널(PUCCH) 신호 중 적어도 하나를 상기 상향링크 자원할당 정보를 기반으로 소정의 서브프레임에서 상기 송신 모듈을 통해 상기 기지국으로 전송하고,
    상기 소정 서브프레임에서의 하나 이상의 파워 헤드룸 값을 프로세서에서 계산하고,
    상기 전송모드에 따라 상기 하나 이상의 파워 헤드룸 값을 상기 송신 모듈을 통해 상기 기지국에 보고하며,
    상기 단말이 전송 모드 A로 동작하는 경우에는 상기 소정 서브프레임에서의 상기 단말의 제 1 타입 파워 헤드룸 값 및 제 2 타입 파워 헤드룸 값을 보고하고, 상기 단말이 전송 모드 B로 동작하는 경우에는 상기 제 1 타입 파워 헤드룸 값을 보고하는 것을 특징으로 하는, 단말.
  11. 제 10항에 있어서,
    상기 단말이 상기 전송 모드 A이면, 상기 단말은 P셀(Primary Cell)의 상기 소정 서브프레임에서 상기 PUSCH 신호 및 상기 PUCCH 신호를 상기 송신모듈을 이용하여 상기 기지국에 전송하고,
    상기 단말이 상기 전송 모드 B이면, 상기 단말은 서빙 셀의 상기 소정 서브프레임에서 상기 PUSCH 신호를 상기 송신모듈을 이용하여 상기 기지국에 전송하는, 단말.
  12. 제 11항에 있어서,
    상기 제 1 파워 헤드룸 값은 상기 최대 전송 전력과 상기 PUSCH 신호의 전송 전력의 차이값을 이용하여 계산되고,
    상기 제 2 파워 헤드룸 값은 상기 최대 전송 전력과 상기 PUSCH 신호의 전송 전력 및 상기 PUCCH 신호의 전송 전력의 합과의 차이값을 이용하여 계산되는, 단말.
  13. 제 11항에 있어서,
    상기 제 2 타입 파워 헤드룸 값은,
    상기 소정 서브프레임에서 상기 PUCCH 신호가 전송되지 않는 경우에도 상기 PUCCH 신호의 전송 전력을 이용하여 계산되는, 단말.
  14. 제 11항에 있어서,
    상기 제 1 타입 파워 헤드룸 값은,
    Figure PCTKR2011002286-appb-I000006
    으로 계산되고,
    상기 제 2 타입 파워 헤드룸 값은,
    Figure PCTKR2011002286-appb-I000007
    으로 계산되는 것을 특징으로 하는, 단말.
  15. 제 11항에 있어서,
    상기 전송 모드 A에서, 상기 PUCCH 신호 및 상기 PUSCH 신호는 각각 PUCCH 영역 및 PUSCH 영역을 통해 전송되고,
    상기 전송 모드 B에서, 상기 PUCCH 신호는 상기 PUSCH 신호에 피기백되어 PUSCH 영역을 통해 전송되는, 단말.
PCT/KR2011/002286 2010-04-01 2011-04-01 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치 WO2011122910A2 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP11763082.2A EP2503830B1 (en) 2010-04-01 2011-04-01 Method and apparatus for controlling uplink power in a wireless access system
CN201180007591.XA CN102742331B (zh) 2010-04-01 2011-04-01 在无线接入系统中控制上行功率的方法和装置
KR1020127010870A KR101366335B1 (ko) 2010-04-01 2011-04-01 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
KR1020147008139A KR101672285B1 (ko) 2010-04-01 2011-04-01 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
KR1020137027809A KR101435858B1 (ko) 2010-04-01 2011-04-01 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
US13/513,085 US8462705B2 (en) 2010-04-01 2011-04-01 Method and apparatus for controlling uplink power in a wireless access system
US13/894,258 US9107176B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system
US13/894,222 US9094925B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system
US13/894,233 US9094926B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system
US14/753,601 US9363771B2 (en) 2010-04-01 2015-06-29 Method and apparatus for controlling uplink power in a wireless access system
US15/157,195 US9629106B2 (en) 2010-04-01 2016-05-17 Method and apparatus for controlling uplink power in a wireless access system
US15/455,493 US9918287B2 (en) 2010-04-01 2017-03-10 Method and apparatus for controlling uplink power in a wireless access system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US32028510P 2010-04-01 2010-04-01
US61/320,285 2010-04-01
US32472810P 2010-04-15 2010-04-15
US61/324,728 2010-04-15

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US13/513,085 A-371-Of-International US8462705B2 (en) 2010-04-01 2011-04-01 Method and apparatus for controlling uplink power in a wireless access system
US13/894,222 Continuation US9094925B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system
US13/894,233 Continuation US9094926B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system
US13/894,258 Continuation US9107176B2 (en) 2010-04-01 2013-05-14 Method and apparatus for controlling uplink power in a wireless access system

Publications (2)

Publication Number Publication Date
WO2011122910A2 true WO2011122910A2 (ko) 2011-10-06
WO2011122910A3 WO2011122910A3 (ko) 2012-02-02

Family

ID=44712799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002286 WO2011122910A2 (ko) 2010-04-01 2011-04-01 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치

Country Status (5)

Country Link
US (7) US8462705B2 (ko)
EP (1) EP2503830B1 (ko)
KR (3) KR101672285B1 (ko)
CN (2) CN102742331B (ko)
WO (1) WO2011122910A2 (ko)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573032A (zh) * 2012-02-16 2012-07-11 电信科学技术研究院 一种功率余量上报的方法、系统和设备
WO2013055108A3 (ko) * 2011-10-10 2013-07-04 삼성전자 주식회사 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치
CN104054291A (zh) * 2012-01-15 2014-09-17 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
KR20150023621A (ko) * 2012-06-04 2015-03-05 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파워 헤드룸 리포팅 방법, 시스템 및 장치
WO2016122803A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Power headroom reporting with channel selection
US9578638B2 (en) 2012-01-15 2017-02-21 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN107317653A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 数据传输方法及装置
CN108322297A (zh) * 2011-12-22 2018-07-24 交互数字专利控股公司 无线发射接收单元wtru及无线发射接收方法
US10652929B2 (en) 2012-02-06 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
CN111226493A (zh) * 2017-10-18 2020-06-02 联想(北京)有限公司 确定发现公告池
US10887846B2 (en) 2011-12-19 2021-01-05 Huawei Technologies Co., Ltd. Uplink transmission power control method and user equipment
US10959172B2 (en) 2012-01-27 2021-03-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
US11064397B2 (en) 2011-10-05 2021-07-13 Samsung Electronics Co., Ltd. Method and apparatus for reselecting a cell in heterogeneous networks in a wireless communication system
US11153047B2 (en) 2011-08-10 2021-10-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
US11223455B2 (en) 2011-08-10 2022-01-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
USRE49136E1 (en) 2011-08-10 2022-07-12 Samsung Electronics Co., Ltd. System and method for applying extended accessing barring in wireless communication system

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225928B1 (ko) 2009-09-08 2013-01-24 엘지전자 주식회사 무선 통신 시스템에서 전송 파워 제어 방법 및 장치
DK2567578T3 (en) * 2010-05-04 2015-03-02 Ericsson Telefon Ab L M REPORTING OF THE SUSTAINABILITY EFFECT MARGET
EP2583505B1 (en) 2010-06-21 2019-03-20 Nokia Solutions and Networks Oy Carrier aggregation with power headroom report
EP3648515B1 (en) * 2010-06-28 2021-06-02 Samsung Electronics Co., Ltd. Method and apparatus for reporting maximum transmission power in wireless communication
KR101740366B1 (ko) * 2010-06-28 2017-05-29 삼성전자주식회사 이동 통신 시스템에서 역방향 최대 전송 전력을 보고하는 방법 및 장치
KR101276853B1 (ko) * 2010-08-17 2013-06-18 엘지전자 주식회사 멀티캐리어를 지원하는 통신 시스템에서 파워 헤드룸 리포트를 전송하는 방법 및 장치
US9055544B2 (en) * 2010-11-02 2015-06-09 Alcatel Lucent Methods of setting maximum output power for user equipment and reporting power headroom, and the user equipment
KR101762610B1 (ko) 2010-11-05 2017-08-04 삼성전자주식회사 이동 통신 시스템에서 역방향 스케줄링 및 그를 위한 정보 전송 방법 및 장치
US9185665B2 (en) 2010-11-05 2015-11-10 Samsung Electronics Co., Ltd. Power headroom report method and apparatus for mobile communication system supporting carrier aggregation
WO2013015590A2 (ko) * 2011-07-22 2013-01-31 엘지전자 주식회사 무선통신 시스템에서 상향링크 제어 정보를 전송하는 방법 및 장치
US9408217B2 (en) * 2012-01-17 2016-08-02 Qualcomm Incorporated Maximum power reduction for interference control in adjacent channels
US9078144B2 (en) * 2012-05-02 2015-07-07 Nokia Solutions And Networks Oy Signature enabler for multi-vendor SON coordination
US8802658B2 (en) * 2012-05-14 2014-08-12 Antecip Bioventures Ii Llc Compositions for oral administration of zoledronic acid or related compounds for treating disease
WO2014021612A2 (ko) * 2012-08-01 2014-02-06 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송신 전력을 설정하는 방법 및 장치
WO2014047940A1 (zh) 2012-09-29 2014-04-03 华为技术有限公司 功率确定方法、用户设备和基站
WO2014107052A1 (ko) 2013-01-03 2014-07-10 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 장치
KR20150106942A (ko) * 2013-01-17 2015-09-22 후지쯔 가부시끼가이샤 전력 잔여량 보고를 위한 방법 및 장치
JP6137200B2 (ja) * 2013-01-25 2017-05-31 日本電気株式会社 移動局、基地局、パワーヘッドルーム報告の送信方法及び受信方法、並びにプログラム
KR102024132B1 (ko) * 2013-01-25 2019-09-24 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 제어 채널 전송 방법 및 장치
KR20140123846A (ko) * 2013-04-15 2014-10-23 주식회사 팬택 무선 통신 시스템에서 단말의 잉여전력보고 전송방법 및 장치
WO2014205630A1 (zh) * 2013-06-24 2014-12-31 华为技术有限公司 无线通信方法、装置及系统
US9930625B2 (en) * 2013-07-09 2018-03-27 Sharp Kabushiki Kaisha Calculating power headroom based on pathloss and subframe sets
WO2015005325A1 (ja) * 2013-07-09 2015-01-15 シャープ株式会社 端末装置、基地局装置、通信方法、および集積回路
WO2015072769A1 (ko) * 2013-11-13 2015-05-21 삼성전자 주식회사 이동 통신 시스템에서 파워 헤드룸 보고 및 하이브리드 자동 재전송을 제어하는 방법 및 장치
KR102221332B1 (ko) 2013-11-13 2021-03-02 삼성전자 주식회사 이동 통신 시스템에서 파워 헤드룸 보고 및 하이브리드 자동 재전송을 제어하는 방법 및 장치
EP3068186B1 (en) * 2013-11-15 2019-10-02 Huawei Technologies Co., Ltd. Data transmission method and user equipment
WO2015105291A1 (ko) * 2014-01-10 2015-07-16 엘지전자 주식회사 무선통신 시스템에서 수신확인 전송 방법 및 장치
JP6031058B2 (ja) * 2014-03-20 2016-11-24 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法
JP6599355B2 (ja) * 2014-04-03 2019-10-30 エルジー エレクトロニクス インコーポレイティド 端末と基地局との間の二重接続におけるパワーヘッドルーム報告を送信する方法および端末
US10045362B2 (en) * 2014-04-15 2018-08-07 Telefonaktiebolaget Lm Ericsson (Publ) Uplink based selection of downlink connectivity configuration
US10057861B2 (en) * 2014-06-03 2018-08-21 Qualcomm Incorporated Techniques for reporting power headroom in multiple connectivity wireless communications
US20160021618A1 (en) 2014-07-18 2016-01-21 Sharp Laboratories Of America, Inc. Systems and methods for uplink transmission power control
US9980281B2 (en) * 2014-08-06 2018-05-22 Lg Electronics Inc. Method for performing transmission power control in wireless communication system and device therefor
EP3201651B1 (en) * 2014-09-29 2019-04-03 Hughes Network Systems, LLC Inter-gateway interference management and admission control for a cdma satellite communications system
WO2016093624A2 (en) * 2014-12-09 2016-06-16 Samsung Electronics Co., Ltd. Method of determining the proximity of ue in d2d communication network
US10849125B2 (en) * 2015-01-30 2020-11-24 Qualcomm Incorporated Joint control for enhanced carrier aggregation
US9749970B2 (en) * 2015-02-27 2017-08-29 Qualcomm Incorporated Power control and power headroom for component carrier
WO2017048013A1 (ko) * 2015-09-18 2017-03-23 엘지전자 주식회사 상향링크 신호와 prose 신호를 전송하는 방법 및 사용자 장치
CN107277908B (zh) * 2016-04-06 2021-06-15 华为技术有限公司 一种功率控制方法及设备
US10200885B2 (en) * 2016-05-12 2019-02-05 Hughes Networks Systems, Llc Satellite communication ranging
US12004090B2 (en) 2016-05-26 2024-06-04 Ofinno, Llc Type 2 power headroom of a primary cell in a wireless device
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备
EP3499982B1 (en) 2016-08-08 2021-06-23 LG Electronics Inc. Method and device for reporting power headroom
CN107734625A (zh) * 2016-08-12 2018-02-23 夏普株式会社 发射机功率余量计算方法及其用户设备
CN115348655A (zh) 2016-08-19 2022-11-15 北京三星通信技术研究有限公司 一种功率头上空间报告的方法及装置
CN107889209B (zh) * 2016-09-29 2023-09-22 华为技术有限公司 一种功率控制的方法及终端设备
TWI654892B (zh) 2016-11-28 2019-03-21 財團法人資訊工業策進會 基地台及其跨協定層睡眠排程方法
US9775082B1 (en) * 2016-12-20 2017-09-26 Intel IP Corporation Link adaptation in wireless communication using multiple SIMS
US10321386B2 (en) 2017-01-06 2019-06-11 At&T Intellectual Property I, L.P. Facilitating an enhanced two-stage downlink control channel in a wireless communication system
KR102434749B1 (ko) * 2017-03-22 2022-08-22 삼성전자 주식회사 통신 시스템에서 파워 헤드룸 정보의 전송 방법 및 장치
EP4181450A1 (en) * 2017-04-17 2023-05-17 Samsung Electronics Co., Ltd. Method and device for dynamic resource allocation
KR102210990B1 (ko) 2017-04-17 2021-02-02 삼성전자 주식회사 업링크 전력 제어를 위한 방법 및 장치
WO2018203694A1 (ko) * 2017-05-05 2018-11-08 엘지전자 주식회사 무선 통신 시스템에서 전력 헤드룸 보고 방법 및 이를 위한 장치
CN109151979B (zh) * 2017-06-16 2020-12-15 华为技术有限公司 功率余量的确定方法及网络设备
WO2019013584A1 (en) * 2017-07-13 2019-01-17 Lg Electronics Inc. METHOD FOR TRANSMITTING A POWER SAFETY MARGIN RATIO IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREOF
CN109392072B (zh) * 2017-08-14 2021-08-03 普天信息技术有限公司 功率余量的计算方法
CN111713143A (zh) * 2018-02-15 2020-09-25 株式会社Ntt都科摩 用户装置
WO2019190265A1 (ko) * 2018-03-30 2019-10-03 주식회사 케이티 상향링크 데이터 채널 전송 전력 제어 방법 및 장치
KR102322038B1 (ko) * 2018-05-17 2021-11-04 한양대학교 산학협력단 채널상태정보를 전송하는 방법 및 그 장치
US10681644B2 (en) * 2018-08-21 2020-06-09 Qualcomm Incorporated Reporting actual uplink transmission power
CN209462415U (zh) * 2018-09-07 2019-10-01 Oppo广东移动通信有限公司 移动终端
US11337167B2 (en) * 2018-09-28 2022-05-17 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus supporting same
US10993195B2 (en) * 2018-11-21 2021-04-27 Lenovo (Singapore) Pte. Ltd. Determining a power headroom report
US11632196B2 (en) 2019-07-18 2023-04-18 Samsung Electronics Co., Ltd System and method for providing dynamic hybrid automatic repeat request (HARQ) codebook with multiple valid unicast downlink control information (DCI) per monitoring occasion index per serving cell
US20210360534A1 (en) * 2020-08-05 2021-11-18 Intel Corporation Integrated access and backhaul (iab) downlink power control
CN114339975A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种上行功率控制方法及相关装置
US20220330174A1 (en) * 2021-04-06 2022-10-13 Qualcomm Incorporated Control resource power headroom reporting

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097962A1 (en) * 2005-11-03 2007-05-03 Lg Electronics Inc. Method and apparatus for determining the maximum transmit power of a mobile terminal
AU2007313625A1 (en) 2006-10-31 2008-05-08 Qualcomm Incorporated Apparatus and method of random access for wireless communication
US8274940B2 (en) 2007-02-28 2012-09-25 Ntt Docomo, Inc. Base station apparatus and communication control method
US9295003B2 (en) * 2007-03-19 2016-03-22 Apple Inc. Resource allocation in a communication system
EP2290890A1 (en) 2008-06-17 2011-03-02 Panasonic Corporation Radio transmission device and radio transmission method
CN102318426B (zh) 2008-12-03 2015-12-16 交互数字专利控股公司 用于载波聚合的上行链路功率余量报告
EP2433449A2 (en) * 2009-05-22 2012-03-28 Research in Motion Limited System and method for transmitting power headroom information for aggregated carriers
WO2010148319A1 (en) * 2009-06-19 2010-12-23 Interdigital Patent Holdings, Inc. Signaling uplink control information in lte-a
US20110158117A1 (en) * 2009-06-29 2011-06-30 Qualcomm Incorporated Power headroom report for simultaneous transmissions on disparate radio access technologies
CN101998499B (zh) * 2009-08-17 2013-01-16 电信科学技术研究院 一种上行信道配置方法、系统和设备
TW201611639A (zh) * 2009-10-01 2016-03-16 內數位專利控股公司 功綠控制方法及裝置
EP2498430B1 (en) * 2009-11-04 2017-07-26 LG Electronics Inc. Terminal device for transmitting a power headroom report in a multi-carrier communication system, and method for same
CN102668669B (zh) 2009-11-19 2015-11-25 交互数字专利控股公司 多载波系统中的分量载波激活/去激活
CN101778416B (zh) * 2010-02-10 2015-05-20 中兴通讯股份有限公司 功率上升空间的测量和报告方法及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2503830A4

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE49136E1 (en) 2011-08-10 2022-07-12 Samsung Electronics Co., Ltd. System and method for applying extended accessing barring in wireless communication system
US11223455B2 (en) 2011-08-10 2022-01-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
US11153047B2 (en) 2011-08-10 2021-10-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting data using a multi-carrier in a mobile communication system
US11064397B2 (en) 2011-10-05 2021-07-13 Samsung Electronics Co., Ltd. Method and apparatus for reselecting a cell in heterogeneous networks in a wireless communication system
KR102050915B1 (ko) 2011-10-10 2019-12-02 삼성전자주식회사 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치
WO2013055108A3 (ko) * 2011-10-10 2013-07-04 삼성전자 주식회사 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치
KR20140089514A (ko) * 2011-10-10 2014-07-15 삼성전자주식회사 향상된 반송파 집적 기술을 사용하는 무선통신시스템에서 단말의 동작 방법 및 장치
US9414410B2 (en) 2011-10-10 2016-08-09 Samsung Electronics Co., Ltd. Operating method for wireless communication system using improved carrier aggregation technology and device therefor
US10887846B2 (en) 2011-12-19 2021-01-05 Huawei Technologies Co., Ltd. Uplink transmission power control method and user equipment
CN108322297B (zh) * 2011-12-22 2021-09-21 交互数字专利控股公司 无线发射接收单元wtru及无线发射接收方法
EP3432666B1 (en) * 2011-12-22 2021-06-16 Interdigital Patent Holdings, Inc. Control signaling in lte carrier aggregation
US11917644B2 (en) 2011-12-22 2024-02-27 Interdigital Patent Holdings, Inc. Control signaling in LTE carrier aggregation
CN108322297A (zh) * 2011-12-22 2018-07-24 交互数字专利控股公司 无线发射接收单元wtru及无线发射接收方法
TWI667938B (zh) * 2011-12-22 2019-08-01 內數位專利控股公司 無線傳輸/接收單元及用於執行上鏈傳輸的方法
US11405904B2 (en) 2011-12-22 2022-08-02 Interdigital Patent Holdings, Inc. Control signaling in LTE carrier aggregation
CN104054291B (zh) * 2012-01-15 2017-04-12 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
CN104054291A (zh) * 2012-01-15 2014-09-17 Lg电子株式会社 在无线通信系统中发送控制信息的方法和设备
US9578638B2 (en) 2012-01-15 2017-02-21 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
US10959172B2 (en) 2012-01-27 2021-03-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
US11632802B2 (en) 2012-02-06 2023-04-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
US10652929B2 (en) 2012-02-06 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data on multiple carriers in mobile communication system
CN102573032A (zh) * 2012-02-16 2012-07-11 电信科学技术研究院 一种功率余量上报的方法、系统和设备
EP2858432A4 (en) * 2012-06-04 2015-08-05 China Academy Of Telecomm Tech METHOD, SYSTEM AND DEVICE FOR PERFORMANCE RESERVE REPORT
US9491719B2 (en) 2012-06-04 2016-11-08 China Academy Of Telecommunications Technology Method, system and apparatus for power headroom report
KR20150023621A (ko) * 2012-06-04 2015-03-05 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파워 헤드룸 리포팅 방법, 시스템 및 장치
KR101698012B1 (ko) * 2012-06-04 2017-02-01 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파워 헤드룸 리포팅 방법, 시스템 및 장치
WO2016122803A1 (en) * 2015-01-29 2016-08-04 Intel IP Corporation Power headroom reporting with channel selection
US10925010B2 (en) 2015-01-29 2021-02-16 Apple Inc. Power headroom reporting with channel selection
US10219228B2 (en) 2015-01-29 2019-02-26 Intel IP Corporation Power headroom reporting with channel selection
CN107317653B (zh) * 2016-04-26 2022-06-21 中兴通讯股份有限公司 数据传输方法及装置
CN107317653A (zh) * 2016-04-26 2017-11-03 中兴通讯股份有限公司 数据传输方法及装置
CN111226493A (zh) * 2017-10-18 2020-06-02 联想(北京)有限公司 确定发现公告池
CN111226493B (zh) * 2017-10-18 2022-07-26 联想(北京)有限公司 确定发现公告池

Also Published As

Publication number Publication date
US9094926B2 (en) 2015-07-28
US20130258980A1 (en) 2013-10-03
CN102742331A (zh) 2012-10-17
US20130051259A1 (en) 2013-02-28
KR20120068953A (ko) 2012-06-27
KR101435858B1 (ko) 2014-09-01
US9629106B2 (en) 2017-04-18
US20130250890A1 (en) 2013-09-26
CN102742331B (zh) 2015-08-26
EP2503830A4 (en) 2015-07-29
US20160262119A1 (en) 2016-09-08
KR101672285B1 (ko) 2016-11-03
KR101366335B1 (ko) 2014-03-12
EP2503830A2 (en) 2012-09-26
KR20140057631A (ko) 2014-05-13
CN105007148A (zh) 2015-10-28
KR20130135370A (ko) 2013-12-10
US9363771B2 (en) 2016-06-07
WO2011122910A3 (ko) 2012-02-02
US9094925B2 (en) 2015-07-28
US20170188315A1 (en) 2017-06-29
EP2503830B1 (en) 2020-06-03
US8462705B2 (en) 2013-06-11
US9107176B2 (en) 2015-08-11
US9918287B2 (en) 2018-03-13
CN105007148B (zh) 2018-07-20
US20150304967A1 (en) 2015-10-22
US20130250889A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2011122910A2 (ko) 무선 접속 시스템에서 상향링크 전력 제어 방법 및 장치
WO2011155708A2 (ko) 반송파 집성(ca)을 지원하는 무선접속 시스템에서 제어신호 검색방법
WO2015190842A1 (ko) 반송파 집성에서 이중 연결로 전환하는 방법 및 사용자 장치
WO2019160364A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2012015154A1 (ko) 다중 반송파 정합을 지원하는 무선 접속 시스템에서 비주기적 채널상태정보 피드백 방법
WO2011056001A2 (ko) 멀티캐리어를 지원하는 통신 시스템에서 파워 헤드룸 리포트를 전송하는 단말 장치 및 그 방법
WO2011078631A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
WO2019098395A1 (ko) 자기간섭을 측정하기 위한 정보를 수신하는 방법 및 이를 위한 단말
WO2018062942A1 (en) Method for receiving control information for reference signal related to phase noise estimation and user equipment therefor
WO2017003264A1 (ko) 무선 통신 시스템에서 신호의 전송 방법 및 장치
WO2016068542A2 (ko) Mtc 기기의 pucch 전송 방법
WO2016018046A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2010123331A2 (ko) 반송파 병합 전송을 위한 제어신호 송수신 방법 및 장치
WO2015065111A1 (en) Method and apparatus for simultaneous transmission of downlink harq-ack and sr
WO2018203694A1 (ko) 무선 통신 시스템에서 전력 헤드룸 보고 방법 및 이를 위한 장치
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
WO2013069994A1 (ko) 무선통신 시스템에서 상향링크 전송 전력을 설정하는 방법 및 이를 위한 장치
WO2016108657A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2011021830A2 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송을 위한 상향링크 반송파 할당 방법 및 장치
WO2012011657A2 (ko) 채널 상태 정보 피드백을 송수신하는 방법 및 그 장치
WO2012108616A1 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2013066044A1 (ko) 상향링크 제어 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2010143867A2 (ko) 다중 반송파 지원 무선 통신 시스템에서 중계기 백홀 링크 및 액세스 링크 상의 반송파 할당 방법
WO2013073916A1 (ko) 무선통신 시스템에서 상기 단말이 상향링크 제어 채널 전송 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007591.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763082

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20127010870

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011763082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13513085

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE