WO2011122656A1 - Solar cell and solar cell module - Google Patents

Solar cell and solar cell module Download PDF

Info

Publication number
WO2011122656A1
WO2011122656A1 PCT/JP2011/057982 JP2011057982W WO2011122656A1 WO 2011122656 A1 WO2011122656 A1 WO 2011122656A1 JP 2011057982 W JP2011057982 W JP 2011057982W WO 2011122656 A1 WO2011122656 A1 WO 2011122656A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
surface side
resin
electrode
Prior art date
Application number
PCT/JP2011/057982
Other languages
French (fr)
Japanese (ja)
Inventor
悟司 東方田
茂治 平
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2011122656A1 publication Critical patent/WO2011122656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar battery cell and a solar battery module.
  • a solar cell system, a solar cell application product, or the like includes, for example, one or more solar cell modules, and the solar cell module includes one or more solar cells.
  • FIG. 11 is a top view of a solar battery cell in a conventional solar battery module.
  • the solar battery cell 100 has a surface-side electrode 102 on the surface 101 that is the light-receiving surface side, and a back-side electrode (not shown) on the back surface.
  • the front-side electrode 102 includes a plurality of fine-finger finger electrodes 102a, 102a,... Serving as collecting electrodes for collecting carriers generated when light enters the solar battery cell 100, and the carriers are connected to the outside.
  • the bus bar electrodes 102b and 102b are used to take out.
  • the surface-side electrode 102 is formed, for example, by printing a conductive paste on the surface 101 by an offset printing method, a screen printing method, or the like.
  • the solar cell 101 Since the finger electrodes 102a, 102a,... Shield light incident on the solar cell 101, the solar cell 101 has a problem that the output is reduced.
  • a method for solving this problem for example, a method is described in which a conductive paste having a predetermined range of viscosity is printed a plurality of times by an offset printing method to form a collector electrode (see, for example, Patent Document 1).
  • a collector electrode having a small width and a large thickness can be formed, and shielding of incident light by the collector electrode can be reduced.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-44974
  • the above-described method has a problem that the collector electrode needs to be thin and thick, and the degree of freedom in designing the collector electrode is reduced.
  • the present invention has been made in view of the above problems, and uses a solar cell including a collector electrode capable of improving the light incidence on the solar cell even when the narrow width and thickness are not increased, and the same.
  • a solar cell module is provided.
  • a solar battery cell is a solar battery cell including a first surface, a second surface, and a collector electrode formed on the first surface, wherein the collector electrode is at least A weight concentration of the reflective conductive material in the collector electrode is higher on the upper surface side of the collector electrode than on the first surface side, and the weight concentration of the reflective conductive material in the collector electrode
  • the weight concentration of the resin is characterized in that the first surface side in the collector electrode is higher than the upper surface side.
  • the collector electrode includes at least a reflective conductive material and a resin at a portion formed in a region where light strikes, and the weight concentration of the reflective conductive material in the collector electrode is such that the upper surface side of the collector electrode is The weight concentration of the resin in the collector electrode may be higher than that on the first surface side, and the first surface side in the collector electrode may be higher than the surface side.
  • the collector electrode may be a plurality of finger electrodes, and may have other shapes.
  • the bus bar electrode may have the same configuration.
  • the resin contains at least the first resin and the second resin having higher elasticity than the first resin, and the second resin is more on the first surface side than on the upper surface side. It is characterized by the existence.
  • the presence of the second resin includes a configuration in which the second resin is not present on the upper surface side.
  • the collector electrode relieves the stress caused by the difference in thermal expansion coefficient between the collector electrode and the base of the solar battery cell. Adhesiveness on the solar cell becomes higher, and the reliability is improved.
  • the collector electrode includes a plurality of layers, and the weight concentration of the reflective conductive material is higher in the uppermost layer of the plurality of layers than in the lowermost layer of the plurality of layers, and the weight concentration of the resin is The lowest layer of the plurality of layers is higher than the uppermost layer of the plurality of layers.
  • the configuration of increasing the weight concentration of the resin on the first surface side in the collector electrode can be easily formed. preferable.
  • the uppermost layer of the collector electrode is formed so as to cover the lower layer.
  • the reflection at the collector electrode can be enhanced. Therefore, the output of the solar battery module including such a solar battery cell can be increased.
  • At least a part of the uppermost layer of the collector electrode is formed so as to be in contact with the first surface.
  • the collector electrode is the uppermost layer in which the weight concentration of the reflective conductive material is high. Since the end portion is in direct contact with the first surface, the contact resistance between the collector electrode and the first surface is reduced, and the output of the solar cell is further improved.
  • the collector electrode includes at least a reflective conductive material and a resin, and the weight concentration of the reflective conductive material in the collector electrode is the collector concentration. Even if the upper surface side of the electrode is higher than the second surface side, and the weight concentration of the resin in the collector electrode is higher on the second surface side in the collector electrode than on the upper surface side. Good.
  • the light reflectance of the upper surface and upper side surface of the collector electrode can be increased while strengthening the adhesion of the collector electrode to the base of the solar cell.
  • the output of the solar battery module including such a solar battery cell can be increased.
  • a portion formed in a region where the light strikes includes at least a reflective electric material and a resin, and the weight concentration of the reflective conductive material in the collector electrode is such that the upper surface side of the collector electrode is
  • the weight concentration of the resin in the collector electrode may be higher than that on the second surface side, and the second surface side in the collector electrode may be higher than the surface side.
  • the collector electrode may be a plurality of finger electrodes, and may have other shapes.
  • the bus bar electrode may have the same configuration.
  • the resin contains at least the first resin and the second resin having higher elasticity than the first resin, and the second resin is more on the second surface side than on the upper surface side. May be present.
  • the presence of the second resin includes a configuration in which the second resin is not present on the upper surface side. In this case, a large amount of the second resin having high elasticity is present on the first surface side, and the collector electrode is used to relieve stress caused by a difference in thermal expansion coefficient between the collector electrode and the base of the solar battery cell. The adhesion to the solar cell base becomes higher, and the reliability is improved.
  • the collector electrode includes a plurality of layers, and the weight concentration of the reflective conductive material is higher in the uppermost layer of the plurality of layers than in the lowermost layer of the plurality of layers, and the weight concentration of the resin is The lowermost layer of the plurality of layers may be higher than the uppermost layer of the plurality of layers.
  • the configuration of increasing the weight concentration of the resin on the second surface side in the collector electrode can be easily formed. preferable.
  • the uppermost layer of the collector electrode may be formed so as to cover the lower layer.
  • the reflection at the collector electrode can be enhanced. Therefore, the output of the solar battery module including such a solar battery cell can be increased.
  • At least a part of the uppermost layer of the collector electrode is formed so as to be in contact with the second surface.
  • the collector electrode when the collector electrode is further adhered to the base of the solar battery cell and the second surface has conductivity, the collector electrode is the end of the uppermost layer where the weight concentration of the reflective conductive material is high. Since the portion is in direct contact with the second surface, the contact resistance between the collector electrode and the second surface is reduced, and the output of the solar battery cell is further improved.
  • a solar battery module provided with the above-mentioned solar battery cell, and is provided with a translucent member, a back surface side protection member, and a plurality of the solar battery cells between them.
  • the solar cell has a high light reflectance of the collector electrode.
  • the rate at which the light reflected by the collector electrode is reflected by the translucent member or the like and is incident on the solar cell increases, and the output of the solar cell module can be increased.
  • the said photovoltaic cell has the strong adhesion
  • the back surface side protective member is a translucent member.
  • the solar cell is preferably a double-sided light-receiving solar cell
  • the collector electrode on the upper surface and the lower surface side has at least a reflective conductive material and a resin formed in a region that is exposed to light.
  • the weight concentration of the reflective conductive material in the collector electrode is higher on each upper surface side of the collector electrode than the first and second surface sides, and the weight concentration of the resin in the collector electrode
  • the first and second surface sides in the collector electrode are higher than the respective surface sides.
  • the translucent member may be a glass plate, a resin plate, a resin formed by coating, or the like.
  • the upper surface and the lower surface may be upper and lower surfaces of a conductive body such as a semiconductor substrate, a semiconductor layer, or a transparent conductive film.
  • the upper surface and the lower surface may be textured surfaces.
  • the present invention can enhance the adhesion of the collector electrode to the substrate of the solar battery cell and increase the reflectivity of the collector electrode. Therefore, the solar battery cell is highly reliable and capable of high output. And a solar cell module using the same can be provided.
  • FIG. 2 is a partial cross-sectional view of the solar cell module along A-A ′ in FIG. 1.
  • 4A is a top view of the solar battery cell used in the solar battery module according to the first embodiment of the present invention
  • FIG. 4B is a back view of the solar battery cell
  • FIG. 4C is the present invention. It is a top view for demonstrating the connection of the photovoltaic cell in the solar cell module which concerns on 1st Embodiment of this, and an electroconductive connection member.
  • reference numeral 1 denotes a solar cell module.
  • the solar cell module 1 is made of, for example, a transparent surface side cover 2 such as white reinforced glass, and a weather resistance made of a resin film such as polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • a plurality of solar cells 5, 5,... Disposed between the back side cover 3 and the front side cover 2 and the back side cover 3 with a filler 4 such as ethylene vinyl acetate (EVA).
  • EVA ethylene vinyl acetate
  • Each of the solar cell groups 7, 7,... Is arranged in parallel with each other, and each predetermined adjacent solar cell group 7, 7 so that the solar cell groups 7, 7,. ,...,...,...,...,... Flat copper wire whose surface is coated with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 ⁇ m Are connected by soldering with a strip-like (band-like) conductive connection member 9 having a width of 0.5 mm to 3 mm and a thickness of 100 to 300 ⁇ m, and the other end side of the other adjacent solar cell groups 7 and 7 is electrically conductive.
  • solder layer such as Sn—Ag—Cu having a thickness of 1 to 50 ⁇ m.
  • the plurality of solar cells 5, 5,... Of the solar cell module 1 are arranged in a matrix.
  • the conductive connection members 6, 6, are connected by soldering.
  • 300 ⁇ m L-shaped connection members (output extraction connection members) 12 and 13 are connected by soldering.
  • the portions intersecting between the L-shaped connecting members 10 and 11 and the L-shaped connecting members 12 and 13 and between the L-shaped connecting member 11 and the L-shaped connecting member 13 are as follows.
  • An insulating member such as an insulating sheet such as polyethylene terephthalate (PET) (not shown) is interposed.
  • PET polyethylene terephthalate
  • the front end side portions of the L-shaped connecting member 10, the L-shaped connecting member 11, the L-shaped connecting member 12, and the L-shaped connecting member 13 are provided on the back surface side cover 3. It is led in the terminal box 14 so that it may be located in the upper center of the solar cell module 1 through the notch.
  • connection member 11 and the L-shaped connection member 13 are connected by a bypass diode (not shown).
  • the solar battery cell 5 is a double-sided light receiving solar battery cell.
  • an indium oxide containing an i-type amorphous silicon layer 16, a p-type or n-type one-conductive amorphous silicon layer 17, and tin over almost the entire surface of the n-type single crystal silicon substrate 15 having a texture structure.
  • a transparent conductive film layer 18 made of an (ITO) film or the like is provided in this order.
  • an i-type amorphous silicon layer 19 an amorphous silicon layer 20 having a conductivity type opposite to the one conductivity type, an indium oxide (ITO) film containing tin, etc. are transparent over substantially the entire back surface having the texture structure of the substrate 15.
  • HIT registered trademark
  • the texture structure is a concavo-convex structure having a pyramid shape with a height of several ⁇ m to several tens of ⁇ m formed by anisotropic etching of the (100) plane of a single crystal silicon substrate.
  • the texture structure is a random texture structure in which a large number of pyramid shapes are irregularly arranged, and the heights (sizes) thereof are irregular, and adjacent pyramids partially overlap each other. May be.
  • the apexes and valleys of each pyramid shape may be rounded.
  • the n-type single crystal silicon substrate 15 of the present embodiment is, for example, a substantially square of about 125 mm square, and the thickness is, for example, 100 ⁇ m to 300 ⁇ m.
  • the solar battery cell 1 contains a mixture of a reflective conductive material as a first main component such as a metal material and a resin as a second main component that functions as an adhesive such as an epoxy resin on the transparent conductive film 18.
  • a surface side electrode 22 made of the electrode material is formed.
  • the weight concentration (wt%) of the reflective conductive material that is the first main component is higher than the weight concentration (wt%) of the resin that is the second main component.
  • the surface-side electrode 22 intersects with a plurality of fine-line finger electrodes 221a, 221a,... Arranged in parallel to each other as collector electrodes, and the plurality of fine-line finger electrodes 221a, 221a,.
  • the bus bar electrodes 221b and 221b are arranged in this manner.
  • the surface-side electrode 22 includes a first layer 222a and a second layer 222b having different contents of the resin and the reflective conductive material of the first layer 222a, which are laminated on the transparent conductive film 18 in this order. This is a two-layer structure.
  • the first layer 222a on the transparent conductive film 18 side, which is the base, has a higher resin weight concentration and a reflective conductive material weight concentration than the second layer 222b on the front cover 2 side (light incident side). Low. Therefore, the second layer 222b on the surface side cover 2 side (light incident side) has a higher weight concentration of the reflective conductive material than the first layer 222a on the transparent conductive film 18 side that is the base, and the weight of the resin. The concentration is low.
  • the surface side electrode 22 includes, for example, an epoxy resin as the resin, a flaky silver fine powder having an average major axis of 5 to 20 ⁇ m and a spherical particle having an average particle diameter of 0.1 to 5 ⁇ m as the reflective conductive material. It consists of a mixture containing silver fine powder mixed, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
  • the first layer 222a has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the content of the epoxy resin in the first layer 222a is about 10 wt%, and the flakes in the first layer 222a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
  • the second layer 222b has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, and the content of the epoxy resin in the second layer 222b is about 5 wt%, and the flake shape in the second layer 222b The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
  • the finger electrodes 221a, 221a,... Of the surface side electrode 22 have a width of 50 to 200 ⁇ m, for example, 100 ⁇ m, and are arranged at intervals of 2 mm.
  • bus bar electrodes 221b and 221b of the surface side electrode 22 are each 0.1 to 1.8 mm in width, for example, a 1.3 mm straight (band) electrode.
  • the solar battery cell 1 is made of an electrode material formed by mixing a reflective conductive material such as a metal material as the first main component and a resin such as an epoxy resin as the second main component on the transparent conductive film 21.
  • the back surface side electrode 23 is formed.
  • the back surface side electrode 23 intersects with a plurality of fine wire finger electrodes 231a, 231a,... Arranged in parallel with each other as collector electrodes and the plurality of fine wire finger electrodes 231a, 231a,. Bus bar electrodes 231b and 231b.
  • the back electrode 23 is formed by laminating the first layer 232a and the second layer 232b having different contents of the resin and the reflective conductive material on the transparent conductive film 21 in this order. This is a two-layer structure.
  • the first layer 232a on the transparent conductive film 21 side, which is the base, has a higher resin weight concentration than the second layer 232b on the back cover 3 side (incident side of reflected light), and the weight of the reflective conductive material.
  • the concentration is low. Therefore, the second layer 232b on the back surface side cover 3 side (the incident side of the reflected light) has a higher weight concentration of the reflective conductive material than the first layer 232a on the transparent conductive film 21 side which is the base, and the resin The weight concentration of is low.
  • the back-side electrode 23 includes, for example, an epoxy resin as the resin, a flaky silver fine powder with an average major axis of 5 to 20 ⁇ m and an average particle size of 0.1 to 5 ⁇ m as spherical silver as the reflective conductive material. It consists of a mixture containing fine powder, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
  • the first layer 232a has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the content of the epoxy resin in the first layer 232b is about 10 wt%, and the flake powder in the second layer 232a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
  • many of the flake powdery silver powders in the second layers 232b, 232b,... Of the back surface side electrode 23 are oriented in the longitudinal direction in a direction parallel to the layers.
  • the second layer 232b has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the epoxy resin content in the second layer 232b is about 5 wt%, and the flake powder in the second layer 232b.
  • the total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
  • the finger electrodes 231a, 231a,... Of the back side electrode 23 have a width of 50 to 200 ⁇ m, for example 150 ⁇ m, and are arranged at intervals of 1 mm.
  • bus bar electrodes 231b and 231b of the back surface side electrode 23 each have a width of 0.1 to 4 mm, for example, a 3 mm straight (band) electrode.
  • the adjacent solar cells 5, 5,... Are bus bar electrodes 221 b and 221 b of the front surface side electrode 22 of one solar cell 5 and bus bar electrodes 231 b of the back surface side electrode 23 of the other solar cell 5.
  • the conductive connection members 6 are disposed so as to face the bus bar electrodes 221b and the bus bar electrodes 231b, respectively, so that the conductive connection members 6 and 6 are electrically connected to each other. It is fixed with an adhesive made of epoxy resin.
  • the weight concentration of the resin contained in the first layer 222 a is larger than the weight concentration of the resin contained in the second layer 222 b, and the content of the second layer 222 b is contained.
  • the weight concentration of the reflective conductive material is higher than the weight concentration of the reflective conductive material contained in the first layer 222a.
  • the weight concentration of the reflective conductive material contained in the second layers 222b, 222b,... Is increased while the weight concentration of the resin contained in the first layers 222a, 222a,. Therefore, the light reflectance of the upper surface or upper side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the solar battery cell 5.
  • the solar cell module 1 among the light incident from the surface side cover 2, the light X reaching the upper surface and upper side surface of the surface side electrode 22, that is, the second layers 222 b, 222 b,. Since the light is efficiently reflected on the upper surface and the upper side surface, the amount of light X re-reflected by the surface-side cover 2 or the filler 4 increases, and as a result, a large amount of light is incident on the solar cells 5. The output of the cell 5 is improved.
  • the upper surface or upper side surface of the back surface side electrode 23 As a result, in the solar cell module 1, among the light that is transmitted between the solar cells 5 and 5 or in the solar cell 5 and reflected by the back surface side cover 3 or the like, the upper surface or upper side surface of the back surface side electrode 23, That is, since the light Y reaching the second layers 232b, 232b,... Is efficiently reflected on the upper surface and the upper side surface, much light Y is re-reflected by the back surface side cover 3 or the filler 4. As a result, since a large amount of light is incident on the solar battery cell 5 also on the back surface side, the output of the solar battery cell 5 is further improved.
  • the flake silver powder has a major axis that reflects well, and the major axis direction of the flake-shaped silver powder is oriented in many directions in parallel with the second layers 222b, 222b, 232b, 232,.
  • the output of the solar battery cell 5 is further improved. (Method for manufacturing solar cell module) Below, the manufacturing method of the solar cell module which concerns on this embodiment is demonstrated.
  • solar cells 5 having transparent electrode film layers 18 and 21 on both surfaces are prepared.
  • a predetermined amount in a first conductive paste in which a predetermined amount of a reflective conductive material is dispersed in a paste in which a predetermined amount of resin is dissolved in a solvent and in a paste in which a predetermined amount of resin is dissolved in a solvent A second conductive paste prepared by dispersing the reflective conductive material is prepared.
  • the second conductive paste has a lower resin weight concentration and a higher weight concentration of the reflective conductive material than the first conductive paste.
  • the first conductive paste is printed in a predetermined pattern on the transparent electrode film layer 18 of the solar battery cell 5 by screen printing, offset printing, pad printing, and the like, and then dried. Is printed on the transparent conductive layer 21 of the solar battery cell 5 by screen printing, offset printing plate, pad printing plate or the like. After the conductive paste is printed in a predetermined pattern and dried, the second conductive paste is printed so as to overlap the predetermined pattern and dried.
  • the first and second conductive pastes are cured by heating at about 200 ° C. for about 1 hour, and the first layers 222a, 222a,... And the second layers 222b, 222b,. .. And the second layer 232b, 232b,... And the second layer 232b, 232b,.
  • the solar cells 7 are manufactured by connecting the members 6, 6,... Using an adhesive made of a resin containing solder, resin, conductive filler, or the like.
  • the surface side cover 2 After preparing a plurality of solar cell groups 7 and producing a structure to which the connection member 9 and the connection members 10, 11, 12, and 13 are attached, the surface side cover 2, the sealing sheet that becomes the filler 4, the structure The body, the sealing sheet to be the filler 4 and the back surface side cover 3 are laminated in this order in a thermocompression bonding manner.
  • terminal box 14 and the metal frame 8 are attached to complete the solar cell module 1.
  • the manufacturing method of the present embodiment is a method using the first and second pastes containing the resin and the reflective conductive material corresponding to each layer, the first layers 222a, 222a,.
  • the front surface side electrode 22 composed of the layers 222b, 222b,...
  • the back surface side electrode 23 composed of the first layers 232a, 232a,.
  • the second paste has a low viscosity, and screen printing, offset printing, pad printing, or the like is used to form the second layers 222b, 222b,. Since the second layers 232b, 232b,... Are formed, the flake powdery silver powder in the reflective conductive material can be easily oriented in the horizontal direction.
  • Second Embodiment A double-sided solar cell module according to a second embodiment of the present invention will be described.
  • the photovoltaic cell 5, the surface side electrode 22, the back surface side electrode 23, etc. are the same as that of 1st Embodiment, and difference with 1st Embodiment is mainly demonstrated.
  • the difference from the first embodiment is that the back surface side cover 3 in FIGS. 1 to 3 and 5 is a transparent surface side cover 2 such as white plate tempered glass like the surface side cover 2.
  • the front side cover and the back side cover are both translucent members.
  • the solar cell module of the present embodiment is a double-sided light receiving solar cell module, and the back side cover is made of glass or the like, so that the terminal box is provided in the vicinity of the frame body 8 in order to reduce light shielding loss, and the surface
  • Each output extraction connecting member corresponding to the connecting members 10, 11, 12, and 13 drawn out from the side cover 2 and the back side cover 3 is led into the terminal box.
  • light can also enter from the back surface side cover 3, and among the light incident from the back surface side cover 3, the upper surface and upper side surface of the back surface side electrode 23, that is, the second layer 232b.
  • the light reaching 232b,... Is efficiently reflected on the upper surface and the upper side surface, so that the amount of light re-reflected by the back surface side cover 3 or the filler 4 increases. Since much light enters 5, the output of the solar battery cell 5 is improved as compared with the first embodiment.
  • a solar cell module according to a third embodiment of the present invention will be described with reference to FIG.
  • FIG. 6 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
  • the third embodiment is different from the first embodiment in that the back-side electrode 23 does not have the second layers 232b, 232b,..., But includes the first layers 232a, 232a,. Is a point.
  • the light incident from the surface side cover 2 reaches the upper surface and upper side surface of the surface side electrode 22, that is, the second layers 222b, 222b,. Since the light X is efficiently reflected on the upper surface and the upper side surface, the amount of the light X re-reflected by the surface side cover 2 or the filler 4 increases, and as a result, a large amount of light enters the solar battery cell 5. Therefore, the output of the solar battery cell 5 is improved.
  • a solar cell module according to a fourth embodiment of the present invention will be described with reference to FIG.
  • FIG. 7 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
  • the fourth embodiment is different from the first embodiment in that the second layers 242b, 242b,... Of the surface-side electrode 22 are formed so as to cover the first layers 242a, 242a,. And the second layers 252b, 252b,... Of the back surface side electrode 23 are formed so as to cover the first layers 252a, 252a,. Others are the same as those in the first embodiment, and the same or similar parts are denoted by the same reference numerals.
  • the solar battery cell 1 functions as an adhesive such as a reflective conductive material, which is a first main component such as a metal material, and an epoxy resin, on the transparent conductive film 18, as in the first embodiment.
  • a surface-side electrode 22 made of an electrode material containing a mixture of two main components is formed.
  • the weight concentration of the reflective conductive material that is the first main component is higher than the weight concentration of the resin that is the second main component.
  • the surface-side electrode 22 intersects with the plurality of fine-line finger electrodes 221a, 221a,... Arranged in parallel with each other as the collector electrode and the plurality of fine-line finger electrodes 221a, 221a,. Bus bar electrodes 221b and 221b.
  • the surface-side electrode 22 includes a first layer 242a and a second layer 242b having a different content of the resin and the reflective conductive material and the first layer 242a stacked on the transparent conductive film 18 in this order. This is a two-layer structure.
  • the first layer 242a on the transparent conductive film 18 side, which is the base, has a higher resin weight concentration and a reflective conductive material weight concentration than the second layer 242b on the front cover 2 side (light incident side). Low. Therefore, the second layer 242b on the surface side cover 2 side (light incident side) has a higher weight concentration of the reflective conductive material than the first layer 242a on the transparent conductive film 18 side that is the base, and the weight of the resin. The concentration is low.
  • the surface-side electrode 22 includes, for example, an epoxy resin as the resin, a flaky silver fine powder having an average major axis of 5 to 20 ⁇ m and a spherical particle having an average particle diameter of 0.1 to 5 ⁇ m as the reflective conductive material. It consists of a mixture containing silver fine powder mixed, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
  • the first layer 242a has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the epoxy resin content in the first layer 242a is about 10 wt%, and the flakes in the first layer 242a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
  • the second layer 242b has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the content of the epoxy resin in the second layer 242b is about 5 wt%, and the flaky shape in the second layer 242b.
  • the total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
  • the finger electrodes 221a, 221a,... Of the surface side electrode 22 have a width of 50 to 200 ⁇ m, for example, 100 ⁇ m, and are arranged at intervals of 2 mm.
  • bus bar electrodes 221b and 221b of the surface side electrode 22 are each 0.1 to 1.8 mm in width, for example, a 1.3 mm straight (band) electrode.
  • the solar battery cell 1 is made of an electrode material formed by mixing a reflective conductive material such as a metal material as the first main component and a resin such as an epoxy resin as the second main component on the transparent conductive film 21.
  • the back surface side electrode 23 is formed.
  • the back surface side electrode 23 intersects with a plurality of fine wire finger electrodes 231a, 231a,... Arranged in parallel with each other as collector electrodes and the plurality of fine wire finger electrodes 231a, 231a,. Bus bar electrodes 231b and 231b.
  • the back electrode 23 is formed by laminating a first layer 252a and a second layer 252b having a different content of resin and reflective conductive material on the transparent conductive film 21 in this order. This is a two-layer structure.
  • the first layer 252a on the transparent conductive film 21 side, which is the base, has a higher resin weight concentration than the second layer 252b on the back side cover 3 side (incidence side of reflected light), and the weight of the reflective conductive material.
  • the concentration is low. Therefore, the second layer 252b on the back cover 3 side (incidence side of the reflected light) has a higher weight concentration of the reflective conductive material than the first layer 252a on the transparent conductive film 21 side which is the base, and the resin The weight concentration of is low.
  • the back-side electrode 23 includes, for example, an epoxy resin as the resin, a flaky silver fine powder with an average major axis of 5 to 20 ⁇ m and an average particle size of 0.1 to 5 ⁇ m as spherical silver as the reflective conductive material. It consists of a mixture containing fine powder, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
  • the first layer 252a has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the epoxy resin content in the first layer 252a is about 10 wt%, and the flake powder in the first layer 252a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
  • the second layer 252b has a thickness of 10 to 30 ⁇ m, for example, 20 ⁇ m, the epoxy resin content in the second layer 252b is about 5 wt%, and the flake powder in the second layer 252b The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
  • the finger electrodes 231a, 231a,... Of the back side electrode 23 have a width of 50 to 200 ⁇ m, for example 150 ⁇ m, and are arranged at intervals of 1 mm.
  • bus bar electrodes 231b and 231b of the back surface side electrode 23 each have a width of 0.1 to 4 mm, for example, a 3 mm straight (band) electrode.
  • the weight concentration of the resin contained in the first layer 242 a is larger than the weight concentration of the resin contained in the second layer 242 b, and the content of the second layer 242 b is contained.
  • the weight concentration of the reflective conductive material is larger than the weight concentration of the reflective conductive material contained in the first layer 242a.
  • first layers 242a, 242a,... Of the surface side electrode 22 are covered with the second layers 242b, 242b,.
  • the portions that are exposed to light are configured to be the second layers 242b, 242b,.
  • the weight concentration of the resin contained in the first layers 242a, 242a,... The weight concentration of the reflective conductive material contained in the second layers 242b, 242b,. Therefore, the light reflectance of the upper surface and side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the solar battery cell 5.
  • the solar cell module 1 the light X that has reached the surface of the surface-side electrode 22 out of the light incident from the surface-side cover 2 is efficiently reflected by the surface. As a result, the amount of light X that is re-reflected increases, and as a result, a large amount of light is incident on the solar cells 5, so that the output of the solar cells 5 is improved.
  • the back surface side electrode 23 of the solar battery cell 5 also has a higher weight concentration of the resin contained in the first layer 252a than the weight concentration of the resin contained in the second layer 252b.
  • the weight concentration of the reflective conductive material that BR> L is larger than the weight concentration of the reflective conductive material contained in the first layer 252a.
  • first layers 252a, 252a,... Of the back side electrode 23 are covered with the second layers 252b, 252b,.
  • the portion that is exposed to light is configured to be the second layers 252b, 252b,.
  • the weight concentration of the resin contained in the first layers 252a, 252a,... The weight concentration of the reflective conductive material contained in the second layers 252b, 252b,. Therefore, the light reflectance of the upper surface and side surface of the back surface side electrode 23 can be increased while strengthening the adhesion of the back surface side electrode 23 onto the solar battery cell 5.
  • the solar cell module 1 the light Y that has passed through the solar cells 5, 5 and the solar cell 5 and has reached the surface of the back surface side electrode 23 among the light reflected by the back surface side cover 3 or the like. Is efficiently reflected by the upper surface and the side surface, and therefore, the amount of light Y re-reflected by the back surface side cover 3 or the filler 4 is increased, and as a result, the back surface side also has a large amount of light to the solar cells 5. Since it injects, the output of the photovoltaic cell 5 improves more.
  • the surface side electrode 22 has a form in which the end portions of the second layers 242b, 242b,... Having a high weight concentration of the reflective conductive material are in direct contact with the transparent conductive film 18, the surface side electrode 22 and the transparent conductive film 18 and a contact resistance become small, and the output of the photovoltaic cell 5 improves.
  • the back-side electrode 23 is also in a form in which the ends of the second layers 252b, 252b,... Having a high weight concentration of the reflective conductive material are in direct contact with the transparent conductive film 21, so that the back-side electrode The contact resistance between 23 and the transparent conductive film 21 is reduced, and the output of the solar battery cell 5 is improved.
  • the first layers 242a, 242a,... Of the surface-side electrode 22 are completely covered with the second layers 242b, 242b,..., And the second layers 242b, 242b,.
  • the second layers 242b, 242b,... are first so that only part of the end portion is in direct contact with the transparent conductive film 18.
  • the layers 242a, 242a,... May be covered and an effect is obtained.
  • first layers 252a, 252a,... Of the back surface side electrode 23 are also completely covered with the second layers 252b, 252b,... And the ends of the second layers 252b, 252b,.
  • the second layer 252b, 252b,... Is the first layer so that only a part of the end portion is in direct contact with the transparent conductive film 21.
  • the layers 252a, 252a,... May be covered to obtain an effect.
  • the front surface side electrode 22 and the back surface side electrode 23 of the solar battery cell 5 of the present embodiment can also be manufactured using the first and second conductive pastes, for example, as in the first embodiment.
  • What has a larger pattern width, for example, about 10 ⁇ m than a printing plate, an offset printing plate, a pad printing plate, or the like may be used.
  • FIG. 8 is a partial cross-sectional view of the solar cell module of the present embodiment. Note that differences from the fourth embodiment will be mainly described.
  • the fifth embodiment is different from the fourth embodiment in that the back surface side electrode 23 does not have the second layers 242b, 242b,..., But includes the first layers 242a, 242a,. Is a point.
  • the second layer 242b, 242b,... Contains, while increasing the weight concentration of the resin contained in the first layer 242a, 242a,. Since the weight concentration of the reflective conductive material is increased, the light reflectance of the upper surface and the side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the base of the solar battery cell 5.
  • the sixth embodiment differs from the first embodiment in the first layers 222a, 222a,... Of the front surface side electrode 22 and the first layers 232b, 232b,. This is that the epoxy resin used in the first embodiment and a resin having higher elasticity than the epoxy resin are included, and the others are the same as in the first embodiment.
  • the first layers 222a, 222a ... of the front side electrode 22 and the first layers 232a, 232a ... of the back side electrode 23 are made of a resin mainly composed of the epoxy resin used in the first embodiment. Further, an epoxy resin or a urethane resin having an average molecular weight higher than that of the epoxy resin is contained as a subcomponent so that the elasticity is higher than that of the epoxy resin.
  • Reflectivity in which the content of the subcomponent resin having higher elasticity than the main component is about 5 wt%, flaky silver fine powder having an average major axis of 5 to 20 ⁇ m and spherical silver fine powder having an average particle size of 0.1 to 5 ⁇ m are mixed.
  • the conductive material is contained at a content rate of about 90 wt%.
  • the second layers 222b, 222b,... Of the front surface side electrode 22 and the second layers 232b, 232b,... Of the back surface side electrode 23 are the same as in the first embodiment.
  • the same effects as those of the first embodiment can be obtained, and the first layers 222a, 222a,... In the layers 232a, 232a,..., The stress due to the difference in thermal expansion coefficient between the front surface side electrode 22 and the back surface side electrode 23 and the substrate 15 in these layers is relieved. Between the transparent conductive film 18 to be formed, the adhesiveness between the back-side electrode 23 and the transparent conductive film 21 to be the base is increased, and reliability is improved.
  • one type or two types of resins are contained in the first layer of the front-side electrode 22 and the first layer of the back-side electrode 23, but two or more types of resins are contained. It can also be applied to things. Further, although one type of resin is contained in the second layer of the front surface side electrode 22 and the second layer of the back side electrode 23, the present invention can also be applied to one containing two or more types of resins.
  • the first layer of the front-side electrode 22 and / or the first layer of the back-side electrode 23 has a higher elasticity than the main component in addition to the main component resin. You may make it contain resin of a subcomponent.
  • a secondary component resin having higher elasticity than the main component may be contained in the second layer.
  • the front surface side electrode 22 and the back surface side electrode 23 of each of the above embodiments have a two-layer structure of a first layer and a second layer, but the present invention is not limited to this and may be composed of a plurality of layers.
  • the weight concentration of the reflective conductive material may be higher in the uppermost layer than that in the lowermost layer, and the weight concentration of the resin may be higher in the lowermost layer than in the uppermost layer.
  • the weight concentration of the reflective conductive material is higher on the upper side of the uppermost layer than the lower side of the lowermost layer, and the weight concentration of the resin is higher on the lower side of the lowermost layer than the upper side of the uppermost layer. May be.
  • the front surface side electrode 22 and the back surface side electrode 23 may have a structure without a layer structure, or a structure with only one layer.
  • the weight concentration of the reflective conductive material may be higher on the upper side than on the lower side, and the weight concentration of the resin may be higher on the lower side than on the upper side. Further, the weight concentration of the reflective conductive material is gradually increased from the lower side to the upper side, and the weight concentration of the resin is gradually increased from the upper side to the lower side. Also good.
  • the solar cells of the above embodiments have been described using so-called HIT solar cells, but the present invention is applicable to various solar cells such as single crystal solar cells and polycrystalline solar cells, In addition to the double-sided light receiving type, it can also be applied to single-sided light receiving solar cells.
  • the polycrystalline solar battery cell or the single crystal solar battery includes, for example, an n + layer formed from a surface of a silicon substrate made of P-type polycrystal or P-type single crystal to a predetermined depth to form a pn junction, and the silicon A solar cell in which a p + layer is formed from the back surface of the substrate to a predetermined depth, a front surface side electrode 22 is formed on the n + layer, and a back surface side electrode 23 is formed on the p + layer.
  • the present invention is applied to both the finger electrode and the bus bar electrode of the front surface side electrode 22 and / or the back surface side electrode 23, but may be applied only to the finger electrode.
  • the surface side electrode 22 and the back surface side electrode 23 consist of a finger electrode and a bus-bar electrode
  • a surface side electrode or / and a back surface-side electrode do not have a bus-bar electrode
  • finger electrode 221a A bus bar-less structure consisting only of 231a,.
  • the back surface side electrode may be composed of an electrode having another structure different from that described above, for example, an electrode covered with a metal film on the entire surface and a bus bar electrode formed thereon.
  • the solar cell module of the present invention is not limited to the above-described embodiments.
  • the solar cell module is not limited to a configuration including a plurality of solar cells, and may be a solar cell module including one solar cell.
  • a frameless structure without a frame may be used.
  • FIGS. 9 and 10 may be used.
  • the same or similar parts as those in the first embodiment are denoted by the same reference numerals.
  • the solar cell module 1 shown in FIG. 9 is a set of two adjacent solar cells 5 and 5 having the same element structure, and two adjacent solar cells 5 having an element structure opposite in polarity. 5 are arranged in one set, and these are electrically connected in series by the conductive connecting members 6, 6,.
  • adjacent solar cells 5 and 5 have an element configuration in which the polarities are opposite to each other, and the conductive connecting members 6, 6,. 5, 5 and 5 and the back surface side electrodes 23 and 23 of the photovoltaic cells 5 and 5 are electrically connected in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell equipped with collector electrodes that are capable of improving the incidence of light to the solar cell, even in cases in which the width and thickness thereof are not increased. Also disclosed is a solar cell module using the same. The solar cell (5) is equipped with a first surface (18), a second surface (21), and collector electrodes (222a, 222b, …) that are formed upon the first surface (18), wherein the collector electrodes (222a, 222b, …) include at least a reflective conducting material and a resin, the weight concentration of the reflective conducting material in the collector electrodes (222a, 222b, …) is higher on the upper surface side of the collector electrodes (222a, 222b, …) in comparison to the first surface (18) side, and the weight concentration of the resin in the collector electrodes is higher on the aforementioned first surface (18) side of the aforementioned collector electrodes than the upper surface side.

Description

太陽電池セル及び太陽電池モジュールSolar cell and solar cell module
 本発明は、太陽電池セル及び太陽電池モジュールに関する。 The present invention relates to a solar battery cell and a solar battery module.
 近年、環境に対する影響が少ないエネルギー源を求める動きが大きくなってきている中、太陽電池セルを用いた太陽電池システムや太陽電池応用製品等の太陽電池分野が注目されている。 In recent years, as the demand for energy sources that have little impact on the environment has increased, solar cell fields such as solar cell systems using solar cells and solar cell applied products have attracted attention.
 太陽電池システムや太陽電池応用製品等は、例えば、一又は複数の太陽電池モジュールを含んで構成されており、太陽電池モジュールは、一又は複数の太陽電池セルを含む構成である。 A solar cell system, a solar cell application product, or the like includes, for example, one or more solar cell modules, and the solar cell module includes one or more solar cells.
 図11は、従来の太陽電池モジュール中の太陽電池セルの上面図である。 FIG. 11 is a top view of a solar battery cell in a conventional solar battery module.
 図11に示すように、太陽電池セル100は、受光面側となる表面101上に表面側電極102を有すると共に、その裏面上には図示しない裏面側電極を有する。 As shown in FIG. 11, the solar battery cell 100 has a surface-side electrode 102 on the surface 101 that is the light-receiving surface side, and a back-side electrode (not shown) on the back surface.
 表面側電極102は、太陽電池セル100に光が入射することにより生成するキャリアを収集するための集電極としての複数の細線状のフィンガー電極102a、102a、・・・・と、該キャリアを外部へ取り出すためのバスバー電極102b、102bとにより構成されている。 The front-side electrode 102 includes a plurality of fine- finger finger electrodes 102a, 102a,... Serving as collecting electrodes for collecting carriers generated when light enters the solar battery cell 100, and the carriers are connected to the outside. The bus bar electrodes 102b and 102b are used to take out.
 表面側電極102は、例えば、表面101上に導電性ペーストをオフセット印刷法、スクリーン印刷法等により印刷して形成される。 The surface-side electrode 102 is formed, for example, by printing a conductive paste on the surface 101 by an offset printing method, a screen printing method, or the like.
 フィンガー電極102a、102a、・・・は、太陽電池セル101への入射光を遮光するため、太陽電池セル101は、出力が低下するといった問題があった。 Since the finger electrodes 102a, 102a,... Shield light incident on the solar cell 101, the solar cell 101 has a problem that the output is reduced.
 この問題を解決する方法として、例えば、オフセット印刷法により所定範囲の粘度をもつ導電性ペーストを複数回印刷して集電極を形成する方法が記載されている(例えば、特許文献1参照)。 As a method for solving this problem, for example, a method is described in which a conductive paste having a predetermined range of viscosity is printed a plurality of times by an offset printing method to form a collector electrode (see, for example, Patent Document 1).
 斯かる方法の場合、細幅で、厚みが大きい集電極を形成できることが開示されており、集電極による入射光の遮光を低減できる。 In the case of such a method, it is disclosed that a collector electrode having a small width and a large thickness can be formed, and shielding of incident light by the collector electrode can be reduced.
 特許文献1:特開2007-44974号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2007-44974
 しかしながら、上述の方法では、集電極を細幅で且つ厚みを大きくする必要があり、集電極の設計の自由度が小さくなるといった課題がある。 However, the above-described method has a problem that the collector electrode needs to be thin and thick, and the degree of freedom in designing the collector electrode is reduced.
 本発明は、上記課題を鑑みなされたものであり、細幅や厚みを大きくしない場合でも太陽電池セルへの光入射を向上させることが可能な集電極を備えた太陽電池セル及びこれを用いた太陽電池モジュールを提供するものである。 The present invention has been made in view of the above problems, and uses a solar cell including a collector electrode capable of improving the light incidence on the solar cell even when the narrow width and thickness are not increased, and the same. A solar cell module is provided.
 本発明に係る太陽電池セルは、第1の面と、第2の面と、前記第1の面上に形成された集電極とを備えた太陽電池セルであって、前記集電極は、少なくとも反射性導電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の上表面側が上記第1の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第1の面側が前記上表面側よりも高いことを特徴とする。斯かる太陽電池セルでは、樹脂の重量濃度を前記集電極中の前記第1の面側で大きくしつつ、反射性導電材料の重量濃度を前記集電極の上表面側で大きくしているので、前記集電極の太陽電池セル上への接着を強くしつつ、前記集電極の上表面及び上側側面の光反射率を大きくできる。この結果、斯かる太陽電池セルを備えた太陽電池モジュールの出力を大きくできる。 A solar battery cell according to the present invention is a solar battery cell including a first surface, a second surface, and a collector electrode formed on the first surface, wherein the collector electrode is at least A weight concentration of the reflective conductive material in the collector electrode is higher on the upper surface side of the collector electrode than on the first surface side, and the weight concentration of the reflective conductive material in the collector electrode The weight concentration of the resin is characterized in that the first surface side in the collector electrode is higher than the upper surface side. In such a solar battery cell, since the weight concentration of the resin is increased on the first surface side in the collector electrode, the weight concentration of the reflective conductive material is increased on the upper surface side of the collector electrode. The light reflectance of the upper surface and upper side surface of the collector electrode can be increased while strengthening the adhesion of the collector electrode to the solar battery cell. As a result, the output of the solar battery module including such a solar battery cell can be increased.
 前記集電極は、光が当たる領域に形成されている部分が、少なくとも反射性導電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の上表面側が上記第1の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第1の面側が前記表面側よりも高くなっていてよい。前記集電極は、複数のフィンガー電極であってよく、また他の形状でもよく、集電極に加え、バスバー電極も同様の構成にしてよい。 The collector electrode includes at least a reflective conductive material and a resin at a portion formed in a region where light strikes, and the weight concentration of the reflective conductive material in the collector electrode is such that the upper surface side of the collector electrode is The weight concentration of the resin in the collector electrode may be higher than that on the first surface side, and the first surface side in the collector electrode may be higher than the surface side. The collector electrode may be a plurality of finger electrodes, and may have other shapes. In addition to the collector electrode, the bus bar electrode may have the same configuration.
 また、前記樹脂は、少なくとも第1の樹脂と該第1の樹脂に比べて弾性が高い第2の樹脂を含有し、該第2の樹脂は前記上面側に比べ前記第1の面側に多く存在することを特徴とする。ここで、第2の樹脂が存在するとは、上面側に第2の樹脂がない構成も含まれる。 Further, the resin contains at least the first resin and the second resin having higher elasticity than the first resin, and the second resin is more on the first surface side than on the upper surface side. It is characterized by the existence. Here, the presence of the second resin includes a configuration in which the second resin is not present on the upper surface side.
 この場合、弾性が高い第2の樹脂は、第1の面側に多く存在し、前記集電極と太陽電池セルの基体との熱膨張係数の差に起因する応力を緩和するため、前記集電極の太陽電池セル上への接着性が高くなり、信頼性が向上する。 In this case, a large amount of the second resin having high elasticity is present on the first surface side, and the collector electrode relieves the stress caused by the difference in thermal expansion coefficient between the collector electrode and the base of the solar battery cell. Adhesiveness on the solar cell becomes higher, and the reliability is improved.
 また、前記集電極は複数層からなり、前記反射性導電材料の重量濃度は、該複数層のうちの最上層が該複数層のうちの最下層に比べて高く、且つ前記樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高いことを特徴とする。 The collector electrode includes a plurality of layers, and the weight concentration of the reflective conductive material is higher in the uppermost layer of the plurality of layers than in the lowermost layer of the plurality of layers, and the weight concentration of the resin is The lowest layer of the plurality of layers is higher than the uppermost layer of the plurality of layers.
 この場合、前記集電極の上表面側の反射性導電材料の重量濃度を大きくしつつ、前記集電極中の前記第1の面側の樹脂の重量濃度を大きくする構成を容易に形成できるので、好ましい。 In this case, since the weight concentration of the reflective conductive material on the upper surface side of the collector electrode is increased, the configuration of increasing the weight concentration of the resin on the first surface side in the collector electrode can be easily formed. preferable.
 前記集電極の最上層は、その下層を覆うように形成されていることを特徴とする。 The uppermost layer of the collector electrode is formed so as to cover the lower layer.
 この場合、前記集電極の表面のうち、反射率が高い面積が増えるので、該集電極での反射を高めることができる。従って、斯かる太陽電池セルを備えた太陽電池モジュールの出力を大きくできる。 In this case, since the area with high reflectivity increases on the surface of the collector electrode, the reflection at the collector electrode can be enhanced. Therefore, the output of the solar battery module including such a solar battery cell can be increased.
 更に、前記集電極の最上層の少なくとも一部は、前記第1の面に接触するように形成されていることを特徴とする。 Furthermore, at least a part of the uppermost layer of the collector electrode is formed so as to be in contact with the first surface.
 この場合、前記集電極の太陽電池セルの基体上への接着がより高まり、また前記第1の面が導電性を有する場合、該集電極は、反射性導電材料の重量濃度が高い最上層の端部が上記第1の面と直接接触する形態をとっているので、該集電極と第1の面と接触抵抗が小さくなり、太陽電池セルの出力がより向上する。 In this case, adhesion of the collector electrode to the substrate of the solar battery cell is further enhanced, and when the first surface has conductivity, the collector electrode is the uppermost layer in which the weight concentration of the reflective conductive material is high. Since the end portion is in direct contact with the first surface, the contact resistance between the collector electrode and the first surface is reduced, and the output of the solar cell is further improved.
 更に、上記第2の面上に集電極を備える構成の場合、該集電極は、少なくとも反射性導電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の上表面側が上記第2の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第2の面側が前記上表面側よりも高くしてもよい。 Further, in the case of a configuration including a collector electrode on the second surface, the collector electrode includes at least a reflective conductive material and a resin, and the weight concentration of the reflective conductive material in the collector electrode is the collector concentration. Even if the upper surface side of the electrode is higher than the second surface side, and the weight concentration of the resin in the collector electrode is higher on the second surface side in the collector electrode than on the upper surface side. Good.
 この場合、前記集電極の太陽電池セルの基体上への接着を強くしつつ、前記集電極の上表面及び上側側面の光反射率を大きくできる。この結果、斯かる太陽電池セルを備えた太陽電池モジュールの出力を大きくできる。 In this case, the light reflectance of the upper surface and upper side surface of the collector electrode can be increased while strengthening the adhesion of the collector electrode to the base of the solar cell. As a result, the output of the solar battery module including such a solar battery cell can be increased.
 前記集電極は、光が当たる領域に形成されている部分が、少なくとも反射性電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の上表面側が上記第2の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第2の面側が前記表面側よりも高くなっていてよい。 In the collector electrode, a portion formed in a region where the light strikes includes at least a reflective electric material and a resin, and the weight concentration of the reflective conductive material in the collector electrode is such that the upper surface side of the collector electrode is The weight concentration of the resin in the collector electrode may be higher than that on the second surface side, and the second surface side in the collector electrode may be higher than the surface side.
 前記集電極は、複数のフィンガー電極であってよく、また他の形状でもよく、集電極に加え、バスバー電極も同様の構成にしてよい。 The collector electrode may be a plurality of finger electrodes, and may have other shapes. In addition to the collector electrode, the bus bar electrode may have the same configuration.
 また、前記樹脂は、少なくとも第1の樹脂と該第1の樹脂に比べて弾性が高い第2の樹脂を含有し、該第2の樹脂は前記上面側に比べ前記第2の面側に多く存在してもよい。ここで、第2の樹脂が存在するとは、上面側に第2の樹脂がない構成も含まれる。この場合、弾性が高い第2の樹脂は、第1の面側に多く存在し、前記集電極と太陽電池セルの基体との熱膨張係数の差に起因する応力を緩和するため、前記集電極の太陽電池セル基体上への接着性が高くなり、信頼性が向上する。 Further, the resin contains at least the first resin and the second resin having higher elasticity than the first resin, and the second resin is more on the second surface side than on the upper surface side. May be present. Here, the presence of the second resin includes a configuration in which the second resin is not present on the upper surface side. In this case, a large amount of the second resin having high elasticity is present on the first surface side, and the collector electrode is used to relieve stress caused by a difference in thermal expansion coefficient between the collector electrode and the base of the solar battery cell. The adhesion to the solar cell base becomes higher, and the reliability is improved.
 また、前記集電極は複数層からなり、前記反射性導電材料の重量濃度は、該複数層のうちの最上層が該複数層のうちの最下層に比べて高く、且つ前記樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高くしてもよい。 The collector electrode includes a plurality of layers, and the weight concentration of the reflective conductive material is higher in the uppermost layer of the plurality of layers than in the lowermost layer of the plurality of layers, and the weight concentration of the resin is The lowermost layer of the plurality of layers may be higher than the uppermost layer of the plurality of layers.
 この場合、前記集電極の上表面側の反射性導電材料の重量濃度を大きくしつつ、前記集電極中の前記第2の面側の樹脂の重量濃度を大きくする構成を容易に形成できるので、好ましい。 In this case, since the weight concentration of the reflective conductive material on the upper surface side of the collector electrode is increased, the configuration of increasing the weight concentration of the resin on the second surface side in the collector electrode can be easily formed. preferable.
 前記集電極の最上層は、その下層を覆うように形成されてもよい。 The uppermost layer of the collector electrode may be formed so as to cover the lower layer.
 この場合、前記集電極の表面のうち、反射率が高い面積が増えるので、該集電極での反射を高めることができる。従って、斯かる太陽電池セルを備えた太陽電池モジュールの出力を大きくできる。 In this case, since the area with high reflectivity increases on the surface of the collector electrode, the reflection at the collector electrode can be enhanced. Therefore, the output of the solar battery module including such a solar battery cell can be increased.
 更に、前記集電極の最上層の少なくとも一部は、前記第2の面に接触するように形成されていることを特徴とする。 Furthermore, at least a part of the uppermost layer of the collector electrode is formed so as to be in contact with the second surface.
 この場合、前記集電極の太陽電池セルの基体への接着がより高まり、また前記第2の面が導電性を有する場合、該集電極は、反射性導電材料の重量濃度が高い最上層の端部が上記第2の面と直接接触する形態をとっているので、該集電極と第2の面と接触抵抗が小さくなり、太陽電池セルの出力がより向上する。 In this case, when the collector electrode is further adhered to the base of the solar battery cell and the second surface has conductivity, the collector electrode is the end of the uppermost layer where the weight concentration of the reflective conductive material is high. Since the portion is in direct contact with the second surface, the contact resistance between the collector electrode and the second surface is reduced, and the output of the solar battery cell is further improved.
 更に、上記太陽電池セルを備えた太陽電池モジュールであって、透光性部材と、裏面側保護部材と、これらの間に複数の前記太陽電池セルを備えたことを特徴とする。 Furthermore, it is a solar battery module provided with the above-mentioned solar battery cell, and is provided with a translucent member, a back surface side protection member, and a plurality of the solar battery cells between them.
 この場合、上記透光性部材と上記太陽電池セルの上記上面が対向する配置が好ましい。 In this case, an arrangement in which the translucent member and the upper surface of the solar battery cell face each other is preferable.
 この場合、上記太陽電池セルは、前記集電極の光反射率が大きい。この結果、前記集電極で反射された光が前記透光性部材等で反射されて太陽電池セルに入射する率が高まり太陽電池モジュールの出力を大きくできる。また、上記太陽電池セルは、前記集電極の該太陽電池セルへの接着が強いので、太陽電池モジュールの信頼性が高まる。 In this case, the solar cell has a high light reflectance of the collector electrode. As a result, the rate at which the light reflected by the collector electrode is reflected by the translucent member or the like and is incident on the solar cell increases, and the output of the solar cell module can be increased. Moreover, since the said photovoltaic cell has the strong adhesion | attachment to the said photovoltaic cell of the said collector electrode, the reliability of a photovoltaic module increases.
 また、前記裏面側保護部材は、透光性部材であることを特徴とする。 Further, the back surface side protective member is a translucent member.
 この場合、裏面側からも光が入射するので、太陽電池モジュールの出力がより向上する。この場合、上記透光性部材と上記太陽電池セルの下面が対向する配置が好ましい。この場合、特に、上記太陽電池セルは、両面受光型太陽電池セルが好ましく、上面及び下面側の集電極は、光が当たる領域に形成されている部分が、少なくとも反射性導電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の各上表面側が上記第1、第2の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第1、第2の面側が前記各表面側よりも高くなっているのが好ましい。 In this case, since light is also incident from the back side, the output of the solar cell module is further improved. In this case, an arrangement in which the translucent member and the lower surface of the solar battery cell face each other is preferable. In this case, in particular, the solar cell is preferably a double-sided light-receiving solar cell, and the collector electrode on the upper surface and the lower surface side has at least a reflective conductive material and a resin formed in a region that is exposed to light. And the weight concentration of the reflective conductive material in the collector electrode is higher on each upper surface side of the collector electrode than the first and second surface sides, and the weight concentration of the resin in the collector electrode Preferably, the first and second surface sides in the collector electrode are higher than the respective surface sides.
 透光性部材としては、ガラス板、樹脂板、塗布形成された樹脂等であってよい。 The translucent member may be a glass plate, a resin plate, a resin formed by coating, or the like.
 また、上記上面、上記下面は、半導体基板、半導体層または透明導電膜等の導電性体の上面、下面であってよい。また、上記上面、上記下面は、テクスチャー面であってもよい。 Further, the upper surface and the lower surface may be upper and lower surfaces of a conductive body such as a semiconductor substrate, a semiconductor layer, or a transparent conductive film. The upper surface and the lower surface may be textured surfaces.
 本発明は、太陽電池セルの基体上への集電極の接着を高めることができると共に、集電極の反射率を高めるがことができるので、信頼性が高く、高出力化が可能な太陽電池セル及びこれを用いた太陽電池モジュールを提供できる。 The present invention can enhance the adhesion of the collector electrode to the substrate of the solar battery cell and increase the reflectivity of the collector electrode. Therefore, the solar battery cell is highly reliable and capable of high output. And a solar cell module using the same can be provided.
本発明の第1実施形態に係る太陽電池モジュールの上面図である。It is a top view of the solar cell module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る太陽電池モジュールの斜視図である。It is a perspective view of the solar cell module which concerns on 1st Embodiment of this invention. 図1のA-A’に沿った太陽電池モジュールの一部断面図である。FIG. 2 is a partial cross-sectional view of the solar cell module along A-A ′ in FIG. 1. 図4(a)は本発明の第1実施形態に係る太陽電池モジュールに用いられる太陽電池セルの上面図、図4(b)は当該太陽電池セルの裏面図、図4(c)は本発明の第1実施形態に係る太陽電池モジュール中の太陽電池セルと導電性接続部材との接続を説明するための上面図である。4A is a top view of the solar battery cell used in the solar battery module according to the first embodiment of the present invention, FIG. 4B is a back view of the solar battery cell, and FIG. 4C is the present invention. It is a top view for demonstrating the connection of the photovoltaic cell in the solar cell module which concerns on 1st Embodiment of this, and an electroconductive connection member. 第1実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 1st Embodiment. 本発明の第3実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on 5th Embodiment of this invention. 本発明の他の実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on other embodiment of this invention. 本発明の他の実施形態に係る太陽電池モジュールの一部断面図である。It is a partial cross section figure of the solar cell module which concerns on other embodiment of this invention. 従来の太陽電池モジュール中の太陽電池セルの上面図である。It is a top view of the photovoltaic cell in the conventional solar cell module.
 次に、図面を用いて、本発明の実施の形態を説明する。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
(第1実施形態)
 本発明の第1実施形態に係る片面受光型太陽電池モジュールを説明する。
Next, embodiments of the present invention will be described with reference to the drawings. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
(First embodiment)
A single-sided light-receiving solar cell module according to a first embodiment of the present invention will be described.
 図1乃至図3を参照して、1は太陽電池モジュールであり、太陽電池モジュール1は、例えば、白板強化ガラス等の透明な表面側カバー2、ポリエチレンテレフタレート(PET)等の樹脂フィルムからなる耐候性の裏面側カバー3及び表面側カバー2と裏面側カバー3との間にエチレンビニルアセテート(EVA)等の充填剤4を介して配置された複数の太陽電池セル5、5、・・・が厚み1~50μmのSn-Ag-Cu等の半田層(導電性層)で表面が被覆されてなる平板銅線等からなる幅0.5mm~3mm、厚み100~300μmのストリップ状(帯状)の導電性接続部材6、6、・・・により電気的に直列接続されてなる直線状の太陽電池群7、7、・・・からなる板状の構成体と、該構成体を支持するアルミニウム等からなる金属製枠体8から構成されている。 Referring to FIGS. 1 to 3, reference numeral 1 denotes a solar cell module. The solar cell module 1 is made of, for example, a transparent surface side cover 2 such as white reinforced glass, and a weather resistance made of a resin film such as polyethylene terephthalate (PET). A plurality of solar cells 5, 5,... Disposed between the back side cover 3 and the front side cover 2 and the back side cover 3 with a filler 4 such as ethylene vinyl acetate (EVA). A strip-shaped (band-shaped) strip having a width of 0.5 mm to 3 mm and a thickness of 100 to 300 μm made of a flat copper wire or the like whose surface is covered with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm A plate-like structure composed of linear solar cell groups 7, 7,... Electrically connected in series by the conductive connection members 6, 6,..., Aluminum that supports the structure, etc. Made of metal And a frame 8.
 各太陽電池群7、7、・・・は、互いに並列に配置され、太陽電池群7、7、・・・が電気的に直列接続するように、各所定の隣り合う太陽電池群7、7、・・・の一方端側の導電性接続部材6、6、・・・が厚み1~50μmのSn-Ag-Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm~3mm、厚み100~300μmのストリップ状(帯状)の導電性接続部材9によって半田接続されると共に、他の所定の隣り合う太陽電池群7、7の他方端側の導電性接続部材6、6、・・・が厚み1~50μmのSn-Ag-Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm~3mm、厚み100~300μmのL字状の導電性接続部材10、11と半田接続されている。 Each of the solar cell groups 7, 7,... Is arranged in parallel with each other, and each predetermined adjacent solar cell group 7, 7 so that the solar cell groups 7, 7,. ,...,...,...,...,... Flat copper wire whose surface is coated with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm Are connected by soldering with a strip-like (band-like) conductive connection member 9 having a width of 0.5 mm to 3 mm and a thickness of 100 to 300 μm, and the other end side of the other adjacent solar cell groups 7 and 7 is electrically conductive. The conductive connecting members 6, 6,... Have a width of 0.5 mm to 3 mm and are made of a flat copper wire whose surface is covered with a solder layer (conductive layer) such as Sn—Ag—Cu having a thickness of 1 to 50 μm. Solder-connected to 100 to 300 μm L-shaped conductive connecting members 10 and 11.
 この構成により、太陽電池モジュール1の複数の太陽電池セル5、5、・・・はマトリックス状に配置される。 With this configuration, the plurality of solar cells 5, 5,... Of the solar cell module 1 are arranged in a matrix.
 最外側の太陽電池群7、7、・・・中の電力取り出し側の両最端の太陽電池セル5、5、・・・の導電性接続部材6、6、・・・には、太陽電池モジュール1から電気出力を取り出すための厚み1~50μmのSn-Ag-Cu等の半田層(導電性層)で表面が被覆された平板銅線等からなる幅0.5mm~3mm、厚み100~300μmのL字状の接続部材(出力取り出し用接続部材) 12、13がそれぞれ半田接続されている。 In the outermost solar cell groups 7, 7,..., The conductive connection members 6, 6,. A width of 0.5 mm to 3 mm, a thickness of 100 to 100 mm, made of a flat copper wire whose surface is covered with a solder layer (conductive layer) of Sn—Ag—Cu or the like having a thickness of 1 to 50 μm for extracting electric output from the module 1. 300 μm L-shaped connection members (output extraction connection members) 12 and 13 are connected by soldering.
 なお、上記L字状の接続部材10、11とL字状の接続部材12、13との間、上記L字状の接続部材11とL字状の接続部材13の間で交差する部分は、図示しないポリエチレンテレフタレート(PET)等の絶縁シートなどの絶縁部材を介在させている。 The portions intersecting between the L-shaped connecting members 10 and 11 and the L-shaped connecting members 12 and 13 and between the L-shaped connecting member 11 and the L-shaped connecting member 13 are as follows. An insulating member such as an insulating sheet such as polyethylene terephthalate (PET) (not shown) is interposed.
 また、図示しないが、上記L字状の接続部材10、上記L字状の接続部材11、L字状の接続部材12およびL字状の接続部材13の各先端側部分は、裏面側カバー3の切り欠きを介して太陽電池モジュール1の上部側中央に位置するように端子ボックス14内に導かれている。 Although not shown in the drawings, the front end side portions of the L-shaped connecting member 10, the L-shaped connecting member 11, the L-shaped connecting member 12, and the L-shaped connecting member 13 are provided on the back surface side cover 3. It is led in the terminal box 14 so that it may be located in the upper center of the solar cell module 1 through the notch.
 前記端子ボックス内14において、上記L字状の接続部材12とL字状の接続部材10の間、上記L字状の接続部材10とL字状の接続部材11の間、およびL字状の接続部材11とL字状の接続部材13の間は、それぞれバイパスダイオード(図示しない)で接続されている。 In the terminal box 14, between the L-shaped connecting member 12 and the L-shaped connecting member 10, between the L-shaped connecting member 10 and the L-shaped connecting member 11, and L-shaped The connection member 11 and the L-shaped connection member 13 are connected by a bypass diode (not shown).
 図4乃至図6を参照して、上記太陽電池セル5は、両面受光型太陽電池セルである。一例としては、n型単結晶シリコン基板15のテクスチャー構造を有する表面の略全域上に、i型アモルファスシリコン層16、p型またはn型の一導電型アモルファスシリコン層17、錫を含有する酸化インジウム(ITO)膜等からなる透明導電膜層18をこの順に備える。また前記基板15のテクスチャー構造を有する裏面の略全域上ではi型アモルファスシリコン層19、前記一導電型とは逆導電型のアモルファスシリコン層20、錫を含有する酸化インジウム(ITO)膜等の透明導電膜層21をこの順に備えてなる、光電変換部を備えた所謂HIT(登録商標)構造の太陽電池セルである。 4 to 6, the solar battery cell 5 is a double-sided light receiving solar battery cell. As an example, an indium oxide containing an i-type amorphous silicon layer 16, a p-type or n-type one-conductive amorphous silicon layer 17, and tin over almost the entire surface of the n-type single crystal silicon substrate 15 having a texture structure. A transparent conductive film layer 18 made of an (ITO) film or the like is provided in this order. In addition, an i-type amorphous silicon layer 19, an amorphous silicon layer 20 having a conductivity type opposite to the one conductivity type, an indium oxide (ITO) film containing tin, etc. are transparent over substantially the entire back surface having the texture structure of the substrate 15. This is a solar cell having a so-called HIT (registered trademark) structure including a photoelectric conversion unit, which includes the conductive film layer 21 in this order.
 上記テクスチャー構造は、単結晶シリコン基板の(100)面を異方性エッチングすることにより形成された、数μm~数十μmの高さのピラミッド形状を有する凹凸構造である。 The texture structure is a concavo-convex structure having a pyramid shape with a height of several μm to several tens of μm formed by anisotropic etching of the (100) plane of a single crystal silicon substrate.
 本実施形態では、上記テクスチャー構造は、多数のピラミッド形状が不規則に配置され、ピラミッド形状は、その高さ(大きさ)が不揃いであるランダムテクスチャー構造であり、隣り合うピラミッドが一部重なりあってもよい。なお、各ピラミッド形状の頂点および谷部は、丸みを帯びていてもよい。 In the present embodiment, the texture structure is a random texture structure in which a large number of pyramid shapes are irregularly arranged, and the heights (sizes) thereof are irregular, and adjacent pyramids partially overlap each other. May be. The apexes and valleys of each pyramid shape may be rounded.
 本実施形態のn型単結晶シリコン基板15は、例えば、約125mm角の略正方形であり、厚みは、例えば100μm~300μmである。 The n-type single crystal silicon substrate 15 of the present embodiment is, for example, a substantially square of about 125 mm square, and the thickness is, for example, 100 μm to 300 μm.
 太陽電池セル1は、透明導電膜18上に金属材料等の第1主成分である反射性導電材料及びエポキシ系樹脂等の接着剤として機能する第2主成分としての樹脂を混合して含有してなる電極材料からなる表面側電極22が形成されている。ここで、第1主成分である反射性導電材料の重量濃度(wt%)は、第2主成分である樹脂の重量濃度(wt%)より高い。 The solar battery cell 1 contains a mixture of a reflective conductive material as a first main component such as a metal material and a resin as a second main component that functions as an adhesive such as an epoxy resin on the transparent conductive film 18. A surface side electrode 22 made of the electrode material is formed. Here, the weight concentration (wt%) of the reflective conductive material that is the first main component is higher than the weight concentration (wt%) of the resin that is the second main component.
 表面側電極22は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極221a、221a、・・・と、これら複数の細線状のフィンガー電極221a、221a、・・・と交わるように配置されたバスバー電極221b、221bとにより構成されている。 The surface-side electrode 22 intersects with a plurality of fine- line finger electrodes 221a, 221a,... Arranged in parallel to each other as collector electrodes, and the plurality of fine- line finger electrodes 221a, 221a,. The bus bar electrodes 221b and 221b are arranged in this manner.
 また、上記表面側電極22は、第1の層222a及びこの第1の層222aの樹脂及び反射性導電材料の含有率の異なる第2の層222bがこの順に透明導電膜18上に積層されてなる2層構造である。 The surface-side electrode 22 includes a first layer 222a and a second layer 222b having different contents of the resin and the reflective conductive material of the first layer 222a, which are laminated on the transparent conductive film 18 in this order. This is a two-layer structure.
 下地である透明導電膜18側の第1の層222aは、表面側カバー2側(光入射側)の第2の層222bに比べ、樹脂の重量濃度が高く、反射性導電材料の重量濃度が低い。従って、表面側カバー2側(光入射側)の第2の層222bは、下地である透明導電膜18側の第1の層222aに比べ、反射性導電材料の重量濃度が高く、樹脂の重量濃度が低い。 The first layer 222a on the transparent conductive film 18 side, which is the base, has a higher resin weight concentration and a reflective conductive material weight concentration than the second layer 222b on the front cover 2 side (light incident side). Low. Therefore, the second layer 222b on the surface side cover 2 side (light incident side) has a higher weight concentration of the reflective conductive material than the first layer 222a on the transparent conductive film 18 side that is the base, and the weight of the resin. The concentration is low.
 本実施形態では、表面側電極22は、例えば、上記樹脂としてのエポキシ系樹脂と上記反射性導電材料としての平均長径5~20μmのフレーク状銀微粉末及び平均粒径0.1~5μmの球状銀微粉末とを混合して含む混合物からなり、該フレーク状銀微粉末と該球状銀微粉末は1対1の重量比で含まれている。 In the present embodiment, the surface side electrode 22 includes, for example, an epoxy resin as the resin, a flaky silver fine powder having an average major axis of 5 to 20 μm and a spherical particle having an average particle diameter of 0.1 to 5 μm as the reflective conductive material. It consists of a mixture containing silver fine powder mixed, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
 上記第1の層222aは、厚みが10~30μm、例えば、20μmであり、該第1の層222a中のエポキシ系樹脂の含有率が約10wt%、該第1の層222a中の上記フレーク状銀微粉末及び上記球状銀微粉末の合計含有率が約90wt%である。 The first layer 222a has a thickness of 10 to 30 μm, for example, 20 μm, the content of the epoxy resin in the first layer 222a is about 10 wt%, and the flakes in the first layer 222a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
 上記第2の層222bは、厚みが10~30μm、例えば、20μmであり、該第2の層222b中のエポキシ系樹脂の含有率が約5wt%、該第2の層222b中の上記フレーク状銀微粉末及び上記球状銀微粉末の合計含有率が約95wt%である。 The second layer 222b has a thickness of 10 to 30 μm, for example, 20 μm, and the content of the epoxy resin in the second layer 222b is about 5 wt%, and the flake shape in the second layer 222b The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
 また、表面側電極22の第2の層222b、222b、・・・中のフレーク粉状銀粉末の多くは、その長手方向が層と平行方向に多く配向している。 In addition, many of the flake powdery silver powders in the second layers 222b, 222b,... Of the surface-side electrode 22 have many longitudinal directions oriented parallel to the layers.
 上記表面側電極22のフィンガー電極221a、221a、・・・は、その各幅が50~200μmであり、例えば100μmであり、2mm間隔で配置されている。 The finger electrodes 221a, 221a,... Of the surface side electrode 22 have a width of 50 to 200 μm, for example, 100 μm, and are arranged at intervals of 2 mm.
 また、表面側電極22のバスバー電極221b、221bは、その各幅が、0.1~1.8mmであり、例えば1.3mmの直線状(帯状)電極である。 Further, the bus bar electrodes 221b and 221b of the surface side electrode 22 are each 0.1 to 1.8 mm in width, for example, a 1.3 mm straight (band) electrode.
 また、太陽電池セル1は、透明導電膜21上に第1主成分として金属材料等の反射性導電材料及び第2主成分としてエポキシ系樹脂等の樹脂を混合して含有してなる電極材料からなる裏面側電極23が形成されている。 Further, the solar battery cell 1 is made of an electrode material formed by mixing a reflective conductive material such as a metal material as the first main component and a resin such as an epoxy resin as the second main component on the transparent conductive film 21. The back surface side electrode 23 is formed.
 裏面側電極23は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極231a、231a、・・・とこれら複数の細線状のフィンガー電極231a、231a、・・・と交わるように配置されたバスバー電極231b、231bとにより構成されている。 The back surface side electrode 23 intersects with a plurality of fine wire finger electrodes 231a, 231a,... Arranged in parallel with each other as collector electrodes and the plurality of fine wire finger electrodes 231a, 231a,. Bus bar electrodes 231b and 231b.
 また、上記裏面側電極23は、第1の層232a及びこの第1の層232aと樹脂及び反射性導電材料の含有率の異なる第2の層232bがこの順に透明導電膜21上に積層されてなる2層構造である。 The back electrode 23 is formed by laminating the first layer 232a and the second layer 232b having different contents of the resin and the reflective conductive material on the transparent conductive film 21 in this order. This is a two-layer structure.
 下地である透明導電膜21側の第1の層232aは、裏面側カバー3側(反射光の入射側)の第2の層232bに比べ、樹脂の重量濃度が高く、反射性導電材料の重量濃度が低い。従って、裏面側カバー3側(反射光の入射側)の第2の層232bは、下地である透明導電膜21側の第1の層232aに比べ、反射性導電材料の重量濃度が高く、樹脂の重量濃度が低い。 The first layer 232a on the transparent conductive film 21 side, which is the base, has a higher resin weight concentration than the second layer 232b on the back cover 3 side (incident side of reflected light), and the weight of the reflective conductive material. The concentration is low. Therefore, the second layer 232b on the back surface side cover 3 side (the incident side of the reflected light) has a higher weight concentration of the reflective conductive material than the first layer 232a on the transparent conductive film 21 side which is the base, and the resin The weight concentration of is low.
 本実施形態では、裏面側電極23は、例えば、上記樹脂としてのエポキシ系樹脂と上記反射性導電材料としての平均長径5~20μmのフレーク状銀微粉末及び平均粒径0.1~5μm球状銀微粉末とを混合して含む混合物からなり、該フレーク状銀微粉末と該球状銀微粉末は1対1の重量比で含まれている。 In the present embodiment, the back-side electrode 23 includes, for example, an epoxy resin as the resin, a flaky silver fine powder with an average major axis of 5 to 20 μm and an average particle size of 0.1 to 5 μm as spherical silver as the reflective conductive material. It consists of a mixture containing fine powder, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
 上記第1の層232aは、厚みが10~30μm、例えば、20μmであり、該第1の層232b中のエポキシ系樹脂の含有率は約10wt%、該第2の層232a中の上記フレーク粉状銀微粉末及び上記球状銀微粉末の合計含有率は、約90wt%である。 The first layer 232a has a thickness of 10 to 30 μm, for example, 20 μm, the content of the epoxy resin in the first layer 232b is about 10 wt%, and the flake powder in the second layer 232a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
 また、裏面側電極23の第2の層232b、232b、・・・中のフレーク粉状銀粉末の多くは、その長手方向が層と平行方向に多く配向している。 Further, many of the flake powdery silver powders in the second layers 232b, 232b,... Of the back surface side electrode 23 are oriented in the longitudinal direction in a direction parallel to the layers.
 上記第2の層232bは、厚みが10~30μm、例えば、20μmであり、該第2の層232b中のエポキシ系樹脂の含有率が約5wt%、該第2の層232b中の上記フレーク粉状銀微粉末及び上記球状銀微粉末の合計含有率は、約95wt%である。 The second layer 232b has a thickness of 10 to 30 μm, for example, 20 μm, the epoxy resin content in the second layer 232b is about 5 wt%, and the flake powder in the second layer 232b. The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
 上記裏面側電極23のフィンガー電極231a、231a、・・・は、その各幅が50~200μmであり、例えば150μmであり、1mm間隔で配置されている。 The finger electrodes 231a, 231a,... Of the back side electrode 23 have a width of 50 to 200 μm, for example 150 μm, and are arranged at intervals of 1 mm.
 また、裏面側電極23のバスバー電極231b、231bは、その各幅が、0.1~4mmであり、例えば3mmの直線状(帯状)電極である。 Further, the bus bar electrodes 231b and 231b of the back surface side electrode 23 each have a width of 0.1 to 4 mm, for example, a 3 mm straight (band) electrode.
 そして、隣り合う太陽電池セル5、5、・・・は、一方の太陽電池セル5の表面側電極22のバスバー電極221b、221bと他方の太陽電池セル5の裏面側電極23のバスバー電極231b、231b間とが導電性接続部材6、6により電気的に接続されるように、各該導電性接続部材6は、それぞれ該バスバー電極221b、該バスバー電極231bと対向するように配置され、半田やエポキシ系樹脂からなる接着剤により固定されている。 The adjacent solar cells 5, 5,... Are bus bar electrodes 221 b and 221 b of the front surface side electrode 22 of one solar cell 5 and bus bar electrodes 231 b of the back surface side electrode 23 of the other solar cell 5. The conductive connection members 6 are disposed so as to face the bus bar electrodes 221b and the bus bar electrodes 231b, respectively, so that the conductive connection members 6 and 6 are electrically connected to each other. It is fixed with an adhesive made of epoxy resin.
 斯かる太陽電池セル5の表面側電極22は、第1の層222aの含有する樹脂の重量濃度が第2の層222bの含有する樹脂の重量濃度に比べて大きく、第2の層222bの含有する反射性導電材料の重量濃度が第1の層222aの含有する反射性導電材料の重量濃度に比べて大きい。 In the surface-side electrode 22 of the solar battery cell 5, the weight concentration of the resin contained in the first layer 222 a is larger than the weight concentration of the resin contained in the second layer 222 b, and the content of the second layer 222 b is contained. The weight concentration of the reflective conductive material is higher than the weight concentration of the reflective conductive material contained in the first layer 222a.
 よって、第1の層222a、222a、・・・の含有する樹脂の重量濃度を大きくしつつ、第2の層222b、222b、・・・の含有する反射性導電材料の重量濃度を大きくしているので、表面側電極22の太陽電池セル5上へ接着を強くしつつ、表面側電極22の上表面や上側側面の光反射率を大きくできる。 Therefore, the weight concentration of the reflective conductive material contained in the second layers 222b, 222b,... Is increased while the weight concentration of the resin contained in the first layers 222a, 222a,. Therefore, the light reflectance of the upper surface or upper side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the solar battery cell 5.
 この結果、太陽電池モジュール1において、表面側カバー2から入射した光のうち、表面側電極22の上表面や上側側面、即ち第2の層222b、222b、・・・に達した光Xは該上表面や該上側側面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。 As a result, in the solar cell module 1, among the light incident from the surface side cover 2, the light X reaching the upper surface and upper side surface of the surface side electrode 22, that is, the second layers 222 b, 222 b,. Since the light is efficiently reflected on the upper surface and the upper side surface, the amount of light X re-reflected by the surface-side cover 2 or the filler 4 increases, and as a result, a large amount of light is incident on the solar cells 5. The output of the cell 5 is improved.
 この結果、太陽電池モジュール1において、太陽電池セル5、5の間や太陽電池セル5中を透過し、裏面側カバー3等で反射した光のうち、裏面側電極23の上表面や上側側面、即ち第2の層232b、232b、・・・に達した光Yは該上表面や該上側側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光Yが多くなり、結果として、裏面側においても、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力がより向上する。 As a result, in the solar cell module 1, among the light that is transmitted between the solar cells 5 and 5 or in the solar cell 5 and reflected by the back surface side cover 3 or the like, the upper surface or upper side surface of the back surface side electrode 23, That is, since the light Y reaching the second layers 232b, 232b,... Is efficiently reflected on the upper surface and the upper side surface, much light Y is re-reflected by the back surface side cover 3 or the filler 4. As a result, since a large amount of light is incident on the solar battery cell 5 also on the back surface side, the output of the solar battery cell 5 is further improved.
 更に、表面側電極22の第2の層222b、222b、・・・中及び裏面側電極23の第2の層232b、232b、・・・中のフレ-ク状銀粉体は、可視光領域の光をよく反射する平均長径を有し、該フレ-ク状銀粉体の長径方向が該第2の層222b、222b、232b、232、・・・と平行方向に多く配向しているので、太陽電池セル5の出力がさらに向上する。
(太陽電池モジュールの製造方法)
 以下に、本実施形態に係る太陽電池モジュールの製造方法を説明する。
Further, the flake silver powder in the second layers 222b, 222b,... Of the front surface side electrode 22 and in the second layers 232b, 232b,. The flake silver powder has a major axis that reflects well, and the major axis direction of the flake-shaped silver powder is oriented in many directions in parallel with the second layers 222b, 222b, 232b, 232,. The output of the solar battery cell 5 is further improved.
(Method for manufacturing solar cell module)
Below, the manufacturing method of the solar cell module which concerns on this embodiment is demonstrated.
 まず、両表面上に透明電極膜層18、21を備えた太陽電池セル5を準備する。 First, solar cells 5 having transparent electrode film layers 18 and 21 on both surfaces are prepared.
 次に、所定量の樹脂が溶剤に溶けてなるペースト中に所定量の反射性導電材料が分散してなる第1の導電性ペースト及び所定量の樹脂が溶剤に溶けてなるペースト中に所定量の反射性導電材料が分散してなる第2の導電性ペーストを準備する。ここで、第2の導電性ペーストは、第1の導電性ペーストに比べて、樹脂の重量濃度が低く且つ反射性導電材料の重量濃度が高い。 Next, a predetermined amount in a first conductive paste in which a predetermined amount of a reflective conductive material is dispersed in a paste in which a predetermined amount of resin is dissolved in a solvent and in a paste in which a predetermined amount of resin is dissolved in a solvent A second conductive paste prepared by dispersing the reflective conductive material is prepared. Here, the second conductive paste has a lower resin weight concentration and a higher weight concentration of the reflective conductive material than the first conductive paste.
 続いて、上記太陽電池セル5の透明電極膜層18上に、スクリーン印刷、オフセット印刷、パット印刷等により上記第1の導電性ペーストを所定のパターンで印刷し、乾燥させた後、上記第2の導電性ペーストを該所定のパターンに重なるように印刷し、乾燥させると共に、上記太陽電池セル5の透明導電膜層21上にスクリーン印刷、オフセット印刷版、パット印刷版等により上記第1の導電性ペーストを所定のパターンで印刷し、乾燥させた後、上記第2の導電性ペーストを所定のパターンに重なるように印刷し、乾燥させる。 Subsequently, the first conductive paste is printed in a predetermined pattern on the transparent electrode film layer 18 of the solar battery cell 5 by screen printing, offset printing, pad printing, and the like, and then dried. Is printed on the transparent conductive layer 21 of the solar battery cell 5 by screen printing, offset printing plate, pad printing plate or the like. After the conductive paste is printed in a predetermined pattern and dried, the second conductive paste is printed so as to overlap the predetermined pattern and dried.
 その後、200℃程度、1時間程度の加熱により上記第1、第2の導電性ペーストを硬化させて第1の層222a、222a、・・・と第2の層222b、222b、・・・からなる表面側電極22及び第1の層232a、232a、・・・と第2の層232b、232b、・・・からなる裏面側電極23を作製する。 Thereafter, the first and second conductive pastes are cured by heating at about 200 ° C. for about 1 hour, and the first layers 222a, 222a,... And the second layers 222b, 222b,. .. And the second layer 232b, 232b,... And the second layer 232b, 232b,.
 続いて、上述のようにして表面側電極22及び裏面側電極23が作製された太陽電池セル5、5、・・・を複数準備すると共に、導電性接続部材6、6、・・・を準備する。 Subsequently, a plurality of solar cells 5, 5,... On which the front-side electrode 22 and the back-side electrode 23 are prepared as described above are prepared, and conductive connection members 6, 6,. To do.
 次に、各隣り合う太陽電池セル5、5の一方の太陽電池セル5の表面側電極22のバスバー電極221b上及び他方の太陽電池セル5の裏面側電極23のバスバー電極231b上と導電性接続部材6、6、・・・を半田、樹脂又は導電性フィラー等を含む樹脂からなる接着剤を用いて接続して太陽電池群7を作製する。 Next, conductive connection is made on the bus bar electrode 221b of the front surface side electrode 22 of one of the adjacent solar cells 5 and 5 and on the bus bar electrode 231b of the back surface side electrode 23 of the other solar cell 5. The solar cells 7 are manufactured by connecting the members 6, 6,... Using an adhesive made of a resin containing solder, resin, conductive filler, or the like.
 その後、太陽電池群7を複数準備し、接続部材9、接続部材10、11、12、13を取り付けた構造体を作製した後、表面側カバー2、充填材4となる封止シート、該構造体、充填材4となる封止シート、裏面側カバー3の順に積層した状態で加熱圧着する。 Thereafter, after preparing a plurality of solar cell groups 7 and producing a structure to which the connection member 9 and the connection members 10, 11, 12, and 13 are attached, the surface side cover 2, the sealing sheet that becomes the filler 4, the structure The body, the sealing sheet to be the filler 4 and the back surface side cover 3 are laminated in this order in a thermocompression bonding manner.
 最後に、端子ボックス14、金属枠体8等をとりつけ、太陽電池モジュール1を完成する。 Finally, the terminal box 14 and the metal frame 8 are attached to complete the solar cell module 1.
 本実施形態の製造方法は、各層に応じた樹脂及び反射性導電材料を含有する第1、第2のペーストを用いる方法であるので、第1の層222a、222a、・・・と第2の層222b、222b、・・・からなる表面側電極22及び第1の層232a、232a、・・・と第2の層232b、232b、・・・からなる裏面側電極23を容易に作製できる。 Since the manufacturing method of the present embodiment is a method using the first and second pastes containing the resin and the reflective conductive material corresponding to each layer, the first layers 222a, 222a,. The front surface side electrode 22 composed of the layers 222b, 222b,... And the back surface side electrode 23 composed of the first layers 232a, 232a,.
 また、本実施形態では第2のペーストを低粘度とし、スクリーン印刷、オフセット印刷、パット印刷等を用いて、表面側電極22の第2の層222b、222b、・・・及び裏面側電極23の第2の層232b、232b、・・・を形成するので、反射性導電材料中のフレーク粉状銀粉末を水平方向に多く配向させることが容易にできる。
(第2実施形態)
 本発明の第2実施形態に係る両面受光型太陽電池モジュールを説明する。なお、太陽電池セル5、表面側電極22及び裏面側電極23等は第1実施形態と同様であり、第1実施形態との相違点について主に説明する。
In the present embodiment, the second paste has a low viscosity, and screen printing, offset printing, pad printing, or the like is used to form the second layers 222b, 222b,. Since the second layers 232b, 232b,... Are formed, the flake powdery silver powder in the reflective conductive material can be easily oriented in the horizontal direction.
(Second Embodiment)
A double-sided solar cell module according to a second embodiment of the present invention will be described. In addition, the photovoltaic cell 5, the surface side electrode 22, the back surface side electrode 23, etc. are the same as that of 1st Embodiment, and difference with 1st Embodiment is mainly demonstrated.
 第2実施形態において、第1実施形態との相違点は、図1乃至図3、図5の裏面側カバー3が表面側カバー2と同様に白板強化ガラス等の透明な表面側カバー2であり、表面側カバー及び裏面側カバーが共に透光性部材である点である。 In the second embodiment, the difference from the first embodiment is that the back surface side cover 3 in FIGS. 1 to 3 and 5 is a transparent surface side cover 2 such as white plate tempered glass like the surface side cover 2. The front side cover and the back side cover are both translucent members.
 また、本実施形態の太陽電池モジュールは、両面受光型太陽電池モジュールであり、裏面側カバーがガラス等からなるため、端子ボックスは遮光ロスを低減するために枠体8の近傍に設けられ、表面側カバー2と裏面側カバー3から引き出された、接続部材10、11、12、13に相当する各出力取り出し用接続部材が該端子ボックス内に導かれている。 Further, the solar cell module of the present embodiment is a double-sided light receiving solar cell module, and the back side cover is made of glass or the like, so that the terminal box is provided in the vicinity of the frame body 8 in order to reduce light shielding loss, and the surface Each output extraction connecting member corresponding to the connecting members 10, 11, 12, and 13 drawn out from the side cover 2 and the back side cover 3 is led into the terminal box.
 本実施形態の太陽電池モジュールでは、裏面側カバー3からも光が入射可能であり、裏面側カバー3から入射した光のうち、裏面側電極23の上表面や上側側面、即ち第2の層232b、232b、・・・に達した光は該上表面や該上側側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光が多くなり、結果として、太陽電池セル5へ光が多く入射するため、第1実施形態に比べ、太陽電池セル5の出力が向上する。
(第3実施形態)
 図6を参照して本発明の第3実施形態に係る太陽電池モジュールを説明する。
In the solar cell module of the present embodiment, light can also enter from the back surface side cover 3, and among the light incident from the back surface side cover 3, the upper surface and upper side surface of the back surface side electrode 23, that is, the second layer 232b. The light reaching 232b,... Is efficiently reflected on the upper surface and the upper side surface, so that the amount of light re-reflected by the back surface side cover 3 or the filler 4 increases. Since much light enters 5, the output of the solar battery cell 5 is improved as compared with the first embodiment.
(Third embodiment)
A solar cell module according to a third embodiment of the present invention will be described with reference to FIG.
 図6は、本実施形態に係る太陽電池モジュールの一部断面図である。なお、第1実施形態との相違点について主に説明する。 FIG. 6 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
 第3実施形態において、第1実施形態との相違点は、裏面側電極23が第2の層232b、232b、・・・を有さず、第1の層232a、232a、・・・からなる点である。 The third embodiment is different from the first embodiment in that the back-side electrode 23 does not have the second layers 232b, 232b,..., But includes the first layers 232a, 232a,. Is a point.
 なお、その他は、第1実施形態と同じであり、同一または類似部分には同一符号を付して説明を割愛する。 The rest is the same as in the first embodiment, and the same or similar parts are denoted by the same reference numerals and description thereof is omitted.
 本実施形態でも、第1実施形態と同様に、表面側カバー2から入射した光のうち、表面側電極22の上表面や上側側面、即ち第2の層222b、222b、・・・に達した光Xは該上表面や該上側側面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。
(第4実施形態)
 図7を参照して本発明の第4実施形態に係る太陽電池モジュールを説明する。
Also in this embodiment, in the same manner as in the first embodiment, the light incident from the surface side cover 2 reaches the upper surface and upper side surface of the surface side electrode 22, that is, the second layers 222b, 222b,. Since the light X is efficiently reflected on the upper surface and the upper side surface, the amount of the light X re-reflected by the surface side cover 2 or the filler 4 increases, and as a result, a large amount of light enters the solar battery cell 5. Therefore, the output of the solar battery cell 5 is improved.
(Fourth embodiment)
A solar cell module according to a fourth embodiment of the present invention will be described with reference to FIG.
 図7は、本実施形態に係る太陽電池モジュールの一部断面図である。なお、第1実施形態との相違点について主に説明する。 FIG. 7 is a partial cross-sectional view of the solar cell module according to the present embodiment. Note that differences from the first embodiment will be mainly described.
 第4実施形態において、第1実施形態との相違点は、表面側電極22の第2の層242b、242b、・・・が第1の層242a、242a、・・・を覆うように形成されると共に、裏面側電極23の第2の層252b、252b、・・・が第の1層252a、252a、・・・を覆うように形成されている点である。その他は、第1実施形態と同様であり、同一または類似部分には同一符号を付している。 The fourth embodiment is different from the first embodiment in that the second layers 242b, 242b,... Of the surface-side electrode 22 are formed so as to cover the first layers 242a, 242a,. And the second layers 252b, 252b,... Of the back surface side electrode 23 are formed so as to cover the first layers 252a, 252a,. Others are the same as those in the first embodiment, and the same or similar parts are denoted by the same reference numerals.
 図7中、太陽電池セル1は、第1実施形態と同様に、透明導電膜18上に金属材料等の第1主成分である反射性導電材料及びエポキシ系樹脂等の接着剤として機能する第2主成分としての樹脂を混合して含有してなる電極材料からなる表面側電極22が形成されている。ここで、第1主成分である反射性導電材料の重量濃度は、第2主成分である樹脂の重量濃度より高い。 In FIG. 7, the solar battery cell 1 functions as an adhesive such as a reflective conductive material, which is a first main component such as a metal material, and an epoxy resin, on the transparent conductive film 18, as in the first embodiment. A surface-side electrode 22 made of an electrode material containing a mixture of two main components is formed. Here, the weight concentration of the reflective conductive material that is the first main component is higher than the weight concentration of the resin that is the second main component.
 表面側電極22は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極221a、221a、・・・とこれら複数の細線状のフィンガー電極221a、221a、・・・と交わるように配置されたバスバー電極221b、221bとにより構成されている。 The surface-side electrode 22 intersects with the plurality of fine- line finger electrodes 221a, 221a,... Arranged in parallel with each other as the collector electrode and the plurality of fine- line finger electrodes 221a, 221a,. Bus bar electrodes 221b and 221b.
 また、上記表面側電極22は、第1の層242a及びこの第1の層242aと樹脂及び反射性導電材料の含有率の異なる第2の層242bがこの順に透明導電膜18上に積層されてなる2層構造である。 The surface-side electrode 22 includes a first layer 242a and a second layer 242b having a different content of the resin and the reflective conductive material and the first layer 242a stacked on the transparent conductive film 18 in this order. This is a two-layer structure.
 下地である透明導電膜18側の第1の層242aは、表面側カバー2側(光入射側)の第2の層242bに比べ、樹脂の重量濃度が高く、反射性導電材料の重量濃度が低い。従って、表面側カバー2側(光入射側)の第2の層242bは、下地である透明導電膜18側の第1の層242aに比べ、反射性導電材料の重量濃度が高く、樹脂の重量濃度が低い。 The first layer 242a on the transparent conductive film 18 side, which is the base, has a higher resin weight concentration and a reflective conductive material weight concentration than the second layer 242b on the front cover 2 side (light incident side). Low. Therefore, the second layer 242b on the surface side cover 2 side (light incident side) has a higher weight concentration of the reflective conductive material than the first layer 242a on the transparent conductive film 18 side that is the base, and the weight of the resin. The concentration is low.
 本実施形態では、表面側電極22は、例えば、上記樹脂としてのエポキシ系樹脂と上記反射性導電材料としての平均長径5~20μmのフレーク状銀微粉末及び平均粒径0.1~5μmの球状銀微粉末とを混合して含む混合物からなり、該フレーク状銀微粉末と該球状銀微粉末は1対1の重量比で含まれている。 In the present embodiment, the surface-side electrode 22 includes, for example, an epoxy resin as the resin, a flaky silver fine powder having an average major axis of 5 to 20 μm and a spherical particle having an average particle diameter of 0.1 to 5 μm as the reflective conductive material. It consists of a mixture containing silver fine powder mixed, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
 上記第1の層242aは、厚みが10~30μm、例えば、20μmであり、該第1の層242a中のエポキシ系樹脂の含有率が約10wt%、該第1の層242a中の上記フレーク状銀微粉末及び上記球状銀微粉末の合計含有率が約90wt%である。 The first layer 242a has a thickness of 10 to 30 μm, for example, 20 μm, the epoxy resin content in the first layer 242a is about 10 wt%, and the flakes in the first layer 242a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
 上記第2の層242bは、厚みが10~30μm、例えば、20μmであり、該第2の層242b中のエポキシ系樹脂の含有率が約5wt%、該第2の層242b中の上記フレーク状銀微粉末及び上記球状銀微粉末の合計含有率が約95wt%である。 The second layer 242b has a thickness of 10 to 30 μm, for example, 20 μm, the content of the epoxy resin in the second layer 242b is about 5 wt%, and the flaky shape in the second layer 242b. The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
 上記表面側電極22のフィンガー電極221a、221a、・・・は、その各幅が50~200μmであり、例えば100μmであり、2mm間隔で配置されている。 The finger electrodes 221a, 221a,... Of the surface side electrode 22 have a width of 50 to 200 μm, for example, 100 μm, and are arranged at intervals of 2 mm.
 また、表面側電極22のバスバー電極221b、221bは、その各幅が、0.1~1.8mmであり、例えば1.3mmの直線状(帯状)電極である。 Further, the bus bar electrodes 221b and 221b of the surface side electrode 22 are each 0.1 to 1.8 mm in width, for example, a 1.3 mm straight (band) electrode.
 また、太陽電池セル1は、透明導電膜21上に第1主成分として金属材料等の反射性導電材料及び第2主成分としてエポキシ系樹脂等の樹脂を混合して含有してなる電極材料からなる裏面側電極23が形成されている。 Further, the solar battery cell 1 is made of an electrode material formed by mixing a reflective conductive material such as a metal material as the first main component and a resin such as an epoxy resin as the second main component on the transparent conductive film 21. The back surface side electrode 23 is formed.
 裏面側電極23は、集電極としての互いに平行に配置されてなる複数の細線状のフィンガー電極231a、231a、・・・とこれら複数の細線状のフィンガー電極231a、231a、・・・と交わるように配置されたバスバー電極231b、231bとにより構成されている。 The back surface side electrode 23 intersects with a plurality of fine wire finger electrodes 231a, 231a,... Arranged in parallel with each other as collector electrodes and the plurality of fine wire finger electrodes 231a, 231a,. Bus bar electrodes 231b and 231b.
 また、上記裏面側電極23は、第1の層252a及びこの第1の層252aと樹脂及び反射性導電材料の含有率の異なる第2の層252bがこの順に透明導電膜21上に積層されてなる2層構造である。 The back electrode 23 is formed by laminating a first layer 252a and a second layer 252b having a different content of resin and reflective conductive material on the transparent conductive film 21 in this order. This is a two-layer structure.
 下地である透明導電膜21側の第1の層252aは、裏面側カバー3側(反射光の入射側)の第2の層252bに比べ、樹脂の重量濃度が高く、反射性導電材料の重量濃度が低い。従って、裏面側カバー3側(反射光の入射側)の第2の層252bは、下地である透明導電膜21側の第1の層252aに比べ、反射性導電材料の重量濃度が高く、樹脂の重量濃度が低い。 The first layer 252a on the transparent conductive film 21 side, which is the base, has a higher resin weight concentration than the second layer 252b on the back side cover 3 side (incidence side of reflected light), and the weight of the reflective conductive material. The concentration is low. Therefore, the second layer 252b on the back cover 3 side (incidence side of the reflected light) has a higher weight concentration of the reflective conductive material than the first layer 252a on the transparent conductive film 21 side which is the base, and the resin The weight concentration of is low.
 本実施形態では、裏面側電極23は、例えば、上記樹脂としてのエポキシ系樹脂と上記反射性導電材料としての平均長径5~20μmのフレーク状銀微粉末及び平均粒径0.1~5μm球状銀微粉末とを混合して含む混合物からなり、該フレーク状銀微粉末と該球状銀微粉末は1対1の重量比で含まれている。 In the present embodiment, the back-side electrode 23 includes, for example, an epoxy resin as the resin, a flaky silver fine powder with an average major axis of 5 to 20 μm and an average particle size of 0.1 to 5 μm as spherical silver as the reflective conductive material. It consists of a mixture containing fine powder, and the flaky silver fine powder and the spherical silver fine powder are contained in a weight ratio of 1: 1.
 上記第1の層252aは、厚みが10~30μm、例えば、20μmであり、該第1の層252a中のエポキシ系樹脂の含有率は約10wt%、該第1の層252a中の上記フレーク粉状銀微粉末及び上記球状銀微粉末の合計含有率は、約90wt%である。 The first layer 252a has a thickness of 10 to 30 μm, for example, 20 μm, the epoxy resin content in the first layer 252a is about 10 wt%, and the flake powder in the first layer 252a The total content of the silver fine powder and the spherical silver fine powder is about 90 wt%.
 上記第2の層252bは、厚みが10~30μm、例えば、20μmであり、該第2の層252b中のエポキシ系樹脂の含有率が約5wt%、該第2の層252b中の上記フレーク粉状銀微粉末及び上記球状銀微粉末の合計含有率は、約95wt%である。 The second layer 252b has a thickness of 10 to 30 μm, for example, 20 μm, the epoxy resin content in the second layer 252b is about 5 wt%, and the flake powder in the second layer 252b The total content of the silver fine powder and the spherical silver fine powder is about 95 wt%.
 上記裏面側電極23のフィンガー電極231a、231a、・・・は、その各幅が50~200μmであり、例えば150μmであり、1mm間隔で配置されている。 The finger electrodes 231a, 231a,... Of the back side electrode 23 have a width of 50 to 200 μm, for example 150 μm, and are arranged at intervals of 1 mm.
 また、裏面側電極23のバスバー電極231b、231bは、その各幅が、0.1~4mmであり、例えば3mmの直線状(帯状)電極である。 Further, the bus bar electrodes 231b and 231b of the back surface side electrode 23 each have a width of 0.1 to 4 mm, for example, a 3 mm straight (band) electrode.
 斯かる太陽電池セル5の表面側電極22は、第1の層242aの含有する樹脂の重量濃度が第2の層242bの含有する樹脂の重量濃度に比べて大きく、第2の層242bの含有する反射性導電材料の重量濃度が第1の層242aの含有する反射性導電材料の重量濃度に比べて大きい。 In the surface side electrode 22 of the solar battery cell 5, the weight concentration of the resin contained in the first layer 242 a is larger than the weight concentration of the resin contained in the second layer 242 b, and the content of the second layer 242 b is contained. The weight concentration of the reflective conductive material is larger than the weight concentration of the reflective conductive material contained in the first layer 242a.
 また、表面側電極22の第1の層242a、242a、・・・は、第2の層242b、242b、・・・で覆われており、表面側電極22の上表面及び側面の全域、即ち光が当たる部分は、第2の層242b、242b、・・・となる構成である。 In addition, the first layers 242a, 242a,... Of the surface side electrode 22 are covered with the second layers 242b, 242b,. The portions that are exposed to light are configured to be the second layers 242b, 242b,.
 よって、第1の層242a、242a、・・・の含有する樹脂の重量濃度を大きくしつつ、第2の層242b、242b、・・・の含有する反射性導電材料の重量濃度を大きくしているので、表面側電極22の太陽電池セル5上への接着を強くしつつ、表面側電極22の上表面及び側面の光反射率を大きくできる。 Therefore, while increasing the weight concentration of the resin contained in the first layers 242a, 242a,..., The weight concentration of the reflective conductive material contained in the second layers 242b, 242b,. Therefore, the light reflectance of the upper surface and side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the solar battery cell 5.
 この結果、太陽電池モジュール1において、表面側カバー2から入射した光のうち、表面側電極22の表面に達した光Xは該表面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。 As a result, in the solar cell module 1, the light X that has reached the surface of the surface-side electrode 22 out of the light incident from the surface-side cover 2 is efficiently reflected by the surface. As a result, the amount of light X that is re-reflected increases, and as a result, a large amount of light is incident on the solar cells 5, so that the output of the solar cells 5 is improved.
 また、太陽電池セル5の裏面側電極23も、第1の層252aの含有する樹脂の重量濃度が第2の層252bの含有する樹脂の重量濃度に比べて大きく、第2の層252bの含・BR>Lする反射性導電材料の重量濃度が第1の層252aの含有する反射性導電材料の重量濃度に比べて大きい。 Further, the back surface side electrode 23 of the solar battery cell 5 also has a higher weight concentration of the resin contained in the first layer 252a than the weight concentration of the resin contained in the second layer 252b. The weight concentration of the reflective conductive material that BR> L is larger than the weight concentration of the reflective conductive material contained in the first layer 252a.
 また、裏面側電極23の第1の層252a、252a、・・・は、第2の層252b、252b、・・・で覆われており、裏面側電極23の上表面及び側面の全域、即ち光が当たる部分は、第2の層252b、252b、・・・となる構成である。 In addition, the first layers 252a, 252a,... Of the back side electrode 23 are covered with the second layers 252b, 252b,. The portion that is exposed to light is configured to be the second layers 252b, 252b,.
 よって、第1の層252a、252a、・・・の含有する樹脂の重量濃度を大きくしつつ、第2の層252b、252b、・・・の含有する反射性導電材料の重量濃度を大きくしているので、裏面側電極23の太陽電池セル5上への接着を強くしつつ、裏面側電極23の上表面及び側面の光反射率を大きくできる。 Therefore, while increasing the weight concentration of the resin contained in the first layers 252a, 252a,..., The weight concentration of the reflective conductive material contained in the second layers 252b, 252b,. Therefore, the light reflectance of the upper surface and side surface of the back surface side electrode 23 can be increased while strengthening the adhesion of the back surface side electrode 23 onto the solar battery cell 5.
 この結果、太陽電池モジュール1において、太陽電池セル5、5の間や太陽電池セル5中を透過し、裏面側カバー3等で反射した光のうち、裏面側電極23の表面に達した光Yは上記上表面や上記側面で効率よく反射されるため、裏面側カバー3又は充填材4で再反射される光Yが多くなり、結果として、裏面側においても、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力がより向上する。 As a result, in the solar cell module 1, the light Y that has passed through the solar cells 5, 5 and the solar cell 5 and has reached the surface of the back surface side electrode 23 among the light reflected by the back surface side cover 3 or the like. Is efficiently reflected by the upper surface and the side surface, and therefore, the amount of light Y re-reflected by the back surface side cover 3 or the filler 4 is increased, and as a result, the back surface side also has a large amount of light to the solar cells 5. Since it injects, the output of the photovoltaic cell 5 improves more.
 しかも、表面側電極22は、反射性導電材料の重量濃度が高い第2の層242b、242b、・・・の端部が透明導電膜18と直接接触する形態をとっているので、表面側電極22と透明導電膜18と接触抵抗が小さくなり、太陽電池セル5の出力が向上する。 In addition, since the surface side electrode 22 has a form in which the end portions of the second layers 242b, 242b,... Having a high weight concentration of the reflective conductive material are in direct contact with the transparent conductive film 18, the surface side electrode 22 and the transparent conductive film 18 and a contact resistance become small, and the output of the photovoltaic cell 5 improves.
 更に、裏面側電極23も、反射性導電材料の重量濃度が高い第2の層252b、252b、・・・の端部が透明導電膜21と直接接触する形態をとっているので、裏面側電極23と透明導電膜21との接触抵抗が小さくなり、太陽電池セル5の出力が向上する。 Further, the back-side electrode 23 is also in a form in which the ends of the second layers 252b, 252b,... Having a high weight concentration of the reflective conductive material are in direct contact with the transparent conductive film 21, so that the back-side electrode The contact resistance between 23 and the transparent conductive film 21 is reduced, and the output of the solar battery cell 5 is improved.
 上述では、表面側電極22の第1の層242a、242a、・・・は、第2の層242b、242b、・・・で完全に覆われ、第2の層242b、242b、・・・の端部の全域が透明導電膜18と直接接触する形態であるが、該端部の一部のみが透明導電膜18と直接接触するように第2の層242b、242b、・・・が第1の層242a、242a、・・・を覆う形態としてもよく、効果が得られる。 In the above description, the first layers 242a, 242a,... Of the surface-side electrode 22 are completely covered with the second layers 242b, 242b,..., And the second layers 242b, 242b,. Although the entire region of the end portion is in direct contact with the transparent conductive film 18, the second layers 242b, 242b,... Are first so that only part of the end portion is in direct contact with the transparent conductive film 18. The layers 242a, 242a,... May be covered and an effect is obtained.
 また、裏面側電極23の第1の層252a、252a、・・・も、第2の層252b、252b、・・・で完全に覆われ、第2の層252b、252b、・・・の端部の全域が透明導電膜21と直接接触する形態であるが、該端部の一部のみが透明導電膜21と直接接触するように第2の層252b、252b、・・・が第1の層252a、252a、・・・を覆う形態してもよく、効果が得られる。 Further, the first layers 252a, 252a,... Of the back surface side electrode 23 are also completely covered with the second layers 252b, 252b,... And the ends of the second layers 252b, 252b,. The second layer 252b, 252b,... Is the first layer so that only a part of the end portion is in direct contact with the transparent conductive film 21. The layers 252a, 252a,... May be covered to obtain an effect.
 本実施形態の太陽電池セル5の表面側電極22、裏面側電極23も、例えば、第1実施形態と同様に、第1、第2の導電性ペーストを用いて作製できる。この場合、第2層242b、242b、252b、252b、・・・用のスクリーン印刷版、オフセット印刷版、パット印刷版等は、第1層242a、242a、252a、252a、・・・用のスクリーン印刷版、オフセット印刷版、パット印刷版等より例えば約10μ程度パターン幅が大きいものを用いればよい。
(第5実施形態)
 図8を参照して本発明の第5実施形態に係る太陽電池モジュールを説明する。
The front surface side electrode 22 and the back surface side electrode 23 of the solar battery cell 5 of the present embodiment can also be manufactured using the first and second conductive pastes, for example, as in the first embodiment. In this case, the screen printing plate, offset printing plate, pad printing plate, etc. for the second layers 242b, 242b, 252b, 252b,. What has a larger pattern width, for example, about 10 μm than a printing plate, an offset printing plate, a pad printing plate, or the like may be used.
(Fifth embodiment)
A solar cell module according to a fifth embodiment of the present invention will be described with reference to FIG.
 図8は、本実施形態の太陽電池モジュールの一部断面図である。なお、第4実施形態との相違点について主に説明する。 FIG. 8 is a partial cross-sectional view of the solar cell module of the present embodiment. Note that differences from the fourth embodiment will be mainly described.
 第5実施形態において、第4実施形態との相違点は、裏面側電極23が第2の層242b、242b、・・・を有さず、第1の層242a、242a、・・・からなる点である。 The fifth embodiment is different from the fourth embodiment in that the back surface side electrode 23 does not have the second layers 242b, 242b,..., But includes the first layers 242a, 242a,. Is a point.
 なお、その他は、第4実施形態と同じであり、同一または類似部分には同一符号を付して説明を割愛する。 The rest is the same as in the fourth embodiment, and the same or similar parts are denoted by the same reference numerals and description thereof is omitted.
 本実施形態でも、第5実施形態と同様に、第1の層242a、242a、・・・の含有する樹脂の重量濃度を大きくしつつ、第2の層242b、242b、・・・の含有する反射性導電材料の重量濃度を大きくしているので、表面側電極22の太陽電池セル5の基体上へ接着を強くしつつ、表面側電極22の上表面及び側面の光反射率を大きくできる。 Also in this embodiment, as in the fifth embodiment, the second layer 242b, 242b,... Contains, while increasing the weight concentration of the resin contained in the first layer 242a, 242a,. Since the weight concentration of the reflective conductive material is increased, the light reflectance of the upper surface and the side surface of the surface side electrode 22 can be increased while strengthening the adhesion of the surface side electrode 22 onto the base of the solar battery cell 5.
 この結果、太陽電池モジュール1において、表面側カバー2から入射した光のうち、表面側電極22の表面に達した光Xは該表面で効率よく反射されるため、表面側カバー2又は充填材4で再反射される光Xが多くなり、結果として、太陽電池セル5へ光が多く入射するため、太陽電池セル5の出力が向上する。
(第6実施形態)
 本発明の第6実施形態に係る太陽電池モジュールを説明する。
As a result, in the solar cell module 1, the light X that has reached the surface of the surface-side electrode 22 out of the light incident from the surface-side cover 2 is efficiently reflected by the surface. As a result, the amount of light X that is re-reflected increases, and as a result, a large amount of light is incident on the solar cell 5, so that the output of the solar cell 5 is improved.
(Sixth embodiment)
A solar cell module according to a sixth embodiment of the invention will be described.
 第6実施形態において、第1実施形態との相違点は、表面側電極22の第1の層222a、222a、・・・及び裏面側電極23の第1の層232b、232b、・・・に、第1実施形態で用いたエポキシ系樹脂と該エポキシ系樹脂に比べて弾性が高い樹脂を含んで形成されている点であり、その他は、第1実施形態と同様である。 The sixth embodiment differs from the first embodiment in the first layers 222a, 222a,... Of the front surface side electrode 22 and the first layers 232b, 232b,. This is that the epoxy resin used in the first embodiment and a resin having higher elasticity than the epoxy resin are included, and the others are the same as in the first embodiment.
 表面側電極22の第1の層222a、222a・・・及び裏面側電極23の第1の層232a、232a・・・は、第1実施形態で用いたエポキシ系樹脂を主成分とした樹脂が含有され、更にこのエポキシ系樹脂に比べて弾性が高くなるように、該エポキシ系樹脂より平均分子量の大きいエポキシ系樹脂またはウレタン系樹脂等が副成分として含有されている。 The first layers 222a, 222a ... of the front side electrode 22 and the first layers 232a, 232a ... of the back side electrode 23 are made of a resin mainly composed of the epoxy resin used in the first embodiment. Further, an epoxy resin or a urethane resin having an average molecular weight higher than that of the epoxy resin is contained as a subcomponent so that the elasticity is higher than that of the epoxy resin.
 本実施形態では、表面側電極22の第1の層222a、222a・・・及び裏面側電極23の第1の層232a、232a・・・は、主成分の樹脂の含有率が約5wt%、該主成分より弾性が高い副成分の樹脂の含有率が約5wt%、平均長径5~20μmのフレーク状銀微粉末及び平均粒径0.1~5μmの球状銀微粉末とを混合した反射性導電材料を含有率約90wt%で含有している。 In this embodiment, the first layers 222a, 222a,... Of the front surface side electrode 22 and the first layers 232a, 232a,. Reflectivity in which the content of the subcomponent resin having higher elasticity than the main component is about 5 wt%, flaky silver fine powder having an average major axis of 5 to 20 μm and spherical silver fine powder having an average particle size of 0.1 to 5 μm are mixed. The conductive material is contained at a content rate of about 90 wt%.
 なお、表面側電極22の第2の層222b、222b、・・・及び裏面側電極23の第2の層232b、232b、・・・は、第1実施形態と同じである。 Note that the second layers 222b, 222b,... Of the front surface side electrode 22 and the second layers 232b, 232b,... Of the back surface side electrode 23 are the same as in the first embodiment.
 この結果、第1実施形態と同様の効果が得られる他、弾性が高い副成分の樹脂を含む表面側電極22の第1の層222a、222a、・・・、裏面側電極23の第1の層232a、232a、・・・は、これら層中の表面側電極22及び裏面側電極23と基板15との熱膨張係数の差に起因する応力が緩和されるため、表面側電極22と下地となる透明導電膜18の間、裏面側電極23と下地となる透明導電膜21の接着性が高くなり、信頼性が向上する。 As a result, the same effects as those of the first embodiment can be obtained, and the first layers 222a, 222a,... In the layers 232a, 232a,..., The stress due to the difference in thermal expansion coefficient between the front surface side electrode 22 and the back surface side electrode 23 and the substrate 15 in these layers is relieved. Between the transparent conductive film 18 to be formed, the adhesiveness between the back-side electrode 23 and the transparent conductive film 21 to be the base is increased, and reliability is improved.
 上記各実施形態では、表面側電極22の第1の層、裏面側電極23の第1の層に1種類または2種類の樹脂が含有されているが、2種類以上の複数の樹脂を含有したものにも適用できる。また、表面側電極22の第2の層、裏面側電極23の第2の層に1種類の樹脂が含有されているが、2種類以上の複数の樹脂を含有したものにも適用できる。 In each of the above embodiments, one type or two types of resins are contained in the first layer of the front-side electrode 22 and the first layer of the back-side electrode 23, but two or more types of resins are contained. It can also be applied to things. Further, although one type of resin is contained in the second layer of the front surface side electrode 22 and the second layer of the back side electrode 23, the present invention can also be applied to one containing two or more types of resins.
 上記各実施形態において、第6実施形態と同様に、表面側電極22の第1の層又は/及び裏面側電極23の第1の層に主成分の樹脂の他、該主成分より弾性が高い副成分の樹脂を含有させるようにしてもよい。 In each of the above embodiments, as in the sixth embodiment, the first layer of the front-side electrode 22 and / or the first layer of the back-side electrode 23 has a higher elasticity than the main component in addition to the main component resin. You may make it contain resin of a subcomponent.
 また、上記主成分より弾性が高い副成分の樹脂を第2の層に含有させるようにしてもよい。 Further, a secondary component resin having higher elasticity than the main component may be contained in the second layer.
 また、上記各実施形態の表面側電極22、裏面側電極23は、第1の層、第2の層の2層構造であるが、これに限らず複数の層で構成されてもよい。この場合、反射性導電材料の重量濃度は、最上層が最下層に比べて高く、樹脂の重量濃度は、最下層が最上層に比べて高くなるようにすればよい。更には、反射性導電材料の重量濃度は、最上層の上部側が最下層の下部側に比べて高く、樹脂の重量濃度は、最下層の下部側が最上層の上部側に比べて高くなるようにしてもよい。 In addition, the front surface side electrode 22 and the back surface side electrode 23 of each of the above embodiments have a two-layer structure of a first layer and a second layer, but the present invention is not limited to this and may be composed of a plurality of layers. In this case, the weight concentration of the reflective conductive material may be higher in the uppermost layer than that in the lowermost layer, and the weight concentration of the resin may be higher in the lowermost layer than in the uppermost layer. Furthermore, the weight concentration of the reflective conductive material is higher on the upper side of the uppermost layer than the lower side of the lowermost layer, and the weight concentration of the resin is higher on the lower side of the lowermost layer than the upper side of the uppermost layer. May be.
 また、表面側電極22、裏面側電極23は、層構造を有さない構成、1層のみの構成であってもよい。この場合、反射性導電材料の重量濃度は、上部側が下部側に比べて高く、樹脂の重量濃度は、下部側が上部側に比べて高くなるようにすればよい。更には、反射性導電材料の重量濃度は、下部側から上部側に向けて漸次的に高くなるようにし、樹脂の重量濃度は、上部側から下部側に向けて漸次的に高くなるようにしてもよい。 Further, the front surface side electrode 22 and the back surface side electrode 23 may have a structure without a layer structure, or a structure with only one layer. In this case, the weight concentration of the reflective conductive material may be higher on the upper side than on the lower side, and the weight concentration of the resin may be higher on the lower side than on the upper side. Further, the weight concentration of the reflective conductive material is gradually increased from the lower side to the upper side, and the weight concentration of the resin is gradually increased from the upper side to the lower side. Also good.
 上記各実施形態の太陽電池セルは、所謂HIT太陽電池セルを用いて説明したが、本発明は、単結晶太陽電池セルや多結晶太陽電池セルなどの種々の太陽電池セルに利用可能であり、また両面受光型のほか、片面受光型太陽電池セルにも適用が可能である。 The solar cells of the above embodiments have been described using so-called HIT solar cells, but the present invention is applicable to various solar cells such as single crystal solar cells and polycrystalline solar cells, In addition to the double-sided light receiving type, it can also be applied to single-sided light receiving solar cells.
 上記多結晶太陽電池セルまたは単結晶太陽電池は、例えば、P型多結晶またはP型単結晶からなるシリコン基板の表面から所定の深さまでn+層が形成されてpn接合が形成され、該シリコン基板の裏面から所定の深さまでp+層が形成され、前記n+層上に表面側電極22が形成され、前記p+層上に裏面側電極23が形成された太陽電池セルでもよい。 The polycrystalline solar battery cell or the single crystal solar battery includes, for example, an n + layer formed from a surface of a silicon substrate made of P-type polycrystal or P-type single crystal to a predetermined depth to form a pn junction, and the silicon A solar cell in which a p + layer is formed from the back surface of the substrate to a predetermined depth, a front surface side electrode 22 is formed on the n + layer, and a back surface side electrode 23 is formed on the p + layer.
 また、上記各実施形態では、本発明を、表面側電極22及びまたは裏面側電極23のフィンガー電極とバスバー電極の両方に適用したが、フィンガー電極のみに適用してもよい。 In each of the above embodiments, the present invention is applied to both the finger electrode and the bus bar electrode of the front surface side electrode 22 and / or the back surface side electrode 23, but may be applied only to the finger electrode.
 また、上記各実施形態では、表面側電極22、裏面側電極23は、フィンガー電極とバスバー電極からなるが、表面側電極又は/及び裏面側電極は、バスバー電極を有さず、フィンガー電極221a、231a、・・・のみからなるバスバーレス構造でもよい。 Moreover, in each said embodiment, although the surface side electrode 22 and the back surface side electrode 23 consist of a finger electrode and a bus-bar electrode, a surface side electrode or / and a back surface-side electrode do not have a bus-bar electrode, finger electrode 221a, A bus bar-less structure consisting only of 231a,.
 また、裏面側電極は、上述とは異なる他の構造の電極、例えば全面金属膜で覆われる電極とこの上に形成されるバスバー電極とで構成されるものでもよい。
更に、本発明の太陽電池モジュールは、上記各実施形態に限定されず、例えば、複数の太陽電池セルを含む構成に限らず、1つの太陽電池セルからなる太陽電池モジュールであってもよい。
Further, the back surface side electrode may be composed of an electrode having another structure different from that described above, for example, an electrode covered with a metal film on the entire surface and a bus bar electrode formed thereon.
Furthermore, the solar cell module of the present invention is not limited to the above-described embodiments. For example, the solar cell module is not limited to a configuration including a plurality of solar cells, and may be a solar cell module including one solar cell.
 また、枠体を備えないフレームレス構造であってもよい。 Also, a frameless structure without a frame may be used.
 また、上記各実施例では、太陽電池セルの表面電極と隣り合う太陽電池セルの裏面電極とを直列に接続する場合について例を挙げて説明したが、隣り合う太陽電池セル間の接続は、上記各実施形態に限らず、太陽電池セルと隣り合う太陽電池セルの表面電極同士あるいは裏面電極同士を接続するようにしてもよい。 Moreover, in each said Example, although the example was given and demonstrated about the case where the surface electrode of a photovoltaic cell and the back surface electrode of an adjacent photovoltaic cell were connected in series, the connection between adjacent photovoltaic cells is the above-mentioned. Not only each embodiment but you may make it connect the surface electrodes of a photovoltaic cell adjacent to a photovoltaic cell, or back electrodes.
 例えば、図9、図10のような構成であってもよい。なお、図9、図10中、第1実施形態と同一または類似部分には同一符号を付している。 For example, the configuration shown in FIGS. 9 and 10 may be used. In FIG. 9 and FIG. 10, the same or similar parts as those in the first embodiment are denoted by the same reference numerals.
 図9に示す太陽電池モジュール1は、隣り合う2つの極性が同じ素子構造の太陽電池セル5、5を1組とすると共に、これらと極性が逆の素子構造の隣り合う2つの太陽電池セル5、5を1組となるように配置して、導電性接続部材6、6、・・によりこれらを電気的に直列接続している。 The solar cell module 1 shown in FIG. 9 is a set of two adjacent solar cells 5 and 5 having the same element structure, and two adjacent solar cells 5 having an element structure opposite in polarity. 5 are arranged in one set, and these are electrically connected in series by the conductive connecting members 6, 6,.
 図10に示す太陽電池モジュール1は、隣り合う太陽電池セル5、5は、互いに極性が逆となる素子構成を有しており、導電性接続部材6、6、・・は隣り合う太陽電池セル5、5の表面側電極22、22同士及び太陽電池セル5、5の裏面側電極23、23同士を電気的に直列接続している。 In the solar cell module 1 shown in FIG. 10, adjacent solar cells 5 and 5 have an element configuration in which the polarities are opposite to each other, and the conductive connecting members 6, 6,. 5, 5 and 5 and the back surface side electrodes 23 and 23 of the photovoltaic cells 5 and 5 are electrically connected in series.
 また、上記太陽電池モジュールの表面側電極22及び裏面側電極23の作製方法として、スクリーン印刷、オフセット印刷、パット印刷等の例を示したが、インクジェット印刷等で作製しても勿論よい。 In addition, as examples of the method for producing the front surface side electrode 22 and the back surface side electrode 23 of the solar cell module, screen printing, offset printing, pad printing, and the like have been shown.
1 太陽電池モジュール
2 表面側カバー
3 裏面側カバー
5 太陽電池セル
15 単結晶シリコン基板(半導体基板)
22 表面側電極
221a フィンガー電極
222a、242a 第1の層
222b、242b 第2の層
221b バスバー電極
23 裏面側電極
231a フィンガー電極
232a、252a 第1の層
232b、252b 第2の層
231b バスバー電極
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Front surface side cover 3 Back surface side cover 5 Solar cell 15 Single crystal silicon substrate (semiconductor substrate)
22 Front side electrode 221a Finger electrode 222a, 242a 1st layer 222b, 242b 2nd layer 221b Bus bar electrode 23 Back side electrode 231a Finger electrode 232a, 252a 1st layer 232b, 252b 2nd layer 231b Bus bar electrode

Claims (7)

  1.  第1の面と、第2の面と、前記第1の面上に形成された集電極とを備えた太陽電池セルであって、前記集電極は、少なくとも反射性導電材料と樹脂とを含み、前記集電極中の前記反射性導電材料の重量濃度は、前記集電極の上表面側が上記第1の面側に比べて高く、且つ前記集電極中の前記樹脂の重量濃度は、前記集電極中の前記第1の面側が前記上表面側よりも高いことを特徴とする太陽電池セル。 A solar cell comprising a first surface, a second surface, and a collector electrode formed on the first surface, wherein the collector electrode includes at least a reflective conductive material and a resin. The weight concentration of the reflective conductive material in the collector electrode is higher on the upper surface side of the collector electrode than the first surface side, and the weight concentration of the resin in the collector electrode is The solar cell, wherein the first surface side is higher than the upper surface side.
  2.  前記樹脂は、少なくとも第1の樹脂と該第1の樹脂に比べて弾性が高い第2の樹脂を含有し、該第2の樹脂は前記上表面側に比べ前記第1の面側に多く存在することを特徴とする請求項1記載の太陽電池セル。 The resin contains at least a first resin and a second resin having higher elasticity than the first resin, and the second resin is present more on the first surface side than on the upper surface side. The solar cell according to claim 1, wherein:
  3.  前記集電極は複数層からなり、前記反射性導電材料の重量濃度は、該複数層のうちの最上層が該複数層のうちの最下層に比べて高く、且つ前記樹脂の重量濃度は該複数層のうちの最下層が該複数層のうちの最上層に比べて高いことを特徴とする請求項1または2記載の太陽電池セル。 The collector electrode includes a plurality of layers, and the weight concentration of the reflective conductive material is higher in the uppermost layer of the plurality of layers than in the lowermost layer of the plurality of layers, and the weight concentration of the resin is the plurality of layers. The solar cell according to claim 1 or 2, wherein a lowermost layer of the layers is higher than an uppermost layer of the plurality of layers.
  4.  前記集電極の最上層は、その下層を覆うように形成されていることを特徴とする請求項3に記載の太陽電池セル。 The solar cell according to claim 3, wherein the uppermost layer of the collector electrode is formed to cover the lower layer.
  5.  前記集電極の最上層の少なくとも一部は、前記第1の面に接触するように形成されていることを特徴とする請求項3または4に記載の太陽電池セル。 The solar cell according to claim 3 or 4, wherein at least a part of the uppermost layer of the collector electrode is formed so as to be in contact with the first surface.
  6.  請求項1乃至請求項5のいずれか一項に記載の太陽電池セルを備えた太陽電池モジュールであって、透光性部材と、裏面側保護部材と、これらの間に1以上の前記太陽電池セルを備えたことを特徴とする太陽電池モジュール。 It is a solar cell module provided with the photovoltaic cell as described in any one of Claims 1 thru | or 5, Comprising: A translucent member, a back surface side protection member, and one or more said solar cells between these A solar cell module comprising a cell.
  7.  前記裏面側保護部材は、透光性部材であることを特徴とする請求項6記載の太陽電池モジュール。 The solar cell module according to claim 6, wherein the back surface side protection member is a translucent member.
PCT/JP2011/057982 2010-03-30 2011-03-30 Solar cell and solar cell module WO2011122656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-079244 2010-03-30
JP2010079244A JP5359962B2 (en) 2010-03-30 2010-03-30 Solar cell and solar cell module

Publications (1)

Publication Number Publication Date
WO2011122656A1 true WO2011122656A1 (en) 2011-10-06

Family

ID=44712350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057982 WO2011122656A1 (en) 2010-03-30 2011-03-30 Solar cell and solar cell module

Country Status (2)

Country Link
JP (1) JP5359962B2 (en)
WO (1) WO2011122656A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909143B1 (en) 2012-01-20 2018-10-17 엘지전자 주식회사 Bifacial solar cell
KR102005445B1 (en) * 2016-11-17 2019-07-30 엘지전자 주식회사 Solar cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186255U (en) * 1985-05-09 1986-11-20
JPS6274349U (en) * 1985-10-29 1987-05-13
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2005217148A (en) * 2004-01-29 2005-08-11 Sanyo Electric Co Ltd Solar cell module
JP2009193993A (en) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp Method of manufacturing solar cell electrode, and solar cell electrode
JP2009260190A (en) * 2008-04-21 2009-11-05 Sharp Corp Solar cell, solar cells with tab, and method for manufacturing these

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200926210A (en) * 2007-09-27 2009-06-16 Murata Manufacturing Co Ag electrode paste, solar battery cell, and process for producing the solar battery cell
JP5380810B2 (en) * 2007-09-28 2014-01-08 三洋電機株式会社 Solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186255U (en) * 1985-05-09 1986-11-20
JPS6274349U (en) * 1985-10-29 1987-05-13
JPH11103084A (en) * 1997-09-26 1999-04-13 Sanyo Electric Co Ltd Solar cell element and manufacture thereof
JP2005217148A (en) * 2004-01-29 2005-08-11 Sanyo Electric Co Ltd Solar cell module
JP2009193993A (en) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp Method of manufacturing solar cell electrode, and solar cell electrode
JP2009260190A (en) * 2008-04-21 2009-11-05 Sharp Corp Solar cell, solar cells with tab, and method for manufacturing these

Also Published As

Publication number Publication date
JP5359962B2 (en) 2013-12-04
JP2011211080A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5687506B2 (en) Solar cell and solar cell module
JP5874011B2 (en) Solar cell and solar cell module
JP6410106B2 (en) Solar cell module
US20120305047A1 (en) Solar cell, solar cell module and solar cell system
CN105977328B (en) Solar cell module
KR20080048952A (en) Solar battery module
US9917223B2 (en) Solar cell panel
US20140261619A1 (en) Interconnector and solar cell module having the same
US20170373210A1 (en) Solar cell module
WO2011122652A1 (en) Solar cell and solar cell module
EP2413369B1 (en) Solar cell panel
JP5359962B2 (en) Solar cell and solar cell module
US8975507B2 (en) Solar cell module
WO2013154188A1 (en) Solar cell
WO2012073802A1 (en) Solar battery cell and solar battery module
US10784384B2 (en) Solar cell module
JP5906422B2 (en) Solar cell and solar cell module
JP2017050514A (en) Solar battery module
JP2016192436A (en) Solar cell module
KR20140056524A (en) Solar cell
JP2017069291A (en) Solar battery module
CN113793874A (en) Conductive backboard and battery module for double-sided light-receiving mechanical laminated solar battery
WO2015194147A1 (en) Solar cell module
WO2012043670A1 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762880

Country of ref document: EP

Kind code of ref document: A1