WO2011122559A1 - Carbon dioxide gas recovery device - Google Patents

Carbon dioxide gas recovery device Download PDF

Info

Publication number
WO2011122559A1
WO2011122559A1 PCT/JP2011/057636 JP2011057636W WO2011122559A1 WO 2011122559 A1 WO2011122559 A1 WO 2011122559A1 JP 2011057636 W JP2011057636 W JP 2011057636W WO 2011122559 A1 WO2011122559 A1 WO 2011122559A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
carbon dioxide
rich
tower
dioxide gas
Prior art date
Application number
PCT/JP2011/057636
Other languages
French (fr)
Japanese (ja)
Inventor
堤 敦司
啓 岸本
寂樹 ▲甘▼蔗
一毅 村橋
知弘 三村
幹洋 林
裕 江国
Original Assignee
新日鉄エンジニアリング株式会社
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄エンジニアリング株式会社, 国立大学法人東京大学 filed Critical 新日鉄エンジニアリング株式会社
Publication of WO2011122559A1 publication Critical patent/WO2011122559A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/343Heat recovery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a carbon dioxide gas recovery apparatus that recovers carbon dioxide gas using a CO 2 chemical absorption separation method.
  • the carbon dioxide gas recovery apparatus 1000 brings a carbon dioxide-containing gas containing carbon dioxide gas into contact with a lean absorbent, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas into the absorbent.
  • a tower 1002 that generates the rich absorption liquid
  • the regeneration that regenerates the rich absorption liquid into the lean absorption liquid by heating the rich absorption liquid supplied from the absorption tower 1001 and separating the carbon dioxide gas from the rich absorption liquid
  • a tower 1002 that generates the rich absorption liquid
  • the regeneration tower 1002 includes a reboiler system 1003 that draws a lean absorption liquid from the regeneration tower 1002, heats it, and reintroduces it into the regeneration tower 1002, and a solute and solvent (for example, water) of carbon dioxide gas and the absorption liquid.
  • a solute and solvent for example, water
  • the mixed gas with the vapor component is led out from the regeneration tower 1002 and cooled, the vapor components of the solute and the solvent in the mixed gas are condensed and reintroduced into the regeneration tower 1002, and uncondensed carbon dioxide gas is discharged.
  • heat that is a heat source for heating the rich absorbent in the regeneration tower 1002 is supplied via the absorbent that is heated by the reboiler system 1003 and reintroduced into the regeneration tower 1002.
  • the reboiler system 1003 includes a reboiler body 1005 that heats the absorbing liquid using heat supplied from the outside as a heat source.
  • the heat supplied from the reboiler body 1005 of the reboiler system 1003 is mainly consumed when the absorbing solution is heated and regenerated in the regeneration tower 1002. Further, the heat supplied from the reboiler main body 1005 leaks to the outside when the mixed gas cooling system 1004 cools the mixed gas or when the mixed gas cooling system 1004 discharges the carbon dioxide gas.
  • the conventional carbon dioxide gas recovery apparatus 1000 it is desired that the amount of heat input from the outside in the reboiler system 1003 is suppressed to further save energy.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a carbon dioxide gas recovery apparatus capable of saving energy by suppressing the amount of heat input from the outside.
  • the carbon dioxide gas recovery device introduces and contacts a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbent, and the carbon dioxide gas in the carbon dioxide-containing gas is used as the absorbent.
  • a mixed gas cooling system that discharges gas, and the mixed gas cooling system includes a mixed gas compressor that compresses the mixed gas and raises the temperature to form a heated mixed gas, and the reboiler system and the mixed gas Between the gas cooling system, the 1st heat exchanger which heat-exchanges with the said absorption liquid and the said temperature rising mixed gas is interposing.
  • the absorption liquid means a lean absorption liquid, a rich absorption liquid, or a mixed liquid of a lean absorption liquid and a rich absorption liquid.
  • the mixed gas cooling system includes the mixed gas compressor, the heated mixed gas can be obtained by applying a slight external power without heating from the outside. Furthermore, since the first heat exchanger is interposed between the reboiler system and the mixed gas cooling system, heat exchange is performed between the reboiler system absorption liquid and the temperature rising mixed gas of the mixed gas cooling system. Thus, the temperature rising mixed gas can be cooled while heating the absorbing liquid. Thereby, it becomes possible to suppress the amount of heat input from the outside in the reboiler system, and energy saving can be achieved.
  • a rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower may be further provided, and the first heat exchanger is provided between the mixed gas cooling system and the rich supply path.
  • a second heat exchanger for exchanging heat between the temperature rising mixed gas after passing through and the rich absorbent may be interposed.
  • the second heat exchanger is interposed between the mixed gas cooling system and the rich supply path, the temperature rising mixed gas of the mixed gas cooling system and the rich absorbing liquid of the rich supply path are By performing heat exchange, the temperature rising mixed gas can be cooled while heating the rich absorbent supplied to the regeneration tower.
  • the rich absorption liquid supplied to the regeneration tower can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower, so that the amount of heat that the rich absorption liquid needs to receive in the regeneration tower is suppressed. Can do. Therefore, the amount of heat input from outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
  • the temperature rising mixed gas of the mixed gas cooling system passes through the second heat exchanger after passing through the first heat exchanger. Therefore, for example, after the latent heat of the vapor of the solute and the solvent in the temperature rise mixed gas is recovered by the first heat exchanger, the remaining temperature rise consisting of the vapor of the solute and the solvent and the carbon dioxide gas that has not been condensed. The sensible heat of the mixed gas and the remaining latent heat can be recovered by the second heat exchanger.
  • the carbon dioxide gas recovery device introduces a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbing liquid into contact with each other, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas.
  • An absorption tower that absorbs the liquid to produce a rich absorption liquid
  • a regeneration tower that regenerates the lean absorption liquid by heating the rich absorption liquid supplied from the absorption tower and separating the carbon dioxide gas;
  • a carbon dioxide gas recovery apparatus comprising: a reboiler system that draws an absorption liquid from the regeneration tower, heats it, and reintroduces it into the regeneration tower; and the carbon dioxide gas and the absorption liquid.
  • the mixed gas of the solute and the solvent vapor is led out from the regeneration tower and cooled, the vapor of the solute and the solvent is condensed and reintroduced into the regeneration tower, and the carbon dioxide
  • a mixed gas cooling system that discharges gas, and includes a rich supply path that supplies the rich absorbent from the absorption tower to the regeneration tower, and the mixed gas cooling system compresses the mixed gas to a temperature And a mixed gas compressor configured to raise the temperature of the mixed gas, and between the mixed gas cooling system and the rich supply path, heat is exchanged between the heated mixed gas and the rich absorbent. There is an exchanger.
  • the mixed gas cooling system includes the mixed gas compressor
  • the heated mixed gas can be obtained by applying a slight external power without heating from the outside.
  • the third heat exchanger is interposed between the mixed gas cooling system and the rich supply path, heat is generated between the temperature rising mixed gas of the mixed gas cooling system and the rich absorbent in the rich supply path.
  • the temperature rising mixed gas can be cooled while heating the rich absorbent supplied to the regeneration tower.
  • the rich absorption liquid supplied to the regeneration tower can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower, so that the amount of heat that the rich absorption liquid needs to receive in the regeneration tower is suppressed. Can do. Therefore, it becomes possible to suppress the amount of heat input from the outside in the reboiler system, and energy saving can be achieved.
  • a fourth heat exchanger that exchanges heat between the temperature rising mixed gas after passing through the third heat exchanger and the rich absorbent is provided between the mixed gas cooling system and the rich supply path. It may be interposed.
  • the regeneration tower is determined by the amount of heat of the mixed gas flowing out of the regeneration tower. It is possible to effectively preheat the rich absorbent supplied to the refrigeration, and the amount of heat that the rich absorbent must receive in the regeneration tower can be further suppressed. Therefore, the amount of heat input from outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
  • the temperature rising mixed gas of the mixed gas cooling system passes through the fourth heat exchanger after passing through the third heat exchanger. Therefore, for example, after the latent heat of the vapor of the solute and the solvent in the gas mixture is recovered by a third heat exchanger, the remaining temperature of the vapor of the solute and the solvent and the remaining carbon dioxide gas is recovered. The sensible heat of the mixed gas and the remaining latent heat can be recovered by the fourth heat exchanger.
  • heat generated by an exothermic reaction when the absorbing liquid absorbs the carbon dioxide gas in the absorption tower is moved through a heat medium, and the carbon dioxide gas is separated from the rich absorbing liquid in the regeneration tower.
  • a heat pump used as a heat source for the endothermic reaction may be further provided.
  • the heat generated by the exothermic reaction in the absorption tower can be used as a heat source for the endothermic reaction in the regeneration tower. Since the heat generated by the exothermic reaction is equal to the heat of the endothermic reaction, it becomes possible to cancel the reaction heat by exchanging it internally. Conventionally, while the endothermic reaction is heated from the outside, the reaction exotherm was wasted in the cooling water, but it was possible to use the reaction exotherm that was wasted as a heat source for the endothermic reaction necessary for regeneration, It is possible to further save energy by suppressing the amount of heat input from the outside.
  • the heat pump is interposed in the absorption tower packing disposed in the absorption tower, and performs heat exchange between the heat medium whose temperature has decreased due to expansion and the absorption liquid in the absorption tower.
  • a fifth heat exchanger may be provided.
  • the heat pump since the heat pump includes the fifth heat exchanger, the heat generated by the exothermic reaction in the absorption tower can be received by the heat medium with high loss and high efficiency. As a result, the heat generated by the exothermic reaction in the absorption tower can be effectively used as a heat source for the endothermic reaction in the regeneration tower, and further energy saving can be achieved. Further, in this case, the absorption rate is improved due to the decrease in the temperature of the absorbing solution, so that the efficiency of the apparatus can be further improved.
  • the heat pump is interposed in the regenerative tower packing disposed in the regeneration tower, and heat exchange is performed between the heat medium whose temperature has been increased by compression and the rich absorbent in the regeneration tower.
  • a sixth heat exchanger may be provided.
  • the heat pump since the heat pump includes the sixth heat exchanger, the heat generated by the exothermic reaction moved by the heat medium can be used with high efficiency as a heat source for the endothermic reaction in the regeneration tower with little loss. As a result, the heat generated by the exothermic reaction in the absorption tower can be effectively used as a heat source for the endothermic reaction in the regeneration tower, and further energy saving can be achieved.
  • the absorption tower is provided with a lead-out path that leads out decarbonation gas obtained by separating the carbon dioxide gas from the carbon dioxide-containing gas, and the decarbonation is provided between the lead-out path and the heat pump.
  • a seventh heat exchanger for exchanging heat between the gas and the heat medium whose temperature has decreased due to expansion may be interposed.
  • the seventh heat exchanger is interposed between the lead-out path and the heat pump, the heat is exchanged between the decarbonized gas in the lead-out path and the heat medium of the heat pump, so that the lead is derived from the absorption tower.
  • the heat generated by the decarboxylation gas can be received by the heat medium to heat the heat medium.
  • the absorption tower is provided with a decarbonation gas cleaning system for introducing the cleaning liquid stored at the top of the absorption tower from the absorption tower and cooling it, and then reintroducing it from the top of the absorption tower.
  • An eighth heat exchanger that exchanges heat between the cleaning liquid and the heat medium that has expanded and decreased in temperature may be interposed between the decarbonation gas cleaning system and the heat pump.
  • the decarbonation gas cleaning system is provided in the absorption tower, when the decarbonation gas obtained by separating the carbon dioxide gas from the carbon dioxide-containing gas rises inside the absorption tower, the decarbonation gas It is possible to suppress the solute of the absorption liquid accompanying the flow out from the top of the absorption tower to the outside. Further, since the eighth heat exchanger is interposed between the decarbonation gas cleaning system and the heat pump, the cleaning liquid can be obtained by exchanging heat between the cleaning liquid of the decarbonation gas cleaning system and the heat medium of the heat pump. The heating medium can be heated while cooling. As a result, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower and transferred to the cleaning liquid from leaking to the outside, and further energy saving can be achieved.
  • a rich supply path for supplying the rich absorption liquid from the absorption tower to the regeneration tower is provided, and the rich absorption liquid and the heat medium having a low expansion temperature are provided between the rich supply path and the heat pump.
  • a ninth heat exchanger for exchanging heat may be interposed.
  • the absorption tower is obtained by exchanging heat between the rich absorbent in the rich supply path and the heat medium of the heat pump.
  • the heat of the rich absorbent that is generated by the exothermic reaction and delivered to the rich absorbent can be received by the heat medium to heat the heat medium.
  • the carbon dioxide gas recovery device includes a lean supply path for supplying a lean absorbent from the regeneration tower to the absorption tower, and heat is generated between the lean absorbent and the rich absorbent between the lean supply path and the rich supply path.
  • the ninth heat exchanger When the amine heat exchange to be exchanged is interposed and the ninth heat exchanger is interposed upstream of the amine heat exchange in the rich supply path, the rich absorbing liquid passing through the amine heat exchange is passed through the ninth heat exchanger. It can be cooled with. This makes it possible to increase the amount of heat exchange between the rich absorption liquid in the rich supply path and the lean absorption liquid in the lean supply path in the amine heat exchange, and the lean absorption liquid in the lean supply path is effective. The amount of heat recovered as viewed from the regeneration tower can be increased.
  • a lean amine cooler that cools the lean absorbent is provided downstream of the amine heat exchange in the lean supply path, and the lean absorbent that is supplied to the absorption tower is cooled before being supplied to the absorption tower. Even if it exists, the heat loss to the exterior by this cooling can be reduced.
  • the absorption tower is provided with an intercooler system for introducing and cooling the absorption liquid from the middle part of the tower between the tower top and the bottom of the absorption tower and then reintroducing from the middle part of the tower.
  • an intercooler system strain and the said heat pump, the 10th heat exchanger which heat-exchanges with the said absorption liquid and the said heat medium which expanded and the temperature fell may intervene.
  • the intercooler system since the intercooler system is provided in the absorption tower, the absorption liquid in the middle of the tower can be cooled and reintroduced, and the absorption of carbon dioxide gas by the absorption liquid in the absorption tower is promoted. be able to.
  • the tenth heat exchanger is interposed between the intercooler system and the heat pump, the heat is exchanged between the absorption liquid of the intercooler system and the heat medium of the heat pump, thereby cooling the absorption liquid.
  • the heating medium can be heated. Thereby, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower and transferred to the absorbing solution from leaking to the outside, and further energy saving can be achieved.
  • a lean supply path for supplying the lean absorbing liquid from the regeneration tower to the absorption tower is provided, and between the lean supplying path and the heat pump, the lean absorbing liquid expands and the temperature decreases.
  • An eleventh heat exchanger that exchanges heat with the heat medium may be interposed.
  • the eleventh heat exchanger is interposed between the lean supply path and the heat pump, the lean absorption is achieved by exchanging heat between the lean absorbing liquid in the lean supply path and the heat medium of the heat pump.
  • the heating medium can be heated while cooling the liquid.
  • a twelfth heat exchanger that exchanges heat between the absorbing liquid and the heat medium that has been compressed and increased in temperature may be interposed between the reboiler system and the heat pump.
  • the twelfth heat exchanger is interposed between the reboiler system and the heat pump, the heat of the heat medium is reduced by exchanging heat between the reboiler system absorption liquid and the heat medium of the heat pump.
  • the absorbent can be heated by receiving it in the absorbent. As a result, the amount of heat input from the outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
  • a rich supply path for supplying the rich absorption liquid from the absorption tower to the regeneration tower is provided, and between the rich supply path and the heat pump, the rich absorption liquid is compressed and the temperature is increased due to compression.
  • a thirteenth heat exchanger that exchanges heat with the heat medium may be interposed.
  • the thirteenth heat exchanger is interposed between the rich supply path and the heat pump, the heat medium is obtained by exchanging heat between the rich absorbent in the rich supply path and the heat medium of the heat pump. Can be received by the rich absorbent supplied to the regeneration tower to heat the rich absorbent.
  • the rich absorption liquid supplied to the regeneration tower can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
  • the carbon dioxide gas recovery device includes a lean supply path for supplying a lean absorbent from the regeneration tower to the absorption tower, and heat is generated between the lean absorbent and the rich absorbent between the lean supply path and the rich supply path.
  • the heating amount in the thirteenth heat exchanger is added to the heating amount in the amine heat exchange.
  • the carbon dioxide gas recovery apparatus can save energy by suppressing the amount of heat input from the outside.
  • FIG. 1 is a schematic view of a carbon dioxide gas recovery device according to a first embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 2nd embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 3rd embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 4th embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 5th embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 6th embodiment of the present invention. It is the schematic of the carbon dioxide gas recovery device concerning a 7th embodiment of the present invention. It is the schematic of the conventional carbon dioxide gas recovery apparatus.
  • This carbon dioxide gas recovery device recovers carbon dioxide gas from carbon dioxide containing gas by absorbing and separating the carbon dioxide gas by a CO 2 chemical absorption separation method, and the carbon dioxide gas is separated from the carbon dioxide containing gas.
  • a CO 2 chemical absorption separation method an absorbing solution capable of absorbing carbon dioxide gas is used.
  • an absorbing solution for example, an amine absorbing solution using monoethanolamine (MEA), diethanolamine (DEA) or the like as a solute and water as a solvent can be used.
  • energy saving of the carbon dioxide gas recovery device is achieved by so-called self-heat regeneration.
  • the carbon dioxide gas recovery apparatus 1 includes an absorption tower 2, a regeneration tower 3, a rich supply path 4, a lean supply path 5, and a heat pump 6.
  • the absorption tower 2 brings a carbon dioxide-containing gas into contact with a lean absorbent that can absorb the carbon dioxide gas, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas into the lean absorbent to produce a rich absorbent.
  • the regeneration tower 3 regenerates the lean absorbent by heating the rich absorbent supplied from the absorber 2 and separating the carbon dioxide gas from the rich absorbent.
  • the rich supply path 4 supplies the rich absorbent from the absorption tower 2 to the regeneration tower 3.
  • the lean supply path 5 supplies the lean absorbent to the absorption tower 2 from the regeneration tower 3.
  • the heat pump 6 moves heat generated by an exothermic reaction when the lean absorbing liquid absorbs the carbon dioxide gas in the absorption tower 2 through the heat medium, and when the carbon dioxide gas is separated from the rich absorbing liquid in the regeneration tower 3. It is used as a heat source for the endothermic reaction.
  • An introduction path 2 d for introducing a carbon dioxide-containing gas is provided in the tower bottom 2 a of the absorption tower 2.
  • a first nozzle 7 for supplying a lean absorbent into the tower downward is disposed in the tower top 2b of the absorption tower 2.
  • an absorption tower packing 8 for bringing the lean absorbent and carbon dioxide-containing gas into contact with each other is disposed.
  • the absorption tower 2 is connected to a lead-out path 9 through which the decarbonized gas is led out from the tower top 2 b of the absorption tower 2, and washing water (washing liquid) stored in the tower top 2 b of the absorption tower 2 is led out from the absorption tower 2.
  • a decarbonation gas cleaning system 10 that is reintroduced from the tower top 2b of the absorption tower 2 after cooling is provided.
  • the decarbonation gas cleaning system 10 includes a liquid receiving tray 11 disposed above the first nozzle 7 and storing cleaning water, and disposed above the liquid receiving tray 11 and supplying cleaning water downward.
  • a second nozzle 12 to be supplied and a pipe 13 for connecting the liquid receiving tray 11 and the second nozzle 12 are provided.
  • the piping 13 includes a cleaning water circulation pump 13a that transfers cleaning water from the liquid receiving tray 11 to the second nozzle 12 through the piping 13, and a water-cooled cleaning water cooler 15 that cools the cleaning water downstream of the cleaning water circulation pump 13a.
  • the washing water is preferably the same as the solute of the absorbing solution (for example, water).
  • the absorption liquid means a lean absorption liquid, a rich absorption liquid, or a mixed liquid of a lean absorption liquid and a rich absorption liquid.
  • the rich supply path 4 connects the tower bottom 2a of the absorption tower 2 and a third nozzle 16 which is disposed in the tower top 3b of the regeneration tower 3 and supplies a rich absorbent liquid downward.
  • the rich supply path 4 is provided with an absorption tower bottom pump 17 for transferring the rich absorption liquid from the tower bottom 2a of the absorption tower 2 to the third nozzle 16 through the rich supply path 4.
  • a regeneration tower packing 18 is disposed in the tower intermediate part 3c between the tower top part 3b and the tower bottom part 3a in the regeneration tower 3.
  • the absorption liquid flowing down the surface of the regeneration tower packing 18 includes the solute of the absorption liquid rising in the regeneration tower 3 and the vapor content of the solvent (for example, water), and the mixed gas of the vapor content and carbon dioxide gas. Gas-liquid contact.
  • regenerator 3 draws the absorbing liquid from the regenerator 3 and heats it, reboiler system 19 is reintroduced into the regenerator 3, and the mixed gas is led out from the regenerator 3 and is cooled.
  • a mixed gas cooling system 20 is provided that condenses the vapor and reintroduces the condensate into the regeneration tower 3 and discharges uncondensed carbon dioxide gas.
  • the reboiler system 19 reintroduces the absorbent from the tower bottom 3 a of the regeneration tower 3 after heating the absorbent. At this time, a part of the heated absorption liquid is flushed, and a part of each of the solute and the solvent of the absorption liquid becomes vapor.
  • the reboiler system 19 includes a liquid receiving tray 21 that is disposed in the bottom 3a of the regeneration tower 3 and stores an absorption liquid, and a steam that is located below the liquid receiving tray 21 in the liquid receiving tray 21 and the tower bottom 3a. And a pipe 23 for connecting the generation portion 22.
  • the piping 23 is provided with a reboiler pump 24 and a reboiler body 25.
  • the reboiler pump 24 transfers the absorbing liquid from the liquid receiving tray 21 to the steam generating portion 22 through the pipe 23.
  • the reboiler body 25 heats the absorption liquid using heat supplied from the outside downstream of the reboiler pump 24 as a heat source.
  • the reboiler body 25 is configured by a heat exchanger that exchanges heat between the reboiler system 19 and a reboiler pipe 26 through which a high-temperature fluid (for example, saturated steam) supplied from the outside flows.
  • the reboiler pipe 26 is provided with a steam trap 27 downstream of the reboiler body 25.
  • the mixed gas cooling system 20 is disposed above the third nozzle 16, and supplies the condensate, which is the vapor content of the condensed solute and solvent, downward, and the regeneration tower 3. And a pipe 29 for connecting the top of the tower and the fourth nozzle 28 to each other.
  • a mixed gas compressor 30, a pressure reduction / expansion valve 31, a gas / liquid separator 32, and a condensate circulation pump 29 a are arranged in this order between the top of the regeneration tower 3 and the fourth nozzle 28. Is provided.
  • the mixed gas compressor 30 increases the temperature by compressing the mixed gas to obtain a heated mixed gas.
  • the decompression / expansion valve 31 reduces the temperature by expanding the temperature rising mixed gas.
  • the gas-liquid separator 32 separates the condensate and carbon dioxide gas.
  • the condensate circulation pump 29 a transfers the condensate from the gas-liquid separator 32 to the fourth nozzle 28 through the pipe 29.
  • the gas-liquid separator 32 is provided with a discharge path 33 for discharging the carbon dioxide gas separated from the mixed gas by the gas-liquid separator 32.
  • a condensing heat exchanger (first heat exchanger) 34 that performs heat exchange between the absorbing liquid and the temperature rising mixed gas is interposed between the reboiler system 19 and the mixed gas cooling system 20.
  • the absorption liquid before being heated by the reboiler body 25 passes through the condensation heat exchanger 34.
  • the condensing heat exchanger 34 is interposed between the reboiler pump 24 and the reboiler body 25 in the pipe 23 of the reboiler system 19, and the mixed gas compressor 30 and the pressure reducing / expansion valve in the pipe 29 of the mixed gas cooling system 20. 31 is interposed.
  • the lean supply path 5 connects the tower bottom 3 a of the regeneration tower 3 and the first nozzle 7 in the absorption tower 2, and the lean supply path 5 is connected to the second bottom from the tower bottom 3 a of the regeneration tower 3.
  • a regeneration tower bottom pump 35 for transferring the lean absorption liquid to the one nozzle 7 through the lean supply path 5 is provided.
  • an amine heat exchanger 36 that exchanges heat between the lean absorbent and the rich absorbent.
  • the heat pump 6 is interposed in the absorption tower internal heat exchange (fifth heat exchanger) 37 interposed in the absorption tower packing 8 in the absorption tower 2 and in the regeneration tower packing 18 in the regeneration tower 3. And a pair of pipes 39 and 40 for connecting the absorption tower internal heat exchange 37 and the regeneration tower internal heat exchange 38.
  • the heat exchange 37 inside the absorption tower is interposed so as to cut through the absorption tower packing 8, and exchanges heat between the heat medium whose temperature has decreased due to expansion and the absorption liquid in the absorption tower 2.
  • the regeneration tower internal heat exchange 38 is interposed so as to run vertically through the regeneration tower packing 18, and exchanges heat between the heat medium whose temperature has been increased by compression and the absorbent in the regeneration tower 3.
  • one pipe 39 connects the upper part of the regeneration tower internal heat exchange 38 and the lower part of the absorption tower internal heat exchange 37.
  • the pipe 39 is provided with a heat medium expansion valve 41 that lowers the temperature by expanding the heat medium.
  • the other pipe 40 connects the upper part of the absorption tower internal heat exchange 37 and the lower part of the regeneration tower internal heat exchange 38.
  • the pipe 40 is provided with a heat medium compressor 42 that raises the temperature by compressing the heat medium.
  • the heat generated by the exothermic reaction in the absorption tower 2 is recovered as latent heat of evaporation by evaporating in the heat exchange 37 inside the absorption tower and condensed in the heat exchange 38 inside the regeneration tower.
  • a fluid capable of generating heat of condensation and using the heat of condensation as a heat source for the endothermic reaction in the regeneration tower 3 is preferable. Examples of such fluid include pentane and water.
  • the operation of the carbon dioxide gas recovery apparatus 1 configured as described above will be described.
  • the flow of the absorption liquid will be described starting from the absorption tower 2.
  • the carbon dioxide-containing gas supplied to the tower bottom 2a rises inside, and the lean absorbent supplied from the first nozzle 7 in the tower top 2b falls inside.
  • the carbon dioxide-containing gas and the lean absorbing liquid come into contact with each other, and the carbon dioxide gas in the carbon dioxide-containing gas is absorbed by the lean absorbing liquid to cause an exothermic reaction.
  • the absorption tower packing 8 is disposed in the tower middle part 2c of the absorption tower 2.
  • the absorption tower packing 8 has, for example, a fin configuration having a large number of narrow gaps, a large fin surface area per volume, and the gap is configured so that the angle of the flow path changes regularly. The turbulence of the flow occurs.
  • the absorption liquid flows down on the fins while forming a wet wall, and is brought into gas-liquid contact with the carbon dioxide-containing gas rising in the absorption tower 2.
  • the absorption tower packing 8 has a structure in which the gap between the wetting walls is narrow and the traveling angle changes at a constant pitch, thereby disturbing the flow of gas and liquid and improving the efficiency of gas-liquid contact. Therefore, on the surface of the absorption tower packing 8, the rising carbon dioxide-containing gas and the falling absorption liquid are easily in contact with each other, and the absorption of the carbon dioxide gas by the absorption liquid is promoted.
  • the decarbonation gas cleaning system 10 since the decarbonation gas cleaning system 10 is provided in the absorption tower 2, the inside of the tower top 2b of the absorption tower 2 is cooled by the cleaning water cooled and re-introduced by the water-cooled cleaning water cooler 15. can do. Therefore, for example, even if the solute in the absorption liquid scatters or evaporates and rises accompanying the decarbonation gas, the solute is supplied to the decarbonation gas cleaning system 10 before reaching the lead-out path 9. Thereby, it is possible to prevent the solute in the absorption liquid from flowing out from the tower top 2 b of the absorption tower 2 through the outlet path 9.
  • the rich absorbent produced together with the decarbonation gas descends in the absorption tower 2 and is stored in the tower bottom 2a, and then passes through the rich supply path 4 to the third nozzle 16 in the tower top 3b of the regeneration tower 3.
  • the amine heat exchange 36 is interposed between the lean supply path 5 and the rich supply path 4, and the rich absorption liquid exchanges heat with the lean absorption liquid in the lean supply path 5. Heated while cooling the lean absorbent.
  • the rich absorbent supplied from the third nozzle 16 descends and the absorbent heated by the reboiler system 19 is reintroduced from the tower bottom 3a.
  • a part of the heated absorption liquid is flushed in the vapor generation part 22, a part of each of the solute and the solvent of the absorption liquid becomes a vapor, and the regenerated carbon dioxide becomes a gas, To rise.
  • the rich absorption liquid and the vapors of the solute and solvent come into contact with each other, and an endothermic reaction of desorption regeneration takes place using the heat of condensation of the vapors of the solute and solvent as a heat source. Are separated.
  • the regenerative tower packing 18 is disposed in the middle part 3c of the regenerative tower 3.
  • the regeneration tower packing 18 has, for example, a fin configuration having a large number of narrow gaps, a large fin surface area per volume, and the gap is configured so that the angle of the flow path changes regularly. The turbulence of the flow occurs.
  • the absorbing solution flows down on the fins while forming a wet wall, contacts the vapor of the solute and the solvent rising in the regenerator 3, and is efficient due to the size of the surface area and flow disturbance. Gas-liquid contact is made and the separation and release of carbon dioxide is promoted.
  • the rich absorbent is separated into the lean absorbent and the carbon dioxide gas.
  • the carbon dioxide gas is mixed with the solute and the vapor of the solvent to become a mixed gas, and rises in the regeneration tower 3.
  • This mixed gas is introduced into the pipe 29 of the mixed gas cooling system 20 from the top of the regeneration tower 3, and is then compressed by the mixed gas compressor 30 in the process of passing through this pipe 29 so that the temperature rises and the temperature rises. It becomes a mixed gas. Thereafter, the temperature rising mixed gas is cooled while heating the absorption liquid by exchanging heat with the absorption liquid of the reboiler system 19 in the condensation heat exchanger 34. Thereafter, the temperature rising mixed gas is expanded by the pressure reduction / expansion valve 31 and the temperature is lowered.
  • steam part of the said solute and solvent in temperature rising mixed gas is condensed, and it becomes a condensate
  • This condensate and the non-condensed carbon dioxide main gas (temperature rising mixed gas) which mainly consisted of carbon dioxide gas Are separated by the gas-liquid separator 32.
  • the condensate is reintroduced into the regeneration tower 3 from the fourth nozzle 28, and uncondensed carbon dioxide main gas is discharged to the outside through the discharge path 33.
  • the absorption liquid descending in the regeneration tower 3 is stored in the tower bottom 3 a and then led out from the regeneration tower 3 a as a separated and regenerated lean absorption liquid, and passes through the lean supply path 5 in the tower top 2 b of the absorption tower 2.
  • the lean absorption liquid is cooled while preheating the rich absorption liquid by exchanging heat with the rich absorption liquid in the rich supply path 4 by the amine heat exchanger 36.
  • the heat that the lean absorbing solution brings out can be recovered as the preheating of the rich absorbing solution supplied from the outside.
  • the heat medium expansion valve 41 As a starting point.
  • the heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the one pipe 39 and then moves from the lower part to the upper part of the heat exchange 37 inside the absorption tower to exchange heat with the absorbing liquid. While cooling the absorbing liquid, it absorbs and evaporates the heat of the exothermic reaction that occurs when the absorbing liquid chemically absorbs carbon dioxide. Thereafter, the heat medium moves to the lower part of the regeneration tower internal heat exchange 38 through the other pipe 40. At this time, the heat medium is compressed by the heat medium compressor 42 and the temperature rises.
  • the heat medium is cooled by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchanger 38 inside the regeneration tower, thereby heating the absorbing liquid and consuming the heat as a heat source for the endothermic reaction. ⁇ Condensed. Thereafter, the heat medium moves toward the lower part of the heat exchange 37 inside the absorption tower through the one pipe 39. At this time, the pressure of the heat medium is lowered by the heat medium expansion valve 41, and the temperature is lowered again to become a gas / liquid mixed fluid.
  • the mixed gas cooling system 20 includes the mixed gas compressor 30. Therefore, by applying a slight amount of external power, a temperature rising mixed gas can be obtained without heating from the outside. Further, the condensing heat exchanger 34 is interposed between the reboiler system 19 and the mixed gas cooling system 20. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the temperature rising mixed gas of the mixed gas cooling system 20, the temperature rising mixed gas can be cooled while heating the absorption liquid. In this way, the rich absorbent supplied to the regeneration tower 3 can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower 3. As a result, the amount of heat input from the outside in the reboiler system 19 can be suppressed, and energy saving can be achieved.
  • the heat generated by the exothermic reaction in the absorption tower 2 can be used as a heat source for the endothermic reaction in the regeneration tower 3. Since the heat generated by the exothermic reaction is equal to the heat of the endothermic reaction, it becomes possible to cancel the reaction heat by exchanging it internally. Conventionally, while heat is applied from the outside for endothermic reaction, the reaction exotherm was wasted in the cooling water, but this waste heat generated from the reaction can be used as a heat source for the endothermic reaction required for regeneration. become. As a result, the amount of heat input from the outside can be suppressed and further energy saving can be achieved.
  • the heat pump 6 since the heat pump 6 includes the absorption tower internal heat exchange 37, the heat medium can receive the heat generated by the exothermic reaction in the absorption tower 2 with high loss and high efficiency. Furthermore, since the heat pump 6 includes the regeneration tower internal heat exchange 38, the heat generated by the exothermic reaction moved by the heat medium can be used with high efficiency as a heat source for the endothermic reaction in the regeneration tower 3 with little loss. it can. As described above, the heat generated by the exothermic reaction in which the absorption liquid chemically absorbs carbon dioxide in the absorption tower 2 is absorbed in the regeneration tower 3 without consuming the energy of waste heat to the cooling water while being externally heated. It can be effectively used as a heat source for an endothermic reaction for separating and regenerating carbon dioxide from the carbon dioxide, and further energy saving can be achieved.
  • reaction heat generation amount in the absorption tower 2 is equal to the reaction heat absorption amount in the regeneration tower 3. Therefore, the reaction heat conventionally applied by heating from the outside with a small amount of power required for the heat pump 6 can be covered by the transfer of heat inside the process, and the transfer of heat from the outside can be eliminated. As a result, the amount of external heat applied in the reboiler system 19 of the regeneration tower 3 is reduced as compared with the conventional case.
  • the amount of heat to be applied is the amount of recovery leakage heat in the amine heat exchanger 36 (the sensible heat amount of the lean absorbing liquid flowing out from the amine heat exchanger 36 and the sensible heat amount of the rich absorbing liquid flowing into the amine heat exchanger 36).
  • the amount of heat is commensurate with the sum of the amount of heat dissipated around the regeneration tower 3.
  • the pressure reduction / expansion valve 31 of the mixed gas cooling system 20 is provided in the discharge passage 33 and the gas in the pipe 29 of the mixed gas cooling system 20
  • a level control valve 101 is provided between the liquid separator 32 and the fourth nozzle 28 instead of the condensate circulation pump 29a.
  • the heat pump 6 does not include the absorption tower internal heat exchange 37.
  • a decarbonation gas cooler (seventh heat exchanger) 102 that exchanges heat between the decarbonization gas and the heat medium that has expanded and decreased in temperature is provided between the outlet path 9 and the heat pump 6. Is intervening.
  • a cleaning water cooler (eighth heat exchanger) 103 for exchanging heat between the cleaning water and the heat medium having expanded and decreased in temperature is interposed between the decarbonation gas cleaning system 10 and the heat pump 6. ing.
  • a rich amine heat exchanger (9th heat exchanger) 104 that exchanges heat between the rich absorbing liquid and the heat medium that has expanded and the temperature has decreased. is doing.
  • the decarbonation gas cooler 102, the washing water cooler 103, and the rich amine heat exchanger 104 pass through the heat medium whose temperature is lowered by the heat medium expansion valve 41 in the heat pump 6, and the heat recovery in which the heat medium receives heat. Is on the side.
  • the heat pump 6 includes a plurality of pipes 105, 106, 107, and 108, and a heat medium distributor 109 and a heat medium collector 110 that connect the pipes 105, 106, 107, and 108.
  • the plurality of pipes 105, 106, 107, 108 connect the first pipe 105 that connects the upper part of the heat exchanger 38 inside the regeneration tower and the heat medium distributor 109, and the heat medium distributor 109 and the heat medium collector 110.
  • Two branch pipes 106 and 107, and a second pipe 108 that connects the heat medium collector 110 and the lower part of the heat exchange 38 inside the regeneration tower.
  • one of the branch pipes 106 is provided with a decarboxylation gas cooler 102 and a washing water cooler 103 in this order from the heat medium distributor 109 to the heat medium collector 110.
  • a rich amine heat exchanger 104 is interposed in the other branch pipe 107.
  • the first pipe 105 is provided with the heat medium expansion valve 41, and the second pipe 108 is provided with the heat medium compressor 42.
  • a cleaning water cooler 103 is interposed between the cleaning water circulation pump 13a and the second nozzle 12 in the pipe 13, The water-cooled washing water cooler 15 is not provided.
  • a rich amine heat exchanger 104 is interposed in the rich supply path 4 downstream of the absorption tower bottom pump 17 and upstream of the amine heat exchanger 36.
  • the operation of the carbon dioxide gas recovery apparatus 100 configured as described above will be described.
  • the flow of the heat medium of the heat pump 6 will be described with the heat medium expansion valve 41 as a starting point.
  • the heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the first pipe 105 and then passes through the two branch pipes 106 and 107 branched by the heat medium distributor 109.
  • the heat medium passing through the one branch pipe 106 receives heat of the decarbonized gas derived from the absorption tower 2 by exchanging heat with the decarbonized gas in the outlet channel 9 in the decarbonized gas cooler 102. Heated. Thereafter, the heat medium is further heated while cooling the washing water by exchanging heat with the washing water of the decarbonation gas washing system 10 in the washing water cooler 103.
  • the heat medium passing through the other branch pipe 107 receives the heat of the rich absorbent flowing out from the absorption tower 2 in the rich amine heat exchanger 104 and is heated.
  • the heat medium that has passed through both branch pipes 106 and 107 merges at the heat medium collector 110.
  • the heat medium merged in the heat medium collector 110 moves to the lower part of the regenerator internal heat exchange 38 through the second pipe 108.
  • the temperature of the heat medium rises by the heat medium compressor 42.
  • the heat medium is cooled by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchange 38 inside the regeneration tower, thereby heating the absorbing liquid and consuming the heat with the heat source of the endothermic reaction.
  • it moves toward the heat medium distributor 109 through the first pipe 105.
  • the temperature of the heat medium is lowered again by the heat medium expansion valve 41.
  • the decarbonation gas cooler 102 is interposed between the outlet path 9 and the heat pump 6. Therefore, heat exchange is performed between the decarbonation gas in the outlet passage 9 and the heat medium of the heat pump 6, so that the heat medium receives heat of the decarbonation gas derived from the absorption tower 2 and heats the heat medium. be able to. Thereby, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower 2 and transferred to the decarbonized gas from leaking to the outside, and further energy saving can be achieved.
  • the cleaning water cooler 103 is interposed between the decarbonation gas cleaning system 10 and the heat pump 6, heat is exchanged between the cleaning water of the decarbonation gas cleaning system 10 and the heat medium of the heat pump 6.
  • the heat medium can be heated while cooling the washing water.
  • the rich amine heat exchanger 104 is interposed between the rich supply path 4 and the heat pump 6. Therefore, by exchanging heat between the rich absorption liquid in the rich supply path 4 and the heat medium of the heat pump 6, the heat of the rich absorption liquid generated by the exothermic reaction of the absorption tower 2 and transferred to the rich absorption liquid is obtained.
  • the heat medium can be heated by being received by the heat medium.
  • the rich amine heat exchanger 104 is interposed upstream of the amine heat exchanger 36 in the rich supply path 4, so that the rich absorbent that passes through the amine heat exchanger 36 is passed through the rich amine heat exchanger 36. It can be cooled by the vessel 104.
  • the amine heat exchanger 36 it becomes possible to increase the amount of heat exchange between the rich absorption liquid in the rich supply path 4 and the lean absorption liquid in the lean supply path 5, and the lean absorption in the lean supply path 5
  • the liquid can be cooled effectively, and the amount of heat recovered as viewed from the regeneration tower can be increased. Therefore, for example, a lean amine cooler (not shown) that cools the lean absorbent is provided downstream of the amine heat exchanger 36 in the lean supply path 5, and before the lean absorbent that is supplied to the absorption tower 2 is supplied to the absorption tower 2. Even in the case of cooling in advance, heat loss to the outside due to this cooling can be reduced.
  • the heat of decarboxylation gas and absorption liquid led out from the inside of the absorption tower 2 is received by the decarbonation gas cooler 102, the washing water cooler 103, and the rich amine heat exchanger 104. Yes. Therefore, the heat generated by the exothermic reaction in the absorption tower 2 can be received by the heat medium without providing the absorption tower internal heat exchange 37. Thereby, for example, the carbon dioxide gas recovery apparatus 100 can be simplified.
  • the heat pump 6 does not include the absorption tower internal heat exchange 37, but may include this.
  • the absorption tower packing 8 is divided into two vertically divided in the tower middle part 2 c of the absorption tower 2, and the absorption tower 2.
  • the intercooler system 201 is disposed between the divided absorption tower packings 8 and has a liquid receiving tray 202 in which the absorbing liquid is stored, and is disposed below the liquid receiving tray 202 and supplies the absorbing liquid downward. And a pipe 204 that connects the liquid receiving tray 202 and the fifth nozzle 203 to each other.
  • the pipe 204 is provided with an intercooler pump 205 that transfers the absorption liquid from the liquid receiving tray 202 to the fifth nozzle 203 through the pipe 204.
  • mold intercooler (10th heat exchanger) 206 which heat-exchanges with an absorption liquid and the heat medium which expanded and the temperature fell. Is intervening.
  • a heat-medium cooling type lean amine cooler (eleventh heat exchanger) 207 that exchanges heat between the lean absorbing liquid and the heat medium that has expanded and the temperature has decreased. Is intervening.
  • the heat pump 6 includes five branch pipes 208, and each of the branch pipes 208 includes the decarbonation gas cooler 102, the washing water cooler 103, the rich amine heat exchanger 104, and the heat medium cooling. Either a type intercooler 206 or a heat medium cooling type lean amine cooler 207 is interposed.
  • a heat medium cooling type intercooler 206 is interposed between the intercooler pump 205 and the fifth nozzle 203 in the pipe 204.
  • a heat medium cooling type lean amine cooler 207 is interposed in the lean supply path 5 downstream of the amine heat exchanger 36.
  • the operation of the carbon dioxide gas recovery device 200 configured as described above will be described.
  • the flow of the heat medium of the heat pump 6 will be described from the heat medium expansion valve 41 as a starting point until the heat medium collector 110 is reached.
  • the heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the five branch pipes 208 branched by the heat medium distributor 109 after passing through the second pipe 108.
  • the heat medium passing through the branch pipe 208 provided with the heat medium cooling intercooler 206 is heated while cooling the absorption liquid by exchanging heat with the absorption liquid in the heat medium cooling intercooler 206. Further, the heat medium passing through the branch pipe 208 in which the heat medium cooling type lean amine cooler 207 is interposed is heated in the heat medium cooling type lean amine cooler 207 while cooling the lean absorbent. Then, the heat medium that has passed through each branch pipe 208 joins in the heat medium collector 110.
  • the heat medium cooling type lean amine cooler 207 is interposed between the lean supply path 5 and the heat pump 6. Therefore, the heat medium can be heated while cooling the lean absorbent by heat exchange between the lean absorbent in the lean supply path 5 and the heat medium in the heat pump 6. Thereby, the heat
  • the intercooler system 201 is provided in the absorption tower 2, it becomes possible to re-introduce the absorption liquid in the tower intermediate part 2 c and to absorb carbon dioxide gas by the absorption liquid in the absorption tower 2. Can be promoted more.
  • the heat medium cooling type intercooler 206 is interposed between the intercooler system 201 and the heat pump 6, absorption is achieved by exchanging heat between the absorbing liquid of the intercooler system 201 and the heat medium of the heat pump 6.
  • the heating medium can be heated while cooling the liquid.
  • the flow of the rich absorbent is branched to a portion located between the absorption tower bottom pump 17 and the amine heat exchanger 36 in the rich supply path 4.
  • first rich amine heat exchanger 305 that exchanges heat between the rich absorbent and the lean absorbent.
  • the first rich amine heat exchanger 305 is interposed downstream of the amine heat exchanger 36 in the lean supply path 5.
  • the first rich amine heat exchanger 305 exchanges heat between the rich absorbent in the one rich branch 302 and the lean absorbent in the lean supply path 5.
  • a reboiler distributor 306 is provided between the reboiler pump 24 and the condensation heat exchanger 34 in the pipe 23 of the reboiler system 19 provided in the regeneration tower 3.
  • a branch pipe 307 connected to the tower bottom 3a of the tower 3 is branched.
  • a heat medium reboiler heater (a twelfth heat exchanger) 308 that exchanges heat between the absorbing liquid and the heat medium that has been compressed to increase its temperature. Is intervening. Further, between the rich supply path 4 and the heat pump 6, there is a second rich amine heat exchanger (13th heat exchanger) 309 that exchanges heat between the rich absorbent and the heat medium that has been compressed to increase its temperature. Intervene.
  • the heat medium reboiler heater 308, the second rich amine heat exchanger 309, and the regeneration tower internal heat exchanger 38 pass through the heat medium whose temperature is increased by being compressed by the heat medium compressor 42 in the heat pump 6, and the heat medium is heated. Intervenes in the heat supply that delivers the heat.
  • the heat pump 6 includes a plurality of pipes 310, 311, 312, 313, and 314, and a heat medium distributor 315 and a heat medium collector 316 that connect the pipes.
  • the plurality of pipes 310, 311, 312, 313, and 314 include three branch pipes 310, 311, and 312 that connect the heat medium distributor 315 and the heat medium collector 316, the heat medium collector 316, and the absorption tower internal heat. It consists of a first pipe 313 connecting the lower part of the cross 37 and a second pipe 314 connecting the upper part of the heat exchange 37 inside the absorption tower and the heat medium distributor 315.
  • the regeneration tower internal heat exchanger 38 is provided at an intermediate portion of the first branch pipe 310, and a heat medium reboiler heater 308 is provided in the second branch pipe 311. Is installed, and a second rich amine heat exchanger 309 is interposed in the third branch pipe 312.
  • the first pipe 313 is provided with the heat medium expansion valve 41
  • the second pipe 314 is provided with the heat medium compressor 42.
  • a heating medium reboiler heater 308 is interposed in the branch pipe 307, and in the rich supply path 4, one of the rich branch paths 302, 303 is the one rich branch.
  • a second rich amine heat exchanger 309 is interposed in the other rich branch path 303 different from the path 302.
  • the second rich amine heat exchanger 309 is interposed upstream of the amine heat exchanger 36 in the rich supply path 4.
  • the heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the first pipe 313 and is then absorbed by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchange 37 inside the absorption tower.
  • the heat of the exothermic reaction is received while cooling the liquid, and then moves to the heat medium distributor 315 through the second pipe 314.
  • the temperature of the heat medium rises by the heat medium compressor 42.
  • the heat medium is branched by the heat medium distributor 315 and passes through the branch pipes 310, 311, and 312.
  • the heat medium passing through the first branch pipe 310 is rich in the heat exchange as the heat source of the endothermic reaction by exchanging heat with the absorption liquid while moving from the lower part to the upper part of the heat exchange 38 inside the regeneration tower. Transfer to absorbent and heat.
  • the heat medium passing through the second branch pipe 311 exchanges heat with the absorption liquid of the reboiler system 19 in the heat medium reboiler heater 308, thereby transferring the heat to the absorption liquid and heating it.
  • the heat medium passing through the third branch pipe 312 exchanges heat with the rich absorption liquid in the rich supply path 4 to transfer the heat to the rich absorption liquid and heat it.
  • the heat medium reboiler heater 308 is interposed between the reboiler system 19 and the heat pump 6. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the heat medium of the heat pump 6, the heat of the heat medium can be received by the absorption liquid and the absorption liquid can be heated. As a result, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the second rich amine heat exchange 309 is interposed between the rich supply path 4 and the heat pump 6, heat exchange is performed between the rich absorbent in the rich supply path 4 and the heat medium of the heat pump 6.
  • the rich absorption liquid supplied to the regeneration tower 3 can be received by the heat of the heat medium so that the rich absorption liquid can be heated.
  • the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the second rich amine heat exchanger is included in the heating amount in the amine heat exchanger 36.
  • the preheating amount of the rich absorption liquid increases, and the amount of heat to be given to the absorption liquid by the reboiler system 19 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the reboiler is disposed between the reboiler pump 24 and the condensation heat exchanger 34 in the pipe 23 of the reboiler system 19 provided in the regeneration tower 3.
  • a distributor 401 is provided.
  • a branch pipe 402 connected to the tower bottom 3 a of the regeneration tower 3 is branched from the reboiler distributor 401.
  • the heat pump 6 does not include the regeneration tower internal heat exchange 38.
  • a heat medium reboiler heater (a twelfth heat exchanger) 403 that exchanges heat between the absorbing liquid and the heat medium that has been compressed and the temperature has increased. Is intervening.
  • the plurality of pipes 404 and 405 of the heat pump 6 are connected to the heat medium collector 110 and the heat medium distributor 109 and the main pipe 404 provided with the heat medium compressor 42 and the heat medium distributor. 109 and three branch pipes 405 connecting the heat medium collector 110.
  • the main pipe 404 is provided with a heat medium expansion turbine 406 that reduces the temperature by expanding the heat medium.
  • the heat medium expansion turbine 406 obtains rotational power when the heat medium is expanded.
  • the heat medium reboiler heater 403 is interposed between the heat medium compressor 42 and the heat medium expansion turbine 406 in the main pipe 404.
  • Each of the branch pipes 405 is provided with any one of a heat medium cooling type decarboxylation gas cooler 102, a heat medium cooling type washing water cooler 103, and a heat medium cooling type rich amine heat exchanger 104. .
  • the heat medium whose temperature has been lowered by the heat medium expansion turbine 406 passes through the main pipe 404 and then is branched by the heat medium distributor 109 and is heated in each heat exchanger through the three branch pipes 405. Merge at the aggregator 110.
  • the heat medium merged in the heat medium collector 110 passes through the main pipe 404 and is heated by the heat medium compressor 42, and then is heat-exchanged with the absorption liquid of the reboiler system 19 in the heat medium type reboiler heater 403.
  • the heat of the heat medium is transferred to the absorption liquid and heated. Then, it moves toward the heat medium distributor 109 through the main pipe 404. At this time, the temperature of the heat medium is lowered again by the heat medium expansion turbine 406.
  • the heat medium reboiler heater 403 is interposed between the reboiler system 19 and the heat pump 6. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the heat medium of the heat pump 6, the heat of the heat medium can be received by the absorption liquid and the absorption liquid can be heated. As a result, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the heat pump 6 is not provided with the regeneration tower internal heat exchange 38, it may be provided with this.
  • the heat pump 6 is not provided in the carbon dioxide gas recovery device 500 of the present embodiment.
  • the absorption tower packing 8 is disposed in the tower middle part 2c of the absorption tower 2 in an upper and lower part, and the lean absorption liquid is led to the absorption tower 2 from the tower middle part 2c of the absorption tower 2.
  • an intercooler system 501 is provided that is reintroduced from the tower middle portion 2c.
  • a lean amine cooler 502 that cools the lean absorbent is provided in the lean supply path 5 downstream of the amine heat exchanger 36.
  • the piping 29 of the mixed gas cooling system 20 is not provided with the decompression / expansion valve 31, and the condensate circulation is provided between the gas-liquid separator 32 and the fourth nozzle 28 in the piping 29.
  • a level adjustment valve 503 is provided instead of the pump 29a.
  • the gas-liquid separator 32 includes a condensate that is the vapor of the solute and the solvent condensed by the condensation heat exchanger 34, and the remaining uncondensed gas that is composed of the vapor of the solute and the solvent and the carbon dioxide gas. The temperature rising mixed gas is separated.
  • the gas-liquid separator 32 is provided with a residual gas flow passage 504 connected to the tower top 3 b of the regeneration tower 3 through another gas-liquid separator 505 described later, instead of the discharge passage 33.
  • the remaining non-condensed heated mixture gas separated by the gas-liquid separator 32 passes.
  • a third rich amine heat exchanger (second heat exchanger) 514, the pressure reduction / expansion valve 31, the condensate of the vapors of the solute and the solvent, and uncondensed carbon dioxide are described.
  • Another gas-liquid separator 505 for separating gas and a level control valve 506 are arranged in this order from the gas-liquid separator 32 to the top 3b of the regeneration tower 3.
  • the other gas-liquid separator 505 is provided with the discharge path 33.
  • a rich amine distributor 507 for branching the flow of the rich absorbent liquid and a branched rich absorbent liquid circulate in a portion located between the absorption tower bottom pump 17 and the amine heat exchanger 36 in the rich supply path 4.
  • the first rich amine heat exchange that exchanges heat between the rich absorbent and the lean absorbent. 512 is interposed.
  • the first rich amine heat exchanger 512 is interposed downstream of the amine heat exchanger 36 in the lean supply path 5.
  • the second rich branch 509 of the three rich branches 508, 509, and 510 and the reboiler pipe 26 the second rich amine heat that exchanges heat between the rich absorbent and the high-temperature fluid.
  • Intersection 513 is interposed.
  • the second rich amine heat exchanger 513 is interposed downstream of the steam trap 27 in the reboiler pipe 26.
  • Intersection 514 is interposed.
  • the third rich amine heat exchanger 514 is interposed in the third rich branch 510 of the three rich branches 508, 509, 510, and upstream of the pressure reducing / expansion valve 31 in the residual gas flow passage 504. Is intervened.
  • the rich absorbent passing through the rich supply path 4 reaches the rich amine distributor 507 and then branches into three branch paths 508, 509, and 510.
  • the rich absorption liquid passing through the first rich branch 508 is heated while cooling the lean absorption liquid by exchanging heat with the lean absorption liquid in the lean supply path 5 in the first rich amine heat exchange 512.
  • the rich absorbent passing through the second rich branch 509 is heated by receiving heat from the high-temperature fluid by exchanging heat with the high-temperature fluid in the reboiler pipe 26 in the second rich amine heat exchange 513.
  • the rich absorbing liquid passing through the third rich branch 510 is exchanged with the remaining temperature rising mixed gas flowing through the remaining gas flow passage 504 in the third rich amine heat exchange 514, whereby the remaining rising temperature is increased.
  • the hot mixed gas is heated while cooling.
  • the rich absorbent heated through the rich branch paths 508, 509, and 510 is joined by the rich amine collector 511 and then supplied to the third nozzle 16.
  • the mixed gas that has risen in the regeneration tower 3 passes through the pipe 29 of the mixed gas cooling system 20 and is first compressed by the mixed gas compressor 30 to rise in temperature and become a heated mixed gas. Thereafter, the condensation heat exchanger 34 performs heat exchange with the absorption liquid of the reboiler system 19 to recover the latent heat of the solute and solvent vapor, and at least a part of the solute and solvent vapor is condensed. It becomes a condensate. Next, the condensate is separated from the remaining non-condensed temperature rising mixed gas by the gas-liquid separator 32, and among these, the condensate passes through the pipe 29 to the tower top 3 b of the regeneration tower 3. Supplied from the fourth nozzle 28.
  • the remaining non-condensed temperature rising mixed gas passes through the residual gas flow passage 504 and exchanges heat with the rich absorption liquid passing through the third rich branch 510 in the third rich amine heat exchanger 514,
  • the sensible heat and the latent heat of the remaining steam are recovered. That is, the latent heat of the vapor of the solute and the solvent is recovered to condense the vapor of the solute and the solvent in the remaining temperature rising mixed gas, and the carbon dioxide gas in the remaining temperature rising mixed gas Sensible heat is recovered.
  • the remaining temperature rising mixed gas is expanded by the pressure reducing / expansion valve 31 and the temperature is lowered, so that all the vapors of the solute and the solvent in the remaining temperature rising mixed gas are condensed to become a condensate. .
  • the other liquid-liquid separator 505 separates the condensate from uncondensed carbon dioxide gas.
  • the condensate is supplied to the top 3 b of the regeneration tower 3 through the residual gas flow passage 504, and the carbon dioxide gas is discharged through the discharge path 33.
  • the third rich amine heat exchanger 514 is interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, by heat exchange between the remaining temperature rising mixed gas of the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4, while heating the rich absorbent supplied to the regeneration tower 3, The remaining temperature rising mixed gas can be cooled.
  • the rich absorption liquid supplied to the regeneration tower 3 can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower 3, so the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3. Can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the temperature rising mixed gas of the mixed gas cooling system 20 passes through the condensation heat exchanger 34 and then passes through the third rich amine heat exchanger 514, the latent heat of vapor of the solute and the solvent in the temperature rising mixed gas. After being recovered by the condensation heat exchanger 34, the sensible heat and the remaining latent heat of the remaining unheated mixed gas mixture can be recovered by the third rich amine heat exchanger 514.
  • the amount of heat to be applied is the amount of recovery leakage heat in the amine heat exchanger 36 (the sensible heat amount of the lean absorbing liquid flowing out of the amine heat exchanger 36 and the sensible heat amount of the rich absorbing liquid flowing in the amine heat exchanger 36).
  • the amount of heat to be applied from the outside in the reboiler system 19 is the amount of heat that only corresponds to the amount of heat released around the regeneration tower 3. Reduce to. Since heat radiation can be controlled by the degree of heat retention, the amount of heat to be finally applied from the outside in the reboiler system 19 can be made near zero.
  • heat is exchanged between the remaining temperature rising mixed gas in the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4. It is not limited to.
  • heat exchange may be performed between the carbon dioxide gas and the rich absorbing solution, and sensible heat recovery of the carbon dioxide gas may be performed.
  • the temperature rises upstream of the gas-liquid separator 32 so that all the vapors of the solute and the solvent in the temperature rise mixed gas are separated from the carbon dioxide gas.
  • the mixed gas cooling system 20 may be configured such that all of the vapors of the solute and the solvent in the mixed gas are condensed.
  • the heat pump 6 is not provided, but the heat pump 6 may be provided.
  • a rich amine distributor that branches the flow of the rich absorption liquid to a portion located downstream of the absorption tower bottom pump 17 in the rich supply path 4.
  • 601 two rich branch paths 602 and 603 through which the branched rich absorbing liquid flows, and a rich amine collector 604 in which the rich branch paths 602 and 603 merge.
  • the amine heat exchanger 36 is interposed between one rich branch path 602 and the lean supply path 5.
  • the heat pump 6 does not have the heat exchange 38 inside the regeneration tower.
  • the first rich amine heat exchange (13th heat exchange) is performed between the rich supply path 4 and the heat pump 6 between the rich absorbent and the heat medium whose temperature is increased by being compressed. ) Is interposed.
  • the heat pump 6 includes a heat pump pipe 607 that connects the lower part and the upper part of the heat exchange 37 inside the absorption tower.
  • the heat pump pipe 607 is provided with the heat medium compressor 42, and a heat medium expansion turbine 608 that lowers the temperature by expanding the heat medium is provided downstream of the heat medium compressor 42 in the heat pump pipe 607. ing.
  • the heat medium expansion turbine 608 obtains rotational power when the heat medium is expanded.
  • the first rich amine heat exchanger 605 is interposed in the heat pump pipe 607 downstream of the heat medium compressor 42 and upstream of the heat medium expansion turbine 608, and in the rich supply path 4 It is interposed downstream from the container 604.
  • the pressure reducing / expansion valve 31 of the mixed gas cooling system 20 is provided in the discharge passage 33, and condensate is provided between the gas-liquid separator 32 and the fourth nozzle 28 in the pipe 29 of the mixed gas cooling system 20.
  • a level adjustment valve 609 is provided instead of the circulation pump 29a. Further, in the illustrated example, the condensation heat exchanger 34 is not provided.
  • a second rich amine heat exchanger (third heat exchanger) 610 that exchanges heat between the temperature rising mixed gas and the rich absorbent is provided between the mixed gas cooling system 20 and the rich supply path 4. Intervene. Furthermore, between the mixed gas cooling system 20 and the rich supply path 4, a third rich amine heat exchange (which exchanges heat between the temperature-increased mixed gas and the rich absorbent after passing through the second rich amine heat exchange 610 ( A fourth heat exchanger) 611 is interposed.
  • the second rich amine heat exchanger 610 is interposed downstream of the mixed gas compressor 30 and upstream of the gas-liquid separator 32 in the piping 29 of the mixed gas cooling system 20, and is richly supplied. In the path 4, it is interposed downstream from the first rich amine heat exchanger 605.
  • the third rich amine heat exchanger 611 is interposed upstream of the pressure reducing / expansion valve 31 in the discharge passage 33 of the mixed gas cooling system 20, and the two rich branch passages 602 and 603 in the rich supply passage 4. Of these, the other branch 603 different from one rich branch 602 is interposed.
  • the rich absorption liquid passing through one rich branch path 602 is heated while cooling the lean absorption liquid by exchanging heat with the lean absorption liquid in the lean supply path 5 by the amine heat exchange 36. Further, the rich absorbing liquid passing through the other rich branch 603 is exchanged with the carbon dioxide main gas in the discharge passage 33 of the mixed gas cooling system 20 by the third rich amine heat exchange 611, thereby Receives heat and is heated.
  • the rich absorbent heated through the rich branch paths 602 and 603 merges in the rich amine collector 604, and then exchanges heat with the heat medium of the heat pump 6 in the first rich amine heat exchanger 605. Heat is received from the heat medium and heated. Thereafter, the rich absorbent is further heated by cooling the heated mixed gas by exchanging heat with the heated mixed gas in the discharge passage 33 of the mixed gas cooling system 20 in the second rich amine heat exchanger 610. The rich absorbent heated as described above is then supplied to the third nozzle 16.
  • the mixed gas that has risen in the regeneration tower 3 passes through the pipe 29 of the mixed gas cooling system 20 and is first compressed by the mixed gas compressor 30 to rise in temperature and become a heated mixed gas. Thereafter, in the second rich amine heat exchanger 610, heat exchange with the rich absorbing liquid in the rich supply path 4 is performed to recover the latent heat of the solute and solvent vapor, and the solute and solvent vapor are condensed. To condensate.
  • the condensate and the non-condensed carbon dioxide main gas mainly composed of carbon dioxide gas are separated by the gas-liquid separator 32, and among these, the condensate passes through the pipe 29 and enters the regeneration tower 3.
  • the fourth nozzle 28 is supplied to the tower top 3b.
  • the uncondensed carbon dioxide main gas passes through the discharge path 33, and in the third rich amine heat exchange 611, exchanges heat with the rich absorption liquid that passes through the one rich branch path 602, so that the sensible heat of the gas and After the latent heat of a part of the remaining steam is recovered, the steam is expanded by the pressure reduction / expansion valve 31 and is discharged at a reduced temperature. At this time, the latent heat of the vapor of the solute and the solvent is recovered to condense the vapor of the solute and the solvent in the carbon dioxide main gas, and the sensible heat of the carbon dioxide gas in the carbon dioxide main gas Collected.
  • the heat medium whose temperature has been lowered by the heat medium expansion turbine 608 passes through the heat pump pipe 607 and then exchanges heat with the absorption liquid while moving from the lower part to the upper part of the heat exchange 37 inside the absorption tower.
  • the heat of the exothermic reaction is received while cooling.
  • the heat medium is compressed by the heat medium compressor 42 through the heat pump pipe 607, and after the temperature rises, heat exchange with the rich absorption liquid is performed in the first rich amine heat exchanger 605 to heat the rich absorption liquid.
  • it is cooled.
  • the heat medium moves through the heat pump pipe 607 toward the lower part of the heat exchange 37 inside the absorption tower. At this time, the temperature of the heat medium is lowered again by the heat medium expansion turbine 608.
  • the mixed gas cooling system 20 includes the mixed gas compressor 30. Therefore, by applying a slight amount of external power, a temperature rising mixed gas can be obtained without heating from the outside. Further, the second rich amine heat exchanger 610 is interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, heat exchange is performed between the temperature-increased mixed gas of the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4, so that the heat supplied by the mixed gas flowing out of the regeneration tower 3 is supplied to the regeneration tower 3. The temperature rising mixed gas can be cooled while heating the rich absorbent.
  • the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be suppressed, and energy saving can be achieved.
  • the second rich amine heat exchange 610 and the third rich amine heat exchange 611 are interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, it is possible to effectively preheat the rich absorption liquid supplied to the regeneration tower 3, and the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the temperature rising mixed gas of the mixed gas cooling system 20 passes through the third rich amine heat exchange 611 after passing through the second rich amine heat exchange 610. Therefore, for example, after the latent heat of the vapors of the solute and the solvent in the temperature rising mixed gas is recovered by the second rich amine heat exchanger 610, the sensible heat of the non-condensed carbon dioxide main gas and the remaining latent heat are third rich. It can be recovered by amine heat exchanger 611.
  • the first rich amine heat exchange 605 is interposed between the rich supply path 4 and the heat pump 6, heat exchange is performed between the rich absorbent in the rich supply path 4 and the heat medium of the heat pump 6.
  • the rich absorption liquid supplied to the regeneration tower 3 can be received by the heat of the heat medium so that the rich absorption liquid can be heated.
  • the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the amine heat exchange 36 when the amine heat exchange 36 is interposed between the lean supply path 5 and the rich supply path 4, the amount of heat for heating the rich absorbent is reduced by the amine heat exchange 36, The amount of heat to be given to the absorbent by the reboiler system 19 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
  • the heat pump 6 is not provided with the regeneration tower internal heat exchange 38, but may be provided.
  • the condensation heat exchanger 34 is not provided, but this may be provided.
  • the third rich amine heat exchanger 611 is provided, but this may not be provided.
  • the technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the temperature of the temperature rising mixed gas is decreased by the pressure reducing / expansion valve 31, but an expansion turbine may be adopted instead. In this case, rotational power can be obtained when the temperature rising mixed gas is expanded.
  • the heat pump 6 is provided. However, the heat pump 6 may be omitted. Further, in the first to sixth embodiments, the second rich amine heat exchanger 610 shown in the seventh embodiment is not provided, but this may be provided.
  • the carbon dioxide gas recovery apparatus can save energy by suppressing the amount of heat input from the outside.

Abstract

The disclosed carbon dioxide gas recovery device is provided with: an absorption tower that absorbs carbon dioxide gas into an absorption solution, thereby generating a rich absorption solution; and a regeneration tower that heats the rich absorption solution, thereby separating out the aforementioned carbon dioxide gas and regenerating a lean absorption solution. The regeneration tower is provided with: a reboiler system that heats an absorption solution drawn from the regeneration tower and then reintroduces said absorption solution into the regeneration tower; and a gas-mixture cooling system that cools a gas mixture drawn from the regeneration tower, condenses a solute and a vapor fraction of a solvent, reintroduces same into the regeneration tower, and outputs carbon dioxide gas. The gas-mixture cooling system is provided with a gas-mixture compressor that compresses the gas mixture, thereby raising the temperature thereof and yielding a raised-temperature gas mixture. A first heat exchanger, which exchanges heat between the absorption solution and the raised-temperature gas mixture, is interposed between the boiler system and the gas-mixture cooling system.

Description

二酸化炭素ガス回収装置Carbon dioxide gas recovery device
 本発明は、CO化学吸収分離法を用いて二酸化炭素ガスを回収する二酸化炭素ガス回収装置に関する。
 本願は、2010年03月31日に日本出願された特願2010-080236に基づいて優先権を主張し、その内容をここに援用する。
The present invention relates to a carbon dioxide gas recovery apparatus that recovers carbon dioxide gas using a CO 2 chemical absorption separation method.
This application claims priority based on Japanese Patent Application No. 2010-080236 filed in Japan on Mar. 31, 2010, the contents of which are incorporated herein by reference.
 従来から、二酸化炭素ガス回収装置として、例えば下記特許文献1に示されるような構成が知られている。図8に示すように、二酸化炭素ガス回収装置1000は、二酸化炭素ガスを含有する二酸化炭素含有ガスと、リーン吸収液と、を接触させ、二酸化炭素含有ガス中の二酸化炭素ガスを吸収液に吸収させてリッチ吸収液を生成する吸収塔1001と、吸収塔1001から供給されたリッチ吸収液を加熱して二酸化炭素ガスをリッチ吸収液から分離させることによりリッチ吸収液をリーン吸収液に再生する再生塔1002と、を備えている。
 また、再生塔1002には、再生塔1002からリーン吸収液を導出して加熱し、再生塔1002に再導入するリボイラー系統1003と、二酸化炭素ガスと吸収液の溶質および溶媒(例えば、水)の蒸気分との混合ガスを再生塔1002から導出して冷却し、混合ガス中の前記溶質および溶媒の蒸気分を凝縮させて再生塔1002に再導入するとともに、未凝縮の二酸化炭素ガスを排出する混合ガス冷却系統1004と、が設けられている。
Conventionally, as a carbon dioxide gas recovery device, for example, a configuration as shown in Patent Document 1 below is known. As shown in FIG. 8, the carbon dioxide gas recovery apparatus 1000 brings a carbon dioxide-containing gas containing carbon dioxide gas into contact with a lean absorbent, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas into the absorbent. The absorption tower 1001 that generates the rich absorption liquid, and the regeneration that regenerates the rich absorption liquid into the lean absorption liquid by heating the rich absorption liquid supplied from the absorption tower 1001 and separating the carbon dioxide gas from the rich absorption liquid And a tower 1002.
Also, the regeneration tower 1002 includes a reboiler system 1003 that draws a lean absorption liquid from the regeneration tower 1002, heats it, and reintroduces it into the regeneration tower 1002, and a solute and solvent (for example, water) of carbon dioxide gas and the absorption liquid. The mixed gas with the vapor component is led out from the regeneration tower 1002 and cooled, the vapor components of the solute and the solvent in the mixed gas are condensed and reintroduced into the regeneration tower 1002, and uncondensed carbon dioxide gas is discharged. And a mixed gas cooling system 1004.
 この二酸化炭素ガス回収装置1000では、再生塔1002内でリッチ吸収液を加熱するための熱源となる熱は、リボイラー系統1003によって加熱されて再生塔1002に再導入された吸収液を介して供給される。リボイラー系統1003は、外部から供給される熱を熱源として吸収液を加熱するリボイラー本体1005を備えている。 In this carbon dioxide gas recovery apparatus 1000, heat that is a heat source for heating the rich absorbent in the regeneration tower 1002 is supplied via the absorbent that is heated by the reboiler system 1003 and reintroduced into the regeneration tower 1002. The The reboiler system 1003 includes a reboiler body 1005 that heats the absorbing liquid using heat supplied from the outside as a heat source.
特開2003-225537号公報JP 2003-225537 A
 前記従来の二酸化炭素ガス回収装置1000では、リボイラー系統1003のリボイラー本体1005から供給された熱は、主に、再生塔1002での吸収液の加熱・再生時に消費される。また、リボイラー本体1005から供給された熱は、混合ガス冷却系統1004での混合ガスの冷却時や、混合ガス冷却系統1004からの二酸化炭素ガス排出時に外部に漏出する。
 ここで、前記従来の二酸化炭素ガス回収装置1000では、リボイラー系統1003での外部からの入熱量を抑え、更なる省エネルギー化を図ることが望まれている。
In the conventional carbon dioxide gas recovery apparatus 1000, the heat supplied from the reboiler body 1005 of the reboiler system 1003 is mainly consumed when the absorbing solution is heated and regenerated in the regeneration tower 1002. Further, the heat supplied from the reboiler main body 1005 leaks to the outside when the mixed gas cooling system 1004 cools the mixed gas or when the mixed gas cooling system 1004 discharges the carbon dioxide gas.
Here, in the conventional carbon dioxide gas recovery apparatus 1000, it is desired that the amount of heat input from the outside in the reboiler system 1003 is suppressed to further save energy.
 本発明は、前述した事情に鑑みてなされたものであって、その目的は、外部からの入熱量を抑制して省エネルギー化を図ることができる二酸化炭素ガス回収装置を提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a carbon dioxide gas recovery apparatus capable of saving energy by suppressing the amount of heat input from the outside.
 前記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る二酸化炭素ガス回収装置は、二酸化炭素ガスを含有する二酸化炭素含有ガスと、リーン吸収液と、を導入して接触させ、前記二酸化炭素含有ガス中の前記二酸化炭素ガスを吸収液に吸収させてリッチ吸収液を生成する吸収塔と、前記吸収塔から供給された前記リッチ吸収液を加熱して前記二酸化炭素ガスを分離させることにより前記リーン吸収液に再生する再生塔と、を備えた二酸化炭素ガス回収装置であって、前記再生塔には、前記再生塔から吸収液を導出して加熱し、前記再生塔に再導入するリボイラー系統と、前記二酸化炭素ガスと前記吸収液の溶質および溶媒の蒸気分との混合ガスを前記再生塔から導出して冷却し、前記溶質および溶媒の蒸気分を凝縮させて、凝縮液を前記再生塔に再導入するとともに、前記二酸化炭素ガスを排出する混合ガス冷却系統とが設けられ、前記混合ガス冷却系統は、前記混合ガスを圧縮して温度を上昇させ昇温混合ガスとする混合ガス圧縮機を備え、前記リボイラー系統と前記混合ガス冷却系統との間には、前記吸収液と前記昇温混合ガスとで熱交換する第1熱交換器が介在している。
 ここで吸収液とは、リーン吸収液、リッチ吸収液、もしくはリーン吸収液とリッチ吸収液との混合液を意味する。
In order to solve the above problems, the present invention proposes the following means.
The carbon dioxide gas recovery device according to the present invention introduces and contacts a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbent, and the carbon dioxide gas in the carbon dioxide-containing gas is used as the absorbent. An absorption tower for generating a rich absorption liquid by absorption, and a regeneration tower for regenerating the lean absorption liquid by heating the rich absorption liquid supplied from the absorption tower and separating the carbon dioxide gas. A carbon dioxide gas recovery device, wherein the regenerator tower is a reboiler system for extracting and heating an absorption liquid from the regeneration tower and reintroducing it into the regeneration tower; and a solute of the carbon dioxide gas and the absorption liquid. And the mixed gas with the vapor of the solvent is led out from the regeneration tower and cooled, the vapor of the solute and the solvent is condensed, and the condensate is reintroduced into the regeneration tower. A mixed gas cooling system that discharges gas, and the mixed gas cooling system includes a mixed gas compressor that compresses the mixed gas and raises the temperature to form a heated mixed gas, and the reboiler system and the mixed gas Between the gas cooling system, the 1st heat exchanger which heat-exchanges with the said absorption liquid and the said temperature rising mixed gas is interposing.
Here, the absorption liquid means a lean absorption liquid, a rich absorption liquid, or a mixed liquid of a lean absorption liquid and a rich absorption liquid.
 この発明によれば、混合ガス冷却系統に、混合ガス圧縮機を備えているので、僅かな外部動力を加えることで、外部から加熱することなく、昇温混合ガスが得られる。さらに、リボイラー系統と混合ガス冷却系統との間に、前記第1熱交換器が介在しているので、リボイラー系統の吸収液と、混合ガス冷却系統の昇温混合ガスと、で熱交換することで、吸収液を加熱しつつ、昇温混合ガスを冷却することができる。
 これにより、リボイラー系統での外部からの入熱量を抑えることが可能になり、省エネルギー化を図ることができる。
According to the present invention, since the mixed gas cooling system includes the mixed gas compressor, the heated mixed gas can be obtained by applying a slight external power without heating from the outside. Furthermore, since the first heat exchanger is interposed between the reboiler system and the mixed gas cooling system, heat exchange is performed between the reboiler system absorption liquid and the temperature rising mixed gas of the mixed gas cooling system. Thus, the temperature rising mixed gas can be cooled while heating the absorbing liquid.
Thereby, it becomes possible to suppress the amount of heat input from the outside in the reboiler system, and energy saving can be achieved.
 また、前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路をさらに備えていても良く、前記混合ガス冷却系統と前記リッチ供給路との間には、前記第1熱交換器を通った後の前記昇温混合ガスと前記リッチ吸収液とで熱交換する第2熱交換器が介在していても良い。 In addition, a rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower may be further provided, and the first heat exchanger is provided between the mixed gas cooling system and the rich supply path. A second heat exchanger for exchanging heat between the temperature rising mixed gas after passing through and the rich absorbent may be interposed.
 この場合、混合ガス冷却系統とリッチ供給路との間に、前記第2熱交換器が介在しているので、混合ガス冷却系統の昇温混合ガスと、リッチ供給路のリッチ吸収液と、で熱交換することで、再生塔に供給されるリッチ吸収液を加熱しつつ、昇温混合ガスを冷却することができる。
 このように、再生塔を流出する混合ガスの持つ熱量により、再生塔に供給されるリッチ吸収液を予熱しておくことができるので、再生塔でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統での外部からの入熱量をより抑えることが可能になり、一層の省エネルギー化を図ることができる。
In this case, since the second heat exchanger is interposed between the mixed gas cooling system and the rich supply path, the temperature rising mixed gas of the mixed gas cooling system and the rich absorbing liquid of the rich supply path are By performing heat exchange, the temperature rising mixed gas can be cooled while heating the rich absorbent supplied to the regeneration tower.
In this way, the rich absorption liquid supplied to the regeneration tower can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower, so that the amount of heat that the rich absorption liquid needs to receive in the regeneration tower is suppressed. Can do. Therefore, the amount of heat input from outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
 また、混合ガス冷却系統の昇温混合ガスが、第1熱交換器を通った後に第2熱交換器を通る。そのため、例えば、昇温混合ガス中の前記溶質および溶媒の蒸気分の潜熱を第1熱交換器で回収した後、未凝縮の前記溶質および溶媒の蒸気分および二酸化炭素ガスからなる残りの昇温混合ガスの顕熱および残った潜熱を第2熱交換器で回収することができる。 Also, the temperature rising mixed gas of the mixed gas cooling system passes through the second heat exchanger after passing through the first heat exchanger. Therefore, for example, after the latent heat of the vapor of the solute and the solvent in the temperature rise mixed gas is recovered by the first heat exchanger, the remaining temperature rise consisting of the vapor of the solute and the solvent and the carbon dioxide gas that has not been condensed. The sensible heat of the mixed gas and the remaining latent heat can be recovered by the second heat exchanger.
 また、本発明に係る二酸化炭素ガス回収装置は、二酸化炭素ガスを含有する二酸化炭素含有ガスと、リーン吸収液と、を導入して接触させ、前記二酸化炭素含有ガス中の前記二酸化炭素ガスを吸収液に吸収させてリッチ吸収液を生成する吸収塔と、前記吸収塔から供給された前記リッチ吸収液を加熱して前記二酸化炭素ガスを分離させることにより前記リーン吸収液に再生する再生塔と、を備えた二酸化炭素ガス回収装置であって、前記再生塔には、前記再生塔から吸収液を導出して加熱し、前記再生塔に再導入するリボイラー系統と、前記二酸化炭素ガスと前記吸収液の溶質および溶媒の蒸気分との混合ガスを前記再生塔から導出して冷却し、前記溶質および溶媒の蒸気分を凝縮させて前記再生塔に再導入するとともに、前記二酸化炭素ガスを排出する混合ガス冷却系統と、が設けられ、前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、前記混合ガス冷却系統は、前記混合ガスを圧縮して温度を上昇させ昇温混合ガスとする混合ガス圧縮機を備え、前記混合ガス冷却系統と前記リッチ供給路との間には、前記昇温混合ガスと前記リッチ吸収液とで熱交換する第3熱交換器が介在している。 Further, the carbon dioxide gas recovery device according to the present invention introduces a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbing liquid into contact with each other, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas. An absorption tower that absorbs the liquid to produce a rich absorption liquid, a regeneration tower that regenerates the lean absorption liquid by heating the rich absorption liquid supplied from the absorption tower and separating the carbon dioxide gas; A carbon dioxide gas recovery apparatus comprising: a reboiler system that draws an absorption liquid from the regeneration tower, heats it, and reintroduces it into the regeneration tower; and the carbon dioxide gas and the absorption liquid. The mixed gas of the solute and the solvent vapor is led out from the regeneration tower and cooled, the vapor of the solute and the solvent is condensed and reintroduced into the regeneration tower, and the carbon dioxide A mixed gas cooling system that discharges gas, and includes a rich supply path that supplies the rich absorbent from the absorption tower to the regeneration tower, and the mixed gas cooling system compresses the mixed gas to a temperature And a mixed gas compressor configured to raise the temperature of the mixed gas, and between the mixed gas cooling system and the rich supply path, heat is exchanged between the heated mixed gas and the rich absorbent. There is an exchanger.
 この発明によれば、混合ガス冷却系統に、混合ガス圧縮機を備えているので、僅かな外部動力を加えることで、外部から加熱することなく、昇温混合ガスが得られる。さらに、混合ガス冷却系統とリッチ供給路との間に、前記第3熱交換器が介在しているので、混合ガス冷却系統の昇温混合ガスと、リッチ供給路のリッチ吸収液と、で熱交換することで、再生塔に供給されるリッチ吸収液を加熱しつつ、昇温混合ガスを冷却することができる。
 このように、再生塔を流出する混合ガスの持つ熱量により、再生塔に供給されるリッチ吸収液を予熱しておくことができるので、再生塔でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統での外部からの入熱量を抑えることが可能になり、省エネルギー化を図ることができる。
According to the present invention, since the mixed gas cooling system includes the mixed gas compressor, the heated mixed gas can be obtained by applying a slight external power without heating from the outside. Further, since the third heat exchanger is interposed between the mixed gas cooling system and the rich supply path, heat is generated between the temperature rising mixed gas of the mixed gas cooling system and the rich absorbent in the rich supply path. By exchanging, the temperature rising mixed gas can be cooled while heating the rich absorbent supplied to the regeneration tower.
In this way, the rich absorption liquid supplied to the regeneration tower can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower, so that the amount of heat that the rich absorption liquid needs to receive in the regeneration tower is suppressed. Can do. Therefore, it becomes possible to suppress the amount of heat input from the outside in the reboiler system, and energy saving can be achieved.
 また、前記混合ガス冷却系統と前記リッチ供給路との間には、前記第3熱交換器を通った後の前記昇温混合ガスと前記リッチ吸収液とで熱交換する第4熱交換器が介在していても良い。 In addition, a fourth heat exchanger that exchanges heat between the temperature rising mixed gas after passing through the third heat exchanger and the rich absorbent is provided between the mixed gas cooling system and the rich supply path. It may be interposed.
 この場合、混合ガス冷却系統とリッチ供給路との間に、前記第3熱交換器および前記第4熱交換器が介在しているので、再生塔を流出する混合ガスの持つ熱量により、再生塔に供給されるリッチ吸収液を効果的に予熱しておくことが可能になり、再生塔でリッチ吸収液が受け取る必要がある熱量をより抑えることができる。したがって、リボイラー系統での外部からの入熱量をより抑えることが可能になり、一層の省エネルギー化を図ることができる。 In this case, since the third heat exchanger and the fourth heat exchanger are interposed between the mixed gas cooling system and the rich supply path, the regeneration tower is determined by the amount of heat of the mixed gas flowing out of the regeneration tower. It is possible to effectively preheat the rich absorbent supplied to the refrigeration, and the amount of heat that the rich absorbent must receive in the regeneration tower can be further suppressed. Therefore, the amount of heat input from outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
 また、混合ガス冷却系統の昇温混合ガスが、第3熱交換器を通った後に第4熱交換器を通る。そのため、例えば、昇温混合ガス中の前記溶質および溶媒の蒸気分の潜熱を第3熱交換器で回収した後、未凝縮の前記溶質および溶媒の蒸気分および二酸化炭素ガスからなる残りの昇温混合ガスの顕熱および残った潜熱を第4熱交換器で回収することができる。 Also, the temperature rising mixed gas of the mixed gas cooling system passes through the fourth heat exchanger after passing through the third heat exchanger. Therefore, for example, after the latent heat of the vapor of the solute and the solvent in the gas mixture is recovered by a third heat exchanger, the remaining temperature of the vapor of the solute and the solvent and the remaining carbon dioxide gas is recovered. The sensible heat of the mixed gas and the remaining latent heat can be recovered by the fourth heat exchanger.
 また、前記吸収塔で前記吸収液が前記二酸化炭素ガスを吸収するときの発熱反応で生じた熱を熱媒体を介して移動させ、前記再生塔で前記リッチ吸収液から前記二酸化炭素ガスが分離するときの吸熱反応の熱源として利用するヒートポンプをさらに備えていても良い。 Further, heat generated by an exothermic reaction when the absorbing liquid absorbs the carbon dioxide gas in the absorption tower is moved through a heat medium, and the carbon dioxide gas is separated from the rich absorbing liquid in the regeneration tower. A heat pump used as a heat source for the endothermic reaction may be further provided.
 この場合、前記ヒートポンプを備えているので、再生塔での吸熱反応の熱源として、吸収塔での発熱反応で生じた熱を利用することができる。前記発熱反応で生じた熱は吸熱反応の熱と等しいので、反応熱を内部での授受でキャンセルすることが可能になる。従来、吸熱反応を外部から加熱すると共に、反応発熱は冷却水に廃熱していたが、このような廃熱していた反応発熱を再生に必要な吸熱反応の熱源として利用することが可能になり、外部からの入熱量を抑制して一層の省エネルギー化を図ることができる。 In this case, since the heat pump is provided, the heat generated by the exothermic reaction in the absorption tower can be used as a heat source for the endothermic reaction in the regeneration tower. Since the heat generated by the exothermic reaction is equal to the heat of the endothermic reaction, it becomes possible to cancel the reaction heat by exchanging it internally. Conventionally, while the endothermic reaction is heated from the outside, the reaction exotherm was wasted in the cooling water, but it was possible to use the reaction exotherm that was wasted as a heat source for the endothermic reaction necessary for regeneration, It is possible to further save energy by suppressing the amount of heat input from the outside.
 また、前記ヒートポンプは、前記吸収塔内に配設された吸収塔充填物に介装され、膨張して温度が低下した前記熱媒体と、前記吸収塔内の前記吸収液と、で熱交換する第5熱交換器を備えていても良い。 In addition, the heat pump is interposed in the absorption tower packing disposed in the absorption tower, and performs heat exchange between the heat medium whose temperature has decreased due to expansion and the absorption liquid in the absorption tower. A fifth heat exchanger may be provided.
 この場合、ヒートポンプが前記第5熱交換器を備えているので、吸収塔での発熱反応で生じた熱を、損失少なく高効率に熱媒体に受け取らせることができる。
 これにより、吸収塔での発熱反応で生じた熱を、再生塔での吸熱反応の熱源として効果的に利用することが可能になり、更なる省エネルギー化を図ることができる。さらにこの場合、吸収液温度の低下による吸収速度の向上も起こるので、さらなる装置効率の向上も図れる。
In this case, since the heat pump includes the fifth heat exchanger, the heat generated by the exothermic reaction in the absorption tower can be received by the heat medium with high loss and high efficiency.
As a result, the heat generated by the exothermic reaction in the absorption tower can be effectively used as a heat source for the endothermic reaction in the regeneration tower, and further energy saving can be achieved. Further, in this case, the absorption rate is improved due to the decrease in the temperature of the absorbing solution, so that the efficiency of the apparatus can be further improved.
 また、前記ヒートポンプは、前記再生塔内に配設された再生塔充填物に介装され、圧縮されて温度が上昇した前記熱媒体と、前記再生塔内の前記リッチ吸収液と、で熱交換する第6熱交換器を備えていても良い。 In addition, the heat pump is interposed in the regenerative tower packing disposed in the regeneration tower, and heat exchange is performed between the heat medium whose temperature has been increased by compression and the rich absorbent in the regeneration tower. A sixth heat exchanger may be provided.
 この場合、ヒートポンプが前記第6熱交換器を備えているので、熱媒体により移動した発熱反応で生じた熱を、再生塔での吸熱反応の熱源として損失少なく高効率に利用することができる。
 これにより、吸収塔での発熱反応で生じた熱を、再生塔での吸熱反応の熱源として効果的に利用することが可能になり、更なる省エネルギー化を図ることができる。
In this case, since the heat pump includes the sixth heat exchanger, the heat generated by the exothermic reaction moved by the heat medium can be used with high efficiency as a heat source for the endothermic reaction in the regeneration tower with little loss.
As a result, the heat generated by the exothermic reaction in the absorption tower can be effectively used as a heat source for the endothermic reaction in the regeneration tower, and further energy saving can be achieved.
 また、前記吸収塔には、前記二酸化炭素含有ガスから前記二酸化炭素ガスが分離されてなる脱炭酸ガスを導出する導出路が設けられ、前記導出路と前記ヒートポンプとの間には、前記脱炭酸ガスと、膨張して温度が低下した前記熱媒体と、で熱交換する第7熱交換器が介在していても良い。 In addition, the absorption tower is provided with a lead-out path that leads out decarbonation gas obtained by separating the carbon dioxide gas from the carbon dioxide-containing gas, and the decarbonation is provided between the lead-out path and the heat pump. A seventh heat exchanger for exchanging heat between the gas and the heat medium whose temperature has decreased due to expansion may be interposed.
 この場合、導出路とヒートポンプとの間に、前記第7熱交換器が介在しているので、導出路の脱炭酸ガスと、ヒートポンプの熱媒体と、で熱交換することで、吸収塔から導出された脱炭酸ガスの熱を、熱媒体に受け取らせて熱媒体を加熱することができる。
 これにより、吸収塔の発熱反応で生じて脱炭酸ガスに受け渡された熱が外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
In this case, since the seventh heat exchanger is interposed between the lead-out path and the heat pump, the heat is exchanged between the decarbonized gas in the lead-out path and the heat medium of the heat pump, so that the lead is derived from the absorption tower. The heat generated by the decarboxylation gas can be received by the heat medium to heat the heat medium.
As a result, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower and transferred to the decarbonation gas from leaking to the outside, and further energy saving can be achieved.
 また、前記吸収塔には、前記吸収塔の塔頂部に貯留された洗浄液を前記吸収塔から導出して冷却した後、前記吸収塔の塔頂部から再導入する脱炭酸ガス洗浄系統が設けられ、前記脱炭酸ガス洗浄系統と前記ヒートポンプとの間には、前記洗浄液と、膨張して温度が低下した前記熱媒体と、で熱交換する第8熱交換器が介在していても良い。 Further, the absorption tower is provided with a decarbonation gas cleaning system for introducing the cleaning liquid stored at the top of the absorption tower from the absorption tower and cooling it, and then reintroducing it from the top of the absorption tower. An eighth heat exchanger that exchanges heat between the cleaning liquid and the heat medium that has expanded and decreased in temperature may be interposed between the decarbonation gas cleaning system and the heat pump.
 この場合、吸収塔に前記脱炭酸ガス洗浄系統が設けられているので、二酸化炭素含有ガスから二酸化炭素ガスが分離されてなる脱炭酸ガスが吸収塔の内部を上昇するときに、この脱炭酸ガスに同伴する吸収液の溶質が吸収塔の塔頂部から外部に流出するのを抑制することができる。
 また、脱炭酸ガス洗浄系統とヒートポンプとの間に、前記第8熱交換器が介在しているので、脱炭酸ガス洗浄系統の洗浄液と、ヒートポンプの熱媒体と、で熱交換することで、洗浄液を冷却しつつ、熱媒体を加熱することができる。
 これにより、吸収塔の発熱反応で生じて洗浄液に受け渡された熱が、外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
In this case, since the decarbonation gas cleaning system is provided in the absorption tower, when the decarbonation gas obtained by separating the carbon dioxide gas from the carbon dioxide-containing gas rises inside the absorption tower, the decarbonation gas It is possible to suppress the solute of the absorption liquid accompanying the flow out from the top of the absorption tower to the outside.
Further, since the eighth heat exchanger is interposed between the decarbonation gas cleaning system and the heat pump, the cleaning liquid can be obtained by exchanging heat between the cleaning liquid of the decarbonation gas cleaning system and the heat medium of the heat pump. The heating medium can be heated while cooling.
As a result, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower and transferred to the cleaning liquid from leaking to the outside, and further energy saving can be achieved.
 また、前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、前記リッチ供給路と前記ヒートポンプとの間には、前記リッチ吸収液と、膨張温度が低下した前記熱媒体と、で熱交換する第9熱交換器が介在していても良い。 In addition, a rich supply path for supplying the rich absorption liquid from the absorption tower to the regeneration tower is provided, and the rich absorption liquid and the heat medium having a low expansion temperature are provided between the rich supply path and the heat pump. And a ninth heat exchanger for exchanging heat may be interposed.
 この場合、リッチ供給路とヒートポンプとの間に、前記第9熱交換器が介在しているので、リッチ供給路のリッチ吸収液と、ヒートポンプの熱媒体と、で熱交換することで、吸収塔の発熱反応で生じてリッチ吸収液に受け渡されたリッチ吸収液の熱を、熱媒体に受け取らせて熱媒体を加熱することができる。
 なお、当該二酸化炭素ガス回収装置が、再生塔から吸収塔にリーン吸収液を供給するリーン供給路を備え、リーン供給路とリッチ供給路との間に、リーン吸収液とリッチ吸収液とで熱交換するアミン熱交が介在し、第9熱交換器が、リッチ供給路においてアミン熱交よりも上流に介装されている場合、アミン熱交を通るリッチ吸収液を、前記第9熱交換器で冷却しておくことができる。これにより、アミン熱交において、リッチ供給路のリッチ吸収液と、リーン供給路のリーン吸収液と、での熱交換量を増加することが可能になり、リーン供給路のリーン吸収液を効果的に冷却することができ、再生塔から見た熱回収量を増やすことができる。したがって、例えば、リーン供給路においてアミン熱交よりも下流に、リーン吸収液を冷却するリーンアミンクーラーを設け、吸収塔に供給されるリーン吸収液を吸収塔に供給する前に予め冷却する場合であっても、この冷却による外部への熱ロスを低減することができる。
In this case, since the ninth heat exchanger is interposed between the rich supply path and the heat pump, the absorption tower is obtained by exchanging heat between the rich absorbent in the rich supply path and the heat medium of the heat pump. The heat of the rich absorbent that is generated by the exothermic reaction and delivered to the rich absorbent can be received by the heat medium to heat the heat medium.
The carbon dioxide gas recovery device includes a lean supply path for supplying a lean absorbent from the regeneration tower to the absorption tower, and heat is generated between the lean absorbent and the rich absorbent between the lean supply path and the rich supply path. When the amine heat exchange to be exchanged is interposed and the ninth heat exchanger is interposed upstream of the amine heat exchange in the rich supply path, the rich absorbing liquid passing through the amine heat exchange is passed through the ninth heat exchanger. It can be cooled with. This makes it possible to increase the amount of heat exchange between the rich absorption liquid in the rich supply path and the lean absorption liquid in the lean supply path in the amine heat exchange, and the lean absorption liquid in the lean supply path is effective. The amount of heat recovered as viewed from the regeneration tower can be increased. Therefore, for example, a lean amine cooler that cools the lean absorbent is provided downstream of the amine heat exchange in the lean supply path, and the lean absorbent that is supplied to the absorption tower is cooled before being supplied to the absorption tower. Even if it exists, the heat loss to the exterior by this cooling can be reduced.
 また、前記吸収塔には、前記吸収塔における塔頂部と塔底部との間の塔中間部から前記吸収液を導出して冷却した後、前記塔中間部から再導入するインタークーラー系統が設けられ、前記インタークーラー系統と前記ヒートポンプとの間には、前記吸収液と、膨張して温度が低下した前記熱媒体と、で熱交換する第10熱交換器が介在していても良い。 Further, the absorption tower is provided with an intercooler system for introducing and cooling the absorption liquid from the middle part of the tower between the tower top and the bottom of the absorption tower and then reintroducing from the middle part of the tower. Between the said intercooler system | strain and the said heat pump, the 10th heat exchanger which heat-exchanges with the said absorption liquid and the said heat medium which expanded and the temperature fell may intervene.
 この場合、吸収塔に前記インタークーラー系統が設けられているので、塔中間部の吸収液を冷却した後に再導入することが可能になり、吸収塔での吸収液による二酸化炭素ガスの吸収を促進することができる。
 また、インタークーラー系統とヒートポンプとの間に、前記第10熱交換器が介在しているので、インタークーラー系統の吸収液と、ヒートポンプの熱媒体と、で熱交換することで、吸収液を冷却しつつ、熱媒体を加熱することができる。
 これにより、吸収塔の発熱反応で生じて吸収液に受け渡された熱が、外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
In this case, since the intercooler system is provided in the absorption tower, the absorption liquid in the middle of the tower can be cooled and reintroduced, and the absorption of carbon dioxide gas by the absorption liquid in the absorption tower is promoted. be able to.
In addition, since the tenth heat exchanger is interposed between the intercooler system and the heat pump, the heat is exchanged between the absorption liquid of the intercooler system and the heat medium of the heat pump, thereby cooling the absorption liquid. The heating medium can be heated.
Thereby, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower and transferred to the absorbing solution from leaking to the outside, and further energy saving can be achieved.
 また、前記再生塔から前記吸収塔に前記リーン吸収液を供給するリーン供給路を備え、前記リーン供給路と前記ヒートポンプとの間には、前記リーン吸収液と、膨張して温度が低下した前記熱媒体と、で熱交換する第11熱交換器が介在していても良い。 In addition, a lean supply path for supplying the lean absorbing liquid from the regeneration tower to the absorption tower is provided, and between the lean supplying path and the heat pump, the lean absorbing liquid expands and the temperature decreases. An eleventh heat exchanger that exchanges heat with the heat medium may be interposed.
 この場合、リーン供給路とヒートポンプとの間に、前記第11熱交換器が介在しているので、リーン供給路のリーン吸収液と、ヒートポンプの熱媒体と、で熱交換することで、リーン吸収液を冷却しつつ、熱媒体を加熱することができる。
 これにより、吸収塔に供給されるリーン吸収液を冷却することが可能になり、吸収塔でのリーン吸収液による二酸化炭素ガスの吸収を促進することができる。
In this case, since the eleventh heat exchanger is interposed between the lean supply path and the heat pump, the lean absorption is achieved by exchanging heat between the lean absorbing liquid in the lean supply path and the heat medium of the heat pump. The heating medium can be heated while cooling the liquid.
Thereby, it becomes possible to cool the lean absorption liquid supplied to the absorption tower, and the absorption of carbon dioxide gas by the lean absorption liquid in the absorption tower can be promoted.
 また、前記リボイラー系統と前記ヒートポンプとの間には、前記吸収液と、圧縮されて温度が上昇した前記熱媒体と、で熱交換する第12熱交換器が介在していても良い。 Further, a twelfth heat exchanger that exchanges heat between the absorbing liquid and the heat medium that has been compressed and increased in temperature may be interposed between the reboiler system and the heat pump.
 この場合、リボイラー系統とヒートポンプとの間に、前記第12熱交換器が介在しているので、リボイラー系統の吸収液と、ヒートポンプの熱媒体と、で熱交換することで、熱媒体の熱を、吸収液に受け取らせて吸収液を加熱することができる。
 これにより、リボイラー系統での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。
In this case, since the twelfth heat exchanger is interposed between the reboiler system and the heat pump, the heat of the heat medium is reduced by exchanging heat between the reboiler system absorption liquid and the heat medium of the heat pump. The absorbent can be heated by receiving it in the absorbent.
As a result, the amount of heat input from the outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
 また、前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、前記リッチ供給路と前記ヒートポンプとの間には、前記リッチ吸収液と、圧縮されて温度が上昇した前記熱媒体と、で熱交換する第13熱交換器が介在していても良い。 In addition, a rich supply path for supplying the rich absorption liquid from the absorption tower to the regeneration tower is provided, and between the rich supply path and the heat pump, the rich absorption liquid is compressed and the temperature is increased due to compression. A thirteenth heat exchanger that exchanges heat with the heat medium may be interposed.
 この場合、リッチ供給路とヒートポンプとの間に、前記第13熱交換器が介在しているので、リッチ供給路のリッチ吸収液と、ヒートポンプの熱媒体と、で熱交換することで、熱媒体の熱を、再生塔に供給されるリッチ吸収液に受け取らせてリッチ吸収液を加熱することができる。
 このように、再生塔に供給されるリッチ吸収液を予熱しておくことができるので、再生塔でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。
 なお、当該二酸化炭素ガス回収装置が、再生塔から吸収塔にリーン吸収液を供給するリーン供給路を備え、リーン供給路とリッチ供給路との間に、リーン吸収液とリッチ吸収液とで熱交換するアミン熱交が介在している場合、アミン熱交での加熱量に、第13熱交換器での加熱量が加算される。その結果、リッチ吸収液の予熱量が増大し、リボイラー系統によって吸収液に与えるべき熱量を更に抑えることができる。したがって、リボイラー系統での外部からの入熱量をより一層抑えることが可能になり、一層更なる省エネルギー化を図ることができる。
In this case, since the thirteenth heat exchanger is interposed between the rich supply path and the heat pump, the heat medium is obtained by exchanging heat between the rich absorbent in the rich supply path and the heat medium of the heat pump. Can be received by the rich absorbent supplied to the regeneration tower to heat the rich absorbent.
Thus, since the rich absorption liquid supplied to the regeneration tower can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
The carbon dioxide gas recovery device includes a lean supply path for supplying a lean absorbent from the regeneration tower to the absorption tower, and heat is generated between the lean absorbent and the rich absorbent between the lean supply path and the rich supply path. When the amine heat exchange to be exchanged is present, the heating amount in the thirteenth heat exchanger is added to the heating amount in the amine heat exchange. As a result, the amount of preheating of the rich absorbent increases, and the amount of heat to be given to the absorbent by the reboiler system can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system can be further suppressed, and further energy saving can be achieved.
 本発明に係る二酸化炭素ガス回収装置によれば、外部からの入熱量を抑制して省エネルギー化を図ることができる。 The carbon dioxide gas recovery apparatus according to the present invention can save energy by suppressing the amount of heat input from the outside.
本発明の第1実施形態に係る二酸化炭素ガス回収装置の概略図である。1 is a schematic view of a carbon dioxide gas recovery device according to a first embodiment of the present invention. 本発明の第2実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 5th embodiment of the present invention. 本発明の第6実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 6th embodiment of the present invention. 本発明の第7実施形態に係る二酸化炭素ガス回収装置の概略図である。It is the schematic of the carbon dioxide gas recovery device concerning a 7th embodiment of the present invention. 従来の二酸化炭素ガス回収装置の概略図である。It is the schematic of the conventional carbon dioxide gas recovery apparatus.
(第1実施形態)
 以下、図面を参照し、本発明の第1実施形態に係る二酸化炭素ガス回収装置を説明する。この二酸化炭素ガス回収装置は、二酸化炭素ガスを含有する二酸化炭素含有ガスから二酸化炭素ガスをCO化学吸収分離法によって吸収分離することで回収し、二酸化炭素含有ガスから二酸化炭素ガスが分離されてなる脱炭酸ガスを生成する。このCO化学吸収分離法には、二酸化炭素ガスを吸収可能な吸収液を用いる。この吸収液としては、例えば、溶質としてモノエタノールアミン(MEA)やジエタノールアミン(DEA)等を採用し、溶媒として水を採用したアミン吸収液などを採用することができる。
 なお本実施形態では、以下に示すようにいわゆる自己熱再生により二酸化炭素ガス回収装置の省エネルギー化を図る。
(First embodiment)
Hereinafter, a carbon dioxide gas recovery device according to a first embodiment of the present invention will be described with reference to the drawings. This carbon dioxide gas recovery device recovers carbon dioxide gas from carbon dioxide containing gas by absorbing and separating the carbon dioxide gas by a CO 2 chemical absorption separation method, and the carbon dioxide gas is separated from the carbon dioxide containing gas. To produce decarbonation gas. In this CO 2 chemical absorption separation method, an absorbing solution capable of absorbing carbon dioxide gas is used. As this absorbing solution, for example, an amine absorbing solution using monoethanolamine (MEA), diethanolamine (DEA) or the like as a solute and water as a solvent can be used.
In the present embodiment, as described below, energy saving of the carbon dioxide gas recovery device is achieved by so-called self-heat regeneration.
 図1に示すように、二酸化炭素ガス回収装置1は、吸収塔2と、再生塔3と、リッチ供給路4と、リーン供給路5と、ヒートポンプ6と、を備えている。吸収塔2は、二酸化炭素含有ガスと、二酸化炭素ガスを吸収可能なリーン吸収液と、を接触させ、二酸化炭素含有ガス中の二酸化炭素ガスをリーン吸収液に吸収させてリッチ吸収液を生成する。再生塔3は、吸収塔2から供給されたリッチ吸収液を加熱して二酸化炭素ガスをリッチ吸収液から分離させることによりリーン吸収液を再生する。リッチ供給路4は、吸収塔2から再生塔3にリッチ吸収液を供給する。リーン供給路5は、再生塔3から吸収塔2にリーン吸収液を供給する。ヒートポンプ6は、吸収塔2でリーン吸収液が二酸化炭素ガスを吸収するときの発熱反応で生じた熱を熱媒体を介して移動させ、再生塔3でリッチ吸収液から二酸化炭素ガスが分離するときの吸熱反応の熱源として利用する。 As shown in FIG. 1, the carbon dioxide gas recovery apparatus 1 includes an absorption tower 2, a regeneration tower 3, a rich supply path 4, a lean supply path 5, and a heat pump 6. The absorption tower 2 brings a carbon dioxide-containing gas into contact with a lean absorbent that can absorb the carbon dioxide gas, and absorbs the carbon dioxide gas in the carbon dioxide-containing gas into the lean absorbent to produce a rich absorbent. . The regeneration tower 3 regenerates the lean absorbent by heating the rich absorbent supplied from the absorber 2 and separating the carbon dioxide gas from the rich absorbent. The rich supply path 4 supplies the rich absorbent from the absorption tower 2 to the regeneration tower 3. The lean supply path 5 supplies the lean absorbent to the absorption tower 2 from the regeneration tower 3. The heat pump 6 moves heat generated by an exothermic reaction when the lean absorbing liquid absorbs the carbon dioxide gas in the absorption tower 2 through the heat medium, and when the carbon dioxide gas is separated from the rich absorbing liquid in the regeneration tower 3. It is used as a heat source for the endothermic reaction.
 吸収塔2の塔底部2aには、二酸化炭素含有ガスを導入する導入路2dが設けられている。また、吸収塔2の塔頂部2b内には、下方に向けてリーン吸収液を塔内に供給する第1ノズル7が配設されている。そして、吸収塔2における塔頂部2bと塔底部2aとの間の塔中間部2c内には、表面でリーン吸収液と二酸化炭素含有ガスとを接触させる吸収塔充填物8が配設されている。
 また吸収塔2には、吸収塔2の塔頂部2bから脱炭酸ガスを導出する導出路9と、吸収塔2の塔頂部2bに貯留された洗浄水(洗浄液)を吸収塔2から導出して冷却した後、吸収塔2の塔頂部2bから再導入する脱炭酸ガス洗浄系統10と、が設けられている。
An introduction path 2 d for introducing a carbon dioxide-containing gas is provided in the tower bottom 2 a of the absorption tower 2. A first nozzle 7 for supplying a lean absorbent into the tower downward is disposed in the tower top 2b of the absorption tower 2. And in the tower intermediate part 2c between the tower top part 2b and the tower bottom part 2a in the absorption tower 2, an absorption tower packing 8 for bringing the lean absorbent and carbon dioxide-containing gas into contact with each other is disposed. .
In addition, the absorption tower 2 is connected to a lead-out path 9 through which the decarbonized gas is led out from the tower top 2 b of the absorption tower 2, and washing water (washing liquid) stored in the tower top 2 b of the absorption tower 2 is led out from the absorption tower 2. A decarbonation gas cleaning system 10 that is reintroduced from the tower top 2b of the absorption tower 2 after cooling is provided.
 脱炭酸ガス洗浄系統10は、前記第1ノズル7よりも上方に配設され洗浄水が貯留された液受けトレー11と、液受けトレー11よりも上方に配設され下方に向けて洗浄水を供給する第2ノズル12と、液受けトレー11と第2ノズル12とを接続する配管13と、を備えている。
 配管13には、液受けトレー11から第2ノズル12に配管13を通して洗浄水を移送する洗浄水循環ポンプ13aと、この洗浄水循環ポンプ13aの下流において洗浄水を冷却する水冷式洗浄水クーラー15とが設けられている。
 なお洗浄水は、吸収液の溶質と同一(例えば、水)であることが好ましい。ここで吸収液とは、リーン吸収液、リッチ吸収液、もしくはリーン吸収液とリッチ吸収液との混合液を意味する。
The decarbonation gas cleaning system 10 includes a liquid receiving tray 11 disposed above the first nozzle 7 and storing cleaning water, and disposed above the liquid receiving tray 11 and supplying cleaning water downward. A second nozzle 12 to be supplied and a pipe 13 for connecting the liquid receiving tray 11 and the second nozzle 12 are provided.
The piping 13 includes a cleaning water circulation pump 13a that transfers cleaning water from the liquid receiving tray 11 to the second nozzle 12 through the piping 13, and a water-cooled cleaning water cooler 15 that cools the cleaning water downstream of the cleaning water circulation pump 13a. Is provided.
The washing water is preferably the same as the solute of the absorbing solution (for example, water). Here, the absorption liquid means a lean absorption liquid, a rich absorption liquid, or a mixed liquid of a lean absorption liquid and a rich absorption liquid.
 リッチ供給路4は、吸収塔2の塔底部2aと、再生塔3の塔頂部3b内に配設され下方に向けてリッチ吸収液を供給する第3ノズル16と、を接続している。リッチ供給路4には、吸収塔2の塔底部2aから第3ノズル16にリッチ供給路4を通してリッチ吸収液を移送する吸収塔底ポンプ17が設けられている。 The rich supply path 4 connects the tower bottom 2a of the absorption tower 2 and a third nozzle 16 which is disposed in the tower top 3b of the regeneration tower 3 and supplies a rich absorbent liquid downward. The rich supply path 4 is provided with an absorption tower bottom pump 17 for transferring the rich absorption liquid from the tower bottom 2a of the absorption tower 2 to the third nozzle 16 through the rich supply path 4.
 再生塔3における塔頂部3bと塔底部3aとの間の塔中間部3c内には、再生塔充填物18が配設されている。この再生塔充填物18の表面を流下する吸収液は、再生塔3内を上昇する吸収液の溶質および溶媒(例えば、水)の蒸気分や、この蒸気分と二酸化炭素ガスとの混合ガスと気液接触する。 In the tower intermediate part 3c between the tower top part 3b and the tower bottom part 3a in the regeneration tower 3, a regeneration tower packing 18 is disposed. The absorption liquid flowing down the surface of the regeneration tower packing 18 includes the solute of the absorption liquid rising in the regeneration tower 3 and the vapor content of the solvent (for example, water), and the mixed gas of the vapor content and carbon dioxide gas. Gas-liquid contact.
 また再生塔3には、再生塔3から吸収液を導出して加熱し、再生塔3に再導入するリボイラー系統19と、混合ガスを再生塔3から導出して冷却し、前記溶質および溶媒の蒸気分を凝縮させて凝縮液を再生塔3に再導入するとともに、未凝縮の二酸化炭素ガスを排出する混合ガス冷却系統20と、が設けられている。 Also, the regenerator 3 draws the absorbing liquid from the regenerator 3 and heats it, reboiler system 19 is reintroduced into the regenerator 3, and the mixed gas is led out from the regenerator 3 and is cooled. A mixed gas cooling system 20 is provided that condenses the vapor and reintroduces the condensate into the regeneration tower 3 and discharges uncondensed carbon dioxide gas.
 リボイラー系統19は、吸収液を加熱した後、再生塔3の塔底部3aから再導入する。このとき、加熱された吸収液の一部がフラッシュし、吸収液の溶質および溶媒それぞれの一部が蒸気となる。このリボイラー系統19は、再生塔3の塔底部3a内に配設され吸収液が貯留された液受けトレー21と、液受けトレー21と塔底部3aにおいて液受けトレー21よりも下方に位置する蒸気発生部分22とを接続する配管23と、備えている。
 配管23には、リボイラーポンプ24と、リボイラー本体25とが設けられている。リボイラーポンプ24は、液受けトレー21から前記蒸気発生部分22に配管23を通して吸収液を移送する。リボイラー本体25は、このリボイラーポンプ24の下流において外部から供給される熱を熱源として吸収液を加熱する。
 図示の例では、リボイラー本体25は、リボイラー系統19と、外部から供給される高温流体(例えば、飽和蒸気)が流通するリボイラー配管26との間で熱交換する熱交換器で構成されている。リボイラー配管26には、リボイラー本体25よりも下流にスチームトラップ27が設けられている。
The reboiler system 19 reintroduces the absorbent from the tower bottom 3 a of the regeneration tower 3 after heating the absorbent. At this time, a part of the heated absorption liquid is flushed, and a part of each of the solute and the solvent of the absorption liquid becomes vapor. The reboiler system 19 includes a liquid receiving tray 21 that is disposed in the bottom 3a of the regeneration tower 3 and stores an absorption liquid, and a steam that is located below the liquid receiving tray 21 in the liquid receiving tray 21 and the tower bottom 3a. And a pipe 23 for connecting the generation portion 22.
The piping 23 is provided with a reboiler pump 24 and a reboiler body 25. The reboiler pump 24 transfers the absorbing liquid from the liquid receiving tray 21 to the steam generating portion 22 through the pipe 23. The reboiler body 25 heats the absorption liquid using heat supplied from the outside downstream of the reboiler pump 24 as a heat source.
In the illustrated example, the reboiler body 25 is configured by a heat exchanger that exchanges heat between the reboiler system 19 and a reboiler pipe 26 through which a high-temperature fluid (for example, saturated steam) supplied from the outside flows. The reboiler pipe 26 is provided with a steam trap 27 downstream of the reboiler body 25.
 混合ガス冷却系統20は、前記第3ノズル16よりも上方に配設され、凝縮された前記溶質および溶媒の蒸気分である凝縮液を下方に向けて供給する第4ノズル28と、再生塔3の塔頂と第4ノズル28とを接続する配管29と、を備えている。
 配管29には、混合ガスコンプレッサー30と、減圧・膨張弁31と、気液分離器32と、凝縮液循環ポンプ29aとが、再生塔3の塔頂から第4ノズル28までの間においてこの順に設けられている。混合ガスコンプレッサー30は、混合ガスを圧縮することで温度を上昇させ昇温混合ガスとする。減圧・膨張弁31は、昇温混合ガスを膨張させることで温度を低下させる。気液分離器32は、凝縮液と二酸化炭素ガスとを分離する。凝縮液循環ポンプ29aは、凝縮液を気液分離器32から第4ノズル28に配管29を通して移送する。
 気液分離器32には、この気液分離器32により混合ガスから分離された二酸化炭素ガスを排出する排出路33が設けられている。
The mixed gas cooling system 20 is disposed above the third nozzle 16, and supplies the condensate, which is the vapor content of the condensed solute and solvent, downward, and the regeneration tower 3. And a pipe 29 for connecting the top of the tower and the fourth nozzle 28 to each other.
In the pipe 29, a mixed gas compressor 30, a pressure reduction / expansion valve 31, a gas / liquid separator 32, and a condensate circulation pump 29 a are arranged in this order between the top of the regeneration tower 3 and the fourth nozzle 28. Is provided. The mixed gas compressor 30 increases the temperature by compressing the mixed gas to obtain a heated mixed gas. The decompression / expansion valve 31 reduces the temperature by expanding the temperature rising mixed gas. The gas-liquid separator 32 separates the condensate and carbon dioxide gas. The condensate circulation pump 29 a transfers the condensate from the gas-liquid separator 32 to the fourth nozzle 28 through the pipe 29.
The gas-liquid separator 32 is provided with a discharge path 33 for discharging the carbon dioxide gas separated from the mixed gas by the gas-liquid separator 32.
 そして本実施形態では、リボイラー系統19と混合ガス冷却系統20との間には、吸収液と昇温混合ガスとで熱交換する凝縮熱交換器(第1熱交換器)34が介在している。
 図示の例では、凝縮熱交換器34には、リボイラー本体25によって加熱される前の吸収液が通る。この凝縮熱交換器34は、リボイラー系統19の配管23においてリボイラーポンプ24とリボイラー本体25との間に介装されるとともに、混合ガス冷却系統20の配管29において混合ガスコンプレッサー30と減圧・膨張弁31との間に介装されている。
In the present embodiment, a condensing heat exchanger (first heat exchanger) 34 that performs heat exchange between the absorbing liquid and the temperature rising mixed gas is interposed between the reboiler system 19 and the mixed gas cooling system 20. .
In the illustrated example, the absorption liquid before being heated by the reboiler body 25 passes through the condensation heat exchanger 34. The condensing heat exchanger 34 is interposed between the reboiler pump 24 and the reboiler body 25 in the pipe 23 of the reboiler system 19, and the mixed gas compressor 30 and the pressure reducing / expansion valve in the pipe 29 of the mixed gas cooling system 20. 31 is interposed.
 リーン供給路5は、再生塔3の塔底部3aと、吸収塔2内の前記第1ノズル7と、を接続しており、このリーン供給路5には、再生塔3の塔底部3aから第1ノズル7にリーン供給路5を通してリーン吸収液を移送する再生塔底ポンプ35が設けられている。
 また、リーン供給路5とリッチ供給路4との間には、リーン吸収液とリッチ吸収液とで熱交換するアミン熱交36が介在している。
The lean supply path 5 connects the tower bottom 3 a of the regeneration tower 3 and the first nozzle 7 in the absorption tower 2, and the lean supply path 5 is connected to the second bottom from the tower bottom 3 a of the regeneration tower 3. A regeneration tower bottom pump 35 for transferring the lean absorption liquid to the one nozzle 7 through the lean supply path 5 is provided.
Further, between the lean supply path 5 and the rich supply path 4, there is an amine heat exchanger 36 that exchanges heat between the lean absorbent and the rich absorbent.
 ヒートポンプ6は、吸収塔2内の前記吸収塔充填物8に介装された吸収塔内部熱交(第5熱交換器)37と、再生塔3内の前記再生塔充填物18に介装された再生塔内部熱交(第6熱交換器)38と、吸収塔内部熱交37と再生塔内部熱交38とを接続する一対の配管39、40と、を備えている。 The heat pump 6 is interposed in the absorption tower internal heat exchange (fifth heat exchanger) 37 interposed in the absorption tower packing 8 in the absorption tower 2 and in the regeneration tower packing 18 in the regeneration tower 3. And a pair of pipes 39 and 40 for connecting the absorption tower internal heat exchange 37 and the regeneration tower internal heat exchange 38.
 吸収塔内部熱交37は、吸収塔充填物8を縦断するように介装され、膨張して温度が低下した熱媒体と、吸収塔2内の吸収液と、で熱交換する。
 また、再生塔内部熱交38は、再生塔充填物18を縦断するように介装され、圧縮されて温度が上昇した熱媒体と、再生塔3内の吸収液と、で熱交換する。
The heat exchange 37 inside the absorption tower is interposed so as to cut through the absorption tower packing 8, and exchanges heat between the heat medium whose temperature has decreased due to expansion and the absorption liquid in the absorption tower 2.
Further, the regeneration tower internal heat exchange 38 is interposed so as to run vertically through the regeneration tower packing 18, and exchanges heat between the heat medium whose temperature has been increased by compression and the absorbent in the regeneration tower 3.
 一対の配管39、40のうち、一方の配管39は、再生塔内部熱交38の上部と吸収塔内部熱交37の下部とを接続する。この配管39には、熱媒体を膨張させることで温度を低下させる熱媒膨張弁41が設けられている。また、他方の配管40は、吸収塔内部熱交37の上部と再生塔内部熱交38の下部とを接続する。この配管40には、熱媒体を圧縮することで温度を上昇させる熱媒コンプレッサー42が設けられている。 Among the pair of pipes 39 and 40, one pipe 39 connects the upper part of the regeneration tower internal heat exchange 38 and the lower part of the absorption tower internal heat exchange 37. The pipe 39 is provided with a heat medium expansion valve 41 that lowers the temperature by expanding the heat medium. The other pipe 40 connects the upper part of the absorption tower internal heat exchange 37 and the lower part of the regeneration tower internal heat exchange 38. The pipe 40 is provided with a heat medium compressor 42 that raises the temperature by compressing the heat medium.
 熱媒体としては、例えば、吸収塔2での発熱反応で生じる熱を、吸収塔内部熱交37内で蒸発することにより蒸発潜熱として回収するとともに、再生塔内部熱交38内で凝縮することにより凝縮熱を発生させ、この凝縮熱を再生塔3での吸熱反応の熱源とさせることが可能な流体が好ましい。このような流体としては、例えば、ペンタンや水などが挙げられる。 As the heat medium, for example, the heat generated by the exothermic reaction in the absorption tower 2 is recovered as latent heat of evaporation by evaporating in the heat exchange 37 inside the absorption tower and condensed in the heat exchange 38 inside the regeneration tower. A fluid capable of generating heat of condensation and using the heat of condensation as a heat source for the endothermic reaction in the regeneration tower 3 is preferable. Examples of such fluid include pentane and water.
 次に、以上のように構成された二酸化炭素ガス回収装置1の作用について説明する。
 はじめに、吸収液の流れについて、吸収塔2を起点として説明する。
 まず吸収塔2では、塔底部2aに供給された二酸化炭素含有ガスが内部を上昇するとともに、塔頂部2b内の第1ノズル7から供給されたリーン吸収液が内部を下降する。この過程で、二酸化炭素含有ガスとリーン吸収液とが接触し、二酸化炭素含有ガス中の二酸化炭素ガスが、リーン吸収液に吸収されて発熱反応が生じる。
Next, the operation of the carbon dioxide gas recovery apparatus 1 configured as described above will be described.
First, the flow of the absorption liquid will be described starting from the absorption tower 2.
First, in the absorption tower 2, the carbon dioxide-containing gas supplied to the tower bottom 2a rises inside, and the lean absorbent supplied from the first nozzle 7 in the tower top 2b falls inside. In this process, the carbon dioxide-containing gas and the lean absorbing liquid come into contact with each other, and the carbon dioxide gas in the carbon dioxide-containing gas is absorbed by the lean absorbing liquid to cause an exothermic reaction.
 ここで本実施形態では、吸収塔2の塔中間部2c内に吸収塔充填物8が配設されている。この吸収塔充填物8は、例えば、多数の狭い隙間を持つフィン構成で、容積あたりのフィン表面積が大きく、また、その隙間は規則的に流路の角度が変化するように構成され、意図的に流れの乱れが起きるようになっている。吸収塔充填物8の表面では、吸収液がフィン上に濡れ壁をなして流下し、吸収塔2内を上昇する二酸化炭素含有ガスと気液接触がなされる。また吸収塔充填物8は、濡れ壁の隙間が狭くかつ一定ピッチで進行角度が変化することで気液の流れを乱し、気液接触を効率化できる構造になっている。したがって、吸収塔充填物8の表面では、上昇する二酸化炭素含有ガスと下降する吸収液とが接触し易く、吸収液による二酸化炭素ガスの吸収が促進される。 Here, in this embodiment, the absorption tower packing 8 is disposed in the tower middle part 2c of the absorption tower 2. The absorption tower packing 8 has, for example, a fin configuration having a large number of narrow gaps, a large fin surface area per volume, and the gap is configured so that the angle of the flow path changes regularly. The turbulence of the flow occurs. On the surface of the absorption tower packing 8, the absorption liquid flows down on the fins while forming a wet wall, and is brought into gas-liquid contact with the carbon dioxide-containing gas rising in the absorption tower 2. Moreover, the absorption tower packing 8 has a structure in which the gap between the wetting walls is narrow and the traveling angle changes at a constant pitch, thereby disturbing the flow of gas and liquid and improving the efficiency of gas-liquid contact. Therefore, on the surface of the absorption tower packing 8, the rising carbon dioxide-containing gas and the falling absorption liquid are easily in contact with each other, and the absorption of the carbon dioxide gas by the absorption liquid is promoted.
 これにより、リッチ吸収液および脱炭酸ガスが生成される。これらのうち、脱炭酸ガスは、吸収塔2の塔頂部2bに向けて上昇し、導出路9を通して外部に導出される。
 なお本実施形態では、吸収塔2に前記脱炭酸ガス洗浄系統10が設けられているので、水冷式洗浄水クーラー15で冷却され再導入された洗浄水によって吸収塔2の塔頂部2b内を冷却することができる。したがって、例えば、吸収液中の溶質が飛散もしくは蒸発して脱炭酸ガスに随伴して上昇したとしても、導出路9に到達する前に溶質は脱炭酸ガス洗浄系統10に供給される。これにより、吸収液中の溶質が吸収塔2の塔頂部2bから導出路9を通して外部に流出することを抑制することができる。
Thereby, a rich absorption liquid and decarbonation gas are generated. Of these, the decarbonation gas rises toward the top 2 b of the absorption tower 2 and is led out through the lead-out path 9.
In the present embodiment, since the decarbonation gas cleaning system 10 is provided in the absorption tower 2, the inside of the tower top 2b of the absorption tower 2 is cooled by the cleaning water cooled and re-introduced by the water-cooled cleaning water cooler 15. can do. Therefore, for example, even if the solute in the absorption liquid scatters or evaporates and rises accompanying the decarbonation gas, the solute is supplied to the decarbonation gas cleaning system 10 before reaching the lead-out path 9. Thereby, it is possible to prevent the solute in the absorption liquid from flowing out from the tower top 2 b of the absorption tower 2 through the outlet path 9.
 一方、脱炭酸ガスとともに生成されたリッチ吸収液は、吸収塔2内を下降して塔底部2aに貯留された後、リッチ供給路4を通して再生塔3の塔頂部3b内の第3ノズル16に供給される。ここで本実施形態では、リーン供給路5とリッチ供給路4との間にアミン熱交36が介在しており、リッチ吸収液は、リーン供給路5のリーン吸収液と熱交換することで、リーン吸収液を冷却しつつ加熱される。 On the other hand, the rich absorbent produced together with the decarbonation gas descends in the absorption tower 2 and is stored in the tower bottom 2a, and then passes through the rich supply path 4 to the third nozzle 16 in the tower top 3b of the regeneration tower 3. Supplied. Here, in the present embodiment, the amine heat exchange 36 is interposed between the lean supply path 5 and the rich supply path 4, and the rich absorption liquid exchanges heat with the lean absorption liquid in the lean supply path 5. Heated while cooling the lean absorbent.
 再生塔3内では、第3ノズル16から供給されたリッチ吸収液が内部を下降するとともに、リボイラー系統19によって加熱された吸収液が塔底部3aから再導入される。このとき、加熱された吸収液の一部が蒸気発生部分22でフラッシュし、吸収液の溶質および溶媒それぞれの一部が蒸気となり、また、再生された二酸化炭素がガスとなり、再生塔3内部を上昇する。この過程で、リッチ吸収液と前記溶質および溶媒の蒸気分とが接触し、前記溶質および溶媒の蒸気分の凝縮熱を熱源として、脱離再生の吸熱反応が起こり、リッチ吸収液から二酸化炭素ガスが分離される。 In the regeneration tower 3, the rich absorbent supplied from the third nozzle 16 descends and the absorbent heated by the reboiler system 19 is reintroduced from the tower bottom 3a. At this time, a part of the heated absorption liquid is flushed in the vapor generation part 22, a part of each of the solute and the solvent of the absorption liquid becomes a vapor, and the regenerated carbon dioxide becomes a gas, To rise. In this process, the rich absorption liquid and the vapors of the solute and solvent come into contact with each other, and an endothermic reaction of desorption regeneration takes place using the heat of condensation of the vapors of the solute and solvent as a heat source. Are separated.
 ここで本実施形態では、再生塔3の塔中間部3c内に再生塔充填物18が配設されている。この再生塔充填物18は、例えば、多数の狭い隙間を持つフィン構成で、容積あたりのフィン表面積が大きく、また、その隙間は規則的に流路の角度が変化するように構成され、意図的に流れの乱れが起きるようになっている。再生塔充填物18の表面では、吸収液がフィン上に濡れ壁をなして流下し、再生塔3内を上昇する前記溶質および溶媒の蒸気分と接触し、表面積の大きさや流れの乱れによって効率的に気液接触がなされ、二酸化炭素の分離・放散が促進される。 Here, in this embodiment, the regenerative tower packing 18 is disposed in the middle part 3c of the regenerative tower 3. The regeneration tower packing 18 has, for example, a fin configuration having a large number of narrow gaps, a large fin surface area per volume, and the gap is configured so that the angle of the flow path changes regularly. The turbulence of the flow occurs. On the surface of the regenerative tower packing 18, the absorbing solution flows down on the fins while forming a wet wall, contacts the vapor of the solute and the solvent rising in the regenerator 3, and is efficient due to the size of the surface area and flow disturbance. Gas-liquid contact is made and the separation and release of carbon dioxide is promoted.
 これにより、リッチ吸収液が、リーン吸収液と二酸化炭素ガスとに分離される。これらのうち、二酸化炭素ガスは、前記溶質および溶媒の蒸気分と混合され混合ガスとなり、再生塔3内を上昇する。 Thereby, the rich absorbent is separated into the lean absorbent and the carbon dioxide gas. Of these, the carbon dioxide gas is mixed with the solute and the vapor of the solvent to become a mixed gas, and rises in the regeneration tower 3.
 この混合ガスは、再生塔3の塔頂から混合ガス冷却系統20の配管29に導入された後、この配管29を通る過程で、まず混合ガスコンプレッサー30によって圧縮されて温度が上昇して昇温混合ガスとなる。その後、昇温混合ガスは、凝縮熱交換器34で、リボイラー系統19の吸収液と熱交換することで、吸収液を加熱しつつ冷却される。さらにその後、昇温混合ガスは、減圧・膨張弁31によって膨張して温度が低下する。 This mixed gas is introduced into the pipe 29 of the mixed gas cooling system 20 from the top of the regeneration tower 3, and is then compressed by the mixed gas compressor 30 in the process of passing through this pipe 29 so that the temperature rises and the temperature rises. It becomes a mixed gas. Thereafter, the temperature rising mixed gas is cooled while heating the absorption liquid by exchanging heat with the absorption liquid of the reboiler system 19 in the condensation heat exchanger 34. Thereafter, the temperature rising mixed gas is expanded by the pressure reduction / expansion valve 31 and the temperature is lowered.
 以上により、昇温混合ガス中の前記溶質および溶媒の蒸気分が凝縮されて凝縮液となり、この凝縮液と、二酸化炭素ガスを主体とした未凝縮の二酸化炭素主体ガス(昇温混合ガス)と、が気液分離器32により分離される。そして凝縮液は、第4ノズル28から再生塔3に再導入されるとともに、未凝縮の二酸化炭素主体ガスは、排出路33を通して外部に排出される。 By the above, the vapor | steam part of the said solute and solvent in temperature rising mixed gas is condensed, and it becomes a condensate, This condensate and the non-condensed carbon dioxide main gas (temperature rising mixed gas) which mainly consisted of carbon dioxide gas Are separated by the gas-liquid separator 32. The condensate is reintroduced into the regeneration tower 3 from the fourth nozzle 28, and uncondensed carbon dioxide main gas is discharged to the outside through the discharge path 33.
 一方、再生塔3内を下降する吸収液は、塔底部3aに貯留された後、分離再生されたリーン吸収液として再生塔3aから導出され、リーン供給路5を通して吸収塔2の塔頂部2b内の前記第1ノズル7に供給される。このとき、リーン吸収液は、前記アミン熱交36で、リッチ供給路4のリッチ吸収液と熱交換することで、リッチ吸収液を予熱しつつ冷却される。このことにより、再生塔3から見た場合、リーン吸収液が外部に持ち出す熱を、外部から供給されるリッチ吸収液の予熱として、熱回収することができる。 On the other hand, the absorption liquid descending in the regeneration tower 3 is stored in the tower bottom 3 a and then led out from the regeneration tower 3 a as a separated and regenerated lean absorption liquid, and passes through the lean supply path 5 in the tower top 2 b of the absorption tower 2. To the first nozzle 7. At this time, the lean absorption liquid is cooled while preheating the rich absorption liquid by exchanging heat with the rich absorption liquid in the rich supply path 4 by the amine heat exchanger 36. As a result, when viewed from the regeneration tower 3, the heat that the lean absorbing solution brings out can be recovered as the preheating of the rich absorbing solution supplied from the outside.
 次に、ヒートポンプ6での熱媒体の流れについて、熱媒膨張弁41を起点として説明する。
 熱媒膨張弁41で温度が低下した熱媒体は、前記一方の配管39を通った後、吸収塔内部熱交37の下部から上部に向けて移動しながら、吸収液と熱交換することで、吸収液を冷却しつつ、吸収液が二酸化炭素を化学吸収する際に発生する発熱反応の熱を受け取り蒸発して気化する。その後、熱媒体は前記他方の配管40を通って再生塔内部熱交38の下部に移動する。このとき、熱媒体は熱媒コンプレッサー42によって圧縮され、温度が上昇する。
Next, the flow of the heat medium in the heat pump 6 will be described with the heat medium expansion valve 41 as a starting point.
The heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the one pipe 39 and then moves from the lower part to the upper part of the heat exchange 37 inside the absorption tower to exchange heat with the absorbing liquid. While cooling the absorbing liquid, it absorbs and evaporates the heat of the exothermic reaction that occurs when the absorbing liquid chemically absorbs carbon dioxide. Thereafter, the heat medium moves to the lower part of the regeneration tower internal heat exchange 38 through the other pipe 40. At this time, the heat medium is compressed by the heat medium compressor 42 and the temperature rises.
 そして熱媒体は、再生塔内部熱交38の下部から上部に向けて移動しながら、吸収液と熱交換することで、吸収液を加熱しつつその熱を吸熱反応の熱源として消費させることで冷却・凝縮される。その後、熱媒体は前記一方の配管39を通って吸収塔内部熱交37の下部に向けて移動する。このとき、熱媒体は熱媒膨張弁41により圧力低下し、再び温度が低下して、気・液混合流体となる。 The heat medium is cooled by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchanger 38 inside the regeneration tower, thereby heating the absorbing liquid and consuming the heat as a heat source for the endothermic reaction.・ Condensed. Thereafter, the heat medium moves toward the lower part of the heat exchange 37 inside the absorption tower through the one pipe 39. At this time, the pressure of the heat medium is lowered by the heat medium expansion valve 41, and the temperature is lowered again to become a gas / liquid mixed fluid.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置1によれば、混合ガス冷却系統20が混合ガスコンプレッサー30を備えている。そのため、僅かな外部動力を加えることで、外部から加熱することなく、昇温混合ガスが得られる。さらに、リボイラー系統19と混合ガス冷却系統20との間に、前記凝縮熱交換器34が介在している。そのため、リボイラー系統19の吸収液と、混合ガス冷却系統20の昇温混合ガスと、で熱交換することで、吸収液を加熱しつつ、昇温混合ガスを冷却することができる。
 このように、再生塔3を流出する混合ガスの持つ熱量により、再生塔3に供給されるリッチ吸収液を予熱しておくことができる。その結果、リボイラー系統19での外部からの入熱量を抑えることが可能になり、省エネルギー化を図ることができる。
As described above, according to the carbon dioxide gas recovery apparatus 1 according to this embodiment, the mixed gas cooling system 20 includes the mixed gas compressor 30. Therefore, by applying a slight amount of external power, a temperature rising mixed gas can be obtained without heating from the outside. Further, the condensing heat exchanger 34 is interposed between the reboiler system 19 and the mixed gas cooling system 20. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the temperature rising mixed gas of the mixed gas cooling system 20, the temperature rising mixed gas can be cooled while heating the absorption liquid.
In this way, the rich absorbent supplied to the regeneration tower 3 can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower 3. As a result, the amount of heat input from the outside in the reboiler system 19 can be suppressed, and energy saving can be achieved.
 また、前記ヒートポンプ6を備えているので、再生塔3での吸熱反応の熱源として、吸収塔2での発熱反応で生じた熱を利用することができる。前記発熱反応で生じた熱は吸熱反応の熱と等しいので、反応熱を内部での授受でキャンセルすることが可能になる。従来、吸熱反応の為に外部から加熱する一方で、反応発熱は冷却水に廃熱していたが、このような廃熱していた反応発熱を再生に必要な吸熱反応の熱源として利用することが可能になる。その結果、外部からの入熱量を抑制して一層の省エネルギー化を図ることができる。 Further, since the heat pump 6 is provided, the heat generated by the exothermic reaction in the absorption tower 2 can be used as a heat source for the endothermic reaction in the regeneration tower 3. Since the heat generated by the exothermic reaction is equal to the heat of the endothermic reaction, it becomes possible to cancel the reaction heat by exchanging it internally. Conventionally, while heat is applied from the outside for endothermic reaction, the reaction exotherm was wasted in the cooling water, but this waste heat generated from the reaction can be used as a heat source for the endothermic reaction required for regeneration. become. As a result, the amount of heat input from the outside can be suppressed and further energy saving can be achieved.
 また、ヒートポンプ6が前記吸収塔内部熱交37を備えているので、吸収塔2での発熱反応で生じた熱を、損失少なく高効率に熱媒体が受け取ることができる。
 さらに、ヒートポンプ6が前記再生塔内部熱交38を備えているので、熱媒体により移動した発熱反応で生じた熱を、再生塔3での吸熱反応の熱源として損失少なく高効率に利用することができる。
 以上により、外部加熱する一方で冷却水に廃熱するというエネルギーの消費をすることなく、吸収塔2で吸収液が二酸化炭素を化学吸収する発熱反応で生じた熱を、再生塔3で吸収液から二酸化炭素を分離再生する吸熱反応の熱源として効果的に利用することが可能になり、更なる省エネルギー化を図ることができる。
Further, since the heat pump 6 includes the absorption tower internal heat exchange 37, the heat medium can receive the heat generated by the exothermic reaction in the absorption tower 2 with high loss and high efficiency.
Furthermore, since the heat pump 6 includes the regeneration tower internal heat exchange 38, the heat generated by the exothermic reaction moved by the heat medium can be used with high efficiency as a heat source for the endothermic reaction in the regeneration tower 3 with little loss. it can.
As described above, the heat generated by the exothermic reaction in which the absorption liquid chemically absorbs carbon dioxide in the absorption tower 2 is absorbed in the regeneration tower 3 without consuming the energy of waste heat to the cooling water while being externally heated. It can be effectively used as a heat source for an endothermic reaction for separating and regenerating carbon dioxide from the carbon dioxide, and further energy saving can be achieved.
 ここで、以上の効果を一般化すると、以下に示す2項目として記述することができる。
(1)反応熱の自己熱再生効果
 吸収塔2での反応発熱量は、再生塔3での反応吸熱量に等しい。よって、ヒートポンプ6に要する僅かな動力で、従来外部から加熱により与えていた反応熱は、プロセス内部の熱の授受で賄い、外部との熱の授受を無くすことができる。その結果、再生塔3のリボイラー系統19で加えていた外部熱量が従来に比べて低減される。
(2)塔操作に要する潜熱の自己熱再生
 再生塔3の塔頂部3bから流出する混合ガスの熱量は、リボイラー系統19で外部から加熱し、吸収液の溶質および溶媒を蒸発させるために消費した熱量から吸収液再生のために要する反応吸熱量を引いたものに等しい。よって混合ガスを圧縮する僅かな動力で、昇温混合ガスを得て、凝縮熱交換器34で、前記混合ガスの熱をリボイラー系統19に与えることができれば、リボイラー系統19で外部から加えるべき熱量は低減する。さらに厳密に言えば、加えるべき熱量は、アミン熱交36での回収漏れ熱量(アミン熱交36から流出するリーン吸収液の顕熱量とアミン熱交36に流入するリッチ吸収液の顕熱熱量との差違)と再生塔3廻りの放熱量の和に見合う熱量になる。
Here, when the above effects are generalized, they can be described as the following two items.
(1) Self-heat regeneration effect of reaction heat The reaction heat generation amount in the absorption tower 2 is equal to the reaction heat absorption amount in the regeneration tower 3. Therefore, the reaction heat conventionally applied by heating from the outside with a small amount of power required for the heat pump 6 can be covered by the transfer of heat inside the process, and the transfer of heat from the outside can be eliminated. As a result, the amount of external heat applied in the reboiler system 19 of the regeneration tower 3 is reduced as compared with the conventional case.
(2) Self-regenerative regeneration of latent heat required for tower operation The amount of heat of the mixed gas flowing out from the top 3b of the regeneration tower 3 was consumed from the outside by the reboiler system 19 to evaporate the solute and the solvent in the absorption liquid. Equivalent to the amount of heat minus the amount of reaction endotherm required for regeneration of the absorbent. Therefore, if the heated mixed gas is obtained with a slight power for compressing the mixed gas and the heat of the mixed gas can be given to the reboiler system 19 by the condensation heat exchanger 34, the amount of heat to be applied from the outside by the reboiler system 19 Is reduced. Strictly speaking, the amount of heat to be applied is the amount of recovery leakage heat in the amine heat exchanger 36 (the sensible heat amount of the lean absorbing liquid flowing out from the amine heat exchanger 36 and the sensible heat amount of the rich absorbing liquid flowing into the amine heat exchanger 36). The amount of heat is commensurate with the sum of the amount of heat dissipated around the regeneration tower 3.
(第2実施形態)
 次に、本発明に係る第2実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Second Embodiment)
Next, a carbon dioxide gas recovery device according to a second embodiment of the present invention will be described.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
 図2に示すように、本実施形態の二酸化炭素ガス回収装置100では、混合ガス冷却系統20の減圧・膨張弁31は前記排出路33に設けられるとともに、混合ガス冷却系統20の配管29における気液分離器32と第4ノズル28との間には、凝縮液循環ポンプ29aに代えてレベル調節弁101が設けられている。 As shown in FIG. 2, in the carbon dioxide gas recovery apparatus 100 of the present embodiment, the pressure reduction / expansion valve 31 of the mixed gas cooling system 20 is provided in the discharge passage 33 and the gas in the pipe 29 of the mixed gas cooling system 20 A level control valve 101 is provided between the liquid separator 32 and the fourth nozzle 28 instead of the condensate circulation pump 29a.
 またヒートポンプ6は、前記吸収塔内部熱交37を備えていない。そして本実施形態では、導出路9とヒートポンプ6との間には、脱炭酸ガスと、膨張して温度が低下した熱媒体と、で熱交換する脱炭酸ガスクーラー(第7熱交換器)102が介在している。また、脱炭酸ガス洗浄系統10とヒートポンプ6との間には、洗浄水と、膨張して温度が低下した熱媒体と、で熱交換する洗浄水クーラー(第8熱交換器)103が介在している。さらに、リッチ供給路4とヒートポンプ6との間には、リッチ吸収液と、膨張して温度が低下した熱媒体と、で熱交換するリッチアミン熱交換器(第9熱交換器)104が介在している。
 これらの脱炭酸ガスクーラー102、洗浄水クーラー103およびリッチアミン熱交換器104は、ヒートポンプ6において熱媒膨張弁41によって膨張して温度が低下した熱媒体が通り、熱媒体が熱を受け取る熱回収側に介在している。
Further, the heat pump 6 does not include the absorption tower internal heat exchange 37. In the present embodiment, a decarbonation gas cooler (seventh heat exchanger) 102 that exchanges heat between the decarbonization gas and the heat medium that has expanded and decreased in temperature is provided between the outlet path 9 and the heat pump 6. Is intervening. Further, a cleaning water cooler (eighth heat exchanger) 103 for exchanging heat between the cleaning water and the heat medium having expanded and decreased in temperature is interposed between the decarbonation gas cleaning system 10 and the heat pump 6. ing. Further, between the rich supply path 4 and the heat pump 6, there is a rich amine heat exchanger (9th heat exchanger) 104 that exchanges heat between the rich absorbing liquid and the heat medium that has expanded and the temperature has decreased. is doing.
The decarbonation gas cooler 102, the washing water cooler 103, and the rich amine heat exchanger 104 pass through the heat medium whose temperature is lowered by the heat medium expansion valve 41 in the heat pump 6, and the heat recovery in which the heat medium receives heat. Is on the side.
 図示の例では、ヒートポンプ6は、複数の配管105、106、107、108と、各配管105、106、107、108を接続する熱媒分配器109および熱媒集合器110を備えている。複数の配管105、106、107、108は、再生塔内部熱交38の上部と熱媒分配器109とを接続する第1配管105と、熱媒分配器109と熱媒集合器110とを接続する2つの分岐配管106、107と、熱媒集合器110と再生塔内部熱交38の下部とを接続する第2配管108と、からなる。 In the illustrated example, the heat pump 6 includes a plurality of pipes 105, 106, 107, and 108, and a heat medium distributor 109 and a heat medium collector 110 that connect the pipes 105, 106, 107, and 108. The plurality of pipes 105, 106, 107, 108 connect the first pipe 105 that connects the upper part of the heat exchanger 38 inside the regeneration tower and the heat medium distributor 109, and the heat medium distributor 109 and the heat medium collector 110. Two branch pipes 106 and 107, and a second pipe 108 that connects the heat medium collector 110 and the lower part of the heat exchange 38 inside the regeneration tower.
 2つの分岐配管106、107のうち、一方の分岐配管106には、脱炭酸ガスクーラー102および洗浄水クーラー103が、熱媒分配器109から熱媒集合器110に向けてこの順に介装されるとともに、他方の分岐配管107には、リッチアミン熱交換器104が介装されている。また、第1配管105には、前記熱媒膨張弁41が設けられるとともに、第2配管108には前記熱媒コンプレッサー42が設けられている。 Of the two branch pipes 106 and 107, one of the branch pipes 106 is provided with a decarboxylation gas cooler 102 and a washing water cooler 103 in this order from the heat medium distributor 109 to the heat medium collector 110. At the same time, a rich amine heat exchanger 104 is interposed in the other branch pipe 107. The first pipe 105 is provided with the heat medium expansion valve 41, and the second pipe 108 is provided with the heat medium compressor 42.
 なお図示の例では、吸収塔2に設けられた前記脱炭酸ガス洗浄系統10では、その配管13における洗浄水循環ポンプ13aと第2ノズル12との間に洗浄水クーラー103が介装されるとともに、前記水冷式洗浄水クーラー15が備えられてない。
 またリッチ供給路4には、吸収塔底ポンプ17よりも下流で、かつアミン熱交36よりも上流にリッチアミン熱交換器104が介装されている。
In the illustrated example, in the decarbonation gas cleaning system 10 provided in the absorption tower 2, a cleaning water cooler 103 is interposed between the cleaning water circulation pump 13a and the second nozzle 12 in the pipe 13, The water-cooled washing water cooler 15 is not provided.
A rich amine heat exchanger 104 is interposed in the rich supply path 4 downstream of the absorption tower bottom pump 17 and upstream of the amine heat exchanger 36.
 次に、以上のように構成された二酸化炭素ガス回収装置100の作用について説明する。ここでは、ヒートポンプ6の熱媒体の流れについて、熱媒膨張弁41を起点として説明する。
 熱媒膨張弁41により温度が低下した熱媒体は、第1配管105を通った後、熱媒分配器109で分岐された2つの分岐配管106、107を通る。
Next, the operation of the carbon dioxide gas recovery apparatus 100 configured as described above will be described. Here, the flow of the heat medium of the heat pump 6 will be described with the heat medium expansion valve 41 as a starting point.
The heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the first pipe 105 and then passes through the two branch pipes 106 and 107 branched by the heat medium distributor 109.
 このうち、前記一方の分岐配管106を通る熱媒体は、脱炭酸ガスクーラー102において、導出路9の脱炭酸ガスと熱交換することで、吸収塔2から導出される脱炭酸ガスの熱を受け取って加熱される。その後、熱媒体は、洗浄水クーラー103において、脱炭酸ガス洗浄系統10の洗浄水と熱交換することで、洗浄水を冷却しつつさらに加熱される。
 また、前記他方の分岐配管107を通る熱媒体は、リッチアミン熱交換器104において、吸収塔2から流出するリッチ吸収液の熱を受け取って加熱される。
Among them, the heat medium passing through the one branch pipe 106 receives heat of the decarbonized gas derived from the absorption tower 2 by exchanging heat with the decarbonized gas in the outlet channel 9 in the decarbonized gas cooler 102. Heated. Thereafter, the heat medium is further heated while cooling the washing water by exchanging heat with the washing water of the decarbonation gas washing system 10 in the washing water cooler 103.
The heat medium passing through the other branch pipe 107 receives the heat of the rich absorbent flowing out from the absorption tower 2 in the rich amine heat exchanger 104 and is heated.
 そして、両分岐配管106、107を通った熱媒体は熱媒集合器110で合流する。熱媒集合器110で合流した熱媒体は、第2配管108を通って再生塔内部熱交38の下部に移動する。このとき、熱媒体は熱媒コンプレッサー42によって温度が上昇する。そして熱媒体は、再生塔内部熱交38の下部から上部に向けて移動しながら、吸収液と熱交換することで、吸収液を加熱しつつその熱を吸熱反応の熱源と消費させることで冷却された後、第1配管105を通って熱媒分配器109に向けて移動する。このとき、熱媒体は熱媒膨張弁41により再び温度が低下する。 Then, the heat medium that has passed through both branch pipes 106 and 107 merges at the heat medium collector 110. The heat medium merged in the heat medium collector 110 moves to the lower part of the regenerator internal heat exchange 38 through the second pipe 108. At this time, the temperature of the heat medium rises by the heat medium compressor 42. The heat medium is cooled by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchange 38 inside the regeneration tower, thereby heating the absorbing liquid and consuming the heat with the heat source of the endothermic reaction. Then, it moves toward the heat medium distributor 109 through the first pipe 105. At this time, the temperature of the heat medium is lowered again by the heat medium expansion valve 41.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置100によれば、導出路9とヒートポンプ6との間に、前記脱炭酸ガスクーラー102が介在している。そのため、導出路9の脱炭酸ガスと、ヒートポンプ6の熱媒体と、で熱交換することで、吸収塔2から導出された脱炭酸ガスの熱を、熱媒体に受け取らせて熱媒体を加熱することができる。
 これにより、吸収塔2の発熱反応で生じて脱炭酸ガスに受け渡された熱が外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
As described above, according to the carbon dioxide gas recovery device 100 according to the present embodiment, the decarbonation gas cooler 102 is interposed between the outlet path 9 and the heat pump 6. Therefore, heat exchange is performed between the decarbonation gas in the outlet passage 9 and the heat medium of the heat pump 6, so that the heat medium receives heat of the decarbonation gas derived from the absorption tower 2 and heats the heat medium. be able to.
Thereby, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower 2 and transferred to the decarbonized gas from leaking to the outside, and further energy saving can be achieved.
 また、脱炭酸ガス洗浄系統10とヒートポンプ6との間に、前記洗浄水クーラー103が介在しているので、脱炭酸ガス洗浄系統10の洗浄水と、ヒートポンプ6の熱媒体と、で熱交換することで、洗浄水を冷却しつつ、熱媒体を加熱することができる。
 これにより、吸収塔2の発熱反応で生じて脱炭酸ガスから洗浄水に受け渡された熱が、外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
Further, since the cleaning water cooler 103 is interposed between the decarbonation gas cleaning system 10 and the heat pump 6, heat is exchanged between the cleaning water of the decarbonation gas cleaning system 10 and the heat medium of the heat pump 6. Thus, the heat medium can be heated while cooling the washing water.
As a result, it is possible to suppress the heat generated by the exothermic reaction of the absorption tower 2 and transferred from the decarbonized gas to the washing water from leaking to the outside, and further energy saving can be achieved.
 また、リッチ供給路4とヒートポンプ6との間に、前記リッチアミン熱交換器104が介在している。そのため、リッチ供給路4のリッチ吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、吸収塔2の発熱反応で生じてリッチ吸収液に受け渡されたリッチ吸収液の熱を、熱媒体に受け取らせて熱媒体を加熱することができる。
 また本実施形態では、リッチアミン熱交換器104が、リッチ供給路4においてアミン熱交36よりも上流に介装されているので、アミン熱交36を通るリッチ吸収液を、前記リッチアミン熱交換器104で冷却しておくことができる。これにより、アミン熱交36において、リッチ供給路4のリッチ吸収液と、リーン供給路5のリーン吸収液と、での熱交換量を増加することが可能になり、リーン供給路5のリーン吸収液を効果的に冷却することができ、再生塔から見た熱回収量を増やすことができる。したがって、例えば、リーン供給路5においてアミン熱交36よりも下流に、リーン吸収液を冷却する図示しないリーンアミンクーラーを設け、吸収塔2に供給されるリーン吸収液を吸収塔2に供給する前に予め冷却する場合であっても、この冷却による外部への熱ロスを低減することができる。
Further, the rich amine heat exchanger 104 is interposed between the rich supply path 4 and the heat pump 6. Therefore, by exchanging heat between the rich absorption liquid in the rich supply path 4 and the heat medium of the heat pump 6, the heat of the rich absorption liquid generated by the exothermic reaction of the absorption tower 2 and transferred to the rich absorption liquid is obtained. The heat medium can be heated by being received by the heat medium.
In the present embodiment, the rich amine heat exchanger 104 is interposed upstream of the amine heat exchanger 36 in the rich supply path 4, so that the rich absorbent that passes through the amine heat exchanger 36 is passed through the rich amine heat exchanger 36. It can be cooled by the vessel 104. Thereby, in the amine heat exchanger 36, it becomes possible to increase the amount of heat exchange between the rich absorption liquid in the rich supply path 4 and the lean absorption liquid in the lean supply path 5, and the lean absorption in the lean supply path 5 The liquid can be cooled effectively, and the amount of heat recovered as viewed from the regeneration tower can be increased. Therefore, for example, a lean amine cooler (not shown) that cools the lean absorbent is provided downstream of the amine heat exchanger 36 in the lean supply path 5, and before the lean absorbent that is supplied to the absorption tower 2 is supplied to the absorption tower 2. Even in the case of cooling in advance, heat loss to the outside due to this cooling can be reduced.
 また本実施形態では、吸収塔2内から外部に導出される脱炭酸ガスおよび吸収液の熱を、脱炭酸ガスクーラー102、洗浄水クーラー103、およびリッチアミン熱交換器104で熱媒体が受け取っている。したがって、吸収塔2での発熱反応で生じる熱を、前記吸収塔内部熱交37を設けずに熱媒体で受け取ることが可能になる。これにより、例えば、二酸化炭素ガス回収装置100の簡素化を図ることができる。
 なお本実施形態では、ヒートポンプ6は、吸収塔内部熱交37を備えていないものとしたが、これを備えていても良い。
In the present embodiment, the heat of decarboxylation gas and absorption liquid led out from the inside of the absorption tower 2 is received by the decarbonation gas cooler 102, the washing water cooler 103, and the rich amine heat exchanger 104. Yes. Therefore, the heat generated by the exothermic reaction in the absorption tower 2 can be received by the heat medium without providing the absorption tower internal heat exchange 37. Thereby, for example, the carbon dioxide gas recovery apparatus 100 can be simplified.
In the present embodiment, the heat pump 6 does not include the absorption tower internal heat exchange 37, but may include this.
(第3実施形態)
 次に、本発明に係る第3実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第3実施形態においては、第2実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。また図3では、図面の見易さのため、第2実施形態における構成要素と同一の部分については一部、図示を省略している。
(Third embodiment)
Next, a carbon dioxide gas recovery device according to a third embodiment of the present invention will be described.
Note that in the third embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described. Further, in FIG. 3, for the sake of easy viewing, a part of the same part as the component in the second embodiment is not shown.
 図3に示すように、本実施形態の二酸化炭素ガス回収装置200では、吸収塔充填物8は、吸収塔2の塔中間部2c内に上下2分割して配設されるとともに、吸収塔2には、吸収塔2の塔中間部2cから吸収液を導出して冷却した後、塔中間部2cから再導入するインタークーラー系統201が設けられている。 As shown in FIG. 3, in the carbon dioxide gas recovery apparatus 200 of the present embodiment, the absorption tower packing 8 is divided into two vertically divided in the tower middle part 2 c of the absorption tower 2, and the absorption tower 2. Is provided with an intercooler system 201 for introducing the absorption liquid from the tower intermediate part 2c of the absorption tower 2 and cooling it, and then reintroducing it from the tower intermediate part 2c.
 インタークーラー系統201は、分割された吸収塔充填物8の間に配設され吸収液が貯留された液受けトレー202と、液受けトレー202よりも下方に配設され下方に向けて吸収液を供給する第5ノズル203と、液受けトレー202と第5ノズル203とを接続する配管204と、を備えている。
 配管204には、液受けトレー202から第5ノズル203に配管204を通して吸収液を移送するインタークーラーポンプ205が設けられている。
The intercooler system 201 is disposed between the divided absorption tower packings 8 and has a liquid receiving tray 202 in which the absorbing liquid is stored, and is disposed below the liquid receiving tray 202 and supplies the absorbing liquid downward. And a pipe 204 that connects the liquid receiving tray 202 and the fifth nozzle 203 to each other.
The pipe 204 is provided with an intercooler pump 205 that transfers the absorption liquid from the liquid receiving tray 202 to the fifth nozzle 203 through the pipe 204.
 そして本実施形態では、インタークーラー系統201とヒートポンプ6との間には、吸収液と、膨張して温度が低下した熱媒体と、で熱交換する熱媒冷却式インタークーラー(第10熱交換器)206が介在している。また、リーン供給路5とヒートポンプ6との間には、リーン吸収液と、膨張して温度が低下した熱媒体と、で熱交換する熱媒冷却式リーンアミンクーラー(第11熱交換器)207が介在している。 And in this embodiment, between the intercooler system | strain 201 and the heat pump 6, the heat-medium cooling type | mold intercooler (10th heat exchanger) 206 which heat-exchanges with an absorption liquid and the heat medium which expanded and the temperature fell. Is intervening. Further, between the lean supply path 5 and the heat pump 6, a heat-medium cooling type lean amine cooler (eleventh heat exchanger) 207 that exchanges heat between the lean absorbing liquid and the heat medium that has expanded and the temperature has decreased. Is intervening.
 図示の例では、ヒートポンプ6は、5つの分岐配管208を備えており、各分岐配管208には、前記脱炭酸ガスクーラー102、前記洗浄水クーラー103、前記リッチアミン熱交換器104、熱媒冷却式インタークーラー206、および熱媒冷却式リーンアミンクーラー207のいずれかが介装されている。 In the illustrated example, the heat pump 6 includes five branch pipes 208, and each of the branch pipes 208 includes the decarbonation gas cooler 102, the washing water cooler 103, the rich amine heat exchanger 104, and the heat medium cooling. Either a type intercooler 206 or a heat medium cooling type lean amine cooler 207 is interposed.
 なお、インタークーラー系統201では、その配管204におけるインタークーラーポンプ205と第5ノズル203との間に熱媒冷却式インタークーラー206が介装されている。
 またリーン供給路5には、アミン熱交36よりも下流に熱媒冷却式リーンアミンクーラー207が介装されている。
In the intercooler system 201, a heat medium cooling type intercooler 206 is interposed between the intercooler pump 205 and the fifth nozzle 203 in the pipe 204.
A heat medium cooling type lean amine cooler 207 is interposed in the lean supply path 5 downstream of the amine heat exchanger 36.
 次に、以上のように構成された二酸化炭素ガス回収装置200の作用について説明する。ここでは、ヒートポンプ6の熱媒体の流れについて、熱媒膨張弁41を起点として、熱媒集合器110に到達するまでを説明する。
 熱媒膨張弁41により温度が低下した熱媒体は、第2配管108を通った後、熱媒分配器109で分岐された5つの分岐配管208を通る。
Next, the operation of the carbon dioxide gas recovery device 200 configured as described above will be described. Here, the flow of the heat medium of the heat pump 6 will be described from the heat medium expansion valve 41 as a starting point until the heat medium collector 110 is reached.
The heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the five branch pipes 208 branched by the heat medium distributor 109 after passing through the second pipe 108.
 このうち、熱媒冷却式インタークーラー206が介装された分岐配管208を通る熱媒体は、熱媒冷却式インタークーラー206において、吸収液と熱交換することで、吸収液を冷却しつつ加熱される。
 また、熱媒冷却式リーンアミンクーラー207が介装された分岐配管208を通る熱媒体は、熱媒冷却式リーンアミンクーラー207において、リーン吸収液を冷却しつつ加熱される。
 そして、各分岐配管208を通った熱媒体は熱媒集合器110で合流する。
Among these, the heat medium passing through the branch pipe 208 provided with the heat medium cooling intercooler 206 is heated while cooling the absorption liquid by exchanging heat with the absorption liquid in the heat medium cooling intercooler 206.
Further, the heat medium passing through the branch pipe 208 in which the heat medium cooling type lean amine cooler 207 is interposed is heated in the heat medium cooling type lean amine cooler 207 while cooling the lean absorbent.
Then, the heat medium that has passed through each branch pipe 208 joins in the heat medium collector 110.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置200によれば、リーン供給路5とヒートポンプ6との間に、前記熱媒冷却式リーンアミンクーラー207が介在している。そのため、リーン供給路5のリーン吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、リーン吸収液を冷却しつつ、熱媒体を加熱することができる。
 これにより、従来は冷却水に廃熱していたリーン吸収液の熱を、廃熱することなく熱媒体の熱として回収することができる。また、吸収塔2に供給されるリーン吸収液を冷却することが可能になり、吸収塔2での吸収液による二酸化炭素ガスの吸収を促進することができる。
As described above, according to the carbon dioxide gas recovery device 200 according to the present embodiment, the heat medium cooling type lean amine cooler 207 is interposed between the lean supply path 5 and the heat pump 6. Therefore, the heat medium can be heated while cooling the lean absorbent by heat exchange between the lean absorbent in the lean supply path 5 and the heat medium in the heat pump 6.
Thereby, the heat | fever of the lean absorption liquid which was waste heat to cooling water conventionally can be collect | recovered as heat of a heat medium, without waste heat. Moreover, it becomes possible to cool the lean absorption liquid supplied to the absorption tower 2, and the absorption of the carbon dioxide gas by the absorption liquid in the absorption tower 2 can be promoted.
 さらに、吸収塔2に前記インタークーラー系統201が設けられているので、塔中間部2cの吸収液を冷却した後に再導入することが可能になり、吸収塔2での吸収液による二酸化炭素ガスの吸収をより促進することができる。 Further, since the intercooler system 201 is provided in the absorption tower 2, it becomes possible to re-introduce the absorption liquid in the tower intermediate part 2 c and to absorb carbon dioxide gas by the absorption liquid in the absorption tower 2. Can be promoted more.
 また、インタークーラー系統201とヒートポンプ6との間に、前記熱媒冷却式インタークーラー206が介在しているので、インタークーラー系統201の吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、吸収液を冷却しつつ、熱媒体を加熱することができる。
 これにより、吸収塔2の発熱反応で生じて吸収液に受け渡された熱が、外部に漏出するのを抑制することが可能になり、更なる省エネルギー化を図ることができる。
In addition, since the heat medium cooling type intercooler 206 is interposed between the intercooler system 201 and the heat pump 6, absorption is achieved by exchanging heat between the absorbing liquid of the intercooler system 201 and the heat medium of the heat pump 6. The heating medium can be heated while cooling the liquid.
Thereby, it becomes possible to suppress the heat generated by the exothermic reaction of the absorption tower 2 and delivered to the absorbing liquid from leaking to the outside, and further energy saving can be achieved.
(第4実施形態)
 次に、本発明に係る第4実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第4実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Fourth embodiment)
Next, a carbon dioxide gas recovery device according to a fourth embodiment of the present invention will be described.
In the fourth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
 図4に示すように、本実施形態の二酸化炭素ガス回収装置300では、リッチ供給路4において吸収塔底ポンプ17とアミン熱交36との間に位置する部分に、リッチ吸収液の流れを分岐するリッチアミン分配器301と、分岐されたリッチ吸収液が流通する2つのリッチ分岐路302、303と、リッチ分岐路302、303が合流するリッチアミン集合器304と、が備えられている。 As shown in FIG. 4, in the carbon dioxide gas recovery device 300 of the present embodiment, the flow of the rich absorbent is branched to a portion located between the absorption tower bottom pump 17 and the amine heat exchanger 36 in the rich supply path 4. A rich amine distributor 301, two rich branch paths 302 and 303 through which the branched rich absorbing liquid flows, and a rich amine collector 304 into which the rich branch paths 302 and 303 join together.
 2つのリッチ分岐路302、303のうち、一方のリッチ分岐路302とリーン供給路5との間には、リッチ吸収液とリーン吸収液とで熱交換する第1リッチアミン熱交305が介在している。第1リッチアミン熱交305は、リーン供給路5においてアミン熱交36よりも下流に介装されている。第1リッチアミン熱交305は、前記一方のリッチ分岐路302のリッチ吸収液と、リーン供給路5のリーン吸収液と、で熱交換する。これにより、再生塔3に供給され再生塔3内で吸熱反応を起こすリッチ吸収液を予熱しつつ、吸収塔2に供給され吸収塔2内で発熱反応を起こすリーン吸収液を冷却することができる。
 また、再生塔3に設けられた前記リボイラー系統19の配管23におけるリボイラーポンプ24と凝縮熱交換器34との間にはリボイラー分配器306が設けられており、このリボイラー分配器306からは、再生塔3の塔底部3aに接続される枝配管307が分岐されている。
Of the two rich branch paths 302 and 303, between the rich branch path 302 and the lean supply path 5, there is a first rich amine heat exchanger 305 that exchanges heat between the rich absorbent and the lean absorbent. ing. The first rich amine heat exchanger 305 is interposed downstream of the amine heat exchanger 36 in the lean supply path 5. The first rich amine heat exchanger 305 exchanges heat between the rich absorbent in the one rich branch 302 and the lean absorbent in the lean supply path 5. Thus, the lean absorbent that is supplied to the absorption tower 2 and causes an exothermic reaction in the absorption tower 2 can be cooled while preheating the rich absorbent that is supplied to the regeneration tower 3 and causes an endothermic reaction in the regeneration tower 3. .
A reboiler distributor 306 is provided between the reboiler pump 24 and the condensation heat exchanger 34 in the pipe 23 of the reboiler system 19 provided in the regeneration tower 3. A branch pipe 307 connected to the tower bottom 3a of the tower 3 is branched.
 そして本実施形態では、リボイラー系統19とヒートポンプ6との間には、吸収液と、圧縮されて温度が上昇した熱媒体と、で熱交換する熱媒式リボイラーヒーター(第12熱交換器)308が介在している。また、リッチ供給路4とヒートポンプ6との間には、リッチ吸収液と、圧縮されて温度が上昇した熱媒体と、で熱交換する第2リッチアミン熱交(第13熱交換器)309が介在している。
 これらの熱媒式リボイラーヒーター308、第2リッチアミン熱交309および前記再生塔内部熱交38は、ヒートポンプ6において熱媒コンプレッサー42によって圧縮されて温度が上昇した熱媒体が通り、熱媒体が熱を受け渡す熱供給に介在している。
In the present embodiment, between the reboiler system 19 and the heat pump 6, a heat medium reboiler heater (a twelfth heat exchanger) 308 that exchanges heat between the absorbing liquid and the heat medium that has been compressed to increase its temperature. Is intervening. Further, between the rich supply path 4 and the heat pump 6, there is a second rich amine heat exchanger (13th heat exchanger) 309 that exchanges heat between the rich absorbent and the heat medium that has been compressed to increase its temperature. Intervene.
The heat medium reboiler heater 308, the second rich amine heat exchanger 309, and the regeneration tower internal heat exchanger 38 pass through the heat medium whose temperature is increased by being compressed by the heat medium compressor 42 in the heat pump 6, and the heat medium is heated. Intervenes in the heat supply that delivers the heat.
 図示の例では、ヒートポンプ6は、複数の配管310、311、312、313、314と、各配管を接続する熱媒分配器315および熱媒集合器316を備えている。複数の配管310、311、312、313、314は、熱媒分配器315と熱媒集合器316とを接続する3つの分岐配管310、311、312と、熱媒集合器316と吸収塔内部熱交37の下部とを接続する第1配管313と、吸収塔内部熱交37の上部と熱媒分配器315とを接続する第2配管314と、からなる。 In the illustrated example, the heat pump 6 includes a plurality of pipes 310, 311, 312, 313, and 314, and a heat medium distributor 315 and a heat medium collector 316 that connect the pipes. The plurality of pipes 310, 311, 312, 313, and 314 include three branch pipes 310, 311, and 312 that connect the heat medium distributor 315 and the heat medium collector 316, the heat medium collector 316, and the absorption tower internal heat. It consists of a first pipe 313 connecting the lower part of the cross 37 and a second pipe 314 connecting the upper part of the heat exchange 37 inside the absorption tower and the heat medium distributor 315.
 3つの分岐配管310、311、312のうち、第1の分岐配管310の中間部には、前記再生塔内部熱交38が設けられ、第2の分岐配管311には、熱媒式リボイラーヒーター308が介装され、第3の分岐配管312には、第2リッチアミン熱交309が介装されている。また、第1配管313には前記熱媒膨張弁41が設けられるとともに、第2配管314には、前記熱媒コンプレッサー42が設けられている。
 なお図示の例では、リボイラー系統19では、枝配管307に熱媒式リボイラーヒーター308が介装されるとともに、リッチ供給路4では、2つのリッチ分岐路302、303のうち、前記一方のリッチ分岐路302とは異なる他方のリッチ分岐路303に第2リッチアミン熱交309が介装されている。第2リッチアミン熱交309は、リッチ供給路4においてアミン熱交36よりも上流に介装されている。
Among the three branch pipes 310, 311, 312, the regeneration tower internal heat exchanger 38 is provided at an intermediate portion of the first branch pipe 310, and a heat medium reboiler heater 308 is provided in the second branch pipe 311. Is installed, and a second rich amine heat exchanger 309 is interposed in the third branch pipe 312. The first pipe 313 is provided with the heat medium expansion valve 41, and the second pipe 314 is provided with the heat medium compressor 42.
In the illustrated example, in the reboiler system 19, a heating medium reboiler heater 308 is interposed in the branch pipe 307, and in the rich supply path 4, one of the rich branch paths 302, 303 is the one rich branch. A second rich amine heat exchanger 309 is interposed in the other rich branch path 303 different from the path 302. The second rich amine heat exchanger 309 is interposed upstream of the amine heat exchanger 36 in the rich supply path 4.
 次に、以上のように構成された二酸化炭素ガス回収装置300の作用について説明する。ここでは、ヒートポンプ6の熱媒体の流れについて、熱媒膨張弁41を起点として説明する。 Next, the operation of the carbon dioxide gas recovery apparatus 300 configured as described above will be described. Here, the flow of the heat medium of the heat pump 6 will be described with the heat medium expansion valve 41 as a starting point.
 熱媒膨張弁41により温度が低下した熱媒体は、第1配管313を通った後、吸収塔内部熱交37の下部から上部に向けて移動しながら、吸収液と熱交換することで、吸収液を冷却しつつ発熱反応の熱を受け取り、その後、第2配管314を通って熱媒分配器315に移動する。このとき、熱媒体は熱媒コンプレッサー42によって温度が上昇する。そして熱媒体は、熱媒分配器315により分岐され、各分岐配管310、311、312を通る。 The heat medium whose temperature has been lowered by the heat medium expansion valve 41 passes through the first pipe 313 and is then absorbed by exchanging heat with the absorbing liquid while moving from the lower part to the upper part of the heat exchange 37 inside the absorption tower. The heat of the exothermic reaction is received while cooling the liquid, and then moves to the heat medium distributor 315 through the second pipe 314. At this time, the temperature of the heat medium rises by the heat medium compressor 42. The heat medium is branched by the heat medium distributor 315 and passes through the branch pipes 310, 311, and 312.
 このうち、第1の分岐配管310を通る熱媒体は、再生塔内部熱交38の下部から上部に向けて移動しながら、吸収液と熱交換することで、前記熱を吸熱反応の熱源としてリッチ吸収液に受け渡して加熱する。
 また、第2の分岐配管311を通る熱媒体は、熱媒式リボイラーヒーター308において、リボイラー系統19の吸収液と熱交換することで、その熱を吸収液に受け渡して加熱する。
 さらに、第3の分岐配管312を通る熱媒体は、リッチ供給路4のリッチ吸収液と熱交換することで、その熱をリッチ吸収液に受け渡して加熱する。
Among these, the heat medium passing through the first branch pipe 310 is rich in the heat exchange as the heat source of the endothermic reaction by exchanging heat with the absorption liquid while moving from the lower part to the upper part of the heat exchange 38 inside the regeneration tower. Transfer to absorbent and heat.
In addition, the heat medium passing through the second branch pipe 311 exchanges heat with the absorption liquid of the reboiler system 19 in the heat medium reboiler heater 308, thereby transferring the heat to the absorption liquid and heating it.
Furthermore, the heat medium passing through the third branch pipe 312 exchanges heat with the rich absorption liquid in the rich supply path 4 to transfer the heat to the rich absorption liquid and heat it.
 そして、各分岐配管310、311、312を通った熱媒体は熱媒集合器316で合流する。熱媒集合器316で合流した熱媒体は、第1配管313を通って吸収塔内部熱交37の下部に向けて移動する。このとき、熱媒体は熱媒膨張弁41により再び温度が低下する。 Then, the heat medium that has passed through each of the branch pipes 310, 311, 312 joins at the heat medium collector 316. The heat medium merged in the heat medium collector 316 moves toward the lower part of the heat exchange 37 inside the absorption tower through the first pipe 313. At this time, the temperature of the heat medium is lowered again by the heat medium expansion valve 41.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置300によれば、リボイラー系統19とヒートポンプ6との間に、前記熱媒式リボイラーヒーター308が介在している。そのため、リボイラー系統19の吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、熱媒体の熱を、吸収液に受け取らせて吸収液を加熱することができる。
 これにより、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。
As described above, according to the carbon dioxide gas recovery apparatus 300 according to the present embodiment, the heat medium reboiler heater 308 is interposed between the reboiler system 19 and the heat pump 6. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the heat medium of the heat pump 6, the heat of the heat medium can be received by the absorption liquid and the absorption liquid can be heated.
As a result, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
 また、リッチ供給路4とヒートポンプ6との間に、前記第2リッチアミン熱交309が介在しているので、リッチ供給路4のリッチ吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、熱媒体の熱を、再生塔3に供給されるリッチ吸収液に受け取らせてリッチ吸収液を加熱することができる。
 このように、再生塔3に供給されるリッチ吸収液を予熱しておくことができるので、再生塔3でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。
 また本実施形態のように、リーン供給路5とリッチ供給路4との間に前記アミン熱交36が介在している場合、アミン熱交36での加熱量に、前記第2リッチアミン熱交309での加熱量が加算される結果、リッチ吸収液の予熱量が増大し、リボイラー系統19によって吸収液に与えるべき熱量を更に抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより一層抑えることが可能になり、一層更なる省エネルギー化を図ることができる。
In addition, since the second rich amine heat exchange 309 is interposed between the rich supply path 4 and the heat pump 6, heat exchange is performed between the rich absorbent in the rich supply path 4 and the heat medium of the heat pump 6. Thus, the rich absorption liquid supplied to the regeneration tower 3 can be received by the heat of the heat medium so that the rich absorption liquid can be heated.
Thus, since the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
Further, when the amine heat exchanger 36 is interposed between the lean supply path 5 and the rich supply path 4 as in the present embodiment, the second rich amine heat exchanger is included in the heating amount in the amine heat exchanger 36. As a result of adding the heating amount at 309, the preheating amount of the rich absorption liquid increases, and the amount of heat to be given to the absorption liquid by the reboiler system 19 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
(第5実施形態)
 次に、本発明に係る第5実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第5実施形態においては、第2実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Fifth embodiment)
Next, a carbon dioxide gas recovery device according to a fifth embodiment of the present invention will be described.
In the fifth embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
 図5に示すように、本実施形態に係る二酸化炭素ガス回収装置400では、再生塔3に設けられた前記リボイラー系統19の配管23におけるリボイラーポンプ24と凝縮熱交換器34との間にはリボイラー分配器401が設けられている。また、このリボイラー分配器401からは、再生塔3の塔底部3aに接続される枝配管402が分岐されている。 As shown in FIG. 5, in the carbon dioxide gas recovery apparatus 400 according to the present embodiment, the reboiler is disposed between the reboiler pump 24 and the condensation heat exchanger 34 in the pipe 23 of the reboiler system 19 provided in the regeneration tower 3. A distributor 401 is provided. A branch pipe 402 connected to the tower bottom 3 a of the regeneration tower 3 is branched from the reboiler distributor 401.
 またヒートポンプ6は、前記再生塔内部熱交38を備えていない。そして本実施形態では、リボイラー系統19とヒートポンプ6との間には、吸収液と、圧縮されて温度が上昇した熱媒体と、で熱交換する熱媒式リボイラーヒーター(第12熱交換器)403が介在している。
 図示の例では、ヒートポンプ6の複数の配管404、405は、熱媒集合器110と熱媒分配器109とを接続するとともに前記熱媒コンプレッサー42が設けられた主配管404と、熱媒分配器109と熱媒集合器110とを接続する3つの分岐配管405と、からなる。
Further, the heat pump 6 does not include the regeneration tower internal heat exchange 38. In this embodiment, between the reboiler system 19 and the heat pump 6, a heat medium reboiler heater (a twelfth heat exchanger) 403 that exchanges heat between the absorbing liquid and the heat medium that has been compressed and the temperature has increased. Is intervening.
In the illustrated example, the plurality of pipes 404 and 405 of the heat pump 6 are connected to the heat medium collector 110 and the heat medium distributor 109 and the main pipe 404 provided with the heat medium compressor 42 and the heat medium distributor. 109 and three branch pipes 405 connecting the heat medium collector 110.
 主配管404には、熱媒体を膨張させることで温度を低下させる熱媒膨張タービン406が設けられている。この熱媒膨張タービン406は、熱媒体を膨張させるときに回転動力を得る。そして、主配管404における熱媒コンプレッサー42と熱媒膨張タービン406との間に、前記熱媒式リボイラーヒーター403が介装されている。
 また、各分岐配管405には、熱媒冷却式の脱炭酸ガスクーラー102、熱媒冷却式の洗浄水クーラー103および熱媒冷却式のリッチアミン熱交換器104のいずれかが介装されている。
The main pipe 404 is provided with a heat medium expansion turbine 406 that reduces the temperature by expanding the heat medium. The heat medium expansion turbine 406 obtains rotational power when the heat medium is expanded. The heat medium reboiler heater 403 is interposed between the heat medium compressor 42 and the heat medium expansion turbine 406 in the main pipe 404.
Each of the branch pipes 405 is provided with any one of a heat medium cooling type decarboxylation gas cooler 102, a heat medium cooling type washing water cooler 103, and a heat medium cooling type rich amine heat exchanger 104. .
 次に、以上のように構成された二酸化炭素ガス回収装置400の作用について説明する。ここでは、ヒートポンプ6の熱媒体の流れについて、熱媒膨張タービン406を起点として説明する。 Next, the operation of the carbon dioxide gas recovery apparatus 400 configured as described above will be described. Here, the flow of the heat medium of the heat pump 6 will be described starting from the heat medium expansion turbine 406.
 熱媒膨張タービン406により温度が低下した熱媒体は、主配管404を通った後に熱媒分配器109で分岐され、3つの分岐配管405を通って各熱交換器において加熱され、その後、熱媒集合器110で合流する。熱媒集合器110で合流した熱媒体は、主配管404を通って、熱媒コンプレッサー42によって温度が上昇した後、熱媒式リボイラーヒーター403において、リボイラー系統19の吸収液と熱交換することで、熱媒体の熱を吸収液に受け渡して加熱する。その後、主配管404を通って熱媒分配器109に向けて移動する。このとき、熱媒体は熱媒膨張タービン406により再び温度が低下する。 The heat medium whose temperature has been lowered by the heat medium expansion turbine 406 passes through the main pipe 404 and then is branched by the heat medium distributor 109 and is heated in each heat exchanger through the three branch pipes 405. Merge at the aggregator 110. The heat medium merged in the heat medium collector 110 passes through the main pipe 404 and is heated by the heat medium compressor 42, and then is heat-exchanged with the absorption liquid of the reboiler system 19 in the heat medium type reboiler heater 403. The heat of the heat medium is transferred to the absorption liquid and heated. Then, it moves toward the heat medium distributor 109 through the main pipe 404. At this time, the temperature of the heat medium is lowered again by the heat medium expansion turbine 406.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置400によれば、リボイラー系統19とヒートポンプ6との間に、前記熱媒式リボイラーヒーター403が介在している。そのため、リボイラー系統19の吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、熱媒体の熱を、吸収液に受け取らせて吸収液を加熱することができる。
 これにより、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。
 なお、ヒートポンプ6は、前記再生塔内部熱交38を備えていないものとしたが、これを備えていても良い。
As described above, according to the carbon dioxide gas recovery device 400 according to the present embodiment, the heat medium reboiler heater 403 is interposed between the reboiler system 19 and the heat pump 6. Therefore, by performing heat exchange between the absorption liquid of the reboiler system 19 and the heat medium of the heat pump 6, the heat of the heat medium can be received by the absorption liquid and the absorption liquid can be heated.
As a result, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
Although the heat pump 6 is not provided with the regeneration tower internal heat exchange 38, it may be provided with this.
(第6実施形態)
 次に、本発明に係る第6実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第6実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Sixth embodiment)
Next, a carbon dioxide gas recovery device according to a sixth embodiment of the present invention will be described.
In the sixth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
 図6に示すように、本実施形態の二酸化炭素ガス回収装置500では、前記ヒートポンプ6が備えられていない。
 また吸収塔充填物8は、吸収塔2の塔中間部2cに上下2分割して配設されるとともに、吸収塔2には、吸収塔2の塔中間部2c内からリーン吸収液を導出して冷却した後、塔中間部2cから再導入するインタークーラー系統501が設けられている。
 また、リーン供給路5には、リーン吸収液を冷却するリーンアミンクーラー502がアミン熱交36よりも下流に設けられている。
As shown in FIG. 6, the heat pump 6 is not provided in the carbon dioxide gas recovery device 500 of the present embodiment.
Further, the absorption tower packing 8 is disposed in the tower middle part 2c of the absorption tower 2 in an upper and lower part, and the lean absorption liquid is led to the absorption tower 2 from the tower middle part 2c of the absorption tower 2. After cooling, an intercooler system 501 is provided that is reintroduced from the tower middle portion 2c.
In addition, a lean amine cooler 502 that cools the lean absorbent is provided in the lean supply path 5 downstream of the amine heat exchanger 36.
 また、混合ガス冷却系統20の配管29には、前記減圧・膨張弁31が設けられておらず、この配管29において気液分離器32と前記第4ノズル28との間には、凝縮液循環ポンプ29aに代えてレベル調節弁503が設けられている。
 気液分離器32は、凝縮熱交換器34で凝縮された前記溶質および溶媒の蒸気分である凝縮液と、未凝縮の前記溶質および溶媒の蒸気分および二酸化炭素ガスからなる未凝縮の残りの昇温混合ガスと、を分離する。この気液分離器32には、排出路33に代えて、後述する他の気液分離器505を経て再生塔3の塔頂部3bに接続された残ガス流通路504が設けられている。
The piping 29 of the mixed gas cooling system 20 is not provided with the decompression / expansion valve 31, and the condensate circulation is provided between the gas-liquid separator 32 and the fourth nozzle 28 in the piping 29. A level adjustment valve 503 is provided instead of the pump 29a.
The gas-liquid separator 32 includes a condensate that is the vapor of the solute and the solvent condensed by the condensation heat exchanger 34, and the remaining uncondensed gas that is composed of the vapor of the solute and the solvent and the carbon dioxide gas. The temperature rising mixed gas is separated. The gas-liquid separator 32 is provided with a residual gas flow passage 504 connected to the tower top 3 b of the regeneration tower 3 through another gas-liquid separator 505 described later, instead of the discharge passage 33.
 残ガス流通路504内は、気液分離器32により分離された未凝縮の前記残りの昇温混合ガスが通る。残ガス流通路504には、後述する第3リッチアミン熱交(第2熱交換器)514と、前記減圧・膨張弁31と、前記溶質および溶媒の蒸気分の凝縮液と未凝縮の二酸化炭素ガスとを分離する他の気液分離器505と、レベル調節弁506と、が気液分離器32から再生塔3の塔頂部3bに、この順で配設されている。
 他の気液分離器505には、前記排出路33が設けられている。
In the remaining gas flow passage 504, the remaining non-condensed heated mixture gas separated by the gas-liquid separator 32 passes. In the residual gas flow passage 504, a third rich amine heat exchanger (second heat exchanger) 514, the pressure reduction / expansion valve 31, the condensate of the vapors of the solute and the solvent, and uncondensed carbon dioxide are described. Another gas-liquid separator 505 for separating gas and a level control valve 506 are arranged in this order from the gas-liquid separator 32 to the top 3b of the regeneration tower 3.
The other gas-liquid separator 505 is provided with the discharge path 33.
 また、リッチ供給路4において吸収塔底ポンプ17とアミン熱交36との間に位置する部分には、リッチ吸収液の流れを分岐するリッチアミン分配器507と、分岐されたリッチ吸収液が流通する3つのリッチ分岐路508、509、510と、リッチ分岐路508、509、510が合流するリッチアミン集合器511と、が備えられている。 Further, a rich amine distributor 507 for branching the flow of the rich absorbent liquid and a branched rich absorbent liquid circulate in a portion located between the absorption tower bottom pump 17 and the amine heat exchanger 36 in the rich supply path 4. Three rich branch paths 508, 509, 510 and a rich amine collector 511 into which the rich branch paths 508, 509, 510 merge.
 3つのリッチ分岐路508、509、510のうちの第1リッチ分岐路508と、リーン供給路5と、の間には、リッチ吸収液とリーン吸収液とで熱交換する第1リッチアミン熱交512が介在している。第1リッチアミン熱交512は、リーン供給路5においてアミン熱交36よりも下流に介装されている。
 また、3つのリッチ分岐路508、509、510のうちの第2リッチ分岐路509と、前記リボイラー配管26と、の間には、リッチ吸収液と高温流体とで熱交換する第2リッチアミン熱交513が介在している。第2リッチアミン熱交513は、リボイラー配管26においてスチームトラップ27よりも下流に介装されている。
Between the first rich branch 508 of the three rich branches 508, 509, and 510 and the lean supply path 5, the first rich amine heat exchange that exchanges heat between the rich absorbent and the lean absorbent. 512 is interposed. The first rich amine heat exchanger 512 is interposed downstream of the amine heat exchanger 36 in the lean supply path 5.
Further, between the second rich branch 509 of the three rich branches 508, 509, and 510 and the reboiler pipe 26, the second rich amine heat that exchanges heat between the rich absorbent and the high-temperature fluid. Intersection 513 is interposed. The second rich amine heat exchanger 513 is interposed downstream of the steam trap 27 in the reboiler pipe 26.
 そして本実施形態では、混合ガス冷却系統20とリッチ供給路4との間には、凝縮熱交換器34を通った後の昇温混合ガスとリッチ吸収液とで熱交換する第3リッチアミン熱交514が介在している。
 第3リッチアミン熱交514は、3つのリッチ分岐路508、509、510のうちの第3リッチ分岐路510に介装されているとともに、残ガス流通路504において減圧・膨張弁31よりも上流に介装されている。
In this embodiment, between the mixed gas cooling system 20 and the rich supply path 4, the third rich amine heat that exchanges heat between the temperature rising mixed gas after passing through the condensation heat exchanger 34 and the rich absorbing liquid. Intersection 514 is interposed.
The third rich amine heat exchanger 514 is interposed in the third rich branch 510 of the three rich branches 508, 509, 510, and upstream of the pressure reducing / expansion valve 31 in the residual gas flow passage 504. Is intervened.
 次に、以上のように構成された二酸化炭素ガス回収装置500の作用について説明する。
 はじめに、リッチ供給路4でのリッチ吸収液の流れについて説明する。
 リッチ供給路4を通るリッチ吸収液は、リッチアミン分配器507に到達した後、3つの分岐路508、509、510に分岐される。
Next, the operation of the carbon dioxide gas recovery apparatus 500 configured as described above will be described.
First, the flow of the rich absorbent in the rich supply path 4 will be described.
The rich absorbent passing through the rich supply path 4 reaches the rich amine distributor 507 and then branches into three branch paths 508, 509, and 510.
 このうち、第1リッチ分岐路508を通るリッチ吸収液は、第1リッチアミン熱交512で、リーン供給路5のリーン吸収液と熱交換することで、リーン吸収液を冷却しつつ加熱される。
 また、第2リッチ分岐路509を通るリッチ吸収液は、第2リッチアミン熱交513で、リボイラー配管26の高温流体と熱交換することで、高温流体から熱を受け取り加熱される。
 さらに、第3リッチ分岐路510を通るリッチ吸収液は、第3リッチアミン熱交514で、残ガス流通路504を流通する前記残りの昇温混合ガスと熱交換することで、前記残りの昇温混合ガスを冷却しつつ加熱される。
Among these, the rich absorption liquid passing through the first rich branch 508 is heated while cooling the lean absorption liquid by exchanging heat with the lean absorption liquid in the lean supply path 5 in the first rich amine heat exchange 512. .
Further, the rich absorbent passing through the second rich branch 509 is heated by receiving heat from the high-temperature fluid by exchanging heat with the high-temperature fluid in the reboiler pipe 26 in the second rich amine heat exchange 513.
Further, the rich absorbing liquid passing through the third rich branch 510 is exchanged with the remaining temperature rising mixed gas flowing through the remaining gas flow passage 504 in the third rich amine heat exchange 514, whereby the remaining rising temperature is increased. The hot mixed gas is heated while cooling.
 そして、各リッチ分岐路508、509、510を通り加熱されたリッチ吸収液は、リッチアミン集合器511で合流した後、前記第3ノズル16に供給される。 Then, the rich absorbent heated through the rich branch paths 508, 509, and 510 is joined by the rich amine collector 511 and then supplied to the third nozzle 16.
 次に、混合ガス冷却系統20での混合ガスの流れについて説明する。
 再生塔3内を上昇した混合ガスは、混合ガス冷却系統20の配管29を通り、まず混合ガスコンプレッサー30によって圧縮され温度が上昇して昇温混合ガスとなる。その後、凝縮熱交換器34で、リボイラー系統19の吸収液と熱交換することで、前記溶質および溶媒の蒸気分が持つ潜熱が回収され、前記溶質および溶媒の蒸気分の少なくとも一部が凝縮されて、凝縮液となる。
 次いで、気液分離器32により、前記凝縮液と、未凝縮の前記残りの昇温混合ガスと、が分離され、これらのうち、凝縮液は、配管29を通り再生塔3の塔頂部3bに前記第4ノズル28から供給される。
Next, the flow of the mixed gas in the mixed gas cooling system 20 will be described.
The mixed gas that has risen in the regeneration tower 3 passes through the pipe 29 of the mixed gas cooling system 20 and is first compressed by the mixed gas compressor 30 to rise in temperature and become a heated mixed gas. Thereafter, the condensation heat exchanger 34 performs heat exchange with the absorption liquid of the reboiler system 19 to recover the latent heat of the solute and solvent vapor, and at least a part of the solute and solvent vapor is condensed. It becomes a condensate.
Next, the condensate is separated from the remaining non-condensed temperature rising mixed gas by the gas-liquid separator 32, and among these, the condensate passes through the pipe 29 to the tower top 3 b of the regeneration tower 3. Supplied from the fourth nozzle 28.
 一方、未凝縮の前記残りの昇温混合ガスは、残ガス流通路504を通り、第3リッチアミン熱交514で、第3リッチ分岐路510を通るリッチ吸収液と熱交換することで、ガスの顕熱および一部残った蒸気分の潜熱が回収される。すなわち、前記溶質および溶媒の蒸気分の潜熱が回収されて前記残りの昇温混合ガス中の前記溶質および溶媒の蒸気分が凝縮されるとともに、前記残りの昇温混合ガス中の二酸化炭素ガスの顕熱が回収される。その後、前記残りの昇温混合ガスが減圧・膨張弁31によって膨張して温度が低下することで、前記残りの昇温混合ガス中の前記溶質および溶媒の蒸気分が全て凝縮され凝縮液となる。 On the other hand, the remaining non-condensed temperature rising mixed gas passes through the residual gas flow passage 504 and exchanges heat with the rich absorption liquid passing through the third rich branch 510 in the third rich amine heat exchanger 514, The sensible heat and the latent heat of the remaining steam are recovered. That is, the latent heat of the vapor of the solute and the solvent is recovered to condense the vapor of the solute and the solvent in the remaining temperature rising mixed gas, and the carbon dioxide gas in the remaining temperature rising mixed gas Sensible heat is recovered. Thereafter, the remaining temperature rising mixed gas is expanded by the pressure reducing / expansion valve 31 and the temperature is lowered, so that all the vapors of the solute and the solvent in the remaining temperature rising mixed gas are condensed to become a condensate. .
 そして、他の気液分離器505により、前記凝縮液と、未凝縮の二酸化炭素ガスと、が分離される。これらのうち、凝縮液は、前記残ガス流通路504を通り再生塔3の塔頂部3bに供給されるとともに、二酸化炭素ガスは、排出路33を通して排出される。 Then, the other liquid-liquid separator 505 separates the condensate from uncondensed carbon dioxide gas. Among these, the condensate is supplied to the top 3 b of the regeneration tower 3 through the residual gas flow passage 504, and the carbon dioxide gas is discharged through the discharge path 33.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置500によれば、混合ガス冷却系統20とリッチ供給路4との間に、前記第3リッチアミン熱交514が介在している。そのため、混合ガス冷却系統20の前記残りの昇温混合ガスと、リッチ供給路4のリッチ吸収液と、で熱交換することで、再生塔3に供給されるリッチ吸収液を加熱しつつ、前記残りの昇温混合ガスを冷却することができる。 As described above, according to the carbon dioxide gas recovery apparatus 500 according to the present embodiment, the third rich amine heat exchanger 514 is interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, by heat exchange between the remaining temperature rising mixed gas of the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4, while heating the rich absorbent supplied to the regeneration tower 3, The remaining temperature rising mixed gas can be cooled.
 このように、再生塔3を流出する混合ガスの持つ熱量により、再生塔3に供給されるリッチ吸収液を予熱しておくことができるので、再生塔3でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、一層の省エネルギー化を図ることができる。 In this way, the rich absorption liquid supplied to the regeneration tower 3 can be preheated by the amount of heat of the mixed gas flowing out of the regeneration tower 3, so the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3. Can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
 また、混合ガス冷却系統20の昇温混合ガスが、凝縮熱交換器34を通った後、第3リッチアミン熱交514を通るので、昇温混合ガス中の前記溶質および溶媒の蒸気分の潜熱を凝縮熱交換器34で回収した後、未凝縮の前記残りの昇温混合ガスの顕熱および残った潜熱を第3リッチアミン熱交514で回収することができる。 Moreover, since the temperature rising mixed gas of the mixed gas cooling system 20 passes through the condensation heat exchanger 34 and then passes through the third rich amine heat exchanger 514, the latent heat of vapor of the solute and the solvent in the temperature rising mixed gas. After being recovered by the condensation heat exchanger 34, the sensible heat and the remaining latent heat of the remaining unheated mixed gas mixture can be recovered by the third rich amine heat exchanger 514.
 ここで、第1実施形態と同様に、以上の効果を一般化して記述すると、本実施形態では、前記(1)反応熱の自己熱再生効果と、(2)塔操作に要する潜熱の自己熱再生と、に加えて以下の1項目を記述することができる。
(3)塔操作に要する顕熱の自己熱再生
 再生塔3に流入するリッチ吸収液に含まれる二酸化炭素に相当する顕熱量は、前記残りの昇温混合ガスのガス顕熱に等しい。よって混合ガスを圧縮する僅かな動力で昇温混合ガスを得て、第3リッチアミン熱交514により、その顕熱を回収すれば、再生塔に導入されるリッチ吸収液の予熱量が増加して、リボイラー系統19で外部から加えるべき熱量は低減する。さらに厳密に言えば、加えるべき熱量は、アミン熱交36での回収漏れ熱量(アミン熱交36を流出するリーン吸収液の顕熱量とアミン熱交36に流入するリッチ吸収液の顕熱量との差違)からリッチ吸収液に含まれる二酸化炭素の顕熱相当熱量を除いた熱量と、再生塔3廻りの放熱量に見合う熱量と、の和になる。
 さらにアミン熱交36の伝熱面積を大きく設定し、アミン熱交36での回収漏れ熱量をゼロに近づけると、リボイラー系統19で外部から加えるべき熱量は再生塔3廻りの放熱量だけに見合う熱量にまで低減する。放熱は保温の程度で制御できることから、最終的にリボイラー系統19で外部から加えるべき熱量は、ゼロ近傍とすることが可能となる。
Here, as in the first embodiment, the above effects are generalized and described. In this embodiment, (1) the self-heat regeneration effect of reaction heat and (2) self-heat of latent heat required for tower operation are described. In addition to playback, the following one item can be described.
(3) Self-thermal regeneration of sensible heat required for tower operation The amount of sensible heat corresponding to carbon dioxide contained in the rich absorbent flowing into the regeneration tower 3 is equal to the gas sensible heat of the remaining temperature rising mixed gas. Therefore, if the temperature rising mixed gas is obtained with a slight power for compressing the mixed gas and the sensible heat is recovered by the third rich amine heat exchange 514, the preheating amount of the rich absorbent introduced into the regeneration tower increases. Thus, the amount of heat to be applied from the outside in the reboiler system 19 is reduced. Strictly speaking, the amount of heat to be applied is the amount of recovery leakage heat in the amine heat exchanger 36 (the sensible heat amount of the lean absorbing liquid flowing out of the amine heat exchanger 36 and the sensible heat amount of the rich absorbing liquid flowing in the amine heat exchanger 36). The sum of the amount of heat excluding the sensible heat equivalent of carbon dioxide contained in the rich absorbent from the difference) and the amount of heat commensurate with the amount of heat released around the regeneration tower 3.
Furthermore, if the heat transfer area of the amine heat exchanger 36 is set to be large and the amount of heat leaked from the amine heat exchanger 36 is brought close to zero, the amount of heat to be applied from the outside in the reboiler system 19 is the amount of heat that only corresponds to the amount of heat released around the regeneration tower 3. Reduce to. Since heat radiation can be controlled by the degree of heat retention, the amount of heat to be finally applied from the outside in the reboiler system 19 can be made near zero.
 なお本実施形態では、第3リッチアミン熱交514において、混合ガス冷却系統20の前記残りの昇温混合ガスと、リッチ供給路4のリッチ吸収液と、で熱交換するものとしたが、これに限られるものではない。例えば、第3リッチアミン熱交514において、二酸化炭素ガスとリッチ吸収液とで熱交換し、二酸化炭素ガスの顕熱回収をしても良い。
 この場合、例えば、気液分離器32で、昇温混合ガス中の前記溶質および溶媒の蒸気分の全てが二酸化炭素ガスから分離されるように、気液分離器32よりも上流で、昇温混合ガス中の前記溶質および溶媒の蒸気分の全てが凝縮されるように、混合ガス冷却系統20を構成しても良い。
 また本実施形態では、ヒートポンプ6を備えていないものとしたが、ヒートポンプ6を備えていても良い。
In the present embodiment, in the third rich amine heat exchanger 514, heat is exchanged between the remaining temperature rising mixed gas in the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4. It is not limited to. For example, in the third rich amine heat exchanger 514, heat exchange may be performed between the carbon dioxide gas and the rich absorbing solution, and sensible heat recovery of the carbon dioxide gas may be performed.
In this case, for example, in the gas-liquid separator 32, the temperature rises upstream of the gas-liquid separator 32 so that all the vapors of the solute and the solvent in the temperature rise mixed gas are separated from the carbon dioxide gas. The mixed gas cooling system 20 may be configured such that all of the vapors of the solute and the solvent in the mixed gas are condensed.
In the present embodiment, the heat pump 6 is not provided, but the heat pump 6 may be provided.
(第7実施形態)
 次に、本発明に係る第7実施形態の二酸化炭素ガス回収装置を説明する。
 なお、この第7実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
(Seventh embodiment)
Next, a carbon dioxide gas recovery device according to a seventh embodiment of the present invention will be described.
Note that in the seventh embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different points will be described.
 図7に示すように、本実施形態の二酸化炭素ガス回収装置600では、リッチ供給路4において吸収塔底ポンプ17よりも下流に位置する部分に、リッチ吸収液の流れを分岐するリッチアミン分配器601と、分岐されたリッチ吸収液が流通する2つのリッチ分岐路602、603と、リッチ分岐路602、603が合流するリッチアミン集合器604と、が備えられている。
 2つのリッチ分岐路602、603のうち、一方のリッチ分岐路602とリーン供給路5との間には、前記アミン熱交36が介在している。
As shown in FIG. 7, in the carbon dioxide gas recovery device 600 of the present embodiment, a rich amine distributor that branches the flow of the rich absorption liquid to a portion located downstream of the absorption tower bottom pump 17 in the rich supply path 4. 601, two rich branch paths 602 and 603 through which the branched rich absorbing liquid flows, and a rich amine collector 604 in which the rich branch paths 602 and 603 merge.
Of the two rich branch paths 602 and 603, the amine heat exchanger 36 is interposed between one rich branch path 602 and the lean supply path 5.
 ヒートポンプ6は、前記再生塔内部熱交38を備えていない。そして本実施形態では、リッチ供給路4とヒートポンプ6との間には、リッチ吸収液と、圧縮されて温度が上昇した熱媒体と、で熱交換する第1リッチアミン熱交(第13熱交換器)605が介在している。 The heat pump 6 does not have the heat exchange 38 inside the regeneration tower. In the present embodiment, the first rich amine heat exchange (13th heat exchange) is performed between the rich supply path 4 and the heat pump 6 between the rich absorbent and the heat medium whose temperature is increased by being compressed. ) Is interposed.
 図示の例では、ヒートポンプ6は、吸収塔内部熱交37の下部と上部とを接続するヒートポンプ配管607を備えている。このヒートポンプ配管607には、前記熱媒コンプレッサー42が設けられるとともに、ヒートポンプ配管607において熱媒コンプレッサー42よりも下流には、熱媒体を膨張させることで温度を低下させる熱媒膨張タービン608が設けられている。この熱媒膨張タービン608は、熱媒体を膨張させるときに回転動力を得る。 In the illustrated example, the heat pump 6 includes a heat pump pipe 607 that connects the lower part and the upper part of the heat exchange 37 inside the absorption tower. The heat pump pipe 607 is provided with the heat medium compressor 42, and a heat medium expansion turbine 608 that lowers the temperature by expanding the heat medium is provided downstream of the heat medium compressor 42 in the heat pump pipe 607. ing. The heat medium expansion turbine 608 obtains rotational power when the heat medium is expanded.
 そして、第1リッチアミン熱交605は、ヒートポンプ配管607において、熱媒コンプレッサー42よりも下流で、かつ熱媒膨張タービン608よりも上流に介装されているとともに、リッチ供給路4においてリッチアミン集合器604よりも下流に介装されている。 The first rich amine heat exchanger 605 is interposed in the heat pump pipe 607 downstream of the heat medium compressor 42 and upstream of the heat medium expansion turbine 608, and in the rich supply path 4 It is interposed downstream from the container 604.
 また、混合ガス冷却系統20の減圧・膨張弁31は前記排出路33に設けられるとともに、混合ガス冷却系統20の配管29における気液分離器32と第4ノズル28との間には、凝縮液循環ポンプ29aに代えてレベル調節弁609が設けられている。さらに図示の例では、凝縮熱交換器34が設けられていない。 Further, the pressure reducing / expansion valve 31 of the mixed gas cooling system 20 is provided in the discharge passage 33, and condensate is provided between the gas-liquid separator 32 and the fourth nozzle 28 in the pipe 29 of the mixed gas cooling system 20. A level adjustment valve 609 is provided instead of the circulation pump 29a. Further, in the illustrated example, the condensation heat exchanger 34 is not provided.
 そして本実施形態では、混合ガス冷却系統20とリッチ供給路4との間には、昇温混合ガスとリッチ吸収液とで熱交換する第2リッチアミン熱交(第3熱交換器)610が介在している。さらに、混合ガス冷却系統20とリッチ供給路4との間には、第2リッチアミン熱交610を通った後の昇温混合ガスとリッチ吸収液とで熱交換する第3リッチアミン熱交(第4熱交換器)611が介在している。 In the present embodiment, a second rich amine heat exchanger (third heat exchanger) 610 that exchanges heat between the temperature rising mixed gas and the rich absorbent is provided between the mixed gas cooling system 20 and the rich supply path 4. Intervene. Furthermore, between the mixed gas cooling system 20 and the rich supply path 4, a third rich amine heat exchange (which exchanges heat between the temperature-increased mixed gas and the rich absorbent after passing through the second rich amine heat exchange 610 ( A fourth heat exchanger) 611 is interposed.
 図示の例では、第2リッチアミン熱交610は、混合ガス冷却系統20の配管29において混合ガスコンプレッサー30よりも下流で、かつ気液分離器32よりも上流に介装されるとともに、リッチ供給路4において第1リッチアミン熱交605よりも下流に介装されている。
 また第3リッチアミン熱交611は、混合ガス冷却系統20の排出路33において減圧・膨張弁31よりも上流に介装されるとともに、リッチ供給路4において、2つのリッチ分岐路602、603のうち、一方のリッチ分岐路602と異なる他方の分岐路603に介装されている。
In the illustrated example, the second rich amine heat exchanger 610 is interposed downstream of the mixed gas compressor 30 and upstream of the gas-liquid separator 32 in the piping 29 of the mixed gas cooling system 20, and is richly supplied. In the path 4, it is interposed downstream from the first rich amine heat exchanger 605.
The third rich amine heat exchanger 611 is interposed upstream of the pressure reducing / expansion valve 31 in the discharge passage 33 of the mixed gas cooling system 20, and the two rich branch passages 602 and 603 in the rich supply passage 4. Of these, the other branch 603 different from one rich branch 602 is interposed.
 次に、以上のように構成された二酸化炭素ガス回収装置600の作用について説明する。
 はじめに、リッチ供給路4でのリッチ吸収液の流れについて説明する。
 リッチ供給路4を通るリッチ吸収液は、リッチアミン分配器601に到達した後、2つのリッチ分岐路602、603に分岐される。
Next, the operation of the carbon dioxide gas recovery apparatus 600 configured as described above will be described.
First, the flow of the rich absorbent in the rich supply path 4 will be described.
The rich absorbent passing through the rich supply path 4 reaches the rich amine distributor 601 and then branches into two rich branch paths 602 and 603.
 このうち、一方のリッチ分岐路602を通るリッチ吸収液は、アミン熱交36で、リーン供給路5のリーン吸収液と熱交換することで、リーン吸収液を冷却しつつ加熱される。
 また、他方のリッチ分岐路603を通るリッチ吸収液は、第3リッチアミン熱交611で、混合ガス冷却系統20の排出路33の二酸化炭素主体ガスと熱交換することで、二酸化炭素主体ガスから熱を受け取り加熱される。
Among these, the rich absorption liquid passing through one rich branch path 602 is heated while cooling the lean absorption liquid by exchanging heat with the lean absorption liquid in the lean supply path 5 by the amine heat exchange 36.
Further, the rich absorbing liquid passing through the other rich branch 603 is exchanged with the carbon dioxide main gas in the discharge passage 33 of the mixed gas cooling system 20 by the third rich amine heat exchange 611, thereby Receives heat and is heated.
 そして、各リッチ分岐路602、603を通り加熱されたリッチ吸収液は、リッチアミン集合器604で合流した後、第1リッチアミン熱交605で、ヒートポンプ6の熱媒体と熱交換することで、熱媒体から熱を受け取り加熱される。その後さらにリッチ吸収液は、第2リッチアミン熱交610で、混合ガス冷却系統20の排出路33の昇温混合ガスと熱交換することで、昇温混合ガスを冷却するとともに加熱される。
 以上のようにして加熱されたリッチ吸収液は、その後、前記第3ノズル16に供給される。
Then, the rich absorbent heated through the rich branch paths 602 and 603 merges in the rich amine collector 604, and then exchanges heat with the heat medium of the heat pump 6 in the first rich amine heat exchanger 605. Heat is received from the heat medium and heated. Thereafter, the rich absorbent is further heated by cooling the heated mixed gas by exchanging heat with the heated mixed gas in the discharge passage 33 of the mixed gas cooling system 20 in the second rich amine heat exchanger 610.
The rich absorbent heated as described above is then supplied to the third nozzle 16.
 次に、混合ガス冷却系統20での混合ガスの流れについて説明する。
 再生塔3内を上昇した混合ガスは、混合ガス冷却系統20の配管29を通り、まず混合ガスコンプレッサー30によって圧縮され温度が上昇して昇温混合ガスとなる。その後、第2リッチアミン熱交610で、リッチ供給路4のリッチ吸収液と熱交換することで、前記溶質および溶媒の蒸気分が持つ潜熱が回収され、前記溶質および溶媒の蒸気分が凝縮されて凝縮液となる。
Next, the flow of the mixed gas in the mixed gas cooling system 20 will be described.
The mixed gas that has risen in the regeneration tower 3 passes through the pipe 29 of the mixed gas cooling system 20 and is first compressed by the mixed gas compressor 30 to rise in temperature and become a heated mixed gas. Thereafter, in the second rich amine heat exchanger 610, heat exchange with the rich absorbing liquid in the rich supply path 4 is performed to recover the latent heat of the solute and solvent vapor, and the solute and solvent vapor are condensed. To condensate.
 次いで、気液分離器32により、前記凝縮液と、二酸化炭素ガスを主体とした未凝縮の二酸化炭素主体ガスと、が分離され、これらのうち、凝縮液は、配管29を通り再生塔3の塔頂部3bに前記第4ノズル28から供給される。 Subsequently, the condensate and the non-condensed carbon dioxide main gas mainly composed of carbon dioxide gas are separated by the gas-liquid separator 32, and among these, the condensate passes through the pipe 29 and enters the regeneration tower 3. The fourth nozzle 28 is supplied to the tower top 3b.
 一方、未凝縮の前記二酸化炭素主体ガスは、排出路33を通り、第3リッチアミン熱交611で、一方のリッチ分岐路602を通るリッチ吸収液と熱交換することで、ガスの顕熱および一部残った蒸気分の潜熱が回収された後、減圧・膨張弁31によって膨張して温度が低下して排出される。このとき、前記溶質および溶媒の蒸気分の潜熱が回収されて前記二酸化炭素主体ガス中の前記溶質および溶媒の蒸気分が凝縮されるとともに、前記二酸化炭素主体ガス中の二酸化炭素ガスの顕熱が回収される。 On the other hand, the uncondensed carbon dioxide main gas passes through the discharge path 33, and in the third rich amine heat exchange 611, exchanges heat with the rich absorption liquid that passes through the one rich branch path 602, so that the sensible heat of the gas and After the latent heat of a part of the remaining steam is recovered, the steam is expanded by the pressure reduction / expansion valve 31 and is discharged at a reduced temperature. At this time, the latent heat of the vapor of the solute and the solvent is recovered to condense the vapor of the solute and the solvent in the carbon dioxide main gas, and the sensible heat of the carbon dioxide gas in the carbon dioxide main gas Collected.
 次に、ヒートポンプ6での熱媒体の流れについて、熱媒膨張タービン608を起点として説明する。
 熱媒膨張タービン608で温度が低下した熱媒体は、ヒートポンプ配管607を通った後、吸収塔内部熱交37の下部から上部に向けて移動しながら、吸収液と熱交換することで、吸収液を冷却しつつ発熱反応の熱を受け取る。
 そして熱媒体は、ヒートポンプ配管607を通って、熱媒コンプレッサー42によって圧縮され、温度が上昇した後、第1リッチアミン熱交605で、リッチ吸収液と熱交換することで、リッチ吸収液を加熱しつつ冷却される。その後、熱媒体は、ヒートポンプ配管607を通って、吸収塔内部熱交37の下部に向けて移動する。このとき、熱媒体は熱媒膨張タービン608により再び温度が低下する。
Next, the flow of the heat medium in the heat pump 6 will be described starting from the heat medium expansion turbine 608.
The heat medium whose temperature has been lowered by the heat medium expansion turbine 608 passes through the heat pump pipe 607 and then exchanges heat with the absorption liquid while moving from the lower part to the upper part of the heat exchange 37 inside the absorption tower. The heat of the exothermic reaction is received while cooling.
Then, the heat medium is compressed by the heat medium compressor 42 through the heat pump pipe 607, and after the temperature rises, heat exchange with the rich absorption liquid is performed in the first rich amine heat exchanger 605 to heat the rich absorption liquid. However, it is cooled. Thereafter, the heat medium moves through the heat pump pipe 607 toward the lower part of the heat exchange 37 inside the absorption tower. At this time, the temperature of the heat medium is lowered again by the heat medium expansion turbine 608.
 以上説明したように、本実施形態に係る二酸化炭素ガス回収装置600によれば、混合ガス冷却系統20が混合ガスコンプレッサー30を備えている。そのため、僅かな外部動力を加えることで、外部から加熱することなく、昇温混合ガスが得られる。さらに、混合ガス冷却系統20とリッチ供給路4との間に、前記第2リッチアミン熱交610が介在している。そのため、混合ガス冷却系統20の昇温混合ガスと、リッチ供給路4のリッチ吸収液と、で熱交換することで、再生塔3を流出する混合ガスの持つ熱量により、再生塔3に供給されるリッチ吸収液を加熱しつつ、昇温混合ガスを冷却することができる。 As described above, according to the carbon dioxide gas recovery apparatus 600 according to this embodiment, the mixed gas cooling system 20 includes the mixed gas compressor 30. Therefore, by applying a slight amount of external power, a temperature rising mixed gas can be obtained without heating from the outside. Further, the second rich amine heat exchanger 610 is interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, heat exchange is performed between the temperature-increased mixed gas of the mixed gas cooling system 20 and the rich absorbent in the rich supply path 4, so that the heat supplied by the mixed gas flowing out of the regeneration tower 3 is supplied to the regeneration tower 3. The temperature rising mixed gas can be cooled while heating the rich absorbent.
 このように、再生塔3に供給されるリッチ吸収液を予熱しておくことができるので、再生塔3でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統19での外部からの入熱量を抑えることが可能になり、省エネルギー化を図ることができる。 Thus, since the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be suppressed, and energy saving can be achieved.
 また、混合ガス冷却系統20とリッチ供給路4との間に、前記第2リッチアミン熱交610および前記第3リッチアミン熱交611が介在している。そのため、再生塔3に供給されるリッチ吸収液を効果的に予熱しておくことが可能になり、再生塔3でリッチ吸収液が受け取る必要がある熱量をより抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、一層の省エネルギー化を図ることができる。 Also, the second rich amine heat exchange 610 and the third rich amine heat exchange 611 are interposed between the mixed gas cooling system 20 and the rich supply path 4. Therefore, it is possible to effectively preheat the rich absorption liquid supplied to the regeneration tower 3, and the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
 また、混合ガス冷却系統20の昇温混合ガスが、第2リッチアミン熱交610を通った後に第3リッチアミン熱交611を通る。そのため、例えば、昇温混合ガス中の前記溶質および溶媒の蒸気分の潜熱を第2リッチアミン熱交610で回収した後、未凝縮の二酸化炭素主体ガスの顕熱および残った潜熱を第3リッチアミン熱交611で回収することができる。 In addition, the temperature rising mixed gas of the mixed gas cooling system 20 passes through the third rich amine heat exchange 611 after passing through the second rich amine heat exchange 610. Therefore, for example, after the latent heat of the vapors of the solute and the solvent in the temperature rising mixed gas is recovered by the second rich amine heat exchanger 610, the sensible heat of the non-condensed carbon dioxide main gas and the remaining latent heat are third rich. It can be recovered by amine heat exchanger 611.
 また、リッチ供給路4とヒートポンプ6との間に、前記第1リッチアミン熱交605が介在しているので、リッチ供給路4のリッチ吸収液と、ヒートポンプ6の熱媒体と、で熱交換することで、熱媒体の熱を、再生塔3に供給されるリッチ吸収液に受け取らせてリッチ吸収液を加熱することができる。 Further, since the first rich amine heat exchange 605 is interposed between the rich supply path 4 and the heat pump 6, heat exchange is performed between the rich absorbent in the rich supply path 4 and the heat medium of the heat pump 6. Thus, the rich absorption liquid supplied to the regeneration tower 3 can be received by the heat of the heat medium so that the rich absorption liquid can be heated.
 このように、再生塔3に供給されるリッチ吸収液を予熱しておくことができるので、再生塔3でリッチ吸収液が受け取る必要がある熱量を抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより抑えることが可能になり、更なる省エネルギー化を図ることができる。 Thus, since the rich absorption liquid supplied to the regeneration tower 3 can be preheated, the amount of heat that the rich absorption liquid needs to receive in the regeneration tower 3 can be suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
 また本実施形態のように、リーン供給路5とリッチ供給路4との間に前記アミン熱交36が介在している場合、アミン熱交36で、リッチ吸収液を加熱する熱量が小さくなり、リボイラー系統19によって吸収液に与えるべき熱量を更に抑えることができる。したがって、リボイラー系統19での外部からの入熱量をより一層抑えることが可能になり、一層更なる省エネルギー化を図ることができる。 Further, as in the present embodiment, when the amine heat exchange 36 is interposed between the lean supply path 5 and the rich supply path 4, the amount of heat for heating the rich absorbent is reduced by the amine heat exchange 36, The amount of heat to be given to the absorbent by the reboiler system 19 can be further suppressed. Therefore, the amount of heat input from the outside in the reboiler system 19 can be further suppressed, and further energy saving can be achieved.
 なお本実施形態では、ヒートポンプ6が前記再生塔内部熱交38を備えていないものとしたが、備えていても良い。また本実施形態では、凝縮熱交換器34を備えていてないものとしたが、これを備えていても良い。さらに本実施形態では、第3リッチアミン熱交611を備えているものとしたが、これを備えて無くても良い。 In this embodiment, the heat pump 6 is not provided with the regeneration tower internal heat exchange 38, but may be provided. In the present embodiment, the condensation heat exchanger 34 is not provided, but this may be provided. Further, in the present embodiment, the third rich amine heat exchanger 611 is provided, but this may not be provided.
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記各実施形態では、混合ガス冷却系統20では、減圧・膨張弁31で昇温混合ガスの温度を低下させたが、これに代えて膨張タービンを採用しても良い。この場合、昇温混合ガスを膨張させるときに回転動力を得ることができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, in the mixed gas cooling system 20, the temperature of the temperature rising mixed gas is decreased by the pressure reducing / expansion valve 31, but an expansion turbine may be adopted instead. In this case, rotational power can be obtained when the temperature rising mixed gas is expanded.
 また、前記第1~第5、第7実施形態では、ヒートポンプ6を備えるものとしたが、ヒートポンプ6は無くても良い。
 さらに、前記第1~第6実施形態では、第7実施形態に示す第2リッチアミン熱交610を備えていないものとしたが、これを備えていても良い。
In the first to fifth and seventh embodiments, the heat pump 6 is provided. However, the heat pump 6 may be omitted.
Further, in the first to sixth embodiments, the second rich amine heat exchanger 610 shown in the seventh embodiment is not provided, but this may be provided.
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the constituent elements in the embodiment with well-known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
 本発明に係る二酸化炭素ガス回収装置によれば、外部からの入熱量を抑制して省エネルギー化を図ることができる。 The carbon dioxide gas recovery apparatus according to the present invention can save energy by suppressing the amount of heat input from the outside.
1、100、200、300、400、500、600 二酸化炭素ガス回収装置
2 吸収塔
2a 塔底部
2b 塔頂部
2c 塔中間部
3 再生塔
4 リッチ供給路
5 リーン供給路
6 ヒートポンプ
8 吸収塔充填物
9 導出路
10 脱炭酸ガス洗浄系統
18 再生塔充填物
19 リボイラー系統
20 混合ガス冷却系統
26 リボイラー配管
30 混合ガスコンプレッサー(混合ガス圧縮機)
34 凝縮熱交換器(第1熱交換器)
37 吸収塔内部熱交(第5熱交換器)
38 再生塔内部熱交(第6熱交換器)
102 脱炭酸ガスクーラー(第7熱交換器)
103 洗浄水クーラー(第8熱交換器)
104 リッチアミン熱交換器(第9熱交換器)
201、501 インタークーラー系統
206 熱媒冷却式インタークーラー(第10熱交換器)
207 熱媒冷却式リーンアミンクーラー(第11熱交換器)
308、403 熱媒式リボイラーヒーター(第12熱交換器)
309 第2リッチアミン熱交(第13熱交換器)
514 第3リッチアミン熱交(第2熱交換器)
605 第1リッチアミン熱交(第13熱交換器)
610 第2リッチアミン熱交(第3熱交換器)
611 第3リッチアミン熱交(第4熱交換器)
1, 100, 200, 300, 400, 500, 600 Carbon dioxide gas recovery device 2 Absorption tower 2a Tower bottom 2b Tower top 2c Tower intermediate section 3 Regeneration tower 4 Rich supply path 5 Lean supply path 6 Heat pump 8 Absorption tower packing 9 Lead-out path 10 Decarbonation gas cleaning system 18 Regeneration tower packing 19 Reboiler system 20 Mixed gas cooling system 26 Reboiler piping 30 Mixed gas compressor (mixed gas compressor)
34 Condensation heat exchanger (first heat exchanger)
37 Absorption tower internal heat exchange (5th heat exchanger)
38 Heat exchange inside regeneration tower (sixth heat exchanger)
102 Carbon dioxide gas cooler (seventh heat exchanger)
103 Washing water cooler (8th heat exchanger)
104 Richamine heat exchanger (9th heat exchanger)
201, 501 Intercooler system 206 Heat medium cooled intercooler (10th heat exchanger)
207 Heat-medium cooled lean amine cooler (11th heat exchanger)
308, 403 Heating medium reboiler heater (12th heat exchanger)
309 2nd amine heat exchange (13th heat exchanger)
514 Third rich amine heat exchange (second heat exchanger)
605 1st rich amine heat exchange (13th heat exchanger)
610 Second rich amine heat exchange (third heat exchanger)
611 3rd amine heat exchange (4th heat exchanger)

Claims (14)

  1.  二酸化炭素ガスを含有する二酸化炭素含有ガスと、リーン吸収液と、を導入して接触させ、前記二酸化炭素含有ガス中の前記二酸化炭素ガスを吸収液に吸収させてリッチ吸収液を生成する吸収塔と、
     前記吸収塔から供給された前記リッチ吸収液を加熱して前記二酸化炭素ガスを分離させることにより前記リーン吸収液を再生する再生塔と、を備えた二酸化炭素ガス回収装置であって、
     前記再生塔には、
      前記再生塔から吸収液を導出して加熱し、前記再生塔に再導入するリボイラー系統と、
      前記二酸化炭素ガスと前記吸収液の溶質および溶媒の蒸気分との混合ガスを前記再生塔から導出して冷却し、前記溶質および溶媒の蒸気分を凝縮させて前記再生塔に再導入するとともに、前記二酸化炭素ガスを排出する混合ガス冷却系統と、
     が設けられ、
     前記混合ガス冷却系統は、前記混合ガスを圧縮して温度を上昇させ昇温混合ガスとする混合ガス圧縮機を備え、
     前記リボイラー系統と前記混合ガス冷却系統との間には、前記吸収液と前記昇温混合ガスとで熱交換する第1熱交換器が介在している二酸化炭素ガス回収装置。
    An absorption tower for introducing a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbent and bringing them into contact with each other, and absorbing the carbon dioxide gas in the carbon dioxide-containing gas into the absorbent to produce a rich absorbent When,
    A carbon dioxide gas recovery apparatus comprising: a regeneration tower that regenerates the lean absorbent by heating the rich absorbent supplied from the absorber and separating the carbon dioxide gas;
    In the regeneration tower,
    A reboiler system for extracting and heating the absorbing liquid from the regeneration tower and reintroducing it into the regeneration tower;
    The mixed gas of the carbon dioxide gas and the solute of the absorption liquid and the vapor of the solvent is led out from the regeneration tower and cooled, and the vapor of the solute and the solvent is condensed and reintroduced into the regeneration tower. A mixed gas cooling system for discharging the carbon dioxide gas;
    Is provided,
    The mixed gas cooling system includes a mixed gas compressor that compresses the mixed gas and raises the temperature to form a heated mixed gas,
    A carbon dioxide gas recovery device in which a first heat exchanger for exchanging heat between the absorbing liquid and the temperature rising mixed gas is interposed between the reboiler system and the mixed gas cooling system.
  2.  請求項1記載の二酸化炭素ガス回収装置であって、
     前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路をさらに備え、
     前記混合ガス冷却系統と前記リッチ供給路との間には、前記第1熱交換器を通った後の前記昇温混合ガスと前記リッチ吸収液とで熱交換する第2熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 1,
    A rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower;
    Between the mixed gas cooling system and the rich supply path, there is a second heat exchanger that exchanges heat between the temperature rising mixed gas after passing through the first heat exchanger and the rich absorbent. Carbon dioxide gas recovery device.
  3.  二酸化炭素ガスを含有する二酸化炭素含有ガスと、リーン吸収液と、を導入して接触させ、前記二酸化炭素含有ガス中の前記二酸化炭素ガスを吸収液に吸収させてリッチ吸収液を生成する吸収塔と、
     前記吸収塔から供給された前記リッチ吸収液を加熱して前記二酸化炭素ガスを分離させることにより前記リーン吸収液に再生する再生塔と、を備えた二酸化炭素ガス回収装置であって、
     前記再生塔には、
      前記再生塔から吸収液を導出して加熱し、前記再生塔に再導入するリボイラー系統と、
      前記二酸化炭素ガスと前記吸収液の溶質および溶媒の蒸気分との混合ガスを前記再生塔から導出して冷却し、前記溶質および溶媒の蒸気分を凝縮させて前記再生塔に再導入するとともに、前記二酸化炭素ガスを排出する混合ガス冷却系統と、
     が設けられ、
     前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、
     前記混合ガス冷却系統は、前記混合ガスを圧縮して温度を上昇させ昇温混合ガスとする混合ガス圧縮機を備え、
     前記混合ガス冷却系統と前記リッチ供給路との間には、前記昇温混合ガスと前記リッチ吸収液とで熱交換する第3熱交換器が介在している二酸化炭素ガス回収装置。
    An absorption tower for introducing a carbon dioxide-containing gas containing carbon dioxide gas and a lean absorbent and bringing them into contact with each other, and absorbing the carbon dioxide gas in the carbon dioxide-containing gas into the absorbent to produce a rich absorbent When,
    A carbon dioxide gas recovery apparatus comprising: a regeneration tower that regenerates the lean absorbent by heating the rich absorbent supplied from the absorber and separating the carbon dioxide gas;
    In the regeneration tower,
    A reboiler system for extracting and heating the absorbing liquid from the regeneration tower and reintroducing it into the regeneration tower;
    The mixed gas of the carbon dioxide gas and the solute of the absorption liquid and the vapor of the solvent is led out from the regeneration tower and cooled, and the vapor of the solute and the solvent is condensed and reintroduced into the regeneration tower. A mixed gas cooling system for discharging the carbon dioxide gas;
    Is provided,
    A rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower;
    The mixed gas cooling system includes a mixed gas compressor that compresses the mixed gas and raises the temperature to form a heated mixed gas,
    A carbon dioxide gas recovery device in which a third heat exchanger for exchanging heat between the temperature rising mixed gas and the rich absorbent is interposed between the mixed gas cooling system and the rich supply path.
  4.  請求項3記載の二酸化炭素ガス回収装置であって、
     前記混合ガス冷却系統と前記リッチ供給路との間には、前記第3熱交換器を通った後の前記昇温混合ガスと前記リッチ吸収液とで熱交換する第4熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 3,
    Between the mixed gas cooling system and the rich supply path, there is a fourth heat exchanger that exchanges heat between the temperature rising mixed gas after passing through the third heat exchanger and the rich absorbent. Carbon dioxide gas recovery device.
  5.  請求項1から4のいずれか1項に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔で前記吸収液が前記二酸化炭素ガスを吸収するときの発熱反応で生じた熱を熱媒体を介して移動させ、前記再生塔で前記リッチ吸収液から前記二酸化炭素ガスが分離するときの吸熱反応の熱源として利用するヒートポンプをさらに備えている二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to any one of claims 1 to 4,
    The heat generated by the exothermic reaction when the absorbing liquid absorbs the carbon dioxide gas in the absorption tower is moved through a heat medium, and the carbon dioxide gas is separated from the rich absorbing liquid in the regeneration tower. A carbon dioxide gas recovery device further comprising a heat pump used as a heat source for an endothermic reaction.
  6.  請求項5記載の二酸化炭素ガス回収装置であって、
     前記ヒートポンプは、前記吸収塔内に配設された吸収塔充填物に介装され、膨張して温度が低下した前記熱媒体と、前記吸収塔内の前記吸収液と、で熱交換する第5熱交換器を備えている二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    The heat pump is interposed in an absorption tower packing disposed in the absorption tower, and exchanges heat between the heat medium whose temperature has decreased due to expansion and the absorption liquid in the absorption tower. Carbon dioxide gas recovery device equipped with a heat exchanger.
  7.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記ヒートポンプは、前記再生塔内に配設された再生塔充填物に介装され、圧縮されて温度が上昇した前記熱媒体と、前記再生塔内の前記リッチ吸収液と、で熱交換する第6熱交換器を備えている二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    The heat pump is interposed in a regenerative tower packing disposed in the regeneration tower, and performs heat exchange between the heat medium whose temperature has been increased by being compressed and the rich absorbent in the regeneration tower. Carbon dioxide gas recovery device equipped with 6 heat exchangers.
  8.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔には、前記二酸化炭素含有ガスから前記二酸化炭素ガスが分離されてなる脱炭酸ガスを導出する導出路が設けられ、
     前記導出路と前記ヒートポンプとの間には、前記脱炭酸ガスと、膨張して温度が低下した前記熱媒体と、で熱交換する第7熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    The absorption tower is provided with a lead-out path for leading out decarbonation gas obtained by separating the carbon dioxide gas from the carbon dioxide-containing gas,
    A carbon dioxide gas recovery apparatus in which a seventh heat exchanger for exchanging heat between the decarbonation gas and the heat medium having expanded and lowered in temperature is interposed between the lead-out path and the heat pump.
  9.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔には、前記吸収塔の塔頂部に貯留された洗浄液を前記吸収塔から導出して冷却した後、前記吸収塔の塔頂部から再導入する脱炭酸ガス洗浄系統が設けられ、
     前記脱炭酸ガス洗浄系統と前記ヒートポンプとの間には、前記洗浄液と、膨張して温度が低下した前記熱媒体と、で熱交換する第8熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    The absorption tower is provided with a decarbonation gas cleaning system for introducing the cleaning liquid stored at the top of the absorption tower from the absorption tower and cooling it, and then reintroducing it from the top of the absorption tower.
    A carbon dioxide gas recovery device in which an eighth heat exchanger for exchanging heat between the cleaning liquid and the heat medium having expanded and lowered in temperature is interposed between the decarbonation gas cleaning system and the heat pump. .
  10.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、
     前記リッチ供給路と前記ヒートポンプとの間には、前記リッチ吸収液と、膨張して温度が低下した前記熱媒体と、で熱交換する第9熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    A rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower;
    A carbon dioxide gas recovery device in which a ninth heat exchanger for exchanging heat between the rich absorbing liquid and the heat medium having expanded and lowered in temperature is interposed between the rich supply path and the heat pump. .
  11.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔には、前記吸収塔における塔頂部と塔底部との間の塔中間部から前記吸収液を導出して冷却した後、前記塔中間部から再導入するインタークーラー系統が設けられ、
     前記インタークーラー系統と前記ヒートポンプとの間には、前記吸収液と、膨張して温度が低下した前記熱媒体と、で熱交換する第10熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    The absorption tower is provided with an intercooler system for introducing and cooling the absorption liquid from the tower intermediate portion between the tower top and the tower bottom in the absorption tower, and then reintroducing from the tower intermediate portion.
    A carbon dioxide gas recovery device in which a tenth heat exchanger for exchanging heat between the absorbing liquid and the heat medium having expanded and lowered in temperature is interposed between the intercooler system and the heat pump.
  12.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記再生塔から前記吸収塔に前記リーン吸収液を供給するリーン供給路を備え、
     前記リーン供給路と前記ヒートポンプとの間には、前記リーン吸収液と、膨張して温度が低下した前記熱媒体と、で熱交換する第11熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    A lean supply path for supplying the lean absorbing liquid from the regeneration tower to the absorption tower;
    A carbon dioxide gas recovery device in which an eleventh heat exchanger for heat exchange is interposed between the lean supply path and the heat pump with the lean absorbing liquid and the heat medium having expanded and lowered in temperature. .
  13.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記リボイラー系統と前記ヒートポンプとの間には、前記吸収液と、圧縮されて温度が上昇した前記熱媒体と、で熱交換する第12熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    A carbon dioxide gas recovery apparatus in which a twelfth heat exchanger is provided between the reboiler system and the heat pump to exchange heat between the absorption liquid and the heat medium that has been compressed and increased in temperature.
  14.  請求項5に記載の二酸化炭素ガス回収装置であって、
     前記吸収塔から前記再生塔に前記リッチ吸収液を供給するリッチ供給路を備え、
     前記リッチ供給路と前記ヒートポンプとの間には、前記リッチ吸収液と、圧縮されて温度が上昇した前記熱媒体と、で熱交換する第13熱交換器が介在している二酸化炭素ガス回収装置。
    The carbon dioxide gas recovery device according to claim 5,
    A rich supply path for supplying the rich absorbent from the absorption tower to the regeneration tower;
    A carbon dioxide gas recovery apparatus in which a thirteenth heat exchanger for heat exchange is interposed between the rich supply path and the heat pump with the rich absorbing liquid and the heat medium that has been compressed and increased in temperature. .
PCT/JP2011/057636 2010-03-31 2011-03-28 Carbon dioxide gas recovery device WO2011122559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010080236A JP5641194B2 (en) 2010-03-31 2010-03-31 Carbon dioxide gas recovery device
JP2010-080236 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122559A1 true WO2011122559A1 (en) 2011-10-06

Family

ID=44712255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057636 WO2011122559A1 (en) 2010-03-31 2011-03-28 Carbon dioxide gas recovery device

Country Status (3)

Country Link
JP (1) JP5641194B2 (en)
TW (1) TW201210676A (en)
WO (1) WO2011122559A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312020A1 (en) * 2009-12-18 2012-12-13 Scott Alexander Hume Regeneration of Capture Medium
JP2013184090A (en) * 2012-03-06 2013-09-19 Toshiba Corp Carbon dioxide recovery apparatus and carbon dioxide recovery method
FR2996145A1 (en) * 2012-09-28 2014-04-04 IFP Energies Nouvelles Method for collecting carbon dioxide contained in flue gas that is produced by coal thermal power plant utilized for producing electricity, involves separating hydrates from slurry of carbon dioxide hydrates at specific temperature
CN104492229A (en) * 2014-12-25 2015-04-08 华能国际电力股份有限公司 Pithead power plant low-cost carbon dioxide trapping system and pithead power plant low-cost carbon dioxide trapping method
CN104826472A (en) * 2015-04-23 2015-08-12 中石化石油工程设计有限公司 Flue gas carbon dioxide capture recovery system
US9242209B2 (en) 2012-10-22 2016-01-26 Bp Alternative Energy International Limited Separation of components from a gas mixture
US20220023794A1 (en) * 2017-01-18 2022-01-27 Ion Clean Energy, Inc. Carbon dioxide capture system and method with mass transfer contactor
WO2022136742A1 (en) * 2020-12-24 2022-06-30 Totalenergies Onetech Method for capturing a molecule of interest and associated capture system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901296B2 (en) * 2012-01-06 2016-04-06 三菱日立パワーシステムズ株式会社 CO2 chemical absorption system
JP5756900B2 (en) * 2012-02-01 2015-07-29 国立大学法人 東京大学 Distillation equipment
JP2013226487A (en) * 2012-04-24 2013-11-07 Mitsubishi Heavy Ind Ltd Co2 recovery device and co2 recovery method
JP5966565B2 (en) * 2012-04-24 2016-08-10 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
CA2871987C (en) * 2012-05-02 2018-04-03 Ernesto Vera-Castaneda Regenerative recovery of contaminants from effluent gases
JP5767609B2 (en) * 2012-06-25 2015-08-19 株式会社東芝 Carbon dioxide recovery device and operation method thereof
KR101381443B1 (en) 2012-06-27 2014-04-04 한국화학연구원 Apparatus for capturing of carbon dioxide
KR101424709B1 (en) 2012-06-28 2014-07-31 현대제철 주식회사 Device and system for collecting carbon dioxide
US8906141B2 (en) * 2012-08-09 2014-12-09 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery apparatus and method
JP6079144B2 (en) * 2012-11-01 2017-02-15 株式会社Ihi Carbon dioxide recovery device
DE102012111185A1 (en) * 2012-11-20 2014-05-22 Thyssenkrupp Uhde Gmbh Apparatus for gas scrubbing
JP6064771B2 (en) * 2013-04-26 2017-01-25 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
JP6064770B2 (en) * 2013-04-26 2017-01-25 株式会社Ihi Carbon dioxide recovery method and recovery apparatus
US9192888B2 (en) 2013-06-26 2015-11-24 Uop Llc Apparatuses and methods for removing acid gas from sour gas
KR101491521B1 (en) * 2013-11-21 2015-02-11 한국에너지기술연구원 Acidic gas Capture System and Method for Energy Saving Using Condensed Water
JP6307279B2 (en) * 2014-01-09 2018-04-04 新日鉄住金エンジニアリング株式会社 Carbon dioxide gas recovery device and recovery method
JP6274866B2 (en) * 2014-01-09 2018-02-07 新日鉄住金エンジニアリング株式会社 Carbon dioxide gas recovery device
JP6906761B2 (en) 2017-05-01 2021-07-21 株式会社神戸製鋼所 Gas treatment method and gas treatment equipment
JP6906766B2 (en) * 2017-11-30 2021-07-21 株式会社神戸製鋼所 Gas treatment method and gas treatment equipment
JP2023072266A (en) * 2021-11-12 2023-05-24 三菱重工エンジニアリング株式会社 Carbon dioxide recovery system
JP2023135677A (en) * 2022-03-16 2023-09-29 三菱重工業株式会社 Carbon dioxide recovery system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076328A2 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution
WO2009082200A1 (en) * 2007-12-21 2009-07-02 Airpack Holding B.V. Method for the separation of sour gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792777B2 (en) * 1992-01-17 1998-09-03 関西電力株式会社 Method for removing carbon dioxide from flue gas
JP5230088B2 (en) * 2006-09-06 2013-07-10 三菱重工業株式会社 CO2 recovery apparatus and method
KR101474929B1 (en) * 2007-05-29 2014-12-19 더 유니버서티 오브 레지나 Method and absorbent composition for recovering a gaseous component from a gas stream
CA2718386A1 (en) * 2008-03-13 2009-09-17 Shell Internationale Research Maatschappij B.V. Process for removal of carbon dioxide from a gas
JP2010235395A (en) * 2009-03-31 2010-10-21 Hitachi Ltd Apparatus for recovering carbon dioxide, and thermal power system with apparatus for recovering carbon dioxide
JP2010240629A (en) * 2009-04-10 2010-10-28 Toshiba Corp Carbon dioxide recovery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076328A2 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution
WO2009082200A1 (en) * 2007-12-21 2009-07-02 Airpack Holding B.V. Method for the separation of sour gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120312020A1 (en) * 2009-12-18 2012-12-13 Scott Alexander Hume Regeneration of Capture Medium
JP2013184090A (en) * 2012-03-06 2013-09-19 Toshiba Corp Carbon dioxide recovery apparatus and carbon dioxide recovery method
FR2996145A1 (en) * 2012-09-28 2014-04-04 IFP Energies Nouvelles Method for collecting carbon dioxide contained in flue gas that is produced by coal thermal power plant utilized for producing electricity, involves separating hydrates from slurry of carbon dioxide hydrates at specific temperature
US9242209B2 (en) 2012-10-22 2016-01-26 Bp Alternative Energy International Limited Separation of components from a gas mixture
CN104492229A (en) * 2014-12-25 2015-04-08 华能国际电力股份有限公司 Pithead power plant low-cost carbon dioxide trapping system and pithead power plant low-cost carbon dioxide trapping method
CN104826472A (en) * 2015-04-23 2015-08-12 中石化石油工程设计有限公司 Flue gas carbon dioxide capture recovery system
US20220023794A1 (en) * 2017-01-18 2022-01-27 Ion Clean Energy, Inc. Carbon dioxide capture system and method with mass transfer contactor
WO2022136742A1 (en) * 2020-12-24 2022-06-30 Totalenergies Onetech Method for capturing a molecule of interest and associated capture system

Also Published As

Publication number Publication date
JP5641194B2 (en) 2014-12-17
JP2011213494A (en) 2011-10-27
TW201210676A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
JP5665022B2 (en) Carbon dioxide gas recovery device
WO2011122559A1 (en) Carbon dioxide gas recovery device
JP5697411B2 (en) Carbon dioxide recovery device and carbon dioxide recovery method
CN108187455B (en) Flue gas carbon dioxide capture system based on two-phase absorbent
US9339762B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
WO2014175338A1 (en) Device for recovering and method for recovering carbon dioxide
US9433890B2 (en) Dehydration equipment, gas compression system, and dehydration method
WO2014129254A1 (en) System and method for recovering gas containing co2 and h2s
WO2014175337A1 (en) Device for recovering and method for recovering carbon dioxide
JP6274866B2 (en) Carbon dioxide gas recovery device
CN102836617B (en) Carbon dioxide recovering apparatus and process for carbon dioxide recovery
JP5591075B2 (en) CO2 and H2S containing gas recovery system and method
CN107149865A (en) CO based on vapor mass transfer enhancement waste heat recovery2Chemical absorbing System and method for
JP6088240B2 (en) Carbon dioxide recovery device and method of operating the recovery device
US9962655B2 (en) Acid gas capture system and method saving energy by cooling absorbent, which has passed reboiler, by means of steam condensate
JP6307279B2 (en) Carbon dioxide gas recovery device and recovery method
WO2014046147A1 (en) Steam providing system and co2 recovery facilities provided with same
WO2022074976A1 (en) Gas-treating device
CN205504927U (en) DPC reaction rectifying column top of tower vapour waste heat utilization integrated equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762783

Country of ref document: EP

Kind code of ref document: A1