WO2011122551A1 - Glass composition for reflective material, material for firing, and light-emitting element package - Google Patents

Glass composition for reflective material, material for firing, and light-emitting element package Download PDF

Info

Publication number
WO2011122551A1
WO2011122551A1 PCT/JP2011/057620 JP2011057620W WO2011122551A1 WO 2011122551 A1 WO2011122551 A1 WO 2011122551A1 JP 2011057620 W JP2011057620 W JP 2011057620W WO 2011122551 A1 WO2011122551 A1 WO 2011122551A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glass powder
inorganic filler
oxide
particles
Prior art date
Application number
PCT/JP2011/057620
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 高山
亮 山口
寿文 山元
一郎 内山
Original Assignee
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本山村硝子株式会社 filed Critical 日本山村硝子株式会社
Priority to JP2012508309A priority Critical patent/JPWO2011122551A1/en
Publication of WO2011122551A1 publication Critical patent/WO2011122551A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a glass composition for a reflecting material used to constitute at least a reflecting surface of a reflecting material for reflecting light, a firing material containing glass powder made of such a glass composition, and such a material.
  • the present invention relates to a light emitting device package in which a light emitting device is mounted on a substrate formed of a firing material.
  • LEDs light-emitting diodes
  • LEDs light-emitting diodes
  • the light-emitting element such as an LED
  • it is used in the form of a light-emitting element package in which the light-emitting element is mounted on a substrate (see Patent Document 1 below).
  • glass substrates and ceramic substrates have been formed using a firing material such as a glass paste containing glass powder or a green sheet further containing an inorganic filler, and the firing material is formed into a predetermined shape. It is produced by a method of firing the molded product.
  • a firing material such as a glass paste containing glass powder or a green sheet further containing an inorganic filler
  • a low-temperature co-fired ceramic is obtained by holding a firing material containing a glass powder that can be fired at a low temperature together with an alumina filler in the shape of the substrate and firing it.
  • a method of forming a substrate hereinafter also referred to as “LTCC substrate” or simply “LTCC” is employed (see Patent Document 2 below).
  • the substrate of the light emitting device package is also expected to play a role as a reflective material for improving the light emission intensity by reflecting the light of the light emitting device to the surface thereof, and efficiently reflects the light emitted from the light emitting device. It is demanded. Therefore, a firing material capable of obtaining a fired body with high whiteness during firing has been demanded, and various studies have been conducted on glass compositions for constituting glass powder of the firing material (described below). (See Patent Document 3).
  • a substrate used as a reflector in a light emitting device package such as an LED package is required to have a reflectance of 85% or more with a plate thickness of about 300 to 400 ⁇ m, but a ceramic substrate such as an alumina substrate.
  • the reflectance is about 50% to 70%, and is generally about 70% to 85% even for LTCC substrates. Therefore, in order to improve the whiteness and improve the reflectance, the following Patent Documents 2 and 3 and the like have examined addition of inorganic fillers such as titanium oxide particles, zirconium oxide particles, and zirconium silicate particles.
  • it is difficult to obtain a dense fired body which causes a problem of reducing the sinterability of the firing material. That is, in the conventional glass composition for reflectors and firing materials, it is difficult to satisfactorily satisfy the required reflection characteristics while suppressing a decrease in sinterability.
  • the present invention suppresses the use of excessive inorganic fillers in the firing material by providing a glass composition for a reflector that exhibits excellent light reflectivity when fired, and causes problems in sinterability. It is an object of the present invention to provide a firing material capable of satisfying both prevention and formation of a reflective material having excellent light reflectivity, and consequently improving light emission efficiency of a light emitting element package.
  • the present invention relating to the glass composition for a reflector for solving the above-mentioned problems is, in terms of oxide, SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li 2 O, Na 2
  • O and K 2 O have a composition ratio of a total of 8 to 20% by mass and TiO 2 of 8 to 23% by mass.
  • the reflecting glass composition further contains B 2 O 3 in an amount of 2 to 15% by mass in terms of the oxide.
  • the glass composition for a reflective material further contains CaO in an amount of 0.1 to 10% by mass in terms of the oxide, and instead of a part or all of this CaO, MgO Any one or more of SrO and BaO is preferably contained in a total amount of 5.0% by mass or less.
  • the present invention relating to a firing material for solving the above-mentioned problems is a firing material used to constitute at least a reflective surface of a reflective material containing glass powder and fired to reflect light,
  • a firing material used to constitute at least a reflective surface of a reflective material containing glass powder and fired to reflect light
  • glass powder the glass powder which has the above composition ratios is contained.
  • this inorganic filler aluminum oxide particles are preferable.
  • the firing material contains at least one of titanium oxide particles, zirconium silicate particles, and zirconium oxide particles as the inorganic filler.
  • the titanium oxide particles, the zirconium silicate particles, and the zirconium oxide are preferably contained so that the total amount thereof is 1 to 10% by mass with respect to the total amount of the glass powder and the inorganic filler.
  • the firing material includes at least one selected from the group consisting of ⁇ -quartz particles, cordierite particles, magnesia spinel particles, ⁇ -eucryptite particles, spodumene particles, mullite particles, and forsterite particles as the inorganic filler. It is preferable that the seed is further contained.
  • the light emitting device package of the present invention is a light emitting device package in which a light emitting device is mounted on a substrate, and light emitted from the light emitting device is reflected on the surface of the substrate. Is obtained by firing the firing material as described above.
  • the glass composition of the present invention contains SiO 2 and Al 2 O 3 at a predetermined ratio, and TiO 2 is contained at a ratio as high as 8 to 23% by mass together with these, and thus a glass having such a composition ratio.
  • TiO 2 is contained at a ratio as high as 8 to 23% by mass together with these, and thus a glass having such a composition ratio.
  • a fired body is formed using powder or the like, a crystal phase is easily formed in the glass by this TiO 2 , and more TiO 2 crystals that greatly contribute to light reflection are precipitated in the glass.
  • the deposited TiO 2 can exhibit excellent light reflectivity. Therefore, a reflective material excellent in light reflectivity can be produced by forming a glass powder once as a glass composition for a reflective material of the present invention and forming a reflective material with a firing material containing the glass powder. .
  • a reflective material excellent in light reflectivity can be formed without containing an inorganic filler until it becomes difficult to obtain a dense fired body. Furthermore, by using the firing material, a substrate having excellent light reflectivity can be formed, so that the light emission efficiency of the light emitting element package can be improved.
  • the glass composition for a reflector of the present invention (hereinafter also simply referred to as “glass composition”) and the firing material will be described.
  • the firing material of the embodiment include a material composed only of glass powder obtained by pulverizing a glass base material having a predetermined composition ratio, or a material containing an inorganic filler together with the glass powder. It is an important requirement for the glass powder as a raw material of the firing material that the TiO 2 crystal can be precipitated in the fired body by firing the fired material, and the light reflection excellent in the fired body. In terms of imparting the rate, it is important to have the following component composition.
  • the glass powder contains at least one of SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li 2 O, Na 2 O, and K 2 O in terms of oxides. It is important to have a composition ratio of total: 8 to 20% by mass and TiO 2 : 8 to 23% by mass. Below, each component of a glass composition is demonstrated.
  • the SiO 2 is an essential component in the glass composition of the present invention and is a glass network former. If the SiO 2 content is less than 40% by mass, the chemical durability of the glass decreases. If it exceeds 60% by mass, it becomes difficult to melt the glass. It is preferable to be set to ⁇ 55% by mass, and more preferably 45 to 55% by mass.
  • the Al 2 O 3 is an essential component in the glass composition of the present invention, has a function of improving the stability of the glass against devitrification and crystallization during melting of the glass by including an appropriate amount. If the content of Al 2 O 3 is less than 1% by mass, the glass tends to be devitrified at the time of melting the glass, and if it exceeds 12% by mass, the glass material tends to be crystallized, making it difficult to obtain a glass powder that can be easily fired. For example, in terms of increasing the apparent porosity of the sintered body, it is usually 1 to 12% by mass, and preferably 3 to 10% by mass.
  • Li 2 O, Na 2 O, and K 2 O is an essential component in the glass composition of the present invention.
  • Na 2 O and K 2 O are used for producing a glass body.
  • it is an effective component for facilitating introduction of a TiO 2 component, which will be described later, into the glass base while maintaining the glass state when the glass base is produced.
  • these are effective components for suppressing rapid firing shrinkage behavior when firing a light emitting device package substrate or the like using a firing material containing glass powder and an inorganic filler.
  • the melting temperature at the time of producing the glass base becomes high, and moreover, it becomes difficult to introduce the TiO 2 component while it exceeds 20% by mass. Since the chemical durability of glass, for example, water resistance is lowered, it is usually 8 to 20% by mass, preferably 10 to 16% by mass.
  • these alkali metal oxide (R 2 O) components are adjusted to the amount of the B 2 O 3 component in the glass composition, so that the reaction with the filler causes feldspar based Crystals can be precipitated. That is, the R 2 O component is a constituent component of feldspar-based crystals, and is a component that can impart excellent strength to a sintered body such as a light-emitting element package substrate by precipitation of the feldspar-based crystals.
  • the TiO 2 is an essential component in the glass composition of the present invention, exists in a state where crystallization is hardly observed in the glass raw material, and is effective in improving reflectance when the glass powder is baked (TiO 2).
  • TiO 2 A component that precipitates as crystals. Further, it is a component that also serves as a nucleating agent for the crystallization reaction of glass that occurs during firing of the firing material. If the content of TiO 2 is less than 8% by mass, the degree of crystallinity in the fired product after firing becomes low, and sufficient improvement in reflectance cannot be obtained, and if it exceeds 23% by mass, it is difficult to produce the glass raw material itself. Therefore, it is usually 8 to 23% by mass, preferably 8 to 20% by mass, more preferably 10 to 16% by mass.
  • one or more optional components selected from the group consisting of B 2 O 3 , CaO, BaO, MgO, SrO, and ZrO 2 are included. be able to.
  • B 2 O 3 has a risk of reducing the chemical durability of the glass if the content exceeds 15% by mass, and therefore the content is usually 0 to 15% by mass.
  • B 2 O 3 can be expected to have an effect as a flux and has an action of promoting crystallization of TiO 2 . Therefore, if the purpose is to exert these effects, the content of B 2 O 3 is preferably 2 to 15% by mass, more preferably 2 to 13%, and more preferably 3 to 9%. % Is particularly preferable.
  • CaO can be contained in the glass composition usually in a content of 0 to 10% by mass.
  • CaO has the effect of lowering the melting temperature at the time of producing the glass body and contains CaO to react with the filler when not only the TiO 2 crystals but also the aluminum oxide filler is added when the glass powder is fired.
  • anorthite crystals can also be precipitated.
  • CaO is a constituent component of anorthite crystal, and is a component that can impart excellent strength to a fired body such as a substrate for a light emitting device package by precipitation of the anorthite crystal.
  • the CaO content is preferably 0.1 to 10% by mass, more preferably 1 to 9%, and particularly preferably 2 to 9%.
  • BaO, MgO, and SrO can be substituted for some or all of the CaO.
  • the total content of BaO, MgO, and SrO is preferably 5% by mass or less.
  • ZrO 2 is a component that plays the same role as TiO 2 and can be contained in place of part of TiO 2 .
  • the optional components (B 2 O 3 , CaO, BaO, MgO, SrO, ZrO 2 ) shown above may significantly impair the effects of the present invention if the total amount is 20% by mass or less. And can be contained in the glass composition of the present invention.
  • One or more optional components selected from the group consisting of may be contained within a range that does not significantly impair the effects of the present invention.
  • the second optional component group ZnO, P 2 O 5 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , NiO, Cr 2 O 3 , and Bi 2 O 3
  • the second optional component group ZnO, P 2 O 5 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , NiO, Cr 2 is used.
  • O 3 , Bi 2 O 3 can be contained in the glass composition of the present invention without significantly impairing the effects of the present invention as long as the total amount is 5% by mass or less. More preferably. Moreover, it is preferable that the total sum of said 1st arbitrary component and this 2nd arbitrary component shall be 25 mass% or less.
  • PbO, SeO, TeO 2, F in terms of environmental impact, it is preferable to not substantially contained. In particular, F is preferably not included because it may volatilize during firing. In addition, if these are 1000 ppm or less in conversion of an oxide, it can be considered as what is not contained substantially.
  • a metal oxide as a raw material is prepared and melted at a temperature of, for example, 1300 to 1500 ° C. and then cooled to obtain a glass raw material (crystallized). No) may be dry pulverized or wet pulverized and classified as necessary.
  • the particle size of the glass powder varies depending on the shape of the firing material such as glass paste or green sheet, and is not particularly limited. 5 to 5 ⁇ m.
  • the inorganic filler constituting the firing material together with such glass powder will be described.
  • the inorganic filler is composed of the glass powder as a main component without containing the inorganic filler
  • the volume ratio of TiO 2 crystals in the fired fired body can be increased.
  • a fired body having a higher reflectivity can be produced, when the fired material is fired, its fluidity becomes high, so that shape retention becomes difficult.
  • an LED package substrate is formed of a firing material such as a green sheet
  • an inorganic filler that is inferior in light reflectivity to that of TiO 2 crystal is included, the light reflectivity of the resulting substrate is reduced accordingly. Although it has a fear, it has an advantage that the substrate is easily fired into a target shape.
  • an inorganic filler is not contained, a substrate having excellent light reflectivity can be formed, but it may be difficult to impart a desired thickness to the substrate.
  • a typical example of the inorganic filler is aluminum oxide particles. Since aluminum oxide can be a constituent component of crystals that precipitate when the firing material is fired, the use of aluminum oxide particles as the inorganic filler can be expected to promote the crystallization of glass, and the fired body has high strength. Can be expected.
  • the total amount (25 to 60% by mass) of the inorganic filler can be aluminum oxide particles, and the more preferable content of the aluminum oxide particles is 30 to 50% by mass.
  • inorganic fillers other than the aluminum oxide particles include titanium oxide particles, zirconium oxide particles, zinc oxide particles, and zirconium silicate particles, and these can be expected to function as white pigments, and can be fired by containing them. Can improve the reflectance.
  • the content is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass considering the ease of firing of the glass powder material (sinterability).
  • ⁇ -quartz particles, magnesia spinel particles, forsterite particles, and magnesium oxide particles are components that increase the thermal expansion coefficient of the obtained fired body, and cordierite particles, mullite particles, zirconium silicate particles, ⁇ -eucrypts. Tight particles and spodumene particles are effective components for reducing the thermal expansion coefficient of the obtained fired body. Therefore, the thermal expansion coefficient of the fired body obtained by containing these can be adjusted, and for example, it becomes easy to give the fired body the thermal expansion coefficient required for the substrate for an LED package.
  • the inorganic filler having an effect of adjusting the thermal expansion coefficient can be contained in the firing material so that the total amount thereof exceeds 0% by mass and is 20% by mass or less.
  • the particle size and the like of the inorganic filler are not particularly limited, but those having an average particle size of 0.3 to 3 ⁇ m can be usually used.
  • Conventionally known technical matters can also be adopted in the present invention for components such as an organic binder used for forming a firing material such as a glass paste or a green sheet, and a mixing method of the inorganic filler and the glass powder. .
  • a conventionally known method can also be adopted for a method of firing this firing material to produce a substrate for a light emitting element package.
  • the baking material which concerns on this invention is comprised with the above components, it can obtain the precise
  • a paste-like firing material is prepared, printed on the surface of an alumina substrate or another LTCC substrate, and baked, so that these substrates having low light reflectivity are made into substrates having high light reflectivity. Can be changed. It should be noted that even when a member used as a reflective material such as a substrate for a light emitting element package is formed by a single material for firing according to the present invention, a material having a high light reflectance can be obtained.
  • the raw materials were prepared and mixed so as to have the composition ratios of Examples 1 to 14 and Comparative Examples 1 to 7 shown in Tables 1 and 2, and the prepared raw materials were melted at 1300 to 1500 ° C. for 2 hours, and then rapidly cooled to obtain a glass raw material.
  • a glass powder having an average particle diameter of 2 ⁇ m was produced by dry pulverization of the obtained glass raw material using a ball mill and wet pulverization using an aqueous or organic solvent. The average particle diameter of the obtained glass powder was taken as the D50 value of the volume distribution mode measured using a laser scattering particle size distribution analyzer.
  • Tables 1 to 3 show the glass powder, aluminum oxide particles having an average particle diameter of 1.5 ⁇ m, cordierite having an average particle diameter of 1.5 ⁇ m, titanium oxide having an average particle diameter of 0.3 ⁇ m, and zirconium oxide having an average particle diameter of 2 ⁇ m.
  • the mixture was mixed to obtain a mixed powder.
  • the mixed powder, the polymer resin polyvinyl butyral, the organic solvent toluene, the organic solvent xylene, and the plasticizer diethyl phthalate were mixed to form a slurry, and a green sheet was obtained by a doctor blade method.
  • the obtained green sheets were stacked and fired to produce a fired body sample having a thickness of about 300 to 400 ⁇ m.
  • the reflectance of this sample with respect to light of wavelengths 630 nm, 525 nm, and 470 nm was measured with a Hitachi U-3010 spectrophotometer, and the reflectance of an aluminum oxide sub-white plate (a standard white plate made of aluminum oxide) as a reference reflective material was 100%. The ratio was calculated. This ratio (unit:%) is shown in Tables 1 and 2 as the reflectance of each sample. Furthermore, the apparent porosity of the sample was measured by the Archimedes method, and a case where it was 0.1% or less was judged as “ ⁇ ”, and a case where it exceeded 0.1% was judged as “x”.
  • the crystal phase in the sample was measured by powder X-ray diffraction method, and for the sample in which precipitation of TiO 2 crystals was confirmed, the symbol “T” was added in the table, and precipitation of feldspar crystals was observed.
  • the confirmed sample was given the symbol “N” in the table, and the sample in which the precipitation of anorthite crystal was confirmed was given the symbol “A” in the table.
  • Comparative Examples 1 and 2 devitrification occurred during the production of the glass base material, and it did not lead to firing. Furthermore, although the comparative examples 3 and 6 do not have a problem in sinterability, the reflectance is a low value of 85% or less.
  • Example 14 excellent reflectance was obtained in Example 14 in which no inorganic filler was used, and the glass powder itself can form a fired body having excellent whiteness (light reflectance). It turns out that it is a thing. That is, according to the present invention, it is not necessary to contain an inorganic filler excessively until the sinterability is adversely affected, and the inorganic filler may be contained to such an extent that shape retention during firing can be ensured. It can be seen that both the prevention of problems and the formation of a reflective material having excellent light reflectivity can be achieved. Further, Examples 1 to 14 within the scope of the present invention have high reflectance and a dense fired body is formed. Therefore, the firing material of the present invention is excellent in sinterability, and the light emitting device package substrate It turns out that it is suitable for a forming material.

Abstract

A glass composition for reflective materials which comes to exhibit excellent light-reflecting properties upon firing is provided to thereby provide a material for firing in which an inorganic filler is used in a limited amount to avoid problems concerning sinterability and which forms a reflective material having excellent light-reflecting properties. The material for firing improves the luminescent efficiency of light-emitting element packages. The glass composition for reflective materials, which is intended to configure at least the reflective surface of a reflective material that reflects light, comprises SiO2, Al2O3, etc. in respective given proportions in terms of oxide amount.

Description

反射材用ガラス組成物、焼成用材料、及び、発光素子パッケージGlass composition for reflector, firing material, and light emitting device package
 本発明は、光を反射させるための反射材の少なくとも反射面を構成させるべく用いられる反射材用ガラス組成物、このようなガラス組成物からなるガラス粉末を含む焼成用材料、ならびに、このような焼成用材料で形成された基板上に発光素子が実装された発光素子パッケージに関する。 The present invention relates to a glass composition for a reflecting material used to constitute at least a reflecting surface of a reflecting material for reflecting light, a firing material containing glass powder made of such a glass composition, and such a material. The present invention relates to a light emitting device package in which a light emitting device is mounted on a substrate formed of a firing material.
 近年、発光ダイオード(以下、「LED」ともいう)などの発光素子の高輝度、白色化に伴い、携帯電話や大型液晶TV等のバックライトにLEDを用いた発光装置が使われるようになっている。
 このLEDのような発光素子は、発光装置に利用されるに際しては、基板上に当該発光素子が実装された発光素子パッケージなどの形態で利用されたりしている(下記特許文献1参照)。
In recent years, with the increase in brightness and whiteness of light-emitting elements such as light-emitting diodes (hereinafter also referred to as “LEDs”), light-emitting devices using LEDs for backlights such as mobile phones and large liquid crystal TVs have come to be used. Yes.
When the light-emitting element such as an LED is used in a light-emitting device, it is used in the form of a light-emitting element package in which the light-emitting element is mounted on a substrate (see Patent Document 1 below).
 従来、ガラス基板やセラミックス基板は、ガラス粉末を含んだガラスペーストや、無機フィラーをさらに含有させたグリーンシートなどの焼成用の材料を利用して形成されており、当該焼成用材料を所定形状に成形した成形物を焼成する方法で作製されている。
 例えば、上記のような発光素子を実装するための基板については、低温焼成可能なガラス粉末をアルミナフィラーなどとともに含有する焼成用材料を前記基板形状に保形させて焼成させることによって低温同時焼成セラミックス基板(以下、「LTCC基板」または、単に「LTCC」ともいう)を形成させる方法が採用されたりしている(下記特許文献2参照)。
Conventionally, glass substrates and ceramic substrates have been formed using a firing material such as a glass paste containing glass powder or a green sheet further containing an inorganic filler, and the firing material is formed into a predetermined shape. It is produced by a method of firing the molded product.
For example, for a substrate for mounting a light emitting element as described above, a low-temperature co-fired ceramic is obtained by holding a firing material containing a glass powder that can be fired at a low temperature together with an alumina filler in the shape of the substrate and firing it. A method of forming a substrate (hereinafter also referred to as “LTCC substrate” or simply “LTCC”) is employed (see Patent Document 2 below).
 ところで、前記発光素子パッケージの基板には、発光素子の光をその表面に反射させて発光強度を向上させるための反射材としての役割も期待されており、発光素子が発する光を効率よく反射することが求められている。
 そのため、焼成時に高い白色度の焼成体を得ることができる焼成用材料が求められており、この焼成用材料のガラス粉末を構成させるためのガラス組成物に関して種々の検討が行われている(下記特許文献3参照)。
By the way, the substrate of the light emitting device package is also expected to play a role as a reflective material for improving the light emission intensity by reflecting the light of the light emitting device to the surface thereof, and efficiently reflects the light emitted from the light emitting device. It is demanded.
Therefore, a firing material capable of obtaining a fired body with high whiteness during firing has been demanded, and various studies have been conducted on glass compositions for constituting glass powder of the firing material (described below). (See Patent Document 3).
 しかし、一般にLEDパッケージなどの発光素子パッケージにおいて反射材として利用される基板には、300~400μm程度の板厚で85%以上の反射率であることが求められているもののアルミナ基板などのセラミックス基板の反射率は50%~70%程度であり、LTCC基板でも一般的には70%~85%程度である。
 そのため、白色性を向上させて反射率を向上させるべく下記特許文献2、3などにおいては酸化チタン粒子、酸化ジルコニウム粒子、珪酸ジルコニウム粒子などといった無機フィラーの添加が検討されたりしているが、そのことによって緻密な焼成体を得ることが難しくなっており焼成用材料の焼結性を低下させるという問題が生じている。
 すなわち、従来の反射材用ガラス組成物や焼成用材料においては、焼結性の低下を抑制しつつ要望されている反射特性を十分満足させることが困難な状況であり、したがって、発光素子パッケージにおいても発光効率の向上が困難となっている。
However, in general, a substrate used as a reflector in a light emitting device package such as an LED package is required to have a reflectance of 85% or more with a plate thickness of about 300 to 400 μm, but a ceramic substrate such as an alumina substrate. The reflectance is about 50% to 70%, and is generally about 70% to 85% even for LTCC substrates.
Therefore, in order to improve the whiteness and improve the reflectance, the following Patent Documents 2 and 3 and the like have examined addition of inorganic fillers such as titanium oxide particles, zirconium oxide particles, and zirconium silicate particles. As a result, it is difficult to obtain a dense fired body, which causes a problem of reducing the sinterability of the firing material.
That is, in the conventional glass composition for reflectors and firing materials, it is difficult to satisfactorily satisfy the required reflection characteristics while suppressing a decrease in sinterability. However, it is difficult to improve luminous efficiency.
 なお、このような問題は光を反射させる反射材に広く共通する問題でありLEDパッケージ用の基板に限定されるものではない。 It should be noted that such a problem is a problem common to all reflective materials that reflect light, and is not limited to a substrate for an LED package.
日本国特開2006-41230号公報Japanese Unexamined Patent Publication No. 2006-41230 日本国特開2007-129191号公報Japanese Unexamined Patent Publication No. 2007-129191 国際公開公報 WO 2009/128354号International Publication Gazette WO 2009/128354
 本発明は、焼成されることによって優れた光反射性が発揮される反射材用ガラス組成物を提供することにより焼成用材料における過度の無機フィラーの使用を抑制させ、焼結性における問題の発生防止と優れた光反射性を有する反射材の形成とを両立可能な焼成用材料を提供し、ひいては発光素子パッケージの発光効率を向上させることを課題としている。 The present invention suppresses the use of excessive inorganic fillers in the firing material by providing a glass composition for a reflector that exhibits excellent light reflectivity when fired, and causes problems in sinterability. It is an object of the present invention to provide a firing material capable of satisfying both prevention and formation of a reflective material having excellent light reflectivity, and consequently improving light emission efficiency of a light emitting element package.
 上記課題を解決するための反射材用ガラス組成物に係る本発明は、酸化物換算で、SiO:40~60質量%、Al:1~12質量%、LiO、NaO、及びKOのいずれか1種以上が合計:8~20質量%、TiO:8~23質量%となる組成比を有していることを特徴としている。 The present invention relating to the glass composition for a reflector for solving the above-mentioned problems is, in terms of oxide, SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li 2 O, Na 2 One or more of O and K 2 O have a composition ratio of a total of 8 to 20% by mass and TiO 2 of 8 to 23% by mass.
 なお、本発明においては、反射材用ガラス組成物には、前記酸化物換算で2~15質量%となるBがさらに含まれていることが好ましい。
 また、反射材用ガラス組成物には、前記酸化物換算で0.1~10質量%となるCaOがさらに含まれていることが好ましく、このCaOの一部、又は、全部に代えて、MgO、SrO、及びBaOのいずれか1種以上が合計5.0質量%以下で含有されていることが好ましい。
In the present invention, it is preferable that the reflecting glass composition further contains B 2 O 3 in an amount of 2 to 15% by mass in terms of the oxide.
Further, it is preferable that the glass composition for a reflective material further contains CaO in an amount of 0.1 to 10% by mass in terms of the oxide, and instead of a part or all of this CaO, MgO Any one or more of SrO and BaO is preferably contained in a total amount of 5.0% by mass or less.
 また、上記課題を解決するための焼成用材料に係る本発明は、ガラス粉末を含み、焼成されて光を反射させる反射材の少なくとも反射面を構成させるべく用いられる焼成用材料であって、前記ガラス粉末として、上記のような組成比を有するガラス粉末を含有していることを特徴としている。 Further, the present invention relating to a firing material for solving the above-mentioned problems is a firing material used to constitute at least a reflective surface of a reflective material containing glass powder and fired to reflect light, As glass powder, the glass powder which has the above composition ratios is contained.
 本発明の焼成用材料においては、前記ガラス粉末とともに無機フィラーが含有されており、(ガラス粉末/無機フィラー)=40/60~75/25となる質量比率で前記ガラス粉末と前記無機フィラーとが含有されていることが好ましい。
 この無機フィラーとしては酸化アルミニウム粒子が好ましい。
In the firing material of the present invention, an inorganic filler is contained together with the glass powder, and the glass powder and the inorganic filler are in a mass ratio of (glass powder / inorganic filler) = 40/60 to 75/25. It is preferably contained.
As this inorganic filler, aluminum oxide particles are preferable.
 また、焼成用材料には、前記無機フィラーとして酸化チタン粒子、珪酸ジルコニウム粒子、及び酸化ジルコニウム粒子のいずれか1種以上が含有されており、前記酸化チタン粒子、前記珪酸ジルコニウム粒子、及び前記酸化ジルコニウム粒子は、その合計量が、前記ガラス粉末と前記無機フィラーとの合計量に占める割合が1~10質量%となるように含有されていることが好ましい。 The firing material contains at least one of titanium oxide particles, zirconium silicate particles, and zirconium oxide particles as the inorganic filler. The titanium oxide particles, the zirconium silicate particles, and the zirconium oxide The particles are preferably contained so that the total amount thereof is 1 to 10% by mass with respect to the total amount of the glass powder and the inorganic filler.
 さらに、焼成用材料には、前記無機フィラーとして、α-石英粒子、コージェライト粒子、マグネシアスピネル粒子、β-ユークリプタイト粒子、スポジュメン粒子、ムライト粒子、フォルステライト粒子からなる群より選ばれる少なくとも1種がさらに含有されていることが好ましい。 Furthermore, the firing material includes at least one selected from the group consisting of α-quartz particles, cordierite particles, magnesia spinel particles, β-eucryptite particles, spodumene particles, mullite particles, and forsterite particles as the inorganic filler. It is preferable that the seed is further contained.
 また、本発明の発光素子パッケージは、基板上に発光素子が実装されており、前記発光素子が発する光が前記基板表面で反射されるように構成されている発光素子パッケージであって、前記基板が上記のような焼成用材料を焼成して得られたものであることを特徴としている。 The light emitting device package of the present invention is a light emitting device package in which a light emitting device is mounted on a substrate, and light emitted from the light emitting device is reflected on the surface of the substrate. Is obtained by firing the firing material as described above.
 本発明のガラス組成物は、所定の割合でSiOやAlを含み、これらとともにTiOが8~23質量%もの高い割合で含有されているためにこのような組成比を有するガラス粉末などを用いて焼成体を形成させる際には、このTiOによってガラス中に結晶相が形成されやすく、光の反射への寄与が大きいTiO結晶がガラス中により多く析出されることになり、この析出させたTiOによって優れた光反射性が発揮され得る。
 したがって、本発明の反射材用ガラス組成物として一旦ガラス粉末を形成させるなどして、当該ガラス粉末を含む焼成用材料で反射材を形成させることにより光反射性に優れた反射材が作製されうる。
 また、そのことによって緻密な焼成体を得ることが困難になるまで無機フィラーを含有させることなく光反射性に優れた反射材を形成させ得る。
 さらに、上記焼成用材料を用いることによって、光反射性に優れた基板が形成され得ることから発光素子パッケージの発光効率の向上を図り得る。
The glass composition of the present invention contains SiO 2 and Al 2 O 3 at a predetermined ratio, and TiO 2 is contained at a ratio as high as 8 to 23% by mass together with these, and thus a glass having such a composition ratio. When a fired body is formed using powder or the like, a crystal phase is easily formed in the glass by this TiO 2 , and more TiO 2 crystals that greatly contribute to light reflection are precipitated in the glass. The deposited TiO 2 can exhibit excellent light reflectivity.
Therefore, a reflective material excellent in light reflectivity can be produced by forming a glass powder once as a glass composition for a reflective material of the present invention and forming a reflective material with a firing material containing the glass powder. .
Moreover, a reflective material excellent in light reflectivity can be formed without containing an inorganic filler until it becomes difficult to obtain a dense fired body.
Furthermore, by using the firing material, a substrate having excellent light reflectivity can be formed, so that the light emission efficiency of the light emitting element package can be improved.
 以下に本発明の反射材用ガラス組成物(以下、単に「ガラス組成物」ともいう)と焼成用材料とについて説明する。
 実施形態の焼成用材料としては、例えば、所定の組成比を有するガラス原体を粉砕したガラス粉末のみによって構成されたもの、又は、このガラス粉末とともに無機フィラーを含むものが挙げられる。
 この焼成用材料の原料となるガラス粉末は、当該焼成用材料を焼成することによってその焼成体中にTiO結晶を析出可能であることが重要な要件であり、前記焼成体に優れた光反射率を付与させる点において、以下のような成分組成を有することが重要である。
Hereinafter, the glass composition for a reflector of the present invention (hereinafter also simply referred to as “glass composition”) and the firing material will be described.
Examples of the firing material of the embodiment include a material composed only of glass powder obtained by pulverizing a glass base material having a predetermined composition ratio, or a material containing an inorganic filler together with the glass powder.
It is an important requirement for the glass powder as a raw material of the firing material that the TiO 2 crystal can be precipitated in the fired body by firing the fired material, and the light reflection excellent in the fired body. In terms of imparting the rate, it is important to have the following component composition.
 すなわち、前記ガラス粉末は、酸化物換算でSiO:40~60質量%、Al:1~12質量%、LiO、NaO、及びKOのいずれか1種以上が合計:8~20質量%、TiO:8~23質量%となる組成比を有していることが重要である。
 以下に、ガラス組成物の各成分について説明する。
That is, the glass powder contains at least one of SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li 2 O, Na 2 O, and K 2 O in terms of oxides. It is important to have a composition ratio of total: 8 to 20% by mass and TiO 2 : 8 to 23% by mass.
Below, each component of a glass composition is demonstrated.
 前記SiOは、本発明のガラス組成物における必須成分であり、ガラスのネットワークフォーマーである。
 SiOの含有量は、通常、40質量%未満ではガラスの化学的耐久性が低下し、60質量%を超えるとガラスの溶融が困難となるため、通常、40~60質量%とされ、40~55質量%とされることが好ましく、45~55質量%とされることがより好ましい。
The SiO 2 is an essential component in the glass composition of the present invention and is a glass network former.
If the SiO 2 content is less than 40% by mass, the chemical durability of the glass decreases. If it exceeds 60% by mass, it becomes difficult to melt the glass. It is preferable to be set to ˜55% by mass, and more preferably 45 to 55% by mass.
 前記Alは、本発明のガラス組成物における必須成分であり、適量を含むことによりガラス溶融時の失透や結晶化に対するガラス安定性を向上させる作用を有する。
 Alの含有量は、1質量%未満ではガラス溶融時に失透し易くなり、12質量%を超えるとガラス原体が結晶化しやすくなって、焼成容易なガラス粉末を得ることが難しくなり、例えば焼結体の見かけ気孔率が高くなる点において、通常、1~12質量%とされ、3~10質量%とされることが好ましい。
The Al 2 O 3 is an essential component in the glass composition of the present invention, has a function of improving the stability of the glass against devitrification and crystallization during melting of the glass by including an appropriate amount.
If the content of Al 2 O 3 is less than 1% by mass, the glass tends to be devitrified at the time of melting the glass, and if it exceeds 12% by mass, the glass material tends to be crystallized, making it difficult to obtain a glass powder that can be easily fired. For example, in terms of increasing the apparent porosity of the sintered body, it is usually 1 to 12% by mass, and preferably 3 to 10% by mass.
 前記LiO、NaO、及びKOのいずれか1種以上は、本発明のガラス組成物における必須成分であり、なかでも、NaOとKOは、ガラス原体作製時の溶融温度を下げると共に、適量を含ませることによりガラス原体作製時にガラス状態を維持しつつ後述するTiO成分をガラス原体に導入させ易くするのに有効な成分である。
 また、これらはガラス粉末と無機フィラーとを含む焼成用材料を用いて発光素子パッケージ用基板などを焼成するのに際して急激な焼成収縮挙動が生じることを抑制するのに有効な成分でもある。
 このNaOとKOとの含有量は、8質量%未満ではガラス原体作製時の溶融温度が高くなり、しかも、TiO成分の導入が困難になる一方で20質量%を超えるとガラスの化学的耐久性、例えば耐水性が低下するため、通常、8~20質量%とされ、好ましくは10~16質量%とされる。
 なお、NaOとKOとの一部、又は、全部に代えてLiOを採用することも可能ではあるが、NaOとKOとを採用することが好ましい。
 また、酸化アルミニウムフィラーを添加した場合、これらのアルカリ金属酸化物(RO)成分はガラス組成物中のB成分の量を調整することで、当該フィラーとの反応により長石系の結晶を析出させ得る。すなわち、RO成分は長石系結晶の構成成分であり、当該長石系結晶の析出により発光素子パッケージ用基板などの焼結体に優れた強度を付与させうる成分である。
Any one or more of Li 2 O, Na 2 O, and K 2 O is an essential component in the glass composition of the present invention. Among them, Na 2 O and K 2 O are used for producing a glass body. In addition to lowering the melting temperature of the glass, it is an effective component for facilitating introduction of a TiO 2 component, which will be described later, into the glass base while maintaining the glass state when the glass base is produced.
In addition, these are effective components for suppressing rapid firing shrinkage behavior when firing a light emitting device package substrate or the like using a firing material containing glass powder and an inorganic filler.
When the content of Na 2 O and K 2 O is less than 8% by mass, the melting temperature at the time of producing the glass base becomes high, and moreover, it becomes difficult to introduce the TiO 2 component while it exceeds 20% by mass. Since the chemical durability of glass, for example, water resistance is lowered, it is usually 8 to 20% by mass, preferably 10 to 16% by mass.
A part of the Na 2 O and K 2 O, or, there is also possible to adopt a Li 2 O in place of the whole, but it is preferable to employ a Na 2 O and K 2 O.
Further, when an aluminum oxide filler is added, these alkali metal oxide (R 2 O) components are adjusted to the amount of the B 2 O 3 component in the glass composition, so that the reaction with the filler causes feldspar based Crystals can be precipitated. That is, the R 2 O component is a constituent component of feldspar-based crystals, and is a component that can impart excellent strength to a sintered body such as a light-emitting element package substrate by precipitation of the feldspar-based crystals.
 前記TiOは本発明のガラス組成物における必須成分であり、ガラス原体においては殆ど結晶化が認められない状態で存在し、ガラス粉末を焼成した時に、反射率の向上に有効なるチタニア(TiO)結晶として析出する成分である。
 また、焼成用材料の焼成時に起こるガラスの結晶化反応の核剤ともなる成分である。
 TiOの含有量は8質量%未満では焼成後の焼成体における結晶化度が低くなり、十分な反射率の向上が得られず、23質量%を超えるとガラス原体の作製自体が困難となるため、通常、8~23質量%とされ、好ましくは8~20質量%、より好ましくは10~16質量%とされる。
The TiO 2 is an essential component in the glass composition of the present invention, exists in a state where crystallization is hardly observed in the glass raw material, and is effective in improving reflectance when the glass powder is baked (TiO 2). 2 ) A component that precipitates as crystals.
Further, it is a component that also serves as a nucleating agent for the crystallization reaction of glass that occurs during firing of the firing material.
If the content of TiO 2 is less than 8% by mass, the degree of crystallinity in the fired product after firing becomes low, and sufficient improvement in reflectance cannot be obtained, and if it exceeds 23% by mass, it is difficult to produce the glass raw material itself. Therefore, it is usually 8 to 23% by mass, preferably 8 to 20% by mass, more preferably 10 to 16% by mass.
 なお、上記必須成分以外にB、CaO、BaO、MgO、SrO、及び、ZrOからなる群より選ばれる1種以上の任意成分(以下「第一任意成分」ともいう)を含有させることができる。
 上記第一任意成分の内、Bは、15質量%を超える含有量とするとガラスの化学的耐久性が低下するおそれを有するため、通常、0~15質量%の含有量とされる。
 一方でBには融剤としての効果が期待でき、TiOの結晶化を促進する作用を有する。
 したがって、これらの効果を発揮させることを目的とするのであればBを2~15質量%の含有量とすることが好ましく、2~13%とされることがより好ましく、3~9%とされることが特に好ましい。
In addition to the essential components, one or more optional components selected from the group consisting of B 2 O 3 , CaO, BaO, MgO, SrO, and ZrO 2 (hereinafter also referred to as “first optional component”) are included. be able to.
Among the first optional components, B 2 O 3 has a risk of reducing the chemical durability of the glass if the content exceeds 15% by mass, and therefore the content is usually 0 to 15% by mass. .
On the other hand, B 2 O 3 can be expected to have an effect as a flux and has an action of promoting crystallization of TiO 2 .
Therefore, if the purpose is to exert these effects, the content of B 2 O 3 is preferably 2 to 15% by mass, more preferably 2 to 13%, and more preferably 3 to 9%. % Is particularly preferable.
 上記第一任意成分の内、CaOは、通常、0~10質量%の含有量でガラス組成物に含有させることができる。
 CaOは、ガラス原体作製時の溶融温度を下げる作用を有すると共に当該CaOを含有させることでガラス粉末の焼成時にTiOの結晶のみならず、酸化アルミニウムフィラーを添加した場合、当該フィラーとの反応によりアノーサイト結晶も析出させ得る。
 すなわち、CaOは、アノーサイト結晶の構成成分であり、当該アノーサイト結晶の析出により発光素子パッケージ用基板などの焼成体に優れた強度を付与させうる成分である。
 このような点においてCaOの含有量は0.1~10質量%とされることが好ましく、1~9%とされることがより好ましく、2~9%とされることが特に好ましい。
 なお、上記第一任意成分の内、BaO、MgO、SrOは前記CaOの一部、又は全部と置換することができるものである。
 ただし、BaO、MgO、SrOはその合計含有量は5質量%以下とされることが好ましい。
Of the first optional component, CaO can be contained in the glass composition usually in a content of 0 to 10% by mass.
CaO has the effect of lowering the melting temperature at the time of producing the glass body and contains CaO to react with the filler when not only the TiO 2 crystals but also the aluminum oxide filler is added when the glass powder is fired. By this, anorthite crystals can also be precipitated.
That is, CaO is a constituent component of anorthite crystal, and is a component that can impart excellent strength to a fired body such as a substrate for a light emitting device package by precipitation of the anorthite crystal.
In this respect, the CaO content is preferably 0.1 to 10% by mass, more preferably 1 to 9%, and particularly preferably 2 to 9%.
Of the first optional components, BaO, MgO, and SrO can be substituted for some or all of the CaO.
However, the total content of BaO, MgO, and SrO is preferably 5% by mass or less.
 上記第一任意成分の内、ZrOは、TiOと同様の役割を果たす成分であり、TiOの一部に代えて含有させることができる。
 なお、通常、上記に示した任意成分(B、CaO、BaO、MgO、SrO、ZrO)は、その合計量が20質量%以下であれば、本発明の効果を著しく損なわせることなく本発明のガラス組成物に含有させることができる。
Among the first optional components, ZrO 2 is a component that plays the same role as TiO 2 and can be contained in place of part of TiO 2 .
In general, the optional components (B 2 O 3 , CaO, BaO, MgO, SrO, ZrO 2 ) shown above may significantly impair the effects of the present invention if the total amount is 20% by mass or less. And can be contained in the glass composition of the present invention.
 さらに、ZnO、P、CeO、Fe、MnO、CuO、CoO、SnO、Sb、V、NiO、Cr、及び、Biからなる群より選ばれる1種以上の任意成分(以下「第二任意成分」ともいう)を本発明の効果を著しく損ねない範囲内で含有させても良い。
 なお、通常、上記第二任意成分群(ZnO、P、CeO、Fe、MnO、CuO、CoO、SnO、Sb、V、NiO、Cr、Bi)は、その合計量が5質量%以下であれば、本発明の効果を著しく損なわせることなく本発明のガラス組成物に含有させることができ、2質量%以下であることがより好ましい。
 また、上記第一任意成分と、該第二任意成分とは、その総合計が25質量%以下とされることが好ましい。
 なお、PbO、SeO、TeO、Fは環境負荷の点から、実質的に含有させないことが好ましい。特にFは焼成中に揮発するおそれがあるため含有させないことが好ましい。
 なお、これらは、酸化物換算で、1000ppm以下であれば実質的に含有されていないものとしてみなすことができる。
Furthermore, ZnO, P 2 O 5 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , NiO, Cr 2 O 3 , and Bi 2 O 3 One or more optional components selected from the group consisting of (hereinafter also referred to as “second optional component”) may be contained within a range that does not significantly impair the effects of the present invention.
Normally, the second optional component group (ZnO, P 2 O 5 , CeO 2 , Fe 2 O 3 , MnO 2 , CuO, CoO, SnO 2 , Sb 2 O 3 , V 2 O 5 , NiO, Cr 2 is used. O 3 , Bi 2 O 3 ) can be contained in the glass composition of the present invention without significantly impairing the effects of the present invention as long as the total amount is 5% by mass or less. More preferably.
Moreover, it is preferable that the total sum of said 1st arbitrary component and this 2nd arbitrary component shall be 25 mass% or less.
Incidentally, PbO, SeO, TeO 2, F in terms of environmental impact, it is preferable to not substantially contained. In particular, F is preferably not included because it may volatilize during firing.
In addition, if these are 1000 ppm or less in conversion of an oxide, it can be considered as what is not contained substantially.
 このような組成比を有するガラス粉末を形成するには、原料となる金属酸化物を調合し、例えば、1300~1500℃の温度で溶融した後、冷却して得られるガラス原体(結晶化していない)を乾式粉砕、あるいは湿式粉砕して、必要に応じて分級する等すればよい。 In order to form a glass powder having such a composition ratio, a metal oxide as a raw material is prepared and melted at a temperature of, for example, 1300 to 1500 ° C. and then cooled to obtain a glass raw material (crystallized). No) may be dry pulverized or wet pulverized and classified as necessary.
 なお、本実施形態においては、ガラス粉末の粒径等については、ガラスペーストやグリーンシートといった焼成用材料の材形によっても異なり、特に限定されるものではないが、通常、平均粒径が1.5~5μmとされる。 In the present embodiment, the particle size of the glass powder varies depending on the shape of the firing material such as glass paste or green sheet, and is not particularly limited. 5 to 5 μm.
 次に、このようなガラス粉末とともに焼成用材料を構成する無機フィラーについて説明する。
 前記無機フィラーは、当該無機フィラーを含有させずに、前記ガラス粉末を主成分として焼成用材料を構成させると、焼成後の焼成体中に占めるTiO結晶の体積割合を増大させることができてより高い反射率を有する焼成体を作製しうるもののこの焼成用材料を焼成する際に、その流動性が高くなるために形状保持が困難になる。
 例えば、LEDパッケージ用基板をグリーンシートのような焼成用材料で形成させる際にTiO結晶よりも光反射性に劣る無機フィラーを含有させると、その分、得られる基板の光反射性を低減させるおそれを有するものの目的とする形状に基板を焼成しやすいという利点を有する。
 一方で無機フィラーを含有させない場合には、光反射性に優れた基板を形成させ得るものの所望の厚みを基板に付与することが困難になるおそれを有する。
Next, the inorganic filler constituting the firing material together with such glass powder will be described.
When the inorganic filler is composed of the glass powder as a main component without containing the inorganic filler, the volume ratio of TiO 2 crystals in the fired fired body can be increased. Although a fired body having a higher reflectivity can be produced, when the fired material is fired, its fluidity becomes high, so that shape retention becomes difficult.
For example, when an LED package substrate is formed of a firing material such as a green sheet, if an inorganic filler that is inferior in light reflectivity to that of TiO 2 crystal is included, the light reflectivity of the resulting substrate is reduced accordingly. Although it has a fear, it has an advantage that the substrate is easily fired into a target shape.
On the other hand, when an inorganic filler is not contained, a substrate having excellent light reflectivity can be formed, but it may be difficult to impart a desired thickness to the substrate.
 なお、無機フィラーとガラス粉末との合計量に占める無機フィラーの割合が25質量%未満の場合には焼成体に十分な機械的強度が得られないおそれを有し、60質量%を超えると緻密な焼成体を得ることが困難になり、焼成用材料の焼結性に問題を発生させるおそれを有する。
 このような観点において、無機フィラーとガラス粉末との合計量に占める無機フィラーの割合は、25~60質量%(ガラス粉末/無機フィラー=40/60~75/25)とされることが好ましい。
In addition, when the ratio of the inorganic filler to the total amount of the inorganic filler and the glass powder is less than 25% by mass, sufficient mechanical strength may not be obtained in the fired body. It becomes difficult to obtain a fired body, which may cause a problem in the sinterability of the firing material.
From such a viewpoint, the proportion of the inorganic filler in the total amount of the inorganic filler and the glass powder is preferably 25 to 60% by mass (glass powder / inorganic filler = 40/60 to 75/25).
 この無機フィラーとしては、その代表的なものとして、酸化アルミニウム粒子が挙げられる。
 酸化アルミニウムは、焼成用材料を焼成した際に析出する結晶の構成成分となり得るものであるため酸化アルミニウム粒子を前記無機フィラーとして採用することによってガラスの結晶化促進が期待でき、強度の高い焼成体となることが期待できる。
 なお、無機フィラーの全量(25~60質量%)を酸化アルミニウム粒子とすることもでき、より好ましい酸化アルミニウム粒子の含有量は、30~50質量%である。
A typical example of the inorganic filler is aluminum oxide particles.
Since aluminum oxide can be a constituent component of crystals that precipitate when the firing material is fired, the use of aluminum oxide particles as the inorganic filler can be expected to promote the crystallization of glass, and the fired body has high strength. Can be expected.
The total amount (25 to 60% by mass) of the inorganic filler can be aluminum oxide particles, and the more preferable content of the aluminum oxide particles is 30 to 50% by mass.
 上記酸化アルミニウム粒子以外の無機フィラーとしては、酸化チタン粒子、酸化ジルコニウム粒子、酸化亜鉛粒子、及び珪酸ジルコニウム粒子が挙げられ、これらは白色顔料としての機能を期待することができ含有させることによって焼成体の反射率を向上させ得る。
 なお、その含有量については、1~10質量%であることが好ましく、ガラス粉末材の焼成し易さ(焼結性)を考慮すると1~5質量%であることがより好ましい。
Examples of inorganic fillers other than the aluminum oxide particles include titanium oxide particles, zirconium oxide particles, zinc oxide particles, and zirconium silicate particles, and these can be expected to function as white pigments, and can be fired by containing them. Can improve the reflectance.
The content is preferably 1 to 10% by mass, and more preferably 1 to 5% by mass considering the ease of firing of the glass powder material (sinterability).
 さらに、α-石英粒子、マグネシアスピネル粒子、フォルステライト粒子、酸化マグネシウム粒子は、得られる焼成体の熱膨張係数を大きくする成分であり、コージェライト粒子、ムライト粒子、珪酸ジルコニウム粒子、β-ユークリプタイト粒子、スポジュメン粒子は、得られる焼成体の熱膨張係数を小さくするのに有効な成分である。
 したがって、これらを含有させることによって得られる焼成体の熱膨張係数を調整することができ、例えば、LEDパッケージ用基板として求められる熱膨張係数を焼成体に付与することが容易となる。
 この熱膨張係数の調整作用を有する無機フィラーは、その合計量が0質量%を超え20質量%以下となるように焼成用材料に含有させうる。
Furthermore, α-quartz particles, magnesia spinel particles, forsterite particles, and magnesium oxide particles are components that increase the thermal expansion coefficient of the obtained fired body, and cordierite particles, mullite particles, zirconium silicate particles, β-eucrypts. Tight particles and spodumene particles are effective components for reducing the thermal expansion coefficient of the obtained fired body.
Therefore, the thermal expansion coefficient of the fired body obtained by containing these can be adjusted, and for example, it becomes easy to give the fired body the thermal expansion coefficient required for the substrate for an LED package.
The inorganic filler having an effect of adjusting the thermal expansion coefficient can be contained in the firing material so that the total amount thereof exceeds 0% by mass and is 20% by mass or less.
 なお、本実施形態においては、当該無機フィラーの粒径等についても特に限定されるものではないが、通常、平均粒径が0.3~3μmのものが用いられ得る。 In the present embodiment, the particle size and the like of the inorganic filler are not particularly limited, but those having an average particle size of 0.3 to 3 μm can be usually used.
 この無機フィラーと前記ガラス粉末との混合方法や、ガラスペーストやグリーンシートといった焼成用材料を形成すべく用いる有機バインダーなどの成分については、従来公知の技術事項を本発明においても採用することができる。
 なお、この焼成用材料を焼成して発光素子パッケージ用の基板を作製する方法についても従来公知の手法を採用することができる。
Conventionally known technical matters can also be adopted in the present invention for components such as an organic binder used for forming a firing material such as a glass paste or a green sheet, and a mixing method of the inorganic filler and the glass powder. .
A conventionally known method can also be adopted for a method of firing this firing material to produce a substrate for a light emitting element package.
 そして、本発明に係る焼成用材料は、上記のような成分で構成されているために、優れた光反射性を有する緻密な焼成体を得ることができる。
 したがって、例えば、ペースト状の焼成用材料を作製して、アルミナ基板や他のLTCC基板の表面に印刷して焼成することで、光反射率の低いこれらの基板を高い光反射率を有する基板に変更することができる。
 なお、本発明に係る焼成用材料単体で、発光素子パッケージ用の基板などの反射材として利用される部材を形成させた場合でも、高い光反射率を有するものが得られることは説明するまでもなく自明のことであり、前記ガラス粉末と前記無機フィラーとを所定の割合(ガラス粉末/無機フィラー=40/60~75/25)で含む焼成用材料単体などでもこれを焼成して発光素子パッケージ用の基板とすることができる。
And since the baking material which concerns on this invention is comprised with the above components, it can obtain the precise | minute sintered body which has the outstanding light reflectivity.
Thus, for example, a paste-like firing material is prepared, printed on the surface of an alumina substrate or another LTCC substrate, and baked, so that these substrates having low light reflectivity are made into substrates having high light reflectivity. Can be changed.
It should be noted that even when a member used as a reflective material such as a substrate for a light emitting element package is formed by a single material for firing according to the present invention, a material having a high light reflectance can be obtained. It is self-explanatory, and a light emitting device package can be obtained by firing a firing material alone containing the glass powder and the inorganic filler in a predetermined ratio (glass powder / inorganic filler = 40/60 to 75/25). Substrate.
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 表1~2に示す実施例1~14、比較例1~7の組成比となるように原料を調合、混合してこの調合原料を1300~1500℃で2時間溶融後、急冷しガラス原体を作製した。
 得られたガラス原体をボールミルにより乾式粉砕、水系または有機系溶剤を用いた湿式粉砕により平均粒径2μmのガラス粉末を作製した。
 得られたガラス粉末の平均粒径は、レーザー散乱式粒度分布測定器を用いて測定した体積分布モードのD50値とした。
 該ガラス粉末と平均粒径1.5μmの酸化アルミニウム粒子と平均粒径1.5μmのコージェライトと平均粒径0.3μmの酸化チタンと平均粒径2μmの酸化ジルコニウムとを表1~3に示す配合で混合し、混合粉末を得た。
 該混合粉末と高分子樹脂ポリビニルブチラールと有機溶剤トルエン、有機溶剤キシレン、可塑剤フタル酸ジエチルとを混合し、スラリー状とし、ドクターブレード法によりグリーンシートを得た。
 得られたグリーンシートを積層して焼成し、厚みが300~400μm程度の焼成体試料を作製した。
 この試料の波長630nm、525nm、470nmの光に対する反射率を日立製U-3010形分光光度計で測定し基準反射物質である酸化アルミニウム副白板(酸化アルミニウム製の標準白板)の反射率を100%とした場合の比率を算出した。この比率(単位:%)を各試料の反射率として表1、2に示す。
 さらに、前記試料の見掛け気孔率をアルキメデス法にて測定し、0.1%以下の場合を「○」、0.1%を超える場合を「×」として判定した。
 また、試料中における結晶相を粉末X線回折法にて測定し、TiOの結晶の析出が確認できた試料については、表中に「T」の符号を付記し、長石系結晶の析出が確認された試料については表中「N」の符号を付し、アノーサイト結晶の析出が確認された試料については表中「A」の符号を付して示した。
The raw materials were prepared and mixed so as to have the composition ratios of Examples 1 to 14 and Comparative Examples 1 to 7 shown in Tables 1 and 2, and the prepared raw materials were melted at 1300 to 1500 ° C. for 2 hours, and then rapidly cooled to obtain a glass raw material. Was made.
A glass powder having an average particle diameter of 2 μm was produced by dry pulverization of the obtained glass raw material using a ball mill and wet pulverization using an aqueous or organic solvent.
The average particle diameter of the obtained glass powder was taken as the D50 value of the volume distribution mode measured using a laser scattering particle size distribution analyzer.
Tables 1 to 3 show the glass powder, aluminum oxide particles having an average particle diameter of 1.5 μm, cordierite having an average particle diameter of 1.5 μm, titanium oxide having an average particle diameter of 0.3 μm, and zirconium oxide having an average particle diameter of 2 μm. The mixture was mixed to obtain a mixed powder.
The mixed powder, the polymer resin polyvinyl butyral, the organic solvent toluene, the organic solvent xylene, and the plasticizer diethyl phthalate were mixed to form a slurry, and a green sheet was obtained by a doctor blade method.
The obtained green sheets were stacked and fired to produce a fired body sample having a thickness of about 300 to 400 μm.
The reflectance of this sample with respect to light of wavelengths 630 nm, 525 nm, and 470 nm was measured with a Hitachi U-3010 spectrophotometer, and the reflectance of an aluminum oxide sub-white plate (a standard white plate made of aluminum oxide) as a reference reflective material was 100%. The ratio was calculated. This ratio (unit:%) is shown in Tables 1 and 2 as the reflectance of each sample.
Furthermore, the apparent porosity of the sample was measured by the Archimedes method, and a case where it was 0.1% or less was judged as “◯”, and a case where it exceeded 0.1% was judged as “x”.
In addition, the crystal phase in the sample was measured by powder X-ray diffraction method, and for the sample in which precipitation of TiO 2 crystals was confirmed, the symbol “T” was added in the table, and precipitation of feldspar crystals was observed. The confirmed sample was given the symbol “N” in the table, and the sample in which the precipitation of anorthite crystal was confirmed was given the symbol “A” in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表から明らかなように、比較例5、7のように白色顔料としての機能が期待できる酸化ジルコニウム粒子や酸化チタン粒子を無機フィラーとしてある程度の量含有させることで反射率の向上を図ることは可能ではあるが、その分、焼結性に問題を生じさせてしまい、見掛け気孔率が0.1%を超える結果となることがわかる。
 また、ガラスの結晶化を招き易いAlを、本発明の規定量以上に含有させた比較例4では、焼成によってガラス自体の結晶性を向上させることができ、焼成体(反射材)に優れた光反射性を付与させることができるものではあるが、ガラスを不安定にさせた結果焼結性に問題を生じてしまう結果となっている。
 また、比較例1、2では、ガラス原体の作製時に失透を生じ、焼成には至らないものとなった。
 さらに、比較例3、6は、焼結性に問題は見られないものの反射率が85%以下と低い値である。
As is clear from the table, it is possible to improve the reflectivity by adding a certain amount of zirconium oxide particles or titanium oxide particles, which can be expected to function as white pigments as in Comparative Examples 5 and 7, as inorganic fillers. However, it can be seen that this causes a problem in the sinterability and the apparent porosity exceeds 0.1%.
Further, in Comparative Example 4 in which Al 2 O 3 that easily causes crystallization of glass is contained in an amount higher than the specified amount of the present invention, the crystallinity of the glass itself can be improved by firing, and a fired body (reflecting material). Although excellent light reflectivity can be imparted to the glass, the glass becomes unstable, resulting in a problem in sinterability.
Further, in Comparative Examples 1 and 2, devitrification occurred during the production of the glass base material, and it did not lead to firing.
Furthermore, although the comparative examples 3 and 6 do not have a problem in sinterability, the reflectance is a low value of 85% or less.
 これに対して、本発明においては、無機フィラーを使用しない実施例14において、優れた反射率が得られており、ガラス粉末自体が白色性(光反射率)に優れた焼成体を形成しうるものであることがわかる。
 すなわち、本発明によれば、焼結性に悪影響が出るまで過度に無機フィラーを含有させる必要はなく、焼成時における形状保持が確保できる程度に無機フィラーを含有させればよく、焼結性における問題の発生防止と優れた光反射性を有する反射材の形成とを両立させうることがわかる。
 また、本発明の範囲内である実施例1~14は反射率が高い上に緻密な焼成体が形成されるため、本発明の焼成用材料は焼結性に優れ、発光素子パッケージ用基板の形成材料などに好適なものであることがわかる。
On the other hand, in the present invention, excellent reflectance was obtained in Example 14 in which no inorganic filler was used, and the glass powder itself can form a fired body having excellent whiteness (light reflectance). It turns out that it is a thing.
That is, according to the present invention, it is not necessary to contain an inorganic filler excessively until the sinterability is adversely affected, and the inorganic filler may be contained to such an extent that shape retention during firing can be ensured. It can be seen that both the prevention of problems and the formation of a reflective material having excellent light reflectivity can be achieved.
Further, Examples 1 to 14 within the scope of the present invention have high reflectance and a dense fired body is formed. Therefore, the firing material of the present invention is excellent in sinterability, and the light emitting device package substrate It turns out that it is suitable for a forming material.

Claims (14)

  1.  光を反射させる反射材の少なくとも反射面を構成させるべく用いられる反射材用ガラス組成物であって、
     酸化物換算で、SiO:40~60質量%、Al:1~12質量%、LiO、NaO、及びKOのいずれか1種以上が合計:8~20質量%、TiO:8~23質量%となる組成比を有していることを特徴とする反射材用ガラス組成物。
    A glass composition for a reflector used to constitute at least a reflecting surface of a reflector that reflects light,
    In terms of oxides, SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, any one or more of Li 2 O, Na 2 O, and K 2 O total: 8 to 20% %, TiO 2 : a glass composition for a reflector having a composition ratio of 8 to 23% by mass.
  2.  前記酸化物換算で、2~15質量%となるBがさらに含まれている請求項1記載の反射材用ガラス組成物。 The glass composition for a reflector according to claim 1, further comprising B 2 O 3 in an amount of 2 to 15% by mass in terms of the oxide.
  3.  CaO、MgO、SrO、及び、BaOの内の少なくとも1種をさらに含有し、酸化物換算でのCaO、MgO、SrO、及び、BaOの合計含有量が0.1~10質量%で、且つ、酸化物換算でのMgO、SrO、及び、BaOの合計含有量が0~5質量%である請求項1記載の反射材用ガラス組成物。 It further contains at least one of CaO, MgO, SrO and BaO, the total content of CaO, MgO, SrO and BaO in terms of oxide is 0.1 to 10% by mass, and The glass composition for a reflector according to claim 1, wherein the total content of MgO, SrO and BaO in terms of oxide is 0 to 5% by mass.
  4.  CaO、MgO、SrO、及び、BaOの内の少なくとも1種をさらに含有し、酸化物換算でのCaO、MgO、SrO、及び、BaOの合計含有量が0.1~10質量%で、且つ、酸化物換算でのMgO、SrO、及び、BaOの合計含有量が0~5質量%である請求項2記載の反射材用ガラス組成物。 It further contains at least one of CaO, MgO, SrO and BaO, the total content of CaO, MgO, SrO and BaO in terms of oxide is 0.1 to 10% by mass, and The glass composition for a reflector according to claim 2, wherein the total content of MgO, SrO and BaO in terms of oxide is 0 to 5% by mass.
  5.  ガラス粉末を含み、焼成されて光を反射させる反射材の少なくとも反射面を構成させるべく用いられる焼成用材料であって、
     前記ガラス粉末が、酸化物換算で、SiO:40~60質量%、Al:1~12質量%、LiO、NaO、及びKOのいずれか1種以上が合計:8~20質量%、TiO:8~23質量%となる組成比を有していることを特徴とする焼成用材料。
    A firing material used for constituting at least a reflective surface of a reflective material that includes glass powder and is fired to reflect light,
    The glass powder is a total of one or more of SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li 2 O, Na 2 O, and K 2 O in terms of oxides. : A firing material characterized by having a composition ratio of 8 to 20% by mass and TiO 2 : 8 to 23% by mass.
  6.  前記ガラス粉末には、酸化物換算で2~15質量%となる割合でBがさらに含まれている請求項5記載の焼成用材料。 The firing material according to claim 5, wherein the glass powder further contains B 2 O 3 at a ratio of 2 to 15 mass% in terms of oxide.
  7.  前記ガラス粉末には、CaO、MgO、SrO、及び、BaOの内の少なくとも1種がさらに含有されており、酸化物換算でのCaO、MgO、SrO、及び、BaOの合計含有量が0.1~10質量%で、且つ、酸化物換算でのMgO、SrO、及び、BaOの合計含有量が0~5質量%である請求項5記載の焼成用材料。 The glass powder further contains at least one of CaO, MgO, SrO, and BaO, and the total content of CaO, MgO, SrO, and BaO in terms of oxide is 0.1. 6. The firing material according to claim 5, wherein the total content of MgO, SrO and BaO in terms of oxide is 0 to 5% by mass and 0 to 5% by mass.
  8.  前記ガラス粉末には、CaO、MgO、SrO、及び、BaOの内の少なくとも1種がさらに含有されており、酸化物換算でのCaO、MgO、SrO、及び、BaOの合計含有量が0.1~10質量%で、且つ、酸化物換算でのMgO、SrO、及び、BaOの合計含有量が0~5質量%である請求項6記載の焼成用材料。 The glass powder further contains at least one of CaO, MgO, SrO, and BaO, and the total content of CaO, MgO, SrO, and BaO in terms of oxide is 0.1. The firing material according to claim 6, wherein the total content of MgO, SrO and BaO in terms of oxide is 0 to 5% by mass in a range of 0 to 10% by mass.
  9.  前記ガラス粉末とともに無機フィラーが含有されており、(ガラス粉末/無機フィラー)=40/60~75/25となる質量比率で前記ガラス粉末と前記無機フィラーとが含有されている請求項5記載の焼成用材料。 6. The inorganic filler is contained together with the glass powder, and the glass powder and the inorganic filler are contained at a mass ratio of (glass powder / inorganic filler) = 40/60 to 75/25. Baking material.
  10.  前記無機フィラーとして酸化アルミニウム粒子が含有されている請求項9記載の焼成用材料。 The firing material according to claim 9, wherein aluminum oxide particles are contained as the inorganic filler.
  11.  前記無機フィラーとして酸化チタン粒子、酸化ジルコニウム粒子、酸化亜鉛粒子、及び珪酸ジルコニウム粒子のいずれか1種以上が含有されており、その合計量が、前記ガラス粉末と前記無機フィラーとの合計量に占める割合が1~10質量%となるように含有されている請求項9記載の焼成用材料。 Any one or more of titanium oxide particles, zirconium oxide particles, zinc oxide particles, and zirconium silicate particles are contained as the inorganic filler, and the total amount accounts for the total amount of the glass powder and the inorganic filler. The firing material according to claim 9, which is contained so as to have a ratio of 1 to 10% by mass.
  12.  前記無機フィラーとして、α-石英粒子、マグネシアスピネル粒子、フォルステライト粒子、酸化マグネシウム粒子、コージェライト粒子、ムライト粒子、β-ユークリプタイト粒子、スポジュメン粒子からなる群より選ばれる少なくとも1種がさらに含有されており、その合計量が、前記ガラス粉末と前記無機フィラーとの合計量に占める割合が0質量%を超え20質量%以下となるように含有されている請求項9記載の焼成用材料。 The inorganic filler further contains at least one selected from the group consisting of α-quartz particles, magnesia spinel particles, forsterite particles, magnesium oxide particles, cordierite particles, mullite particles, β-eucryptite particles, and spodumene particles. The firing material according to claim 9, wherein the total amount is contained so that the ratio of the total amount of the glass powder and the inorganic filler to the total amount exceeds 0% by mass and is equal to or less than 20% by mass.
  13.  基板上に発光素子が実装されており、前記発光素子が発する光が前記基板表面で反射されるように構成されている発光素子パッケージであって、
     前記基板が、ガラス粉末を含む焼成用材料が焼成されたものであり、前記ガラス粉末が、酸化物換算で、SiO:40~60質量%、Al:1~12質量%、LiO、NaO、及びKOのいずれか1種以上が合計:8~20質量%、TiO:8~23質量%となる組成比を有していることを特徴とすることを特徴とする発光素子パッケージ。
    A light emitting device package, wherein a light emitting device is mounted on a substrate, and light emitted from the light emitting device is reflected by the surface of the substrate;
    The substrate is obtained by firing a firing material including glass powder, and the glass powder is converted to an oxide in terms of SiO 2 : 40 to 60% by mass, Al 2 O 3 : 1 to 12% by mass, Li One or more of 2 O, Na 2 O, and K 2 O have a composition ratio of a total of 8 to 20% by mass and TiO 2 of 8 to 23% by mass. A featured light emitting device package.
  14.  前記焼成用材料には、前記ガラス粉末とともに無機フィラーが含有されており、(ガラス粉末/無機フィラー)=40/60~75/25となる質量比率で前記ガラス粉末と前記無機フィラーとが含有されている請求項13記載の発光素子パッケージ。 The firing material contains an inorganic filler together with the glass powder, and the glass powder and the inorganic filler are contained at a mass ratio of (glass powder / inorganic filler) = 40/60 to 75/25. The light emitting device package according to claim 13.
PCT/JP2011/057620 2010-03-30 2011-03-28 Glass composition for reflective material, material for firing, and light-emitting element package WO2011122551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508309A JPWO2011122551A1 (en) 2010-03-30 2011-03-28 Glass composition for reflector, firing material, and light emitting device package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010077384 2010-03-30
JP2010-077384 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122551A1 true WO2011122551A1 (en) 2011-10-06

Family

ID=44712247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057620 WO2011122551A1 (en) 2010-03-30 2011-03-28 Glass composition for reflective material, material for firing, and light-emitting element package

Country Status (2)

Country Link
JP (1) JPWO2011122551A1 (en)
WO (1) WO2011122551A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258866A (en) * 2010-06-11 2011-12-22 Asahi Glass Co Ltd Substrate for mounting light emitting element and light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292336A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Glass composition and optical element using the same
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2007121613A (en) * 2005-10-27 2007-05-17 Kyocera Corp Optical reflector, wiring substrate for mounting light emission element, and light emission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292336A (en) * 2002-04-01 2003-10-15 Minolta Co Ltd Glass composition and optical element using the same
JP2006219365A (en) * 2005-01-17 2006-08-24 Ohara Inc Glass
JP2007121613A (en) * 2005-10-27 2007-05-17 Kyocera Corp Optical reflector, wiring substrate for mounting light emission element, and light emission device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258866A (en) * 2010-06-11 2011-12-22 Asahi Glass Co Ltd Substrate for mounting light emitting element and light emitting device

Also Published As

Publication number Publication date
JPWO2011122551A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5757238B2 (en) Phosphor-dispersed glass and method for producing the same
JP5263112B2 (en) Ceramic raw material composition
JP5633114B2 (en) SnO-P2O5 glass used for phosphor composite material
JP2007182529A (en) Fluorescent composite glass, fluorescent composite glass green sheet and process for production of fluorescent composite glass
WO2011096126A1 (en) Substrate for mounting light-emitting element, and light-emitting device
WO2013001971A1 (en) Glass composition, glass for covering light emitting element, composite material for covering light emitting element, phosphor composite material, light emitting element-covering composite member, and phosphor composite member
JP5765526B2 (en) Light reflecting substrate and light emitting device using the same
JP5510885B2 (en) Light reflecting substrate
WO2012005308A1 (en) Reflective frame for light-emitting elements, substrate for light-emitting elements, and light-emitting device
JP5516082B2 (en) Glass ceramic composition, substrate for light emitting diode element, and light emitting device
WO2011122551A1 (en) Glass composition for reflective material, material for firing, and light-emitting element package
JP5671833B2 (en) Light reflecting substrate material, light reflecting substrate and light emitting device using the same
JP5516026B2 (en) Glass ceramic composition, light emitting diode element substrate, and light emitting device
JP2016069240A (en) Borosilicate glass and glass frit using the same and glass molded article using glass frit
JP5932494B2 (en) Light emitting element mounting substrate and light emitting device
WO2014050684A1 (en) Glass composition for phosphor-dispersed glass sheets, and phosphor-dispersed glass sheet using same
JP2011246329A (en) Glass ceramic composition and light emitting device
JP6671732B2 (en) Borosilicate glass, glass frit using the same, and glass molded article using the glass frit
JP2017165619A (en) Glass ceramic substrate and method for producing the same
JP5500494B2 (en) Light reflecting material
JP3760455B2 (en) Adhesive composition
JP2012041222A (en) Compound sintered compact
JP5907481B2 (en) Light reflecting substrate and light emitting device using the same
JP2011176107A (en) Substrate for mounting light-emitting element, and light-emitting device using the substrate
WO2015093326A1 (en) Glass for metallic coating, and metallic member provided with glass layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508309

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762775

Country of ref document: EP

Kind code of ref document: A1