WO2011122455A1 - 電極端子、及び電極端子の製造方法 - Google Patents

電極端子、及び電極端子の製造方法 Download PDF

Info

Publication number
WO2011122455A1
WO2011122455A1 PCT/JP2011/057258 JP2011057258W WO2011122455A1 WO 2011122455 A1 WO2011122455 A1 WO 2011122455A1 JP 2011057258 W JP2011057258 W JP 2011057258W WO 2011122455 A1 WO2011122455 A1 WO 2011122455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
mandrel
outer cylinder
base material
output end
Prior art date
Application number
PCT/JP2011/057258
Other languages
English (en)
French (fr)
Inventor
栄 輝
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/579,756 priority Critical patent/US9023515B2/en
Priority to EP11762686.1A priority patent/EP2555281B1/en
Priority to CN201180010726.8A priority patent/CN102770987B/zh
Priority to KR1020127025600A priority patent/KR101421859B1/ko
Priority to ES11762686.1T priority patent/ES2656333T3/es
Priority to PL11762686T priority patent/PL2555281T3/pl
Publication of WO2011122455A1 publication Critical patent/WO2011122455A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/561Hollow metallic terminals, e.g. terminal bushings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode terminal that can be suitably used for a battery in which a positive output end and a negative output end are formed of different metals, and a method of manufacturing the electrode terminal.
  • a battery As a battery to be mounted on an electric vehicle, a hybrid car, or the like, a battery is known in which a plurality of battery cells are connected to each other with a bus bar so that the positive and negative electrodes are connected in series (for example, a patent) Reference 1). Such an assembled battery is characterized by high output and high energy density, and in most cases, a lithium ion battery is used for the battery cell.
  • the lithium ion battery has a positive output end formed from aluminum (Al) as a material and a negative output end formed from copper (Cu) as a material.
  • bus bar a part used for distribution of electrical energy, also called a bus bar
  • a bus bar As a method for manufacturing such a bus bar, for example, as disclosed in “Problems to be Solved by the Invention” of Patent Document 2, there is a method of laser welding members constituting the bus bar.
  • Patent Document 2 As a countermeasure against this problem, as disclosed in Patent Document 2, it is proposed to manufacture a bus bar by joining an aluminum piece and a copper piece by laser welding or the like, but in a bus bar prototyped by this method, The eutectic due to two kinds of metals is generated at the laser welding part, and this causes the disadvantage that the electrical resistance becomes excessive and the mechanical strength (especially brittleness and tensile strength) is remarkably lowered. It did not endure.
  • the present invention has been made in view of the above circumstances, and is an electrode terminal used for a battery in which a positive output end and a negative output end are formed of different metals, and prevents electrical corrosion while preventing electric corrosion.
  • An object of the present invention is to provide a high-performance and high-reliability electrode terminal that can suppress resistance and also has excellent mechanical strength, and a method for manufacturing the electrode terminal.
  • an electrode terminal is an electrode terminal for power output used for a battery in which a pair of output ends are formed of different metals, and is connected to one output end.
  • the connecting portion and the second connecting portion are integrated by metal bonding.
  • the first connection part is a solid cylindrical mandrel part
  • the second connection part is a cylindrical outer cylinder part fitted around the mandrel part.
  • metal bond forms a bonding interface in which different kinds of metals to be bonded are in close contact with each other at a metal structure level, and as a result, conductivity and mechanical bond strength are set to “values suitable for practical use as electrode terminals”. Shall be said to have been raised.
  • a male screw part is formed on the outer peripheral surface of the outer cylinder part.
  • the outer cylinder part may be formed to extend beyond the length of the mandrel part in a direction opposite to the protruding side of the mandrel part.
  • the mandrel portion When the electrode terminal is employed as a positive output terminal of a lithium ion battery, the mandrel portion may be formed of aluminum or an aluminum alloy, and the outer cylinder portion may be formed of copper or a copper alloy. When adopting the electrode terminal as a negative output terminal of a lithium ion battery, the mandrel portion may be formed of copper or a copper alloy, and the outer cylinder portion may be formed of aluminum or an aluminum alloy.
  • a facing base material in a state in which the metal base material forming the outer cylinder portion is wound so as to surround the metal base material forming the mandrel portion It is indispensable to prepare and employ a manufacturing method in which the facing material is extruded or drawn with a die in a high-pressure hydrostatic environment.
  • this manufacturing method it is possible to manufacture an electrode terminal in which the metal material forming the mandrel portion and the metal material forming the outer cylinder portion are metallically coupled and integrated, and no electrical corrosion or the like occurs.
  • the positive output terminal and the negative output terminal of the battery are made of the same metal in appearance, and the connection using the same metal wiring or bus bar as the terminal is performed, so that the electrical connection at the terminal junction is performed. Corrosion and the accompanying increase in electrical resistance can be suppressed, and the reliability of the assembled battery can be improved.
  • the mandrel part and the outer cylinder part of the electrode terminal are integrated by a metallic bond, it is possible that an electric corrosion and an accompanying increase in electric resistance occur at this bonded part. No.
  • the positive output terminal and the negative output terminal are suitable for a battery formed of different metals, can suppress electric resistance while preventing electric corrosion, and have excellent mechanical strength. An electrode terminal having high performance and high reliability can be realized.
  • first Embodiment 1 to 3 show a first embodiment of an electrode terminal 1 according to the present invention.
  • this electrode terminal 1 is a battery pack 4 formed by connecting a plurality of battery cells 2 in series by a bus bar 3, for example, a negative output end (negative output side) of each battery cell 2.
  • a bus bar 3 for example, a negative output end (negative output side) of each battery cell 2.
  • the battery cell 2 is a lithium ion battery, and the negative output end is formed of copper or a copper alloy.
  • the negative electrode side carrier 7 base body for fixing electrons and ions
  • the positive output end is formed of aluminum or an aluminum alloy.
  • the electrode terminal 1 of the present invention employed at the negative output end includes a mandrel part 10 (first connecting part) and an outer cylinder part that externally covers the mandrel part 10. 11 (second connecting portion) and an inner / outer double shaft.
  • the lower end side of the mandrel part 10 protrudes from the outer cylinder part 11 in the axial direction.
  • the upper end side of the mandrel part 10 and the upper end part of the outer cylinder part 11 are aligned at the same height position.
  • the mandrel part 10 is a round bar
  • the outer cylinder part 11 is formed in a cylindrical shape. That is, the cross-sectional shape orthogonal to the axial direction of the mandrel part 10 and the outer cylinder part 11 is a concentric double circle, and the thickness of the outer cylinder part 11 surrounding the mandrel part 10 is substantially constant.
  • a base portion 12 is formed on the lower end side of the outer cylinder portion 11, and the mandrel portion 10 projects downward so as to penetrate the base portion 12.
  • a male thread portion 13 is formed on the outer peripheral surface of the outer cylinder portion 11 except for the base portion 12.
  • the base portion 12 serves to keep the length of the male screw portion 13 protruding from the battery cell 2, or when the bus bar 3 is connected to the male screw portion 13.
  • the bus bar 3 serves as a spacer that holds the bus bar 3 in a state of being lifted from the battery cell 2.
  • the base portion 12 is not necessarily provided integrally with the outer cylinder portion 11, and may be a separate member.
  • the maximum diameter (corresponding to the outer diameter of the base portion 12) of the electrode terminal 1 is 5 to 25 mm, and the maximum length (corresponding to the total length of the mandrel portion 10) is 10 to 100 mm.
  • the external diameter of the external thread portion 13 provided in the outer cylinder portion 11 is set to a nominal diameter of 4 to 12 mm.
  • the mandrel part 10 and the outer cylinder part 11 are made of different metals.
  • the mandrel 10 is formed using the same metal as the negative electrode side carrier 7 of the battery cell 2, that is, copper or a copper alloy as a base material.
  • the outer cylinder part 11 is formed using the same metal as the positive electrode side carrier and the plus output end of the battery cell 2, that is, aluminum or an aluminum alloy as a base material.
  • the metal (Cu) of the mandrel part 10 and the metal (Al) of the outer cylinder part 11 are subjected to ultrahigh pressure (for example, about 1000 MPa) and As a result of imparting deformation, a bonding interface is formed in which the layers are in close contact with each other at the metal structure level, and as a result, the conductivity and mechanical bond strength are increased to a value suitable for practical use as an electrode terminal. Yes.
  • the internal connection portion 15 is electrically connected to the negative electrode side carrier 7 of the battery cell 2.
  • a portion where the external thread portion 13 is provided in the outer cylinder portion 11 is used as the external connection portion 16. That is, one end portion of the aluminum bus bar 3 made of the same metal as the outer tube portion 11 is connected to the external connection portion 16.
  • connection holes 20 are provided at both ends of the bus bar 3, and the connection holes 20 are connected to the external connection portions 16 (outer cylinder portions 11) of the electrode terminals 1.
  • the nut 21 made of the same metal as that of the outer cylinder portion 11 is screwed into the male screw portion 13 that has been penetrated.
  • the external connection portion 16, the bus bar 3, and the nut 21 are connected by the same metal, and no electrical corrosion occurs.
  • there is a dissimilar metal between the internal connection part 15 and the external connection part 16 between the mandrel part 10 and the outer cylinder part 11
  • there is no electrical corrosion due to the metallic connection and The electrical resistance is held in a suppressed state.
  • an electrode terminal in which all of the forming material is made of aluminum or an aluminum alloy may be used.
  • the shape is substantially the same as that of the electrode terminal 1, and has a base portion 23 and a male screw portion 24. Therefore, the connection hole 20 on the other end side of the bus bar 3 is inserted into the male screw portion 24 of the positive electrode terminal, and the nut 21 is screwed into the male screw portion 24 that has penetrated. Needless to say, since the connecting portion between the positive output end and the bus bar 3 is also a connection made of the same metal, no electrical corrosion occurs.
  • the assembled battery 4 configured by connecting a plurality of battery cells 2 in series by the bus bar 3, no electrical corrosion occurs in any connection portion, and highly efficient conductivity is ensured. .
  • the mechanical strength as the electrode terminal 1 is also excellent, the electrode terminal 1 does not bend or bend under normal use conditions.
  • the bus-bar 3 is formed with aluminum or aluminum alloy, it is lightweight and it becomes possible to suppress the assembled battery 4 to lightweight. Therefore, there is an advantage that is beneficial for reducing the weight of an electric vehicle in which the assembled battery 4 is mounted as a battery.
  • extrusion processing is performed under an ultrahigh hydrostatic pressure.
  • the extrusion device 30 used for this processing is equipped with a single-opening die 31 (die) corresponding to the maximum diameter of the electrode terminal 1 to be obtained (corresponding to the outer diameter of the base portion 12).
  • Extrusion molding is possible under an isotropic pressure environment (about 1000 MPa).
  • a positive electrode base material 11A metal base material
  • a negative electrode base material 10A of the same metal as the negative output end of the battery cell 2 are used. (Metal base material) is prepared.
  • the positive electrode base material 11A is made of aluminum or an aluminum alloy
  • the negative electrode base material 10A is made of copper or a copper alloy. Then, a round bar-shaped billet (facing material) having a structure in which the rod-shaped negative electrode material 10A is surrounded by the positive electrode material 11A is formed.
  • the negative electrode base material 10A may be a round bar
  • the positive electrode base material 11A may be a hollow pipe material
  • the positive electrode base material 11A may be externally inserted into the negative electrode base material 10A to form a billet.
  • the negative electrode base material 10A may be a round bar
  • the positive electrode base material 11A may be a strip plate material
  • the positive electrode base material 11A may be wound around the negative electrode base material 10A to form a billet.
  • the billet is loaded into the extrusion apparatus 30 and the extrusion apparatus 30 is operated under an isotropic pressure environment of ultrahigh pressure ( ⁇ 1000 MPa).
  • the billet has a structure in which the negative electrode base material 10A is surrounded by the positive electrode base material 11A, and therefore the positive electrode base material 11A and the negative electrode base material 10A are parallel to each other. Be pushed out.
  • the opening area of the die 31 of the extrusion device 30 is smaller than the cross-sectional area of the billet.
  • the mating surfaces of the two base materials 10A and 11A form the “interface (metallic coupling portion) between the outer peripheral surface of the mandrel 10 and the inner peripheral surface of the outer cylinder 11” after exiting the die 31.
  • the molded body 1A having an inner / outer double shaft in which the positive electrode base material 11A and the negative electrode base material 10A are integrally bonded by metal bonding is formed.
  • the molded body 1A thus obtained is cut out at a predetermined interval in the extrusion direction.
  • dye 31 of the extrusion apparatus 30 is formed in the opening shape corresponding to the cross-sectional shape of the electrode terminal 1, the cut-out space
  • the base material 11A for the positive electrode is subjected to a lathe process or a male thread cutting process, and the male screw part 13, the base part 12, and the protruding part by the mandrel part 10 are formed to complete the electrode terminal 1.
  • Surface polishing or surface treatment may be performed as necessary.
  • 5A, 5B and 6 show a second embodiment of the electrode terminal 1 according to the present invention.
  • the electrode terminal 1 of the second embodiment is also employed at the negative output end of the battery cell 2.
  • the outer tube portion 11 of the electrode terminal 1 is extended upward so as to exceed the length of the mandrel portion 10. That is, the mandrel portion 10 does not exist inside the portion where the outer cylinder portion 11 is extended, and is hollow.
  • the mandrel portion 10 of the electrode terminal 1 is formed to extend downward so as to exceed the length of the outer tube portion 11.
  • the base part 12 and the external thread part 13 are not provided in the outer cylinder part 11, but are formed in a straight cylindrical shape.
  • the mandrel portion 10 is made of the same metal (copper or copper alloy) as the negative electrode side carrier 7 of the battery cell 2, and the outer cylinder portion 11 is the same metal (aluminum or aluminum) as the positive electrode side carrier and the positive output end of the battery cell 2. Alloy) is the same as the first embodiment.
  • the point that the outer peripheral surface of the mandrel part 10 and the inner peripheral surface of the outer cylinder part 11 are metallically connected by die processing under ultra-high pressure isotropic pressure is the same as in the first embodiment.
  • the portion hollowed in the outer cylinder portion 11 is externally connected.
  • one end portion of the bus bar 3 is connected to the external connection portion 16 by welding.
  • the connection hole 20 of the bus bar 3 is inserted into the external connection portion 16 (corresponding to the hollow portion) of the electrode terminal 1 and the periphery of the penetrated external connection portion 16 is welded by welding or the like. do it. Since both the bus bar 3 and the external connection portion 16 are made of aluminum or an aluminum alloy and are the same metal, the welded portion does not cause eutectic, and the electrical resistance between them does not become excessive.
  • the extrusion device 30 is operated under an ultra-high pressure isotropic pressure to form a molded body 1A. Then, it is only necessary to perform a centering process to hollow out the outer cylinder part 11 (delete the mandrel part 10 by a predetermined depth).
  • other configurations, functions, effects, and manufacturing methods are substantially the same as those in the first embodiment, and detailed descriptions thereof are omitted here.
  • the electrode terminal 1 used as the minus output end is illustrated, but the electrode terminal may be adopted as the plus output end.
  • the mandrel part 10 is made of the same metal (aluminum or aluminum alloy) as the positive electrode side carrier of the battery cell 2
  • the outer cylinder part 11 is made of the same metal (copper or copper alloy) as the negative electrode side carrier 7 of the battery cell 2.
  • the bus bar 3 is made of copper or a copper alloy.
  • the bus bar 1 according to the present invention is very suitable for connecting a lithium ion battery mounted on an automobile, but there is no problem even if it is used for connecting a lithium ion battery (battery) in other applications.
  • Electrode terminal 1A Molded body 2 Battery cell 3 Bus bar 4 Battery assembly 7 Negative electrode side support 10 Mandrel part 10A Negative electrode base material 11 Outer cylinder part 11A Positive electrode base material 12 Base part 13 Male thread part 15 Internal connection part 16 External connection part 20 Connection hole 21 Nut 23 Base 24 Male thread 30 Extrusion device 31 Die

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 プラス出力端とマイナス出力端とが互いに異種金属で形成されたバッテリに対して用いる電極端子として、電気腐食を防止しつつ電気抵抗を抑えることができ且つ機械的強度にも優れたものにする。 本発明の電極端子1は、一対の出力端が互いに異種金属で形成されるバッテリ2に対して用いる電力出力用の電極端子1であって、一方の出力端に連結すると共に一方の出力端と同一金属で形成された中実円柱状の心棒部10と、心棒部10に連接すると共に他方の出力端と同一金属で形成された外筒部11とを有し、心棒部10と外筒部11とが金属的結合により一体化されている。

Description

電極端子、及び電極端子の製造方法
 本発明は、プラス出力端とマイナス出力端とが互いに異種金属で形成されたバッテリに対し、好適に使用することのできる電極端子及びその製造方法に関する。
 電気自動車やハイブリッドカーなどに搭載するバッテリとして、複数のバッテリセルを、互いの正・負極間が直列接続となるようにバスバーで繋いで組電池に構成したものが知られている(例えば、特許文献1参照)。このような組電池は高出力、高エネルギー密度であることが特徴とされ、バッテリセルには殆どの場合、リチウムイオン電池が用いられている。リチウムイオン電池は、プラス出力端がアルミニウム(Al)を素材として形成されており、マイナス出力端が銅(Cu)を素材として形成されている。
 このようなバッテリセルの端子同士を繋ぐための部品として、バスバー(busbar、電気エネルギーの分配に使用される部品であり、ブスバーとも呼ぶ)がある。係るバスバーの製造方法としては、例えば、特許文献2の「発明が解決しようとする課題」に開示されているように、バスバーを構成する部材同士をレーザ溶接するものがある。
日本国特開2002-373638号公報 日本国特開2003-163039号公報
 前述の如く、バッテリセル同士を直列で接続する場合、プラス出力端(アルミニウム)と、マイナス出力端(銅)をバスバーで繋ぐことになる。そのため、バスバーをアルミニウムによって形成することにしても、又は銅によって形成することにしても、必ず、バスバーと一方の端子との間は異種金属による接続をすることになる。
 一般に、異種の金属同士を接続したときに空気中の水分による電気腐食(電気化学的腐食)が起こることは周知である。従って、この電気腐食の進行に伴い、バスバーと端子との間が通電しなくなったりバスバー自体又は端子自体が損壊したりすることが起こり、最終的には、電気自動車を始動できないといった重大問題に至る。
 なお、この問題の対策として、特許文献2のように、アルミニウム片と銅片とをレーザ溶接などにより接合してバスバーを製作することが提案されているものの、この方法で試作されたバスバーでは、レーザ溶接部分で二種の金属による共晶が発生し、これが原因で電気抵抗が過大となったり機械的強度(殊に脆性や引張強度)が著しく低下したりする欠点があって、とても実用に耐えるものとはならなかった。
 すなわち、上記問題を根本的に解決するためには、バスバーの改良に留まらず、他部材、例えばバッテリセルに備えられた電極端子の改良・開発が不可欠である。
 本発明は、上記事情に鑑みてなされたものであって、プラス出力端とマイナス出力端とが互いに異種金属で形成されたバッテリに対して用いる電極端子であって、電気腐食を防止しつつ電気抵抗を抑えることができ且つ機械的強度にも優れた高性能・高信頼性を有する電極端子と、この電極端子の製造方法とを提供することを目的とする。
 前記目的を達成するために、本発明に係る電極端子は、一対の出力端が互いに異種金属で形成されるバッテリに対して用いる電力出力用の電極端子であって、一方の出力端に連結すると共にこの一方の出力端と同一金属で形成された第1接続部と、前記第1接続部に連接すると共に他方の出力端と同一金属で形成された第2接続部とを備え、前記第1接続部と前記第2接続部とが金属的結合により一体化されている構成を有する。
 好ましくは、前記第1接続部は、中実円柱状の心棒部であり、前記第2接続部は、心棒部に外嵌する円筒形状の外筒部となっているとよい。
 なお、「金属的結合」は、結合しようとする異種金属間が金属組織レベルで密着した結合界面を形成させ、その結果として導電性及び機械的結合強度を「電極端子として実用に適する値」にまで高めた状態を言うものとする。
 また好ましくは、前記外筒部の外周面に雄ねじ部が形成されているとよい。
 前記外筒部は、前記心棒部の突出側とは逆方向へ向けて当該心棒部の長さを超えて延長形成されていてもよい。
 上記電極端子をリチウムイオン電池のプラス出力端に採用するに際しては、前記心棒部は、アルミニウム又はアルミニウム合金で形成され、前記外筒部は、銅又は銅合金で形成されるようにするとよい。
 上記電極端子をリチウムイオン電池のマイナス出力端に採用するに際しては、前記心棒部は、銅又は銅合金で形成され、前記外筒部は、アルミニウム又はアルミニウム合金で形成されるようにするとよい。
 一方、上述した電極端子を製造する際には、前記心棒部を形成する金属元材を取り囲むように、前記外筒部を形成する金属元材が巻き付けられた状態となっている対面元材を用意し、高圧の静水圧環境下にて、前記対面元材をダイにより押出加工又は引抜加工する製造方法を採用することが不可欠である。
 この製造方法を採用することで、心棒部を形成する金属材と外筒部を形成する金属材とが金属的結合して一体化し、電気腐食等が起こらない電極端子を製造することができる。
 この電極端子を用いることで、外観視で、バッテリのプラス出力端とマイナス出力端とは同金属となり、端子と同じ金属の配線やブスバーを用いた接続を行うことで、端子接合部での電気腐食、それに伴う電気抵抗の増加が抑えられ、組電池としての信頼性の向上を図れる。加えて、好適な例の場合、電極端子の心棒部と外筒部とは金属的結合により一体化されているため、この結合部分においても電気腐食、それに伴う電気抵抗の増加が発生することは無い。
 本発明によれば、プラス出力端とマイナス出力端とが互いに異種金属で形成されたバッテリに対して好適で、電気腐食を防止しつつ電気抵抗を抑えることができ且つ機械的強度にも優れた高性能・高信頼性を有する電極端子を実現することができる。
第1実施形態の電極端子の使用態様を示した斜視図である。 第1実施形態の電極端子を示した平面図である。 第1実施形態の電極端子を示した正面図である。 第1実施形態の電極端子とブスバーとの接続状況を示した図である。 本発明に係る電極端子を製造する過程を説明した斜視図である。 第2実施形態の電極端子を示した平面図である。 第2実施形態の電極端子を示した正面図である。 第2実施形態の電極端子とブスバーとの接続状況を示した図である。
 以下、本発明の実施の形態を、図面に基づき説明する。
[第1実施形態]
 図1~図3は、本発明に係る電極端子1の第1実施形態を示している。
図1に示すように、この電極端子1は、複数のバッテリセル2をバスバー3によって直列接続することで構成される組電池4等において、例えば各バッテリセル2のマイナス出力端(マイナス出力側)として使用することができる。
 なお、図3に示すように、バッテリセル2はリチウムイオン電池であって、マイナス出力端は銅又は銅合金により形成されている。これは、マイナス出力端に電池内部で繋がる負極側担体7(電子やイオンを固定するベース体)が銅又は銅合金で構成されているためである。正極側担体との関係で、プラス出力端(プラス出力側)はアルミニウム又はアルミニウム合金により形成されている。
 図2A、及び、図2Bに示すように、マイナス出力端に採用される本発明の電極端子1は、心棒部10(第1接続部)と、この心棒部10を外嵌被覆する外筒部11(第2接続部)とによって内外二重軸に形成されている。
 心棒部10の下端側は外筒部11から軸方向に突出している。心棒部10の上端側と外筒部11の上端部とは、同じ高さ位置に揃えられている。心棒部10は丸棒とされ、外筒部11は円筒形に形成されている。すなわち、これら心棒部10と外筒部11との軸方向に直交する断面形状は同心の二重円形を呈しており、心棒部10を取り囲む外筒部11の肉厚は略一定である。
 外筒部11の下端側には土台部12が形成されており、この土台部12を貫通するように心棒部10が下方に突出している。また外筒部11の外周面には、土台部12を除いて雄ねじ部13が形成されている。
 この土台部12は、この電極端子1をバッテリセル2へ取り付ける際に、バッテリセル2から雄ねじ部13が突出する長さを一定とする役目や、この雄ねじ部13にバスバー3を接続する際に、バスバー3をバッテリセル2から浮き上げた状態に保持させるスペーサーの役目を有している。土台部12は、必ずしも外筒部11に対して一体に設ける必要はなく、別部材としてもよい。
 第1実施形態では、電極端子1の最大径(土台部12の外径に相当)を5~25mm、最大長さ(心棒部10としての全長に相当)を10~100mmとしている。また外筒部11に設ける雄ねじ部13の外径は、呼び径4~12mmとしている。
 心棒部10と外筒部11とは、互いに形成素材が異なる金属により形成されている。心棒部10は、バッテリセル2の負極側担体7と同一金属、すなわち銅又は銅合金を元材として形成されている。また外筒部11は、バッテリセル2の正極側担体やプラス出力端と同一金属、すなわちアルミニウム又はアルミニウム合金を元材として形成されている。
 心棒部10の外周面と外筒部11の内周面との間は、心棒部10の金属(Cu)と外筒部11の金属(Al)とを超高圧下(例えば1000MPa程度)で且つ変形を付与するようにして、互いが金属組織レベルで密着した結合界面を形成させ、その結果として導電性及び機械的結合強度を「電極端子として実用に適する値」にまで高めた状態とされている。
 このような電極端子1は、バッテリセル2に取り付ける際に、心棒部10において外筒部11から突出している部分を内部接続部15として使用する。すなわち、この内部接続部15をバッテリセル2の負極側担体7と電気的に接続させる。また、外筒部11において雄ねじ部13が設けられた部分を外部接続部16として使用する。すなわち、この外部接続部16へ、外筒部11と同金属であるアルミニウム製のバスバー3の一端部を接続させる。
 具体的には、図1,図3に示したように、バスバー3の両端部には接続孔20が設けられており、この接続孔20を電極端子1の外部接続部16(外筒部11の雄ねじ部13)へ差し込んで、突き抜けた雄ねじ部13へ、外筒部11と同金属から形成されたアルミニウム製のナット21を螺合させる。
 このとき、外部接続部16とバスバー3ならびにナット21とは、同一金属による接続となり、電気腐食が起こることはない。加えて、内部接続部15と外部接続部16との間(心棒部10と外筒部11との間)は異種金属であるものの、金属的結合されているために電気腐食は起こらず、且つ電気抵抗が抑えられた状態に保持されている。
 一方、プラス出力端は、形成素材の全てをアルミニウム又はアルミニウム合金とされた電極端子を用いるとよい。その形状は、電極端子1とほぼ同じであり、土台部23や雄ねじ部24を有したものとされている。そのため、バスバー3における他端側の接続孔20をプラス側の電極端子の雄ねじ部24へ差し込んで、突き抜けた雄ねじ部24へナット21を螺合させるようにする。言うまでもなく、プラス出力端とバスバー3との接続部分も同一金属による接続であるので、電気腐食が起こることはない。
 これらの結果として、複数のバッテリセル2をバスバー3によって直列接続することで構成される組電池4において、いずれの接続部分でも電気腐食は起こらず、高効率の導電性が確保されるものである。また、電極端子1としての機械的強度も優れているので、通常の使用状況下において電極端子1が曲がったり折れたりすることもない。
 なお、第1実施形態では、バスバー3がアルミニウム又はアルミニウム合金によって形成されているため、軽量であり、組電池4を軽量に抑えることが可能となる。そのため、この組電池4をバッテリとして搭載する電気自動車の軽量化にとっても有益となる利点がある。
 図4に示す如く、このような構成の電極端子1を製造するには、超高圧の静水圧下における押出加工を行う。この加工に用いる押出装置30は、得ようとする電極端子1の最大径(土台部12の外径に相当)に対応した単一開口のダイ31(ダイス)を具備したもので、超高圧(~1000MPa程度)の等方圧環境下での押出成形が可能となっている。
 電極端子1の製造手順としては、まずバッテリセル2のプラス出力端と同一金属からなる正極用元材11A(金属元材)と、バッテリセル2のマイナス出力端と同一金属の負極用元材10A(金属元材)とを準備する。すなわち、正極用元材11Aはアルミニウム又はアルミニウム合金製であり、負極用元材10Aは銅又は銅合金製であるものとする。そして、棒状の負極用元材10Aを中心にして、その周りを正極用元材11Aで取り囲んだ構造の丸棒状のビレット(対面元材)を形成する。
 例えば、負極用元材10Aを丸棒材とすると共に、正極用元材11Aを中空パイプ材として、負極用元材10Aに正極用元材11Aを外嵌挿通させることでビレットを形成すればよい。或いは、負極用元材10Aを丸棒材とすると共に、正極用元材11Aを帯板状材として、負極用元材10Aに正極用元材11Aを巻き付けることでビレットを形成することもできる。
 次に、このビレットを押出装置30へ装填して、この押出装置30を超高圧(~1000MPa)の等方圧環境下にて作動させる。前記したように、ビレットは、負極用元材10Aを中心にしてそのまわりを正極用元材11Aで取り囲んだ構造であるから、正極用元材11Aと負極用元材10Aとが互いに並行して押し出されるようになる。
 図4に示す如く、押出装置30のダイ31の開口面積はビレットの断面積より小さいため、ダイ31を通すことで、ビレットが全周的な圧縮を受けて塑性変形する。両元材10A,11Aの合わせ面は、ダイ31を出た後に「心棒部10の外周面と外筒部11の内周面との界面(金属的結合部)」を形成することになる。
 係る押出加工により、正極用元材11Aと負極用元材10Aとが金属的結合によって一体結合された内外二重軸の成形体1Aを成形する。
 このようにして得られた成形体1Aを、押出方向で所定間隔をおいて切り出す。第1実施形態では、押出装置30のダイ31が電極端子1の断面形状に対応した開口形状に形成されているため、成形体1Aの切り出し間隔は、電極端子1としての長さ寸法に合わせるようにした。
 切り出し後において、正極用元材11Aに旋盤加工や雄ねじ切り加工を施し、雄ねじ部13の形成や土台部12の形成、及び心棒部10による突出部の形成を行い、電極端子1を完成させる。必要に応じて表面研磨や表面処理などを行ってもよい。
[第2実施形態]
 図5A、図5B、及び、図6は、本発明に係る電極端子1の第2実施形態を示している。
 第2実施形態の電極端子1もバッテリセル2のマイナス出力端に採用するものである。
 図5A、及び、図5Bに示す如く、電極端子1の外筒部11は上方側に向けて、心棒部10の長さを超えるように延長形成されている。すなわち、外筒部11が延長された部分の内部には心棒部10が存在せず、中空とされている。一方で、電極端子1の心棒部10は下方側に向けて、外筒部11の長さを超えるように延長形成されている。加えて、外筒部11には土台部12や雄ねじ部13は設けられておらず、ストレートの円筒形に形成されている。
 なお、心棒部10がバッテリセル2の負極側担体7と同一金属(銅又は銅合金)製であり、外筒部11がバッテリセル2の正極側担体やプラス出力端と同一金属(アルミニウム又はアルミニウム合金)製である点は、第1実施形態と同じである。また、心棒部10の外周面と外筒部11の内周面との間が超高圧等方圧下によるダイ加工で金属的結合されている点も、第1実施形態と同じである。
 第2実施形態の電極端子1では、心棒部10が外筒部11から突出している部分を内部接続部15としてバッテリセル2へ取り付けた後、外筒部11において中空とされた部分を外部接続部16として使用する。すなわち、この外部接続部16へバスバー3の一端部を溶接によって接続させる。
 具体的には、図6に示したように、バスバー3の接続孔20を電極端子1の外部接続部16(中空部分に対応)へ差し込んで、突き抜けた外部接続部16まわりを溶接などにより溶接すればよい。溶接部分は、バスバー3も外部接続部16も、共にアルミニウム又はアルミニウム合金であって、同一金属であるから共晶は生じず、両者間の電気抵抗が過大となることもない。
 図4に示すように、第2実施形態の電極端子1を製造するには、第1実施形態の場合と同様に、押出装置30を超高圧等方圧下で作動させて成形体1Aを形成させ、その後、中グリ加工を施して、外筒部11の中空化(心棒部10を所定深さ削除)を行うようにすればよい。
 第2実施形態においてその他の構成及び作用効果、製造方法は第1実施形態とほぼ同じであり、ここでの詳説は省略する。
 ところで、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、第1実施形態及び第2実施形態においては、マイナス出力端として使用する電極端子1を例示したが、電極端子をプラス出力端に採用してもよい。その場合、心棒部10をバッテリセル2の正極側担体と同一金属(アルミニウム又はアルミニウム合金)製とし、外筒部11をバッテリセル2の負極側担体7と同一金属(銅又は銅合金)製とするとよい。バスバー3は銅又は銅合金製とする。
 また、本発明に係るバスバー1は、自動車搭載用のリチウムイオン電池を接続するに際し非常に好適であるが、他用途におけるリチウムイオン電池(バッテリ)の接続に用いても何ら問題はない。
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年3月29日出願の日本特許出願(特願2010-075916)に基づくものであり、その内容はここに参照として取り込まれる。
1 電極端子
1A 成形体
2 バッテリセル
3 バスバー
4 組電池
7 負極側担体
10 心棒部
10A 負極用元材
11 外筒部
11A 正極用元材
12 土台部
13 雄ねじ部
15 内部接続部
16 外部接続部
20 接続孔
21 ナット
23 土台部
24 雄ねじ部
30 押出装置
31 ダイ

Claims (7)

  1.  一対の出力端が互いに異種金属で形成されるバッテリに対して用いる電力出力用の電極端子であって、
     一方の出力端に連結すると共にこの一方の出力端と同一金属で形成された第1接続部と、
     前記第1接続部に連接すると共に他方の出力端と同一金属で形成された第2接続部とを備え、
     前記第1接続部と前記第2接続部とが金属的結合により一体化されていることを特徴とする電極端子。
  2.  前記第1接続部は、中実円柱状の心棒部であり、
     前記第2接続部は、前記心棒部に外嵌する円筒形状の外筒部となっていることを特徴とする請求項1に記載の電極端子。
  3.  前記外筒部の外周面に雄ねじ部が形成されていることを特徴とする請求項2に記載の電極端子。
  4.  前記外筒部は、前記心棒部の突出側とは逆方向へ向けて当該心棒部の長さを超えて延長形成されていることを特徴とする請求項2に記載の電極端子。
  5.  前記心棒部は、アルミニウム又はアルミニウム合金で形成され、
     前記外筒部は、銅又は銅合金で形成されていることを特徴とする請求項2に記載の電極端子。
  6.  前記心棒部は、銅又は銅合金で形成され、
     前記外筒部は、アルミニウム又はアルミニウム合金で形成されていることを特徴とする請求項2に記載の電極端子。
  7.  前記心棒部を形成する金属元材を取り囲むように、前記外筒部を形成する金属元材が巻き付けられた状態となっている対面元材を用意し、
     高圧の静水圧環境下にて、前記対面元材をダイにより押出加工又は引抜加工することで、請求項2に記載された電極端子を製造することを特徴とする電極端子の製造方法。
PCT/JP2011/057258 2010-03-29 2011-03-24 電極端子、及び電極端子の製造方法 WO2011122455A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/579,756 US9023515B2 (en) 2010-03-29 2011-03-24 Electrode terminal and method for producing electrode terminal
EP11762686.1A EP2555281B1 (en) 2010-03-29 2011-03-24 Electrode terminal, and method for producing electrode terminal
CN201180010726.8A CN102770987B (zh) 2010-03-29 2011-03-24 电极端子及电极端子的制造方法
KR1020127025600A KR101421859B1 (ko) 2010-03-29 2011-03-24 전극 단자 및 전극 단자의 제조 방법
ES11762686.1T ES2656333T3 (es) 2010-03-29 2011-03-24 Terminal de electrodo, y método para producir terminal de electrodo
PL11762686T PL2555281T3 (pl) 2010-03-29 2011-03-24 Zacisk elektrody i sposób wytwarzania zacisku elektrody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010075916A JP5523164B2 (ja) 2010-03-29 2010-03-29 電極端子、及び電極端子の製造方法
JP2010-075916 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122455A1 true WO2011122455A1 (ja) 2011-10-06

Family

ID=44712164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057258 WO2011122455A1 (ja) 2010-03-29 2011-03-24 電極端子、及び電極端子の製造方法

Country Status (10)

Country Link
US (1) US9023515B2 (ja)
EP (1) EP2555281B1 (ja)
JP (1) JP5523164B2 (ja)
KR (1) KR101421859B1 (ja)
CN (1) CN102770987B (ja)
ES (1) ES2656333T3 (ja)
HU (1) HUE038047T2 (ja)
PL (1) PL2555281T3 (ja)
TW (1) TWI482342B (ja)
WO (1) WO2011122455A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8628875B2 (en) 2010-04-16 2014-01-14 Samsung Sdi Co., Ltd. Battery module with multi-level connector
JP5570383B2 (ja) 2010-10-15 2014-08-13 株式会社神戸製鋼所 導電性連結部材、導電性連結部材の製造方法、及び導電性連結部材が電極とされたバッテリ
JP5910487B2 (ja) * 2012-12-25 2016-04-27 株式会社オートネットワーク技術研究所 配線用モジュール
US9853276B2 (en) * 2013-01-11 2017-12-26 Panasonic Intellectual Property Management Co., Ltd. Battery pack
KR20150015153A (ko) * 2013-07-31 2015-02-10 주식회사 엘지화학 이종 금속의 전지모듈 접속부재를 포함하는 전지팩
KR20150070522A (ko) * 2013-12-17 2015-06-25 삼성에스디아이 주식회사 배터리 모듈
KR20160038582A (ko) * 2014-09-30 2016-04-07 삼성에스디아이 주식회사 이차 전지
KR101862437B1 (ko) * 2014-10-02 2018-05-29 주식회사 엘지화학 이차전지용 캡 조립체 및 그의 제조방법
US10128486B2 (en) 2015-03-13 2018-11-13 Purdue Research Foundation Current interrupt devices, methods thereof, and battery assemblies manufactured therewith
CN106216632B (zh) * 2015-04-22 2018-02-27 泉州华科模具有限公司 一种电池端子注塑模具
US9728345B1 (en) * 2016-02-04 2017-08-08 Ls Mtron Ltd Ultra capacitor module
CN108701804A (zh) * 2016-02-19 2018-10-23 株式会社杰士汤浅国际 蓄电元件以及蓄电元件的制造方法
JP7041487B2 (ja) * 2017-10-17 2022-03-24 株式会社Gsユアサ 蓄電素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790224A (en) * 1980-11-27 1982-06-04 Hitachi Cable Ltd Composite rigid trolley
JPH11195434A (ja) * 1997-10-07 1999-07-21 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2002373638A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd バスバーおよびバスバーを用いた電池
JP2003163039A (ja) 2001-11-27 2003-06-06 Yazaki Corp バスバーの接続構造
JP2006128114A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 二次電池及び二次電池モジュール
JP2009087721A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 二次電池の端子構造及び組電池
JP2009259424A (ja) * 2008-04-11 2009-11-05 Toyota Motor Corp 電池、組電池、車両及び電池搭載機器
JP2010075916A (ja) 2008-08-29 2010-04-08 Meidensha Corp オゾン分解装置及びプロセスシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806215A (en) 1953-11-04 1957-09-10 Aircraft Marine Prod Inc Aluminum ferrule-copper tongue terminal and method of making
CN1121072C (zh) * 1997-10-07 2003-09-10 松下电器产业株式会社 非水电解质二次电池
US6844110B2 (en) * 2000-05-24 2005-01-18 Ngk Insulators, Ltd. Lithium secondary cell and assembly thereof
JP2001357834A (ja) * 2000-06-16 2001-12-26 Japan Storage Battery Co Ltd 電 池
CN201117707Y (zh) * 2007-08-24 2008-09-17 浙江天地之光电池制造有限公司 一种蓄电池接线端子的连接防护装置
KR101072954B1 (ko) * 2009-03-30 2011-10-12 에스비리모티브 주식회사 이차전지 모듈

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790224A (en) * 1980-11-27 1982-06-04 Hitachi Cable Ltd Composite rigid trolley
JPH11195434A (ja) * 1997-10-07 1999-07-21 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2002373638A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd バスバーおよびバスバーを用いた電池
JP2003163039A (ja) 2001-11-27 2003-06-06 Yazaki Corp バスバーの接続構造
JP2006128114A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 二次電池及び二次電池モジュール
JP2009087721A (ja) * 2007-09-28 2009-04-23 Toshiba Corp 二次電池の端子構造及び組電池
JP2009259424A (ja) * 2008-04-11 2009-11-05 Toyota Motor Corp 電池、組電池、車両及び電池搭載機器
JP2010075916A (ja) 2008-08-29 2010-04-08 Meidensha Corp オゾン分解装置及びプロセスシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555281A4

Also Published As

Publication number Publication date
HUE038047T2 (hu) 2018-09-28
ES2656333T3 (es) 2018-02-26
JP5523164B2 (ja) 2014-06-18
CN102770987B (zh) 2015-06-10
US9023515B2 (en) 2015-05-05
US20120315807A1 (en) 2012-12-13
EP2555281A4 (en) 2015-05-27
EP2555281A1 (en) 2013-02-06
CN102770987A (zh) 2012-11-07
TWI482342B (zh) 2015-04-21
KR20120127734A (ko) 2012-11-23
KR101421859B1 (ko) 2014-07-22
PL2555281T3 (pl) 2018-05-30
EP2555281B1 (en) 2018-01-10
TW201222943A (en) 2012-06-01
JP2011210481A (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5523164B2 (ja) 電極端子、及び電極端子の製造方法
JP5570383B2 (ja) 導電性連結部材、導電性連結部材の製造方法、及び導電性連結部材が電極とされたバッテリ
JP5523165B2 (ja) バスバーの製造方法
US8801444B2 (en) Busbar and busbar manufacturing method
JP5483348B2 (ja) バスバーの製造方法
CN100487954C (zh) 可充电电池
US20140242440A1 (en) Prismatic secondary battery
US8119280B2 (en) Cap assembly for a high current capacity energy delivery device
CN103682227B (zh) 用于电连接蓄电池模块的蓄电池单池的ω形的连接元件
KR20110037943A (ko) 전지 및 그 제조 방법
EP2160777B1 (en) Cap assembly for a high current capacity energy delivery device
US20140038013A1 (en) Method for manufacturing a connecting contact for an electrode of an electrochemical store, method for manufacturing an electrochemical store, and electrochemical store
CN101553892B (zh) 电容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010726.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579756

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011762686

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127025600

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE