WO2011120829A2 - Optische messeinrichtung und lichtwellenleiter - Google Patents
Optische messeinrichtung und lichtwellenleiter Download PDFInfo
- Publication number
- WO2011120829A2 WO2011120829A2 PCT/EP2011/054170 EP2011054170W WO2011120829A2 WO 2011120829 A2 WO2011120829 A2 WO 2011120829A2 EP 2011054170 W EP2011054170 W EP 2011054170W WO 2011120829 A2 WO2011120829 A2 WO 2011120829A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical waveguide
- capillary
- optical
- measuring device
- fiber bragg
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 84
- 238000005259 measurement Methods 0.000 title abstract description 6
- 239000000835 fiber Substances 0.000 claims description 54
- 239000004918 carbon fiber reinforced polymer Substances 0.000 claims description 13
- 229920001296 polysiloxane Polymers 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 8
- 239000011152 fibreglass Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 9
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/32—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
- G01K11/3206—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/08—Protective devices, e.g. casings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02195—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
- G02B6/02204—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using thermal effects, e.g. heating or cooling of a temperature sensitive mounting body
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02209—Mounting means, e.g. adhesives, casings
Definitions
- the invention relates to an optical measuring device according to the preamble of claim 1 and a waveguide according to the preamble of claim 13.
- Optical measuring devices employing optical fibers with fiber Bragg grating sensors are well-known in the art for measuring temperature and strain, especially for their high accuracy and reliability over long periods of time.
- Fiber Bragg gratings are to be understood as optically active structures in the core of glass fibers which are characterized by a substantially periodic modulation of the refractive index along the fiber.
- fiber Bragg gratings are incorporated in the core of the optical waveguides, for example by means of laser introduced frequency filter.
- Sensors with fiber Bragg gratings may each have different specific centroid wavelengths - the so-called Bragg wavelengths - which vary with temperature and strain.
- the fiber Bragg grating changes its optical properties under mechanical and / or temperature influences as follows.
- the reflection wavelength of the grating changes.
- the change in the reflection wavelength thus represents a measure of expansions and temperatures.
- a temperature change ⁇ T results in both a refractive index change and a change in length of a fiber Bragg grating, which on the one hand causes a change in the wavelength of the light guided in the optical waveguide and, on the other hand a change in the grid spacing brings with it. Both effects thus lead to a change in the wavelength of the reflected peak.
- DE 10 2006 025 700 A1 describes an optical measuring device for temperature determination in a cryogenic environment which has an optical waveguide which is provided with at least one fiber Bragg grating sensor and via which the at least one fiber Bragg grating sensor is queryable. Furthermore, the measuring device comprises feed means for feeding a light signal into the at least one optical waveguide and evaluation means for determining a temperature measurement value from a light signal coming from the at least one fiber Bragg grating sensor.
- the fiber Bragg grating sensors are interrogated by a light signal generated by a broadband light source. Via a coupler and one or more optical waveguides, the light signal is fed into the fiber Bragg grating sensors.
- each fiber Bragg grating sensor a component with the respective center-of-gravity wavelength is reflected back as a partial-reflection signal by the light signal fed in.
- the remainder of the light signal passes through the relevant fiber Bragg grating sensor and, if appropriate, encounters the next fiber Bragg grating sensor.
- optical fibers with fiber Bragg grating sensors it is necessary to embed them in laminate panels, for example, carbon fiber reinforced plastics (CFRP) or glass fiber reinforced plastics (GRP).
- CFRP carbon fiber reinforced plastics
- GRP glass fiber reinforced plastics
- this is problematic in view of the very sensitive optical fibers.
- the fiber optic cable embedded in the CFRP or GFRP laminate or on the one or more fiber Bragg grating sensor / sensors provided therein act on undesired forces which may damage the optical waveguide or negatively influence or distort the measurement result.
- the pressure caused by the epoxy after embedding on the fiber Bragg grating sensor (s) causes undesirable birefringence rendering the sensor (s) useless for measurement purposes.
- an optical measuring device which has at least one optical waveguide is provided which comprises at least one fiber Bragg grating sensor, wherein the at least one optical waveguide is at least partially, in particular in the region of the at least one fiber Bragg grating sensor of a Sheath element is surrounded, wherein the jacket element is a capillary-like element, and wherein an elastic mass is provided in the capillary-like element which at least partially fills a gap between the outer periphery of the at least one optical waveguide an inner periphery of the capillary-like element forms the capillary for the fiber Bragg grating sensor effective protection and effectively prevents an externally applied negative force on the at least one fiber Bragg grating sensor.
- the capillary-shaped element with the elastic mass therein over the corresponding sensor point is pushed, on the one hand penetration of other materials, such as resin or adhesive, is prevented in the glass capillary or the fiber Bragg grating sensor is shielded from the influence of force of the adhesive or the resin.
- the elastic material such as silicone, is still flexible to allow tensile and compressive forces to the fiber Bragg grating sensor.
- the jacket element is made of glass. This has the advantage that on the one hand this is a particularly hard material and on the other hand it is the same material as the material of the at least one optical waveguide. It is particularly preferred if the jacket element made of glass is also provided with a polyimide coating.
- the jacket element may also be made of a different material, such as a plastic such as PEEK, ceramic, steel or stainless steel. It is important, however, that the material of the jacket element has sufficient hardness.
- the at least one optical waveguide comprises a plurality of fiber Bragg grating sensors, wherein each of the fiber Bragg grating sensors is surrounded by a respective capillary-shaped element, or wherein the plurality of fiber Bragg grating Sensors is surrounded by a single capillary-shaped element.
- each of the fiber Bragg grating sensors is advantageously protected from externally applied forces, and a reliable measurement result and a long life of the optical measuring device can be ensured in a cost-effective manner.
- the elastic mass is silicone, in particular temperature-resistant silicone.
- the at least one optical waveguide is surrounded over substantially its entire length by the capillary-shaped element, whereby a continuous protection is provided.
- this embodiment is particularly easy to produce, since instead of a plurality of capillary-like elements which are to be arranged at predetermined positions on the at least one optical waveguide, only a single capillary-shaped element is mounted on the at least one optical waveguide.
- the elastic mass substantially completely fills the gap between the outer circumference of the optical waveguide and an inner periphery of the capillary-shaped glass element.
- the elastic mass closes, in particular seals, an entry opening of the capillary-like element into which the optical waveguide is introduced, and an exit opening of the capillary-like element from which the optical waveguide exits from the capillary-shaped element.
- the at least one optical waveguide is embedded in a carbon fiber reinforced plastic laminate or in a glass fiber reinforced plastic laminate.
- the carbon fiber reinforced plastic laminate or glass fiber reinforced plastic laminate with the optical waveguide embedded therein forms a module, the module being baked in an autoclave.
- the optical waveguide is a DTG (Draw Tower Grating) fiber, in particular with an ORMOCER coating.
- an optical waveguide with at least one fiber Bragg grating sensor is furthermore provided, wherein the optical waveguide is provided on its outer periphery by at least one section, in particular in the region of the at least one fiber Bragg grating sensor, by a capillary-like element is surrounded, and wherein the optical waveguide in the capillary-shaped element is at least partially surrounded by an elastic mass, which brings the advantages already shown above with it.
- the elastic mass silicone in particular temperature-resistant silicone.
- FIG. 1A is a side sectional view through an optical waveguide embedded in a CFRP laminate according to an embodiment
- Fig. 1B is a cross-section through the CFK laminate shown in Fig. 1 A.
- Fig.l A is a side sectional view through an embedded in a CFRP laminate 1, 1 'optical waveguide 2 before baking.
- the optical waveguide 2 may also be embedded, for example, in a GRP laminate.
- the optical waveguide 2 is constructed of a glass fiber with a fiber core and fiber cladding not shown in detail here.
- a plurality of fiber Bragg grating sensors 3 the arrangement of which is schematically indicated here by the reference numerals 3, 3 ', 3 ", 3"', over a longitudinal section the optical waveguide 2 arranged one behind the other, which operate for temperature or strain measurement in the manner already described above.
- a jacket element 4 is provided, which covers the longitudinal section of the optical waveguide 2 with the fiber Bragg gratings Sensors 3, 3 ', 3 ", 3"' surrounds.
- the jacket element 4 is a capillary-like element 5 made of glass, which is provided with a polyimide coating.
- an elastic mass 8 is provided, which in the embodiment consists of silicone.
- the elastic mass 8 seals an inlet opening 9, through which the optical waveguide 2 is inserted into the capillary-like element 5, and an outlet opening 10 through which the optical waveguide 2 emerges from the capillary-like element 5, so that no other materials are used here , such as glue or resin, which would otherwise enter the inlet opening 9 and the outlet opening 10 during lamination, can penetrate.
- Fig. 1 B is a cross section through the in Fig. 1 A 'shown after baking, wherein the two plates of the CFRP laminate 1, 1' are fused into one unit.
- the CFRP module 13 has been laminated by means of a manufacturing process in an autoclave at a negative pressure of 6 bar, a temperature of 135 ° C with a baking time of 2 hours.
- the optical waveguide 2 is, as already described, surrounded by the capillary-like element 5 and the elastic mass 8, whereby an effective protection for the provided in the optical waveguide 2 fiber Bragg grating sensors 3, 3 ', 3 ", 3 '' is offered. LIST OF REFERENCE NUMBERS
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Die Erfindung betrifft einen Lichtwellenleiter und eine optische Messeinrichtung, welche zumindest einen Lichtwellenleiter (2) aufweist, welcher zumindest einen Faser-Bragg-Gitter-Sensor (3, 3', 3'', 3''') umfasst, wobei der zumindest eine Lichtwellenleiter (2) zumindest teilweise, insbesondere im Bereich des zumindest einen Faser-Bragg-Gitter-Sensors (3, 3', 3'', 3'''), von einem Mantelelement (4) umgeben ist, wobei das Mantelelement (4) ein kapillarartig ausgebildetes Element (5) ist, und wobei eine elastische Masse (8) in dem kapillarartig ausgebildeten Element (5) vorgesehen ist, welche einen Zwischenraum zwischen dem äußeren Umfang des zumindest einen Lichtwellenleiters (6) und dem inneren Umfang (7) des kapillarartig ausgebildeten Elements (5) zumindest teilweise ausfüllt.
Description
Optische Messeinrichtung und Lichtwellenleiter
Die Erfindung betrifft eine optische Messeinrichtung gemäß der Gattung des Anspruchs 1 sowie einen Wellenleiter gemäß der Gattung des Anspruchs 13.
Optische Messeinrichtungen, die Lichtwellenleiter mit Faser-Bragg-Gitter-Sensoren einsetzen, sind besonders wegen ihrer hohen Genauigkeit und Zuverlässigkeit über lange Zeiträume im Stand der Technik zur Messung von Temperatur und Dehnung geschätzt.
Faser-Bragg-Gitter sind als optisch wirksame Strukturen im Kern von Glasfasern zu verstehen, die durch eine im Wesentlichen periodische Modulation des Brechnungsindex entlang der Faser charakterisiert sind. Insbesondere sind Faser- Bragg-Gitter in den Kern von den Lichtwellenleitern beispielsweise mittels Laser eingebrachte Frequenzfilter. Sensoren mit Faser-Bragg-Gittern können jeweils unterschiedliche spezifische Schwerpunktswellenlängen - die so genannten Bragg- Wellenlängen - aufweisen, welche sich mit Temperatur und Dehnung ändern.
Das Faser-Bragg-Gitter ändert seine optischen Eigenschaften unter mechanischen und/oder Temperatureinflüssen wie folgt. Wirken äußere Kräfte/und oder Temperaturänderungen auf das Faser-Bragg-Gitter, so ändert sich die Reflexionswellenlänge des Gitters. Die Änderung der Reflexionswellenlänge stellt also ein Maß für Dehnungen und Temperaturen dar. Eine Temperaturänderung Δ T hat dementsprechend sowohl eine Brechzahländerung als auch eine Längenänderung eines Faser-Bragg-Gitters zur Folge, was einerseits eine Änderung der Wellenlänge des im Lichtwellenleiter geführten Lichts bewirkt und andererseits
eine Änderung des Gitterabstandes mit sich bringt. Beide Effekte führen also zu einer Wellenlängenänderung des reflektierten Peaks.
In DE 10 2006 025 700 A1 ist eine optische Messeinrichtung zur Temperaturbestimmung in einer kryogenen Umgebung beschrieben, welche einen Lichtwellenleiter aufweist, der mit mindestens einem Faser-Bragg-Gitter-Sensor versehen ist und über welchen der mindestens eine Faser-Bragg-Gitter-Sensor abfragbar ist. Weiterhin umfasst die Messeinrichtung Einspeisemittel zur Einspeisung eines Lichtsignals in den mindestens einen Lichtwellenleiter und Auswertemittel zur Bestimmung eines Temperaturmesswertes aus einem von dem mindestens einen Faser-Bragg-Gitter-Sensor kommenden Lichtsignal. Die Faser-Bragg-Gitter- Sensoren werden dabei von einem Lichtsignal abgefragt, das von einer breitbandigen Lichtquelle erzeugt wird. Über einen Koppler und einen oder mehrere Lichtwellenleiter wird das Lichtsignal in die Faser-Bragg-Gitter-Sensoren eingespeist. In jedem Faser-Bragg-Gitter-Sensor wird von dem eingespeisten Lichtsignal ein Anteil mit der jeweiligen Schwerpunktswellenlänge als Teil-Reflex-Signal zurückreflektiert. Der übrige Teil des Lichtsignals passiert dagegen den betreffenden Faser-Bragg-Gitter-Sensor und trifft gegebenenfalls auf den nächsten Faser-Bragg- Gitter-Sensor. Am Koppler steht dann ein von den Faser-Bragg-Gitter-Sensoren zurückreflektiertes Lichtsignal an, das sich aus den Teil-Reflex-Lichtsignalen der einzelnen Faser-Bragg-Gitter-Sensoren zusammensetzt. Erfährt der Faser-Bragg- Gitter-Sensor eine Temperaturänderung, ändert sich dessen Schwerpunktswellenlänge entsprechend dem Betrag der Temperaturänderung und damit der Wellenlängengehalt (= das Wellenlängenspektrum) des vom betreffenden Sensor reflektierten Teil-Reflex-Lichtsignals. Diese Veränderung im Wellenlängengehalt dient dann als Maß für die zu erfassende Temperaturänderung, wobei die Auswerteeinheit das empfangene Lichtsignal auswertet.
In einigen Anwendungen der Lichtwellenleiter mit Faser-Bragg-Gitter-Sensoren ist es erforderlich, diese in Laminatplatten beispielsweise aus Kohlefaserverstärkten Kunststoffen (CFK) oder Glasfaserverstärkten Kunststoffen (GFK) einzubetten. Dies ist im Hinblick auf die sehr empfindlichen Lichtwellenleiter jedoch problematisch. Auf
den im CFK- oder GFK-Laminat eingebetteten Lichtwellenleiter bzw. auf den/die darin vorgesehenen einen oder mehrere Faser-Bragg-Gitter-Sensor/Sensoren wirken unerwünschte Kräfte ein, die den Lichtwellenleiter schädigen oder das Messergebnis negativ beeinflussen bzw. verfälschen können. Insbesondere verursacht der durch den Epoxidharz nach dem Einbetten auf den/die Faser-Bragg-Gitter- Sensor/Sensoren verursachte Druck eine unerwünschte Doppelbrechung, was den/die Sensor/Sensoren für Messzwecke unbrauchbar macht.
Daher ist es die Aufgabe der vorliegenden Erfindung, eine optische Messeinrichtung zu schaffen, bei welcher ein einfacher und effektiver Schutz für einen Lichtwellenleiter bzw. den darin enthaltenen zumindest einen Faser-Bragg-Gitter- Sensor beim Einbetten in ein Laminat erzielt wird.
Diese Aufgabe wird durch eine optische Messeinrichtung mit den Merkmalen gemäß Anspruch 1 sowie durch einen Lichtwellenleiter mit den Merkmalen gemäß Anspruch 13 gelöst. Vorteilhafte Weiterbildungen sind in den jeweiligen Unteransprüchen definiert.
Erfindungsgemäß wird eine optische Messeinrichtung, welche zumindest einen Lichtwellenleiter aufweist, bereitgestellt, welche zumindest einen Faser-Bragg-Gitter- Sensor umfasst, wobei der zumindest eine Lichtwellenleiter zumindest teilweise, insbesondere im Bereich des zumindest einen Faser-Bragg-Gitter-Sensors, von einem Mantelelement umgeben ist, wobei das Mantelelement ein kapillarartig ausgebildetes Element ist, und wobei eine elastische Masse in dem kapillarartig ausgebildeten Element vorgesehen ist, welche einen Zwischenraum zwischen dem äußeren Umfang des zumindest einen Lichtwellenleiters einem inneren Umfang des kapillarartig ausgebildeten Elements zumindest teilweise ausfüllt Die Kapillare bildet für den Faser-Bragg-Gitter-Sensor einen effektiven Schutz und verhindert effektiv eine von außen einwirkende negative Krafteinwirkung auf den zumindest einen Faser-Bragg-Gitter-Sensor. Darüber hinaus ist vorteilhaft, dass, wenn das kapillarartig ausgebildete Element mit der elastischen Masse darin über die
entsprechende Sensorstelle geschoben wird, einerseits ein Eindringen von anderen Materialien, wie beispielsweise Harz bzw. Kleber, in die Glaskapillare verhindert wird bzw. der Faser-Bragg-Gitter-Sensor vor dem Krafteinfluss des Klebers oder des Harzes abgeschirmt wird. Nach einem Aushärteprozess ist das elastische Material, wie beispielsweise Silikon, jedoch immer noch flexibel, um Zug- und Druckkräfte an den Faser-Bragg-Gitter-Sensor zuzulassen.
Gemäß einer bevorzugten Ausführungsform ist das Mantelelement aus Glas hergestellt. Dies hat den Vorteil, dass es sich hierbei einerseits um ein besonders hartes Material und andererseits um das gleiche Material wie das Material des zumindest einen Lichtwellenleiters handelt. Besonders bevorzugt ist es, wenn das Mantelelement aus Glas darüber hinaus mit einer Polyimidbeschichtung versehen ist.
Gemäß einer alternativen Ausführungsform kann das Mantelelement auch aus einem anderen Material wie beispielsweise aus einem Kunststoff wie PEEK, aus Keramik, Stahl oder Edelstahl hergestellt sein. Wichtig ist jedoch, dass das Material des Mantelelements eine ausreichende Härte aufweist.
Gemäß einer bevorzugten Ausführungsform umfasst der zumindest eine Lichtwellenleiter eine Vielzahl von Faser-Bragg-Gitter-Sensoren, wobei jeder der Faser-Bragg-Gitter-Sensoren von einem jeweiligen kapillarartig ausgebildeten Element umgeben ist, oder wobei die Vielzahl von Faser-Bragg-Gitter-Sensoren von einem einzigen kapillarartig ausgebildeten Element umgeben ist. So ist vorteilhafter Weise jeder der Faser-Bragg-Gitter-Sensoren vor von außen einwirkenden Kräften geschützt, und ein zuverlässiges Messergebnis sowie eine lange Lebensdauer der optischen Messeinrichtung kann auf kostengünstige Weise sichergestellt werden.
Vorzugsweise ist die elastische Masse Silikon, insbesondere temperaturfestes Silikon.
Gemäß noch einer bevorzugten Ausführungsform ist der zumindest eine Lichtwellenleiter im Wesentlichen über seine gesamte Länge von dem kapillarartig ausgebildeten Element umgeben, wodurch ein kontinuierlicher Schutz geboten wird. Auch ist diese Ausführungsform besonders einfach herstellbar, da anstelle von mehreren kapillarartig ausgebildeten Elementen, die an vorbestimmten Positionen an dem zumindest einen Lichtwellenleiter anzuordnen sind, lediglich ein einziges kapillarartig ausgebildetes Element auf den zumindest einen Lichtwellenleiter aufgezogen wird.
Vorzugsweise füllt die elastische Masse den Zwischenraum zwischen dem äußeren Umfang des Lichtwellenleiters einem inneren Umfang des kapillarartig ausgebildeten Elements aus Glas im Wesentlichen vollständig aus.
Es ist darüber hinaus bevorzugt, wenn die elastische Masse eine Eintrittsöffnung des kapillarartig ausgebildeten Elements, in welche der Lichtwellenleiter eingeführt wird, und eine Austrittsöffnung des kapillarartig ausgebildeten Elements, aus welcher der Lichtwellenleiter aus dem kapillarartig ausgebildeten Element austritt, verschließt, insbesondere abdichtet. Hierdurch wird effektiv ein Eindringen von anderen Materialien in die Glaskapillare verhindert, die den Lichtwellenleiter bzw. die Faser- Bragg-Gitter-Sensoren beschädigen oder negativ beeinflussen könnten.
Gemäß noch einer bevorzugten Ausführungsform ist der zumindest eine Lichtwellenleiter in einem Kohlenstofffaser-verstärkten Kunststofflaminat oder in einem Glasfaser-verstärkten Kunststofflaminat eingebettet.
Vorzugsweise bildet das Kohlenstofffaser-verstärkte Kunststofflaminat oder das Glasfaser-verstärkte Kunststofflaminat mit dem darin eingebetteten Lichtwellenleiter ein Modul, wobei das Modul in einem Autoklaven ausgebacken wird.
Besonders bevorzugt ist es, wenn der Lichtwellenleiter eine DTG-(Draw Tower Grating)-Faser, insbesondere mit einer ORMOCER-Beschichtung, ist.
Erfindungsgemäß ist darüber hinaus ein Lichtwellenleiter mit zumindest einem Faser- Bragg-Gitter-Sensor vorgesehen, wobei der Lichtwellenleiter an seinem äußeren Umfang über zumindest einen Abschnitt, insbesondere in dem Bereich des zumindest einen Faser-Bragg-Gitter-Sensors, von einem kapillarartig ausgebildeten Element umgeben ist, und wobei der Lichtwellenleiter in dem kapillarförmig ausgebildeten Element zumindest teilweise von einer elastischen Masse umgeben ist, was die oben bereits dargestellten Vorteilen mit sich bringt.
Gemäß einer bevorzugten Ausführungsform die elastischen Masse Silikon, insbesondere temperaturfestes Silikon.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung detailliert erläutert. In der Zeichnung zeigen:
Fig.l A eine seitliche Schnittansicht durch einen in einem CFK-Laminat eingebetteten Lichtwellenleiter gemäß einer Ausführungsform; und
Fig. 1 B ein Querschnitt durch das in Fig. 1 A dargestellte CFK-Laminat.
Fig.l A ist eine seitliche Schnittansicht durch einen in einem CFK-Laminat 1 , 1 ' eingebetteten Lichtwellenleiter 2 vor dem Ausbacken. Alternativ kann der Lichtwellenleiter 2 ebenso beispielsweise in einem GFK-Laminat eingebettet sein. Der Lichtwellenleiter 2 ist aus einer Glasfaser mit einem hier nicht im Einzelnen dargestellten Faserkern und Fasermantel aufgebaut. In dem Lichtwellenleiter 2 ist eine Vielzahl von Faser-Bragg-Gitter-Sensoren 3, deren Anordnung hier schematisch durch die Bezugszeichen 3, 3', 3", 3"' angedeutet ist, über einen Längenabschnitt
des Lichtwellenleiters 2 hintereinander angeordnet vorgesehen, welche zur Temperatur- oder Dehnungsmessung auf die oben bereits beschriebene Art und Weise arbeiten. An dem Längenabschnitt des Lichtwellenleiters 2, in welchem die Faser-Bragg-Gitter-Sensoren 3, 3', 3", 3"' angeordnet sind, ist ein Mantelelement 4 vorgesehen, welches den Längenabschnitt des Lichtwellenleiters 2 mit den Faser- Bragg-Gitter-Sensoren 3, 3', 3", 3"' umgibt. Das Mantelelement 4 ist ein kapillarartig ausgebildetes Element 5 aus Glas, welches mit einer Polyimidbeschichtung versehen ist. Zwischen einem äußeren Umfang 6 des Lichtwellenleiters 2 und dem inneren Umfang 7 des kapillarartig ausgebildeten Elements 5 ist eine elastische Masse 8 vorgesehen, die in der Ausführungsform aus Silikon besteht. Das kapillarartig ausgebildete Element 5 aus Glas bildet zusammen mit der elastischen Masse 8 aus Silikon einen wirksamen Schutz für den Lichtwellenleiter 2 bzw. die Faser-Bragg-Gitter-Sensoren 3, 3', 3", 3"'. Insbesondere dichtet die elastische Masse 8 eine Eintrittsöffnung 9, durch welche der Lichtwellenleiter 2 in das kapillarartig ausgebildete Element 5 eingeführt wird, und eine Austrittsöffnung 10, durch welche der Lichtwellenleiter 2 aus dem kapillarartig ausgebildeten Element 5 austritt, ab, so dass hier keine anderen Materialien, wie beispielsweise Kleber bzw. Harz, der beim Laminieren ansonsten in die Eintrittsöffnung 9 und die Austrittsöffnung 10 eintreten würde, eindringen können.
Fig. 1 B ist ein Querschnitt durch das in Fig . 1 A dargestellte CFK-Laminat 1 , 1 ' nach dem Ausbacken, wobei die beiden Platten des CFK-Laminats 1 , 1 ' zu einer Einheit verschmolzen sind. In der Ausführungsform ist das CFK-Modul 13 mittels eines Herstellungsverfahrens im Autoklaven bei einem Unterdruck von 6 bar, einer Temperatur von 135 °C mit einer Ausbackzeit von 2 Stunden laminiert worden. Die Prozessbedingungen sind jedoch je nach verwendeten Materialien variabel. Der Lichtwellenleiter 2 ist, wie bereits beschrieben, von dem kapillarartig ausgebildeten Element 5 und von der elastischen Masse 8 umgeben, wodurch ein wirksamer Schutz für die in dem Lichtwellenleiter 2 vorgesehenen Faser-Bragg-Gitter-Sensoren 3, 3', 3", 3"' geboten wird.
Bezugszeichenliste
1 , r CFK-Laminat
2 Lichtwellenleiter
3, 3', 3", 3"' Faser-Bragg-Gitter-Sensoren
4 Mantelelement
5 kapillarartig ausgebildetes Element
6 äußerer Umfang des Lichtwellenleiters
7 innerer Umfang des kapillarartig ausgebildeten Elements
8 elastische Masse
9 Eintrittsöffnung
10 Austrittsöffnung
1 1 erste Platte
12 zweite Platte
13 CFK-Modul
Claims
Ansprüche
Optische Messeinnchtung, welche zumindest einen Lichtwellenleiter (2) aufweist, welcher zumindest einen Faser-Bragg-Gitter-Sensor (3, 3', 3", 3"') umfasst, wobei der zumindest eine Lichtwellenleiter
(2) zumindest teilweise, insbesondere im Bereich des zumindest einen Faser-Bragg-Gitter-Sensors (3, 3', 3",
3"'), von einem Mantelelement (4) umgeben ist, wobei das Mantelelement (4) ein kapillarartig ausgebildetes Element (5) ist, und wobei eine elastische Masse (8) in dem kapillarartig ausgebildeten Element (5) vorgesehen ist, welche einen Zwischenraum zwischen dem äußeren Umfang des zumindest einen Lichtwellenleiters (6) und dem inneren Umfang (7) des kapillarartig ausgebildeten Elements (5) zumindest teilweise ausfüllt.
Optische Messeinrichtung gemäß Anspruch 1 , wobei das Mantelelement (4) aus Glas hergestellt ist.
Optische Messeinrichtung gemäß Anspruch 1 oder 2, wobei das Mantelelement (4) mit einer Polyimidbeschichtung versehen ist.
Optische Messeinrichtung gemäß irgendeinem der Ansprüche 1 bis 3, wobei die elastische Masse Silikon, insbesondere temperaturfestes Silikon, ist.
Optische Messeinrichtung gemäß Anspruch 1 , wobei das Mantelelement
(4) aus einem Kunststoff, insbesondere aus PEEK, aus einer Keramik, oder aus Stahl, insbesondere aus Edelstahl, hergestellt ist.
Optische Messeinnchtung gemäß irgendeinem der Ansprüche 1 bis 5, wobei der zumindest eine Lichtwellenleiter (2) eine Vielzahl von Faser-Bragg-Gitter- Sensoren (3, 3', 3", 3"') umfasst, wobei jeder der Faser-Bragg-Gitter-Sensoren (3, 3', 3", 3"') von einem jeweiligen kapillarartig ausgebildeten Element (5) umgeben ist, oder wobei die Vielzahl von Faser-Bragg-Gitter-Sensoren (3, 3', 3", 3"') von einem einzigen kapillarartig ausgebildeten Element (5) umgeben ist.
Optische Messeinrichtung gemäß irgendeinem der Ansprüche 1 bis 5, wobei der zumindest eine Lichtwellenleiter (2) im Wesentlichen über seine gesamte Länge von dem kapillarartig ausgebildeten Element
(5) aus Glas umgeben ist.
Optische Messeinrichtung gemäß Anspruch 1 bis 7, wobei die elastische Masse (8) den Zwischenraum zwischen dem äußeren Umfang
(6) des Lichtwellenleiters (2) und dem inneren Umfang
(7) des kapillarartig ausgebildeten Elements (5) aus Glas im Wesentlichen vollständig ausfüllt.
Optische Messeinrichtung gemäß Anspruch 1 bis 8, wobei die elastische Masse
(8) eine Eintrittsöffnung
(9) des kapillarartig ausgebildeten Elements (5), in welche der zumindest eine Lichtwellenleiter (2) eingeführt ist, und eine Austrittsöffnung
(10) des kapillarartig ausgebildeten Elements (5), aus welcher der zumindest eine Lichtwellenleiter (2) aus dem kapillarartig ausgebildeten Element (5) austritt, verschließt, insbesondere abdichtet.
0. Optische Messeinrichtung gemäß irgendeinem der Ansprüche 1 bis 9, wobei der zumindest eine Lichtwellenleiter (2) in einem Kohlenstofffaser verstärkten Kunststofflaminat (1 , 1 ') oder in einem Glasfaser verstärkten Kunststofflaminat eingebettet ist.
1 1 . Optische Messeinnchtung gemäß Anspruch 10, wobei das Kohlenstofffaser verstärkte Kunststofflaminat (1 , 1 ') oder das Glasfaser verstärkte Kunststofflaminat mit dem darin eingebetteten zumindest einen Lichtwellenleiter (2) ein Modul (13) bildet, wobei das Modul (13) mittels eines Herstellungsverfahrens in einem Autoklav ausgebacken ist.
12. Optische Messeinrichtung gemäß irgendeinem der Ansprüche 1 bis 1 1 , wobei der zumindest eine Lichtwellenleiter (2) eine DTG-Faser, insbesondere mit einer Ormocer-Beschichtung, ist.
13. Lichtwellenleiter (2) mit zumindest einem Faser-Bragg-Gitter-Sensor (3, 3', 3", 3"') für eine optische Messeinrichtung gemäß einem der Ansprüche 1 bis 1 1 , wobei der Lichtwellenleiter (2) an seinem äußeren Umfang (6) über zumindest einen Abschnitt, insbesondere im Bereich des zumindest einen Faser-Bragg- Gitter-Sensors (3, 3', 3", 3"'), von einem Mantelelement (4) umgeben ist, wobei das Mantelelement (4) ein kapillarartig ausgebildetes Element (5) ist, und wobei eine elastische Masse (8) in dem kapillarartig ausgebildeten Element (5) vorgesehen ist, welche einen Zwischenraum zwischen dem äußeren Umfang des zumindest einen Lichtwellenleiters (6) und dem inneren Umfang (7) des kapillarartig ausgebildeten Elements (5) zumindest teilweise ausfüllt.
14. Lichtwellenleiter nach Anspruch 13, wobei die elastische Masse (8) Silikon, insbesondere temperaturfestes Silikon, ist.
15. Lichtwellenleiter (2) nach Anspruch 13 oder 14, wobei der Lichtwellenleiter (2) eine DTG-Faser, insbesondere mit einer Ormocer-Beschichtung, ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010013897.5 | 2010-04-01 | ||
DE201010013897 DE102010013897B4 (de) | 2010-04-01 | 2010-04-01 | Optische Messeinrichtung und Lichtwellenleiter |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011120829A2 true WO2011120829A2 (de) | 2011-10-06 |
WO2011120829A3 WO2011120829A3 (de) | 2011-12-01 |
Family
ID=44545994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/054170 WO2011120829A2 (de) | 2010-04-01 | 2011-03-18 | Optische messeinrichtung und lichtwellenleiter |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102010013897B4 (de) |
WO (1) | WO2011120829A2 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257250A (zh) * | 2015-06-16 | 2016-12-28 | 波音公司 | 用于层压结构的传感器系统 |
DE102018106710A1 (de) * | 2018-03-21 | 2019-09-26 | fos4X GmbH | Temperatursensor |
DE102018106712A1 (de) * | 2018-03-21 | 2019-09-26 | fos4X GmbH | Spule und Verfahren zum Herstellen einer Spule |
EP4276432A1 (de) * | 2022-05-13 | 2023-11-15 | Kistler Holding AG | Optisch arbeitender temperatursensor, verwendung des temperatursensors und batteriezellenanordnung mit wenigstens einem temperatursensor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011118526A1 (de) * | 2011-11-15 | 2013-05-16 | Hottinger Baldwin Messtechnik Gmbh | FBG-Dehnungssensor |
DE102014200955A1 (de) * | 2014-01-21 | 2015-07-23 | Bayerische Motoren Werke Aktiengesellschaft | Erfassung von lokalen Temperaturen eines in einem Presswerkzeug angeordneten Bauteils aus einem Faserverbundwerkstoff |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006025700A1 (de) | 2006-06-01 | 2007-12-06 | Siemens Ag | Optische Messeinrichtung zur Temperaturbestimmung in einer kryogenen Umgebung und temperaturüberwachbare Wickelanordnung |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU778263B2 (en) * | 1998-12-04 | 2004-11-25 | Cidra Corporation | Strain-isolated optical temperature sensor |
US6278811B1 (en) * | 1998-12-04 | 2001-08-21 | Arthur D. Hay | Fiber optic bragg grating pressure sensor |
CA2323042C (en) * | 1998-12-17 | 2009-02-17 | Chevron U.S.A. Inc. | Apparatus and method for protecting devices, especially fibre optic devices, in hostile environments |
DE10004384C2 (de) * | 2000-02-02 | 2003-04-03 | Daimler Chrysler Ag | Anordnung und Verfahren zur Erfassung von Dehnungen und Temperaturen und deren Veränderungen einer auf einem Träger, insbesondere einem aus Metall, Kunststoff oder Keramik bestehenden Träger, applizierten Deckschicht |
DE10012291C1 (de) * | 2000-03-14 | 2001-09-20 | Reinhausen Maschf Scheubeck | Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor |
US6752537B2 (en) * | 2001-02-12 | 2004-06-22 | Polymicro Technologies, Llc | Connector ferrule and method of sealing |
EP1591627A1 (de) * | 2004-04-27 | 2005-11-02 | Siemens Aktiengesellschaft | Regeleinrichtung für einen Kompressor sowie Verwendung eines Bragg-Gitter-Sensors bei einer Regeleinrichtung |
US7912334B2 (en) * | 2007-09-19 | 2011-03-22 | General Electric Company | Harsh environment temperature sensing system and method |
GB0803448D0 (en) * | 2008-02-26 | 2008-04-02 | Fos & S Fibre Optic Sensors An | Method and means for mounting of optical fibers |
-
2010
- 2010-04-01 DE DE201010013897 patent/DE102010013897B4/de active Active
-
2011
- 2011-03-18 WO PCT/EP2011/054170 patent/WO2011120829A2/de active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006025700A1 (de) | 2006-06-01 | 2007-12-06 | Siemens Ag | Optische Messeinrichtung zur Temperaturbestimmung in einer kryogenen Umgebung und temperaturüberwachbare Wickelanordnung |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257250A (zh) * | 2015-06-16 | 2016-12-28 | 波音公司 | 用于层压结构的传感器系统 |
DE102018106710A1 (de) * | 2018-03-21 | 2019-09-26 | fos4X GmbH | Temperatursensor |
DE102018106712A1 (de) * | 2018-03-21 | 2019-09-26 | fos4X GmbH | Spule und Verfahren zum Herstellen einer Spule |
EP4276432A1 (de) * | 2022-05-13 | 2023-11-15 | Kistler Holding AG | Optisch arbeitender temperatursensor, verwendung des temperatursensors und batteriezellenanordnung mit wenigstens einem temperatursensor |
Also Published As
Publication number | Publication date |
---|---|
DE102010013897B4 (de) | 2012-01-26 |
WO2011120829A3 (de) | 2011-12-01 |
DE102010013897A1 (de) | 2011-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102010013897B4 (de) | Optische Messeinrichtung und Lichtwellenleiter | |
DE68923194T2 (de) | Messfühler mit optischer Faser zum Nachweis chemischer Änderungen in Materialien. | |
DE10012291C1 (de) | Verfahren zur faseroptischen Temperaturmessung und faseroptischer Temperatursensor | |
DE69912301T2 (de) | Sensor zur messung mechanischer spannungen mit fiber-optischen bragg gittern | |
DE102016100432A1 (de) | Automatisch vorgespannte und vollständig von einer Feder ummantelte Lichtleiter-Sensorstruktur | |
EP3353501B1 (de) | Lichtleiter-einspannvorrichtung, faseroptischer sensor und herstellungsverfahren | |
DE102007050576B4 (de) | Vorrichtung zum Erfassen der Belastung eines Lagers | |
DE102007048817B4 (de) | Sensor zum Messen von Spannungen in einem Substrat | |
DE102010012924A1 (de) | Massenstromsensor und Verfahren zur Bestimmung des Massenstroms in einem Rohr | |
EP2733474B1 (de) | Dehnungsmessstreifen und mechanische Komponente | |
DE3341048A1 (de) | Faser-optik-thermometer | |
EP1896813A2 (de) | Optischer dehnungsmessstreifen | |
DE102009039259B4 (de) | Überwachung von Walzenlagern | |
EP1049916B1 (de) | Faseroptischer kraftsensor, verwendung zur schliessakantenüberwachung, und herstellungsverfahren | |
DE202011004622U1 (de) | Schraube | |
DE102010011610A1 (de) | Optisches Sensorkabel und Verwendung des Sensorkabels während der Installation eines Relining-Schlauchs | |
DE102008015065B4 (de) | ATR-Sonde | |
DE10253821B3 (de) | Messvorrichtung | |
WO2019180161A1 (de) | Temperatursensor | |
DE10238862B4 (de) | Messtechnische Anordnung zur Prüfung von Werkstücken sowie Verfahren zur messtechnischen Instrumentierung von Werkstücken | |
DE102011077495A1 (de) | Messvorrichtung zur Erfassung von Kräften in einem Lager | |
DE102019112876B3 (de) | Faserverbundbauteil, Adaptereinheit, faseroptische Sensoreinrichtung und Herstellungsverfahren hierzu | |
WO2009149971A1 (de) | Lagerschale für ein gleitlager sowie vorrichtung und verfahren zum ortsaufgelösten ermitteln der temperatur einer lagerschale in einem gleitlager | |
EP2079997B1 (de) | Anordnung zur überwachung eines beanspruchten körpers und verfahren zu deren herstellung | |
DE102015210604B4 (de) | Verfahren zur Ermittlung von Materialeigenschaften |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11738634 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
122 | Ep: pct app. not ent. europ. phase |
Ref document number: 11738634 Country of ref document: EP Kind code of ref document: A2 |