WO2011120438A1 - 一种通信网络组播保护方法、系统及设备 - Google Patents
一种通信网络组播保护方法、系统及设备 Download PDFInfo
- Publication number
- WO2011120438A1 WO2011120438A1 PCT/CN2011/072331 CN2011072331W WO2011120438A1 WO 2011120438 A1 WO2011120438 A1 WO 2011120438A1 CN 2011072331 W CN2011072331 W CN 2011072331W WO 2011120438 A1 WO2011120438 A1 WO 2011120438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- multicast
- node
- network
- link
- backup
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 claims description 14
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000007257 malfunction Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 8
- 230000008929 regeneration Effects 0.000 abstract 1
- 238000011069 regeneration method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0654—Management of faults, events, alarms or notifications using network fault recovery
- H04L41/0659—Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1863—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/16—Multipoint routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/28—Routing or path finding of packets in data switching networks using route fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
- H04L45/484—Routing tree calculation using multiple routing trees
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
Definitions
- the present invention relates to the technical field of network technologies, and in particular, to a communication network multicast protection method, system and device. Background technique
- the multicast technology effectively solves the problem of single-point transmission and multi-point reception, and realizes efficient point-to-multipoint data transmission in the network, which can save network bandwidth and reduce network load. It is easier to provide some new value-added services by using the multicast characteristics of the network.
- a typical multicast forwarding usually uses the Internet Group Multicast Protocol (IGMP) to establish and maintain multicast membership between a host and a router or a Broadband Remote Access Server (BRAS).
- IGMP Internet Group Multicast Protocol
- BRAS Broadband Remote Access Server
- the multicast routing protocol is run between the multicast routers.
- the multicast routing protocol is used to establish and maintain multicast routes and forward multicast data packets correctly and efficiently. In this way, all users joining the multicast group can receive the multicast service flow.
- Some existing multicast protection technologies mainly use the spanning tree protocol, the fast spanning tree protocol, and the multiple spanning tree protocol to regenerate the network topology when the link on the network fails, and re-pass the Internet in the new network topology.
- the multicast protocol generates a new multicast tree and forwards multicast messages.
- the prior art detects a specific link by configuring OAM (Operation and Maintenance) on the network:
- OAM Operaation and Maintenance
- the source node periodically sends an announcement to the sink node at the other end of the link.
- the sink node receives the advertisement packet and detects whether the packet is normally received. If the sink node finds that the advertisement packet sent by the source node is not received normally in several cycles, the detected link is faulty.
- Embodiments of the present invention provide a communication network multicast protection method, system, and device.
- a communication network multicast protection method includes:
- the network fault is detected according to whether the detection information sent by the master node or the multicast source is detected. When the network fault is detected, the silent state of the multicast tree is released.
- a communication network multicast protection system comprising:
- the master node is configured to periodically send an advertisement packet to the backup node through the multicast source and the ring network, and the multicast source is configured to periodically send the advertisement packet to the backup node.
- the backup node is configured to receive a multicast protocol packet, generate a multicast tree according to the multicast protocol packet, and set the multicast tree to a silent state;
- the network fault is detected according to whether the advertisement packet sent by the master node or the multicast source is detected. When the network fault is detected, the quiet state of the multicast tree is released.
- a communication network multicast protection system comprising:
- the master node is configured to periodically send link state information to the backup node, and send an advertisement message to the backup node through the ring network timing;
- the backup node is configured to receive a multicast protocol packet, and generate a multicast tree according to the multicast protocol packet to set the multicast tree to a silent state;
- the network fault is detected according to whether the link state information or the advertisement packet sent by the master node is detected, and when the network fault is detected, the silence state of the multicast tree is released.
- a network backup node device includes:
- the quiet module is configured to set, by the backup node, a multicast tree generated according to the received multicast protocol packet sent by each node in the network as a silent state;
- a detecting module configured to detect a network fault according to detecting whether the detection information sent by the primary node or the multicast source is received;
- the quiesce module is used to release the quiet state of the multicast tree when a network fault is detected.
- the backup node generates a multicast tree as a backup, and sets a silent state.
- the backup multicast tree is deactivated, and the multicast packet is forwarded. Text.
- the backup multicast tree quickly forwards the multicast packets. It no longer relies on the re-generation of the network topology and generates a new multicast tree, which greatly improves the recovery speed of the multicast service and improves the user experience.
- 1 is a data flow diagram of a communication network multicast protection method
- FIG. 2 is a logical structure diagram of a communication network multicast protection system
- Figure 3 is a logical structure diagram of a network backup node device
- Figure 4 is a block diagram of a multicast virtual local area network
- Figure 5 is a schematic diagram of multicast virtual local area network multicast packets
- Figure 6 is a schematic diagram of multicast packets when the link of the multicast virtual local area network ring is faulty. detailed description
- Embodiments of the present invention provide a communication network multicast protection method. Embodiments of the present invention also provide a corresponding communication network multicast protection system and device. The details are described below separately.
- a first embodiment of a communication network multicast protection method in an embodiment of the present invention includes:
- the backup node receives the multicast protocol packet sent by other nodes in the network, generates a multicast tree according to the received multicast protocol packet, and then sets the generated multicast tree to be in a silent state, that is, the backup node receives the multicast sent by the multicast source. When the message is sent, it is not sent down but discarded.
- the network fault is detected according to whether the detection information sent by the master node or the multicast source is detected.
- the detection information received by the backup node may be an advertisement packet or a link state information, and the link state information is a master node and multicast. Link state information between sources.
- the backup node detects the network status process differently according to the received detection information. Specifically:
- one group detects the link state of the ring network, and one group detects the link state of the master node through the multicast source to the backup node.
- the master node periodically forwards the advertisement packet to the backup node through the ring network and the multicast source.
- the multicast source periodically sends an advertisement packet to the backup node.
- the device detects whether the advertisement packet forwarded by the master node through the multicast source is received normally.
- the advertisement packet sent directly by the multicast source can receive the advertisement packet directly received by the multicast source but cannot receive the advertisement packet.
- the master node forwards the advertisement packet through the multicast source, it determines that the master node is faulty or the link between the master node and the multicast source is faulty.
- the advertisement packet forwarded by the master node through the ring network is received normally, if it detects that the advertisement packet forwarded by the master node through the ring network is not received, it determines that the ring link to the master node is faulty.
- the link state between the master node and the multicast source is implemented by the master node periodically sending link state information to the backup node.
- the master node periodically forwards the advertisement packet to the backup node through the ring network; and the master node periodically sends the link state information to the backup node, and the master node can forward the data through the multicast source, or through the ring network of the master node and the backup node. Forwarding, or directly transmitting link state information through a direct link between the primary node and the backup node;
- Detecting the link state information if the link state information can be received normally, and the received link state information indicates that the link is faulty, it is determined that the link between the master node and the multicast source is faulty; The link state information is not found, and the master node is determined to be faulty;
- the ring network link of the node to the primary node is determined to be faulty.
- the backup node When the backup node detects that the primary node is faulty, or the link between the primary node and the multicast source is faulty, or the ring link of the node to the primary node is faulty, the multicast tree is deactivated, that is, the backup node receives the fault.
- the multicast packet When a multicast packet is sent from the multicast source, it is sent to all leaf nodes in the multicast tree with the local node as the root node.
- the backup node generates a multicast tree in a silent state and detects the status of the network link.
- the current primary multicast tree cannot forward multicast packets to all the leaf nodes in the multicast tree.
- the broadcast tree is deactivated and starts to forward multicast packets.
- the backup multicast tree can quickly forward multicast packets, no longer rely on the re-generation of the network topology and generate a new multicast tree, which greatly improves the recovery speed of the multicast service and improves the user experience. .
- a second embodiment of a communication network multicast protection system in the embodiment of the present invention includes: a master node 201, configured to periodically send a pass to the backup node 203 through a multicast source and through a ring network. Report the message.
- the multicast source 202 is configured to send an advertisement packet to the backup node 203 by using a direct link timing with the backup node, and receive the multicast protocol packet sent by the backup node.
- the backup node 203 is configured to receive a multicast protocol packet, generate a multicast tree according to the received multicast protocol packet, and send the multicast protocol packet to the multicast source, and set the generated multicast tree to be in a silent state, that is, backup.
- the node 203 When receiving the multicast packet sent by the multicast source 202, the node 203 does not send the packet but discards it;
- the network fault is detected according to whether the advertisement packet sent by the master node 201 or the multicast source 202 is received:
- the backup node 203 receives the multicast packet sent by the multicast source 202, the backup node 203 sends the packet to all the leaves on the multicast tree with the local node as the root node.
- the silent state of the silent anchor tree is removed, that is, the backup node 203 receives the group.
- the multicast packet sent by the source 202 it is sent to all the leaf nodes in the multicast tree with the local node as the root node.
- the master node and the multicast source periodically send an advertisement packet to the backup node.
- the backup node generates a multicast tree, sets a quiet state, receives the advertisement packet, and detects the network according to whether the advertisement packet is normally received.
- the backup multicast tree is deactivated and the multicast packets are forwarded.
- the backup multicast tree can quickly forward multicast packets, and no longer depends on the re-generation of the network topology and generate a new multicast tree, which greatly improves the recovery speed of the multicast service and improves the speed. user experience.
- the master node is configured to send link state information to the backup node periodically through a multicast source, or through a ring link between the master node and the backup node, or through a direct link between the master node and the backup node, and the link state information is sent to the backup node.
- the backup node is configured to receive the multicast protocol packet sent by other nodes in the network, generate a multicast tree according to the received multicast protocol packet, and send the multicast protocol packet to the multicast source, and set the generated multicast tree as In the silent state, when the backup node receives the multicast packet sent by the multicast source, it does not send the packet but discards it.
- the network fault is detected according to whether the link state information or the advertisement packet sent by the master node is detected:
- the backup node cancels the silent state of the silent anchor tree, that is, when the backup node receives the multicast packet sent by the multicast source. And send it to all the leaf nodes in the multicast tree with the root node as the root node. If it detects that the primary node does not receive the advertisement packet forwarded by the ring network, it determines that the ring link to the master node is faulty. Then, the silent state of the silent anchor tree is released. When the backup node receives the multicast packet sent by the multicast source, it sends the packet to all the leaf nodes in the multicast tree with the local node as the root node.
- the master node periodically sends an advertisement packet or link state information to the backup node.
- the backup node generates a multicast tree, sets a quiet state, receives the advertisement packet, and receives the advertisement packet or chain according to the detection.
- the status information of the path is used to detect the status of the virtual local area network link.
- the network fails, the current primary multicast tree cannot forward multicast packets to all the leaf nodes in the multicast tree.
- the backup multicast tree is deactivated and the multicast packets are forwarded. .
- the backup multicast tree can quickly forward multicast packets, no longer rely on the re-generation of the network topology and generate a new multicast tree, which greatly improves the recovery speed of the multicast service and improves the user experience.
- the fourth embodiment of the network backup node device in the embodiment of the present invention includes: a setting silence module 301, configured to set a multicast generated by the backup node according to the received multicast protocol packet sent by each node in the network.
- the tree is in the silent state.
- the backup node receives the multicast packet sent by the multicast source, it does not send the packet but discards it.
- the detecting module 302 is configured to detect a network fault according to whether the detection information sent by the primary node is detected, and the detection information may be an advertisement message or a link state information, and the detection process is different according to the received detection information. , specific: When receiving the advertisement packet forwarded by the master node through the ring network and through the multicast source, and the advertisement packet directly sent by the multicast source:
- the source forwards the advertisement packet, it determines that the master node is faulty or the link between the master node and the multicast source is faulty.
- the advertisement packet forwarded by the master node through the ring network is received normally, if it detects that the advertisement packet forwarded by the master node through the ring network is not received, it determines that the ring link to the master node is faulty.
- the link state information is detected. If the link state information indicates that the link is faulty, the link between the master node and the multicast source is determined to be faulty. If the link state information is not received, the master node is determined to be faulty.
- the unblocking module 303 is configured to: when the detecting module 302 detects a network fault, cancel the silent state of the multicast tree, that is, when the backup node receives the multicast packet sent by the multicast source, the backup node sends the multicast packet to the root node. All leaf nodes on the node's multicast tree.
- the direct link between the primary node and the backup node needs to block the multicast service, that is, one of the two ports at both ends of the direct link needs to be set to the blocked state. Therefore, when the primary node does not block the port on the direct link between it and the backup node, then the backup node needs to block the port on the direct link between it and the primary node, that is, the backup node cannot block through this.
- the port sends a data packet to the master node, and discards the data packet sent by the master node received from the blocked port. Therefore, before the silence module 301 is set, there is a blocking module:
- the blocking module is configured to block the port on the direct link between the backup node and the adjacent primary node.
- the backup node generates a broadcast tree in a silent state, and detects the network link status.
- the backup multicast tree is deactivated and the multicast packets are forwarded.
- the backup multicast tree can quickly forward multicast packets, and no longer depends on the re-generation of the network topology and generate a new multicast tree, so that the recovery speed of the multicast service is greatly improved.
- FIG. 4 is a multicast virtual local area network generating two
- Figure 5 is a schematic diagram of a multicast packet when the multicast virtual local area network is in a normal state and the link between the node 402 and the multicast source 401 is faulty
- Figure 6 is a multicast virtual local area network ring network When the road is faulty, the 4 ⁇ diagram is broadcasted.
- this multicast virtual local area network there are a multicast source 401, nodes 402, 403, 404, 405, 406, and 407.
- the ring port of all the nodes and the ring port of the multicast source are added to the multicast virtual local area network.
- the backup node 407 blocks the port between itself and the master node 402. That is, the backup node 407 cannot pass this.
- the blocked port sends a data packet to the master node 402, and discards the data packet sent by the master node 402 received from the blocked port.
- Each node on the ring sends an IGMP message in both directions on the ring in broadcast mode.
- the node 404 broadcasts the IGMP message received by the user port through the two ring ports. Send in both directions on the ring.
- the master node 402 and the backup node 407 after receiving the IGMP message, the master node 402 and the backup node 407 generate two multicast trees based on the received IGMP message, and the backup node 407 is set to its own root node. The anchor tree is silent.
- the master node 402 receives the multicast packet sent by the multicast source 401, and then forwards the multicast packet to all other leaf nodes in the multicast tree with the node as the root node. After receiving the multicast packet, each leaf sends the multicast packet from the user port to each user.
- the node 404 is used as an example, as shown by the dotted arrow below the node 404 in Figure 5.
- Two sets of Ethernet OAMs are configured in the multicast virtual local area network, the group detects the ring network status between the primary node 402 and the backup node 407, and the group detects the network status of the primary node 402 through the multicast source 401 to the backup node 407.
- the master node 402 periodically sends an advertisement packet to the backup node through the ring network and the multicast source.
- the multicast source 401 periodically sends an advertisement packet to the backup node.
- the backup node 407 receives the advertisement message sent by the master node 402 through the multicast source 401, the advertisement message sent through the ring network, and the multicast source 401.
- the backup node 407 detects whether the advertisement packet forwarded by the master node 402 through the multicast source 401 and the advertisement packet directly sent by the multicast source 401 are normally received, and if the advertisement packet directly received by the multicast source 401 is received, the notification packet is received.
- the master node 402 When the advertisement packet forwarded by the primary node 402 through the multicast source is not found, the master node 402 is faulty or the link between the master node 402 and the multicast source 401 is faulty, as shown by the black square in FIG. 5;
- the backup node 407 deactivates the multicast tree.
- the backup node receives the multicast packet sent by the multicast source, the backup node sends the packet to all the leaf nodes in the multicast tree with the local node as the root node, as shown in Figure 5.
- the arrow shows. After receiving the multicast packet, each leaf sends the multicast packet from the user port to each user.
- the node 404 is used as an example, as shown by the solid arrow below the node 404 in FIG.
- the backup node 407 detects whether the advertisement packet forwarded by the master node 402 through the ring network is normally received. If it is detected that the advertisement packet forwarded by the master node 402 through the ring network is not received, the ring network chain of the master node 402 is determined. The path is faulty, as shown by the black square in Figure 6. At this time, the backup node 407 deactivates the multicast tree. When the backup node receives the multicast packet sent by the multicast source, the backup node sends the packet to the root node. All leaf nodes on the multicast tree. At this time, the two multicast trees forward multicast packets at the same time, as indicated by the arrows in Figure 6. After receiving the multicast packet, each leaf sends the multicast packet from the user port to each user.
- the node 404 and the node 405 are used as an example, as indicated by the arrow below the node 404 in FIG.
- the backup node generates a static multicast tree and detects the status of the virtual LAN link.
- the backup multicast tree is deactivated. , start forwarding multicast packets.
- the backup multicast tree can quickly forward multicast packets, and no longer depends on the re-generation of the network topology and generate a new multicast tree, which greatly improves the recovery speed of the multicast service and improves the speed. user experience.
- the program may be stored in a computer readable storage medium, and the storage medium may include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种通信网络组播保护方法、系统及设备。本发明技术方案在一个通信组播网络中,以主节点和备份节点为根节点同时生成两棵组播树,其中以备份节点为根节点的组播树设置静默状态,当网络故障,当前主组播树不能转发组播报文到组播树上所有叶子节点时,备份组播树解除静默状态,开始转发组播报文。这样当网络故障时,备份组播树迅速进行转发组播报文,不再依赖网络拓扑的重新生成并生成新的组播树,极大提高了组播业务的恢复速度,改善了用户体验。
Description
一种通信网络组播保护方法、 系统及设备 技术领域
本发明涉及网络技术技术领域, 具体涉及一种通信网络组播保护方法、 系统及设备。 背景技术
组播技术有效地解决了单点发送多点接收的问题, 实现了网络中点到多 点的高效数据传送, 能够大量节约网络宽带、 降低网络负载。 利用网络的组 播特性可以更方便地提供一些新的增值业务。
典型的组播转发通常釆用因特网组播协议 ( IGMP , Internet Group Multicast Protocol ) 建立和维护主机与路由器或者宽带远程接入服务器 ( BRAS , Broadband Remote Access Server)之间的组播成员关系。 同时在组播 路由器之间运行组播路由协议, 组播路由协议用于建立和维护组播路由, 并 正确、 高效地转发组播数据报文。 这样, 加入到组播组的所有用户就能收到 组播业务流。
随着组播技术越来越多的应用, 对组播技术的要求也越来越高, 特别是 当网络发生故障时组播业务的可靠性保护方面, 更是大家关心的问题。
现有的一些组播保护技术主要是当网络上的链路发生故障时, 利用生成 树协议、 快速生成树协议、 多生成树协议重新生成网络拓朴, 在新的网络拓 朴中重新通过因特网组播协议生成新的组播树, 进行组播 4艮文的转发。
其中对于链路故障的检测, 现有技术有通过在网络上配置操作和维护 ( OAM, Operation and Maintenance )来对特定链路进行检测: 由源节点定时 向链路另一端的宿节点发送通告报文, 宿节点接收通告报文并对是否正常接 收报文进行检测, 若宿节点发现在几个周期都没有正常收到源节点发送的通 告报文, 则认为检测的链路发生故障。
但当网络上的链路发生故障时, 新的组播树的生成必须依赖网络拓朴的 重新生成, 这样组播业务的恢复时间就比较长, 不利于用户体验。 发明内容
本发明实施例提供一种通信网络组播保护方法、 系统及设备。
一种通信网络组播保护方法, 包括:
设置组播树为静默状态, 该组播树是备份节点根据接收到的从网络中各 节点发送的组播协议^艮文生成的;
根据检测是否接收到主节点或组播源发送的检测信息来检测网络故障; 当检测到网络故障时, 解除组播树的静默状态。
一种通信网络组播保护系统, 包括:
主节点, 用于通过组播源和通过环网分别定时向备份节点发送通告报文; 组播源, 用于定时向备份节点发送通告报文;
备份节点, 用于接收组播协议报文, 根据该组播协议报文生成组播树并 设置组播树为静默状态;
根据检测是否接收到主节点或组播源发送的通告报文来检测网络故障, 当检测到网络故障时, 解除组播树的静默状态。
一种通信网络组播保护系统, 包括:
主节点, 用于定时向备份节点发送链路状态信息, 并通过环网定时向备 份节点发送通告报文;
备份节点, 用于接收组播协议报文, 根据该组播协议报文生成组播树设 置组播树为静默状态;
根据检测是否接收到主节点发送的链路状态信息或通告报文来检测网络 故障, 当检测到网络故障时, 解除组播树的静默状态。
一种网络备份节点设备, 包括:
设置静默模块, 用于设置备份节点根据接收到的从网络中各节点发送的 组播协议报文生成的组播树为静默状态;
检测模块, 用于根据检测是否接收到主节点或组播源发送的检测信息来 检测网络故障;
解除静默模块, 用于当检测到网络故障时, 解除组播树的静默状态。 本发明实施例通过备份节点生成作为备份的组播树, 并设置静默状态; 当网络故障, 当前主组播树不能转发组播报文时, 备份组播树解除静默状态, 开始转发组播报文。 这样当网络故障时, 备份组播树迅速进行转发组播报文,
不再依赖网络拓朴的重新生成并生成新的组播树, 极大提高了组播业务的恢 复速度, 改善了用户体验。 附图说明
图 1是通信网络组播保护方法数据流程图;
图 2是通信网络组播保护系统逻辑结构图;
图 3是网络备份节点设备逻辑结构图;
图 4是组播虚拟局域网拓 4卜结构图;
图 5是组播虚拟局域网组播报文示意图;
图 6是组播虚拟局域网环网链路故障时组播报文示意图。 具体实施方式
本发明实施例提供一种通信网络组播保护方法。 本发明实施例还提供相 应的通信网络组播保护系统和设备。 以下分别进行详细说明。 请参阅图 1, 本发明实施例中通信网络组播保护方法第一实施例包括:
101、 设置组播树静默状态;
备份节点接收网络中其他节点发送的组播协议报文, 根据接收组播协议 报文生成组播树, 然后设置生成的组播树为静默状态, 即备份节点接收到组 播源发送的组播报文时, 不再往下发送而是做丟弃处理。
102、 检测网络状态;
根据检测是否接收到主节点或组播源发送的检测信息来检测网络故障; 备份节点接收的检测信息可以是通告报文, 也可以是链路状态信息, 链路状 态信息为主节点和组播源之间的链路状态信息。
备份节点根据接收的检测信息的不同, 检测网络状态过程有所不同, 具 体的:
当在网络中配置两组 OAM时, 其中一组检测环网链路状态, 一组检测主 节点通过组播源到备份节点的链路状态。 这时, 主节点定时通过环网和组播 源向备份节点转发通告报文; 组播源定时向备份节点直接发送通告报文; 检测是否正常接收主节点通过组播源转发的通告报文和组播源直接发送 的通告报文, 若检测到能正常接收组播源直接发送的通告报文但是接收不到
主节点通过组播源转发的通告报文时, 则判断出主节点故障或者主节点和组 播源之间的链路故障;
检测是否正常接收主节点通过环网转发的通告报文, 若检测到接收不到 主节点通过环网转发的通告报文时, 则判断出自己到主节点的环网链路故障。
或者,
当在网络中配置一组 OAM来检测环网链路状态, 而主节点与组播源之间 的链路状态通过主节点定时向备份节点发送链路状态信息来实现。 这时, 主 节点定时通过环网向备份节点转发通告报文; 并且主节点定时向备份节点发 送链路状态信息, 主节点可以通过组播源转发, 或通过主节点与备份节点的 环网链路转发, 或通过主节点与备份节点之间的直接链路直接发送链路状态 信息;
检测链路状态信息, 若能正常接收到链路状态信息, 并且接收到的链路 状态信息显示链路发生故障, 则判断出主节点和组播源之间的链路故障; 若 检测到接收不到链路状态信息, 判断出主节点故障;
或者检测是否正常接收主节点通过环网转发的通告报文, 若检测到接收 不到主节点通过环网转发的通告 4艮文时, 则判断出本节点到主节点的环网链 路故障。
103、 解除组播树静默状态;
当备份节点检测到主节点故障, 或者主节点和组播源之间的链路故障, 或者本节点到主节点的环网链路障时, 则将组播树解除静默, 即备份节点接 收到组播源发送的组播报文时, 往下发送到以本节点为根节点的组播树上所 有叶子节点。
本实施例中备份节点生成一棵静默状态的组播树, 并检测网络链路状况, 当网络故障, 当前主组播树不能转发组播报文到组播树上所有叶子节点时, 备份组播树解除静默状态, 开始转发组播报文。 这样当网络故障时, 备份组 播树迅速进行转发组播报文, 不再依赖网络拓朴的重新生成并生成新的组播 树, 极大提高了组播业务的恢复速度, 改善了用户体验。
请参阅图 2, 本发明实施例中通信网络组播保护系统第二实施例包括: 主节点 201 , 用于通过组播源和通过环网分别定时向备份节点 203发送通
告报文。
组播源 202 , 用于通过与备份节点之间的直接链路定时向备份节点 203发 送通告报文, 接收备份节点发送的组播协议报文。
备份节点 203 , 用于接收组播协议报文, 根据接收的组播协议报文生成组 播树并将组播协议报文发送给组播源, 设置生成的组播树为静默状态, 即备 份节点 203接收到组播源 202发送的组播报文时, 不再往下发送而是做丟弃处 理;
根据检测是否接收到主节点 201或组播源 202发送的通告报文来检测网络 故障:
若检测到能正常接收组播源 202直接发送的通告报文但是接收不到主节 点 201通过组播源 202转发的通告 文时, 判断出主节点 201故障或者主节点 201和组播源 202之间的链路故障, 则解除静默主播树的静默状态, 即备份节 点 203接收到组播源 202发送的组播报文时, 往下发送到以本节点为根节点的 组播树上所有叶子节点;
若检测到接收不到主节点 201通过环网转发的通告报文时, 判断出本节点 到主节点 201的环网链路故障,则解除静默主播树的静默状态,即备份节点 203 接收到组播源 202发送的组播报文时, 往下发送到以本节点为根节点的组播树 上所有叶子节点。
本实施例中主节点和组播源定时向备份节点发送通告报文; 备份节点生 成一棵组播树, 并设置静默状态, 接收通告报文并根据通过检测是否正常接 收通告报文来检测网络链路状况, 当网络故障, 当前主组播树不能转发组播 报文时, 备份组播树解除静默状态, 开始转发组播报文。 这样当虚拟局域网 网络故障时, 备份组播树迅速进行转发组播报文, 不再依赖网络拓朴的重新 生成并生成新的组播树, 极大提高了组播业务的恢复速度, 改善了用户体验。
本发明实施例中通信网络组播保护系统第三实施例包括:
主节点, 用于通过组播源, 或者通过主节点与备份节点的环网链路, 或 者通过主节点与备份节点的直接链路, 定时向备份节点发送链路状态信息, 该链路状态信息为主节点与组播源之间的链路状态信息; 并通过环网定时向 备份节点发送通告报文。
备份节点, 用于接收网络中其他节点发送的组播协议报文, 根据接收的 组播协议报文生成组播树并将组播协议报文发送给组播源, 设置生成的组播 树为静默状态, 即备份节点接收到组播源发送的组播报文时, 不再往下发送 而是做丟弃处理;
根据检测是否接收到主节点发送的链路状态信息或通告报文来检测网络 故障:
若检测到能正常接收主节点发送的链路状态信息, 且根据接收的链路状 态信息判断出主节点和组播源之间的链路故障, 则判断出主节点和组播源之 间的链路故障; 或者检测到接收不到链路状态信息时, 则判断主节点故障, 此时, 备份节点解除静默主播树的静默状态, 即备份节点接收到组播源发送 的组播报文时, 往下发送到以本节点为根节点的组播树上所有叶子节点; 若检测到接收不到主节点通过环网转发的通告报文时, 判断出自己到主 节点的环网链路故障, 则解除静默主播树的静默状态, 即备份节点接收到组 播源发送的组播报文时, 往下发送到以本节点为根节点的组播树上所有叶子 节点。
本实施例中主节点定时向备份节点发送通告报文或链路状态信息; 备份 节点生成一棵组播树, 并设置静默状态, 接收通告报文并根据通过检测是否 正常接收通告报文或链路状态信息来检测虚拟局域网链路状况, 当网络故障, 当前主组播树不能转发组播报文到组播树上所有叶子节点时, 备份组播树解 除静默状态, 开始转发组播报文。 这样当网络故障时, 备份组播树迅速进行 转发组播报文, 不再依赖网络拓朴的重新生成并生成新的组播树, 极大提高 了组播业务的恢复速度, 改善了用户体验。
请参阅图 3 , 本发明实施例中网络备份节点设备第四实施例包括: 设置静默模块 301 , 用于设置备份节点根据接收到的从网络中各节点发送 的组播协议报文生成的组播树为静默状态, 即备份节点接收到组播源发送的 组播报文时, 不再往下发送而是做丟弃处理;
检测模块 302, 用于根据检测是否接收到主节点发送的检测信息来检测网 络故障, 检测信息可以是通告报文, 也可以是链路状态信息, 根据接收的检 测信息的不同, 检测过程有不同, 具体的:
当接收主节点通过环网和通过组播源转发的通告报文, 以及组播源直接 发送的通告报文时:
检测是否正常接收主节点通过组播源转发的通告报文和组播源直接发送 的通告报文, 若检测到能正常接收组播源直接发送的通告报文但是接收不到 主节点通过组播源转发的通告报文时, 则判断出主节点故障或者主节点和组 播源之间的链路故障;
检测是否正常接收主节点通过环网转发的通告报文, 若检测到接收不到 主节点通过环网转发的通告报文时, 则判断出自己到主节点的环网链路故障。
或者,
当接收主节点发送的链路状态信息, 以及主节点通过环网转发的通告报 文时:
检测链路状态信息, 若链路状态信息显示链路发生故障, 则判断出主节 点和组播源之间的链路故障; 若检测到接收不到链路状态信息, 判断出主节 点故障;
检测是否正常接收主节点通过环网转发的通告报文, 若检测到接收不到 主节点通过环网转发的通告报文时, 则判断出本节点到主节点的环网链路故 障。
解除静默模块 303 , 用于当检测模块 302检测到网络故障时, 解除组播树 的静默状态, 即备份节点接收到组播源发送的组播报文时, 往下发送到以本 节点为根节点的组播树上所有叶子节点。
需要说明的是, 主节点和备份节点之间的直接链路是需要阻塞组播业务 的, 即该直接链路两端的两个端口其中之一需要设置为阻塞状态。 所以, 当 主节点没有将其和备份节点之间的直接链路上的端口阻塞时, 那么备份节点 就需要将其和主节点之间的直接链路上的端口阻塞, 即备份节点不能通过此 阻塞端口向主节点发送数据报文, 并且对从该阻塞端口接收到的由主节点发 送的数据报文做丟弃处理, 所以此时在设置静默模块 301之前还有一个阻塞模 块:
阻塞模块, 用于将备份节点与相邻主节点直接链路上的端口阻塞。
本实施例中备份节点生成一棵组静默状态的播树, 并检测网络链路状况,
当网络故障, 当前主组播树不能转发组播报文时, 备份组播树解除静默状态, 开始转发组播报文。 这样当网络故障时, 备份组播树迅速进行转发组播报文, 不再依赖网络拓朴的重新生成并生成新的组播树, 使得组播业务的恢复速度 有很大提高。
请参阅图 4至图 6 , 下面以一个应用例来对本方案进行详细说明: 图 4、 图 5、 图 6是同一个组播虚拟局域网不同时断的示意图: 图 4是组播 虚拟局域网生成两棵组播树时示意图; 图 5是组播虚拟局域网正常状态时转播 报文及节点 402与组播源 401之间的链路故障时转播报文示意图; 图 6是组播虚 拟局域网环网链路故障时转播 4艮文示意图。 在这个组播虚拟局域网中, 有组 播源 401 , 节点 402、 403、 404、 405、 406及 407。 所有节点的环端口和组播源 的环端口都加入到组播虚拟局域网中, 如图中黑圈所示, 备份节点 407阻塞自 己和主节点 402之间的端口, 即备份节点 407不能通过此阻塞端口向主节点 402 发送数据报文, 并且对从该阻塞端口接收到的由主节点 402发送的数据报文做 丟弃处理。
环上的每个节点釆用广播方式在环上两个方向发送 IGMP报文, 如图 4箭 头所示为例: 节点 404将由用户端口接收的 IGMP^艮文釆用广播方式通过两个 环端口在环上两个方向发送。 如图 4中虚线所示, 主节点 402和备份节点 407收 到 IGMP报文后根据接收的 IGMP报文各自以本节点为根节点生成两棵组播 树, 其中备份节点 407设置以自己根节点的主播树为静默状态。
如图 5虚箭头所示, 正常状态时主节点 402接收组播源 401发送的组播才艮 文, 然后向以本节点为根节点的组播树上其他所有叶子节点转发组播报文。 各叶子收到组播报文后将该组播报文从用户端口发送到各个用户, 此处以节 点 404为例, 如图 5中节点 404下方的虚箭头所示。
在组播虚拟局域网内配置两组以太网 OAM,—组检测主节点 402与备份节 点 407之间的环网状态, 一组检测主节点 402经过组播源 401到备份节点 407的 网络状态。
主节点 402定时通过环网和组播源向备份节点发送通告报文; 组播源 401 定时向备份节点发送通告报文。 备份节点 407接收主节点 402通过组播源 401、 通过环网发送的通告 ^艮文和组播源 401发送的通告 4艮文。
备份节点 407检测是否正常接收主节点 402通过组播源 401转发的通告报 文和组播源 401直接发送的通告报文, 若检测到能正常接收组播源 401直接发 送的通告报文但是接收不到主节点 402通过组播源转发的通告报文时, 则判断 出主节点 402故障或者主节点 402和组播源 401之间的链路故障, 如图 5中黑色 方块所示; 此时备份节点 407将组播树解除静默, 即备份节点接收到组播源发 送的组播报文时, 往下发送到以本节点为根节点的组播树上所有叶子节点, 如图 5中实箭头所示。 各叶子收到组播报文后将该组播报文从用户端口发送到 各个用户, 此处以节点 404为例, 如图 5中节点 404下方的实箭头所示。
备份节点 407检测是否正常接收主节点 402通过环网转发的通告报文, 若 检测到接收不到主节点 402通过环网转发的通告报文时, 则判断出自己到主节 点 402的环网链路故障, 如图 6中黑色方块所示; 此时备份节点 407将组播树解 除静默, 即备份节点接收到组播源发送的组播报文时, 往下发送到以本节点 为根节点的组播树上所有叶子节点。 此时两棵组播树同时转发组播报文, 如 图 6中箭头所示。 各叶子收到组播报文后将该组播报文从用户端口发送到各个 用户, 此处以节点 404、 节点 405为例, 如图 6中节点 404下方的箭头所示。
本应用例中备份节点生成一棵静默状态的组播树, 并检测虚拟局域网链 路状况, 当虚拟局域网网络故障, 当前主组播树不能转发组播报文时, 备份 组播树解除静默状态, 开始转发组播报文。 这样当虚拟局域网网络故障时, 备份组播树迅速进行转发组播报文, 不再依赖网络拓朴的重新生成并生成新 的组播树, 极大提高了组播业务的恢复速度, 改善了用户体验。 本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 该程序可以存储于一计算机可 读存储介质中,存储介质可以包括: 只读存储器( ROM, Read Only Memory )、 随机存取存储器 (RAM, Random Access Memory ), 磁盘或光盘等。
以上对本发明实施例所提供的通信网络组播保护方法、 系统及设备进行 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对 于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。
Claims
1、 一种通信网络组播保护方法, 其特征在于, 包括:
设置组播树为静默状态, 所述组播树是备份节点根据接收到的从网络中 各节点发送的组播协议"¾文生成的;
根据检测是否接收到主节点或组播源发送的检测信息来检测网络故障; 当检测到网络故障时, 解除所述组播树的静默状态。
2、 根据权利要求 1所述的方法, 其特征在于, 所述设置所述组播树为静 默状态的步骤之前还包括:
备份节点将自己与主节点之间直接链路上的端口阻塞。
3、 根据权利要求 1所述的方法, 其特征在于,
所述检测信息是通告报文或链路状态信息, 所述链路状态信息为主节点 和组播源之间的链路状态信息。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据检测是否接收到 主节点或组播源发送的检测信息来检测网络故障的步骤包括:
检测是否接收主节点通过组播源转发的通告报文和组播源直接发送的通 告报文, 若检测到能接收组播源直接发送的通告报文但是接收不到主节点通 过组播源转发的通告报文时, 则判断出主节点故障或者主节点和组播源之间 的链路故障; 或者,
检测是否能接收到所述链路状态信息, 若所述链路状态信息显示链路发 生故障, 则判断出主节点和组播源之间的链路故障; 若检测到接收不到所述 链路状态信息, 判断出主节点故障; 或者
检测是否接收主节点通过环网转发的通告报文, 若检测到不能接收主节 点通过环网发转发的通告报文时, 则判断出到主节点的环网链路故障。
5、 一种网络备份节点设备, 其特征在于, 包括:
设置静默模块, 用于设置备份节点根据接收到的从网络中各节点发送的 组播协议报文生成的组播树为静默状态;
检测模块, 用于根据检测是否接收到主节点或组播源发送的检测信息来 检测网络故障;
解除静默模块, 用于当检测到网络故障时, 解除所述组播树的静默状态。
6、 根据权利要求 5所述的设备, 其特征在于, 在所述设置静默模块之前 还包括:
阻塞模块: 用于将本节点与主节点之间的直接链路上的端口阻塞。
7、 根据权利要求 5所述的设备, 其特征在于, 所述检测模块包括: 第一检测单元, 用于检测是否接收主节点通过组播源转发的通告报文和 组播源直接发送的通告报文, 若检测到能接收组播源直接发送的通告报文但 是不能接收主节点通过组播源转发的通告报文时, 则判断出主节点故障或者 主节点和组播源之间的链路故障;
第二检测单元, 用于检测是否接收主节点通过环网转发的通告报文, 若 检测到不能接收主节点通过环网发转发的通告报文时, 则判断出到主节点的 环网链路故障。
8、 根据权利要求 7所述的设备, 其特征在于, 所述第一检测单元还用于: 检测是否能接收到所述链路状态信息, 若所述链路状态信息显示链路发 生故障, 则判断出主节点和组播源之间的链路故障; 若检测到接收不到所述 链路状态信息, 判断出主节点故障。
9、 一种通信网络组播保护系统, 其特征在于, 包括:
主节点, 用于通过组播源和通过环网分别定时向备份节点发送通告报文; 组播源, 用于定时向备份节点发送通告报文;
备份节点, 用于接收组播协议报文, 根据所述组播协议报文生成组播树 并设置所述组播树为静默状态;
根据检测是否接收到主节点或组播源发送的通告报文来检测网络故障, 当检测到网络故障时, 解除所述组播树的静默状态。
10、 一种通信网络组播保护系统, 其特征在于, 包括:
主节点, 用于定时向备份节点发送链路状态信息, 并通过环网定时向备 份节点发送通告报文;
备份节点, 用于接收组播协议报文, 根据所述组播协议报文生成组播树 设置所述组播树为静默状态; 根据检测是否接收到主节点发送的链路状态信 息或通告报文来检测网络故障, 当检测到网络故障时, 解除所述组播树的静 默状态。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11762012A EP2555476A1 (en) | 2010-04-02 | 2011-03-31 | Method, system and device for protecting multicast in communication network |
US13/629,376 US20130021896A1 (en) | 2010-04-02 | 2012-09-27 | Method, system, and device for protecting multicast in communication network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010139837.6A CN101827025A (zh) | 2010-04-02 | 2010-04-02 | 一种通信网络组播保护方法、系统及设备 |
CN201010139837.6 | 2010-04-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/629,376 Continuation US20130021896A1 (en) | 2010-04-02 | 2012-09-27 | Method, system, and device for protecting multicast in communication network |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011120438A1 true WO2011120438A1 (zh) | 2011-10-06 |
Family
ID=42690741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/072331 WO2011120438A1 (zh) | 2010-04-02 | 2011-03-31 | 一种通信网络组播保护方法、系统及设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130021896A1 (zh) |
EP (1) | EP2555476A1 (zh) |
CN (1) | CN101827025A (zh) |
WO (1) | WO2011120438A1 (zh) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101827025A (zh) * | 2010-04-02 | 2010-09-08 | 华为技术有限公司 | 一种通信网络组播保护方法、系统及设备 |
CN101997724A (zh) * | 2010-11-22 | 2011-03-30 | 中兴通讯股份有限公司 | 一种更新组播转发条目的方法及装置 |
CN102316024A (zh) * | 2011-07-13 | 2012-01-11 | 中国联合网络通信集团有限公司 | 分布式智能光网络中组播恢复方法和系统及处理节点 |
CN102299847B (zh) * | 2011-08-19 | 2014-06-04 | 北京星网锐捷网络技术有限公司 | 组播分发树切换方法、装置、系统、源设备和目的设备 |
CN103731279B (zh) * | 2012-10-11 | 2019-01-25 | 中兴通讯股份有限公司 | 操作执行方法及装置 |
US9386551B2 (en) | 2012-11-30 | 2016-07-05 | Qualcomm Incorporated | Systems and methods for synchronization of wireless devices in an ad-hoc network |
EP2916486A4 (en) * | 2012-12-20 | 2015-12-16 | Huawei Tech Co Ltd | DENSITY PROCESS, OPTICAL LINE EQUIPMENT AND SYSTEM IN A PASSIVE OPTICAL NETWORK |
CN103067298B (zh) * | 2013-01-30 | 2016-03-30 | 华为技术有限公司 | 一种网络流量分担的方法及系统 |
US9137119B2 (en) * | 2013-03-07 | 2015-09-15 | Cisco Technology, Inc. | Efficient handling of multi-destination traffic in an internet protocol fabric data center |
JP6052044B2 (ja) * | 2013-04-30 | 2016-12-27 | 富士通株式会社 | パケットトランスポートネットワークシステム |
US9473388B2 (en) * | 2013-08-07 | 2016-10-18 | Netspeed Systems | Supporting multicast in NOC interconnect |
US9548887B2 (en) * | 2013-08-09 | 2017-01-17 | Cisco Technology, Inc. | Proactive creation of multicast state in an overlay transport network to achieve fast convergence on failover |
CN105099907B (zh) * | 2014-04-25 | 2019-12-17 | 华为技术有限公司 | 路径检测方法、宿节点设备及通信系统 |
US9742630B2 (en) | 2014-09-22 | 2017-08-22 | Netspeed Systems | Configurable router for a network on chip (NoC) |
CN105610708B (zh) * | 2014-10-31 | 2019-11-12 | 新华三技术有限公司 | 一种trill网络中组播frr的实现方法和rb设备 |
US10348563B2 (en) | 2015-02-18 | 2019-07-09 | Netspeed Systems, Inc. | System-on-chip (SoC) optimization through transformation and generation of a network-on-chip (NoC) topology |
CN106162707A (zh) * | 2015-04-10 | 2016-11-23 | 富士通株式会社 | 汇聚节点状态的监测方法、装置和系统 |
US10218580B2 (en) | 2015-06-18 | 2019-02-26 | Netspeed Systems | Generating physically aware network-on-chip design from a physical system-on-chip specification |
CN106330699B (zh) * | 2015-07-10 | 2020-06-02 | 中兴通讯股份有限公司 | 一种组播链路的切换方法、装置及路由设备 |
TWI587661B (zh) * | 2015-11-26 | 2017-06-11 | 財團法人工業技術研究院 | 混合式軟體定義網路的虛擬區域網路復原方法、系統及其裝置 |
US10452124B2 (en) | 2016-09-12 | 2019-10-22 | Netspeed Systems, Inc. | Systems and methods for facilitating low power on a network-on-chip |
CN108023754A (zh) * | 2016-10-31 | 2018-05-11 | 中国移动通信集团广东有限公司 | 一种双归组主备节点协商机制的实现方法及装置 |
US20180159786A1 (en) | 2016-12-02 | 2018-06-07 | Netspeed Systems, Inc. | Interface virtualization and fast path for network on chip |
US10063496B2 (en) | 2017-01-10 | 2018-08-28 | Netspeed Systems Inc. | Buffer sizing of a NoC through machine learning |
US10469337B2 (en) | 2017-02-01 | 2019-11-05 | Netspeed Systems, Inc. | Cost management against requirements for the generation of a NoC |
CN110999230B (zh) * | 2017-10-18 | 2021-06-01 | 华为技术有限公司 | 传输组播报文的方法、网络设备和系统 |
CN108334425A (zh) * | 2018-01-26 | 2018-07-27 | 郑州云海信息技术有限公司 | 一种服务器qpi链路的冗余替换方法、装置及设备 |
US10896476B2 (en) | 2018-02-22 | 2021-01-19 | Netspeed Systems, Inc. | Repository of integration description of hardware intellectual property for NoC construction and SoC integration |
US11144457B2 (en) | 2018-02-22 | 2021-10-12 | Netspeed Systems, Inc. | Enhanced page locality in network-on-chip (NoC) architectures |
US10547514B2 (en) | 2018-02-22 | 2020-01-28 | Netspeed Systems, Inc. | Automatic crossbar generation and router connections for network-on-chip (NOC) topology generation |
US10983910B2 (en) | 2018-02-22 | 2021-04-20 | Netspeed Systems, Inc. | Bandwidth weighting mechanism based network-on-chip (NoC) configuration |
US11023377B2 (en) | 2018-02-23 | 2021-06-01 | Netspeed Systems, Inc. | Application mapping on hardened network-on-chip (NoC) of field-programmable gate array (FPGA) |
US11176302B2 (en) | 2018-02-23 | 2021-11-16 | Netspeed Systems, Inc. | System on chip (SoC) builder |
CN110266531A (zh) * | 2019-06-17 | 2019-09-20 | 深圳市中航比特通讯技术有限公司 | 通信网络中使用静默链路的网络隔离故障恢复系统 |
CN117040951A (zh) * | 2020-07-22 | 2023-11-10 | 华为技术有限公司 | 组播报文的发送方法、装置和系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1874315A (zh) * | 2006-06-21 | 2006-12-06 | 杭州华为三康技术有限公司 | 组播故障恢复方法和组播路由器 |
CN101127724A (zh) * | 2007-10-12 | 2008-02-20 | 杭州华三通信技术有限公司 | 一种城域以太网中基于802.1ah协议的组播系统、设备和方法 |
US20080123524A1 (en) * | 2006-11-27 | 2008-05-29 | Jean-Philippe Vasseur | Failure protection for P2MP tunnel head-end node |
CN101335695A (zh) * | 2007-06-27 | 2008-12-31 | 华为技术有限公司 | 点到多点标签交换路径的头节点保护方法、装置和设备 |
CN101453414A (zh) * | 2007-11-30 | 2009-06-10 | 华为技术有限公司 | 点到多点标签交换路径的头节点保护方法、系统和设备 |
CN101674199A (zh) * | 2009-09-22 | 2010-03-17 | 中兴通讯股份有限公司 | 用于实现网络故障时切换的方法及查询器 |
CN101827025A (zh) * | 2010-04-02 | 2010-09-08 | 华为技术有限公司 | 一种通信网络组播保护方法、系统及设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101202705A (zh) * | 2007-08-14 | 2008-06-18 | 华为技术有限公司 | 增强组播可靠性的方法和路由器 |
CN101478801B (zh) * | 2008-12-23 | 2011-03-16 | 华南理工大学 | 基于动态源树的无线自组织网络组播路由方法 |
CN101631043A (zh) * | 2009-08-05 | 2010-01-20 | 杭州华三通信技术有限公司 | 组播故障恢复方法、组播路由器及系统 |
-
2010
- 2010-04-02 CN CN201010139837.6A patent/CN101827025A/zh active Pending
-
2011
- 2011-03-31 WO PCT/CN2011/072331 patent/WO2011120438A1/zh active Application Filing
- 2011-03-31 EP EP11762012A patent/EP2555476A1/en not_active Withdrawn
-
2012
- 2012-09-27 US US13/629,376 patent/US20130021896A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1874315A (zh) * | 2006-06-21 | 2006-12-06 | 杭州华为三康技术有限公司 | 组播故障恢复方法和组播路由器 |
US20080123524A1 (en) * | 2006-11-27 | 2008-05-29 | Jean-Philippe Vasseur | Failure protection for P2MP tunnel head-end node |
CN101335695A (zh) * | 2007-06-27 | 2008-12-31 | 华为技术有限公司 | 点到多点标签交换路径的头节点保护方法、装置和设备 |
CN101127724A (zh) * | 2007-10-12 | 2008-02-20 | 杭州华三通信技术有限公司 | 一种城域以太网中基于802.1ah协议的组播系统、设备和方法 |
CN101453414A (zh) * | 2007-11-30 | 2009-06-10 | 华为技术有限公司 | 点到多点标签交换路径的头节点保护方法、系统和设备 |
CN101674199A (zh) * | 2009-09-22 | 2010-03-17 | 中兴通讯股份有限公司 | 用于实现网络故障时切换的方法及查询器 |
CN101827025A (zh) * | 2010-04-02 | 2010-09-08 | 华为技术有限公司 | 一种通信网络组播保护方法、系统及设备 |
Also Published As
Publication number | Publication date |
---|---|
EP2555476A1 (en) | 2013-02-06 |
CN101827025A (zh) | 2010-09-08 |
US20130021896A1 (en) | 2013-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011120438A1 (zh) | 一种通信网络组播保护方法、系统及设备 | |
JP5548673B2 (ja) | バーチャル・プライベートlanサービスへの冗長イーサネット自動保護スイッチング・アクセス | |
US7944815B2 (en) | System and method for network recovery from multiple link failures | |
US7826348B2 (en) | Multicast fast reroute | |
JP5549949B2 (ja) | マルチキャストパケット送信方法、関連デバイスおよびシステム | |
WO2010045832A1 (zh) | 用于以太环网的链路聚合组的保护方法及装置 | |
WO2008046358A1 (fr) | Procédé et dispositif destinés à réaliser une pénétration d'un statut de liaison de réseau point à multipoint | |
WO2007140683A1 (fr) | Procédé, système et dispositif de protection de service, basés sur l'absence de connexion | |
KR20140001882A (ko) | 네트워크 장애로부터 복구되기 위한 고속 플러딩 기반 고속 수렴 | |
CN103051536A (zh) | 一种二层冗余链路的快速组播切换方法 | |
US8199637B2 (en) | VPLS remote failure indication | |
WO2009039698A1 (fr) | Système de réseau en anneau ethernet, noeud principal de celui-ci et procédé d'initialisation de ce noeud | |
WO2012075831A1 (zh) | 一种实现组播保护的方法及系统 | |
WO2012024952A1 (zh) | 一种基于点到多点业务的路径切换方法及系统 | |
WO2012106915A1 (zh) | 故障通告方法、检测装置、转发装置、系统及数据结构 | |
WO2011015011A1 (zh) | 一种环网故障检测及定位的方法和系统 | |
WO2012103758A1 (zh) | 网络中的二层业务处理方法和系统以及设备 | |
CN101719834B (zh) | 一种虚拟专用组播业务保护的实现方法及系统 | |
WO2008031342A1 (fr) | Procédé, système et équipement couche 2 pour la mise en oeuvre de convergence rapide de trajet de relais multidiffusion en couche 2 | |
WO2012146097A1 (zh) | Vpls网络和以太环网的倒换方法及装置 | |
WO2012152134A1 (zh) | 以太网二层组播快速收敛的方法及以太网系统 | |
WO2014139175A1 (zh) | 双上行相切环收敛的方法、设备和系统 | |
WO2008095360A1 (fr) | Méthode et système de commutation rapide en cas de défaillance d'une liaison d'un réseau privé virtuel | |
CN101304359B (zh) | Rrpp环网链路恢复方法和设备 | |
WO2012097571A1 (zh) | 恢复环网业务的方法及节点设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11762012 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011762012 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |