WO2011118822A1 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
WO2011118822A1
WO2011118822A1 PCT/JP2011/057494 JP2011057494W WO2011118822A1 WO 2011118822 A1 WO2011118822 A1 WO 2011118822A1 JP 2011057494 W JP2011057494 W JP 2011057494W WO 2011118822 A1 WO2011118822 A1 WO 2011118822A1
Authority
WO
WIPO (PCT)
Prior art keywords
gaseous fuel
oxygen
sintering
region
sintered ore
Prior art date
Application number
PCT/JP2011/057494
Other languages
French (fr)
Japanese (ja)
Inventor
友司 岩見
伸幸 大山
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180015328.5A priority Critical patent/CN102822360B/en
Priority to KR1020127027071A priority patent/KR101475130B1/en
Publication of WO2011118822A1 publication Critical patent/WO2011118822A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates

Definitions

  • the present invention relates to a method for producing a high-quality blast furnace raw material sintered ore that is high in strength and excellent in reducibility using a downward suction type dwytroid sintering machine.
  • Sinter ore which is the main raw material for the blast furnace ironmaking method, is generally manufactured through a process as shown in FIG.
  • the raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1.
  • the cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm.
  • the sintered raw material is then transferred to 400 to 800 mm on an endless moving type sintering machine pallet 8 from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7.
  • the charge layer 9 is charged with a thickness and is also referred to as a sintered bed.
  • the carbon material on the surface of the charging layer is ignited by an ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through a wind box 11 disposed immediately below the pallet 8.
  • the carbonaceous material in the charging layer is sequentially burned, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake.
  • the sintered cake thus obtained is then crushed and sized, and an agglomerate of about 5 mm or more is recovered as a product sintered ore and supplied to a blast furnace.
  • the carbonaceous material in the charging layer ignited by the ignition furnace 10 is continuously burned by the air sucked from the upper layer toward the lower layer in the charging layer, and has a width in the thickness direction.
  • a combustion / melting zone (hereinafter also simply referred to as “combustion zone”) is formed.
  • the melted portion of the combustion zone obstructs the flow of the air that is sucked in, so that the sintering time is extended and productivity is lowered.
  • the combustion zone gradually moves from the upper layer to the lower layer as the pallet 8 moves downstream, and after the combustion zone has passed, the sintered cake layer ( Hereinafter, simply referred to as “sintered layer”) is generated.
  • the moisture contained in the sintering material is evaporated by the combustion heat of the carbon material and concentrated in the lower sintering material that has not yet risen in temperature. To form a wet zone. If this moisture concentration exceeds a certain level, the voids between the sintered raw material particles that become the flow path of the suction gas are filled with moisture, which becomes a factor that increases the airflow resistance as in the melting zone.
  • FIG. 2 shows that in the charging layer when the combustion zone moving in the 600 mm thick charging layer is at a position of about 400 mm on the pallet in the charging layer (200 mm below the charging layer surface). This shows the distribution of pressure loss and temperature, and the pressure loss distribution at this time shows that about 60% is in the wet zone and about 40% is in the combustion zone.
  • the production amount (t / hr) of the sintering machine is generally determined by the production rate (t / hr ⁇ m 2 ) ⁇ sintering machine area (m 2 ). That is, the production amount of the sintering machine varies depending on the width and length of the sintering machine, the thickness of the raw material charging layer, the bulk density of the sintering raw material, the sintering (combustion) time, the yield, and the like. Therefore, to increase the production of sintered ore, the permeability (pressure loss) of the charge layer is improved to shorten the sintering time, or the yield is increased by increasing the cold strength of the sintered cake before crushing. It is considered effective to improve the above.
  • Fig. 3 shows the change in temperature and time at a certain point in the charging layer when the sintered ore productivity is high and low, that is, when the pallet moving speed of the sintering machine is fast and slow. It is.
  • the time for which the sintering raw material particles start to melt is maintained at a temperature of 1200 ° C. or higher is represented by T 1 when the productivity is low and T 2 when the productivity is high. Because at high productivity faster moving speed of the pallet, the high temperature zone holding time T 2, is shorter than the T 1 of the at low productivity. However, if the holding time at a high temperature of 1200 ° C. or more is shortened, the firing becomes insufficient, the cold strength of the sintered ore is lowered, and the yield is lowered.
  • SI sintered index
  • TI tumbler index
  • FIG. 4 shows that the carbon material in the surface of the charging layer ignited in the ignition furnace is continuously burned by the sucked air to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer. It is the figure which showed typically the process in which is formed.
  • FIG. 5A shows the temperature distribution when the combustion zone is present in each of the upper layer portion, middle layer portion, and lower layer portion of the charging layer shown in the thick frame shown in FIG. It is shown schematically.
  • the strength of the sintered ore is influenced by the product of the temperature and time maintained at a temperature of 1200 ° C. or higher, and the greater the value, the higher the strength of the sintered ore.
  • the middle layer and lower layer in the charging layer are preheated by being transported by the air sucked by the combustion heat of the carbon material in the upper charging layer, so that it can be held at a high temperature for a long time.
  • the upper portion of the charge layer is not preheated, and therefore the combustion heat is insufficient, and the combustion melting reaction (sintering reaction) necessary for sintering tends to be insufficient.
  • the yield distribution of the sintered ore in the cross section in the width direction of the charging layer becomes lower in the upper layer portion of the charging layer as shown in FIG.
  • the pallet width ends also have a low yield due to heat dissipation from the pallet side walls and supercooling due to the large amount of air passing through, so that sufficient holding time in the high temperature range necessary for sintering cannot be secured. Become.
  • the amount of carbonaceous material (powder coke) added to the sintering raw material has been increased.
  • the temperature in the sintered layer can be increased and the time for maintaining the temperature at 1200 ° C. or more can be extended.
  • the maximum reached temperature exceeds 1400 ° C., and for the reasons explained below, the reducibility of the sintered ore and the cold strength are reduced.
  • Non-Patent Document 1 shows the tensile strength (cold strength) and reducibility of various minerals generated in the sintered ore during the sintering process, as shown in Table 1.
  • a melt starts to be generated at 1200 ° C.
  • calcium ferrite having the highest strength among the constituent minerals of sintered ore and relatively high reducibility is generated.
  • a sintering temperature 1200 ° C. or higher is required.
  • amorphous silicate calcium silicate
  • secondary hematite which is the starting point for reducing powderization of sintered ore, is obtained from Mag.
  • Mag As shown in the phase diagram of FIG. ss + Liq. Since it precipitates when it is heated up to the zone and cooled, it is possible to suppress the reduction powdering by producing sintered ore through the path (2) instead of the path (1) shown on the phase diagram. It is important to do.
  • Non-Patent Document 1 in order to ensure the quality of sintered ore, the control of the maximum temperature reached during combustion and the holding time in the high temperature range are very important management items. It is disclosed that the quality of the ore is almost determined. Therefore, in order to obtain a sintered ore that is excellent in reduced powder (RDI), high strength, and excellent reducibility, the calcium ferrite produced at a temperature of 1200 ° C. or higher is decomposed into calcium silicate and secondary hematite. Therefore, it is important that the temperature in the charging layer is 1200 ° C. (calcium ferrite) without exceeding the maximum reached temperature in the charging layer during sintering of over 1400 ° C., preferably over 1380 ° C. It is necessary to keep the temperature above (solidus temperature) for a long time.
  • the time maintained in the temperature range of 1200 ° C. to 1400 ° C. will be referred to as “high temperature range retention time”.
  • Patent Document 1 when producing sintered ore, in addition to coke added to the sintering raw material, an exothermic gas is added to the air sucked into the sintering raw material, A technique for improving the strength, production rate, and product yield of sintered ore has been proposed.
  • Patent Document 2 when the charging layer upper layer part is sufficiently fired, the mass flow rate of the oxygen-containing gas supplied to the charging layer is set within the range in which the charging layer upper layer part is fired.
  • the mass flow rate is 1.01 to 2.6 times greater, the differential pressure in the charging layer is increased, the transition speed of the combustion melting zone is extremely accelerated, the production rate is increased, and the product yield and quality are excellent.
  • a method for obtaining a new product has been proposed.
  • the technique of Patent Document 2 can increase the layer thickness of the charging layer and increase the pallet moving speed, and can improve the production rate of the sintering machine.
  • Patent Document 3 discloses that the oxygen concentration in the combustion air sucked into the charging layer is enriched to 35% or more while the upper layer portion of the charging layer on the pallet is sintered. Has proposed an oxygen-enriched operation method that improves productivity and product yield.
  • the technology of Patent Document 3 improves the combustibility of coke by increasing the oxygen concentration in the combustion air to 35% or more, and increases the maximum temperature, but the combustibility is improved. As a result, there is a problem that the high temperature region holding time of 1200 ° C. or higher necessary for sintering becomes insufficient.
  • the inventors reduced the amount of carbonaceous material added to the sintering raw material, and then variously diluted below the lower combustion limit concentration downstream of the ignition furnace of the sintering machine.
  • gaseous fuel By introducing gaseous fuel into the charging layer from above the pallet and combusting the gaseous fuel in the charging layer, both the maximum temperature reached in the charging layer and the holding time in the high temperature range are controlled within an appropriate range.
  • Techniques are proposed in Patent Documents 4 to 6 and the like.
  • Patent Documents 4 to 6 in order to obtain a high-quality sintered ore having high strength and excellent reducibility, how long it is kept in a high temperature range of 1200 ° C. to 1400 ° C. It has not been fully clarified whether it is necessary to do this, and to which region the diluted gaseous fuel should be supplied.
  • a combustion-supporting gas that burns carbonaceous material or gaseous fuel when determining the range of the maximum temperature and the high-temperature range holding time that are preferable for sintering.
  • air containing 21 vol% oxygen is used as it is. This is because the charging layer during actual sintering should have an atmosphere different from the atmosphere due to the combustion reaction of carbonaceous materials and gaseous fuel, and the composition and composition of the combustion-supporting gas. If this changes, the gas atmosphere in the charging layer also changes, and naturally, the maximum temperature reached during sintering and the high temperature region holding time should also change.
  • the present invention has been made in view of the above-described problems of the prior art, and its purpose is to sinter by burning a carbonaceous material and a gaseous fuel in a charging layer using a lower suction type sintering machine.
  • the high temperature region holding time required for sintering is clarified, the appropriate region to be supplied with gaseous fuel is determined, and the combustion-supporting gas for the highest temperature reached during sintering and the high temperature region holding time is determined.
  • the inventors have intensively studied to solve the above problems.
  • the time to be maintained in the temperature range of 1200 to 1400 ° C., that is, the high temperature region retention time is approximately 150 seconds or more. Therefore, the gaseous fuel should be supplied to the region where the high-temperature region holding time is less than 150 seconds, and conventionally, the air containing 21 vol% of oxygen, which is a combustion-supporting gas, is further enriched with oxygen.
  • the gas atmosphere during sintering shifts to the oxidation direction, the combustion start temperature of the carbonaceous material and gaseous fuel in the sintering raw material can be shifted to the low temperature side, without causing an increase in the maximum reached temperature, The retention time in the high temperature range can be greatly extended. As a result, the amount of calcium ferrite produced in the sinter increases, and a sinter with high strength and excellent reducibility can be obtained. Maximize the effect of enrichment In order to achieve this, it has been found that it is effective to enrich oxygen in a region where the gaseous fuel is to be supplied, preferably in a region within 1/2 of the upstream side of the region where the gaseous fuel is to be supplied. The present invention has been completed.
  • the present invention is to charge a sintered raw material containing fine ore and carbonaceous material on a circulating pallet to form a charging layer, ignite the carbonaceous material on the surface of the charging layer, and lower combustion lower concentration
  • the air above the charging layer containing the diluted gaseous fuel is sucked in the wind box arranged under the pallet and introduced into the charging layer, and the gaseous fuel and the carbonaceous material are burned in the charging layer.
  • the gaseous fuel is supplied to the region where the high temperature region retention time is maintained at 1200 ° C. or higher and 1400 ° C. or lower when sintering with the combustion heat of the carbonaceous material is less than 150 seconds.
  • a method for producing a sintered ore characterized in that a high temperature region holding time is set to 150 seconds or more and oxygen in the air is enriched in the gaseous fuel supply region.
  • the method for producing a sintered ore of the present invention is a region in which the amount of carbonaceous material in the sintered raw material is changed to maintain the maximum temperature within the range of 1200 to 1400 ° C. and the high temperature region retention time is less than 150 seconds.
  • the amount of gaseous fuel supplied to is changed, and the high temperature region holding time is 150 seconds.
  • oxygen is enriched in a region within 1/2 of the upstream side of the gaseous fuel supply region, or upstream of the gaseous fuel supply region (1/4 to 1). / 2) It is characterized by enriching oxygen in a region within.
  • the method for producing a sintered ore according to the present invention is characterized in that the oxygen concentration in the air is more than 21 vol% and less than 35 vol% by the oxygen enrichment.
  • the O 2 concentration in the gas atmosphere in the charging layer in the oxygen-enriched region is set to 12.5 vol% or more by the oxygen enrichment, and the highest temperature reached In a temperature range of 1275 to 1375 ° C.
  • the high temperature region retention time in the region where the high temperature region retention time is less than 150 seconds due to the supply of the gaseous fuel and the enrichment of oxygen is 150 seconds to 300 seconds. It is characterized by doing.
  • the method for producing sintered ore according to the present invention is characterized in that the amount of carbon material equivalent to or greater than the calorific value of the gaseous fuel to be supplied is reduced.
  • the air to which the gaseous fuel is added is obtained by adding gaseous fuel previously diluted below the lower combustion limit concentration to the air, or gaseous fuel in the atmosphere above the charging layer. Is injected at high speed and diluted to below the lower combustion limit concentration.
  • the gaseous fuel is arranged in one or more stages with a gap in the middle in the height direction in the hood installed above the charging layer in the region where the gaseous fuel is supplied.
  • the oxygen which is supplied below the baffle plate provided and enriched is supplied toward the gap between the baffle plates above the baffle plate in the hood.
  • the following effects can be obtained.
  • (2) The amount of calcium ferrite produced in the sintered ore can be increased by enriching the combustion-supporting gas (air) with oxygen and shifting the gas atmosphere during sintering in the oxidation direction.
  • the high temperature range retention time can be extended without increasing the temperature.
  • CO / (CO + CO 2) is a graph showing the effect on the rate of formation of calcium silicate.
  • O 2 concentration and sintering temperature in the gas atmosphere during sintering is a graph showing the effect on the rate of formation of calcium ferrite. It is a figure explaining the change of the temperature distribution in the sintered layer by gaseous fuel supply. It is a figure explaining the change of the temperature distribution in a sintered layer when oxygen is enriched simultaneously with gaseous fuel supply. It is a figure explaining the sintering test pot used for experiment. It is a graph which shows the effect of gaseous fuel supply which acts on the quality, production rate, etc. of a sintered ore.
  • the basic technical idea of the present invention will be described.
  • the inventors first have to maintain a high temperature range at a temperature of 1200 ° C. or higher and 1400 ° C. or lower, which is necessary for producing a high-quality sintered ore having high strength and excellent reducibility with high productivity.
  • Time a sintering experiment using an electric furnace was performed.
  • iron ore with a particle size of 0.5 mm or more was used as the core particle, and iron ore with a particle size of less than 0.5 mm and auxiliary materials such as calcium carbonate and silicon dioxide were added as raw materials.
  • the sintered raw material was about 2 to 5 mm ⁇ .
  • the sintering raw material is placed on an alumina boat and charged in the vicinity of the soaking zone in the horizontal electric furnace shown in FIG. 9, and the holding time is in the temperature range of 1200 to 1400 ° C. in the range of 0 to 350 seconds.
  • Sintering was carried out by changing.
  • the sintering conditions in the actual machine were simulated by flowing an atmosphere gas having the same composition as the exhaust gas of the actual machine into the electric furnace during the sintering experiment.
  • the sintered ore obtained as described above was then rapidly cooled and recovered, and the cold strength and the amount of calcium ferrite produced were measured.
  • the strength of the sintered ore is the load when the sintered ore is crushed by using a crushing strength tester with the sinter obtained by sizing the sintered ore obtained in the above step to a predetermined particle size (crushing load). )
  • the amount of calcium ferrite was measured using a powder X-ray diffraction method.
  • FIG. 10 shows the results of the above-described experiment, and the following was found from this figure.
  • A The longer the time of holding at a temperature of 1200 ° C. to 1400 ° C. (high temperature region holding time), the more calcium ferrite is generated in the sintered ore, and the strength of the sintered ore is accordingly increased. To rise.
  • B When the high temperature region holding time is secured for 150 seconds or more, the amount of calcium ferrite produced increases greatly, and at the same time, the crushing strength in the crushing strength test also increases greatly. In this example, the crushing strength of the sintered ore is 4. It becomes 60 kN or more, and sufficient strength is obtained as a blast furnace raw material.
  • the high temperature region holding time As described above, in order to obtain a high-quality sintered ore, it is necessary to set the high temperature region holding time at 1200 ° C. or higher and 1400 ° C. or lower to 150 seconds or longer. In the manufacturing method of the sintered ore used, it is necessary to supply the diluted gas fuel to the region in the charging layer where the high temperature region holding time cannot be secured for 150 seconds or more only by the combustion heat of the carbonaceous material. However, even if the high temperature region holding time exceeds 300 seconds, the effect of adding gaseous fuel is saturated and rather disadvantageous in terms of cost, so the upper limit is preferably about 300 seconds.
  • the inventors first investigated the influence of the gas atmosphere during sintering on the maximum temperature reached and the high temperature holding time by the following experiment.
  • a pelletizer iron ore having a particle size of 0.5 mm or more is used as a core particle, and iron ore having a particle size of less than 0.5 mm and auxiliary materials such as calcium carbonate and silicon dioxide are added as exterior materials.
  • Granulation was performed to obtain a sintered raw material of about 2 to 5 mm ⁇ . This sintered raw material was placed on an alumina boat, charged near the center of the soaking zone of the horizontal electric furnace shown in FIG. 9, and sintered in a temperature range of 1200 to 1400 ° C.
  • the calcined sample was then rapidly cooled and collected, and the mineral species produced by sintering and their production ratio (mass%) were measured using a powder X-ray diffraction method.
  • the gas atmosphere at the time of sintering in the above sintering experiment was predicted from the component composition of the exhaust gas from the actual machine, and the O 2 concentration and CO / (CO + CO 2 ) that were largely dispersed therein were predicted. Focusing on the ratio, these were varied as operating factors.
  • FIG. 11 shows the relationship between the O 2 concentration in the atmosphere and the generation ratio of calcium ferrite
  • FIG. 12 shows the relationship between CO / (CO + CO 2 ) and the generation ratio of calcium ferrite. From these figures, it can be seen that the generation ratio of calcium ferrite increases as the O 2 concentration increases and as CO / (CO + CO 2 ) decreases.
  • FIG. 13 shows the relationship between the O 2 concentration in the atmosphere and the production rate of calcium silicate
  • FIG. 14 shows the relationship between CO / (CO + CO 2 ) and the production rate of calcium silicate. From these figures, it can be seen that as the O 2 concentration increases and as CO / (CO + CO 2 ) decreases, the production rate of calcium silicate decreases.
  • calcium silicate is composed of wustite at about 15% by weight.
  • Wustite is a divalent iron oxide and is lost by an oxidation reaction when the gas atmosphere during sintering moves in the oxidation direction. Therefore, it is considered that the O 2 concentration in the gas atmosphere at the time of sintering was increased and moved in the oxidation direction, whereby wustite disappeared and the generation rate of calcium silicate decreased.
  • FIG. 15 shows the results obtained by performing a number of sintering experiments as described above as the relationship between the O 2 concentration and the sintering temperature and the generation ratio of calcium ferrite.
  • the holding temperature during sintering is controlled to 1250 to 1375 ° C., preferably 1275 to 1375 ° C., and the O 2 concentration in the gas atmosphere during sintering is set to 12.5 vol% or more. It can be seen that the generation ratio of calcium ferrite can be remarkably increased by increasing the gas atmosphere, that is, shifting the gas atmosphere during sintering in the oxidation direction.
  • reaction rate is expressed by the following equation.
  • the influence of temperature is included in k, and the reaction rate r including k increases as the temperature increases. Further, the reaction rate r increases as the gas component concentration C used for the reaction increases. That is, the reaction rate r increases with an increase in the reaction rate constant k accompanying the temperature increase and the gas component concentration C used for the reaction. This means that the reaction rate at a certain temperature can be increased by increasing the gas component concentration used in the reaction, and the gas component concentration used in the reaction can be increased. This means that the reaction rate can be achieved even at low temperatures.
  • the reaction rate is considered as the combustion rate of the carbonaceous material and the gaseous fuel and the gas component used for the reaction is replaced with oxygen
  • the combustion rate of the carbonaceous material and the gaseous fuel will enrich oxygen in the air.
  • the same burning rate as that of the high temperature can be achieved even at a low temperature.
  • FIG. 16 is a diagram for explaining the combustion state inside the sintered layer shown in Patent Document 4 that discloses a technique for adding gaseous fuel to air, and (a) is the spread (size) of the combustion zone. (B) schematically shows the temperature distribution curve at that time.
  • Patent Document 4 the gaseous fuel blown into the air burns at a position farther from the combustion position of the carbonaceous material, that is, at a lower temperature side above the charging layer, so that the combustion of the carbonaceous material is performed.
  • Two temperature peaks are formed, the temperature peak accompanying combustion of gaseous fuel and the temperature peak accompanying combustion of gaseous fuel, and the temperature distribution curve synthesized from these two temperature peaks shows a wide distribution of the bottom, resulting in an extended high temperature region retention time. It is explained.
  • the effect of increasing the combustion speed of the gaseous fuel and the carbonaceous material or shifting the combustion temperature to a lower temperature side is obtained.
  • the position on the low temperature side where the gaseous fuel burns is the upper side of the charging layer where the sintering is completed and the sintered ore (sintered cake) is generated, while the low temperature where the carbonaceous material burns.
  • the position on the side refers to the lower side of the charging layer where there is a raw material that has not yet been burned with charcoal.
  • FIG. 17 shows the change in the combustion position in comparison with FIG. 16, where (a) shows the spread (size) of the combustion zone, and (b) shows the temperature distribution curve at that time.
  • This is shown schematically.
  • FIG. 16B and FIG. 17B when gaseous fuel is blown simultaneously with oxygen enrichment, the interval between the combustion position of the carbonaceous material and the combustion position of the gaseous fuel is only gaseous fuel. It will have a wider base than when blowing in.
  • oxygen enrichment and simultaneous blowing of gaseous fuel can be used to maintain the higher temperature range than the conventional technology without increasing the maximum temperature. It shows that the time can be extended.
  • FIG. 20 shows the above experimental results as the effect of oxygen and LNG blowing on the cold strength (SI) and production rate of the sintered ore.
  • SI cold strength
  • FIG. 20 shows the above experimental results as the effect of oxygen and LNG blowing on the cold strength (SI) and production rate of the sintered ore.
  • the above-described sintering experiment shows the effect of supplying gaseous fuel and enriching oxygen in all the time from the start of sintering (ignition) to the end of sintering.
  • the gaseous fuel may be supplied in a region where the time (high temperature region retention time) maintained in the temperature range of 1200 ° C. or higher and 1400 ° C. or lower is less than 150 seconds. Even if fuel is supplied, it is not preferable in terms of fuel cost. In addition, it is not preferable from the viewpoint of running cost and equipment cost to perform oxygen enrichment beyond the gaseous fuel supply region. Further, the amount of oxygen to be enriched is preferably as small as possible.
  • the inventors supply a range of oxygen to be supplied under a condition where the amount of oxygen to be enriched is constant, that is, supply a high concentration of oxygen in a narrow range.
  • An experiment was conducted to investigate whether it is better to enrich oxygen thinly over a wide range.
  • the sintering raw materials shown in Table 2 were put into a drum mixer and granulated to a size of about 5 mm ⁇ .
  • the silica in the obtained sintered ore was adjusted to be 4.9 mass% and the basicity was 2.0.
  • the granulated particles are filled into a cylindrical iron sintering pot having a size of 290 mm ⁇ ⁇ 400 mmH shown in FIG.
  • the effective machine length is a sintering machine having a 58 m carbon material amount of 5.0 mass% based on sintering conditions without LNG supply ( T1), and the sintering conditions in which the supply range of gaseous fuel (LNG), the concentration of oxygen to be enriched, and the supply length were changed as shown in Table 4 were simulated.
  • LNG diluted to 0.4 vol% is supplied as gaseous fuel over the upstream side of the effective pilot length of 17 m, that is, diluted to the range of 29% of the upper layer portion of the charging layer.
  • the reason why the sintering time is increased by enriching oxygen in a thin and long range as described above is considered as follows.
  • the gas in the charging layer (sintering layer) where the sintering temperature is decreasing after passing through the sintering zone due to the combustion of the carbonaceous material since the fuel burns, the temperature in that portion can be increased to expand the width of the combustion zone in the thickness direction, and the high temperature region holding time can be extended.
  • enrichment of oxygen has an effect of lowering the combustion temperature of the gaseous fuel, the gaseous fuel is combusted in a lower temperature range, that is, in the upper part of the charging layer than when oxygen is not enriched.
  • the combustion zone has an effect of increasing the ventilation resistance. Therefore, the expansion of the width of the combustion zone leads to a decrease in the amount of air flow and an extension of the sintering time. The effect becomes larger as the time for enriching oxygen becomes longer. Therefore, it is considered that the sintering time is particularly extended under the condition where oxygen is enriched in the same range as the LNG supply region.
  • the method for producing a sintered ore according to the present invention uses a downward suction type sintering machine to charge a sintered raw material containing fine ore and carbonaceous material on a circulating pallet to form a charging layer. While igniting the charcoal on the surface of the charging layer, the air above the charging layer containing gaseous fuel diluted below the lower combustion limit concentration is sucked into the charging layer and introduced into the charging layer.
  • This is the same as the techniques of the conventional patent documents 4 to 6 in that it is a method for producing sintered ore by burning the gaseous fuel and the carbonaceous material in the charging layer.
  • a feature of the method for producing a sintered ore of the present invention is that the gaseous fuel is held at a temperature of 1200 ° C. or higher and 1400 ° C. or lower when the gaseous fuel is sintered with combustion heat of only a carbonaceous material, and the high temperature region holding time is less than 150 seconds (First feature), and oxygen enrichment in a region within 1/2 of the upstream side of the region that supplies the gaseous fuel (second feature) It is in.
  • the reason for supplying the gaseous fuel in a region where the high temperature region holding time maintained at 1200 ° C. or higher and 1380 ° C. or lower when the gaseous fuel is sintered with the combustion heat of the carbon material is less than 150 seconds is the first feature.
  • the high temperature region holding time is provided at all positions in the charging layer. This is to secure 150 seconds or more to obtain a high-quality sintered ore. That is, the present invention is a technique for setting the high temperature region holding time to 150 seconds or more by mainly changing the supply amount of the gaseous fuel in the method for producing sintered ore with the combustion heat of the carbonaceous material.
  • the region of the charging layer where the high temperature region holding time cannot be secured for 150 seconds or more with the combustion heat of the carbonaceous material is the temperature during sintering at the position where a thermocouple is inserted into the charging layer of the actual sintering machine. It can be specified by actually measuring the time-dependent change in the temperature and obtaining the high temperature range holding time at which the temperature is maintained at 1200 ° C. or higher and 1400 ° C. or lower at each position. For example, the region in the thickness direction of the charging layer in which the high temperature region holding time of the central upper layer portion in the pallet width direction shown in FIG. 4B is less than 150 seconds is from the charging layer surface layer in the central portion in the pallet width direction.
  • a temperature change at each position in the thickness direction of the charging layer during sintering can be measured by inserting a thermocouple into the interior, and the temperature change can be obtained from the distribution of the high temperature region holding time at each position.
  • the ignition furnace exit side to the ore discharge where the sintering reaction of that portion is proceeding It is necessary to supply gaseous fuel in the region of 20% upstream of the part (effective machine length).
  • the effective machine length part from the ignition furnace exit side to the discharge section is divided into multiple parts in the direction of travel, so that diluted gas fuel can be supplied in each division unit, and the high temperature range is maintained over the entire range of the effective machine length It is preferable to be able to turn ON / OFF dilution gas fuel on a segment basis so that the time is 150 seconds or more.
  • supply of gaseous fuel should be avoided for about 3 m from the ignition furnace exit side. Is preferred.
  • thermocouple is inserted from the surface of the charging layer in the center in the pallet width direction, and the temperature change during sintering at each position in the thickness direction of the charging layer is measured, It is preferable to supply the gaseous fuel to a region where the holding time is 30 seconds or more and less than 150 seconds.
  • the gaseous fuel is preferably introduced into the charging layer as gaseous fuel diluted below the lower combustion limit concentration of the gaseous fuel. If the concentration of the diluted gas fuel is equal to or higher than the lower combustion limit concentration, combustion may occur above the charging layer, and the effect of supplying the gaseous fuel may be lost, or an explosion may occur. In addition, if the diluted gas fuel has a high concentration, it is burned in a low temperature range, so that it may not be able to effectively contribute to the extension of the high temperature range holding time. Accordingly, the concentration of the diluted gas fuel is preferably 3/4 (75%) or less of the lower limit of combustion at normal temperature in the atmosphere, more preferably 1/5 (20%) or less of the lower limit of combustion, and more preferably the lower limit of combustion.
  • the concentration of the diluted gas fuel is less than 1/100 (1%) of the lower combustion limit concentration, the calorific value due to combustion is insufficient, and the effect of improving the strength and yield of sintered ore cannot be obtained.
  • the concentration of the diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%.
  • the air containing the gaseous fuel diluted below the lower combustion limit concentration is a mixture of gaseous fuel previously diluted below the lower combustion limit concentration in the air above the charging layer, or in the air above the charging layer. Alternatively, it may be diluted instantly below the lower combustion limit concentration by injecting (raw) gaseous fuel with high concentration at high speed and mixing it with air.
  • the amount of carbonaceous material added to the sintering raw material is a temperature range of 1200 to 1400 ° C.
  • the gaseous fuel corresponding to 1 mass% of the amount of carbon material is about 1 vol% for LNG (liquefied natural gas) and about 0.5 vol% for propane gas.
  • the reason for enriching oxygen in the region where the gaseous fuel is supplied is that the gas atmosphere at the time of sintering shifts to the oxidation direction due to the oxygen enrichment, and as a result, sintering is performed by sintering.
  • the production rate of calcium ferrite in the ore is increased and the production rate of calcium silicate is reduced, so that a sintered ore having high strength and excellent reducibility can be obtained.
  • the reason why it is preferable to limit the oxygen-enriched region to within 1/2 of the upstream side of the region where the gaseous fuel is supplied is that, as shown in FIG. This is because, when supplied, a high-strength sintered ore can be obtained, and the sintering time becomes long, so that the production rate decreases.
  • the oxygen enrichment effect can be obtained even if the oxygen concentration contained in the air to be sucked in the charging layer exceeds the oxygen concentration (21 vol%) in the atmosphere, but is preferably sintered. It is preferable that the amount of oxygen is such that the O 2 concentration at that time can be 12.5 vol% or more. From this viewpoint, it is preferable to enrich the oxygen concentration in the air to 24.5 vol% or more. On the other hand, when the oxygen concentration in the air is 35 vol% or more, the cost required for oxygen enrichment exceeds the benefits to be enjoyed.
  • the amount of oxygen enriched in air is preferably added so that the oxygen concentration in the air is in the range of more than 21 vol% and less than 35 vol%, more preferably in the range of 24.5 to 30 vol%, and still more preferably, It is in the range of 24.5 to 28 vol%.
  • the method for enriching oxygen is not particularly limited.
  • a method of adding pure oxygen to air sucked through a charging layer in a windbox, or a method of adding high-concentration oxygen together with a gaseous fuel described later A method of adding a high concentration of oxygen to the atmosphere to which the fuel is added to obtain a predetermined oxygen concentration in advance can be suitably used.
  • FIG. 23 shows a schematic diagram of an apparatus for supplying oxygen in a gaseous fuel supply apparatus using raw gas as the gaseous fuel.
  • one or more baffle plates are provided with a gap in the middle in the height direction in the hood installed above the charging layer in the region where the gaseous fuel is supplied, and below the baffle plate
  • a gas fuel supply pipe is installed at the high-speed horizontal method where the raw gas fuel is blown off and instantly used as a diluted gas fuel having a concentration lower than the lower limit of combustion, and oxygen above the baffle plate.
  • a supply pipe is provided to supply enriched oxygen toward the gap between the baffle plates. Accordingly, the oxygen supplied from the oxygen supply pipe once reaches a concentration that is enriched until it passes over the baffle plate or the gap between the baffle plates, and then merges with the gaseous fuel. Can be prevented from touching. Note that the oxygen supplied from the pipe may not be pure oxygen.
  • the baffle plate disposed above the gaseous fuel supply pipe is for preventing the LNG and other gaseous fuels from being lighter than the air, and thus preventing leakage and scattering above the hood.
  • oxygen since oxygen has a specific gravity heavier than that of gaseous fuel, there is little risk of diffusion outside the hood.
  • the present invention is characterized in that oxygen is enriched at the same time as the supply of the gaseous fuel.
  • oxygen is enriched at the same time as the supply of the gaseous fuel.
  • This not only enhances the sintering reaction and shortens the time required for sintering, but also enhances the combustion with the gaseous fuel.
  • the combustion position of the carbonaceous material in the raw material is shifted to a lower temperature side, making the temperature distribution curve in the charging layer very wide and the holding time at the high temperature range can be further extended. It is possible to improve the quality of the sintered ore while increasing the rate.
  • the retention time in the high temperature range can be greatly extended, so that it is possible to reduce the amount of carbon material equivalent to the calorific value of the gaseous fuel. Become. This reduction in the amount of charcoal contributes to the reduction of carbon dioxide generated by combustion, and is therefore preferable for the global environment.
  • the sintering raw materials shown in Table 2 were put into a drum mixer and granulated to a size of about 5 mm ⁇ . At this time, the silica in the obtained sintered ore was adjusted to be 4.9 mass% and the basicity was 2.0. Next, the above granulated particles were filled in a cylindrical iron sintering pot having a size of 290 mm ⁇ ⁇ 400 mmH shown in FIG. 18 with carbon material addition amounts of 4.7 mass% and 4.5 mass%, and a charging layer. The carbon material in the sintering raw material is ignited by an ignition furnace disposed above the charging layer and sucked from the charging layer to the lower side by a blower disposed below the sintering pan. A sintering experiment simulating an actual sintering machine for burning (powder coke) was conducted.
  • an effective machine length (ignition furnace exit side to exhausting section) is 58 m, and as shown in FIG. 24, gaseous fuel is supplied over the upstream side 17 m.
  • Table 5 shows the regions where the LNG diluted to 0.4 vol% is supplied to the region of the upper layer portion 29% of the charging layer and the oxygen concentration is enriched to 25.4 vol% in the gaseous fuel supply region. Simulating changing as shown. Specifically, the base (T1) is based on the condition of adding only LNG as the gaseous fuel, and the condition (T2) for enriching oxygen in the same region as the gaseous fuel supply region is added to this condition. Sintering was performed at three levels of the condition (T3) for enriching oxygen in the upstream half region.
  • thermocouple was inserted into each position of 100 mm, 200 mm and 300 mm from the surface layer in the sintering test pot, and the high temperature region holding time at each position during sintering was measured, and the result was obtained. This is shown in FIG.
  • the shutter strength of the obtained sintered ore is measured according to JIS M8711, the product yield is further determined, the production rate is determined from those results, and the result is obtained. This is shown in FIG.
  • the sintering technique of the present invention is not only useful as a technique for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be used as another ore agglomeration technique.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed is a method for producing a sintered ore, which involves: forming a charged layer by charging a sintering starting material comprising fine ore and a carbon material on a circulating pallet; igniting the carbon material on the surface of the charged layer; introducing air, which contains gas fuel that is diluted to the lower combustion limit concentration or less and which is above the charged layer, into the charged layer by sucking the aforementioned air by means of a wind box disposed below the pallet; and burning the aforementioned gas fuel and the carbon material within the charged layer. The aforementioned method for producing a sintered ore also involves: supplying the abovementioned gas fuel to a region, in which the high-temperature retention period during which the temperature is retained at 1200°C to 1400°C inclusive lasts for less than 150 seconds, when sintering at the heat of combustion of the carbon material; setting the high-temperature retention period to 150 seconds or more; and enriching the oxygen within the air in the gas fuel supplying region.

Description

焼結鉱の製造方法Method for producing sintered ore
 本発明は、下方吸引式のドワイトロイド焼結機を用いて、高強度で被還元性に優れる、高品質の高炉原料用焼結鉱を製造する方法に関するものである。 The present invention relates to a method for producing a high-quality blast furnace raw material sintered ore that is high in strength and excellent in reducibility using a downward suction type dwytroid sintering machine.
 高炉製銑法の主原料である焼結鉱は、一般に、図1に示すような工程を経て製造される。焼結鉱の原料は、鉄鉱石粉や焼結鉱篩下粉、製鉄所内で発生した回収粉、石灰石およびドロマイトなどの含CaO系副原料、生石灰等の造粒助剤、コークス粉や無煙炭などであり、これらの原料は、ホッパー1・・・の各々から、コンベヤ上に所定の割合で切り出される。切り出された原料は、ドラムミキサー2および3等によって適量の水が加えられ、混合、造粒されて、平均径が3~6mmの擬似粒子である焼結原料とされる。この焼結原料は、その後、焼結機上に配設されているサージホッパー4、5からドラムフィーダー6と切り出しシュート7を介して、無端移動式の焼結機パレット8上に400~800mmの厚さで装入され、焼結ベッドともいわれる装入層9を形成する。その後、装入層9の上方に設置された点火炉10で装入層表層の炭材に点火するとともに、パレット8の直下に配設されたウインドボックス11を介して装入層上方の空気を下方に吸引することにより、装入層内の炭材を順次燃焼させ、このときに発生する燃焼熱で前記焼結原料を溶融して焼結ケーキを得る。このようにして得た焼結ケーキは、その後、破砕、整粒され、約5mm以上の塊成物が、成品焼結鉱として回収され、高炉に供給される。 Sinter ore, which is the main raw material for the blast furnace ironmaking method, is generally manufactured through a process as shown in FIG. The raw materials for sintered ore are iron ore powder, sintered ore sieving powder, recovered powder generated in steelworks, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, coke powder and anthracite Yes, these raw materials are cut out from each of the hoppers 1. The cut out raw material is added with an appropriate amount of water by the drum mixers 2 and 3 and the like, mixed and granulated to obtain a sintered raw material which is pseudo particles having an average diameter of 3 to 6 mm. The sintered raw material is then transferred to 400 to 800 mm on an endless moving type sintering machine pallet 8 from the surge hoppers 4 and 5 arranged on the sintering machine through the drum feeder 6 and the cutting chute 7. The charge layer 9 is charged with a thickness and is also referred to as a sintered bed. Thereafter, the carbon material on the surface of the charging layer is ignited by an ignition furnace 10 installed above the charging layer 9, and the air above the charging layer is passed through a wind box 11 disposed immediately below the pallet 8. By sucking downward, the carbonaceous material in the charging layer is sequentially burned, and the sintered raw material is melted by the combustion heat generated at this time to obtain a sintered cake. The sintered cake thus obtained is then crushed and sized, and an agglomerate of about 5 mm or more is recovered as a product sintered ore and supplied to a blast furnace.
 上記製造プロセスにおいて、点火炉10によって点火された装入層内の炭材は、その後、装入層内を上層から下層に向かって吸引される空気によって燃焼を続け、厚さ方向に幅をもった燃焼・溶融帯(以降、単に「燃焼帯」ともいう。)を形成する。この燃焼帯の溶融部分は、上記吸引される空気の流れを阻害するため、焼結時間が延長して生産性が低下する要因となる。また、この燃焼帯は、パレット8が下流側に移動するのに伴って次第に装入層の上層から下層に移行し、燃焼帯が通過した後には、焼結反応が完了した焼結ケーキ層(以降、単に「焼結層」ともいう。)が生成される。また、燃焼帯が上層から下層に移行するのにともない、焼結原料中に含まれる水分は、炭材の燃焼熱で気化して、まだ温度が上昇していない下層の焼結原料中に濃縮し、湿潤帯を形成する。この水分濃度がある程度以上になると、吸引ガスの流路となる焼結原料の粒子間の空隙が水分で埋まり、溶融帯と同様、通気抵抗を増大させる要因となる。 In the above manufacturing process, the carbonaceous material in the charging layer ignited by the ignition furnace 10 is continuously burned by the air sucked from the upper layer toward the lower layer in the charging layer, and has a width in the thickness direction. A combustion / melting zone (hereinafter also simply referred to as “combustion zone”) is formed. The melted portion of the combustion zone obstructs the flow of the air that is sucked in, so that the sintering time is extended and productivity is lowered. The combustion zone gradually moves from the upper layer to the lower layer as the pallet 8 moves downstream, and after the combustion zone has passed, the sintered cake layer ( Hereinafter, simply referred to as “sintered layer”) is generated. In addition, as the combustion zone moves from the upper layer to the lower layer, the moisture contained in the sintering material is evaporated by the combustion heat of the carbon material and concentrated in the lower sintering material that has not yet risen in temperature. To form a wet zone. If this moisture concentration exceeds a certain level, the voids between the sintered raw material particles that become the flow path of the suction gas are filled with moisture, which becomes a factor that increases the airflow resistance as in the melting zone.
 図2は、厚さが600mmの装入層中を移動する燃焼帯が、装入層内のパレット上約400mmの位置(装入層表面から200mm下)にあるときの、装入層内の圧損と温度の分布を示したものであり、このときの圧損分布は、湿潤帯におけるものが約60%、燃焼帯におけるものが約40%であることを示している。 FIG. 2 shows that in the charging layer when the combustion zone moving in the 600 mm thick charging layer is at a position of about 400 mm on the pallet in the charging layer (200 mm below the charging layer surface). This shows the distribution of pressure loss and temperature, and the pressure loss distribution at this time shows that about 60% is in the wet zone and about 40% is in the combustion zone.
 ところで、焼結機の生産量(t/hr)は、一般に、生産率(t/hr・m)×焼結機面積(m)により決定される。即ち、焼結機の生産量は、焼結機の機幅や機長、原料装入層の厚さ、焼結原料の嵩密度、焼結(燃焼)時間、歩留りなどにより変化する。したがって、焼結鉱の生産量を増加するには、装入層の通気性(圧損)を改善して焼結時間を短縮する、あるいは、破砕前の焼結ケーキの冷間強度を高めて歩留りを向上することなどが有効であると考えられている。 By the way, the production amount (t / hr) of the sintering machine is generally determined by the production rate (t / hr · m 2 ) × sintering machine area (m 2 ). That is, the production amount of the sintering machine varies depending on the width and length of the sintering machine, the thickness of the raw material charging layer, the bulk density of the sintering raw material, the sintering (combustion) time, the yield, and the like. Therefore, to increase the production of sintered ore, the permeability (pressure loss) of the charge layer is improved to shorten the sintering time, or the yield is increased by increasing the cold strength of the sintered cake before crushing. It is considered effective to improve the above.
 図3は、焼結鉱の生産性が高い時と低い時、即ち、焼結機のパレット移動速度が速い時と遅い時の装入層内のある点における温度と時間の推移を示したものである。焼結原料の粒子が溶融し始める1200℃以上の温度に保持される時間は、生産性が低い場合はT、生産性が高い場合はTで表されている。生産性が高い時はパレットの移動速度が速いため、高温域保持時間Tが、生産性が低い時のTと比べて短くなる。しかし、1200℃以上の高温での保持時間が短くなると焼成不足となり、焼結鉱の冷間強度が低下し、歩留りが低下してしまう。したがって、高強度の焼結鉱を、短時間でかつ高歩留りで、生産性よく製造するためには、何らかの手段を講じて、1200℃以上の高温で保持される時間を延長し、焼結鉱の冷間強度を高めてやる必要がある。なお、焼結鉱の冷間強度を表す指標としては、一般に、SI(シャッターインデックス)、TI(タンブラーインデックス)が用いられている。 Fig. 3 shows the change in temperature and time at a certain point in the charging layer when the sintered ore productivity is high and low, that is, when the pallet moving speed of the sintering machine is fast and slow. It is. The time for which the sintering raw material particles start to melt is maintained at a temperature of 1200 ° C. or higher is represented by T 1 when the productivity is low and T 2 when the productivity is high. Because at high productivity faster moving speed of the pallet, the high temperature zone holding time T 2, is shorter than the T 1 of the at low productivity. However, if the holding time at a high temperature of 1200 ° C. or more is shortened, the firing becomes insufficient, the cold strength of the sintered ore is lowered, and the yield is lowered. Therefore, in order to produce a high-strength sintered ore in a short time with a high yield and high productivity, some measures are taken to extend the time for which the high-temperature sintered ore is held at a high temperature of 1200 ° C. or higher. It is necessary to increase the cold strength. In general, SI (shutter index) and TI (tumbler index) are used as indices representing the cold strength of sintered ore.
 図4は、点火炉で点火された装入層表層の炭材が、吸引される空気によって燃焼を続けて燃焼帯を形成し、これが装入層の上層から下層に順次移動し、焼結ケーキが形成されていく過程を模式的に示した図である。また、図5(a)は、上記燃焼帯が、図4に示した太枠内に示した装入層の上層部、中層部および下層部の各層内に存在しているときの温度分布を模式的に示したものである。焼結鉱の強度は、1200℃以上の温度に保持される温度と時間の積に影響され、その値が大きいほど焼結鉱の強度は高くなる。そのため、装入層内の中層部および下層部は、装入層上層部の炭材の燃焼熱が吸引される空気によって運ばれて予熱されるため、高温度に長時間にわたって保持されるのに対して、装入層上層部は、予熱されない分、燃焼熱が不足し、焼結に必要な燃焼溶融反応(焼結反応)が不十分となりやすい。その結果、装入層の幅方向断面内における焼結鉱の歩留り分布は、図5(b)に示したように、装入層上層部ほど歩留りが低くなる。また、パレット両幅端部も、パレット側壁からの放熱や、通過する空気量が多いことによる過冷却によって、焼結に必要な高温域での保持時間が十分に確保できず、やはり歩留りが低くなる。 FIG. 4 shows that the carbon material in the surface of the charging layer ignited in the ignition furnace is continuously burned by the sucked air to form a combustion zone, which sequentially moves from the upper layer to the lower layer of the charging layer. It is the figure which showed typically the process in which is formed. FIG. 5A shows the temperature distribution when the combustion zone is present in each of the upper layer portion, middle layer portion, and lower layer portion of the charging layer shown in the thick frame shown in FIG. It is shown schematically. The strength of the sintered ore is influenced by the product of the temperature and time maintained at a temperature of 1200 ° C. or higher, and the greater the value, the higher the strength of the sintered ore. Therefore, the middle layer and lower layer in the charging layer are preheated by being transported by the air sucked by the combustion heat of the carbon material in the upper charging layer, so that it can be held at a high temperature for a long time. On the other hand, the upper portion of the charge layer is not preheated, and therefore the combustion heat is insufficient, and the combustion melting reaction (sintering reaction) necessary for sintering tends to be insufficient. As a result, the yield distribution of the sintered ore in the cross section in the width direction of the charging layer becomes lower in the upper layer portion of the charging layer as shown in FIG. In addition, the pallet width ends also have a low yield due to heat dissipation from the pallet side walls and supercooling due to the large amount of air passing through, so that sufficient holding time in the high temperature range necessary for sintering cannot be secured. Become.
 これらの問題に対して、従来は、焼結原料中に添加している炭材(粉コークス)量を増量することが行われてきた。しかし、コークスの添加量を増やすことによって、図6に示したように、焼結層内の温度を高め、1200℃以上に保持される時間を延長することができるものの、それと同時に、焼結時の最高到達温度が1400℃を超えるようになり、以下に説明する理由によって、焼結鉱の被還元性や冷間強度の低下を招くことになる。 In response to these problems, conventionally, the amount of carbonaceous material (powder coke) added to the sintering raw material has been increased. However, by increasing the amount of coke added, as shown in FIG. 6, the temperature in the sintered layer can be increased and the time for maintaining the temperature at 1200 ° C. or more can be extended. The maximum reached temperature exceeds 1400 ° C., and for the reasons explained below, the reducibility of the sintered ore and the cold strength are reduced.
 非特許文献1には、焼結過程で焼結鉱中に生成する各種鉱物の引張強度(冷間強度)と被還元性について、表1のように示されている。そして、焼結過程では、図7に示したように、1200℃で融液が生成し始め、焼結鉱の構成鉱物の中で最も高強度で、被還元性も比較的高いカルシウムフェライトが生成する。これが、焼結温度として1200℃以上を必要とする理由である。しかし、さらに昇温が進んで1400℃を超え、正確には1380℃を超えるようになると、カルシウムフェライトは、冷間強度と被還元性が最も低い非晶質珪酸塩(カルシウムシリケート)と、還元粉化しやすい骸晶状二次ヘマタイトとに分解し始める。また、焼結鉱の還元粉化の起点となる二次ヘマタイトは、鉱物合成試験の結果から、図8の状態図に示したように、Mag.ss+Liq.域まで昇温し、冷却したときに析出するので、状態図上に示した(1)の経路でなく、(2)の経路を介して焼結鉱を製造することが、還元粉化を抑制する上で重要であるとしている。 Non-Patent Document 1 shows the tensile strength (cold strength) and reducibility of various minerals generated in the sintered ore during the sintering process, as shown in Table 1. In the sintering process, as shown in FIG. 7, a melt starts to be generated at 1200 ° C., and calcium ferrite having the highest strength among the constituent minerals of sintered ore and relatively high reducibility is generated. To do. This is the reason why a sintering temperature of 1200 ° C. or higher is required. However, when the temperature rises further and exceeds 1400 ° C., more precisely, 1380 ° C., calcium ferrite is reduced to amorphous silicate (calcium silicate) having the lowest cold strength and reducibility, and reduced. It begins to decompose into skeletal secondary hematite that is easy to powder. In addition, secondary hematite, which is the starting point for reducing powderization of sintered ore, is obtained from Mag. As shown in the phase diagram of FIG. ss + Liq. Since it precipitates when it is heated up to the zone and cooled, it is possible to suppress the reduction powdering by producing sintered ore through the path (2) instead of the path (1) shown on the phase diagram. It is important to do.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 すなわち、非特許文献1には、焼結鉱の品質を確保する上で、燃焼時の最高到達温度や高温域保持時間などの制御が非常に重要な管理項目であり、これらの制御如何によって焼結鉱の品質がほぼ決定されることが開示されている。したがって、還元粉化性(RDI)に優れかつ高強度で被還元性に優れる焼結鉱を得るためには、1200℃以上の温度で生成したカルシウムフェライトを、カルシウムシリケートと二次ヘマタイトとに分解させないことが重要であり、そのためには、焼結時における装入層内の最高到達温度を1400℃超え、好ましくは1380℃超えとすることなく、装入層内の温度を1200℃(カルシウムフェライトの固相線温度)以上に長時間保持することが必要となる。以降、本発明では、上記1200℃以上1400℃以下の温度域に保持される時間を、「高温域保持時間」と称することとする。 That is, in Non-Patent Document 1, in order to ensure the quality of sintered ore, the control of the maximum temperature reached during combustion and the holding time in the high temperature range are very important management items. It is disclosed that the quality of the ore is almost determined. Therefore, in order to obtain a sintered ore that is excellent in reduced powder (RDI), high strength, and excellent reducibility, the calcium ferrite produced at a temperature of 1200 ° C. or higher is decomposed into calcium silicate and secondary hematite. Therefore, it is important that the temperature in the charging layer is 1200 ° C. (calcium ferrite) without exceeding the maximum reached temperature in the charging layer during sintering of over 1400 ° C., preferably over 1380 ° C. It is necessary to keep the temperature above (solidus temperature) for a long time. Hereinafter, in the present invention, the time maintained in the temperature range of 1200 ° C. to 1400 ° C. will be referred to as “high temperature range retention time”.
 なお、前述した装入層上層部の歩留低下を改善し、生産性を向上しようとする技術については、従来から幾つか提案されている。例えば、特許文献1には、焼結鉱を製造するに際して、焼結原料中に添加したコークスに加えて、焼結原料に吸引される空気中に発熱性ガスを添加し、これを焼結帯で燃焼させることによって、焼結鉱の強度や生産率、成品歩留りの向上を図る技術が提案されている。しかし、この特許文献1の技術は、コークスと気体燃料を燃焼させることによって焼結時の最高到達温度を高め、焼結鉱の強度や生産率、歩留りの向上を図っているため、成品焼結鉱の被還元性(RI)の悪化をきたすという問題がある。 Incidentally, several techniques have been proposed in the past for improving the yield reduction in the upper layer of the charging layer and improving the productivity. For example, in Patent Document 1, when producing sintered ore, in addition to coke added to the sintering raw material, an exothermic gas is added to the air sucked into the sintering raw material, A technique for improving the strength, production rate, and product yield of sintered ore has been proposed. However, since the technique of this patent document 1 raises the highest reached temperature at the time of sintering by burning coke and gaseous fuel, and aims at the improvement of the intensity | strength of a sintered ore, a production rate, and a yield, product sintering There is a problem that the reducibility (RI) of the ore is deteriorated.
 また、特許文献2には、装入層上層部を十分に焼成した時点で、装入層に供給する酸素含有ガスの質量流量を、装入層上層部を焼成する範囲において供給する酸素含有ガスの質量流量の1.01~2.6倍とし、装入層内の差圧を増加させて、燃焼溶融帯の移行速度を極端に加速し、生産率を増大するとともに製品歩留りおよび品質の優れた製品を得る方法が提案されている。しかし、この特許文献2の技術は、装入層の層厚の増加やパレット移動速度の増加が可能となり、焼結機の生産率を向上させることができるが、それは、燃焼溶融帯の移動速度と最高到達温度を高めることにもなるため、やはり、成品焼結鉱の被還元性の悪化を来たすという問題がある。 Further, in Patent Document 2, when the charging layer upper layer part is sufficiently fired, the mass flow rate of the oxygen-containing gas supplied to the charging layer is set within the range in which the charging layer upper layer part is fired. The mass flow rate is 1.01 to 2.6 times greater, the differential pressure in the charging layer is increased, the transition speed of the combustion melting zone is extremely accelerated, the production rate is increased, and the product yield and quality are excellent. A method for obtaining a new product has been proposed. However, the technique of Patent Document 2 can increase the layer thickness of the charging layer and increase the pallet moving speed, and can improve the production rate of the sintering machine. However, there is a problem that the reducibility of the product sintered ore is deteriorated.
 また、特許文献3には、パレット上の装入層の上層部が焼結する間に、装入層に吸引される燃焼用空気中の酸素濃度を35%以上に富化して焼結することにより、生産性および成品歩留りを向上させる酸素富化操業方法が提案されている。しかしながら、この特許文献3の技術は、燃焼空気中の酸素濃度を35%以上に富化することで、コークスの燃焼性を向上し、最高到達温度の上昇を図っているものの、燃焼性が向上する分、焼結に必要な1200℃以上の高温域保持時間が不足するようになるという問題がある。 Patent Document 3 discloses that the oxygen concentration in the combustion air sucked into the charging layer is enriched to 35% or more while the upper layer portion of the charging layer on the pallet is sintered. Has proposed an oxygen-enriched operation method that improves productivity and product yield. However, the technology of Patent Document 3 improves the combustibility of coke by increasing the oxygen concentration in the combustion air to 35% or more, and increases the maximum temperature, but the combustibility is improved. As a result, there is a problem that the high temperature region holding time of 1200 ° C. or higher necessary for sintering becomes insufficient.
 そこで、発明者らは、上記問題点を解決する技術として、焼結原料中への炭材添加量を削減した上で、焼結機の点火炉の下流において、燃焼下限濃度以下に希釈した各種気体燃料を、パレット上方から装入層内に導入し、その気体燃料を装入層内で燃焼させることによって、装入層内の最高到達温度および高温域保持時間の両方を適正範囲に制御する技術を特許文献4~6等に提案している。 Therefore, as a technique for solving the above-mentioned problems, the inventors reduced the amount of carbonaceous material added to the sintering raw material, and then variously diluted below the lower combustion limit concentration downstream of the ignition furnace of the sintering machine. By introducing gaseous fuel into the charging layer from above the pallet and combusting the gaseous fuel in the charging layer, both the maximum temperature reached in the charging layer and the holding time in the high temperature range are controlled within an appropriate range. Techniques are proposed in Patent Documents 4 to 6 and the like.
特公昭46−027126号公報Japanese Examined Patent Publication No. 46-027126 WO98/07891号公報WO98 / 077891 特開平02−073924号公報Japanese Patent Laid-Open No. 02-073924 特開2008−095170号公報JP 2008-095170 A 特開2010−047801号公報JP 2010-047801 A 特開2008−291354号公報JP 2008-291354 A
 下方吸引式焼結機を用いた焼結鉱の製造方法に、上記特許文献4~6の技術を適用し、焼結原料中への炭材添加量を削減した上で、燃焼下限濃度以下に希釈した気体燃料を装入層内に導入し、気体燃料を装入層内で燃焼させた場合には、後述する図16に示したように、上記気体燃料は、炭材が燃焼した後の装入層内(焼結層内)で燃焼するので、燃焼・溶融帯の最高到達温度を1400℃超えとすることなく、燃焼・溶融帯の幅を厚さ方向に拡大させることができ、効果的に高温域保持時間の延長を図ることができる。 Applying the techniques of Patent Documents 4 to 6 to the method for producing sintered ore using a downward suction type sintering machine, reducing the amount of carbonaceous material added to the sintered raw material, and lowering the concentration below the lower limit of combustion. When the diluted gaseous fuel is introduced into the charging layer and the gaseous fuel is burned in the charging layer, as shown in FIG. Since it burns in the charging layer (in the sintered layer), the width of the combustion / melting zone can be expanded in the thickness direction without exceeding the maximum temperature of the combustion / melting zone exceeding 1400 ° C. In particular, it is possible to extend the high temperature range holding time.
 しかしながら、上記特許文献4~6の従来技術においては、高強度かつ被還元性に優れる、高品質の焼結鉱を得るためには、1200℃以上1400℃以下の高温域にどの程度の時間保持する必要があるのか、また、そのためには希釈した気体燃料をどの領域に供給すればよいのか、十分に明らかにされてはいなかった。 However, in the prior arts of Patent Documents 4 to 6, in order to obtain a high-quality sintered ore having high strength and excellent reducibility, how long it is kept in a high temperature range of 1200 ° C. to 1400 ° C. It has not been fully clarified whether it is necessary to do this, and to which region the diluted gaseous fuel should be supplied.
 また、上記特許文献4~6の技術で注意しなければならないことは、焼結にとって好ましい最高到達温度や高温域保持時間の範囲を決定するに際して、炭材や気体燃料を燃焼させる支燃性ガスとして酸素を21vol%含有する空気をそのまま用いていることである。というのは、実際の焼結中の装入層内は、炭材や気体燃料の燃焼反応によって、大気とは異なった雰囲気となっているはずであり、また、支燃性ガスの成分や組成が変われば、装入層内のガス雰囲気も変化し、焼結時の最高到達温度や高温域保持時間も、当然、変化するはずである。したがって、支燃性ガスの特性に応じて、焼結機の操業条件を変えてやる必要がある。しかしながら、従来技術では、支燃性ガスの特性、特に空気中に含まれる酸素量が、焼結性や焼結鉱の品質に及ぼす影響については、ほとんど検討がなされていないのが実情である。 In addition, it should be noted in the techniques of Patent Documents 4 to 6 that a combustion-supporting gas that burns carbonaceous material or gaseous fuel when determining the range of the maximum temperature and the high-temperature range holding time that are preferable for sintering. As described above, air containing 21 vol% oxygen is used as it is. This is because the charging layer during actual sintering should have an atmosphere different from the atmosphere due to the combustion reaction of carbonaceous materials and gaseous fuel, and the composition and composition of the combustion-supporting gas. If this changes, the gas atmosphere in the charging layer also changes, and naturally, the maximum temperature reached during sintering and the high temperature region holding time should also change. Therefore, it is necessary to change the operating conditions of the sintering machine according to the characteristics of the combustion-supporting gas. However, in the prior art, the actual situation is that little consideration has been given to the influence of the characteristics of the combustion-supporting gas, particularly the amount of oxygen contained in the air, on the sinterability and the quality of the sinter.
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、下方吸引式焼結機を用い、炭材と気体燃料とを装入層内で燃焼させて焼結鉱を製造する方法において、焼結に必要な高温域保持時間を明らかにし、気体燃料を供給すべき適正領域を決定すると共に、焼結時の最高到達温度や高温域保持時間に対する支燃性ガスの影響を調査し、その結果に基づいて、空気中の酸素濃度を適正範囲で富化し、もって、高強度で被還元性に優れる、高品質の焼結鉱を高歩留りで製造する方法を提案することにある。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is to sinter by burning a carbonaceous material and a gaseous fuel in a charging layer using a lower suction type sintering machine. In the method of manufacturing ore, the high temperature region holding time required for sintering is clarified, the appropriate region to be supplied with gaseous fuel is determined, and the combustion-supporting gas for the highest temperature reached during sintering and the high temperature region holding time is determined. Based on the results, we propose a method for producing high-quality sintered ore with high strength and excellent reducibility at a high yield based on the results. There is to do.
 発明者らは、上記課題の解決に向けて鋭意研究を重ねた。その結果、高強度で被還元性に優れる高品質の焼結鉱を得るために、1200~1400℃の温度範囲に保持すべき時間、すなわち、高温域保持時間は、概ね150秒以上であること、したがって、気体燃料は、上記高温域保持時間が150秒未満である領域に供給すべきであること、また、従来、支燃性ガスである酸素を21vol%含有する空気に、さらに酸素を富化した場合には、焼結時のガス雰囲気が酸化方向に移行し、焼結原料中の炭材や気体燃料の燃焼開始温度を低温側に移行でき、最高到達温度の上昇を招くことなく、高温域保持時間の大幅な延長が可能となること、その結果、焼結鉱中に生成するカルシウムフェライト量が増加し、高強度で被還元性に優れる焼結鉱が得られること、そして、酸素富化の効果を最大限に発現させるためには、上記気体燃料を供給すべき領域において、好ましくは、上記気体燃料を供給すべき領域のさらに上流側1/2以内の領域において酸素を富化してやることが有効であることを見出し、本発明を完成させた。 The inventors have intensively studied to solve the above problems. As a result, in order to obtain a high-quality sintered ore with high strength and excellent reducibility, the time to be maintained in the temperature range of 1200 to 1400 ° C., that is, the high temperature region retention time is approximately 150 seconds or more. Therefore, the gaseous fuel should be supplied to the region where the high-temperature region holding time is less than 150 seconds, and conventionally, the air containing 21 vol% of oxygen, which is a combustion-supporting gas, is further enriched with oxygen. If it is, the gas atmosphere during sintering shifts to the oxidation direction, the combustion start temperature of the carbonaceous material and gaseous fuel in the sintering raw material can be shifted to the low temperature side, without causing an increase in the maximum reached temperature, The retention time in the high temperature range can be greatly extended. As a result, the amount of calcium ferrite produced in the sinter increases, and a sinter with high strength and excellent reducibility can be obtained. Maximize the effect of enrichment In order to achieve this, it has been found that it is effective to enrich oxygen in a region where the gaseous fuel is to be supplied, preferably in a region within 1/2 of the upstream side of the region where the gaseous fuel is to be supplied. The present invention has been completed.
 すなわち、本発明は、循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火すると共に、燃焼下限濃度以下に希釈した気体燃料を含む装入層上方の空気をパレット下に配設されたウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、炭材の燃焼熱で焼結するときに1200℃以上1400℃以下に保持される高温域保持時間が150秒未満となる領域に上記気体燃料を供給して高温域保持時間を150秒以上とすると共に、上記気体燃料供給領域で空気中の酸素を富化することを特徴とする焼結鉱の製造方法である。 That is, the present invention is to charge a sintered raw material containing fine ore and carbonaceous material on a circulating pallet to form a charging layer, ignite the carbonaceous material on the surface of the charging layer, and lower combustion lower concentration The air above the charging layer containing the diluted gaseous fuel is sucked in the wind box arranged under the pallet and introduced into the charging layer, and the gaseous fuel and the carbonaceous material are burned in the charging layer. In the method for producing sintered ore, the gaseous fuel is supplied to the region where the high temperature region retention time is maintained at 1200 ° C. or higher and 1400 ° C. or lower when sintering with the combustion heat of the carbonaceous material is less than 150 seconds. A method for producing a sintered ore characterized in that a high temperature region holding time is set to 150 seconds or more and oxygen in the air is enriched in the gaseous fuel supply region.
 本発明の焼結鉱の製造方法は、焼結原料中の炭材量を変化させて、最高到達温度を1200~1400℃の範囲に保持するとともに、高温域保持時間が150秒未満となる領域への気体燃料の供給量を変化させて高温域保持時間を150秒とすることを特徴とする。 The method for producing a sintered ore of the present invention is a region in which the amount of carbonaceous material in the sintered raw material is changed to maintain the maximum temperature within the range of 1200 to 1400 ° C. and the high temperature region retention time is less than 150 seconds. The amount of gaseous fuel supplied to is changed, and the high temperature region holding time is 150 seconds.
 また、本発明の焼結鉱の製造方法は、上記気体燃料供給領域の上流側1/2以内の領域で酸素を富化する、あるいは、上記気体燃料供給領域の上流側(1/4~1/2)以内の領域で酸素を富化することを特徴とする。 In the method for producing sintered ore of the present invention, oxygen is enriched in a region within 1/2 of the upstream side of the gaseous fuel supply region, or upstream of the gaseous fuel supply region (1/4 to 1). / 2) It is characterized by enriching oxygen in a region within.
 また、本発明の焼結鉱の製造方法は、上記酸素の富化によって、空気中の酸素濃度を21vol%超35vol%未満とすることを特徴とする。 Further, the method for producing a sintered ore according to the present invention is characterized in that the oxygen concentration in the air is more than 21 vol% and less than 35 vol% by the oxygen enrichment.
 また、本発明の焼結鉱の製造方法は、上記酸素の富化によって、酸素富化領域における装入層内のガス雰囲気中のO濃度を12.5vol%以上とし、かつ、最高到達温度を1275~1375℃の温度範囲とすることを特徴とする。 In the method for producing a sintered ore of the present invention, the O 2 concentration in the gas atmosphere in the charging layer in the oxygen-enriched region is set to 12.5 vol% or more by the oxygen enrichment, and the highest temperature reached In a temperature range of 1275 to 1375 ° C.
 また、本発明の焼結鉱の製造方法は、上記気体燃料の供給と酸素の富化により、上記高温域保持時間が150秒未満となる領域の高温域保持時間を150秒以上300秒以下とすることを特徴とする。 Further, in the method for producing a sintered ore of the present invention, the high temperature region retention time in the region where the high temperature region retention time is less than 150 seconds due to the supply of the gaseous fuel and the enrichment of oxygen is 150 seconds to 300 seconds. It is characterized by doing.
 また、本発明の焼結鉱の製造方法は、供給する気体燃料の発熱量相当以上の量の炭材を削減することを特徴とする。 Also, the method for producing sintered ore according to the present invention is characterized in that the amount of carbon material equivalent to or greater than the calorific value of the gaseous fuel to be supplied is reduced.
 また、本発明の焼結鉱の製造方法における上記気体燃料を添加した空気は、予め燃焼下限濃度以下に希釈した気体燃料を空気に添加したもの、あるいは、装入層上の大気中に気体燃料を高速で噴射して燃焼下限濃度以下に希釈したもの、のいずれかであることを特徴とする。 Further, in the method for producing sintered ore according to the present invention, the air to which the gaseous fuel is added is obtained by adding gaseous fuel previously diluted below the lower combustion limit concentration to the air, or gaseous fuel in the atmosphere above the charging layer. Is injected at high speed and diluted to below the lower combustion limit concentration.
 また、本発明の焼結鉱の製造方法における上記気体燃料は、気体燃料を供給する領域の装入層上方に設置されたフード内の高さ方向中間部に間隙を有して1段以上配設された邪魔板の下方に供給し、上記富化する酸素は、上記フード内の邪魔板の上方において邪魔板の間隙に向けて供給することを特徴とする。 In the method for producing sintered ore according to the present invention, the gaseous fuel is arranged in one or more stages with a gap in the middle in the height direction in the hood installed above the charging layer in the region where the gaseous fuel is supplied. The oxygen which is supplied below the baffle plate provided and enriched is supplied toward the gap between the baffle plates above the baffle plate in the hood.
 本発明によれば、以下の効果を得ることができる。
(1)1200℃以上1400℃以下の温度に保持する時間が不足となる領域に限定して気体燃料を供給することで、装入層内の全ての領域において、焼結時における高温域保持時間を150秒以上確保することが可能となる。
(2)支燃性ガス(空気)に酸素を富化し、焼結時のガス雰囲気を酸化方向に移行することによって、焼結鉱中のカルシウムフェライトの生成量を増大することができる。
(3)さらに、気体燃料を供給すると同時に、酸素を限定した範囲で富化することによって、気体燃料と焼結原料中の炭材の燃焼位置を低温側に移行させることができるので、最高到達温度を上昇させることなく、高温域保持時間を延長することができる。
(4)したがって、本発明によれば、高強度で被還元性に優れる高品質の焼結鉱を、生産性よく製造することが可能となる。
According to the present invention, the following effects can be obtained.
(1) High temperature region holding time during sintering in all regions in the charging layer by supplying gaseous fuel only to the region where the time for maintaining the temperature at 1200 ° C. or higher and 1400 ° C. or lower is insufficient. For 150 seconds or more.
(2) The amount of calcium ferrite produced in the sintered ore can be increased by enriching the combustion-supporting gas (air) with oxygen and shifting the gas atmosphere during sintering in the oxidation direction.
(3) Furthermore, by supplying gaseous fuel and enriching oxygen in a limited range, the combustion position of the carbonaceous material in the gaseous fuel and sintered raw material can be shifted to the low temperature side, so it reaches the highest level. The high temperature range retention time can be extended without increasing the temperature.
(4) Therefore, according to the present invention, a high-quality sintered ore having high strength and excellent reducibility can be produced with high productivity.
焼結プロセスを説明する概要図である。It is a schematic diagram explaining a sintering process. 焼結層内における温度分布と圧損分布を説明するグラフである。It is a graph explaining the temperature distribution and pressure loss distribution in a sintered layer. 高生産時と低生産時における装入層内の温度分布を説明する図である。It is a figure explaining the temperature distribution in the charging layer at the time of high production and low production. 焼結進行に伴う装入層内の変化を説明する模式図である。It is a schematic diagram explaining the change in the charging layer accompanying sintering progress. 燃焼帯が装入層の上層部、中層部および下層部の各位置に存在しているときの温度分布と、装入層の幅方向断面内における焼結鉱の歩留り分布を説明する図である。It is a figure explaining the temperature distribution when a combustion zone exists in each position of the upper layer part of the charging layer, the middle layer part, and the lower layer part, and the yield distribution of the sintered ore in the width direction cross section of the charging layer. . 炭材量の変化(増量)による装入層内の温度変化を説明する図である。It is a figure explaining the temperature change in the charging layer by the change (increase) of the amount of carbon materials. 焼結反応を説明する図である。It is a figure explaining a sintering reaction. 骸晶状二次ヘマタイトが生成する過程を説明する図である。It is a figure explaining the process in which a skeleton-like secondary hematite produces | generates. 実験に用いた横型電気炉を説明する模式図である。It is a schematic diagram explaining the horizontal electric furnace used for experiment. 高温域保持時間が焼結鉱の冷間強度およびカルシウムフェライト生成量に及ぼす影響を示すグラフである。It is a graph which shows the influence which the high temperature range holding time has on the cold intensity | strength of a sintered ore, and the amount of calcium ferrite production. 焼結時のガス雰囲気中のO濃度がカルシウムフェライトの生成割合に及ぼす影響を示すグラフである。O 2 concentration in the gas atmosphere during sintering is a graph showing the effect on the rate of formation of calcium ferrite. 焼結時のガス雰囲気中のCO/(CO+CO)がカルシウムフェライトの生成割合に及ぼす影響を示すグラフである。In the gas atmosphere during sintering CO / (CO + CO 2) is a graph showing the effect on the rate of formation of calcium ferrite. 焼結時のガス雰囲気中のO濃度がカルシウムシリケートの生成割合に及ぼす影響を示すグラフである。O 2 concentration in the gas atmosphere during sintering is a graph showing the effect on the rate of formation of calcium silicate. 焼結時のガス雰囲気中のCO/(CO+CO)がカルシウムシリケートの生成割合に及ぼす影響を示すグラフである。In the gas atmosphere during sintering CO / (CO + CO 2) is a graph showing the effect on the rate of formation of calcium silicate. 焼結時のガス雰囲気中のO濃度および焼結温度がカルシウムフェライトの生成割合に及ぼす影響を示すグラフである。O 2 concentration and sintering temperature in the gas atmosphere during sintering is a graph showing the effect on the rate of formation of calcium ferrite. 気体燃料供給による焼結層内の温度分布の変化を説明する図である。It is a figure explaining the change of the temperature distribution in the sintered layer by gaseous fuel supply. 気体燃料供給と同時に、酸素を富化したときの焼結層内の温度分布の変化を説明する図である。It is a figure explaining the change of the temperature distribution in a sintered layer when oxygen is enriched simultaneously with gaseous fuel supply. 実験に用いた焼結試験鍋を説明する図である。It is a figure explaining the sintering test pot used for experiment. 焼結鉱の品質、生産率等に及ぼす気体燃料供給の効果を示すグラフである。It is a graph which shows the effect of gaseous fuel supply which acts on the quality, production rate, etc. of a sintered ore. 焼結条件が焼結鉱の冷間強度SIおよび生産率に及ぼす影響を示すグラフである。It is a graph which shows the influence which sintering conditions exert on the cold strength SI and production rate of a sintered ore. 気体燃料の供給と同時に、酸素富化する実験条件を説明する図である。It is a figure explaining the experimental conditions which enrich oxygen simultaneously with supply of gaseous fuel. 気体燃料の供給と酸素富化が、焼結鉱の品質、生産率等に及ぼす影響を示すグラフである。It is a graph which shows the influence which supply of gaseous fuel and oxygen enrichment has on the quality, production rate, etc. of a sintered ore. 気体燃料と酸素を同時に供給する気体燃供給装置の一例を説明する図である。It is a figure explaining an example of the gaseous fuel supply apparatus which supplies gaseous fuel and oxygen simultaneously. 実施例において、気体燃料の供給と同時に酸素富化を行う実験条件を説明する図である。In an Example, it is a figure explaining the experimental condition which performs oxygen enrichment simultaneously with supply of gaseous fuel. 気体燃料の供給と酸素富化が、高温域保持時間および最高到達温度に及ぼす影響を示すグラフである。It is a graph which shows the influence which the supply of gaseous fuel and oxygen enrichment have on the high temperature range holding time and the highest attained temperature. 気体燃料の供給と酸素富化が、焼結鉱の品質、生産率等に及ぼす影響を示すグラフである。It is a graph which shows the influence which supply of gaseous fuel and oxygen enrichment has on the quality, production rate, etc. of a sintered ore.
 本発明の基本的な技術思想について説明する。
 発明者らは、まず、高強度かつ被還元性に優れる、高品質の焼結鉱を生産性よく製造するために必要な、1200℃以上1400℃以下の温度に保持すべき時間(高温域保持時間)を確認するため、電気炉を用いた焼結実験を行った。
 この実験では、ペレタイザーを用いて、粒径が0.5mm以上の鉄鉱石を核粒子とし、粒径0.5mm未満の鉄鉱石および副原料である炭酸カルシウム、二酸化ケイ素を原料として添加しながら造粒し、約2~5mmφの焼結原料とした。次いで、上記焼結原料を、アルミナ製のボートに乗せ、図9に示した横型電気炉の均熱帯中央付近に装入し、1200~1400℃の温度範囲に保持時間を0~350秒の範囲で変化させて焼結した。なお、上記実験では、焼結実験中、電気炉中に実機焼結機の排ガスと同組成の雰囲気ガスを流して、実機での焼結条件を模擬した。上記のようにして得た焼結鉱は、その後、急冷して回収し、冷間強度と生成したカルシウムフェライト量を測定した。焼結鉱の強度は、上記工程で得た焼結鉱を整粒して所定の粒度とした焼結鉱を、圧潰強度試験機を用いて、焼結鉱が圧潰するときの荷重(圧潰荷重)を求めた。また、カルシウムフェライト量は、粉末X線回折法を用いて測定した。
The basic technical idea of the present invention will be described.
The inventors first have to maintain a high temperature range at a temperature of 1200 ° C. or higher and 1400 ° C. or lower, which is necessary for producing a high-quality sintered ore having high strength and excellent reducibility with high productivity. Time), a sintering experiment using an electric furnace was performed.
In this experiment, using a pelletizer, iron ore with a particle size of 0.5 mm or more was used as the core particle, and iron ore with a particle size of less than 0.5 mm and auxiliary materials such as calcium carbonate and silicon dioxide were added as raw materials. The sintered raw material was about 2 to 5 mmφ. Next, the sintering raw material is placed on an alumina boat and charged in the vicinity of the soaking zone in the horizontal electric furnace shown in FIG. 9, and the holding time is in the temperature range of 1200 to 1400 ° C. in the range of 0 to 350 seconds. Sintering was carried out by changing. In the above experiment, the sintering conditions in the actual machine were simulated by flowing an atmosphere gas having the same composition as the exhaust gas of the actual machine into the electric furnace during the sintering experiment. The sintered ore obtained as described above was then rapidly cooled and recovered, and the cold strength and the amount of calcium ferrite produced were measured. The strength of the sintered ore is the load when the sintered ore is crushed by using a crushing strength tester with the sinter obtained by sizing the sintered ore obtained in the above step to a predetermined particle size (crushing load). ) The amount of calcium ferrite was measured using a powder X-ray diffraction method.
 図10は、上記実験の結果を示したものであり、この図から、以下のことが分かった。
(a)1200℃以上1400℃以下の温度に保持する時間(高温域保持時間)が長くなればなるほど、焼結鉱中に生成するカルシウムフェライト量が多くなり、それに伴って焼結鉱の強度も上昇する。
(b)高温域保持時間を150秒以上確保すると、カルシウムフェライトの生成量も大きく増加し、同時に圧潰強度試験での圧潰強度も大きく上昇して、本例では焼結鉱の圧潰強度が4.60kN以上となり、高炉用原料として十分な強度が得られる。
(c)高温域保持時間が300秒を超えると、焼結鉱中のカルシウムフェライト量が理論値(45.7mass%)に近づいて飽和するため、それ以上高温域保持時間を延長しても、焼結鉱の冷間強度の向上は望めなくなり、むしろ、燃料コストの面からは好ましくない。
FIG. 10 shows the results of the above-described experiment, and the following was found from this figure.
(A) The longer the time of holding at a temperature of 1200 ° C. to 1400 ° C. (high temperature region holding time), the more calcium ferrite is generated in the sintered ore, and the strength of the sintered ore is accordingly increased. To rise.
(B) When the high temperature region holding time is secured for 150 seconds or more, the amount of calcium ferrite produced increases greatly, and at the same time, the crushing strength in the crushing strength test also increases greatly. In this example, the crushing strength of the sintered ore is 4. It becomes 60 kN or more, and sufficient strength is obtained as a blast furnace raw material.
(C) When the high temperature region holding time exceeds 300 seconds, the amount of calcium ferrite in the sintered ore approaches the theoretical value (45.7 mass%) and becomes saturated. An improvement in the cold strength of the sintered ore cannot be expected, but is not preferable from the viewpoint of fuel cost.
 上記のように、高品質の焼結鉱を得るためには、1200℃以上1400℃以下に保持する高温域保持時間を150秒以上とする必要があること、したがって、下方吸引式焼結機を用いた焼結鉱の製造方法においては、希釈気体燃料を、炭材の燃焼熱のみでは高温域保持時間を150秒以上確保することができない装入層内の領域に供給する必要がある。ただし、高温域保持時間は、300秒を超えても、気体燃料の添加効果は飽和し、むしろコスト的に不利となるので、上限は300秒程度とするのが好ましい。 As described above, in order to obtain a high-quality sintered ore, it is necessary to set the high temperature region holding time at 1200 ° C. or higher and 1400 ° C. or lower to 150 seconds or longer. In the manufacturing method of the sintered ore used, it is necessary to supply the diluted gas fuel to the region in the charging layer where the high temperature region holding time cannot be secured for 150 seconds or more only by the combustion heat of the carbonaceous material. However, even if the high temperature region holding time exceeds 300 seconds, the effect of adding gaseous fuel is saturated and rather disadvantageous in terms of cost, so the upper limit is preferably about 300 seconds.
 次に、発明者らは、酸素を21vol%含む空気に対して、酸素を富化した場合における焼結反応に及ぼす影響について検討した。
 前述した表1に示したように、焼結過程で焼結鉱中に生成するカルシウムフェライトは、高強度で被還元性も良好であるのに対して、カルシウムシリケートは、低強度で被還元性も劣る。したがって、高品質の焼結鉱を製造する上で重要なことは、如何にして焼結鉱中にカルシウムフェライトを多く生成させ、カルシウムシリケートを生成させないかという点にある。また、焼結鉱中に生成される鉱物は、図7や図8に示したように、焼結時の最高到達温度や高温域保持時間によって変化する。しかし、最高到達温度や高温域保持時間は、焼結時のガス雰囲気の成分や組成によっても変化すると考えられるからである。
Next, the inventors examined the influence on the sintering reaction when oxygen was enriched with respect to air containing 21 vol% oxygen.
As shown in Table 1 above, calcium ferrite produced in sintered ore during the sintering process has high strength and good reducibility, whereas calcium silicate has low strength and reducibility. Is also inferior. Therefore, what is important in producing a high-quality sintered ore is how to produce a large amount of calcium ferrite in the sintered ore and not to produce calcium silicate. Moreover, the mineral produced | generated in a sintered ore changes with the highest ultimate temperature at the time of sintering, and high temperature range holding time, as shown in FIG.7 and FIG.8. However, it is considered that the maximum temperature reached and the high temperature range holding time will also change depending on the components and composition of the gas atmosphere during sintering.
 そこで、発明者らは、まず、焼結時のガス雰囲気が、最高到達温度や高温域保持時間に及ぼす影響について、以下の実験により調査した。
 実験では、ペレタイザーを用いて、粒径が0.5mm以上の鉄鉱石を核粒子とし、粒径0.5mm未満の鉄鉱石および副原料である炭酸カルシウム、二酸化ケイ素を外装用原料として添加しながら造粒し、約2~5mmφの焼結原料を得た。
 この焼結原料を、アルミナ製のボートに乗せ、図9に示した横型電気炉の均熱帯中央付近に装入し、1200~1400℃の温度範囲において焼結を行った。焼成した試料は、その後、急冷して回収し、焼結によって生成した鉱物種とそれらの生成割合(mass%)を、粉末X線回折法を用いて測定した。
 なお、上記焼結実験における焼結時のガス雰囲気は、実機排ガスの成分組成から焼結中のガス雰囲気を予測し、その中で大きく分散していたO濃度およびCO/(CO+CO)の比に着目し、これらを操作因子として変動させた。
Therefore, the inventors first investigated the influence of the gas atmosphere during sintering on the maximum temperature reached and the high temperature holding time by the following experiment.
In the experiment, using a pelletizer, iron ore having a particle size of 0.5 mm or more is used as a core particle, and iron ore having a particle size of less than 0.5 mm and auxiliary materials such as calcium carbonate and silicon dioxide are added as exterior materials. Granulation was performed to obtain a sintered raw material of about 2 to 5 mmφ.
This sintered raw material was placed on an alumina boat, charged near the center of the soaking zone of the horizontal electric furnace shown in FIG. 9, and sintered in a temperature range of 1200 to 1400 ° C. The calcined sample was then rapidly cooled and collected, and the mineral species produced by sintering and their production ratio (mass%) were measured using a powder X-ray diffraction method.
The gas atmosphere at the time of sintering in the above sintering experiment was predicted from the component composition of the exhaust gas from the actual machine, and the O 2 concentration and CO / (CO + CO 2 ) that were largely dispersed therein were predicted. Focusing on the ratio, these were varied as operating factors.
 上記実験の結果について、雰囲気中のO濃度とカルシウムフェライトの生成割合との関係を図11に、CO/(CO+CO)とカルシウムフェライトの生成割合との関係を図12に示した。これらの図から、O濃度が増加するのに伴い、また、CO/(CO+CO)が低下するのに伴い、カルシウムフェライトの生成割合が増加していることがわかる。 FIG. 11 shows the relationship between the O 2 concentration in the atmosphere and the generation ratio of calcium ferrite, and FIG. 12 shows the relationship between CO / (CO + CO 2 ) and the generation ratio of calcium ferrite. From these figures, it can be seen that the generation ratio of calcium ferrite increases as the O 2 concentration increases and as CO / (CO + CO 2 ) decreases.
 同様に、雰囲気中のO濃度とカルシウムシリケートの生成割合との関係を図13に、CO/(CO+CO)とカルシウムシリケートの生成割合との関係を図14に示した。これらの図から、O濃度が増加するのに伴い、また、CO/(CO+CO)が低下するのに伴い、カルシウムシリケートの生成割合は減少していることがわかる。 Similarly, FIG. 13 shows the relationship between the O 2 concentration in the atmosphere and the production rate of calcium silicate, and FIG. 14 shows the relationship between CO / (CO + CO 2 ) and the production rate of calcium silicate. From these figures, it can be seen that as the O 2 concentration increases and as CO / (CO + CO 2 ) decreases, the production rate of calcium silicate decreases.
 これらの結果は、焼結時のガス雰囲気中のO濃度が高くなる、即ち、焼結時のガス雰囲気が酸化方向に移行するのにしたがって、カルシウムフェライトの生成割合が増加し、カルシウムシリケートの生成割合が減少すること、したがって、焼結時のガス雰囲気中のO濃度を高めてやることは、焼結鉱の品質向上に対して極めて有効であることを示している。 These results show that as the O 2 concentration in the gas atmosphere during sintering increases, that is, as the gas atmosphere during sintering shifts in the oxidation direction, the generation rate of calcium ferrite increases, and the calcium silicate A reduction in the production rate, and thus an increase in the O 2 concentration in the gas atmosphere during sintering, is extremely effective for improving the quality of the sintered ore.
 これらのO濃度とCO/(CO+CO)による鉱物組織の変化は、以下のように説明される。カルシウムフェライトは、重量比で約70%がヘマタイトで構成されている。ヘマタイトは、3価の酸化鉄であり、焼結中のガス雰囲気が酸化方向へ移行することにより安定化する。したがって、焼結時のガス雰囲気中のO濃度が高くなり、酸化方向へ移行すると、ヘマタイトが安定化して、カルシウムフェライトの生成割合が増加したものと考えられる。 These changes in mineral structure due to the O 2 concentration and CO / (CO + CO 2 ) are explained as follows. About 70% by weight of calcium ferrite is composed of hematite. Hematite is trivalent iron oxide, and is stabilized when the gas atmosphere during sintering moves in the oxidation direction. Therefore, it is considered that when the O 2 concentration in the gas atmosphere at the time of sintering increases and shifts in the oxidation direction, the hematite is stabilized and the generation ratio of calcium ferrite is increased.
 一方、カルシウムシリケートは、重量比で約15%がウスタイトで構成されている。ウスタイトは2価の酸化鉄であり、焼結中のガス雰囲気が酸化方向へ移行すると、酸化反応によって失われる。したがって、焼結時のガス雰囲気中のO濃度が高くなり、酸化方向へ移行したことにより、ウスタイトが消失して、カルシウムシリケートの生成割合が減少したものと考えられる。 On the other hand, calcium silicate is composed of wustite at about 15% by weight. Wustite is a divalent iron oxide and is lost by an oxidation reaction when the gas atmosphere during sintering moves in the oxidation direction. Therefore, it is considered that the O 2 concentration in the gas atmosphere at the time of sintering was increased and moved in the oxidation direction, whereby wustite disappeared and the generation rate of calcium silicate decreased.
 図15は、上記のような焼結実験を多数行うことによって得られた結果を、O濃度および焼結温度と、カルシウムフェライトの生成割合との関係として示したものである。この図15によると、焼結時の保持温度を1250~1375℃、好ましくは1275~1375℃の温度範囲に制御するとともに、焼結時のガス雰囲気中のO濃度を12.5vol%以上に高めてやる、すなわち焼結時のガス雰囲気を酸化方向へと移行させてやることにより、カルシウムフェライトの生成割合を著しく高めることができることがわかる。 FIG. 15 shows the results obtained by performing a number of sintering experiments as described above as the relationship between the O 2 concentration and the sintering temperature and the generation ratio of calcium ferrite. According to FIG. 15, the holding temperature during sintering is controlled to 1250 to 1375 ° C., preferably 1275 to 1375 ° C., and the O 2 concentration in the gas atmosphere during sintering is set to 12.5 vol% or more. It can be seen that the generation ratio of calcium ferrite can be remarkably increased by increasing the gas atmosphere, that is, shifting the gas atmosphere during sintering in the oxidation direction.
 また、支燃性ガスである空気中の酸素を富化してやるのと同時に、気体燃料を供給した場合には、上記焼結鉱中に生成する鉱物組織への影響以外に、以下に説明する焼結反応速度や焼結温度分布への好ましい影響も期待される。
 一般に、反応速度は以下の式で表される。
 r=A×k×C
 ここで、r:反応速度(mol/m・s)
     A:温度に依存しない定数(頻度因子)
     k:反応速度定数(m/s)
     C:反応に使用される気体成分濃度(mol/m
     n:分子1個の反応を進行させるために必要な気体成分の分子数(−)
 ただし、この反応速度式では、逆反応は考慮していない。
In addition, when gaseous fuel is supplied at the same time as enriching oxygen in the air, which is a combustion-supporting gas, in addition to the influence on the mineral structure generated in the sintered ore, the sintering described below is performed. A favorable influence on the sintering reaction rate and sintering temperature distribution is also expected.
In general, the reaction rate is expressed by the following equation.
r = A × k × C n
Where r: reaction rate (mol / m 2 · s)
A: Constant independent of temperature (frequency factor)
k: Reaction rate constant (m / s)
C: Gas component concentration used in the reaction (mol / m 3 )
n: Number of molecules of gas component necessary for a single molecule reaction to proceed (-)
However, this reaction rate equation does not consider the reverse reaction.
 上記式において、温度の影響はkに含まれており、このkを含む反応速度rは、温度の上昇とともに増大する。また、反応速度rは、反応に使用される気体成分濃度Cの増加に伴って上昇する。つまり、反応速度rは、温度上昇に伴う反応速度定数kや、反応に使用される気体成分濃度Cの増加によって上昇する。このことは、ある温度における反応速度は、反応に使用される気体成分濃度を高めてやることで上昇させることができることを、また、反応に使用される気体成分濃度を高めてやることで、高温時の反応速度を低温でも実現できることを意味している。 In the above equation, the influence of temperature is included in k, and the reaction rate r including k increases as the temperature increases. Further, the reaction rate r increases as the gas component concentration C used for the reaction increases. That is, the reaction rate r increases with an increase in the reaction rate constant k accompanying the temperature increase and the gas component concentration C used for the reaction. This means that the reaction rate at a certain temperature can be increased by increasing the gas component concentration used in the reaction, and the gas component concentration used in the reaction can be increased. This means that the reaction rate can be achieved even at low temperatures.
 そこで、上記反応速度を、炭材と気体燃料の燃焼速度に、反応に使用される気体成分を酸素に置き換えて考えると、炭材と気体燃料の燃焼速度は、空気中の酸素を富化してやることによって高めることができること、また、空気中の酸素を富化してやることにより、低温でも高温と同じ燃焼速度とすることができることになる。 Therefore, if the reaction rate is considered as the combustion rate of the carbonaceous material and the gaseous fuel and the gas component used for the reaction is replaced with oxygen, the combustion rate of the carbonaceous material and the gaseous fuel will enrich oxygen in the air. In addition, by enriching oxygen in the air, the same burning rate as that of the high temperature can be achieved even at a low temperature.
 図16は、空気に気体燃料を添加する技術を開示する特許文献4に示された、焼結層内部の燃焼状態を説明する図であり、(a)は、燃焼帯の広がり(大きさ)を、(b)は、そのときの温度分布曲線を模式的に示したものである。そして、特許文献4によれば、空気中に吹き込んだ気体燃料は、炭材の燃焼位置よりも離れた位置、即ち、装入層上方側の低温度側で燃焼するため、炭材の燃焼に伴う温度ピークと気体燃料の燃焼に伴う温度ピークの2つの温度ピークが形成され、それら2つの温度ピークから合成された温度分布曲線は、すそ野の広い分布を示す結果、高温域保持時間が延長されると説明されている。 FIG. 16 is a diagram for explaining the combustion state inside the sintered layer shown in Patent Document 4 that discloses a technique for adding gaseous fuel to air, and (a) is the spread (size) of the combustion zone. (B) schematically shows the temperature distribution curve at that time. According to Patent Document 4, the gaseous fuel blown into the air burns at a position farther from the combustion position of the carbonaceous material, that is, at a lower temperature side above the charging layer, so that the combustion of the carbonaceous material is performed. Two temperature peaks are formed, the temperature peak accompanying combustion of gaseous fuel and the temperature peak accompanying combustion of gaseous fuel, and the temperature distribution curve synthesized from these two temperature peaks shows a wide distribution of the bottom, resulting in an extended high temperature region retention time. It is explained.
 一方、空気中に酸素を富化すると同時に、気体燃料を添加する場合には、上述したように、気体燃料と炭材の燃焼速度を高めたり、燃焼温度を低温度側に移行させたりする効果が得られる。ここで、気体燃料が燃焼する低温度側の位置とは、焼結が完了して焼結鉱(焼結ケーキ)が生成した装入層上方側であり、一方、炭材が燃焼する低温度側の位置とは、まだ炭材が燃焼していない生原料が存在する装入層下方側ということである。 On the other hand, in the case of adding gaseous fuel at the same time as enriching oxygen in the air, as described above, the effect of increasing the combustion speed of the gaseous fuel and the carbonaceous material or shifting the combustion temperature to a lower temperature side. Is obtained. Here, the position on the low temperature side where the gaseous fuel burns is the upper side of the charging layer where the sintering is completed and the sintered ore (sintered cake) is generated, while the low temperature where the carbonaceous material burns. The position on the side refers to the lower side of the charging layer where there is a raw material that has not yet been burned with charcoal.
 この燃焼位置の変化を、上記図16と対比して示したのが図17であり、(a)は、燃焼帯の広がり(大きさ)を、(b)は、そのときの温度分布曲線を模式的に示している。図16(b)と図17(b)との比較からわかるように、酸素富化と同時に気体燃料を吹き込む場合には、炭材の燃焼位置と気体燃料の燃焼位置の間隔が、気体燃料のみを吹き込む場合以上に広い裾野を有するようになる。この結果は、炭材と気体燃料の添加量を適正に制御してやれば、酸素富化と気体燃料の同時吹き込み操業を行うことによって、最高到達温度を上昇させることなく、従来技術以上に高温域保持時間を延長することが可能となることを示している。 FIG. 17 shows the change in the combustion position in comparison with FIG. 16, where (a) shows the spread (size) of the combustion zone, and (b) shows the temperature distribution curve at that time. This is shown schematically. As can be seen from the comparison between FIG. 16B and FIG. 17B, when gaseous fuel is blown simultaneously with oxygen enrichment, the interval between the combustion position of the carbonaceous material and the combustion position of the gaseous fuel is only gaseous fuel. It will have a wider base than when blowing in. As a result, if the addition amount of carbonaceous material and gaseous fuel is properly controlled, oxygen enrichment and simultaneous blowing of gaseous fuel can be used to maintain the higher temperature range than the conventional technology without increasing the maximum temperature. It shows that the time can be extended.
 上記、酸素富化の効果を確認するため、焼結試験鍋を用いて以下の実験を行った。
 まず、鉄鉱石、溶剤および粉コークス等を、粉コークスを除いた配合割合が、表2に示した値となるようした混合した焼結原料を、ドラムミキサーに投入し、約5mmφの大きさに造粒した。この際、得られる焼結鉱中のシリカは4.9mass%、塩基度は2.0となるように調整した。次いで、上記造粒粒子を、図18に示した290mmφ×400mmHの大きさの円筒状の鉄製焼結鍋に充填して装入層を形成し、この装入層上方に配設した点火炉で点火し、焼結鍋の下方に配設したブロワーで、装入層上方から下方に空気を吸引して焼結原料中の炭材(粉コークス)を燃焼させて焼結を行った。
In order to confirm the above-described effect of oxygen enrichment, the following experiment was conducted using a sintering test pot.
First, a sintered raw material in which iron ore, a solvent, powder coke, etc. are mixed so that the blending ratio excluding the powder coke becomes the value shown in Table 2 is put into a drum mixer, and the size is about 5 mmφ. Granulated. At this time, the silica in the obtained sintered ore was adjusted to be 4.9 mass% and the basicity was 2.0. Next, the granulated particles are filled into a cylindrical iron sintering pot having a size of 290 mmφ × 400 mmH shown in FIG. 18 to form a charging layer, and an ignition furnace disposed above the charging layer is used. Sintering was performed by igniting and using a blower disposed below the sintering pan to suck air from above the charging layer to burn the carbonaceous material (powder coke) in the sintering raw material.
 上記焼結実験では、表3に示したように、空気(O:21vol%)のみを支燃性ガスとして装入層中に導入する従来技術の焼結条件(T1)と、O濃度が28vol%となるよう酸素を富化した空気を装入層中に導入する焼結条件(T2)、LNGを濃度が0.4vol%に希釈した空気を装入層中に導入し、それと等熱量の炭材を削減した特許文献4に記載の焼結条件(T3)、LNGを濃度が0.4vol%に希釈した空気を装入層中に導入し、それと等熱量の炭材を削減すると同時に、O濃度が28vol%となるよう酸素を富化する焼結条件(T4)、および、LNGを濃度が0.4vol%に希釈した空気を装入層中に導入し、その等熱量の1.5倍の炭材を削減すると同時に、O濃度が28vol%となるよう酸素を富化する焼結条件(T5)の5水準の実験を行った。 In the above-described sintering experiment, as shown in Table 3, the conventional sintering conditions (T1) in which only air (O 2 : 21 vol%) is introduced into the charge layer as a combustion-supporting gas, and the O 2 concentration Sintering conditions (T2) in which oxygen-enriched air is introduced into the charging layer so that the amount of oxygen is 28 vol%, air in which LNG is diluted to a concentration of 0.4 vol% is introduced into the charging layer, and the like Sintering conditions (T3) described in Patent Document 4 in which the amount of carbon material of heat is reduced, and when air with LNG diluted to a concentration of 0.4 vol% is introduced into the charging layer, and the amount of carbon material with the same amount of heat is reduced At the same time, sintering conditions (T4) for enriching oxygen so that the O 2 concentration becomes 28 vol%, and air in which LNG is diluted to a concentration of 0.4 vol% are introduced into the charging layer, while reducing 1.5 times the carbonaceous material, acid to O 2 concentration of 28 vol% It was subjected to five levels of the experimental sintering conditions to enrich (T5).
 なお、上記焼結実験では、焼結に要した時間を測定するとともに、得られた焼結鉱について、シャッター強度をJIS M8711に準じて測定し、さらに成品歩留まりを求め、それらの結果から生産率を求めた。 In the above sintering experiment, the time required for sintering was measured, and the shutter strength of the obtained sintered ore was measured in accordance with JIS M8711, and the product yield was obtained. Asked.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記試験の結果を図19に示した。この結果から、空気に酸素を富化しただけの焼結方法(No.T2)では、従来技術(No.T1)と比較して、焼結鉱の冷間強度(SI)と成品歩留りが若干向上し、焼結時間が大幅に短縮される結果、生産率が向上している。一方、気体燃料としてLNGを空気中に吹き込む特許文献4に記載の焼結方法(No.T3)では、冷間強度が酸素富化のみの焼結方法以上に向上し、成品歩留りも大幅に向上し、また、焼結時間も従来技術より若干短縮された結果、生産率が向上している。また、気体燃料としてLNGを空気中に吹き込むと同時に、酸素を富化した焼結方法(No.T4,T5)では、冷間強度がさらに向上し、LNG吹き込みと同等の成品歩留りが得られ、しかも、焼結時間が酸素富化のみと同等に短縮した結果、大幅な生産率の向上が達成されている。 The results of the above test are shown in FIG. From this result, in the sintering method (No. T2) in which only oxygen is enriched in the air, the cold strength (SI) and product yield of the sintered ore are slightly higher than those in the conventional technique (No. T1). As a result, the sintering time is greatly shortened, resulting in an improved production rate. On the other hand, in the sintering method (No. T3) described in Patent Document 4 in which LNG is blown into the air as gaseous fuel, the cold strength is improved more than the sintering method only with oxygen enrichment, and the product yield is also greatly improved. In addition, as a result of the sintering time being slightly shortened compared to the prior art, the production rate is improved. In addition, LNG as a gaseous fuel is blown into the air, and at the same time, in the sintering method enriched with oxygen (No. T4, T5), the cold strength is further improved, and a product yield equivalent to LNG blowing can be obtained. Moreover, as a result of the sintering time being shortened to the same extent as oxygen enrichment alone, a significant increase in production rate has been achieved.
 図20は、上記実験結果を、焼結鉱の冷間強度(SI)および生産率に及ぼす酸素とLNGの吹き込みの効果として示したものである。この図から明らかなように、空気に気体燃料を添加する、あるいは、空気に酸素を富化することによって、焼結鉱の冷間強度および生産率ともに向上することができるが、気体燃料を添加すると同時に酸素を富化して焼結を行った場合には、酸素富化のみ、LNG添加のみのときよりも、冷間強度、生産率ともに大幅に向上しており、同時吹込みによる相乗効果を確認することができる。しかも、No.T5では、吹込んだ気体燃料の発熱量以上の量のコークスを削減しているにもかかわらず、シャッター強度や生産率が、大きく向上していることがわかる。 FIG. 20 shows the above experimental results as the effect of oxygen and LNG blowing on the cold strength (SI) and production rate of the sintered ore. As is clear from this figure, by adding gaseous fuel to the air or enriching air with oxygen, both the cold strength and production rate of the sintered ore can be improved, but the gaseous fuel is added. At the same time, when sintering was performed with oxygen enrichment, both the cold strength and the production rate were significantly improved compared to the case of oxygen enrichment alone and LNG addition alone. Can be confirmed. Moreover, no. It can be seen that at T5, the shutter strength and the production rate are greatly improved despite the reduction of the amount of coke that exceeds the calorific value of the injected gaseous fuel.
 ところで、上記の焼結実験は、焼結開始(点火)から焼結終了までのすべての時間において、気体燃料の供給や酸素富化を行ったときの効果を示したものである。しかしながら、前述したように、気体燃料の供給は、1200℃以上1400℃以下の温度範囲に保持される時間(高温域保持時間)が150秒未満の領域において行えばよく、それ以上の領域において気体燃料を供給しても、燃料コストの面から好ましくない。また、酸素の富化を、気体燃料の供給領域を超えて行うことも、ランニングコストや設備コストの面から好ましくない。また、富化する酸素量もできるだけ少ないほど好ましい。 By the way, the above-described sintering experiment shows the effect of supplying gaseous fuel and enriching oxygen in all the time from the start of sintering (ignition) to the end of sintering. However, as described above, the gaseous fuel may be supplied in a region where the time (high temperature region retention time) maintained in the temperature range of 1200 ° C. or higher and 1400 ° C. or lower is less than 150 seconds. Even if fuel is supplied, it is not preferable in terms of fuel cost. In addition, it is not preferable from the viewpoint of running cost and equipment cost to perform oxygen enrichment beyond the gaseous fuel supply region. Further, the amount of oxygen to be enriched is preferably as small as possible.
 そこで、発明者らは、気体燃料を供給する領域内において、富化する酸素量一定の条件の下で、酸素をどの範囲に供給すべきか、すなわち、狭い範囲に高濃度の酸素を供給するのがよいのか、あるいは、広い範囲で薄く酸素を富化するのがよいのかを調査する実験を行った。
 実験は、前述した実験と同様、表2に示した焼結原料を、ドラムミキサーに投入し、約5mmφの大きさに造粒した。この際、得られる焼結鉱中のシリカは4.9mass%、塩基度は2.0となるように調整した。
 次いで、上記造粒粒子を、図18に示した290mmφ×400mmHの大きさの円筒状の鉄製焼結鍋に充填して装入層を形成し、この装入層上方に配設した点火炉で点火し、焼結鍋の下方に配設したブロワーで、装入層上方から下方に空気を吸引して焼結原料中の炭材(粉コークス)を燃焼させる、生産量が312千トン/月程度の実機焼結機を模擬した焼結実験を行った。
In view of this, the inventors supply a range of oxygen to be supplied under a condition where the amount of oxygen to be enriched is constant, that is, supply a high concentration of oxygen in a narrow range. An experiment was conducted to investigate whether it is better to enrich oxygen thinly over a wide range.
In the experiment, similar to the above-described experiment, the sintering raw materials shown in Table 2 were put into a drum mixer and granulated to a size of about 5 mmφ. At this time, the silica in the obtained sintered ore was adjusted to be 4.9 mass% and the basicity was 2.0.
Next, the granulated particles are filled into a cylindrical iron sintering pot having a size of 290 mmφ × 400 mmH shown in FIG. 18 to form a charging layer, and an ignition furnace disposed above the charging layer is used. A blower placed under the sintering pan is ignited and air is sucked from the upper part of the charging layer downward to burn the carbonaceous material (powder coke) in the sintering raw material. Production volume is 312,000 tons / month A sintering experiment simulating an actual sintering machine was conducted.
 なお、上記焼結実験では、有効機長(点火炉出側~排鉱部)が58mの焼結機で、炭材量5.0mass%でLNGの供給なしで焼結する焼結条件をベース(T1)とし、気体燃料(LNG)の供給範囲および富化する酸素の濃度および供給長さを表4のように変化させた焼結条件を模擬した。具体的には、酸素富化なしで、上記有効機長の上流側17mに亘って0.4vol%に希釈したLNGを気体燃料として供給する、即ち、装入層の上層部29%の範囲に希釈気体燃料を供給する条件(T2)、T2の条件において、LNG供給範囲の全長(17m)に亘って酸素を富化する条件(T3)、T2の条件において、LNG供給範囲の上流側1/2(8.5m)において酸素を富化する条件(T4)、および、T2の条件において、LNG供給範囲の上流側1/4(4.25m)において酸素を富化する条件(T5)の5水準で焼結実験を行った。なお、LNGを供給する場合には、焼結原料中の炭材量を4.7mass%に、LNGを供給し酸素を富化する条件の場合には、焼結原料中の炭材量を4.5mass%に削減した。上記実験条件のイメージ図を、図21に示した。 In the above-mentioned sintering experiment, the effective machine length (ignition furnace exit side to the ore excavation part) is a sintering machine having a 58 m carbon material amount of 5.0 mass% based on sintering conditions without LNG supply ( T1), and the sintering conditions in which the supply range of gaseous fuel (LNG), the concentration of oxygen to be enriched, and the supply length were changed as shown in Table 4 were simulated. Specifically, without oxygen enrichment, LNG diluted to 0.4 vol% is supplied as gaseous fuel over the upstream side of the effective pilot length of 17 m, that is, diluted to the range of 29% of the upper layer portion of the charging layer. In the conditions (T2) and T2 for supplying gaseous fuel, oxygen is enriched over the entire length (17 m) of the LNG supply range (T3), and in the condition for T2, 1/2 on the upstream side of the LNG supply range. 5 levels of the condition (T5) for enriching oxygen at (8.5 m) and the condition (T5) for enriching oxygen at 1/4 (4.25 m) upstream of the LNG supply range in the condition of T2 A sintering experiment was conducted. In the case of supplying LNG, the amount of carbon material in the sintered raw material is set to 4.7 mass%. In the case of supplying LNG and enriching oxygen, the amount of carbon material in the sintered raw material is set to 4%. Reduced to 5 mass%. An image of the above experimental conditions is shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、上記焼結実験では、焼結に要した時間を測定するとともに、得られた焼結鉱について、シャッター強度をJIS M8711に準じて測定し、さらに成品歩留まりを求め、それらの結果から生産率を求め、その結果を図22に示した。この結果から、LNGの供給も、酸素富化も行わないベース条件(T1)に対して、LNGを供給した条件(T2)では、焼結鉱の強度が上昇して歩留りが向上し、さらに、焼結時間も短縮するため生産率は大幅に向上している。しかし、LNGの供給と合わせて酸素を富化した条件(T3~T5)では、焼結鉱の強度がさらに上昇して歩留りが向上している。しかし、酸素をLNGの供給と同じ範囲で薄く長く酸素を富化した条件(T3)では、焼結時間が延長し、生産率が低下する傾向となる。ただし、ベース条件(T1)よりは生産率が向上している。
 上記焼結実験の結果から、気体燃料の供給に併せて酸素を富化してやることが有効であるが、好ましくは気体燃料を供給する領域の上流側1/2以内の領域、さらに好ましくは、上流側(1/4~1/2)以内の領域において集中的に気体燃料を富化してやるのが効果的であることがわかった。
In the above sintering experiment, the time required for sintering was measured, and the shutter strength of the obtained sintered ore was measured in accordance with JIS M8711, and the product yield was obtained, and the production rate was obtained from these results. The results are shown in FIG. From this result, with respect to the base condition (T1) in which neither LNG supply nor oxygen enrichment is performed, in the condition (T2) in which LNG is supplied, the strength of the sintered ore is increased and the yield is improved. The production rate is greatly improved because the sintering time is also shortened. However, under the conditions (T3 to T5) in which oxygen is enriched together with the supply of LNG, the strength of the sintered ore is further increased and the yield is improved. However, under the condition (T3) in which oxygen is thin and long and enriched in the same range as the supply of LNG, the sintering time is extended and the production rate tends to decrease. However, the production rate is improved over the base condition (T1).
From the results of the above sintering experiment, it is effective to enrich oxygen in conjunction with the supply of gaseous fuel, but preferably the region within 1/2 of the upstream side of the region for supplying gaseous fuel, more preferably upstream It was found that it is effective to intensively enrich the gaseous fuel in the region within the side (1/4 to 1/2).
 上記のように酸素を薄く長い範囲で富化することで、焼結時間が長くなる原因については、以下のように考えている。
 前述したように、装入層内に気体燃料を供給し燃焼させる場合、炭材燃焼による焼結帯が通過した後の焼結温度が低下しつつある装入層(焼結層)内において気体燃料が燃焼するので、その部分の温度を高めて燃焼帯の厚さ方向の幅を拡大し、高温域保持時間を延長することができる。また、酸素の富化は、気体燃料の燃焼温度を低める作用があるので、酸素を富化しない場合よりも低温度域、即ち、装入層上層部で気体燃料が燃焼するようになる。しかし、図2において説明したように、燃焼帯は、通気抵抗を高める作用があるため、燃焼帯の幅の拡大は、通風量の低下を招き焼結時間の延長を来たすことになる。そして、その影響は、酸素を富化する時間が長ければ長いほど大きくなるため、LNGの供給領域と同じ範囲に酸素を富化した条件では、特に焼結時間が延長したものと考えられる。
The reason why the sintering time is increased by enriching oxygen in a thin and long range as described above is considered as follows.
As described above, when gaseous fuel is supplied into the charging layer and burned, the gas in the charging layer (sintering layer) where the sintering temperature is decreasing after passing through the sintering zone due to the combustion of the carbonaceous material. Since the fuel burns, the temperature in that portion can be increased to expand the width of the combustion zone in the thickness direction, and the high temperature region holding time can be extended. Further, since enrichment of oxygen has an effect of lowering the combustion temperature of the gaseous fuel, the gaseous fuel is combusted in a lower temperature range, that is, in the upper part of the charging layer than when oxygen is not enriched. However, as described with reference to FIG. 2, the combustion zone has an effect of increasing the ventilation resistance. Therefore, the expansion of the width of the combustion zone leads to a decrease in the amount of air flow and an extension of the sintering time. The effect becomes larger as the time for enriching oxygen becomes longer. Therefore, it is considered that the sintering time is particularly extended under the condition where oxygen is enriched in the same range as the LNG supply region.
 次に、本発明の焼結鉱の製造方法について具体的に説明する。
 本発明の焼結鉱の製造方法は、下方吸引式焼結機を用いて、循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火すると共に、燃焼下限濃度以下に希釈した気体燃料を含む装入層上方の空気をパレット下に配設されたウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する方法である点において、従来の特許文献4~6の技術と同じである。したがって、気体燃料を供給する場合には、焼結時の装入層内、特に、装入層の中層から下層における最高到達温度を1200~1400℃の範囲に保持するため、焼結原料中に添加する炭材量を削減するのが好ましい。
Next, the manufacturing method of the sintered ore of this invention is demonstrated concretely.
The method for producing a sintered ore according to the present invention uses a downward suction type sintering machine to charge a sintered raw material containing fine ore and carbonaceous material on a circulating pallet to form a charging layer. While igniting the charcoal on the surface of the charging layer, the air above the charging layer containing gaseous fuel diluted below the lower combustion limit concentration is sucked into the charging layer and introduced into the charging layer. This is the same as the techniques of the conventional patent documents 4 to 6 in that it is a method for producing sintered ore by burning the gaseous fuel and the carbonaceous material in the charging layer. Therefore, when supplying gaseous fuel, in order to keep the highest temperature in the charging layer during sintering, particularly in the middle layer to the lower layer of the charging layer in the range of 1200 to 1400 ° C., It is preferable to reduce the amount of carbon material to be added.
 しかしながら、本発明の焼結鉱の製造方法の特徴は、上記気体燃料を、炭材のみの燃焼熱で焼結するときに1200℃以上1400℃以下に保持される高温域保持時間が150秒未満となる領域において供給すること(第1の特徴)、および、上記気体燃料を供給する領域の内のさらにその上流側1/2以内の領域において、酸素を富化すること(第2の特徴)にある。 However, a feature of the method for producing a sintered ore of the present invention is that the gaseous fuel is held at a temperature of 1200 ° C. or higher and 1400 ° C. or lower when the gaseous fuel is sintered with combustion heat of only a carbonaceous material, and the high temperature region holding time is less than 150 seconds (First feature), and oxygen enrichment in a region within 1/2 of the upstream side of the region that supplies the gaseous fuel (second feature) It is in.
 第1の特徴である、気体燃料を、炭材の燃焼熱で焼結するときに1200℃以上1380℃以下に保持される高温域保持時間が150秒未満となる領域において供給する理由は、炭材の燃焼熱のみでは高温域保持時間を150秒以上確保することができない装入層の領域に気体燃料を供給し、燃焼させることで、装入層内の全てに位置において高温域保持時間を150秒以上確保し、高品質の焼結鉱を得るためである。すなわち、本発明は、炭材の燃焼熱で焼結鉱を製造する方法において、主に気体燃料の供給量を変化させることによって高温域保持時間を150秒以上とする技術である。 The reason for supplying the gaseous fuel in a region where the high temperature region holding time maintained at 1200 ° C. or higher and 1380 ° C. or lower when the gaseous fuel is sintered with the combustion heat of the carbon material is less than 150 seconds is the first feature. By supplying gaseous fuel to the region of the charging layer where combustion temperature of the material alone cannot secure a high temperature region holding time of 150 seconds or more, and burning it, the high temperature region holding time is provided at all positions in the charging layer. This is to secure 150 seconds or more to obtain a high-quality sintered ore. That is, the present invention is a technique for setting the high temperature region holding time to 150 seconds or more by mainly changing the supply amount of the gaseous fuel in the method for producing sintered ore with the combustion heat of the carbonaceous material.
 炭材の燃焼熱では高温域保持時間を150秒以上確保することができない装入層の領域は、実機焼結機の装入層内に熱電対を挿入し、その位置における焼結中の温度の経時変化を実測し、それぞれの位置における1200℃以上1400℃以下に保持される高温域保持時間を求めることで、特定することができる。
 例えば、図4(b)に示したパレット幅方向中央上層部の高温域保持時間が150秒未満となる装入層の厚さ方向の領域は、パレット幅方向中央部において、装入層表層から内部に熱電対を挿入して焼結時における、装入層厚さ方向各位置における温度変化を実測し、各位置における高温域保持時間の分布から求めることができる。
The region of the charging layer where the high temperature region holding time cannot be secured for 150 seconds or more with the combustion heat of the carbonaceous material is the temperature during sintering at the position where a thermocouple is inserted into the charging layer of the actual sintering machine. It can be specified by actually measuring the time-dependent change in the temperature and obtaining the high temperature range holding time at which the temperature is maintained at 1200 ° C. or higher and 1400 ° C. or lower at each position.
For example, the region in the thickness direction of the charging layer in which the high temperature region holding time of the central upper layer portion in the pallet width direction shown in FIG. 4B is less than 150 seconds is from the charging layer surface layer in the central portion in the pallet width direction. A temperature change at each position in the thickness direction of the charging layer during sintering can be measured by inserting a thermocouple into the interior, and the temperature change can be obtained from the distribution of the high temperature region holding time at each position.
 そして、その高温域保持時間が150秒未満である領域の高温域保持時間の延長を図るためには、その部分の焼結反応が進行している段階において気体燃料を供給してやる必要がある。例えば、装入層の厚さ方向の上層部20%の領域で、高温域保持時間が150秒未満である場合には、その部分の焼結反応が進行している点火炉出側~排鉱部までの間(有効機長)の上流側20%の領域で気体燃料を供給してやることが必要である。 And, in order to extend the high temperature region holding time in the region where the high temperature region holding time is less than 150 seconds, it is necessary to supply gaseous fuel in the stage where the sintering reaction is proceeding. For example, in the region of the upper layer portion 20% in the thickness direction of the charge layer, when the high temperature region holding time is less than 150 seconds, the ignition furnace exit side to the ore discharge where the sintering reaction of that portion is proceeding It is necessary to supply gaseous fuel in the region of 20% upstream of the part (effective machine length).
 なお、実機焼結機において、気体燃料の供給範囲を、パレット進行方法で、%単位で変化させることは、設備的に現実的ではない。そこで、上記点火炉出側~排鉱部までの有効機長部分を、進行方向に複数に区分し、その区分単位で希釈気体燃料の供給ができるようにし、有効機長の全ての範囲で高温域保持時間が150秒以上となるよう、区分単位で希釈気体燃料の供給ON/OFFを行えるようにするのが好ましい。ただし、点火炉を出た直後の装入層表層部はまだ高温であり、気体燃料への着火が懸念されることから、点火炉出側から3m程度の間は、気体燃料の供給は避けるのが好ましい。 In an actual sintering machine, it is not realistic in terms of equipment to change the supply range of gaseous fuel by the pallet progression method in units of%. Therefore, the effective machine length part from the ignition furnace exit side to the discharge section is divided into multiple parts in the direction of travel, so that diluted gas fuel can be supplied in each division unit, and the high temperature range is maintained over the entire range of the effective machine length It is preferable to be able to turn ON / OFF dilution gas fuel on a segment basis so that the time is 150 seconds or more. However, since the surface layer of the charging layer immediately after leaving the ignition furnace is still hot and there is a concern about ignition of the gaseous fuel, supply of gaseous fuel should be avoided for about 3 m from the ignition furnace exit side. Is preferred.
 ただし、高温域保持時間が30秒未満の領域では、気体燃料を供給しても高温域保持時間を150秒以上に延長することは実質的に難しい。したがって、現実的には、パレット幅方向中央部の装入層の表層から内部に熱電対を挿入して、装入層の厚さ方向各位置における焼結時の温度変化を実測し、高温域保持時間が30秒以上150秒未満となる領域に、気体燃料を供給するようにするのが好ましい。 However, in the region where the high temperature region retention time is less than 30 seconds, it is substantially difficult to extend the high temperature region retention time to 150 seconds or more even if gaseous fuel is supplied. Therefore, in reality, a thermocouple is inserted from the surface of the charging layer in the center in the pallet width direction, and the temperature change during sintering at each position in the thickness direction of the charging layer is measured, It is preferable to supply the gaseous fuel to a region where the holding time is 30 seconds or more and less than 150 seconds.
 なお、上記気体燃料は、その気体燃料の燃焼下限濃度以下に希釈した気体燃料として装入層内に導入することが好ましい。希釈気体燃料の濃度が燃焼下限濃度以上であると、装入層上方で燃焼してしまい、気体燃料を供給する効果が失われてしまったり、爆発を起こしたりするおそれがある。また、希釈気体燃料が高濃度であると、低温度域で燃焼してしまうため、高温域保持時間の延長に有効に寄与し得ないおそれがあるからである。したがって、希釈気体燃料の濃度は、好ましくは大気中の常温における燃焼下限濃度の3/4(75%)以下、より好ましくは燃焼下限濃度の1/5(20%)以下、さらに好ましくは燃焼下限濃度の1/10(10%)以下である。ただし、希釈気体燃料の濃度が、燃焼下限濃度の1/100(1%)未満では、燃焼による発熱量が不足し、焼結鉱の強度向上と歩留りの改善効果が得られないため、下限は燃焼下限濃度の1%とする。これを、天然ガス(LNG)についてみると、LNGの室温における燃焼下限濃度は4.8vol%であるから、希釈気体燃料の濃度は0.05~3.6vol%の範囲が好ましいことになる。 The gaseous fuel is preferably introduced into the charging layer as gaseous fuel diluted below the lower combustion limit concentration of the gaseous fuel. If the concentration of the diluted gas fuel is equal to or higher than the lower combustion limit concentration, combustion may occur above the charging layer, and the effect of supplying the gaseous fuel may be lost, or an explosion may occur. In addition, if the diluted gas fuel has a high concentration, it is burned in a low temperature range, so that it may not be able to effectively contribute to the extension of the high temperature range holding time. Accordingly, the concentration of the diluted gas fuel is preferably 3/4 (75%) or less of the lower limit of combustion at normal temperature in the atmosphere, more preferably 1/5 (20%) or less of the lower limit of combustion, and more preferably the lower limit of combustion. It is 1/10 (10%) or less of the concentration. However, if the concentration of the diluted gas fuel is less than 1/100 (1%) of the lower combustion limit concentration, the calorific value due to combustion is insufficient, and the effect of improving the strength and yield of sintered ore cannot be obtained. Set to 1% of the lower limit of combustion. Looking at this for natural gas (LNG), the lower limit combustion temperature concentration of LNG at room temperature is 4.8 vol%, so the concentration of diluted gas fuel is preferably in the range of 0.05 to 3.6 vol%.
 また、上記燃焼下限濃度以下に希釈した気体燃料を含む空気は、予め燃焼下限濃度以下に希釈した気体燃料を装入層上方の空気中に混合したもの、あるいは、装入層上方の空気中に、高濃度のまま(生)の気体燃料を高速で噴射して空気と混合させることによって、瞬時に燃焼下限濃度以下に希釈したものであってもよい。 The air containing the gaseous fuel diluted below the lower combustion limit concentration is a mixture of gaseous fuel previously diluted below the lower combustion limit concentration in the air above the charging layer, or in the air above the charging layer. Alternatively, it may be diluted instantly below the lower combustion limit concentration by injecting (raw) gaseous fuel with high concentration at high speed and mixing it with air.
 また、焼結原料中に添加する炭材量(コークス量)は、空気中に添加した気体燃料の発熱量に相当する量以上の炭材を削減することが好ましい。というのは、炭材量をそのままにして気体燃料を添加した場合には、トータルの発熱量が過大となって最高到達温度が適正温度範囲の上限値(1400℃)を超え、カルシウムフェライトの生成割合が減少し、カルシウムシリケートが増加する結果、低強度で還元性に劣る焼結鉱となってしまうからである。したがって、本発明においては、焼結原料中の炭材量は、空気中に添加する気体燃料の量(燃焼熱量)に応じて、焼結時の最高到達温度を1200~1400℃の温度範囲、望ましくは1200~1380℃の温度範囲となるよう適宜調整する必要がある。
 因みに、発熱量でみた場合、炭材量の1mass%に相当する気体燃料は、LNG(液化天然ガス)で約1vol%、プロパンガスで約0.5vol%である。
Moreover, it is preferable to reduce the amount of carbonaceous material added to the sintering raw material (coke amount) equal to or more than the amount corresponding to the calorific value of the gaseous fuel added to the air. The reason is that when gaseous fuel is added without changing the amount of carbon material, the total calorific value is excessive and the maximum temperature exceeds the upper limit (1400 ° C) of the appropriate temperature range, producing calcium ferrite. This is because the ratio decreases and the calcium silicate increases, resulting in a sintered ore having low strength and poor reducibility. Therefore, in the present invention, the amount of carbonaceous material in the sintering raw material is a temperature range of 1200 to 1400 ° C. with the highest temperature during sintering depending on the amount of gaseous fuel added to the air (combustion heat amount), Desirably, it is necessary to appropriately adjust the temperature range of 1200 to 1380 ° C.
Incidentally, when viewed in terms of calorific value, the gaseous fuel corresponding to 1 mass% of the amount of carbon material is about 1 vol% for LNG (liquefied natural gas) and about 0.5 vol% for propane gas.
 次に、第2の特徴である、気体燃料を供給する領域において、酸素を富化する理由は、この酸素富化によって、焼結時のガス雰囲気が酸化方向に移行する結果、焼結によって焼結鉱中のカルシウムフェライトの生成割合が増大し、カルシウムシリケートの生成割合が低減するので、高強度でかつ還元性に優れる焼結鉱を得ることができるからである。
 また、上記酸素を富化する領域を、気体燃料を供給する領域のさらにその上流側1/2以内に制限するのが好ましい理由は、図22に示したように、酸素を長時間に亘って供給すると、高強度の焼結鉱が得られるももの、焼結時間が長くなるため、生産率が低下するようになるからである。
Next, the reason for enriching oxygen in the region where the gaseous fuel is supplied, which is the second feature, is that the gas atmosphere at the time of sintering shifts to the oxidation direction due to the oxygen enrichment, and as a result, sintering is performed by sintering. This is because the production rate of calcium ferrite in the ore is increased and the production rate of calcium silicate is reduced, so that a sintered ore having high strength and excellent reducibility can be obtained.
Further, the reason why it is preferable to limit the oxygen-enriched region to within 1/2 of the upstream side of the region where the gaseous fuel is supplied is that, as shown in FIG. This is because, when supplied, a high-strength sintered ore can be obtained, and the sintering time becomes long, so that the production rate decreases.
 上記酸素富化の効果は、装入層内の吸引する空気中に含まれる酸素濃度を、大気中の酸素濃度(21vol%)超えとしてやれば少量でも得ることができるが、好ましくは、焼結時のO濃度を12.5vol%以上とすることができる酸素量とすることが好ましく、この観点からは、空気中の酸素濃度を24.5vol%以上に富化してやるのが好ましい。一方、空気中の酸素濃度が35vol%以上となると、酸素富化に要するコストが、享受する利益を上回るようになるので、好ましくない。よって、空気に富化する酸素量は、空気中の酸素濃度が21vol%超35vol%未満の範囲となるよう添加するのが好ましく、より好ましくは24.5~30vol%の範囲、さらに好ましくは、24.5~28vol%の範囲である。 The oxygen enrichment effect can be obtained even if the oxygen concentration contained in the air to be sucked in the charging layer exceeds the oxygen concentration (21 vol%) in the atmosphere, but is preferably sintered. It is preferable that the amount of oxygen is such that the O 2 concentration at that time can be 12.5 vol% or more. From this viewpoint, it is preferable to enrich the oxygen concentration in the air to 24.5 vol% or more. On the other hand, when the oxygen concentration in the air is 35 vol% or more, the cost required for oxygen enrichment exceeds the benefits to be enjoyed. Therefore, the amount of oxygen enriched in air is preferably added so that the oxygen concentration in the air is in the range of more than 21 vol% and less than 35 vol%, more preferably in the range of 24.5 to 30 vol%, and still more preferably, It is in the range of 24.5 to 28 vol%.
 上記酸素を富化する方法は、特に制限はなく、例えば、ウインドボックスで装入層を介して吸引する空気に純酸素を添加する方法や、後述する気体燃料と共に高濃度酸素を添加する方法気体燃料を添加する雰囲気に高濃度酸素を添加して予め所定の酸素濃度としておく方法などを好適に用いることができる。
 上記前者の例として、気体燃料として生ガスを用いる気体燃料供給装置において、さらに、酸素を供給する装置の模式図を図23に示した。この装置は、気体燃料を供給する領域の装入層上方に設置されたフード内の高さ方向中間部に、間隙を有して1段以上の邪魔板を配設し、その邪魔板の下方に気体燃料供給配管を配設して、生の気体燃料を吹き消え現象が起こる高速で水平方法に噴出して瞬時に燃焼下限濃度以下の希釈気体燃料とするとともに、上記邪魔板の上方に酸素供給配管を配設し、富化する酸素を邪魔板の間隙に向けて供給するものである。したがって、酸素供給配管から供給される酸素は、一旦、邪魔板上あるいは邪魔板の間隙を通過するまでに富化する濃度に達した後、気体燃料と合流するため、高濃度の酸素と気体燃料が接触するのを防止できるようになっている。なお、上記配管から供給する酸素は純酸素でなくてもよい。ここで、気体燃料供給パイプの上方に配設してある邪魔板は、LNG等の気体燃料は空気より軽いため、フード上方に漏洩散失するのを防止するためである。なお、酸素は、比重が気体燃料より重いためフード外へ拡散する虞は少ない。
The method for enriching oxygen is not particularly limited. For example, a method of adding pure oxygen to air sucked through a charging layer in a windbox, or a method of adding high-concentration oxygen together with a gaseous fuel described later A method of adding a high concentration of oxygen to the atmosphere to which the fuel is added to obtain a predetermined oxygen concentration in advance can be suitably used.
As an example of the former, FIG. 23 shows a schematic diagram of an apparatus for supplying oxygen in a gaseous fuel supply apparatus using raw gas as the gaseous fuel. In this apparatus, one or more baffle plates are provided with a gap in the middle in the height direction in the hood installed above the charging layer in the region where the gaseous fuel is supplied, and below the baffle plate A gas fuel supply pipe is installed at the high-speed horizontal method where the raw gas fuel is blown off and instantly used as a diluted gas fuel having a concentration lower than the lower limit of combustion, and oxygen above the baffle plate. A supply pipe is provided to supply enriched oxygen toward the gap between the baffle plates. Accordingly, the oxygen supplied from the oxygen supply pipe once reaches a concentration that is enriched until it passes over the baffle plate or the gap between the baffle plates, and then merges with the gaseous fuel. Can be prevented from touching. Note that the oxygen supplied from the pipe may not be pure oxygen. Here, the baffle plate disposed above the gaseous fuel supply pipe is for preventing the LNG and other gaseous fuels from being lighter than the air, and thus preventing leakage and scattering above the hood. In addition, since oxygen has a specific gravity heavier than that of gaseous fuel, there is little risk of diffusion outside the hood.
 なお、本発明においては、気体燃料の供給と同時に、酸素を富化するところに特徴があるが、これによって、焼結反応を高めて焼結に要する時間を短縮できるだけでなく、気体燃料と焼結原料中の炭材の燃焼位置をより低温度側に移行させて装入層内の温度分布曲線を非常に裾野の広いものとし、高温域保持時間をより一層延長することができるので、生産率を上昇させた上で、焼結鉱の品質改善を図ることができる。 The present invention is characterized in that oxygen is enriched at the same time as the supply of the gaseous fuel. However, this not only enhances the sintering reaction and shortens the time required for sintering, but also enhances the combustion with the gaseous fuel. The combustion position of the carbonaceous material in the raw material is shifted to a lower temperature side, making the temperature distribution curve in the charging layer very wide and the holding time at the high temperature range can be further extended. It is possible to improve the quality of the sintered ore while increasing the rate.
 さらに、酸素富化と同時に気体燃料を供給した場合には、高温域保持時間を大幅に延長することができるので、気体燃料の発熱量に相当する量以上の炭材を削減することが可能となる。この炭材量の削減は、燃焼によって発生する二酸化炭素の削減にも寄与するので、地球環境にも好ましい。 Furthermore, when gaseous fuel is supplied at the same time as oxygen enrichment, the retention time in the high temperature range can be greatly extended, so that it is possible to reduce the amount of carbon material equivalent to the calorific value of the gaseous fuel. Become. This reduction in the amount of charcoal contributes to the reduction of carbon dioxide generated by combustion, and is therefore preferable for the global environment.
 表2に示した焼結原料を、ドラムミキサーに投入し、約5mmφの大きさに造粒した。この際、得られる焼結鉱中のシリカは4.9mass%、塩基度は2.0となるように調整した。次いで、上記造粒粒子を、炭材添加量を4.7mass%、4.5mass%として、図18に示した290mmφ×400mmHの大きさの円筒状の鉄製焼結鍋に充填して装入層を形成し、この装入層上方に配設した点火炉で点火し、焼結鍋の下方に配設したブロワーで、装入層上方から下方に空気を吸引して焼結原料中の炭材(粉コークス)を燃焼させる、実機焼結機を模擬した焼結実験を行った。 The sintering raw materials shown in Table 2 were put into a drum mixer and granulated to a size of about 5 mmφ. At this time, the silica in the obtained sintered ore was adjusted to be 4.9 mass% and the basicity was 2.0. Next, the above granulated particles were filled in a cylindrical iron sintering pot having a size of 290 mmφ × 400 mmH shown in FIG. 18 with carbon material addition amounts of 4.7 mass% and 4.5 mass%, and a charging layer. The carbon material in the sintering raw material is ignited by an ignition furnace disposed above the charging layer and sucked from the charging layer to the lower side by a blower disposed below the sintering pan. A sintering experiment simulating an actual sintering machine for burning (powder coke) was conducted.
 なお、上記焼結実験では、有効機長(点火炉出側~排鉱部)が58mの焼結機で、図24に示したように、その上流側17mに亘って気体燃料を供給する、即ち、装入層の上層部29%の領域に0.4vol%に希釈したLNGを供給するとともに、その気体燃料供給領域内において、酸素濃度を25.4vol%に富化する領域を、表5に示したように変化させることを模擬した。具体的には、気体燃料としてLNGのみを添加する条件をベース(T1)とし、この条件にさらに気体燃料供給領域と同じ領域で酸素を富化する条件(T2)、気体燃料供給領域のうちの上流側1/2の領域に酸素を富化する条件(T3)の3水準で焼結を行った。 In the above-described sintering experiment, an effective machine length (ignition furnace exit side to exhausting section) is 58 m, and as shown in FIG. 24, gaseous fuel is supplied over the upstream side 17 m. Table 5 shows the regions where the LNG diluted to 0.4 vol% is supplied to the region of the upper layer portion 29% of the charging layer and the oxygen concentration is enriched to 25.4 vol% in the gaseous fuel supply region. Simulating changing as shown. Specifically, the base (T1) is based on the condition of adding only LNG as the gaseous fuel, and the condition (T2) for enriching oxygen in the same region as the gaseous fuel supply region is added to this condition. Sintering was performed at three levels of the condition (T3) for enriching oxygen in the upstream half region.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 また、上記焼結模擬実験では、焼結試験鍋中に表層から100mm、200mmおよび300mmの各位置に熱電対を挿入し、焼結時における各位置の高温域保持時間を測定し、その結果を図25に示した。また、焼結に要した時間を測定するとともに、得られた焼結鉱について、シャッター強度をJIS M8711に準じて測定し、さらに成品歩留まりを求め、それらの結果から生産率を求め、その結果を図26に示した。 Moreover, in the above-mentioned sintering simulation experiment, a thermocouple was inserted into each position of 100 mm, 200 mm and 300 mm from the surface layer in the sintering test pot, and the high temperature region holding time at each position during sintering was measured, and the result was obtained. This is shown in FIG. In addition to measuring the time required for sintering, the shutter strength of the obtained sintered ore is measured according to JIS M8711, the product yield is further determined, the production rate is determined from those results, and the result is obtained. This is shown in FIG.
 上記試験の結果から、気体燃料の供給に加えて、その気体燃料の供給領域で酸素を富化した条件(T2)では、気体燃料のみ供給し、酸素を富化していない条件(T1)と比較して、焼結鉱の冷間強度SIと成品歩留りを大幅に高めることができ、生産率も大幅に向上している。また、気体燃料の供給領域の上流側1/2の領域で酸素を富化した条件(T3)では、気体燃料のみ供給し、酸素を富化していない条件(T1)と比較して、焼結鉱の冷間強度SIと成品歩留りを大幅に高めることができ、生産率も大幅に向上している。また、気体燃料の供給領域の全長で酸素を富化する条件(T2)との比較でも、生産性が大幅に向上している。 From the result of the above test, in the condition (T2) in which oxygen is enriched in the gaseous fuel supply region in addition to the supply of the gaseous fuel, only the gaseous fuel is supplied and compared with the condition (T1) in which oxygen is not enriched. As a result, the cold strength SI and product yield of the sintered ore can be greatly increased, and the production rate is also greatly improved. Further, in the condition (T3) in which oxygen is enriched in the upstream half region of the gaseous fuel supply region, only the gaseous fuel is supplied and sintering is performed in comparison with the condition (T1) in which oxygen is not enriched. The cold strength SI and product yield of the ore can be greatly increased, and the production rate has also been greatly improved. Also, productivity is greatly improved in comparison with the condition (T2) in which oxygen is enriched over the entire length of the gaseous fuel supply region.
 本発明の焼結技術は、製鉄用、特に高炉用原料として使用される焼結鉱の製造技術として有用であるばかりでなく、その他の鉱石塊成化技術としても利用することができる。 The sintering technique of the present invention is not only useful as a technique for producing sintered ore used as a raw material for iron making, particularly as a blast furnace, but can also be used as another ore agglomeration technique.
 1:原料ホッパー
 2:ドラムミキサー
 3:ロータリーキルン
 4、5:サージホッパー
 6:ドラムフィーダー
 7:切り出しシュート
 8:パレット
 9:装入層
 10:点火炉
 11:ウインドボックス
 12:カットオフプレート
1: Raw material hopper 2: Drum mixer 3: Rotary kiln 4, 5: Surge hopper 6: Drum feeder 7: Cutting chute 8: Pallet 9: Charging layer 10: Ignition furnace 11: Wind box 12: Cut-off plate

Claims (10)

  1.  循環移動するパレット上に粉鉱石と炭材を含む焼結原料を装入して装入層を形成し、その装入層表面の炭材に点火すると共に、燃焼下限濃度以下に希釈した気体燃料を含む装入層上方の空気をパレット下に配設されたウインドボックスで吸引して装入層内に導入し、装入層内において上記気体燃料と炭材を燃焼させて焼結鉱を製造する方法において、
     炭材の燃焼熱で焼結するときに1200℃以上1400℃以下に保持される高温域保持時間が150秒未満となる領域に上記気体燃料を供給して高温域保持時間を150秒以上とすると共に、上記気体燃料供給領域で空気中の酸素を富化することを特徴とする焼結鉱の製造方法。
    A gaseous fuel diluted with a sintered raw material containing fine ore and charcoal on a circulating moving pallet to form a charging layer, igniting the charcoal on the surface of the charging layer and diluting below the lower combustion limit concentration Suction ore is produced by sucking the air above the charging layer, including the slag, into the charging layer by sucking it with a wind box placed under the pallet, and burning the gaseous fuel and carbonaceous material in the charging layer. In the way to
    The gas fuel is supplied to a region where the high temperature region holding time maintained at 1200 ° C. or higher and 1400 ° C. or lower when sintering with the combustion heat of the carbonaceous material is less than 150 seconds, so that the high temperature region holding time is 150 seconds or longer. A method for producing a sintered ore characterized by enriching oxygen in the air in the gaseous fuel supply region.
  2.  上記焼結原料中の炭材量を変化させて、最高到達温度を1200~1400℃の範囲に保持するとともに、高温域保持時間が150秒未満となる領域への気体燃料の供給量を変化させて高温域保持時間を150秒とすることを特徴とする請求項1に記載の焼結鉱の製造方法。 The amount of carbon material in the sintered raw material is changed to keep the maximum temperature within the range of 1200 to 1400 ° C., and the amount of gaseous fuel supplied to the region where the high temperature region retention time is less than 150 seconds is varied. The method for producing a sintered ore according to claim 1, wherein the high temperature region holding time is 150 seconds.
  3.  上記気体燃料供給領域の上流側1/2以内の領域で酸素を富化することを特徴とする請求項1または2に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1 or 2, wherein oxygen is enriched in a region within 1/2 of the upstream side of the gaseous fuel supply region.
  4.  上記気体燃料供給領域の上流側(1/4~1/2)以内の領域で酸素を富化することを特徴とする請求項1または2に焼結鉱の製造方法。 The method for producing sintered ore according to claim 1 or 2, wherein oxygen is enriched in a region within an upstream side (1/4 to 1/2) of the gaseous fuel supply region.
  5.  上記酸素の富化によって、空気中の酸素濃度を21vol%超35vol%未満とすることを特徴とする請求項1~4のいずれか1項に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to any one of claims 1 to 4, wherein the oxygen concentration in the air is more than 21 vol% and less than 35 vol% by the enrichment of oxygen.
  6.  上記酸素の富化によって、酸素富化領域における装入層内のガス雰囲気中のO濃度を12.5vol%以上とし、かつ、最高到達温度を1275~1375℃の温度範囲とすることを特徴とする請求項1~5のいずれか1項に記載の焼結鉱の製造方法。 By the oxygen enrichment, the O 2 concentration in the gas atmosphere in the charging layer in the oxygen enriched region is set to 12.5 vol% or more, and the maximum temperature reached is a temperature range of 1275 to 1375 ° C. The method for producing a sintered ore according to any one of claims 1 to 5.
  7.  上記気体燃料の供給と酸素の富化により、上記高温域保持時間が150秒未満となる領域の高温域保持時間を150秒以上300秒以下とすることを特徴とする請求項1~6のいずれか1項に記載の焼結鉱の製造方法。 7. The high temperature region holding time in the region where the high temperature region holding time is less than 150 seconds is set to 150 seconds or more and 300 seconds or less by supplying the gaseous fuel and enriching oxygen. A method for producing a sintered ore according to claim 1.
  8.  供給する気体燃料の発熱量相当以上の量の炭材を削減することを特徴とする請求項1~7のいずれか1項に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to any one of claims 1 to 7, wherein the amount of the carbonaceous material equivalent to the calorific value of the gaseous fuel to be supplied is reduced.
  9.  上記気体燃料を添加した空気は、予め燃焼下限濃度以下に希釈した気体燃料を空気に添加したもの、あるいは、装入層上の大気中に気体燃料を高速で噴射して燃焼下限濃度以下に希釈したもの、のいずれかであることを特徴とする請求項1~8のいずれか記載の焼結鉱の製造方法。 The air to which the gaseous fuel is added is obtained by adding gaseous fuel previously diluted below the lower combustion limit concentration to the air, or diluted to below the lower combustion limit concentration by injecting the gaseous fuel into the atmosphere above the charging layer at high speed. The method for producing a sintered ore according to any one of claims 1 to 8, wherein the method is any one of the above.
  10.  上記気体燃料は、気体燃料を供給する領域の装入層上方に設置されたフード内の高さ方向中間部に間隙を有して1段以上配設された邪魔板の下方に供給し、上記富化する酸素は、上記フード内の邪魔板の上方において邪魔板の間隙に向けて供給することを特徴とする請求項1~9のいずれか1項に記載の焼結鉱の製造方法。 The gaseous fuel is supplied below a baffle plate having one or more stages with a gap in the middle in the height direction in the hood installed above the charging layer in the region where the gaseous fuel is supplied, The method for producing a sintered ore according to any one of claims 1 to 9, wherein the enriched oxygen is supplied toward a gap between the baffle plates above the baffle plate in the hood.
PCT/JP2011/057494 2010-03-24 2011-03-18 Method for producing sintered ore WO2011118822A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180015328.5A CN102822360B (en) 2010-03-24 2011-03-18 Method for producing sintered ore
KR1020127027071A KR101475130B1 (en) 2010-03-24 2011-03-18 Method for producing sintered ore

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010067916 2010-03-24
JP2010-067916 2010-03-24
JP2011054554 2011-03-11
JP2011-054554 2011-03-11

Publications (1)

Publication Number Publication Date
WO2011118822A1 true WO2011118822A1 (en) 2011-09-29

Family

ID=44673362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057494 WO2011118822A1 (en) 2010-03-24 2011-03-18 Method for producing sintered ore

Country Status (5)

Country Link
JP (1) JP5585503B2 (en)
KR (1) KR101475130B1 (en)
CN (1) CN102822360B (en)
TW (1) TWI449795B (en)
WO (1) WO2011118822A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031580A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Oxygen-gaseous fuel supply unit of sintering machine
WO2014080450A1 (en) * 2012-11-20 2014-05-30 Jfeスチール株式会社 Oxygen-gas fuel supply device for sintering machine
CN104508157A (en) * 2012-07-18 2015-04-08 杰富意钢铁株式会社 Method for producing sinter
EP2862949A4 (en) * 2012-06-13 2015-08-05 Jfe Steel Corp Method for manufacturing sintered ore
EP4112756A4 (en) * 2020-02-27 2023-01-11 JFE Steel Corporation Method for producing sintered ore

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461580B1 (en) * 2013-12-23 2014-11-17 주식회사 포스코 Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
JP6183612B2 (en) * 2014-03-11 2017-08-23 Jfeスチール株式会社 Operation method of sintering machine
JP6183623B2 (en) * 2014-03-28 2017-08-23 Jfeスチール株式会社 Method for producing sintered ore using iron-based oil-containing sludge as raw material and method for treating iron-based oil-containing sludge
JP6160839B2 (en) * 2014-09-09 2017-07-12 Jfeスチール株式会社 Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace
JP6160838B2 (en) * 2014-09-09 2017-07-12 Jfeスチール株式会社 Oxygen enrichment method and oxygen enrichment apparatus for a thermal insulation furnace of a sintering machine
KR20160089552A (en) * 2014-12-16 2016-07-28 주식회사 포스코 Sintering apparatus and sintering method
CN115218670B (en) * 2021-11-22 2024-06-07 中冶长天国际工程有限责任公司 Method for assisting sintering by gas and steam intermittent injection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095170A (en) * 2005-10-31 2008-04-24 Jfe Steel Kk Method for producing sintered ore and sintering machine therefor
JP2008291354A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Method for producing sintered ore and sintering machine therefor
JP2010126775A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method for producing sintered ore
JP2011052859A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Sintering machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9305616A (en) * 1992-08-20 1996-01-02 Nippon Steel Corp Process and apparatus for the production of sintered iron ores
KR20020051267A (en) * 2000-12-22 2002-06-28 이구택 method for waste gas recycling typed iron ore sintering with differently concentrated LNG
EP1956101B1 (en) * 2005-10-31 2012-08-15 JFE Steel Corporation Process for producing sintered ore
KR20080059664A (en) * 2005-11-25 2008-06-30 제이에프이 스틸 가부시키가이샤 Process for producing sintered ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095170A (en) * 2005-10-31 2008-04-24 Jfe Steel Kk Method for producing sintered ore and sintering machine therefor
JP2008291354A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Method for producing sintered ore and sintering machine therefor
JP2010126775A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method for producing sintered ore
JP2011052859A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Sintering machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862949A4 (en) * 2012-06-13 2015-08-05 Jfe Steel Corp Method for manufacturing sintered ore
US9574251B2 (en) 2012-06-13 2017-02-21 Jfe Steel Corporation Method of producing sintered ore
JP2014031580A (en) * 2012-07-12 2014-02-20 Jfe Steel Corp Oxygen-gaseous fuel supply unit of sintering machine
CN104508157A (en) * 2012-07-18 2015-04-08 杰富意钢铁株式会社 Method for producing sinter
EP2876175A4 (en) * 2012-07-18 2015-08-05 Jfe Steel Corp Method for producing sinter
WO2014080450A1 (en) * 2012-11-20 2014-05-30 Jfeスチール株式会社 Oxygen-gas fuel supply device for sintering machine
CN104797720A (en) * 2012-11-20 2015-07-22 杰富意钢铁株式会社 Oxygen-gas fuel supply device for sintering machine
EP2924132A4 (en) * 2012-11-20 2016-04-13 Jfe Steel Corp Oxygen-gas fuel supply device for sintering machine
AU2012395098B2 (en) * 2012-11-20 2016-05-19 Jfe Steel Corporation Oxygen-gas fuel supply apparatus for sintering machine
EP4112756A4 (en) * 2020-02-27 2023-01-11 JFE Steel Corporation Method for producing sintered ore

Also Published As

Publication number Publication date
JP5585503B2 (en) 2014-09-10
KR101475130B1 (en) 2014-12-22
JP2012207236A (en) 2012-10-25
TW201134946A (en) 2011-10-16
CN102822360A (en) 2012-12-12
CN102822360B (en) 2014-05-21
TWI449795B (en) 2014-08-21
KR20120130260A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5585503B2 (en) Method for producing sintered ore
JP4605142B2 (en) Method for producing sintered ore and sintering machine
JP4911163B2 (en) Method for producing sintered ore
JP5428193B2 (en) Method for producing sintered ore and sintering machine
WO2014080450A1 (en) Oxygen-gas fuel supply device for sintering machine
JP5561443B2 (en) Method for producing sintered ore
JP5930213B2 (en) Oxygen-gas fuel supply device for sintering machine
JP5428195B2 (en) Sintering machine
JP5888482B2 (en) Method for producing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP6037145B2 (en) Method for producing sintered ore
JP5682099B2 (en) Method for producing sintered ore
JP5428196B2 (en) Method for producing sintered ore and sintering machine
JP5831694B2 (en) Sintering machine
JP5825478B2 (en) Sintering machine
JP2010106341A (en) Method for manufacturing sintered ore
JP5428194B2 (en) Sintering machine
JP6160839B2 (en) Oxygen enrichment method for sinter heat-retaining furnace and its heat-retaining furnace
JP2013076105A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015328.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2278/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027071

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11759626

Country of ref document: EP

Kind code of ref document: A1