WO2011118528A1 - Power transfer system - Google Patents
Power transfer system Download PDFInfo
- Publication number
- WO2011118528A1 WO2011118528A1 PCT/JP2011/056576 JP2011056576W WO2011118528A1 WO 2011118528 A1 WO2011118528 A1 WO 2011118528A1 JP 2011056576 W JP2011056576 W JP 2011056576W WO 2011118528 A1 WO2011118528 A1 WO 2011118528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- input
- output
- cone
- transmission device
- power transmission
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H15/00—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
- F16H15/02—Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
- F16H15/04—Gearings providing a continuous range of gear ratios
- F16H15/42—Gearings providing a continuous range of gear ratios in which two members co-operate by means of rings or by means of parts of endless flexible members pressed between the first mentioned members
Definitions
- the present invention relates to a power transmission device.
- the input cone connected to the input shaft and the output cone formed in the same shape as the input cone and connected to the output shaft are parallel to each other in opposite directions and aligned at both ends. It is proposed to have a continuously variable transmission that narrows the ring with both cones by converting the torque acting on the output shaft into axial force by the narrow pressure adjusting mechanism and acting on the output cone (For example, refer to Patent Document 1).
- the power input to the input shaft is output to the output shaft with a change in the gear ratio by sliding the ring.
- the ends of the output cone move toward the larger diameter side of the input cone. Therefore, when the ring is moved to the small diameter side end portion of the input cone, the ring is detached from the output cone, so that the maximum reduction ratio cannot be realized. For this reason, it is conceivable to improve the strength of the input cone in order to suppress the deformation of the input cone, but in this case, the apparatus is increased in size and weight.
- the main purpose of the power transmission device of the present invention is to realize a maximum reduction ratio even when large power is input to the input shaft while suppressing an increase in size and weight of the device.
- the power transmission device of the present invention employs the following means in order to achieve the main object described above.
- the power transmission device of the present invention is A power transmission device including a continuously variable transmission that has an input shaft and an output shaft arranged in parallel with the input shaft, and that continuously rotates the rotation input to the input shaft and outputs the same to the output shaft.
- An input member formed in a conical shape and connected to the input shaft;
- the input member has a conical shape having the same diameter change, and is disposed in the opposite direction to the input member and connected to the output shaft;
- An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
- a slide mechanism capable of changing a gear ratio by sliding the transmission member;
- a narrow pressure adjusting mechanism that adjusts the narrow pressure acting on the transmission member in a tendency to increase as the output torque that is the torque acting on the output shaft increases.
- the output member is a member that moves in a large-diameter side direction of the input member in the axial direction by a narrow pressure generated by the narrow-pressure adjusting mechanism, and a large-diameter side end is a small-diameter side of the input member. It is a member that is arranged so as to protrude in the axial direction from the end and is connected to the output shaft. This is the gist.
- this power transmission device of the present invention when the transmission member is moved to the small diameter side of the input member and a large amount of power is applied to the input shaft, a large torque is applied to the output shaft. A large radial force acts on the output member. At this time, the output member moves in the large diameter side direction of the input member in the axial direction by the narrow pressure generated by the narrow pressure adjusting mechanism.
- the output member has a conical shape having the same diameter change as that of the input member, and is disposed in the opposite direction to the input member, and the large-diameter end protrudes in the axial direction from the small-diameter end of the input member. Therefore, even if the output member moves, the transmission member can be moved to the small-diameter end of the input member. That is, the maximum reduction ratio can be realized even when large power is input to the input shaft.
- the output member may be configured such that a surface in contact with the transmission member protrudes in an axial direction from an end portion on the small diameter side of the input member.
- the output member may be formed to be longer in the axial direction than the output member.
- the output member has a movement amount greater than or equal to a movement amount of the output member that moves in a large diameter side direction of the input member in the axial direction when a maximum torque is input to the input shaft.
- the large-diameter end by the length may be disposed so as to protrude in the axial direction from the small-diameter end of the input member and connected to the output shaft. In this way, the maximum reduction ratio can be realized even when large power is input to the input shaft more reliably. If the length is the same as the amount of movement, a device capable of realizing the maximum reduction ratio even when a large amount of power is input to the input shaft can be made compact.
- the output member is arranged so that a small-diameter side end of the output member is aligned with a large-diameter side end of the input member and is connected to the output shaft. It can also be. In this way, the axial length of the input member and the output member can be shortened compared to the case where the small diameter end of the output member is not aligned with the large diameter end of the input member. Can be made compact.
- the slide mechanism may be a mechanism that slides the transmission member independently of the movement of the output member. If it carries out like this, it can suppress that a transmission means slides with the movement of an output member.
- FIG. 3 is a configuration diagram showing an outline of a configuration of a slide mechanism 62.
- FIG. 2 is a configuration diagram showing an outline of a configuration of a narrow pressure adjusting mechanism 50.
- FIG. It is the elements on larger scale which expanded the narrow pressure adjustment mechanism 50 partially.
- It is explanatory drawing which shows typically the state of the input cone 34, the output cone 36, and the ring 60 when the reduction ratio of CVT30 is made comparatively small, and when the reduction ratio is made the maximum.
- FIG. 1 is a configuration diagram showing an outline of a configuration of a power transmission device 20 as an embodiment of the present invention.
- the power transmission device 20 of the embodiment is a transaxle that can shift power transmitted from an engine (not shown) mounted on a vehicle via a starting device (not shown) (for example, a torque converter) and transmit it to left and right front wheels (not shown).
- a forward / reverse switching mechanism 24 that is connected to the output shaft 22 of the starting device and outputs power from the starting device with switching between forward rotation and reverse rotation, and a forward / backward switching mechanism, as shown in the figure.
- a continuously variable transmission which has an input shaft 32 connected to 24 and an output shaft 38 arranged in parallel to the input shaft 32 and continuously outputs the power input to the input shaft 32 to the output shaft 38.
- the CVT 30 is connected to the output shaft 38 of the CVT 30 via the reduction gear 26 It comprises a differential gear 28 connected to the left and right front wheels, a case 21 composed of a transaxle housing 21a and the converter housing 21b and the rear case 21c for housing them, a. Inside the case 21 is provided a partition plate 21d that partitions a portion where the forward / reverse switching mechanism 24 and the differential gear 28 are disposed from a portion where the CVT 30 is disposed.
- the forward / reverse switching mechanism 24 includes a double-pinion planetary gear mechanism, a brake B1, and a clutch C1.
- the planetary gear mechanism of the double pinion includes an external gear sun gear 24a, an internal gear ring gear 24b arranged concentrically with the sun gear 24a, a plurality of first pinion gears meshed with the sun gear 24a, and the first pinion gear.
- a plurality of second pinion gears that mesh with the ring gear 24b are connected to each other and a carrier 24c that rotates and revolves is held.
- the sun gear 24a has an output shaft 22, and the carrier 24c has an input shaft 32 of the CVT 30. Are connected to each other.
- the ring gear 24b of the planetary gear mechanism is connected to the case 21 by a brake B1, and the ring gear 24b can be freely rotated or prohibited from rotating by turning on and off the brake B1.
- the sun gear 24a and the carrier 24c of the planetary gear mechanism are connected by a clutch C1, and the sun gear 24a and the carrier 24c are connected or disconnected by turning on and off the clutch C1.
- the forward / reverse switching mechanism 24 turns off the brake B1 and turns on the clutch C1 to transmit the rotation of the output shaft 22 to the input shaft 32 of the CVT 30 as it is to advance the vehicle or turn on the brake B1 and turn on the clutch C1.
- the rotation of the output shaft 22 is converted in the reverse direction and transmitted to the input shaft 32 of the CVT 30 to reverse the vehicle. Further, the output shaft 22 and the input shaft 32 of the CVT 30 can be disconnected by turning off the brake B1 and turning off the clutch C1.
- the forward / reverse switching mechanism 24 is constituted by a double-pinion planetary gear mechanism, a brake B1, and a clutch C1, but is constituted by a single-pinion planetary gear mechanism instead of the double-pinion planetary gear mechanism. It is good also as what is carried out and it is good also as what shall be set as another structure.
- the CVT 30 is formed in a conical input cone 34 integrally formed with an input shaft 32 and a conical shape having the same diameter as the input cone 34 and longer in the axial direction than the input cone 34 by a length D.
- the output cone connected to the output shaft 38 in parallel with the input cone 34 and arranged so that the small-diameter end is aligned with the large-diameter end (left end in FIG. 1) of the input cone 34. 36, a ring 60 that is inserted into the input cone 34 and is sandwiched between the input cone 34 and the output cone 36, and a slide mechanism 62 that can rotatably support the ring 60 and slide the ring 60 (FIG. 3). To the ring 60 between the input cone 34 and the output cone 36.
- the output cone 36 is formed to be longer than the input cone 34 in the axial direction by a length D, and the small-diameter end is aligned with the large-diameter end (left end in FIG. 1) of the input cone 34.
- the large diameter side end portion (right end portion in FIG. 1) of the output cone 36 is more axially illustrated than the small diameter side end portion (right end portion in FIG. 1) of the input cone 34. It is arranged so as to protrude by a length D on the middle right side.
- FIG. 2 shows how the CVT 30 shifts.
- the ring 60 is slid toward the front side (left side in FIG. 1) to shift the power of the input cone 34 with a relatively small reduction ratio and transmit it to the output cone 36.
- the power of the input cone 34 is shifted with a relatively large reduction ratio and transmitted to the output cone 36.
- the input cone 34 and the input shaft 32 are rotatable by a bearing 41 formed as a cylindrical roller bearing that is attached to the partition plate 21d at the right end in FIG. 1 and cannot receive a thrust force but can receive a relatively large radial force. And at the left end is rotatably supported by a bearing 42 formed as a tapered roller bearing attached to the transaxle housing 21a and capable of receiving a thrust force.
- the output cone 36 at the right end in FIG. 1 is rotatably supported by a bearing 45 attached to the partition plate 21d and formed as a cylindrical roller bearing, and at the left end attached to the transaxle housing 21a and formed as a cylindrical roller bearing.
- the bearing 46 is rotatably supported. Further, at the right end in FIG. 1 of the output shaft 38 connected to the output cone 36, it is rotatably supported by a bearing 49 which is attached to the converter housing 21b and formed as a tapered roller bearing.
- the oil seal 43 is attached to the partition plate 21d on the inner side (left side in FIG. 1) where the bearing 41 of the input cone 34 is disposed, and on the inner side of the position where the bearing 45 of the output cone 36 is disposed (
- An oil seal 47 is attached to the left side in FIG.
- an oil seal 44 is attached to the transaxle housing 21a on the inner side (right side in FIG. 1) of the position where the bearing 42 of the input cone 34 is disposed, and at the position where the bearing 46 of the output cone 36 is disposed.
- An oil seal 48 is attached on the inner side (right side in FIG. 1).
- the internal space of the case 21 is divided into the space X1 formed by the transaxle housing 21a, the rear cover 21c, and the oil seals 44, 48, the transaxle housing 21a, the partition plate 21d, and the oil seals 43, 44, 47, 48.
- a space X3 formed by the transaxle housing 21a, the converter housing 21b, the partition plate 21d, and the oil seals 43 and 47, and the space X1 and the space X2 include a space X3.
- Lubricating oil for lubricating mechanical parts such as the bearings 42 and 46 arranged in X1 and the bearings 41, 45 and 49 arranged in the space X3, the forward / reverse switching mechanism 24 and the differential gear 28 is filled, and the space X2 is filled.
- Traction oil to reach is filled.
- This traction oil is a mechanism in which the CVT 30 is a mechanism for transmitting power by the shear force of an oil film in an elastic fluid lubrication state formed between the input cone 34 and the output cone 36 and the ring 60.
- special oils having a high pressure viscosity coefficient are used.
- the slide mechanism 62 extends substantially parallel to the sliding direction of the ring 60 and is fitted to the guide rail 64 as a feed screw that is rotatably supported by the transaxle housing 21a.
- a slider 66 that has a fitting portion to be fitted and can move along the guide rail 64 without rotating when the guide rail 64 rotates, and is attached to the slider 66 so as to be swingable in the extending direction of the guide rail 64 and U
- a holding portion 68 that rotatably holds the ring 60 from the side surface by a U-shaped portion having a letter shape, and a motor 70 that rotates the guide rail 64 with a rotating shaft connected to one end of the guide rail 64.
- the guide rail 64 is rotated by the rotational drive of the motor 70, and the slider 66 is moved along the guide rail 64, whereby the ring 60 is moved to the front side (left side in FIG. 1) or the rear side in the figure. Slide to the side (right side in FIG. 1).
- the narrow pressure adjusting mechanism 50 is built in the output cone 36, and adjusts the narrow pressure acting on the ring 60 by the input cone 34 and the output cone 36 by a mechanical mechanism.
- FIG. 4 is a block diagram showing an outline of the configuration of the narrow pressure adjusting mechanism 50
- FIG. 5 is a partially enlarged view of the narrow pressure adjusting mechanism 50 partially enlarged.
- the narrow pressure adjusting mechanism 50 is a fixed member that is spline-fitted to a spline formed at the tip of the output shaft 38 and fixed to the output shaft 38 so as not to move in the axial direction.
- a moving member 54 that is spline-fitted to a spline formed on the inner peripheral surface of the output cone 36 and is formed so as to be movable in the axial direction together with the output cone 36, and a fixed member 52.
- a spring 58 for urging the moving member 54 in the axial direction with the fixing member 52 as a spring receiver, and attached to the output cone 36
- a support member 59 that movably supported in the axial direction with respect to the output shaft 38 of the output cone 36 is.
- the narrow pressure adjusting mechanism 50 when the torque is not applied to the output shaft 38, the narrow pressure adjusting mechanism 50 is positioned so that the ball receiver 52a of the fixed member 52 and the ball receiver 54b of the moving member 54 are just opposite each other.
- the moving member 54 does not receive the axial force from the ball 56.
- a narrow pressure is applied to the ring 60 due to the urging force by which the moving member 54 is pushed in the axial direction by the spring 58.
- torque acts on the output shaft 38 as shown in FIG. 5 (b)
- a twist occurs between the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54, and both ball receivers 52a, 54a.
- the force pushing the output cone 36 increases as the axial component of the force acting on the ball 56 increases, and the force acting on the ball 56 increases as the torque acting on the output shaft 38 increases.
- the narrow pressure of the ring 60 is adjusted according to the torque acting on the shaft 38. Therefore, the CVT 30 increases the torque acting on the output shaft 38 as the speed reduction ratio with respect to the torque input to the input shaft 32 increases, so that the narrow pressure acting on the ring 60 increases as the speed reduction ratio increases. Adjusted.
- FIG. 6 is an explanatory diagram schematically showing the states of the input cone 34, the output cone 36, and the ring 60 when the reduction ratio of the CVT 30 is relatively small and when the reduction ratio is maximized.
- the solid line indicates the state of the input cone 34 and the output cone 36 when the reduction ratio of the CVT 30 is maximized
- the broken line indicates the state of the input cone 34 before deformation and the output cone 36 before movement.
- the output cone 36 has its largest diameter portion on the right side in the drawing in the axial direction than the smallest diameter portion of the input cone 34. Are arranged so as to protrude by a length D.
- the torque acting on the output shaft 38 increases depending on the output torque of the engine. Therefore, the above-described narrow pressure adjusting mechanism 50 applies an axial force to the output cone 36 toward the left in the figure. Acts, and the output cone 36 moves slightly in the axial direction of the input cone 34 in the axial direction (left direction in FIG. 6). The input cone 34 is slightly reduced in the radial direction due to this narrow pressure.
- the comparative example is caused by increasing the reduction ratio of the CVT. Due to the movement of the output cone, the ring cannot be moved to the small-diameter end of the input cone, and the maximum design reduction ratio cannot be realized.
- the length of the output cone 36 is formed longer than the input cone 34 by the length D, and its large-diameter end is longer in the axial direction than the small-diameter end of the input cone 34 on the right side in the figure. If the output cone 36 moves in the direction of the large diameter side of the input cone 34 (the left direction in FIG.
- the input cone The ring 60 is moved to the small diameter side end portion 34 so that the maximum reduction ratio can be realized.
- the length D is the direction in which the output cone 36 is in the larger diameter side of the input cone 34 in the axial direction when the CVT 30 is set to the maximum reduction ratio and the assumed maximum torque is applied to the input shaft 32. The amount of movement was adjusted so as to move in the left direction in FIG. Thereby, the maximum reduction ratio in design can be realized and the apparatus can be made compact.
- the length of the output cone 36 is formed longer than the input cone 34 by the length D, and its large-diameter side end is smaller than the small-diameter side end of the input cone 34. 1 and 6 so that it protrudes to the right in FIG. 1 and FIG. 6 by the length D, the output cone 36 is directed toward the larger diameter side of the input cone 34 when the reduction ratio of the CVT 30 is increased (FIG. 1). Even if it moves in the left direction in FIG. 6, the maximum reduction ratio can be realized by moving the ring 60 to the small diameter side end portion of the input cone 34.
- the output cone 36 is larger than the input cone 34. Since the amount of movement is adjusted so as to move in the radial direction (left direction in FIGS. 1 and 6), the design maximum reduction ratio can be realized and the apparatus can be made compact.
- the length D of the output cone 36 protruding from the input cone 34 is set to CVT 30 as the maximum reduction ratio and the maximum torque assumed for the input shaft 32 is applied, the output cone Although the amount of movement 36 is adjusted so as to move in the direction of the larger diameter of the input cone 34 (the left direction in FIGS. 1 and 6), the length D may be longer.
- the narrow pressure adjusting mechanism 50 includes a fixing member 52 attached to the output shaft 38, a moving member 54 attached to the output cone 36, and a plurality of members formed on the fixing member 52.
- Any mechanism can be used as long as it can be converted into an axial force and applied to the output cone 36.
- the slide mechanism 62 includes a guide rail 64 that is rotatably attached to the transaxle housing 21a, and can slide along the guide rail 64 without rotating when the guide rail 64 rotates.
- the slider 66, the holding portion 68 that is attached to the slider 66 and rotatably holds the ring 60, and the motor 70 that rotates the guide rail 64 are configured.
- the reduction ratio can be reduced by sliding the ring 60. Any mechanism can be used as long as it can be changed.
- the input shaft 32 and the input cone 34 are integrally formed, but may be formed separately.
- the power from the engine as the power source is shifted and transmitted to the left and right wheels.
- a motor may be used instead of or in addition to the engine. Good.
- the power transmission device may not include the forward / reverse switching mechanism 24.
- the power transmission device 20 is mounted on a vehicle.
- the power transmission device 20 may be mounted on a moving body other than the vehicle, or may be mounted on a non-moving facility such as a construction facility.
- the CVT 30 corresponds to a “continuously variable transmission”
- the input cone 34 corresponds to an “input member”
- the output cone 36 corresponds to an “output member”
- the ring 60 corresponds to a “transmission member”.
- the slide mechanism 62 corresponds to a “slide mechanism”
- the narrow pressure adjustment mechanism 50 corresponds to a “narrow pressure adjustment mechanism”.
- the present invention can be used in the power transmission device manufacturing industry.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Friction Gearing (AREA)
- Transmission Devices (AREA)
Abstract
Provided is a power transfer system which includes an output cone (36) which is longer than an input cone (34) by length D. The output cone (36) is disposed in a manner such that the increased-diameter end thereof is protruded axially from the reduced-diameter end of the input cone (34) by length D towards the right in Fig. 1. This arrangement makes it possible to realize the maximum reduction ratio by moving a ring (60) to the reduced-diameter end of the input cone (34) even when an increase in the reduction ratio of a CVT (30) has caused the output cone (36) to move toward the increased-diameter end of the input cone (34) (toward the left in Fig. 1). The length D, by which the output cone (36) is protruded relative to the input cone (34), is adjusted so as to provide the CVT (30) with the maximum reduction ratio and the output cone (36) with the amount of displacement that is expected when the maximum conceivable torque is applied to the input shaft. It is thus possible to realize the maximum design reduction ratio and make the system compact.
Description
本発明は、動力伝達装置に関する。
The present invention relates to a power transmission device.
従来、この種の動力伝達装置としては、インプットシャフトに接続されたインプットコーンとこのインプットコーンと同形に形成されてアウトプットシャフトに接続されたアウトプットコーンとを互いに逆向きに平行に両端部が整合するよう配置し、アウトプットシャフトに作用するトルクを狭圧力調節機構によって軸方向の力に変換してアウトプットコーンに作用させることによって両コーンでリングを狭圧する無段変速機を備えるものが提案されている(例えば、特許文献1参照)。この装置における無段変速機では、リングをスライドさせることにより、インプットシャフトに入力された動力を変速比の変更を伴ってアウトプットシャフトに出力している。
Conventionally, as this kind of power transmission device, the input cone connected to the input shaft and the output cone formed in the same shape as the input cone and connected to the output shaft are parallel to each other in opposite directions and aligned at both ends. It is proposed to have a continuously variable transmission that narrows the ring with both cones by converting the torque acting on the output shaft into axial force by the narrow pressure adjusting mechanism and acting on the output cone (For example, refer to Patent Document 1). In the continuously variable transmission in this apparatus, the power input to the input shaft is output to the output shaft with a change in the gear ratio by sliding the ring.
こうした動力伝達装置では、リングをインプットコーンの小径側端部に移動させて減速比を最大にしようとしても最大減速比を実現できない場合が生じる。リングをインプットコーンの小径側端部に移動させてインプットシャフトに高回転高トルクの動力を入力すると、アウトプットシャフトには大きなトルクが出力される。このため、狭圧力調節機構によってアウトプットコーンに作用する軸方向の力も大きなものとなり、リングを介してインプットコーンに大きな力が作用して、インプットコーンが変形するためアウトプットコーンがインプットコーンの大径側方向に若干ではあるが移動する。インプットコーンとアウトプットコーンとを同形に形成し、インプットコーンとアウトプットコーンとを逆向きに並行に両端部が整合するよう配置した場合、アウトプットコーンのインプットコーンの大径側方向への移動により、リングをインプットコーンの小径側端部に移動させると、リングがアウトプットコーンから外れてしまうことから、最大減速比を実現することができなくなってしまう。このため、インプットコーンの変形を抑制するためにインプットコーンの強度の向上を図ることも考えられるが、この場合、装置の大型化や重量の増加につながってしまう。
In such a power transmission device, there is a case where the maximum reduction ratio cannot be realized even if the ring is moved to the small diameter side end portion of the input cone to try to maximize the reduction ratio. When the ring is moved to the small-diameter end of the input cone and power of high rotation and high torque is input to the input shaft, a large torque is output to the output shaft. For this reason, the axial force acting on the output cone is also increased by the narrow pressure adjustment mechanism, and a large force acts on the input cone via the ring, and the input cone is deformed, so the output cone is larger than the input cone. It moves slightly in the radial direction. When the input cone and the output cone are formed in the same shape, and the input cone and the output cone are arranged in opposite directions in parallel, the ends of the output cone move toward the larger diameter side of the input cone. Therefore, when the ring is moved to the small diameter side end portion of the input cone, the ring is detached from the output cone, so that the maximum reduction ratio cannot be realized. For this reason, it is conceivable to improve the strength of the input cone in order to suppress the deformation of the input cone, but in this case, the apparatus is increased in size and weight.
本発明の動力伝達装置は、装置の大型化や重量の増加を抑制した上で、入力軸に大きな動力を入力しても最大減速比を実現することを主目的とする。
The main purpose of the power transmission device of the present invention is to realize a maximum reduction ratio even when large power is input to the input shaft while suppressing an increase in size and weight of the device.
本発明の動力伝達装置は、上述の主目的を達成するために以下の手段を採った。
The power transmission device of the present invention employs the following means in order to achieve the main object described above.
本発明の動力伝達装置は、
入力軸と該入力軸に平行に配置された出力軸とを有し、該入力軸に入力された回転を無段階に変速して該出力軸に出力する無段変速機を備える動力伝達装置であって、
円錐形状に形成され、前記入力軸に接続された入力部材と、
前記入力部材と径の変化が同一の円錐形状であって、前記入力部材とは逆向きに配置されて前記出力軸に接続された出力部材と、
前記入力部材と前記出力部材とに狭圧され、該入力部材と該出力部材との間で動力の伝達を行なう環状の伝達部材と、
前記伝達部材をスライドさせることにより変速比を変更可能なスライド機構と、
前記出力軸に作用するトルクである出力トルクが大きいほど大きくなる傾向に前記伝達部材に作用する狭圧力を調節する狭圧力調節機構と、
を備え、
前記出力部材は、前記狭圧力調節機構が発生させる狭圧力により、軸方向のうち前記入力部材の大径側方向に移動する部材であり、且つ、大径側端部が前記入力部材の小径側端部より軸方向に突出するように配置されて前記出力軸に接続された部材である、
ことを要旨とする。 The power transmission device of the present invention is
A power transmission device including a continuously variable transmission that has an input shaft and an output shaft arranged in parallel with the input shaft, and that continuously rotates the rotation input to the input shaft and outputs the same to the output shaft. There,
An input member formed in a conical shape and connected to the input shaft;
The input member has a conical shape having the same diameter change, and is disposed in the opposite direction to the input member and connected to the output shaft;
An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
A slide mechanism capable of changing a gear ratio by sliding the transmission member;
A narrow pressure adjusting mechanism that adjusts the narrow pressure acting on the transmission member in a tendency to increase as the output torque that is the torque acting on the output shaft increases.
With
The output member is a member that moves in a large-diameter side direction of the input member in the axial direction by a narrow pressure generated by the narrow-pressure adjusting mechanism, and a large-diameter side end is a small-diameter side of the input member. It is a member that is arranged so as to protrude in the axial direction from the end and is connected to the output shaft.
This is the gist.
入力軸と該入力軸に平行に配置された出力軸とを有し、該入力軸に入力された回転を無段階に変速して該出力軸に出力する無段変速機を備える動力伝達装置であって、
円錐形状に形成され、前記入力軸に接続された入力部材と、
前記入力部材と径の変化が同一の円錐形状であって、前記入力部材とは逆向きに配置されて前記出力軸に接続された出力部材と、
前記入力部材と前記出力部材とに狭圧され、該入力部材と該出力部材との間で動力の伝達を行なう環状の伝達部材と、
前記伝達部材をスライドさせることにより変速比を変更可能なスライド機構と、
前記出力軸に作用するトルクである出力トルクが大きいほど大きくなる傾向に前記伝達部材に作用する狭圧力を調節する狭圧力調節機構と、
を備え、
前記出力部材は、前記狭圧力調節機構が発生させる狭圧力により、軸方向のうち前記入力部材の大径側方向に移動する部材であり、且つ、大径側端部が前記入力部材の小径側端部より軸方向に突出するように配置されて前記出力軸に接続された部材である、
ことを要旨とする。 The power transmission device of the present invention is
A power transmission device including a continuously variable transmission that has an input shaft and an output shaft arranged in parallel with the input shaft, and that continuously rotates the rotation input to the input shaft and outputs the same to the output shaft. There,
An input member formed in a conical shape and connected to the input shaft;
The input member has a conical shape having the same diameter change, and is disposed in the opposite direction to the input member and connected to the output shaft;
An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
A slide mechanism capable of changing a gear ratio by sliding the transmission member;
A narrow pressure adjusting mechanism that adjusts the narrow pressure acting on the transmission member in a tendency to increase as the output torque that is the torque acting on the output shaft increases.
With
The output member is a member that moves in a large-diameter side direction of the input member in the axial direction by a narrow pressure generated by the narrow-pressure adjusting mechanism, and a large-diameter side end is a small-diameter side of the input member. It is a member that is arranged so as to protrude in the axial direction from the end and is connected to the output shaft.
This is the gist.
この本発明の動力伝達装置では、伝達部材を入力部材の小径側に移動させて入力軸に大きな動力を作用させると、出力軸に大きなトルクが作用するため、狭圧力調節手段により入力部材の大径側方向の大きな力が出力部材に作用する。このとき、出力部材は、狭圧力調節機構が発生させる狭圧力により軸方向のうち入力部材の大径側方向に移動する。出力部材は、入力部材と径の変化が同一の円錐形状であって入力部材とは逆向きに配置されていると共に大径側端部が入力部材の小径側端部より軸方向に突出するように配置されているから、出力部材が移動しても伝達部材を入力部材の小径側端部まで移動させることができる。即ち、大きな動力を入力軸に入力したときでも最大減速比を実現することができる。
In this power transmission device of the present invention, when the transmission member is moved to the small diameter side of the input member and a large amount of power is applied to the input shaft, a large torque is applied to the output shaft. A large radial force acts on the output member. At this time, the output member moves in the large diameter side direction of the input member in the axial direction by the narrow pressure generated by the narrow pressure adjusting mechanism. The output member has a conical shape having the same diameter change as that of the input member, and is disposed in the opposite direction to the input member, and the large-diameter end protrudes in the axial direction from the small-diameter end of the input member. Therefore, even if the output member moves, the transmission member can be moved to the small-diameter end of the input member. That is, the maximum reduction ratio can be realized even when large power is input to the input shaft.
こうした本発明の動力伝達装置において、前記出力部材は、前記伝達部材と接触する面が前記入力部材の小径側端部より軸方向に突出してなる、ものとすることもできる。また、前記出力部材は、前記出力部材より軸方向に長くなるよう形成されてなる、ものとすることもできる。
In such a power transmission device of the present invention, the output member may be configured such that a surface in contact with the transmission member protrudes in an axial direction from an end portion on the small diameter side of the input member. The output member may be formed to be longer in the axial direction than the output member.
また、本発明の動力伝達装置において、前記出力部材は、前記入力軸に最大トルクが入力されたときに前記出力部材が軸方向のうち前記入力部材の大径側方向に移動する移動量以上の長さだけ大径側端部が前記入力部材の小径側端部より軸方向に突出するよう配置されて前記出力軸に接続されてなる、ものとすることもできる。こうすれば、より確実に大きな動力を入力軸に入力したときでも最大減速比を実現することができる。なお、移動量と同じ長さとすれば、大きな動力を入力軸に入力したときでも最大減速比を実現することができる装置をコンパクトなものとすることができる。
Further, in the power transmission device of the present invention, the output member has a movement amount greater than or equal to a movement amount of the output member that moves in a large diameter side direction of the input member in the axial direction when a maximum torque is input to the input shaft. The large-diameter end by the length may be disposed so as to protrude in the axial direction from the small-diameter end of the input member and connected to the output shaft. In this way, the maximum reduction ratio can be realized even when large power is input to the input shaft more reliably. If the length is the same as the amount of movement, a device capable of realizing the maximum reduction ratio even when a large amount of power is input to the input shaft can be made compact.
さらに、本発明の動力伝達装置において、前記出力部材は、前記出力部材の小径側端部が前記入力部材の大径側端部に整合するよう配置されて前記出力軸に接続されてなる、ものとすることもできる。こうすれば、出力部材の小径側端部が入力部材の大径側端部に整合していないものに比して、入力部材や出力部材の軸方向の長さを短くすることができ、装置をコンパクトなものとすることができる。
Further, in the power transmission device according to the present invention, the output member is arranged so that a small-diameter side end of the output member is aligned with a large-diameter side end of the input member and is connected to the output shaft. It can also be. In this way, the axial length of the input member and the output member can be shortened compared to the case where the small diameter end of the output member is not aligned with the large diameter end of the input member. Can be made compact.
また、本発明の動力伝達装置において、前記スライド機構は、前記伝達部材を前記出力部材の移動とは独立にスライドさせる機構である、ものとすることもできる。こうすれば、出力部材の移動に伴って伝達手段がスライドするのを抑止することができる。
Further, in the power transmission device of the present invention, the slide mechanism may be a mechanism that slides the transmission member independently of the movement of the output member. If it carries out like this, it can suppress that a transmission means slides with the movement of an output member.
次に、本発明を実施するための形態を実施例を用いて説明する。
Next, modes for carrying out the present invention will be described using examples.
図1は、本発明の一実施例としての動力伝達装置20の構成の概略を示す構成図である。実施例の動力伝達装置20は、車両に搭載された図示しないエンジンから図示しない発進装置(例えばトルクコンバータなど)を介して入力された動力を変速して図示しない左右の前輪に伝達可能なトランスアクスル装置として構成されており、図示するように、発進装置の出力軸22に接続され発進装置からの動力を正転と逆転との切替を伴って出力する前後進切替機構24と、前後進切替機構24に接続されたインプットシャフト32とこのインプットシャフト32に平行に配置されたアウトプットシャフト38とを有しインプットシャフト32に入力された動力を無段階に変速してアウトプットシャフト38に出力する無段変速機としてのCVT30と、CVT30のアウトプットシャフト38に減速ギヤ26を介して連結されると共に左右の前輪に連結されたデファレンシャルギヤ28と、これらを収納するトランスアクスルハウジング21aとコンバータハウジング21bとリアケース21cとからなるケース21と、を備える。ケース21の内部には、前後進切替機構24とデファレンシャルギヤ28とが配置される部分とCVT30が配置される部分とを仕切る仕切プレート21dが設けられている。
FIG. 1 is a configuration diagram showing an outline of a configuration of a power transmission device 20 as an embodiment of the present invention. The power transmission device 20 of the embodiment is a transaxle that can shift power transmitted from an engine (not shown) mounted on a vehicle via a starting device (not shown) (for example, a torque converter) and transmit it to left and right front wheels (not shown). As shown in the figure, a forward / reverse switching mechanism 24 that is connected to the output shaft 22 of the starting device and outputs power from the starting device with switching between forward rotation and reverse rotation, and a forward / backward switching mechanism, as shown in the figure. A continuously variable transmission which has an input shaft 32 connected to 24 and an output shaft 38 arranged in parallel to the input shaft 32 and continuously outputs the power input to the input shaft 32 to the output shaft 38. When the CVT 30 is connected to the output shaft 38 of the CVT 30 via the reduction gear 26 It comprises a differential gear 28 connected to the left and right front wheels, a case 21 composed of a transaxle housing 21a and the converter housing 21b and the rear case 21c for housing them, a. Inside the case 21 is provided a partition plate 21d that partitions a portion where the forward / reverse switching mechanism 24 and the differential gear 28 are disposed from a portion where the CVT 30 is disposed.
前後進切替機構24は、ダブルピニオンの遊星歯車機構とブレーキB1とクラッチC1とにより構成されている。ダブルピニオンの遊星歯車機構は、外歯歯車のサンギヤ24aと、このサンギヤ24aと同心円上に配置された内歯歯車のリングギヤ24bと、サンギヤ24aに噛合する複数の第1ピニオンギヤおよびこの第1ピニオンギヤに噛合すると共にリングギヤ24bに噛合する複数の第2ピニオンギヤを連結して自転かつ公転自在に保持するキャリア24cとを備えており、サンギヤ24aには出力軸22が、キャリア24cにはCVT30のインプットシャフト32が、各々連結されている。遊星歯車機構のリングギヤ24bは、ブレーキB1によりケース21に接続されており、ブレーキB1をオンオフすることにより、リングギヤ24bを自由に回転するものとしたり、その回転を禁止したりする。遊星歯車機構のサンギヤ24aとキャリア24cは、クラッチC1により接続されており、クラッチC1をオンオフすることにより、サンギヤ24aとキャリア24cとを連結したり切り離したりする。前後進切替機構24は、ブレーキB1をオフすると共にクラッチC1をオンすることにより出力軸22の回転をそのままCVT30のインプットシャフト32に伝達して車両を前進させたり、ブレーキB1をオンすると共にクラッチC1をオフすることにより出力軸22の回転を逆方向に変換してCVT30のインプットシャフト32に伝達して車両を後進させたりする。また、ブレーキB1をオフすると共にクラッチC1をオフすることにより出力軸22とCVT30のインプットシャフト32とを切り離すこともできる。なお、実施例では、前後進切替機構24をダブルピニオンの遊星歯車機構とブレーキB1とクラッチC1とにより構成するものとしたが、ダブルピニオンの遊星歯車機構に代えてシングルピニオンの遊星歯車機構により構成するものとしてもよいし、その他の構成とするものとしてもよい。
The forward / reverse switching mechanism 24 includes a double-pinion planetary gear mechanism, a brake B1, and a clutch C1. The planetary gear mechanism of the double pinion includes an external gear sun gear 24a, an internal gear ring gear 24b arranged concentrically with the sun gear 24a, a plurality of first pinion gears meshed with the sun gear 24a, and the first pinion gear. A plurality of second pinion gears that mesh with the ring gear 24b are connected to each other and a carrier 24c that rotates and revolves is held. The sun gear 24a has an output shaft 22, and the carrier 24c has an input shaft 32 of the CVT 30. Are connected to each other. The ring gear 24b of the planetary gear mechanism is connected to the case 21 by a brake B1, and the ring gear 24b can be freely rotated or prohibited from rotating by turning on and off the brake B1. The sun gear 24a and the carrier 24c of the planetary gear mechanism are connected by a clutch C1, and the sun gear 24a and the carrier 24c are connected or disconnected by turning on and off the clutch C1. The forward / reverse switching mechanism 24 turns off the brake B1 and turns on the clutch C1 to transmit the rotation of the output shaft 22 to the input shaft 32 of the CVT 30 as it is to advance the vehicle or turn on the brake B1 and turn on the clutch C1. Is turned off, the rotation of the output shaft 22 is converted in the reverse direction and transmitted to the input shaft 32 of the CVT 30 to reverse the vehicle. Further, the output shaft 22 and the input shaft 32 of the CVT 30 can be disconnected by turning off the brake B1 and turning off the clutch C1. In the embodiment, the forward / reverse switching mechanism 24 is constituted by a double-pinion planetary gear mechanism, a brake B1, and a clutch C1, but is constituted by a single-pinion planetary gear mechanism instead of the double-pinion planetary gear mechanism. It is good also as what is carried out and it is good also as what shall be set as another structure.
CVT30は、インプットシャフト32が一体的に形成された円錐形状のインプットコーン34と、インプットコーン34と同一の径の変化となると共にインプットコーン34より軸方向に長さDだけ長い円錐形状に形成されてインプットコーン34と逆向きに並行に且つインプットコーン34の大径側端部(図1中左端部)に小径側端部が整合するように配置されてアウトプットシャフト38に連結されたアウトプットコーン36と、インプットコーン34に挿入されてインプットコーン34とアウトプットコーン36とにより挟まれるよう配置されたリング60と、リング60を回転自在に支持しリング60をスライド可能なスライド機構62(図3参照)と、インプットコーン34とアウトプットコーン36との間のリング60への狭圧力を調節する狭圧力調節機構50とを備え、スライド機構62によってリング60をスライドさせることによりインプットシャフト32とアウトプットシャフト38との間で動力を無段階に変速して伝達する。上述したように、アウトプットコーン36は、インプットコーン34より軸方向に長さDだけ長く形成され、インプットコーン34の大径側端部(図1中左端部)に小径側端部が整合するようにアウトプットシャフト38に連結さているから、アウトプットコーン36の大径側端部(図1中右端部)は、インプットコーン34の小径側端部(図1中右端部)より軸方向に図中右側に長さDだけ突出するように配置されることになる。なお、アウトプットコーン36の長さの理由およびアウトプットコーン36の配置の理由については後述する。図2に、CVT30の変速の様子を示す。図示するように、リング60を図中手前側(図1中左側)にスライドさせることによりインプットコーン34の動力を比較的小さな減速比をもって変速してアウトプットコーン36に伝達し、リング60を図中奥側(図1中右側)にスライドさせることによりインプットコーン34の動力を比較的大きな減速比をもって変速してアウトプットコーン36に伝達する。
The CVT 30 is formed in a conical input cone 34 integrally formed with an input shaft 32 and a conical shape having the same diameter as the input cone 34 and longer in the axial direction than the input cone 34 by a length D. The output cone connected to the output shaft 38 in parallel with the input cone 34 and arranged so that the small-diameter end is aligned with the large-diameter end (left end in FIG. 1) of the input cone 34. 36, a ring 60 that is inserted into the input cone 34 and is sandwiched between the input cone 34 and the output cone 36, and a slide mechanism 62 that can rotatably support the ring 60 and slide the ring 60 (FIG. 3). To the ring 60 between the input cone 34 and the output cone 36. A clamping force adjusting mechanism 50 for adjusting the pressure, shifting to transmit power to steplessly between the input shaft 32 and the output shaft 38 by sliding the ring 60 by the slide mechanism 62. As described above, the output cone 36 is formed to be longer than the input cone 34 in the axial direction by a length D, and the small-diameter end is aligned with the large-diameter end (left end in FIG. 1) of the input cone 34. Thus, the large diameter side end portion (right end portion in FIG. 1) of the output cone 36 is more axially illustrated than the small diameter side end portion (right end portion in FIG. 1) of the input cone 34. It is arranged so as to protrude by a length D on the middle right side. The reason for the length of the output cone 36 and the reason for the arrangement of the output cone 36 will be described later. FIG. 2 shows how the CVT 30 shifts. As shown in the figure, the ring 60 is slid toward the front side (left side in FIG. 1) to shift the power of the input cone 34 with a relatively small reduction ratio and transmit it to the output cone 36. By sliding to the inner back side (right side in FIG. 1), the power of the input cone 34 is shifted with a relatively large reduction ratio and transmitted to the output cone 36.
インプットコーン34およびインプットシャフト32は、図1中右端では仕切プレート21dに取り付けられスラスト力を受けることができないが比較的大きなラジアル力を受けることができる円筒ころ軸受けとして形成された軸受け41により回転自在に支持されると共に左端ではトランスアクスルハウジング21aに取り付けられスラスト力を受けることができる円錐ころ軸受けとして形成された軸受け42により回転自在に支持されている。一方、アウトプットコーン36は、図1中右端では仕切プレート21dに取り付けられ円筒ころ軸受けとして形成された軸受け45により回転自在に支持されると共に左端ではトランスアクスルハウジング21aに取り付けられ円筒ころ軸受けとして形成された軸受け46により回転自在に支持されている。また、アウトプットコーン36に連結されたアウトプットシャフト38の図1中右端ではコンバータハウジング21bに取り付けられ円錐ころ軸受けとして形成された軸受け49により回転自在に支持されている。
The input cone 34 and the input shaft 32 are rotatable by a bearing 41 formed as a cylindrical roller bearing that is attached to the partition plate 21d at the right end in FIG. 1 and cannot receive a thrust force but can receive a relatively large radial force. And at the left end is rotatably supported by a bearing 42 formed as a tapered roller bearing attached to the transaxle housing 21a and capable of receiving a thrust force. On the other hand, the output cone 36 at the right end in FIG. 1 is rotatably supported by a bearing 45 attached to the partition plate 21d and formed as a cylindrical roller bearing, and at the left end attached to the transaxle housing 21a and formed as a cylindrical roller bearing. The bearing 46 is rotatably supported. Further, at the right end in FIG. 1 of the output shaft 38 connected to the output cone 36, it is rotatably supported by a bearing 49 which is attached to the converter housing 21b and formed as a tapered roller bearing.
仕切プレート21dには、インプットコーン34の軸受け41が配置された位置よりも内側(図1中左側)にオイルシール43が取り付けられると共にアウトプットコーン36の軸受け45が配置された位置よりも内側(図1中左側)にオイルシール47が取り付けられている。また、トランスアクスルハウジング21aには、インプットコーン34の軸受け42が配置された位置よりも内側(図1中右側)にオイルシール44が取り付けられると共にアウトプットコーン36の軸受け46が配置された位置の内側(図1中右側)にオイルシール48が取り付けられている。これにより、ケース21の内部空間を、トランスアクスルハウジング21aとリアカバー21cとオイルシール44,48とにより形成される空間X1と、トランスアクスルハウジング21aと仕切プレート21dとオイルシール43,44,47,48とにより形成される空間X2と、トランスアクスルハウジング21aとコンバータハウジング21bと仕切プレート21dとオイルシール43,47とにより形成される空間X3とに区画しており、空間X1と空間X2とには空間X1に配置された軸受け42,46や空間X3に配置された軸受け41,45,49や前後進切換機構24,デファレンシャルギヤ28などの機械部分を潤滑するための潤滑オイルが充填され、空間X2には空間X2に配置されたCVT30におけるトルクを伝達するためのトラクションオイルが充填されている。このトラクションオイルは、このCVT30がインプットコーン34およびアウトプットコーン36とリング60との間に形成される弾性流体潤滑状態の油膜の剪断力により動力を伝達する機構であることから、潤滑オイルに比して高い圧力粘度係数を有する特殊なオイルが用いられている。
The oil seal 43 is attached to the partition plate 21d on the inner side (left side in FIG. 1) where the bearing 41 of the input cone 34 is disposed, and on the inner side of the position where the bearing 45 of the output cone 36 is disposed ( An oil seal 47 is attached to the left side in FIG. In addition, an oil seal 44 is attached to the transaxle housing 21a on the inner side (right side in FIG. 1) of the position where the bearing 42 of the input cone 34 is disposed, and at the position where the bearing 46 of the output cone 36 is disposed. An oil seal 48 is attached on the inner side (right side in FIG. 1). Thus, the internal space of the case 21 is divided into the space X1 formed by the transaxle housing 21a, the rear cover 21c, and the oil seals 44, 48, the transaxle housing 21a, the partition plate 21d, and the oil seals 43, 44, 47, 48. And a space X3 formed by the transaxle housing 21a, the converter housing 21b, the partition plate 21d, and the oil seals 43 and 47, and the space X1 and the space X2 include a space X3. Lubricating oil for lubricating mechanical parts such as the bearings 42 and 46 arranged in X1 and the bearings 41, 45 and 49 arranged in the space X3, the forward / reverse switching mechanism 24 and the differential gear 28 is filled, and the space X2 is filled. Is the torque in CVT30 located in space X2. Traction oil to reach is filled. This traction oil is a mechanism in which the CVT 30 is a mechanism for transmitting power by the shear force of an oil film in an elastic fluid lubrication state formed between the input cone 34 and the output cone 36 and the ring 60. Thus, special oils having a high pressure viscosity coefficient are used.
スライド機構62は、図3に示すように、リング60のスライド方向に略平行に延在してトランスアクスルハウジング21aによって回転自在に支持される送りネジとしてのガイドレール64と、ガイドレール64に嵌合する嵌合部を有しガイドレール64の回転時には回転せずにガイドレール64に沿って移動可能なスライダ66と、ガイドレール64の延在方向に揺動可能にスライダ66に取り付けられると共にU字形状のU字部によってリング60を側面から回転自在に保持する保持部68と、ガイドレール64の一端に回転軸が接続されてガイドレール64を回転させるモータ70とを備える。このスライド機構62では、モータ70の回転駆動によってガイドレール64を回転させてスライダ66をガイドレール64に沿って移動させることにより、リング60を図中手前側(図1中左側)または図中奥側(図1中右側)にスライドさせる。
As shown in FIG. 3, the slide mechanism 62 extends substantially parallel to the sliding direction of the ring 60 and is fitted to the guide rail 64 as a feed screw that is rotatably supported by the transaxle housing 21a. A slider 66 that has a fitting portion to be fitted and can move along the guide rail 64 without rotating when the guide rail 64 rotates, and is attached to the slider 66 so as to be swingable in the extending direction of the guide rail 64 and U A holding portion 68 that rotatably holds the ring 60 from the side surface by a U-shaped portion having a letter shape, and a motor 70 that rotates the guide rail 64 with a rotating shaft connected to one end of the guide rail 64. In this slide mechanism 62, the guide rail 64 is rotated by the rotational drive of the motor 70, and the slider 66 is moved along the guide rail 64, whereby the ring 60 is moved to the front side (left side in FIG. 1) or the rear side in the figure. Slide to the side (right side in FIG. 1).
狭圧力調節機構50は、図1に示すように、アウトプットコーン36に内蔵されており、機械的な機構によりインプットコーン34とアウトプットコーン36とによりリング60に作用する狭圧力を調節する。図4は狭圧力調節機構50の構成の概略を示す構成図であり、図5は狭圧力調節機構50を部分的に拡大した部分拡大図である。狭圧力調節機構50は、図4および図5に示すように、アウトプットシャフト38の先端部に形成されたスプラインにスプライン嵌合されアウトプットシャフト38に対して軸方向に移動不能に固定された固定部材52と、アウトプットコーン36の内周面に形成されたスプラインにスプライン嵌合されアウトプットシャフト38に対してアウトプットコーン36と共に軸方向に移動可能に形成された移動部材54と、固定部材52に形成された複数の半球状のボール受け52aと移動部材54に形成された複数の半球状のボール受け54aとの間に配置された複数のボール56と、固定部材52と移動部材54との間に設けられ固定部材52をバネ受けとして移動部材54を軸方向に付勢するバネ58と、アウトプットコーン36に取り付けられアウトプットコーン36をアウトプットシャフト38に対して軸方向に移動可能に支持する支持部材59とを備える。狭圧力調節機構50は、図5(a)に示すように、アウトプットシャフト38にトルクが作用していないときには、固定部材52のボール受け52aと移動部材54のボール受け54bとは丁度向かい合う位置にあり、移動部材54はボール56からの軸方向の力は受けない。このときには、バネ58により移動部材54が軸方向に押される付勢力による狭圧力がリング60に作用する。一方、アウトプットシャフト38にトルクが作用すると、図5(b)に示すように、固定部材52のボール受け52aと移動部材54のボール受け54aとの間にねじれが生じ、両ボール受け52a,54aがボール56を乗り越えようとするためにボール56に軸方向と回転方向の成分を有する力が作用し、その軸方向の分力に対する反力が移動部材54に作用する。このときには、アウトプットシャフト38に作用するトルクに応じてボール56に作用する力の軸方向の成分の反力とバネ58により移動部材54が軸方向に押される付勢力との和の力による狭圧力がリング60に作用する。前述したように、移動部材54にはアウトプットコーン36が取り付けられているから、移動部材54の移動に伴ってアウトプットコーン36も押し出されることになる。このとき、アウトプットコーン36を押し出す力はボール56に作用する力の軸方向の成分が大きいほど大きくなり、ボール56に作用する力はアウトプットシャフト38に作用するトルクが大きいほど大きくなるから、アウトプットシャフト38に作用するトルクに応じてリング60の狭圧力が調節される。したがって、CVT30は、インプットシャフト32に入力されたトルクに対して減速比が大きいほどアウトプットシャフト38に作用するトルクが大きくなるから、減速比が大きいほどリング60に作用する狭圧力は大きくなるように調節される。
As shown in FIG. 1, the narrow pressure adjusting mechanism 50 is built in the output cone 36, and adjusts the narrow pressure acting on the ring 60 by the input cone 34 and the output cone 36 by a mechanical mechanism. FIG. 4 is a block diagram showing an outline of the configuration of the narrow pressure adjusting mechanism 50, and FIG. 5 is a partially enlarged view of the narrow pressure adjusting mechanism 50 partially enlarged. As shown in FIGS. 4 and 5, the narrow pressure adjusting mechanism 50 is a fixed member that is spline-fitted to a spline formed at the tip of the output shaft 38 and fixed to the output shaft 38 so as not to move in the axial direction. 52, a moving member 54 that is spline-fitted to a spline formed on the inner peripheral surface of the output cone 36 and is formed so as to be movable in the axial direction together with the output cone 36, and a fixed member 52. Between the plurality of hemispherical ball receivers 52 a formed and the plurality of hemispherical ball receivers 54 a formed on the moving member 54, and between the fixed member 52 and the moving member 54 And a spring 58 for urging the moving member 54 in the axial direction with the fixing member 52 as a spring receiver, and attached to the output cone 36 And a support member 59 that movably supported in the axial direction with respect to the output shaft 38 of the output cone 36 is. As shown in FIG. 5A, when the torque is not applied to the output shaft 38, the narrow pressure adjusting mechanism 50 is positioned so that the ball receiver 52a of the fixed member 52 and the ball receiver 54b of the moving member 54 are just opposite each other. The moving member 54 does not receive the axial force from the ball 56. At this time, a narrow pressure is applied to the ring 60 due to the urging force by which the moving member 54 is pushed in the axial direction by the spring 58. On the other hand, when torque acts on the output shaft 38, as shown in FIG. 5 (b), a twist occurs between the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54, and both ball receivers 52a, 54a. In order to get over the ball 56, a force having components in the axial direction and the rotational direction acts on the ball 56, and a reaction force against the component force in the axial direction acts on the moving member 54. At this time, a narrow pressure due to the sum of the reaction force of the axial component of the force acting on the ball 56 in accordance with the torque acting on the output shaft 38 and the urging force pushing the moving member 54 axially by the spring 58. Acts on the ring 60. As described above, since the output cone 36 is attached to the moving member 54, the output cone 36 is pushed out as the moving member 54 moves. At this time, the force pushing the output cone 36 increases as the axial component of the force acting on the ball 56 increases, and the force acting on the ball 56 increases as the torque acting on the output shaft 38 increases. The narrow pressure of the ring 60 is adjusted according to the torque acting on the shaft 38. Therefore, the CVT 30 increases the torque acting on the output shaft 38 as the speed reduction ratio with respect to the torque input to the input shaft 32 increases, so that the narrow pressure acting on the ring 60 increases as the speed reduction ratio increases. Adjusted.
次に、アウトプットコーン36の長さをインプットコーン34より長さDだけ長く形成すると共にその大径側端部がインプットコーン34の小径側端部より軸方向に図中右側に長さDだけ突出するように配置する理由について説明する。図6は、CVT30の減速比を比較的小さくしたときと減速比を最大にしたときのインプットコーン34とアウトプットコーン36とリング60の状態を模式的に示す説明図である。図6(b)中、実線はCVT30の減速比を最大にしたときのインプットコーン34とアウトプットコーン36の状態を示し、破線は変形前のインプットコーン34および移動前のアウトプットコーン36の状態を示す。CVT30の減速比を比較的小さくしたときには、図6(a)に示すように、アウトプットコーン36は、その最も径の大きな部分がインプットコーン34の最も径の小さな部分より軸方向に図中右側に長さDだけ突出するように配置されている。CVT30の減速比を最大にすると、エンジンの出力トルクにもよるがアウトプットシャフト38に作用するトルクは大きくなるから、上述した狭圧力調節機構50によりアウトプットコーン36に図中左向きの軸方向の力が作用し、アウトプットコーン36が軸方向のうちインプットコーン34の大径側の方向(図6中左方向)に若干移動する。なお、インプットコーン34は、この狭圧力により径方向に若干縮小する。アウトプットコーンの長さがインプットコーンと同一でアウトプットコーンの両端部がインプットコーンの両端部に整合するよう配置した比較例を考えると、比較例では、CVTの減速比を大きくすることによって生じるアウトプットコーンの移動により、インプットコーンの小径側端部にリングを移動させることができなくなり、設計上の最大減速比を実現できなくなる。一方、実施例では、アウトプットコーン36の長さをインプットコーン34より長さDだけ長く形成すると共にその大径側端部がインプットコーン34の小径側端部より軸方向に図中右側に長さDだけ突出するように配置することにより、CVT30の減速比を大きくしたときにアウトプットコーン36がインプットコーン34の大径側の方向(図6中左方向)に移動しても、インプットコーン34の小径側端部にリング60を移動させて最大減速比を実現することができるようにしている。実施例では、長さDは、CVT30を最大減速比とすると共にインプットシャフト32に想定される最大トルクを作用させたときにアウトプットコーン36が軸方向のうちインプットコーン34の大径側の方向(図6中左方向)に移動する移動量となるよう調節した。これにより、設計上の最大減速比を実現することができると共に装置をコンパクトなものとすることができる。
Next, the length of the output cone 36 is formed to be longer than the input cone 34 by a length D, and its large-diameter end is axially longer than the small-diameter end of the input cone 34 by a length D on the right side in the figure. The reason for arranging so as to protrude will be described. FIG. 6 is an explanatory diagram schematically showing the states of the input cone 34, the output cone 36, and the ring 60 when the reduction ratio of the CVT 30 is relatively small and when the reduction ratio is maximized. In FIG. 6B, the solid line indicates the state of the input cone 34 and the output cone 36 when the reduction ratio of the CVT 30 is maximized, and the broken line indicates the state of the input cone 34 before deformation and the output cone 36 before movement. Indicates. When the reduction ratio of the CVT 30 is made relatively small, as shown in FIG. 6A, the output cone 36 has its largest diameter portion on the right side in the drawing in the axial direction than the smallest diameter portion of the input cone 34. Are arranged so as to protrude by a length D. When the reduction ratio of the CVT 30 is maximized, the torque acting on the output shaft 38 increases depending on the output torque of the engine. Therefore, the above-described narrow pressure adjusting mechanism 50 applies an axial force to the output cone 36 toward the left in the figure. Acts, and the output cone 36 moves slightly in the axial direction of the input cone 34 in the axial direction (left direction in FIG. 6). The input cone 34 is slightly reduced in the radial direction due to this narrow pressure. Considering a comparative example in which the length of the output cone is the same as that of the input cone and the both ends of the output cone are aligned with both ends of the input cone, the comparative example is caused by increasing the reduction ratio of the CVT. Due to the movement of the output cone, the ring cannot be moved to the small-diameter end of the input cone, and the maximum design reduction ratio cannot be realized. On the other hand, in the embodiment, the length of the output cone 36 is formed longer than the input cone 34 by the length D, and its large-diameter end is longer in the axial direction than the small-diameter end of the input cone 34 on the right side in the figure. If the output cone 36 moves in the direction of the large diameter side of the input cone 34 (the left direction in FIG. 6) when the reduction ratio of the CVT 30 is increased, the input cone The ring 60 is moved to the small diameter side end portion 34 so that the maximum reduction ratio can be realized. In the embodiment, the length D is the direction in which the output cone 36 is in the larger diameter side of the input cone 34 in the axial direction when the CVT 30 is set to the maximum reduction ratio and the assumed maximum torque is applied to the input shaft 32. The amount of movement was adjusted so as to move in the left direction in FIG. Thereby, the maximum reduction ratio in design can be realized and the apparatus can be made compact.
以上説明した実施例の動力伝達装置20によれば、アウトプットコーン36の長さをインプットコーン34より長さDだけ長く形成すると共にその大径側端部がインプットコーン34の小径側端部より軸方向に図1及び図6中右側に長さDだけ突出するように配置することにより、CVT30の減速比を大きくしたときにアウトプットコーン36がインプットコーン34の大径側の方向(図1及び図6中左方向)に移動しても、インプットコーン34の小径側端部にリング60を移動させて最大減速比を実現することができる。しかも、アウトプットコーン36のインプットコーン34より突出する長さDをCVT30を最大減速比とすると共にインプットシャフト32に想定される最大トルクを作用させたときにアウトプットコーン36がインプットコーン34の大径側の方向(図1及び図6中左方向)に移動する移動量となるよう調節したから、設計上の最大減速比を実現することができると共に装置をコンパクトなものとすることができる。
According to the power transmission device 20 of the embodiment described above, the length of the output cone 36 is formed longer than the input cone 34 by the length D, and its large-diameter side end is smaller than the small-diameter side end of the input cone 34. 1 and 6 so that it protrudes to the right in FIG. 1 and FIG. 6 by the length D, the output cone 36 is directed toward the larger diameter side of the input cone 34 when the reduction ratio of the CVT 30 is increased (FIG. 1). Even if it moves in the left direction in FIG. 6, the maximum reduction ratio can be realized by moving the ring 60 to the small diameter side end portion of the input cone 34. In addition, when the length D of the output cone 36 protruding from the input cone 34 is set to CVT 30 as the maximum reduction ratio and the maximum torque assumed for the input shaft 32 is applied, the output cone 36 is larger than the input cone 34. Since the amount of movement is adjusted so as to move in the radial direction (left direction in FIGS. 1 and 6), the design maximum reduction ratio can be realized and the apparatus can be made compact.
実施例の動力伝達装置20では、アウトプットコーン36のインプットコーン34より突出する長さDをCVT30を最大減速比とすると共にインプットシャフト32に想定される最大トルクを作用させたときにアウトプットコーン36がインプットコーン34の大径側の方向(図1及び図6中左方向)に移動する移動量となるよう調節したが、長さDは、これより長いものとしても構わない。
In the power transmission device 20 of the embodiment, when the length D of the output cone 36 protruding from the input cone 34 is set to CVT 30 as the maximum reduction ratio and the maximum torque assumed for the input shaft 32 is applied, the output cone Although the amount of movement 36 is adjusted so as to move in the direction of the larger diameter of the input cone 34 (the left direction in FIGS. 1 and 6), the length D may be longer.
実施例の動力伝達装置20では、狭圧力調節機構50としては、アウトプットシャフト38に取り付けられた固定部材52と、アウトプットコーン36に取り付けられた移動部材54と、固定部材52に形成された複数の半球状のボール受け52aと移動部材54に形成された複数の半球状のボール受け54aとの間に配置された複数のボール56とにより構成するものとしたが、アウトプットシャフト38に作用するトルクを軸方向の力に変換してアウトプットコーン36に作用させることができるものであれば、如何なる機構により構成するものとしても構わない。また入力トルクと変速比とから出力トルクを推定し、出力トルクに応じて油圧や電動で狭圧力を発生させる構成としてもよい。
In the power transmission device 20 of the embodiment, the narrow pressure adjusting mechanism 50 includes a fixing member 52 attached to the output shaft 38, a moving member 54 attached to the output cone 36, and a plurality of members formed on the fixing member 52. The hemispherical ball receiver 52a and the plurality of balls 56 arranged between the plurality of hemispherical ball receivers 54a formed on the moving member 54, the torque acting on the output shaft 38 Any mechanism can be used as long as it can be converted into an axial force and applied to the output cone 36. Moreover, it is good also as a structure which estimates an output torque from an input torque and a gear ratio, and produces | generates a narrow pressure hydraulically or electrically according to an output torque.
実施例の動力伝達装置20では、スライド機構62としては、トランスアクスルハウジング21aに回転自在に取り付けられたガイドレール64と、ガイドレール64の回転時に回転せずにガイドレール64に沿ってスライド可能なスライダ66と、スライダ66に取り付けられると共にリング60を回転自在に保持する保持部68と、ガイドレール64を回転させるモータ70とにより構成するものとしたが、リング60をスライドさせることにより減速比を変更可能なものであれば、如何なる機構により構成するものとしてもよい。
In the power transmission device 20 of the embodiment, the slide mechanism 62 includes a guide rail 64 that is rotatably attached to the transaxle housing 21a, and can slide along the guide rail 64 without rotating when the guide rail 64 rotates. The slider 66, the holding portion 68 that is attached to the slider 66 and rotatably holds the ring 60, and the motor 70 that rotates the guide rail 64 are configured. However, the reduction ratio can be reduced by sliding the ring 60. Any mechanism can be used as long as it can be changed.
実施例の動力伝達装置20では、インプットシャフト32とインプットコーン34とを一体的に形成するものとしたが、別体として形成するものとしてもよい。
In the power transmission device 20 of the embodiment, the input shaft 32 and the input cone 34 are integrally formed, but may be formed separately.
実施例の動力伝達装置20では、動力源としてのエンジンからの動力を変速して左右の車輪に伝達するものとしたが、動力源としては、エンジンに代えてまたは加えてモータを用いるものとしてもよい。なお、動力源としてエンジンに代えてモータを用いる場合、動力伝達装置は、前後進切替機構24を備えないものとしてもよい。
In the power transmission device 20 of the embodiment, the power from the engine as the power source is shifted and transmitted to the left and right wheels. However, as the power source, a motor may be used instead of or in addition to the engine. Good. When a motor is used as the power source instead of the engine, the power transmission device may not include the forward / reverse switching mechanism 24.
実施例の動力伝達装置20では、自動車に搭載されるものとしたが、自動車以外の移動体に搭載されるものとしてもよいし、建設設備などの移動しない設備に組み込まれるものとしてもよい。
In the power transmission device 20 of the embodiment, the power transmission device 20 is mounted on a vehicle. However, the power transmission device 20 may be mounted on a moving body other than the vehicle, or may be mounted on a non-moving facility such as a construction facility.
実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、CVT30が「無段変速機」に相当し、インプットコーン34が「入力部材」に相当し、アウトプットコーン36が「出力部材」に相当し、リング60が「伝達部材」に相当し、スライド機構62が「スライド機構」に相当し、狭圧力調節機構50が「狭圧力調節機構」に相当する。
The correspondence between the main elements of the embodiment and the main elements of the invention described in the Summary of Invention will be described. In the embodiment, the CVT 30 corresponds to a “continuously variable transmission”, the input cone 34 corresponds to an “input member”, the output cone 36 corresponds to an “output member”, and the ring 60 corresponds to a “transmission member”. The slide mechanism 62 corresponds to a “slide mechanism”, and the narrow pressure adjustment mechanism 50 corresponds to a “narrow pressure adjustment mechanism”.
なお、実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。即ち、発明の概要の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の概要の欄に記載した発明の具体的な一例に過ぎないものである。
The correspondence between the main elements of the embodiment and the main elements of the invention described in the summary section of the invention is a specific form of the embodiment for carrying out the invention described in the summary section of the invention. Since this is an example for explanation, the elements of the invention described in the summary section of the invention are not limited. That is, the interpretation of the invention described in the Summary of Invention column should be made based on the description in that column, and the examples are only specific examples of the invention described in the Summary of Invention column. It is.
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.
本発明は、動力伝達装置の製造産業などに利用可能である。
The present invention can be used in the power transmission device manufacturing industry.
Claims (6)
- 入力軸と該入力軸に平行に配置された出力軸とを有し、該入力軸に入力された回転を無段階に変速して該出力軸に出力する無段変速機を備える動力伝達装置であって、
円錐形状に形成され、前記入力軸に接続された入力部材と、
前記入力部材と径の変化が同一の円錐形状であって、前記入力部材とは逆向きに配置されて前記出力軸に接続された出力部材と、
前記入力部材と前記出力部材とに狭圧され、該入力部材と該出力部材との間で動力の伝達を行なう環状の伝達部材と、
前記伝達部材をスライドさせることにより変速比を変更可能なスライド機構と、
前記出力軸に作用するトルクである出力トルクが大きいほど大きくなる傾向に前記伝達部材に作用する狭圧力を調節する狭圧力調節機構と、
を備え、
前記出力部材は、前記狭圧力調節機構が発生させる狭圧力により、軸方向のうち前記入力部材の大径側方向に移動する部材であり、且つ、大径側端部が前記入力部材の小径側端部より軸方向に突出するように配置されて前記出力軸に接続された部材である、
動力伝達装置。 A power transmission device including a continuously variable transmission that has an input shaft and an output shaft arranged in parallel with the input shaft, and that continuously rotates the rotation input to the input shaft and outputs the same to the output shaft. There,
An input member formed in a conical shape and connected to the input shaft;
The input member has a conical shape having the same diameter change, and is disposed in the opposite direction to the input member and connected to the output shaft;
An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
A slide mechanism capable of changing a gear ratio by sliding the transmission member;
A narrow pressure adjusting mechanism that adjusts the narrow pressure acting on the transmission member in a tendency to increase as the output torque that is the torque acting on the output shaft increases.
With
The output member is a member that moves in a large-diameter side direction of the input member in the axial direction by a narrow pressure generated by the narrow-pressure adjusting mechanism, and a large-diameter side end is a small-diameter side of the input member. It is a member that is arranged so as to protrude in the axial direction from the end and is connected to the output shaft.
Power transmission device. - 請求項1記載の動力伝達装置であって、
前記出力部材は、前記伝達部材と接触する面が前記入力部材の小径側端部より軸方向に突出してなる、
動力伝達装置。 The power transmission device according to claim 1,
The output member has a surface in contact with the transmission member that protrudes in an axial direction from an end portion on the small diameter side of the input member.
Power transmission device. - 請求項1または2記載の動力伝達装置であって、
前記出力部材は、前記出力部材より軸方向に長くなるよう形成されてなる、
動力伝達装置。 The power transmission device according to claim 1 or 2,
The output member is formed to be longer in the axial direction than the output member.
Power transmission device. - 請求項1ないし3のいずれか1つの請求項に記載の動力伝達装置であって、
前記出力部材は、前記入力軸に最大トルクが入力されたときに前記出力部材が軸方向のうち前記入力部材の大径側方向に移動する移動量以上の長さだけ大径側端部が前記入力部材の小径側端部より軸方向に突出するよう配置されて前記出力軸に接続されてなる、
動力伝達装置。 The power transmission device according to any one of claims 1 to 3,
The output member has a large-diameter end at a length equal to or longer than a moving amount by which the output member moves in the large-diameter direction of the input member in the axial direction when maximum torque is input to the input shaft. It is arranged to protrude in the axial direction from the small diameter side end of the input member and is connected to the output shaft.
Power transmission device. - 請求項1ないし4のいずれか1つの請求項に記載の動力伝達装置であって、
前記出力部材は、前記出力部材の小径側端部が前記入力部材の大径側端部に軸方向で一致するよう配置されて前記出力軸に接続されてなる、
動力伝達装置。 The power transmission device according to any one of claims 1 to 4,
The output member is arranged so that a small-diameter side end of the output member coincides with the large-diameter side end of the input member in the axial direction, and is connected to the output shaft.
Power transmission device. - 請求項1ないし5のいずれか1つの請求項に記載の動力伝達装置であって、
前記スライド機構は、前記伝達部材を前記出力部材の移動とは独立にスライドさせる機構である、
動力伝達装置。 A power transmission device according to any one of claims 1 to 5,
The slide mechanism is a mechanism for sliding the transmission member independently of movement of the output member.
Power transmission device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012506985A JPWO2011118528A1 (en) | 2010-03-26 | 2011-03-18 | Power transmission device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-073211 | 2010-03-26 | ||
JP2010073211 | 2010-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011118528A1 true WO2011118528A1 (en) | 2011-09-29 |
Family
ID=44673082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056576 WO2011118528A1 (en) | 2010-03-26 | 2011-03-18 | Power transfer system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011118528A1 (en) |
WO (1) | WO2011118528A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2727960C2 (en) * | 2013-07-01 | 2020-07-28 | Юниверсити Оф Саутерн Калифорния | State of abstinence from food as a dietary treatment of diabetes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198012A (en) * | 1993-12-13 | 1995-08-01 | Ulrich Rohs | Friction cone type gear |
DE10312555A1 (en) * | 2003-03-21 | 2004-10-21 | Audi Ag | Infinitely variable change speed gear for motor vehicles has conical bodies with varying cone angles along their lengths and transmission ring with corresponding contact faces |
JP2007155095A (en) * | 2005-12-08 | 2007-06-21 | Nissan Motor Co Ltd | Transmission ring type continuously variable transmission |
JP2009243559A (en) * | 2008-03-31 | 2009-10-22 | Aisin Aw Co Ltd | Power transmission device |
-
2011
- 2011-03-18 JP JP2012506985A patent/JPWO2011118528A1/en active Pending
- 2011-03-18 WO PCT/JP2011/056576 patent/WO2011118528A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07198012A (en) * | 1993-12-13 | 1995-08-01 | Ulrich Rohs | Friction cone type gear |
DE10312555A1 (en) * | 2003-03-21 | 2004-10-21 | Audi Ag | Infinitely variable change speed gear for motor vehicles has conical bodies with varying cone angles along their lengths and transmission ring with corresponding contact faces |
JP2007155095A (en) * | 2005-12-08 | 2007-06-21 | Nissan Motor Co Ltd | Transmission ring type continuously variable transmission |
JP2009243559A (en) * | 2008-03-31 | 2009-10-22 | Aisin Aw Co Ltd | Power transmission device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2727960C2 (en) * | 2013-07-01 | 2020-07-28 | Юниверсити Оф Саутерн Калифорния | State of abstinence from food as a dietary treatment of diabetes |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011118528A1 (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5012621B2 (en) | Power transmission device | |
US6719659B2 (en) | Continuously variable vehicle transmission | |
US10502270B2 (en) | Vehicular power transmitting system | |
WO2017069877A1 (en) | Gearboxes with compound planet gears and methods of operating thereof | |
US10066701B2 (en) | Multi-speed transmission | |
US10197134B2 (en) | Hybrid transmission having electro-magnetically actuated pawl clutch | |
JP2006283871A (en) | Continuously variable transmission | |
US6517461B2 (en) | Infinitely variable transmission | |
JP2010106957A (en) | Belt-type continuously variable transmission | |
CN107076272B (en) | Combined multi-stage transmission | |
CN109210156B (en) | Planetary gear transmission | |
WO2011118528A1 (en) | Power transfer system | |
US10088021B2 (en) | Continuously variable transmission | |
CN107387702B (en) | Multi-mode continuously variable transmission | |
US11486471B2 (en) | Power train for electric vehicle | |
KR20130110031A (en) | Continuously variable transmission | |
JP4924511B2 (en) | Power transmission device | |
JP2014126181A (en) | Transmission | |
JP2009250373A (en) | Power transmitting device | |
JP2013522567A (en) | Conical pulley-type winding transmission | |
US9625019B2 (en) | Infinitely variable transmission | |
WO2011118324A1 (en) | Power transmission device | |
US10234005B2 (en) | Device for continuously variable transmission | |
JP2012247042A (en) | Driving apparatus | |
WO2011118529A1 (en) | Power transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11759334 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012506985 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11759334 Country of ref document: EP Kind code of ref document: A1 |