WO2011118324A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2011118324A1
WO2011118324A1 PCT/JP2011/054096 JP2011054096W WO2011118324A1 WO 2011118324 A1 WO2011118324 A1 WO 2011118324A1 JP 2011054096 W JP2011054096 W JP 2011054096W WO 2011118324 A1 WO2011118324 A1 WO 2011118324A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
transmission device
output
power transmission
diameter side
Prior art date
Application number
PCT/JP2011/054096
Other languages
French (fr)
Japanese (ja)
Inventor
繁男 都築
美紗紀 神谷
雅之 内田
昭次 高橋
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2011118324A1 publication Critical patent/WO2011118324A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/42Gearings providing a continuous range of gear ratios in which two members co-operate by means of rings or by means of parts of endless flexible members pressed between the first mentioned members

Definitions

  • the present invention relates to a power transmission device.
  • the input cone connected to the input shaft and the output cone formed in the same shape as the input cone and connected to the output shaft are parallel to each other in opposite directions and aligned at both ends. It is proposed to have a continuously variable transmission that narrows the ring with both cones by converting the torque acting on the output shaft into axial force by the narrow pressure adjusting mechanism and acting on the output cone (For example, refer to Patent Document 1).
  • the power input to the input shaft is output to the output shaft with a change in the gear ratio by sliding the ring.
  • the main purpose of the power transmission device of the present invention is to reinforce the strength of the input member and reduce the degree of deformation of the input member.
  • the power transmission device of the present invention employs the following means in order to achieve the main object described above.
  • the power transmission device of the present invention is A power transmission device having an input shaft and an output shaft arranged in parallel to the input shaft, and comprising a continuously variable transmission that continuously shifts the power input to the input shaft and outputs the power to the output shaft.
  • An input member formed in a conical shape and connected to the input shaft;
  • An output member formed in a conical shape and arranged in parallel in the opposite direction to the input member and connected to the output shaft;
  • An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
  • Slide means capable of changing a gear ratio by sliding the transmission member;
  • Narrow pressure adjusting means for adjusting the narrow pressure acting on the transmission member in a tendency;
  • a compressive force applying means for applying an axial compressive force to at least a part of
  • the transmission member when the transmission member is moved to the small diameter side of the input member and a large amount of power is applied to the input shaft, a large torque is applied to the output shaft. Narrow pressure acts. Since this narrow pressure acts on the input member via the transmission member, a large force also acts on the input member. Although the input member is deformed by this force, the compressive force acting means exerts an axial compressive force on at least a part of the input member. As a result, the degree of deformation of the input member can be reduced as compared with a case where the compression force is not received. That is, by applying an axial compressive force to at least a part of the input member, the strength of the input member can be reinforced and the degree of deformation of the input member can be reduced.
  • the compressive force applying means may be means for applying an axial compressive force in a small diameter region including a small diameter end of the input member. If it carries out like this, the intensity
  • the compressive force acting means is opened at the small-diameter end of the input member and has a female thread portion at the closed end.
  • a bolt having a male threaded portion formed at the tip thereof. The male threaded portion of the bolt is screwed into the female threaded portion of the bolt hole to apply tension to the bolt as a reaction force. It can also be a means for applying a compressive force to the small-diameter side region of the input member.
  • a compressive force can be made to act on the small diameter side area
  • the female thread portion of the bolt hole has a straight line in the direction of the force from the point of action of the force acting on the input member due to a narrow pressure when the transmission member is slid to the small diameter side end of the input member. It can also be formed on the larger diameter side than the straight line when pulled.
  • the transmission member When the transmission member is slid to the small-diameter side end of the input member, the largest narrow pressure is applied, so the female screw part of the bolt hole is formed on the large-diameter side of the input member from the straight line drawn in the direction of force from the point of action. By doing so, it is possible to effectively reinforce the strength of the portion where the largest narrow pressure acts on the input member.
  • FIG. 3 is a configuration diagram showing an outline of a configuration of a slide mechanism 62.
  • FIG. 2 is a configuration diagram showing an outline of a configuration of a narrow pressure adjusting mechanism 50.
  • FIG. It is the elements on larger scale which expanded the narrow pressure adjustment mechanism 50 partially.
  • It is explanatory drawing which shows typically the state of the input cone 34, the output cone 36, and the ring 60 when a big torque is input into the input shaft 32 by making the reduction ratio of CVT30 into the maximum.
  • FIG. 1 is a configuration diagram showing an outline of a configuration of a power transmission device 20 as an embodiment of the present invention.
  • the power transmission device 20 of the embodiment is a transaxle that can shift power transmitted from an engine (not shown) mounted on a vehicle via a starting device (not shown) (for example, a torque converter) and transmit it to left and right front wheels (not shown).
  • a forward / reverse switching mechanism 24 that is connected to the output shaft 22 of the starting device and outputs power from the starting device with switching between forward rotation and reverse rotation, and a forward / backward switching mechanism, as shown in the figure.
  • a continuously variable transmission which has an input shaft 32 connected to 24 and an output shaft 38 arranged in parallel to the input shaft 32 and continuously outputs the power input to the input shaft 32 to the output shaft 38.
  • the CVT 30 is connected to the output shaft 38 of the CVT 30 via the reduction gear 26 It comprises a differential gear 28 connected to the left and right front wheels, a case 21 composed of a transaxle housing 21a and the converter housing 21b and the rear case 21c for housing them, a. Inside the case 21 is provided a partition plate 21d that partitions a portion where the forward / reverse switching mechanism 24 and the differential gear 28 are disposed from a portion where the CVT 30 is disposed.
  • the forward / reverse switching mechanism 24 includes a double-pinion planetary gear mechanism, a brake B1, and a clutch C1.
  • the planetary gear mechanism of the double pinion includes an external gear sun gear 24a, an internal gear ring gear 24b arranged concentrically with the sun gear 24a, a plurality of first pinion gears meshed with the sun gear 24a, and the first pinion gear.
  • a plurality of second pinion gears that mesh with the ring gear 24b are connected to each other and a carrier 24c that rotates and revolves is held.
  • the sun gear 24a has an output shaft 22, and the carrier 24c has an input shaft 32 of the CVT 30. Are connected to each other.
  • the ring gear 24b of the planetary gear mechanism is connected to the case 21 by a brake B1, and the ring gear 24b can be freely rotated or prohibited from rotating by turning on and off the brake B1.
  • the sun gear 24a and the carrier 24c of the planetary gear mechanism are connected by a clutch C1, and the sun gear 24a and the carrier 24c are connected or disconnected by turning on and off the clutch C1.
  • the forward / reverse switching mechanism 24 turns off the brake B1 and turns on the clutch C1 to transmit the rotation of the output shaft 22 to the input shaft 32 of the CVT 30 as it is to advance the vehicle or turn on the brake B1 and turn on the clutch C1.
  • the rotation of the output shaft 22 is converted in the reverse direction and transmitted to the input shaft 32 of the CVT 30 to reverse the vehicle. Further, the output shaft 22 and the input shaft 32 of the CVT 30 can be disconnected by turning off the brake B1 and turning off the clutch C1.
  • the forward / reverse switching mechanism 24 is constituted by a double-pinion planetary gear mechanism, a brake B1, and a clutch C1, but is constituted by a single-pinion planetary gear mechanism instead of the double-pinion planetary gear mechanism. It is good also as what is carried out and it is good also as what shall be set as another structure.
  • the CVT 30 has a conical input cone 34 integrally formed with an input shaft 32, a conical shape substantially the same as the input cone 34, and is disposed in parallel with the input cone 34 in the opposite direction to the output shaft 38.
  • a slide mechanism 62 (see FIG. 3) and a narrow pressure adjusting mechanism 50 for adjusting a narrow pressure on the ring 60 between the input cone 34 and the output cone 36 are provided, and the ring 60 is slid by the slide mechanism 62.
  • a bolt hole 34a having a female thread portion formed only in the vicinity of the closed end (left side in the figure) is formed inside the input cone 34 and in the vicinity of the open end of the bolt hole 34a.
  • a bolt receiving portion 34b is formed, and the bolt 35 is fitted into the bolt hole 34a.
  • the bolt 35 and the bolt hole 34a are a male screw portion at the tip of the bolt 35 and a female screw near the closed end portion of the bolt hole 34a. Screwed together with the part.
  • FIG. 2 shows how the CVT 30 shifts.
  • the ring 60 is slid toward the front side (left side in FIG. 1) to shift the power of the input cone 34 with a relatively small reduction ratio and transmit it to the output cone 36.
  • the power of the input cone 34 is shifted with a relatively large reduction ratio and transmitted to the output cone 36.
  • the input cone 34 and the input shaft 32 are rotatable by a bearing 41 formed as a cylindrical roller bearing that is attached to the partition plate 21d at the right end in FIG. 1 and cannot receive a thrust force but can receive a relatively large radial force. And at the left end is rotatably supported by a bearing 42 formed as a tapered roller bearing attached to the transaxle housing 21a and capable of receiving a thrust force.
  • the output cone 36 at the right end in FIG. 1 is rotatably supported by a bearing 45 attached to the partition plate 21d and formed as a cylindrical roller bearing, and at the left end attached to the transaxle housing 21a and formed as a cylindrical roller bearing.
  • the bearing 46 is rotatably supported. Further, at the right end in FIG. 1 of the output shaft 38 connected to the output cone 36, it is rotatably supported by a bearing 49 which is attached to the converter housing 21b and formed as a tapered roller bearing.
  • the oil seal 43 is attached to the partition plate 21d on the inner side (left side in FIG. 1) where the bearing 41 of the input cone 34 is disposed, and on the inner side of the position where the bearing 45 of the output cone 36 is disposed (
  • An oil seal 47 is attached to the left side in FIG.
  • an oil seal 44 is attached to the transaxle housing 21a on the inner side (right side in FIG. 1) of the position where the bearing 42 of the input cone 34 is disposed, and at the position where the bearing 46 of the output cone 36 is disposed.
  • An oil seal 48 is attached on the inner side (right side in FIG. 1).
  • the internal space of the case 21 is divided into the space X1 formed by the transaxle housing 21a, the rear cover 21c, and the oil seals 44, 48, the transaxle housing 21a, the partition plate 21d, and the oil seals 43, 44, 47, 48.
  • a space X3 formed by the transaxle housing 21a, the converter housing 21b, the partition plate 21d, and the oil seals 43 and 47, and the space X1 and the space X2 include a space X3.
  • Lubricating oil for lubricating mechanical parts such as the bearings 42 and 46 arranged in X1 and the bearings 41, 45 and 49 arranged in the space X3, the forward / reverse switching mechanism 24 and the differential gear 28 is filled, and the space X2 is filled.
  • Traction oil to reach is filled.
  • This traction oil is a mechanism in which the CVT 30 is a mechanism for transmitting power by the shear force of an oil film in an elastic fluid lubrication state formed between the input cone 34 and the output cone 36 and the ring 60.
  • special oils having a high pressure viscosity coefficient are used.
  • the slide mechanism 62 extends substantially parallel to the sliding direction of the ring 60 and is fitted to the guide rail 64 as a feed screw that is rotatably supported by the transaxle housing 21a.
  • a slider 66 that has a fitting portion to be fitted and can move along the guide rail 64 without rotating when the guide rail 64 rotates, and is attached to the slider 66 so as to be swingable in the extending direction of the guide rail 64 and U
  • a holding portion 68 that rotatably holds the ring 60 from the side surface by a U-shaped portion having a letter shape, and a motor 70 that rotates the guide rail 64 with a rotating shaft connected to one end of the guide rail 64.
  • the guide rail 64 is rotated by the rotational drive of the motor 70, and the slider 66 is moved along the guide rail 64, whereby the ring 60 is moved to the front side (left side in FIG. 1) or the rear side in the figure. Slide to the side (right side in FIG. 1).
  • the narrow pressure adjusting mechanism 50 is built in the output cone 36, and adjusts the narrow pressure acting on the ring 60 by the input cone 34 and the output cone 36 by a mechanical mechanism.
  • FIG. 4 is a block diagram showing an outline of the configuration of the narrow pressure adjusting mechanism 50
  • FIG. 5 is a partially enlarged view of the narrow pressure adjusting mechanism 50 partially enlarged.
  • the narrow pressure adjusting mechanism 50 is a fixed member that is spline-fitted to a spline formed at the tip of the output shaft 38 and fixed to the output shaft 38 so as not to move in the axial direction.
  • a moving member 54 that is spline-fitted to a spline formed on the inner peripheral surface of the output cone 36 and is formed so as to be movable in the axial direction together with the output cone 36, and a fixed member 52.
  • a spring 58 for urging the moving member 54 in the axial direction with the fixing member 52 as a spring receiver, and attached to the output cone 36
  • a support member 59 that movably supported in the axial direction with respect to the output shaft 38 of the output cone 36 is.
  • the narrow pressure adjusting mechanism 50 when the torque is not applied to the output shaft 38, the narrow pressure adjusting mechanism 50 is positioned so that the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54 are just opposite each other.
  • the moving member 54 does not receive the axial force from the ball 56.
  • a narrow pressure is applied to the ring 60 due to the urging force by which the moving member 54 is pushed in the axial direction by the spring 58.
  • FIG. 5 (b) when torque acts on the output shaft 38, as shown in FIG. 5 (b), a twist occurs between the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54, and both ball receivers 52a, 54a.
  • the force pushing the output cone 36 increases as the axial component of the force acting on the ball 56 increases, and the force acting on the ball 56 increases as the torque acting on the output shaft 38 increases.
  • the narrow pressure of the ring 60 is adjusted according to the torque acting on the shaft 38. Therefore, the CVT 30 increases the torque acting on the output shaft 38 as the speed reduction ratio with respect to the torque input to the input shaft 32 increases, so that the narrow pressure acting on the ring 60 increases as the speed reduction ratio increases. Adjusted.
  • FIG. 6 is an explanatory diagram schematically showing the states of the input cone 34, the output cone 36, and the ring 60 when a large torque is input to the input shaft 32 with the reduction ratio of the CVT 30 as the maximum.
  • the solid line indicates the outer shape of the input cone 34 according to the embodiment after deformation
  • the broken line indicates the outer shape of the input cone 34 before deformation
  • the alternate long and short dash line applies a compressive force to the small diameter side of the input cone 34 by the bolt 35.
  • the two-dot chain line shows a straight line in the direction of this force starting from the point of action of the force acting on the input cone 34 via the ring 60.
  • the female thread portion of the bolt hole 34a is formed on the larger diameter side (left side in the figure) of the input cone 34 than the two-dot chain line. This is to effectively reinforce the strength of the portion of the input cone 34 where the greatest force acts and the strength is insufficient. Since the torque acting on the output shaft 38 increases when a large torque is applied to the input shaft 32 with the reduction ratio of the CVT 30 being maximized, the largest force is also applied to the input cone 34.
  • the point of action of this force is the small diameter side end of the input cone 34, and this small diameter side end is the smallest diameter, so it is the part with the least strength. Therefore, by forming the female threaded portion of the bolt hole 34a on the large diameter side of the input cone 34 from the straight line drawn in the direction of force from this point of action, the portion of the input cone 34 where the greatest force acts and the highest strength. This effectively reinforces the strength of the portion where the amount of deficiency is insufficient. As described above, the input cone 34 is deformed by a large force acting on the input cone 34.
  • the strength of the input cone 34 is increased by applying a compressive force to the small diameter side of the input cone 34 with the bolt 35 as in the embodiment.
  • the degree of deformation can be reduced as compared with the case where the compression force is not applied to the small diameter side of the input cone 34 by the bolt 35.
  • the compressive force is applied to the small diameter side of the input cone 34 having the smallest strength, it is possible to reinforce the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement.
  • the bolt hole 34a and the bolt receiving portion 34b having the female screw portion at the closed end portion are formed in the input cone 34, and the male screw portion of the bolt 35 is replaced with the female screw of the bolt hole 34a.
  • the compression force is applied to the small diameter side of the input cone 34 by screwing to the portion, the strength of the input cone 34 is increased, and the compression force is not applied to the small diameter side of the input cone 34 by the bolt 35.
  • the degree of deformation of the input cone 34 caused by the narrow pressure by the narrow pressure adjusting mechanism 50 can be reduced.
  • the compression force is applied to the small diameter side of the input cone 34 only by the bolt hole 34a, the bolt receiving portion 34b, and the bolt 35, the compression force can be applied to the small diameter side of the input cone 34 by a simple method. Further, since the compressive force is applied to the small diameter side of the input cone 34 having the smallest strength, it is possible to reinforce the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement.
  • the input cone 34 By forming the female thread portion of the bolt hole 34a on the large diameter side, the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement can be effectively reinforced.
  • the compressive force is applied to the small diameter side of the input cone 34.
  • the compressive force may be applied to the entire input cone 34.
  • the internal thread portion of the bolt hole 34 a may be formed at the large diameter side end portion of the input cone 34.
  • the compression force is applied to the small diameter side of the input cone 34 by the bolt 35.
  • the compression force is applied to the input cone by a method other than the bolt 35, for example, a spring that applies a tensile force. It is also possible to apply an axial compressive force to the input cone 34 by any method, such as an action.
  • the female screw portion of the bolt hole 34a is formed on the larger diameter side of the input cone 34 from this straight line, the female screw portion of the bolt hole 34a may be formed slightly on the smaller diameter side of the input cone 34 from this straight line.
  • the narrow pressure adjusting mechanism 50 includes a fixing member 52 attached to the output shaft 38, a moving member 54 attached to the output cone 36, and a plurality of members formed on the fixing member 52.
  • the slide mechanism 62 includes a guide rail 64 that is rotatably attached to the transaxle housing 21a, and can slide along the guide rail 64 without rotating when the guide rail 64 rotates.
  • the slider 66, the holding portion 68 that is attached to the slider 66 and rotatably holds the ring 60, and the motor 70 that rotates the guide rail 64 are configured.
  • the reduction ratio can be reduced by sliding the ring 60. Any mechanism can be used as long as it can be changed.
  • the input shaft 32 and the input cone 34 are integrally formed, but may be formed separately.
  • the power from the engine as the power source is shifted and transmitted to the left and right wheels.
  • a motor may be used instead of or in addition to the engine. Good.
  • the power transmission device may not include the forward / reverse switching mechanism 24.
  • the power transmission device 20 is mounted on a vehicle.
  • the power transmission device 20 may be mounted on a moving body other than the vehicle, or may be mounted on a non-moving facility such as a construction facility.
  • the CVT 30 corresponds to a “continuously variable transmission”
  • the input cone 34 corresponds to an “input member”
  • the output cone 36 corresponds to an “output member”
  • the ring 60 corresponds to a “transmission member”.
  • the sliding mechanism 62 corresponds to “sliding means”
  • the narrow pressure adjusting mechanism 50 corresponds to “narrow pressure adjusting means”
  • the bolt hole 34a, the bolt receiving portion 34b, and the bolt 35 become “compressing force acting means”.
  • the present invention can be used in the power transmission device manufacturing industry.

Abstract

A bolt hole (34a) having a female threaded section at the closed end is formed in an input cone (34), and a bolt receiving section (34b) is formed in the vicinity of the open end of the bolt hole (34a). A bolt (35) is fitted and inserted into the bolt hole (34a), and a male threaded section at the tip of the bolt (35) is threadably engaged with the female threaded section of the bolt hole (34a), resulting in a compressive force being made to act on the smaller outside diameter portion of the input cone (34). In other words, the compressive force is made to act on the smaller outside diameter section, where the strength is lowest in the input cone (34). Therefore, it is possible to reinforce the region of the input cone (34) where the strength is most insufficient and where reinforcement is needed most. Consequently, as compared with a case where the bolt (35) is not caused to make any compressive force act on the smaller outside diameter portion of the input cone (34), it is possible to reduce the degree of deformation of the input cone (34), said deformation being generated by constriction pressure caused by a constriction pressure adjustment mechanism (50).

Description

動力伝達装置Power transmission device
 本発明は、動力伝達装置に関する。 The present invention relates to a power transmission device.
 従来、この種の動力伝達装置としては、インプットシャフトに接続されたインプットコーンとこのインプットコーンと同形に形成されてアウトプットシャフトに接続されたアウトプットコーンとを互いに逆向きに平行に両端部が整合するよう配置し、アウトプットシャフトに作用するトルクを狭圧力調節機構によって軸方向の力に変換してアウトプットコーンに作用させることによって両コーンでリングを狭圧する無段変速機を備えるものが提案されている(例えば、特許文献1参照)。この装置における無段変速機では、リングをスライドさせることにより、インプットシャフトに入力された動力を変速比の変更を伴ってアウトプットシャフトに出力している。 Conventionally, as this kind of power transmission device, the input cone connected to the input shaft and the output cone formed in the same shape as the input cone and connected to the output shaft are parallel to each other in opposite directions and aligned at both ends. It is proposed to have a continuously variable transmission that narrows the ring with both cones by converting the torque acting on the output shaft into axial force by the narrow pressure adjusting mechanism and acting on the output cone (For example, refer to Patent Document 1). In the continuously variable transmission in this apparatus, the power input to the input shaft is output to the output shaft with a change in the gear ratio by sliding the ring.
特開2009-243559号公報JP 2009-243559 A
 こうした動力伝達装置では、リングをインプットコーンの小径側端部に移動させて減速比を最大にしようとしても最大減速比を実現できない場合が生じる。リングをインプットコーンの小径側端部に移動させてインプットシャフトに高トルクを入力すると、アウトプットシャフトには大きなトルクが出力される。このため、リングに作用する狭圧力も大きくなり、インプットコーンにも狭圧力による大きな力が作用し、インプットコーンが変形する。こうした変形は、インプットコーンの耐久性を低下させるため、インプットコーンの強度を高める必要が生じる。 In such a power transmission device, there is a case where the maximum reduction ratio cannot be realized even if the ring is moved to the small diameter side end portion of the input cone to try to maximize the reduction ratio. When the ring is moved to the small-diameter end of the input cone and a high torque is input to the input shaft, a large torque is output to the output shaft. For this reason, the narrow pressure which acts on a ring also becomes large, the big force by a narrow pressure acts also on an input cone, and an input cone deform | transforms. Since such deformation reduces the durability of the input cone, it is necessary to increase the strength of the input cone.
 本発明の動力伝達装置は、入力部材の強度を補強して入力部材の変形の程度を小さくすることを主目的とする。 The main purpose of the power transmission device of the present invention is to reinforce the strength of the input member and reduce the degree of deformation of the input member.
 本発明の動力伝達装置は、上述の主目的を達成するために以下の手段を採った。 The power transmission device of the present invention employs the following means in order to achieve the main object described above.
 本発明の動力伝達装置は、
 入力軸と該入力軸に平行に配置された出力軸とを有し、該入力軸に入力された動力を無段階に変速して該出力軸に出力する無段変速機を備える動力伝達装置であって、
 円錐形状に形成され、前記入力軸に接続された入力部材と、
 円錐形状に形成され、前記入力部材とは逆向きに並行に配置されて前記出力軸に接続された出力部材と、
 前記入力部材と前記出力部材とに狭圧され、該入力部材と該出力部材との間で動力の伝達を行なう環状の伝達部材と、
 前記伝達部材をスライドさせることにより変速比を変更可能なスライド手段と、
 前記出力軸に作用するトルクである出力トルクを前記出力軸の方向のうち前記入力部材の大径側方向の力に変換して前記出力部材に作用させることにより、該出力トルクが大きいほど大きくなる傾向に前記伝達部材に作用する狭圧力を調節する狭圧力調節手段と、
 前記入力部材の少なくとも一部に軸方向の圧縮力を作用させる圧縮力作用手段と、
 を備えることを要旨とする。
The power transmission device of the present invention is
A power transmission device having an input shaft and an output shaft arranged in parallel to the input shaft, and comprising a continuously variable transmission that continuously shifts the power input to the input shaft and outputs the power to the output shaft. There,
An input member formed in a conical shape and connected to the input shaft;
An output member formed in a conical shape and arranged in parallel in the opposite direction to the input member and connected to the output shaft;
An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
Slide means capable of changing a gear ratio by sliding the transmission member;
By converting the output torque, which is the torque acting on the output shaft, to the force on the large diameter side of the input member in the direction of the output shaft and acting on the output member, the larger the output torque is, the larger the output torque is. Narrow pressure adjusting means for adjusting the narrow pressure acting on the transmission member in a tendency;
A compressive force applying means for applying an axial compressive force to at least a part of the input member;
It is a summary to provide.
 この本発明の動力伝達装置では、伝達部材を入力部材の小径側に移動させて入力軸に大きな動力を作用させると、出力軸に大きなトルクが作用するため、狭圧力調節手段により伝達部材に大きな狭圧力が作用する。この狭圧力は伝達部材を介して入力部材に作用するから、入力部材にも大きな力が作用することになる。入力部材には、この力によって変形が生じるが、圧縮力作用手段によって入力部材の少なくとも一部には軸方向の圧縮力が作用しているから、この圧縮力が作用している部位の強度が高くなり、これにより、こうした圧縮力を受けていない場合に比して、入力部材の変形の程度を小さくすることができる。即ち、入力部材の少なくとも一部に軸方向の圧縮力を作用させることによって、入力部材の強度を補強し、入力部材の変形の程度を小さくすることができるのである。 In the power transmission device according to the present invention, when the transmission member is moved to the small diameter side of the input member and a large amount of power is applied to the input shaft, a large torque is applied to the output shaft. Narrow pressure acts. Since this narrow pressure acts on the input member via the transmission member, a large force also acts on the input member. Although the input member is deformed by this force, the compressive force acting means exerts an axial compressive force on at least a part of the input member. As a result, the degree of deformation of the input member can be reduced as compared with a case where the compression force is not received. That is, by applying an axial compressive force to at least a part of the input member, the strength of the input member can be reinforced and the degree of deformation of the input member can be reduced.
 こうした本発明の動力伝達装置において、前記圧縮力作用手段は、前記入力部材の小径側端部を含む小径側領域で軸方向の圧縮力を作用させる手段である、ものとすることもできる。こうすれば、入力部材において最も強度が必要となる小径側端部における強度を補強することができる。 In such a power transmission device of the present invention, the compressive force applying means may be means for applying an axial compressive force in a small diameter region including a small diameter end of the input member. If it carries out like this, the intensity | strength in the small diameter side edge part which needs intensity | strength most in an input member can be reinforced.
 この入力部材の小径側領域に圧縮力を作用させる態様の本発明の動力伝達装置において、前記圧縮力作用手段は、前記入力部材の小径側端部に開口され閉端部に雌ねじ部が形成されたボルト孔と、先端部に雄ねじ部が形成されたボルトとを有し、前記ボルト孔の雌ねじ部に前記ボルトの雄ねじ部を螺合させて前記ボルトに張力を作用させることによって反力としての圧縮力を前記入力部材の小径側領域に作用させる手段である、ものとすることもできる。こうすれば、簡易な手法により入力部材の小径側領域に圧縮力を作用させることができると共にボルトの張力を調節するだけで小径側領域に作用させる圧縮力を調節することができる。この場合、前記ボルト孔の雌ねじ部は、前記伝達部材を前記入力部材の小径側端部にスライドさせたときに狭圧力により前記入力部材に作用する力の作用点から該力の方向に直線を引いたときに該直線より大径側に形成されてなる、ものとすることもできる。伝達部材を入力部材の小径側端部にスライドさせたときに最も大きな狭圧力が作用するから、作用点から力の方向に引いた直線より入力部材の大径側にボルト孔の雌ねじ部を形成することにより、入力部材において最も大きな狭圧力が作用する部位の強度を有効に補強することができる。 In the power transmission device of the present invention in which a compressive force is applied to the small-diameter side region of the input member, the compressive force acting means is opened at the small-diameter end of the input member and has a female thread portion at the closed end. And a bolt having a male threaded portion formed at the tip thereof. The male threaded portion of the bolt is screwed into the female threaded portion of the bolt hole to apply tension to the bolt as a reaction force. It can also be a means for applying a compressive force to the small-diameter side region of the input member. If it carries out like this, a compressive force can be made to act on the small diameter side area | region of an input member with a simple method, and the compressive force made to act on a small diameter side area | region can be adjusted only by adjusting the tension | tensile_strength of a volt | bolt. In this case, the female thread portion of the bolt hole has a straight line in the direction of the force from the point of action of the force acting on the input member due to a narrow pressure when the transmission member is slid to the small diameter side end of the input member. It can also be formed on the larger diameter side than the straight line when pulled. When the transmission member is slid to the small-diameter side end of the input member, the largest narrow pressure is applied, so the female screw part of the bolt hole is formed on the large-diameter side of the input member from the straight line drawn in the direction of force from the point of action. By doing so, it is possible to effectively reinforce the strength of the portion where the largest narrow pressure acts on the input member.
本発明の一実施例としての動力伝達装置20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the power transmission device 20 as one Example of this invention. CVT30の変速の様子を示す説明図である。It is explanatory drawing which shows the mode of the transmission of CVT30. スライド機構62の構成の概略を示す構成図である。3 is a configuration diagram showing an outline of a configuration of a slide mechanism 62. FIG. 狭圧力調節機構50の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of a configuration of a narrow pressure adjusting mechanism 50. FIG. 狭圧力調節機構50を部分的に拡大した部分拡大図である。It is the elements on larger scale which expanded the narrow pressure adjustment mechanism 50 partially. CVT30の減速比を最大として大きなトルクをインプットシャフト32に入力したときのインプットコーン34とアウトプットコーン36とリング60の状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state of the input cone 34, the output cone 36, and the ring 60 when a big torque is input into the input shaft 32 by making the reduction ratio of CVT30 into the maximum.
 次に、本発明を実施するための形態を実施例を用いて説明する。 Next, modes for carrying out the present invention will be described using examples.
 図1は、本発明の一実施例としての動力伝達装置20の構成の概略を示す構成図である。実施例の動力伝達装置20は、車両に搭載された図示しないエンジンから図示しない発進装置(例えばトルクコンバータなど)を介して入力された動力を変速して図示しない左右の前輪に伝達可能なトランスアクスル装置として構成されており、図示するように、発
進装置の出力軸22に接続され発進装置からの動力を正転と逆転との切替を伴って出力する前後進切替機構24と、前後進切替機構24に接続されたインプットシャフト32とこのインプットシャフト32に平行に配置されたアウトプットシャフト38とを有しインプットシャフト32に入力された動力を無段階に変速してアウトプットシャフト38に出力する無段変速機としてのCVT30と、CVT30のアウトプットシャフト38に減速ギヤ26を介して連結されると共に左右の前輪に連結されたデファレンシャルギヤ28と、これらを収納するトランスアクスルハウジング21aとコンバータハウジング21bとリアケース21cとからなるケース21と、を備える。ケース21の内部には、前後進切替機構24とデファレンシャルギヤ28とが配置される部分とCVT30が配置される部分とを仕切る仕切プレート21dが設けられている。
FIG. 1 is a configuration diagram showing an outline of a configuration of a power transmission device 20 as an embodiment of the present invention. The power transmission device 20 of the embodiment is a transaxle that can shift power transmitted from an engine (not shown) mounted on a vehicle via a starting device (not shown) (for example, a torque converter) and transmit it to left and right front wheels (not shown). As shown in the figure, a forward / reverse switching mechanism 24 that is connected to the output shaft 22 of the starting device and outputs power from the starting device with switching between forward rotation and reverse rotation, and a forward / backward switching mechanism, as shown in the figure. A continuously variable transmission which has an input shaft 32 connected to 24 and an output shaft 38 arranged in parallel to the input shaft 32 and continuously outputs the power input to the input shaft 32 to the output shaft 38. When the CVT 30 is connected to the output shaft 38 of the CVT 30 via the reduction gear 26 It comprises a differential gear 28 connected to the left and right front wheels, a case 21 composed of a transaxle housing 21a and the converter housing 21b and the rear case 21c for housing them, a. Inside the case 21 is provided a partition plate 21d that partitions a portion where the forward / reverse switching mechanism 24 and the differential gear 28 are disposed from a portion where the CVT 30 is disposed.
 前後進切替機構24は、ダブルピニオンの遊星歯車機構とブレーキB1とクラッチC1とにより構成されている。ダブルピニオンの遊星歯車機構は、外歯歯車のサンギヤ24aと、このサンギヤ24aと同心円上に配置された内歯歯車のリングギヤ24bと、サンギヤ24aに噛合する複数の第1ピニオンギヤおよびこの第1ピニオンギヤに噛合すると共にリングギヤ24bに噛合する複数の第2ピニオンギヤを連結して自転かつ公転自在に保持するキャリア24cとを備えており、サンギヤ24aには出力軸22が、キャリア24cにはCVT30のインプットシャフト32が、各々連結されている。遊星歯車機構のリングギヤ24bは、ブレーキB1によりケース21に接続されており、ブレーキB1をオンオフすることにより、リングギヤ24bを自由に回転するものとしたり、その回転を禁止したりする。遊星歯車機構のサンギヤ24aとキャリア24cは、クラッチC1により接続されており、クラッチC1をオンオフすることにより、サンギヤ24aとキャリア24cとを連結したり切り離したりする。前後進切替機構24は、ブレーキB1をオフすると共にクラッチC1をオンすることにより出力軸22の回転をそのままCVT30のインプットシャフト32に伝達して車両を前進させたり、ブレーキB1をオンすると共にクラッチC1をオフすることにより出力軸22の回転を逆方向に変換してCVT30のインプットシャフト32に伝達して車両を後進させたりする。また、ブレーキB1をオフすると共にクラッチC1をオフすることにより出力軸22とCVT30のインプットシャフト32とを切り離すこともできる。なお、実施例では、前後進切替機構24をダブルピニオンの遊星歯車機構とブレーキB1とクラッチC1とにより構成するものとしたが、ダブルピニオンの遊星歯車機構に代えてシングルピニオンの遊星歯車機構により構成するものとしてもよいし、その他の構成とするものとしてもよい。 The forward / reverse switching mechanism 24 includes a double-pinion planetary gear mechanism, a brake B1, and a clutch C1. The planetary gear mechanism of the double pinion includes an external gear sun gear 24a, an internal gear ring gear 24b arranged concentrically with the sun gear 24a, a plurality of first pinion gears meshed with the sun gear 24a, and the first pinion gear. A plurality of second pinion gears that mesh with the ring gear 24b are connected to each other and a carrier 24c that rotates and revolves is held. The sun gear 24a has an output shaft 22, and the carrier 24c has an input shaft 32 of the CVT 30. Are connected to each other. The ring gear 24b of the planetary gear mechanism is connected to the case 21 by a brake B1, and the ring gear 24b can be freely rotated or prohibited from rotating by turning on and off the brake B1. The sun gear 24a and the carrier 24c of the planetary gear mechanism are connected by a clutch C1, and the sun gear 24a and the carrier 24c are connected or disconnected by turning on and off the clutch C1. The forward / reverse switching mechanism 24 turns off the brake B1 and turns on the clutch C1 to transmit the rotation of the output shaft 22 to the input shaft 32 of the CVT 30 as it is to advance the vehicle or turn on the brake B1 and turn on the clutch C1. Is turned off, the rotation of the output shaft 22 is converted in the reverse direction and transmitted to the input shaft 32 of the CVT 30 to reverse the vehicle. Further, the output shaft 22 and the input shaft 32 of the CVT 30 can be disconnected by turning off the brake B1 and turning off the clutch C1. In the embodiment, the forward / reverse switching mechanism 24 is constituted by a double-pinion planetary gear mechanism, a brake B1, and a clutch C1, but is constituted by a single-pinion planetary gear mechanism instead of the double-pinion planetary gear mechanism. It is good also as what is carried out and it is good also as what shall be set as another structure.
 CVT30は、インプットシャフト32が一体的に形成された円錐形状のインプットコーン34と、インプットコーン34と略同一の円錐形状に形成されてインプットコーン34と逆向きに並行に配置されてアウトプットシャフト38に連結されたアウトプットコーン36と、インプットコーン34に挿入されてインプットコーン34とアウトプットコーン36とにより挟まれるよう配置されたリング60と、リング60を回転自在に支持しリング60をスライド可能なスライド機構62(図3参照)と、インプットコーン34とアウトプットコーン36との間のリング60への狭圧力を調節する狭圧力調節機構50とを備え、スライド機構62によってリング60をスライドさせることによりインプットシャフト32とアウトプットシャフト38との間で動力を無段階に変速して伝達する。インプットコーン34の小径側端部には、インプットコーン34の内側には閉端部近傍(図中左側)にのみ雌ねじ部が形成されたボルト孔34aが形成されると共にボルト孔34aの開放端近傍にはボルト受け部34bが形成されており、ボルト35がボルト孔34aに嵌挿され、ボルト35とボルト孔34aとがボルト35の先端部の雄ねじ部とボルト孔34aの閉端部近傍の雌ねじ部とによってねじ結合している。このねじ結合によりボルト35には張力が作用し、その反力としてインプットコーン34の小径側には圧縮力が作用する。インプットコーン34の小径側に圧縮力を作用させる理由とボルト孔34aの雌ねじ部の位置については後述する。図2に、CVT30の変速の様子を示す。図示するように、リング60を図中手前側(図1中左側)にスライドさせることによりインプットコーン34の動力を比較的小さな減速比をもって変速してアウトプットコーン36に伝達し、リング60を図中奥側(図1中右側)にスライドさせることによりインプットコーン34の動力を比較的大きな減速比をもって変速してアウトプットコーン36に伝達する。 The CVT 30 has a conical input cone 34 integrally formed with an input shaft 32, a conical shape substantially the same as the input cone 34, and is disposed in parallel with the input cone 34 in the opposite direction to the output shaft 38. The connected output cone 36, the ring 60 inserted into the input cone 34 and disposed between the input cone 34 and the output cone 36, the ring 60 is rotatably supported, and the ring 60 is slidable. A slide mechanism 62 (see FIG. 3) and a narrow pressure adjusting mechanism 50 for adjusting a narrow pressure on the ring 60 between the input cone 34 and the output cone 36 are provided, and the ring 60 is slid by the slide mechanism 62. By the input shaft 32 and the output shaft Shifting to transmit power to steplessly between bets 38. At the small diameter side end of the input cone 34, a bolt hole 34a having a female thread portion formed only in the vicinity of the closed end (left side in the figure) is formed inside the input cone 34 and in the vicinity of the open end of the bolt hole 34a. A bolt receiving portion 34b is formed, and the bolt 35 is fitted into the bolt hole 34a. The bolt 35 and the bolt hole 34a are a male screw portion at the tip of the bolt 35 and a female screw near the closed end portion of the bolt hole 34a. Screwed together with the part. By this screw connection, tension is applied to the bolt 35, and as a reaction force, a compressive force is applied to the small diameter side of the input cone 34. The reason for applying a compressive force to the small diameter side of the input cone 34 and the position of the female thread portion of the bolt hole 34a will be described later. FIG. 2 shows how the CVT 30 shifts. As shown in the figure, the ring 60 is slid toward the front side (left side in FIG. 1) to shift the power of the input cone 34 with a relatively small reduction ratio and transmit it to the output cone 36. By sliding to the inner back side (right side in FIG. 1), the power of the input cone 34 is shifted with a relatively large reduction ratio and transmitted to the output cone 36.
 インプットコーン34およびインプットシャフト32は、図1中右端では仕切プレート21dに取り付けられスラスト力を受けることができないが比較的大きなラジアル力を受けることができる円筒ころ軸受けとして形成された軸受け41により回転自在に支持されると共に左端ではトランスアクスルハウジング21aに取り付けられスラスト力を受けることができる円錐ころ軸受けとして形成された軸受け42により回転自在に支持されている。一方、アウトプットコーン36は、図1中右端では仕切プレート21dに取り付けられ円筒ころ軸受けとして形成された軸受け45により回転自在に支持されると共に左端ではトランスアクスルハウジング21aに取り付けられ円筒ころ軸受けとして形成された軸受け46により回転自在に支持されている。また、アウトプットコーン36に連結されたアウトプットシャフト38の図1中右端ではコンバータハウジング21bに取り付けられ円錐ころ軸受けとして形成された軸受け49により回転自在に支持されている。 The input cone 34 and the input shaft 32 are rotatable by a bearing 41 formed as a cylindrical roller bearing that is attached to the partition plate 21d at the right end in FIG. 1 and cannot receive a thrust force but can receive a relatively large radial force. And at the left end is rotatably supported by a bearing 42 formed as a tapered roller bearing attached to the transaxle housing 21a and capable of receiving a thrust force. On the other hand, the output cone 36 at the right end in FIG. 1 is rotatably supported by a bearing 45 attached to the partition plate 21d and formed as a cylindrical roller bearing, and at the left end attached to the transaxle housing 21a and formed as a cylindrical roller bearing. The bearing 46 is rotatably supported. Further, at the right end in FIG. 1 of the output shaft 38 connected to the output cone 36, it is rotatably supported by a bearing 49 which is attached to the converter housing 21b and formed as a tapered roller bearing.
 仕切プレート21dには、インプットコーン34の軸受け41が配置された位置よりも内側(図1中左側)にオイルシール43が取り付けられると共にアウトプットコーン36の軸受け45が配置された位置よりも内側(図1中左側)にオイルシール47が取り付けられている。また、トランスアクスルハウジング21aには、インプットコーン34の軸受け42が配置された位置よりも内側(図1中右側)にオイルシール44が取り付けられると共にアウトプットコーン36の軸受け46が配置された位置の内側(図1中右側)にオイルシール48が取り付けられている。これにより、ケース21の内部空間を、トランスアクスルハウジング21aとリアカバー21cとオイルシール44,48とにより形成される空間X1と、トランスアクスルハウジング21aと仕切プレート21dとオイルシール43,44,47,48とにより形成される空間X2と、トランスアクスルハウジング21aとコンバータハウジング21bと仕切プレート21dとオイルシール43,47とにより形成される空間X3とに区画しており、空間X1と空間X2とには空間X1に配置された軸受け42,46や空間X3に配置された軸受け41,45,49や前後進切換機構24,デファレンシャルギヤ28などの機械部分を潤滑するための潤滑オイルが充填され、空間X2には空間X2に配置されたCVT30におけるトルクを伝達するためのトラクションオイルが充填されている。このトラクションオイルは、このCVT30がインプットコーン34およびアウトプットコーン36とリング60との間に形成される弾性流体潤滑状態の油膜の剪断力により動力を伝達する機構であることから、潤滑オイルに比して高い圧力粘度係数を有する特殊なオイルが用いられている。 The oil seal 43 is attached to the partition plate 21d on the inner side (left side in FIG. 1) where the bearing 41 of the input cone 34 is disposed, and on the inner side of the position where the bearing 45 of the output cone 36 is disposed ( An oil seal 47 is attached to the left side in FIG. In addition, an oil seal 44 is attached to the transaxle housing 21a on the inner side (right side in FIG. 1) of the position where the bearing 42 of the input cone 34 is disposed, and at the position where the bearing 46 of the output cone 36 is disposed. An oil seal 48 is attached on the inner side (right side in FIG. 1). Thus, the internal space of the case 21 is divided into the space X1 formed by the transaxle housing 21a, the rear cover 21c, and the oil seals 44, 48, the transaxle housing 21a, the partition plate 21d, and the oil seals 43, 44, 47, 48. And a space X3 formed by the transaxle housing 21a, the converter housing 21b, the partition plate 21d, and the oil seals 43 and 47, and the space X1 and the space X2 include a space X3. Lubricating oil for lubricating mechanical parts such as the bearings 42 and 46 arranged in X1 and the bearings 41, 45 and 49 arranged in the space X3, the forward / reverse switching mechanism 24 and the differential gear 28 is filled, and the space X2 is filled. Is the torque in CVT30 located in space X2. Traction oil to reach is filled. This traction oil is a mechanism in which the CVT 30 is a mechanism for transmitting power by the shear force of an oil film in an elastic fluid lubrication state formed between the input cone 34 and the output cone 36 and the ring 60. Thus, special oils having a high pressure viscosity coefficient are used.
 スライド機構62は、図3に示すように、リング60のスライド方向に略平行に延在してトランスアクスルハウジング21aによって回転自在に支持される送りネジとしてのガイドレール64と、ガイドレール64に嵌合する嵌合部を有しガイドレール64の回転時には回転せずにガイドレール64に沿って移動可能なスライダ66と、ガイドレール64の延在方向に揺動可能にスライダ66に取り付けられると共にU字形状のU字部によってリング60を側面から回転自在に保持する保持部68と、ガイドレール64の一端に回転軸が接続されてガイドレール64を回転させるモータ70とを備える。このスライド機構62では、モータ70の回転駆動によってガイドレール64を回転させてスライダ66をガイドレール64に沿って移動させることにより、リング60を図中手前側(図1中左側)または図中奥側(図1中右側)にスライドさせる。 As shown in FIG. 3, the slide mechanism 62 extends substantially parallel to the sliding direction of the ring 60 and is fitted to the guide rail 64 as a feed screw that is rotatably supported by the transaxle housing 21a. A slider 66 that has a fitting portion to be fitted and can move along the guide rail 64 without rotating when the guide rail 64 rotates, and is attached to the slider 66 so as to be swingable in the extending direction of the guide rail 64 and U A holding portion 68 that rotatably holds the ring 60 from the side surface by a U-shaped portion having a letter shape, and a motor 70 that rotates the guide rail 64 with a rotating shaft connected to one end of the guide rail 64. In this slide mechanism 62, the guide rail 64 is rotated by the rotational drive of the motor 70, and the slider 66 is moved along the guide rail 64, whereby the ring 60 is moved to the front side (left side in FIG. 1) or the rear side in the figure. Slide to the side (right side in FIG. 1).
 狭圧力調節機構50は、図1に示すように、アウトプットコーン36に内蔵されており、機械的な機構によりインプットコーン34とアウトプットコーン36とによりリング60に作用する狭圧力を調節する。図4は狭圧力調節機構50の構成の概略を示す構成図であり、図5は狭圧力調節機構50を部分的に拡大した部分拡大図である。狭圧力調節機構50は、図4および図5に示すように、アウトプットシャフト38の先端部に形成されたスプラインにスプライン嵌合されアウトプットシャフト38に対して軸方向に移動不能に固定された固定部材52と、アウトプットコーン36の内周面に形成されたスプラインにスプライン嵌合されアウトプットシャフト38に対してアウトプットコーン36と共に軸方向に移動可能に形成された移動部材54と、固定部材52に形成された複数の半球状のボール受け52aと移動部材54に形成された複数の半球状のボール受け54aとの間に配置された複数のボール56と、固定部材52と移動部材54との間に設けられ固定部材52をバネ受けとして移動部材54を軸方向に付勢するバネ58と、アウトプットコーン36に取り付けられアウトプットコーン36をアウトプットシャフト38に対して軸方向に移動可能に支持する支持部材59とを備える。狭圧力調節機構50は、図5(a)に示すように、アウトプットシャフト38にトルクが作用していないときには、固定部材52のボール受け52aと移動部材54のボール受け54aとは丁度向かい合う位置にあり、移動部材54はボール56からの軸方向の力は受けない。このときには、バネ58により移動部材54が軸方向に押される付勢力による狭圧力がリング60に作用する。一方、アウトプットシャフト38にトルクが作用すると、図5(b)に示すように、固定部材52のボール受け52aと移動部材54のボール受け54aとの間にねじれが生じ、両ボール受け52a,54aがボール56を乗り越えようとするためにボール56に軸方向と回転方向の成分を有する力が作用し、その軸方向の分力に対する反力が移動部材54に作用する。このときには、アウトプットシャフト38に作用するトルクに応じてボール56に作用する力の軸方向の成分の反力とバネ58により移動部材54が軸方向に押される付勢力との和の力による狭圧力がリング60に作用する。前述したように、移動部材54にはアウトプットコーン36が取り付けられているから、移動部材54の移動に伴ってアウトプットコーン36も押し出されることになる。このとき、アウトプットコーン36を押し出す力はボール56に作用する力の軸方向の成分が大きいほど大きくなり、ボール56に作用する力はアウトプットシャフト38に作用するトルクが大きいほど大きくなるから、アウトプットシャフト38に作用するトルクに応じてリング60の狭圧力が調節される。したがって、CVT30は、インプットシャフト32に入力されたトルクに対して減速比が大きいほどアウトプットシャフト38に作用するトルクが大きくなるから、減速比が大きいほどリング60に作用する狭圧力は大きくなるように調節される。 As shown in FIG. 1, the narrow pressure adjusting mechanism 50 is built in the output cone 36, and adjusts the narrow pressure acting on the ring 60 by the input cone 34 and the output cone 36 by a mechanical mechanism. FIG. 4 is a block diagram showing an outline of the configuration of the narrow pressure adjusting mechanism 50, and FIG. 5 is a partially enlarged view of the narrow pressure adjusting mechanism 50 partially enlarged. As shown in FIGS. 4 and 5, the narrow pressure adjusting mechanism 50 is a fixed member that is spline-fitted to a spline formed at the tip of the output shaft 38 and fixed to the output shaft 38 so as not to move in the axial direction. 52, a moving member 54 that is spline-fitted to a spline formed on the inner peripheral surface of the output cone 36 and is formed so as to be movable in the axial direction together with the output cone 36, and a fixed member 52. Between the plurality of hemispherical ball receivers 52 a formed and the plurality of hemispherical ball receivers 54 a formed on the moving member 54, and between the fixed member 52 and the moving member 54 And a spring 58 for urging the moving member 54 in the axial direction with the fixing member 52 as a spring receiver, and attached to the output cone 36 And a support member 59 that movably supported in the axial direction with respect to the output shaft 38 of the output cone 36 is. As shown in FIG. 5A, when the torque is not applied to the output shaft 38, the narrow pressure adjusting mechanism 50 is positioned so that the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54 are just opposite each other. The moving member 54 does not receive the axial force from the ball 56. At this time, a narrow pressure is applied to the ring 60 due to the urging force by which the moving member 54 is pushed in the axial direction by the spring 58. On the other hand, when torque acts on the output shaft 38, as shown in FIG. 5 (b), a twist occurs between the ball receiver 52a of the fixed member 52 and the ball receiver 54a of the moving member 54, and both ball receivers 52a, 54a. In order to get over the ball 56, a force having components in the axial direction and the rotational direction acts on the ball 56, and a reaction force against the component force in the axial direction acts on the moving member 54. At this time, a narrow pressure due to the sum of the reaction force of the axial component of the force acting on the ball 56 in accordance with the torque acting on the output shaft 38 and the urging force pushing the moving member 54 axially by the spring 58. Acts on the ring 60. As described above, since the output cone 36 is attached to the moving member 54, the output cone 36 is pushed out as the moving member 54 moves. At this time, the force pushing the output cone 36 increases as the axial component of the force acting on the ball 56 increases, and the force acting on the ball 56 increases as the torque acting on the output shaft 38 increases. The narrow pressure of the ring 60 is adjusted according to the torque acting on the shaft 38. Therefore, the CVT 30 increases the torque acting on the output shaft 38 as the speed reduction ratio with respect to the torque input to the input shaft 32 increases, so that the narrow pressure acting on the ring 60 increases as the speed reduction ratio increases. Adjusted.
 次に、インプットコーン34の小径側に圧縮力を作用させる理由とボルト孔34aの雌ねじ部の位置について説明する。図6は、CVT30の減速比を最大として大きなトルクをインプットシャフト32に入力したときのインプットコーン34とアウトプットコーン36とリング60の状態を模式的に示す説明図である。図中、実線は実施例のインプットコーン34の変形後の外形を示し、破線はインプットコーン34の変形前の外形を示し、一点鎖線はボルト35によってインプットコーン34の小径側に圧縮力を作用させていないときの変形後の外形を示し、二点鎖線はリング60を介してインプットコーン34に作用する力の作用点を始点とするこの力の方向の直線を示す。図示するように、ボルト孔34aの雌ねじ部は、二点鎖線よりインプットコーン34の大径側(図中左側)に形成されている。これは、インプットコーン34において最も大きな力が作用する部位であって最も強度が不足する部位の強度を有効に補強するためである。CVT30の減速比を最大にして大きなトルクをインプットシャフト32に作用させたときにアウトプットシャフト38に作用するトルクが大きくなることから、インプットコーン34にも最も大きな力が作用する。この力の作用点はインプットコーン34の小径側端部であり、この小径側端部は最も小径であることから、最も強度が不足する部位となる。したがって、この作用点から力の方向に引いた直線よりインプットコーン34の大径側にボルト孔34aの雌ねじ部を形成することにより、インプットコーン34において最も大きな力が作用する部位であって最も強度が不足する部位の強度を有効に補強するのである。上述したように、インプットコーン34には大きな力が作用することにより、インプットコーン34に変形が生じる。この変形の程度はインプットコーン34の強度によって異なるものとなるから、実施例のように、ボルト35によってインプットコーン34の小径側に圧縮力を作用させてインプットコーン34の強度を高くしておくことにより、ボルト35によってインプットコーン34の小径側に圧縮力を作用させていない場合に比して、変形の程度を小さくすることができる。また、インプットコーン34の最も強度が小さい小径側に圧縮力を作用させるから、インプットコーン34において最も強度が不足する部位であって最も強度の補強が必要な部位の強度を補強することができる。 Next, the reason for applying a compressive force to the small diameter side of the input cone 34 and the position of the female thread portion of the bolt hole 34a will be described. FIG. 6 is an explanatory diagram schematically showing the states of the input cone 34, the output cone 36, and the ring 60 when a large torque is input to the input shaft 32 with the reduction ratio of the CVT 30 as the maximum. In the figure, the solid line indicates the outer shape of the input cone 34 according to the embodiment after deformation, the broken line indicates the outer shape of the input cone 34 before deformation, and the alternate long and short dash line applies a compressive force to the small diameter side of the input cone 34 by the bolt 35. The two-dot chain line shows a straight line in the direction of this force starting from the point of action of the force acting on the input cone 34 via the ring 60. As shown in the figure, the female thread portion of the bolt hole 34a is formed on the larger diameter side (left side in the figure) of the input cone 34 than the two-dot chain line. This is to effectively reinforce the strength of the portion of the input cone 34 where the greatest force acts and the strength is insufficient. Since the torque acting on the output shaft 38 increases when a large torque is applied to the input shaft 32 with the reduction ratio of the CVT 30 being maximized, the largest force is also applied to the input cone 34. The point of action of this force is the small diameter side end of the input cone 34, and this small diameter side end is the smallest diameter, so it is the part with the least strength. Therefore, by forming the female threaded portion of the bolt hole 34a on the large diameter side of the input cone 34 from the straight line drawn in the direction of force from this point of action, the portion of the input cone 34 where the greatest force acts and the highest strength. This effectively reinforces the strength of the portion where the amount of deficiency is insufficient. As described above, the input cone 34 is deformed by a large force acting on the input cone 34. Since the degree of deformation differs depending on the strength of the input cone 34, the strength of the input cone 34 is increased by applying a compressive force to the small diameter side of the input cone 34 with the bolt 35 as in the embodiment. Thus, the degree of deformation can be reduced as compared with the case where the compression force is not applied to the small diameter side of the input cone 34 by the bolt 35. Further, since the compressive force is applied to the small diameter side of the input cone 34 having the smallest strength, it is possible to reinforce the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement.
 以上説明した実施例の動力伝達装置20によれば、インプットコーン34に閉端部に雌ねじ部を有するボルト孔34aとボルト受け部34bとを形成すると共にボルト35の雄ねじ部をボルト孔34aの雌ねじ部にねじ結合させることによってインプットコーン34の小径側に圧縮力を作用させることにより、インプットコーン34の強度を高くし、ボルト35によってインプットコーン34の小径側に圧縮力を作用させていない場合に比して、狭圧力調節機構50による狭圧力によって生じるインプットコーン34の変形の程度を小さくすることができる。しかも、ボルト孔34aとボルト受け部34bとボルト35だけでインプットコーン34の小径側に圧縮力を作用させるから、簡易な手法によりインプットコーン34の小径側に圧縮力を作用させることができる。また、インプットコーン34の最も強度が小さい小径側に圧縮力を作用させるから、インプットコーン34において最も強度が不足する部位であって最も強度の補強が必要な部位の強度を補強することができる。さらに、CVT30を最大減速比としたときにインプットコーン34にリング60を介して作用する力の作用点である小径側端部から力の方向に直線を引いたときにこの直線よりインプットコーン34の大径側にボルト孔34aの雌ねじ部を形成することにより、インプットコーン34において最も強度が不足する部位であって最も強度の補強が必要な部位の強度を有効に補強することができる。 According to the power transmission device 20 of the embodiment described above, the bolt hole 34a and the bolt receiving portion 34b having the female screw portion at the closed end portion are formed in the input cone 34, and the male screw portion of the bolt 35 is replaced with the female screw of the bolt hole 34a. When the compression force is applied to the small diameter side of the input cone 34 by screwing to the portion, the strength of the input cone 34 is increased, and the compression force is not applied to the small diameter side of the input cone 34 by the bolt 35. In comparison, the degree of deformation of the input cone 34 caused by the narrow pressure by the narrow pressure adjusting mechanism 50 can be reduced. Moreover, since the compression force is applied to the small diameter side of the input cone 34 only by the bolt hole 34a, the bolt receiving portion 34b, and the bolt 35, the compression force can be applied to the small diameter side of the input cone 34 by a simple method. Further, since the compressive force is applied to the small diameter side of the input cone 34 having the smallest strength, it is possible to reinforce the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement. Further, when a straight line is drawn in the direction of the force from the small-diameter end that is the point of action of the force acting on the input cone 34 via the ring 60 when the CVT 30 is set to the maximum reduction ratio, the input cone 34 By forming the female thread portion of the bolt hole 34a on the large diameter side, the strength of the portion of the input cone 34 where the strength is insufficient and the portion requiring the strongest reinforcement can be effectively reinforced.
 実施例の動力伝達装置20では、インプットコーン34の小径側に圧縮力を作用させるものとしたが、インプットコーン34の全体に圧縮力を作用させるものとしてもよい。この場合、ボルト孔34aの雌ねじ部をインプットコーン34の大径側端部に形成するものとしてもよい。 In the power transmission device 20 of the embodiment, the compressive force is applied to the small diameter side of the input cone 34. However, the compressive force may be applied to the entire input cone 34. In this case, the internal thread portion of the bolt hole 34 a may be formed at the large diameter side end portion of the input cone 34.
 実施例の動力伝達装置20では、ボルト35によってインプットコーン34の小径側に圧縮力を作用させるものとしたが、ボルト35以外の手法、例えば、引っ張り力を作用させるバネによりインプットコーンに圧縮力を作用させるものとしたりするなど、如何なる手法によってインプットコーン34に軸方向の圧縮力を作用させるものとしてもよい。 In the power transmission device 20 of the embodiment, the compression force is applied to the small diameter side of the input cone 34 by the bolt 35. However, the compression force is applied to the input cone by a method other than the bolt 35, for example, a spring that applies a tensile force. It is also possible to apply an axial compressive force to the input cone 34 by any method, such as an action.
 実施例の動力伝達装置20では、CVT30を最大減速比としたときにインプットコーン34にリング60を介して作用する力の作用点である小径側端部から力の方向に直線を引いたときにこの直線よりインプットコーン34の大径側にボルト孔34aの雌ねじ部を形成するものとしたが、この直線より若干インプットコーン34の小径側にボルト孔34aの雌ねじ部を形成するものとしても構わない。 In the power transmission device 20 of the embodiment, when a straight line is drawn in the direction of the force from the small-diameter end that is the point of action of the force acting on the input cone 34 via the ring 60 when the CVT 30 is the maximum reduction ratio. Although the female screw portion of the bolt hole 34a is formed on the larger diameter side of the input cone 34 from this straight line, the female screw portion of the bolt hole 34a may be formed slightly on the smaller diameter side of the input cone 34 from this straight line. .
 実施例の動力伝達装置20では、狭圧力調節機構50としては、アウトプットシャフト38に取り付けられた固定部材52と、アウトプットコーン36に取り付けられた移動部材54と、固定部材52に形成された複数の半球状のボール受け52aと移動部材54に形成された複数の半球状のボール受け54aとの間に配置された複数のボール56とにより構成するものとしたが、アウトプットシャフト38に作用するトルクを軸方向の力に変換してアウトプットコーン36に作用させることができるものであれば、如何なる機構により構成するものとしても構わない。 In the power transmission device 20 of the embodiment, the narrow pressure adjusting mechanism 50 includes a fixing member 52 attached to the output shaft 38, a moving member 54 attached to the output cone 36, and a plurality of members formed on the fixing member 52. The hemispherical ball receiver 52a and the plurality of balls 56 arranged between the plurality of hemispherical ball receivers 54a formed on the moving member 54, the torque acting on the output shaft 38 Any mechanism can be used as long as it can be converted into an axial force and applied to the output cone 36.
 実施例の動力伝達装置20では、スライド機構62としては、トランスアクスルハウジング21aに回転自在に取り付けられたガイドレール64と、ガイドレール64の回転時に回転せずにガイドレール64に沿ってスライド可能なスライダ66と、スライダ66に取り付けられると共にリング60を回転自在に保持する保持部68と、ガイドレール64を回転させるモータ70とにより構成するものとしたが、リング60をスライドさせることにより減速比を変更可能なものであれば、如何なる機構により構成するものとしてもよい。 In the power transmission device 20 of the embodiment, the slide mechanism 62 includes a guide rail 64 that is rotatably attached to the transaxle housing 21a, and can slide along the guide rail 64 without rotating when the guide rail 64 rotates. The slider 66, the holding portion 68 that is attached to the slider 66 and rotatably holds the ring 60, and the motor 70 that rotates the guide rail 64 are configured. However, the reduction ratio can be reduced by sliding the ring 60. Any mechanism can be used as long as it can be changed.
 実施例の動力伝達装置20では、インプットシャフト32とインプットコーン34とを一体的に形成するものとしたが、別体として形成するものとしてもよい。 In the power transmission device 20 of the embodiment, the input shaft 32 and the input cone 34 are integrally formed, but may be formed separately.
 実施例の動力伝達装置20では、動力源としてのエンジンからの動力を変速して左右の車輪に伝達するものとしたが、動力源としては、エンジンに代えてまたは加えてモータを用いるものとしてもよい。なお、動力源としてエンジンに代えてモータを用いる場合、動力伝達装置は、前後進切替機構24を備えないものとしてもよい。 In the power transmission device 20 of the embodiment, the power from the engine as the power source is shifted and transmitted to the left and right wheels. However, as the power source, a motor may be used instead of or in addition to the engine. Good. When a motor is used as the power source instead of the engine, the power transmission device may not include the forward / reverse switching mechanism 24.
 実施例の動力伝達装置20では、自動車に搭載されるものとしたが、自動車以外の移動体に搭載されるものとしてもよいし、建設設備などの移動しない設備に組み込まれるものとしてもよい。 In the power transmission device 20 of the embodiment, the power transmission device 20 is mounted on a vehicle. However, the power transmission device 20 may be mounted on a moving body other than the vehicle, or may be mounted on a non-moving facility such as a construction facility.
 実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、CVT30が「無段変速機」に相当し、インプットコーン34が「入力部材」に相当し、アウトプットコーン36が「出力部材」に相当し、リング60が「伝達部材」に相当し、スライド機構62が「スライド手段」に相当し、狭圧力調節機構50が「狭圧力調節手段」に相当し、ボルト孔34aとボルト受け部34bとボルト35とが「圧縮力作用手段」に相当する。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the Summary of Invention will be described. In the embodiment, the CVT 30 corresponds to a “continuously variable transmission”, the input cone 34 corresponds to an “input member”, the output cone 36 corresponds to an “output member”, and the ring 60 corresponds to a “transmission member”. The sliding mechanism 62 corresponds to “sliding means”, the narrow pressure adjusting mechanism 50 corresponds to “narrow pressure adjusting means”, and the bolt hole 34a, the bolt receiving portion 34b, and the bolt 35 become “compressing force acting means”. Equivalent to.
 なお、実施例の主要な要素と発明の概要の欄に記載した発明の主要な要素との対応関係は、実施例が発明の概要の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、発明の概要の欄に記載した発明の要素を限定するものではない。即ち、発明の概要の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は発明の概要の欄に記載した発明の具体的な一例に過ぎないものである。 The correspondence between the main elements of the embodiment and the main elements of the invention described in the summary section of the invention is a specific form of the embodiment for carrying out the invention described in the summary section of the invention. Since this is an example for explanation, the elements of the invention described in the summary section of the invention are not limited. That is, the interpretation of the invention described in the Summary of Invention column should be made based on the description in that column, and the examples are only specific examples of the invention described in the Summary of Invention column. It is.
 以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.
 本発明は、動力伝達装置の製造産業などに利用可能である。 The present invention can be used in the power transmission device manufacturing industry.

Claims (4)

  1.  入力軸と該入力軸に平行に配置された出力軸とを有し、該入力軸に入力された動力を無段階に変速して該出力軸に出力する無段変速機を備える動力伝達装置であって、
     円錐形状に形成され、前記入力軸に接続された入力部材と、
     円錐形状に形成され、前記入力部材とは逆向きに並行に配置されて前記出力軸に接続された出力部材と、
     前記入力部材と前記出力部材とに狭圧され、該入力部材と該出力部材との間で動力の伝達を行なう環状の伝達部材と、
     前記伝達部材をスライドさせることにより変速比を変更可能なスライド手段と、
     前記出力軸に作用するトルクである出力トルクを前記出力軸の方向のうち前記入力部材の大径側方向の力に変換して前記出力部材に作用させることにより、該出力トルクが大きいほど大きくなる傾向に前記伝達部材に作用する狭圧力を調節する狭圧力調節手段と、
     前記入力部材の少なくとも一部に軸方向の圧縮力を作用させる圧縮力作用手段と、
     を備える動力伝達装置。
    A power transmission device having an input shaft and an output shaft arranged in parallel to the input shaft, and comprising a continuously variable transmission that continuously shifts the power input to the input shaft and outputs the power to the output shaft. There,
    An input member formed in a conical shape and connected to the input shaft;
    An output member formed in a conical shape and arranged in parallel in the opposite direction to the input member and connected to the output shaft;
    An annular transmission member that is constricted by the input member and the output member, and transmits power between the input member and the output member;
    Slide means capable of changing a gear ratio by sliding the transmission member;
    By converting the output torque, which is the torque acting on the output shaft, to the force on the large diameter side of the input member in the direction of the output shaft and acting on the output member, the larger the output torque is, the larger the output torque is. Narrow pressure adjusting means for adjusting the narrow pressure acting on the transmission member in a tendency;
    A compressive force applying means for applying an axial compressive force to at least a part of the input member;
    A power transmission device comprising:
  2.  請求項1記載の動力伝達装置であって、
     前記圧縮力作用手段は、前記入力部材の小径側端部を含む小径側領域で軸方向の圧縮力を作用させる手段である、
     動力伝達装置。
    The power transmission device according to claim 1,
    The compressive force applying means is means for applying an axial compressive force in a small diameter side region including a small diameter side end of the input member.
    Power transmission device.
  3.  請求項2記載の動力伝達装置であって、
     前記圧縮力作用手段は、前記入力部材の小径側端部に開口され閉端部に雌ねじ部が形成されたボルト孔と、先端部に雄ねじ部が形成されたボルトとを有し、前記ボルト孔の雌ねじ部に前記ボルトの雄ねじ部を螺合させて前記ボルトに張力を作用させることによって反力としての圧縮力を前記入力部材の小径側領域に作用させる手段である、
     動力伝達装置。
    The power transmission device according to claim 2,
    The compressive force acting means has a bolt hole that is opened at a small diameter side end portion of the input member and has a female screw portion formed at a closed end portion thereof, and a bolt that has a male screw portion formed at a tip portion thereof, and the bolt hole The male screw part of the bolt is screwed into the female screw part and tension is applied to the bolt to apply a compressive force as a reaction force to the small-diameter side region of the input member.
    Power transmission device.
  4.  請求項3記載の動力伝達装置であって、
     前記ボルト孔の雌ねじ部は、前記伝達部材を前記入力部材の小径側端部にスライドさせたときに狭圧力により前記入力部材に作用する力の作用点から該力の方向に直線を引いたときに該直線より大径側に形成されてなる、
     動力伝達装置。
    The power transmission device according to claim 3,
    When the transmission member is slid to the small-diameter side end of the input member, the female screw portion of the bolt hole draws a straight line in the direction of the force from the point of action of the force acting on the input member due to narrow pressure Formed on the larger diameter side than the straight line,
    Power transmission device.
PCT/JP2011/054096 2010-03-26 2011-02-24 Power transmission device WO2011118324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-071507 2010-03-26
JP2010071507A JP2011202754A (en) 2010-03-26 2010-03-26 Power transmission device

Publications (1)

Publication Number Publication Date
WO2011118324A1 true WO2011118324A1 (en) 2011-09-29

Family

ID=44672896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054096 WO2011118324A1 (en) 2010-03-26 2011-02-24 Power transmission device

Country Status (2)

Country Link
JP (1) JP2011202754A (en)
WO (1) WO2011118324A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068012A2 (en) * 2007-11-27 2009-06-04 Ulrich Rohs Bevel friction ring gearing and method for mounting or producing a bevel friction ring gearing
JP2009243559A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Power transmission device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068012A2 (en) * 2007-11-27 2009-06-04 Ulrich Rohs Bevel friction ring gearing and method for mounting or producing a bevel friction ring gearing
JP2009243559A (en) * 2008-03-31 2009-10-22 Aisin Aw Co Ltd Power transmission device

Also Published As

Publication number Publication date
JP2011202754A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5012621B2 (en) Power transmission device
US6719659B2 (en) Continuously variable vehicle transmission
US6099431A (en) Method for operating a traction drive automatic transmission for automotive vehicles
EP3004686B1 (en) 3-mode front wheel drive and rear wheel drive continuously variable planetary transmission
US8123647B2 (en) Dual clutch multi-speed transaxle
WO2006103294A1 (en) Continuously variable transmission
WO2016094254A1 (en) 3-mode front wheel drive and rear wheel drive continuously variable planetary transmission
US6517461B2 (en) Infinitely variable transmission
WO2011033721A1 (en) Drive device
CN107076272B (en) Combined multi-stage transmission
US20200370623A1 (en) Planetary geared reducer with dual reduction ratio
WO2016178913A1 (en) Power path with feedthrough planetary for concentric/coaxial applications
US9464696B2 (en) Continuous variable transmission system and use thereof
WO2011118324A1 (en) Power transmission device
US20110070996A1 (en) Conical friction wheel type continuously variable transmission device
DE102012023150A1 (en) Infinitely-variable gear system for e.g. bicycles, has clutch axially supported in transmission housing, large toothed wheel small gear driving spur gear, and pinion large gear driving chain drive, which is arranged outside housing
US10088021B2 (en) Continuously variable transmission
CN107387702B (en) Multi-mode continuously variable transmission
WO2011118528A1 (en) Power transfer system
KR20130110032A (en) Continuously variable transmission
CA2545509A1 (en) An improved continuously variable transmission device
JP2016102535A (en) Friction reduction gear
US9625019B2 (en) Infinitely variable transmission
JP4924511B2 (en) Power transmission device
WO2011118529A1 (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759132

Country of ref document: EP

Kind code of ref document: A1