WO2011118283A1 - Solid-liquid separation method - Google Patents

Solid-liquid separation method Download PDF

Info

Publication number
WO2011118283A1
WO2011118283A1 PCT/JP2011/052933 JP2011052933W WO2011118283A1 WO 2011118283 A1 WO2011118283 A1 WO 2011118283A1 JP 2011052933 W JP2011052933 W JP 2011052933W WO 2011118283 A1 WO2011118283 A1 WO 2011118283A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
pressure
filter cloth
solid
filter
Prior art date
Application number
PCT/JP2011/052933
Other languages
French (fr)
Japanese (ja)
Inventor
正 國谷
Original Assignee
メタウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メタウォーター株式会社 filed Critical メタウォーター株式会社
Priority to KR1020127027945A priority Critical patent/KR101435308B1/en
Priority to JP2012506880A priority patent/JP5636040B2/en
Priority to CN201180007960.5A priority patent/CN102741174B/en
Publication of WO2011118283A1 publication Critical patent/WO2011118283A1/en
Priority to HK13101043.0A priority patent/HK1173717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type

Definitions

  • the present invention relates to a solid-liquid separation method, and more specifically, it is possible to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more using a single solid-liquid separator.
  • the present invention relates to a simple solid-liquid separation method.
  • water for drinking is produced by removing solids from the raw water taken using a method such as coagulation sedimentation. At this time, the solid content in the raw water is discharged as sludge having a solid content concentration of about 0.1 to 1.0% by mass.
  • the sludge having a solid content concentration of about 0.1% by mass is concentrated to about 1 to 2% by mass by natural sedimentation and the like, and then the solid content concentration is about 50% by mass using a filtration device and a dehydrator.
  • the high-concentration sludge obtained was discarded or reused.
  • the sludge concentrated to a solid content concentration of about 1 to 2% by mass is concentrated to a solid content concentration of about 3 to 5% by mass using a siphon type filtration concentration device or the like (see, for example, Patent Document 1).
  • the obtained concentrated sludge was concentrated to a solid content concentration of 40% by mass or more by a pressure dehydrator or the like (for example, see Patent Document 2).
  • the pressure dehydration apparatus and the like deteriorates as the raw water concentration decreases.
  • the filtration rate (the amount of dry solids per unit time) is when the raw water concentration is 5%. Is about one third of the filtration rate.
  • the performance becomes extremely low, making the treatment difficult.
  • a drying method such as incineration
  • the energy required for combustion increases, leading to an increase in cost and an increase in the amount of exhaust gas. Therefore, it is common to perform dehydration and drying after adjusting to an appropriate concentration using a filtration concentrator or the like. That is, conventionally, it was not realistic to treat 1% or less of sludge with a pressure dehydrator.
  • the filter cloth used in the filtration device has a large opening formed by a monofilament,
  • the filter cloth used in the dehydrator had a small opening diameter formed by multifilaments.
  • a high pressure is applied when dewatering sludge with a dehydrator using a filter cloth formed of monofilament made of nylon or the like.
  • a filter cloth formed from a multifilament made of polyester or the like has been used from the viewpoints of improvement in solid content capture efficiency, improvement in strength, improvement in durability, and the like.
  • the filtration device is a device that performs solid-liquid separation at a pressure of 1.0 MPa or less using a filter cloth
  • the dehydration device is a device that performs solid-liquid separation at a pressure exceeding 1.0 MPa using a filter cloth. It is.
  • the types of filter cloth that can be used differ between the filtration device and the dehydration device. If the filter cloth used in the filtration device is used in the dehydration device, the filter cloth is formed of monofilament. Therefore, in the dehydration device that performs dehydration at a high pressure, the solid content is removed when the dehydration is performed. The problem of passing through arises. Also, if the filter cloth used in the dehydrator is used in the filter apparatus, the filter cloth is formed of multifilaments, so the filter cloth is likely to be clogged during filtration, and further adheres to the filter cloth. There arises a problem that the concentrated sludge is difficult to peel off.
  • the present invention has been made in view of the above-described problems, and uses a single solid-liquid separator to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
  • An object of the present invention is to provide a solid-liquid separation method capable of achieving the above.
  • the present invention provides the following solid-liquid separation method.
  • the sludge While reducing the pressure on the secondary side space on one side of the filter cloth, the sludge is supplied to the primary side space on the other side of the filter cloth, Filtration of sludge, suction filtration step of attaching the concentrated sludge to the primary surface, which is the other surface of the filter cloth, and decompressing the secondary space, and supplying the sludge to the primary space And pressurizing and filtering the sludge with the filter cloth, and further applying the concentrated sludge on the concentrated sludge attached to the primary side surface of the filter cloth, and the filter cloth
  • a solid-liquid separation method comprising: a pressing step for compressing concentrated sludge adhering to a primary side surface to obtain compressed sludge; and a discharging step for peeling the pressed sludge from a filter cloth.
  • the pressure for pressurizing sludge is intermittently increased from 0.2 to 0.4 MPa (gauge pressure) to 0.6 to 1.5 MPa (gauge pressure) [ [1]
  • the solid-liquid separation method according to any one of [3].
  • the solid content concentration of the sludge supplied to the primary side space is 0.7 to 2.0% by mass, and the solid content concentration of the compressed sludge obtained in the pressing step is 40 to 45% by mass.
  • the solid-liquid separation method according to any one of [1] to [5].
  • the concentrated sludge in the suction filtration step, is attached to the primary side surface of the filter cloth, and in the pressure filtration step, the above-mentioned “attached to the primary side surface of the filter cloth”.
  • Concentrated sludge is further deposited on top of the ⁇ concentrated sludge '', and pressure is applied in stages to form a new adhesion layer, while forming an old adhesion layer (adhesion layer generated in the suction filtration process or the previous pressurization).
  • one solid-liquid separator It is possible to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
  • FIG. 1 It is a schematic diagram which shows the state which the sludge has adhered to the primary side surface of the filter cloth in the suction filtration process while showing the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention.
  • FIG. 1 is a schematic diagram showing a cross section of a filter used in Example 1.
  • FIG. 1 is a schematic diagram showing a cross section of a filter used in Example 1.
  • sludge is supplied to the primary side space that is the space on the other side of the filter cloth while the secondary side space that is the space on the one side of the filter cloth is decompressed. Then, the sludge is filtered by the filter cloth, and the concentrated sludge (initial concentrated sludge) is attached to the primary side surface which is the “other surface” of the filter cloth.
  • Concentrated sludge (initial concentrated sludge) adhered to the primary side surface of the filter cloth by reducing the pressure of the side space, supplying sludge to the primary side space and applying pressure, filtering the sludge with the filter cloth ) Pressure filtration step to further attach concentrated sludge (second layer concentrated sludge) from above, and “pressing concentrated sludge adhering to the primary side surface of the filter cloth to obtain compressed sludge” And a discharge step of “peeling the compressed sludge from the filter cloth”.
  • “Supplying sludge to the primary side space and pressurizing” means “suppressing sludge while pressurizing” or “pressurizing sludge after supplying sludge” to the primary side space. Means. Moreover, in the case of “supplying sludge while pressurizing” and “pressing sludge after supplying sludge”, the pressure in the primary side is pressurized, and the filtrate passes through the filter cloth by the pressure. It will be pushed out to the secondary space.
  • the concentrated sludge is attached to the primary side surface of the filter cloth in the suction filtration step, and the sludge is supplied to the primary side space in the pressure filtration step. And pressurize together to compress (densify) the sludge previously attached to the filter cloth surface while further attaching the concentrated sludge from above the “concentrated sludge attached to the primary surface of the filter cloth”.
  • the solid-liquid separation apparatus for carrying out one embodiment of the solid-liquid separation method of the present invention is not particularly limited.
  • a solid-liquid separation apparatus 100 as shown in FIG. 1 can be used.
  • the solid-liquid separator 100 includes a filter cloth 1 and a filter body 2 that is partitioned by the filter cloth 1.
  • the solid-liquid separator 100 is a space on one side of the filter cloth 1 and a space where the filtrate is discharged.
  • the secondary side space 5 is depressurized with the filter 3 in which the secondary side space 5 and the primary side space 4 which is the space on the other surface side of the filter cloth 1 and the sludge are supplied are formed.
  • Pressure reducing means 11 capable of supplying sludge to the primary side space 4, and sludge pressurizing means 13 capable of pressurizing the sludge supplied to the primary side space 4.
  • the solid-liquid separator 100 is a surface on the primary side space side of the filter cloth 1 when the sludge supplied to the primary side space is filtered by the filter cloth 1.
  • the sludge pressing mechanism 15 which can squeeze the concentrated sludge adhering to the surface 6 of the next side is provided.
  • the concentrated sludge that has been pressed becomes compressed sludge 18.
  • the sludge supply means 12 used in the solid-liquid separation method of the present embodiment is a sludge storage tank 12a arranged vertically above the filter 3. This is to supply the sludge 16 from the sludge storage tank 12a to the filter 3 by gravity by disposing the sludge storage tank 12a above the filter 3 in the vertical direction.
  • FIG. 1 is a schematic diagram (flow diagram) showing a solid-liquid separation apparatus used in one embodiment of the solid-liquid separation method of the present invention.
  • FIG. 5 shows the cross section of the filter 3 and the sludge pressing mechanism used in one embodiment of the solid-liquid separation method of the present invention, and the concentrated sludge is compressed (pressed sludge 18 is formed) in the pressing step.
  • It is a schematic diagram which shows a state.
  • the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through.
  • the filter 3 is expressed so that the filter cloth 1 and the filtrate permeation
  • the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
  • the filter 3 includes a “bottomed cylindrical main body 23 having a bottom 24 at one end 21 and an opening 25 at the other end 22” and “main body 23, the filter body 2 having a lid 26 "detachably disposed in the opening 25 of the 23, the filter body 2 in the space on the lid 26 side (primary side space 4) and the space on the bottom 24 side ( And a filter cloth 1 disposed in the filter body 2 so as to be partitioned into a secondary space 5).
  • An inflow port 26 a is formed in the lid portion 26, and a discharge port 24 a is formed in the bottom portion 24.
  • FIG. 2 is a schematic view showing a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention.
  • a filtrate transmitting member 27 is disposed in the secondary side space 5 of the filter 3 so as to support the filter cloth 1.
  • the filtrate transmitting member 27 is a structure through which the filtrate passes.
  • the filtrate permeable member 27 is capable of allowing the filtrate to pass through easily while having a rigidity that does not cause a large deformation with respect to pressure.
  • the filtrate permeating member 27 is formed of a wire mesh formed of a metal wire such as stainless steel, “ceramic, synthetic resin, etc.”, and “a plurality of through holes are formed in the thickness direction”. A board etc. can be used.
  • the sludge that is subjected to solid-liquid separation by the solid-liquid separation method of the present invention is sludge that is discharged when preparing clean water (tap water) at a water purification plant, and has a solid content concentration of 0.7 to 2.0. It is preferable that it is mass%.
  • (1-1) suction filtration step As shown in FIGS. 1 to 3, the suction filtration step in the solid-liquid separation method of the present embodiment is described as follows: “A secondary side space 5 that is a space on one side (secondary side surface 7) side of the filter cloth 1 is removed. While reducing the pressure, the sludge 16 is supplied to the primary side space 4 that is the space on the other side of the filter cloth 1, and the sludge 16 is filtered by the filter cloth 1. This is a step of “adhering the concentrated sludge 17 (initial concentrated sludge 17a) to a certain primary surface 6”. In the suction filtration step, as shown in FIG.
  • the sludge 16 is supplied to the sludge supply means 12, and the sludge 16 is supplied from the sludge supply means 12 to the primary space 4 of the filter 3.
  • the secondary space 5 of the filter 3 is depressurized by the depressurization means 11 through the filtrate storage tank 14. Thereby, the solid content in the sludge 16 is collected as the concentrated sludge 17 by the filter cloth 1, and the filtrate 19 that has passed through the filter cloth 1 passes through the secondary side space 5 and is sent to the filtrate storage tank 14. Stored.
  • FIG. 3 shows a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and sludge (initial concentrated sludge) on the primary side surface 6 of the filter cloth 1 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
  • the initial concentrated sludge 17a is attached to the primary side surface 6 of the filter cloth 1, so that the filtration is performed in the next pressure filtration step. Even if sludge is supplied to the primary side space 4 of the vessel 3 and pressurized, it is possible to suppress the solid content in the sludge from passing through the filter cloth 1 and leaking into the secondary side space 5. This is because the initial concentrated sludge 17a attached to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1.
  • the suction filtration step it is preferable to start the pressure filtration step when the solid content concentration of the filtrate flowing out to the secondary space 5 reaches 0.02 to 0.04 mass%. If it is lower than 0.02% by mass, the initial concentrated sludge 17a is not sufficiently formed, and the initial concentrated sludge 17a itself passes through the filter cloth 1 and leaks into the secondary space 5 due to the applied pressure in the pressure filtration process. May be issued. If it is higher than 0.04% by mass, the time for the suction filtration process becomes longer, and therefore the total time for solid-liquid separation of sludge may become longer.
  • the filtration time in the suction filtration process is too short, the initial concentrated sludge 17a does not sufficiently adhere to the filter cloth 1, and the initial concentrated sludge 17a itself passes through the filter cloth 1 due to the applied pressure in the pressure filtration process, and the secondary side. May flow into space 5.
  • the time for filtering the sludge with the filter cloth 1 is long, the entire filtration time is extended.
  • the pressure when the secondary side space 5 is depressurized (the pressure of the depressurized secondary side space 5) is ⁇ 0.08 to ⁇ 0.02 MPa when the sludge of the water purification plant is used as a raw material. Gauge pressure) is preferable. If it is lower than ⁇ 0.08 MPa, the solid content may pass through the secondary side space 5 without staying on the filter cloth surface, and the initial concentrated sludge 17a may not adhere to the primary side surface 6 of the filter cloth 1. is there. If it is higher than ⁇ 0.02 MPa, the suction filtration process may take a long time.
  • the “gauge pressure” is a pressure displayed on a pressure gauge with the atmospheric pressure set to “0 MPa”.
  • a vacuum pump or the like can be used as the decompression means 11 that decompresses the secondary space 5 of the filter 3.
  • a means for decompressing the secondary side space 5 of the filter 3 according to the principle of siphon is also a preferable aspect.
  • the decompression means 11 for decompressing the secondary side space 5 of the filter 3 see FIG. 1
  • the decompression means for decompressing 5 it is preferable to use the decompression means 11 used in the suction filtration step.
  • a vacuum pump can be used in the pressure filtration step even if the pressure reducing means based on the principle of siphon is used. May be used, and a vacuum pump may be used in the pressing step.
  • size of the filter 3 which comprises the solid-liquid separation apparatus used with the solid-liquid separation method of this embodiment shown by FIG. 2 is not specifically limited, In industrial use, in a water purification plant or a sewage treatment plant It is preferable that the size corresponds to the processing amount. Moreover, the material of the main-body part 23 and the cover part 26 is not specifically limited, Stainless steel etc. can be used suitably.
  • the filter cloth 1 is preferably a filter cloth formed of monofilaments, and more preferably a filter cloth formed of polyamide resin monofilaments.
  • the air permeability of the filter cloth is preferably 20 to 90 (cm 3 / (cm 2 ⁇ sec)).
  • the air permeability of the filter cloth is a value obtained by measuring the amount of air per unit area / unit time passing through the filter cloth from the primary side toward the secondary side.
  • the sludge supply means may be a sludge storage tank 12a arranged vertically above the filter 3 as shown in FIG. 1, but the “sludge storage tank 12a” and the sludge storage tank 12a You may comprise from the "pump etc.” for sending sludge to the filter 3.
  • FIG. 1 The sludge supply means
  • the sludge supply means is the sludge storage tank 12a disposed vertically above the filter 3, the sludge is supplied from the sludge storage tank 12a to the primary space of the filter 3 by gravity. Further, when the sludge supply means is constituted by “sludge storage tank 12 a” and “a“ pump or the like ”for feeding the sludge in the sludge storage tank 12 a to the filter 3”, the sludge storage tank 12 a Sludge can be supplied to the filter 3 using a pump or the like.
  • the size of the sludge storage tank 12a is not particularly limited, and can be appropriately determined depending on the amount of sludge to be processed. Moreover, although the material of the sludge storage tank 12a is not specifically limited, Steel (steel), polyvinyl chloride, etc. can be used conveniently, and stainless steel can be used suitably as steel (steel). Moreover, in order to receive sludge in the sludge storage tank 12a, it is preferable that a sludge inlet 12b is formed on the upper side in the vertical direction when the sludge storage tank 12a is installed.
  • a sludge discharge port 12c is formed in the sludge storage tank 12a on the lower side in the vertical direction when the sludge storage tank 12a is installed. Moreover, even if the sludge discharge port 12c is formed in the wall surface (wall surface of the sludge storage tank 12a) which faces a "lateral direction (for example, horizontal direction)" with respect to the vertical direction when the sludge storage tank 12a is installed. Good. For example, in the case of the pit method (made of concrete), it is preferable that the sludge discharge port 12c is formed on the wall surface facing the “lateral direction”.
  • piping is arrange
  • the sludge supply means is the sludge storage tank 12a arranged vertically above the filter 3, the pipe connected to the sludge discharge port 12c is directly connected to the filter 3.
  • the sludge supply means is constituted by “sludge storage tank 12a” and “a pump or the like for feeding the sludge in the sludge storage tank 12a to the filter 3”, it is connected to the sludge discharge port 12c.
  • the pipe is connected to the filter 3 via a “pump or the like”.
  • (1-2) pressure filtration step As shown in FIGS. 1 and 4, the pressure filtration step in the solid-liquid separation method of the present embodiment decompresses the secondary side space 5 and “pressurizes” the sludge 16 in the primary side space 4. In this step, the sludge 16 is further filtered by the filter cloth 1. In the suction filtration step preceding this step, concentrated sludge adheres on the filter cloth, so that the turbidity of the filtrate is reduced, but the flow rate of the filtrate is reduced. Therefore, it is a process for ensuring the processing flow rate of the filtrate by pressurization.
  • the concentrated sludge 17 (second-layer concentrated sludge 17b) is further adhered on the concentrated sludge 17 (initial concentrated sludge 17a) adhering to the primary side surface 6 of the filter cloth 1, It is also a step of compressing the initial concentrated sludge 17a to increase its density (densify) and enhance the filtration function with the filter cloth and the concentrated sludge adhering thereto.
  • the filtrate 19 that has passed through the filter cloth 1 is discharged from the discharge port 24 a, sent to the filtrate storage tank 14 through the discharge nozzle 24 b and the piping, and stored in the filtrate storage tank 14.
  • FIG. 4 shows a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and sludge (concentrated sludge 17 (initial stage) on the primary side surface 6 of the filter cloth 1 in the pressure filtration step. It is a schematic diagram which shows the state which the concentrated sludge 17a and the 2nd layer concentrated sludge 17b) have adhered.
  • the filter cloth 1 is pressurized with sludge and the initial concentrated sludge 17a is compressed in order to filter the sludge under pressure with the initial concentrated sludge 17a attached to the filter cloth 1.
  • the filter cloth 1 performs a filtering function according to the degree of densification of the initial concentrated sludge 17a.
  • pressure filtration can be performed while preventing leakage of solid contents.
  • concentrated sludge having a solid content concentration of 9 to 16% by mass can be obtained by the pressure filtration step.
  • the concentrated sludge formed on the filter cloth surface is filtered. It may flow out into the secondary space through the cloth. In that case, the solid content is not sufficiently recovered, and solid-liquid separation by concentrated sludge cannot be performed sufficiently. Therefore, when the sludge is filtered under pressure with the initial concentrated sludge 17a attached to the filter cloth 1, it is preferable to reduce the pressure change in one pressurization and increase the pressure several times stepwise.
  • the concentrated sludge adhering to the filter cloth 1 can be densified while preventing the solid content from leaking into the secondary side space, and finally it is possible to perform filtration at a high pressure. And since it is possible to densify concentrated sludge, the solid content density
  • the pressure for pressurizing the sludge is from 0.2 to 0.4 MPa (gauge pressure) (minimum filtration pressure) to 0.6 to 1.5 MPa (gauge pressure) (maximum filtration pressure). It is preferable to raise it intermittently. Thereby, it can prevent more effectively that solid content in sludge permeate
  • the “minimum filtration pressure” is the first (first stage) pressure and the lowest pressure when the sludge is pressurized in the pressure filtration step.
  • the “maximum filtration pressure” is the last (last stage) pressure and the highest pressure when the sludge is pressurized.
  • the minimum filtration pressure is lower than 0.2 MPa, the time required for solid-liquid separation may become longer.
  • the minimum filtration pressure is higher than 0.4 MPa, solid content may easily pass through the filter cloth when performing pressure filtration.
  • the maximum filtration pressure is lower than 0.6 MPa, the time required for solid-liquid separation may become longer.
  • the maximum filtration pressure is higher than 1.5 MPa, the solid content may easily pass through the filter cloth.
  • “To increase the pressure to pressurize the sludge intermittently” means to increase the pressure to pressurize the sludge in a stepped manner, and to “Pressure constant (maintain constant pressure)” and “Pressure increase” It is to increase the “pressure to pressurize sludge” while repeating “state (pressure increase operation)” alternately.
  • the sludge pressure fills the primary space 4 of the filter 3 and the sludge pressure in the primary space (pressure in the primary space). Is preferably set to the predetermined pressure. Therefore, it is preferable to supply the sludge to the primary space 4 of the filter 3 at the predetermined pressure.
  • the pressure filtration step when the pressure in the primary side space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased by a single pressure increase (pressure increase operation).
  • the pressure is preferably 0.2 to 0.7 MPa (rising range), and more preferably 0.2 to 0.4 MPa. Thereby, the concentrated sludge adhering to the filter cloth can be densified more effectively, and solid content leakage from the filter cloth can be suppressed. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is greater than 0.7 MPa, the solid content may easily leak from the filter cloth.
  • the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage.
  • the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable.
  • As the pressure increase rate for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
  • the pressure filtration step when the pressure in the primary space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased from the “constant pressure state”. Switching to “state” is performed after confirming the state of the filtrate.
  • the turbidity of the filtrate increases. This turbidity decreases with time. This decrease in turbidity is caused by densification of the initial concentrated sludge 17a and formation of a new layer of concentrated sludge (second layer concentrated sludge 17b) on the initial concentrated sludge 17a. And the second-layer concentrated sludge 17b "has achieved a filtration function together with the filter cloth 1, and is in a state suitable for sludge filtration so that the sludge can be satisfactorily filtered even at a new (high) pressure. Show. Therefore, it can be determined that the initial concentrated sludge 17a is densified and a new concentrated sludge layer is formed on the initial concentrated sludge 17a due to the decrease in turbidity.
  • the time for densification of the initial concentrated sludge 17a after pressurization and the formation of a new concentrated sludge layer depends on the composition and concentration of the sludge to be treated. Different. Accordingly, whether the initial concentrated sludge 17a is densified or whether a new concentrated sludge layer is sufficiently formed is determined by measuring the turbidity and concentration of the filtrate. Alternatively, the turbidity may be measured with a turbidimeter, and the above determination may be made when the turbidity is below a certain value.
  • the flow rate of the filtrate immediately after pressurization changes with the densification of the initial concentrated sludge 17a and the formation of a new concentrated sludge layer. It is also possible to determine that a sludge layer has been formed. For these determinations, the filtrate may be temporarily taken out of the filtrate storage tank 14. Moreover, since the time when a filtrate with high turbidity is generated is very small when viewed from the whole filtrate, it may be allowed to flow into the filtrate storage tank 14 as it is.
  • the step-by-step pressure increase of the pressure filtration process of the present invention allows the sludge treatment amount to be secured while functioning the adhering concentrated sludge as a part of the filter cloth.
  • a predetermined amount of sludge can be concentrated in a shorter time.
  • filtration is performed while the sludge is pressurized, so that the new sludge is attached to the filter cloth surface first while maintaining the state where the sludge is supplied to the filter cloth.
  • Filtration is performed while the “sludge adhering first” is compressed, while adhering onto the “sludge”.
  • maintaining the state in which the sludge is supplied to the filter cloth means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure) without the sludge being supplied to the filter cloth.
  • it is different from the “squeezing process” in which the moisture in the concentrated sludge is squeezed.
  • the primary space 4 is pressurized with the filtrate (the filter cloth 1 is pressurized with the filtrate) and the secondary space 5 is depressurized, but the pressure when the secondary space 5 is depressurized.
  • the (pressure in the reduced secondary space 5) is preferably ⁇ 0.08 to ⁇ 0.02 MPa (gauge pressure). If it is higher than -0.02 MPa, the concentration of the finally obtained compressed sludge may be less than 40% by mass, and it takes a long time to increase the concentration of the compressed sludge to 40% by mass or more. There is.
  • the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13, and the filter cloth 1 (1 The inside of the secondary space 4) is pressurized.
  • the sludge pressurizing means 13 a method using air, a cylinder such as “inert gas such as nitrogen”, an air compression device (compressor) or the like, or a mechanical pressurization method in which sludge is compressed directly with a piston by hydraulic pressure or the like. Can be adopted.
  • the sludge 16 is pressurized by the sludge pressurizing means 13, as shown in FIG.
  • the sludge in the “sludge storage tank 12 a storing sludge” is pressurized and pressurized by the sludge pressurizing means 13. It is preferable to send the sludge in the sludge storage tank 12a to the primary space 4 of the filter 3 and pressurize the primary space 4 (filter cloth). In this case, the pressurized “pressurizing medium such as air and nitrogen” is sent from the sludge pressurizing means 13 to the sludge storage tank 12a, whereby the inside of the sludge storage tank 12a is pressurized.
  • the pressurized “pressurizing medium such as air and nitrogen”
  • the pressure adjusting means 13 a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
  • the pressing step in the solid-liquid separation method of the present embodiment is a step of obtaining the pressing sludge 18 by pressing the concentrated sludge adhering to the primary side surface 6 of the filter cloth 1.
  • the pressure filtration operation pressure filtration step
  • the concentrated sludge is squeezed (squeezing step).
  • an operation to remove the remaining sludge is performed. Without squeezing, the pressing process can be started.
  • the sludge taken out from the filter is preferably returned to the sludge storage tank and subjected to solid-liquid separation.
  • “squeezing the concentrated sludge” means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure, or the structure without supplying the sludge to the filter cloth). It means that the moisture in the concentrated sludge is squeezed out.
  • the pressure when pressing the concentrated sludge is preferably 0.2 to 1.8 MPa (gauge pressure). Furthermore, in the said pressure range, it is preferable to squeeze concentrated sludge, raising the pressure when squeezing concentrated sludge intermittently. When the pressure is intermittently increased, it is preferable to start the pressure increase from a pressure higher than the “maximum filtration pressure” in the pressure filtration step. When the pressure at the time of pressing concentrated sludge is lower than 0.2 MPa, the solid content concentration of the compressed sludge may not increase, and the pressing process may take a long time.
  • the pressure applied to the concentrated sludge is intermittently increased as described above in the pressing process, from a pressure (minimum pressing pressure) that is 0.2 to 0.4 MPa higher than the “maximum filtering pressure” in the pressure filtering process.
  • the pressure is preferably intermittently increased to a pressure (maximum pressing pressure) higher by 0.7 to 1.0 MPa than the “maximum filtration pressure” in the pressure filtration step.
  • the “minimum pressing pressure” is the first (first stage) pressure and the lowest pressure when the concentrated sludge is pressurized in the pressing step.
  • the “maximum squeezing pressure” is the last (last stage) pressure and the highest pressure when the concentrated sludge is pressurized.
  • the minimum squeezing pressure is higher than “a pressure higher by 0.4 MPa than the maximum filtration pressure in the pressure filtration step”
  • the filter 3 is a pressure
  • the pressure finally applied to the concentrated sludge is 1.5 to 1.8 MPa.
  • the pressure to be increased in one pressurization is 0.2 to 0.4 MPa (increase) Width).
  • the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased.
  • the pressure raised by one pressurization is larger than 0.4 MPa, the solid content may easily leak from the filter cloth.
  • the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage.
  • the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable.
  • As the pressure increase rate for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
  • the pressing step it is preferable to pressurize the concentrated sludge and depressurize the secondary space 5. Since the filtrate 19 near the surface of the compressed sludge (particularly the surface in contact with the filter cloth) is quickly discharged by pressurizing the concentrated sludge and depressurizing the secondary space 5, the surface is more dry. Thus, when the compressed sludge is peeled off from the filter cloth, it can be peeled off more easily.
  • the pressure when the secondary side space 5 is decompressed is preferably ⁇ 0.08 to ⁇ 0.02 MPa (gauge pressure). If it is higher than ⁇ 0.02 MPa, the surface of the pressed sludge may be difficult to dry.
  • the solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass.
  • the load on the combustion furnace may be increased when the compressed sludge is burned and discarded.
  • the upper limit is about 45% by mass.
  • the sludge squeezing mechanism 15 used in the squeezing process shown in FIG. 5 includes a cylinder part 15b, a “piston part 15e capable of reciprocating in the cylinder part 15b”, and a “piston part 15e disposed at the tip of the piston part 15e.
  • a pressurizing part 15a having a pressurizing plate 15f having a pressurizing surface 15g perpendicular to the moving direction of the part 15e, and a pressurizing means 15c that pressurizes the inside of the cylinder part 15b and moves the pressurizing part 15a. is there.
  • Drawing 5 is a mimetic diagram showing the state where concentrated sludge is squeezed while showing the section of filter 3 and sludge pressing mechanism 15 used for one embodiment of the solid-liquid separation method of the present invention. Note that the lid 26 (see FIG. 2) is not shown in FIG.
  • the lid part or a part of the lid part has a structure that can be used as the pressurizing part 15a.
  • the structure and material of the cylinder portion 15b and the pressurizing portion 15a are not particularly limited as long as they can press the entire surface of the concentrated sludge evenly with a predetermined pressure.
  • the pressurizing means 15c is not particularly limited, but an air compression device (compressor) or the like can be used.
  • the pressure adjusting means 15d is not particularly limited, but may include a pressure adjusting valve.
  • FIG. 6 is a schematic view showing a state of discharging the compressed sludge in the discharging step while showing a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention.
  • the sludge pressing mechanism 15 is not illustrated in FIG.
  • the discharging step it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 1) and to peel the compressed sludge 18 from the filter cloth 1 by the compressed air. It is also possible to mechanically peel the comb-shaped member by moving it along the filtration membrane. In addition, if the filter is small and can be easily handled by human hands, the method of scraping out the compressed sludge with human hands, the method of discharging the compressed sludge by tilting the filter, and after removing the compressed sludge with the filter cloth It is also possible to peel the pressed sludge from the filter cloth by a method such as peeling from the filter cloth.
  • a solid-liquid separation device 200 for carrying out another embodiment of the solid-liquid separation method of the present invention includes a filter 3 (see FIG. 1) in the solid-liquid separation device 100 shown in FIG.
  • the filter 53 is replaced with a filter 53 as shown in FIGS. 8A and 8B. Therefore, the solid-liquid separation method of the present embodiment is the same as that of the above-described embodiment of the solid-liquid separation method of the present invention except that the filter 53 shown in FIGS. 8A and 8B is used as the filter.
  • FIG. 8A and 8B is used as the filter.
  • FIG. 7 is a schematic diagram (flow diagram) showing a solid-liquid separation device 200 used in another embodiment of the solid-liquid separation method of the present invention.
  • FIG. 8A is a schematic view showing a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention.
  • FIG. 8B is a side view schematically showing a filter 53 used in another embodiment of the solid-liquid separation method of the present invention.
  • the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through.
  • the filter 53 is expressed so as to show a cross section.
  • the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
  • the filter 53 used in the solid-liquid separation method of the present embodiment shown in FIGS. 8A and 8B has two filtrates in which the filter body 52 is “disposed at an interval and the inside becomes the secondary space 55”.
  • a drain tank 61, 61, and a concentration tank 62 which is arranged so as to be sandwiched between the two filtrate discharge tanks 61, 61 and becomes the primary side space 54, and has two filtrate discharge tanks 61,
  • One filter cloth 51 is provided at the boundary between each of 61 and the concentration tank 62, and filtrate permeating members 63 and 63 are provided in the two filtrate discharge tanks 61 and 61 so as to support the filter cloth 51. .
  • the sludge squeezing mechanism moves so that the two filtrate discharge tanks 61 and 61 approach each other by narrowing the primary side space 54, and the primary side surfaces 56 and 56 of the two filter cloths 51 and 51, respectively.
  • This is a mechanism for sandwiching and squeezing the concentrated sludge adhering to the two filtrate discharge tanks 61, 61.
  • the two filtrate discharge tanks 61 and 61 are square columnar tanks in which openings 65a and 65a are formed in opposite walls 65 and 65 and the inside is formed in a hollow shape, and close the openings 65a and 65a.
  • the concentrating tank 62 includes walls 65 and 65 and filter cloths 51 and 51 facing each other of the two filtrate discharge tanks 61 and 61, and a “space between the two filtrate discharge tanks 61 and 61 (primary space 54. ) Is formed by a body portion 64 "disposed along the outer edge of the mutually opposing walls 65, 65 of the two filtrate discharge tanks 61, 61".
  • the opposing walls 65 and 65 and the filter cloths 51 and 51 of the two filtrate discharge tanks 61 and 61 are also part of the concentration tank 62.
  • the concentration tank 62 is formed with an inlet 71 for allowing the sludge 16 to flow inside, and the filtrate discharge tank 61 is formed with an outlet 72 for allowing the filtrate 19 to flow outside. .
  • the body part 64 forming the outer periphery of the concentration tank 62 is formed in a cylindrical shape, and one end part is joined to the “opposing wall 65” of one filtrate discharge tank 61, and the other end part is The primary side space 54 is formed inside by joining to the “opposing wall 65” of the other filtrate discharge tank 61. Further, the body portion 64 is formed to be extendable so that the two filtrate discharge tanks 61 and 61 can be moved closer to each other and the two filtrate discharge tanks 61 and 61 can be moved away from each other. ing. Further, as shown in FIGS.
  • An opening / closing part 73 is formed.
  • the opening / closing part 73 is in a closed state in the suction filtration process, the pressure filtration process and the compression process, but in the discharge process, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64. It is the part that opens when In the discharging step, the compressed sludge is discharged from the “opening / closing portion 73”.
  • the sludge 16 flows into the concentration tank 62 (primary space 54) from the inlet 71, the sludge 16 is filtered by the filter cloth 51, and the filtrate 19 is the filtrate discharge tank.
  • the solid (concentrated sludge) adheres to the primary surface 56 of the filter cloth 51 and flows into the filtrate discharge tank 61 (secondary side space 55).
  • the filtrate 19 flows out from the outlet 72.
  • the sludge 16 is first supplied to the primary space 54 as shown in FIGS. Then, while reducing the pressure on the secondary side space 55 that is the space on the one side (secondary side surface 57) side of the filter cloth 51, the primary side space 54 that is the space on the other side of the filter cloth 51 The sludge 16 is further supplied, the sludge 16 is filtered by the filter cloth 51, and the concentrated sludge 17 (initial concentrated sludge 17a) is attached to the primary side surface 56 which is the other surface of the filter cloth 51. .
  • the secondary side space 55 of the filter 53 is decompressed by the decompression means 11 via the filtrate storage tank 14.
  • the solid content in the sludge 16 is collected by the filter cloth 51 as the concentrated sludge 17 (initial concentrated sludge 17a), and the filtrate 19 that has passed through the filter cloth 51 passes through the secondary side space 55 to pass through the filtrate. It is sent to the storage tank 14 and stored.
  • the sludge storage tank 12a and the concentration tank 62 of the filter 53 are connected by piping, and the filtrate discharge tank 61 and the filtrate storage tank 14 of the filter 53 are connected by piping.
  • Each pipe and device is preferably equipped with valves and instruments as necessary.
  • FIG. 9 shows a cross section of the filter 53 used in another embodiment of the solid-liquid separation method of the present invention, and sludge (initial concentrated sludge) on the primary side surface 56 of the filter cloth 51 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
  • the initial concentrated sludge 17a is attached to the primary side surface 56 of the filter cloth 51. Even if the sludge 16 is supplied to the primary side space 54 of the filter 53 and pressurized, the solid content in the sludge 16 is prevented from passing through the filter cloth 51 and leaking into the secondary side space 55. can do. This is because the initial concentrated sludge 17a attached to the filter cloth 51 has a function of collecting solids in the sludge together with the filter cloth 51.
  • a vacuum pump or the like can be used as the decompression means 11 for decompressing the secondary side space 55 of the filter 53.
  • a siphon tube 74 may be used as the decompression unit 11.
  • the filter 53a shown in FIG. 14 uses a siphon tube 74 as the pressure reducing means 11, and depressurizes the secondary space 55 of the filter 53a according to the principle of siphon.
  • the pressure is reduced by the principle of siphon, there is an advantage that the initial concentrated sludge 17a adhering to the filter cloth 51 is hardly broken.
  • a vacuum pump is used as the decompression means 11 for decompressing the secondary space 55 of the filter 53 (see FIG.
  • the secondary space of the filter 53 is also used in the pressure filtration process and the squeezing process.
  • the depressurizing means for depressurizing 55 it is preferable to use the depressurizing means 11 used in the suction filtration step.
  • the siphon tube 74 is used as the decompression means 11 for decompressing the secondary space 55 of the filter 53a (see FIG. 14)
  • the vacuum pump can be used even in the pressurization filtration process even if the siphon tube 74 is used. You may use, and it is preferable to use a vacuum pump in a pressing process. Therefore, as shown in FIG.
  • FIG. 14 is a schematic diagram showing a cross section of the filter 53a and the decompression means 11 (siphon tube 74) used in still another embodiment of the solid-liquid separation method of the present invention.
  • the filter cloth 51 and the sludge supply means are preferably the conditions of the filter cloth 1 (see FIG. 2) and the sludge supply means, which are preferable in the embodiment of the solid-liquid separation method of the present invention.
  • the suction filtration step it is also a step for recovering (increasing) the flow rate of the filtrate that has decreased due to the concentrated sludge adhering to the filter cloth.
  • the filtrate 19 that has passed through the filter cloth 51 is discharged from the outlet 72, sent to the filtrate storage tank 14 through the piping, and stored in the filtrate storage tank 14.
  • the sludge 16 is supplied to the primary side space 54 while “pressurizing the filter cloth 51”, the entire surface of the filter cloth 51 is preferably pressurized by the sludge 16.
  • FIG. 10 shows a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention, and sludge (concentrated sludge 17 (initial stage) on the primary side surface 56 of the filter cloth 51 in the pressure filtration step. It is a schematic diagram which shows the state which the concentrated sludge 17a and the 2nd layer concentrated sludge 17b)) have adhered, forming a some layer.
  • the concentrated sludge 17 (second layer concentrated sludge 17b) is attached on the initial concentrated sludge 17a.
  • the sludge is filtered with the initial concentrated sludge 17a attached to the filter cloth 51. Therefore, the initial concentrated sludge 17a also serves to filter the sludge together with the filter cloth 51. Even if it is a monofilament, pressure filtration can be performed while preventing leakage of solid content.
  • pressure to pressurize the filter cloth with sludge pressure increase, pressure range
  • pressure increase rate when increasing pressure from minimum filtration pressure to maximum filtration pressure MPa / min
  • Speed at which the filtrate is discharged from the filter
  • Pressure to be increased by one pressurization when intermittently increasing pressure from the minimum filtration pressure to the maximum filtration pressure "Intermittently from the minimum filtration pressure to the maximum filtration pressure”
  • the interval between boosting the time from the end of one boosting to the start of the next boosting
  • pressure for decompressing the secondary space pressure in the decompressed secondary space
  • the sludge 16 supplied to the primary space 54 of the filter 53 is pressurized by the sludge pressurizing means 13, and the filter cloth (primary It is preferable to pressurize the side space.
  • the condition of the sludge pressurizing means is preferably a condition that is preferable in one embodiment of the solid-liquid separation method of the present invention.
  • the pressure of the sludge is adjusted by the pressure adjusting means 13 a.
  • An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
  • the pressing step in the solid-liquid separation method of the present embodiment compresses concentrated sludge (initial concentrated sludge and second-layer concentrated sludge) adhering to the primary side surface 56 of the filter cloth 51.
  • This is a step of obtaining the compressed sludge 18.
  • the filter 53 used in the solid-liquid separation method of the present embodiment has a sludge that remains in the filter after the pressure filtration operation (pressure filtration step) is completed. Therefore, the concentrated sludge is removed after the remaining sludge is removed. Squeeze.
  • FIG. 11 is a schematic view showing a section of the filter 53 used in another embodiment of the solid-liquid separation method of the present invention and a part of the pressing process.
  • pressure when squeezing concentrated sludge “how to increase pressure when squeezing concentrated sludge (pressure applied to concentrated sludge), etc.” are one implementation of the solid-liquid separation method of the present invention. It is preferable that each of the conditions is preferable in the form.
  • the pressing step it is preferable to pressurize the concentrated sludge and depressurize the secondary side space 55.
  • the surface of the compressed sludge (particularly the surface in contact with the filter cloth) becomes a more dry state, and when the compressed sludge is peeled off from the filter cloth, It can be more easily peeled off.
  • the pressure when depressurizing the secondary side space (the pressure of the depressurized secondary side space) is preferably a condition that is preferable in one embodiment of the solid-liquid separation method of the present invention.
  • the solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass.
  • the load on the combustion furnace may be increased when the compressed sludge is burned and discarded.
  • the upper limit is about 45% by mass.
  • the sludge squeezing mechanism used in the squeezing process is such that the two filtrate discharge tanks 61 and 61 narrow the primary side space 54 and approach each other. It is a mechanism that moves and squeezes the concentrated sludge adhering to the primary-side surfaces 56 and 56 of the two filter cloths 51 and 51 between the two filtrate discharge tanks 61 and 61.
  • the concentrated sludge is squeezed between two “filter cloths 51 whose secondary surface 57 side is supported by the filtrate permeable member 63”.
  • the filtrate discharged by pressing the concentrated sludge passes through the filter cloth 51 and flows into the primary space 54 and is discharged from the outlet 72.
  • transmission member 63 used in the solid-liquid separation method of this embodiment are the conditions made preferable in one embodiment of the said solid-liquid separation method of this invention.
  • the method for moving the filtrate discharge tank 61 is not particularly limited.
  • a support portion 77 disposed in each filtrate discharge tank 61 and the tip of the support portion 77 are movably attached.
  • a method using a moving mechanism 75 including a guide portion 76 is preferable.
  • the number and the mounting position of the moving mechanism 75 are not particularly limited, but it is preferable that the number and the position can stably support each filtrate discharge tank 61.
  • FIG. 13 is a schematic view showing a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention.
  • the shape of the support portion 77 is not particularly limited, and examples thereof include a member in which a wheel is disposed at the tip of a rod-like or plate-like member.
  • the material of the support part 77 is not specifically limited, Stainless steel etc. can be mentioned.
  • the shape of the guide part 76 is not specifically limited, When the wheel is arrange
  • the discharging step in the solid-liquid separation method of the present embodiment is a step of peeling the compressed sludge 18 from the filter cloth 51, and the compressed sludge 18 peeled from the filter cloth 51 is removed from the filter 53. Discharged.
  • FIG. 12 is a schematic diagram showing a cross section of a filter used in another embodiment of the solid-liquid separation method of the present invention and showing how the compressed sludge is discharged in the discharge step.
  • the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the trunk part 64 and are formed on the lower side in the vertical direction of the trunk part 64 of the concentration tank 62.
  • the opened opening / closing part 73 is opened, and the compressed sludge is discharged from the “opened opening / closing part 73”.
  • the opening / closing part 73 is preferably a “cut” formed in the body part 64.
  • the discharging step it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 51), and the compressed sludge 18 is peeled off from the filter cloth 51 by the compressed air.
  • Example 1 In the solid-liquid separation apparatus 100 shown in FIG. 1, “a filter 83 as shown in FIG. 16 was used as a filter” to produce a solid-liquid separation apparatus.
  • the filter 83 has a first frame 82a (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88a and a second frame 82b (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88b.
  • a bag-like filter cloth 81 sandwiched between the filter body 82, "the surface of the first frame 82a on which the recess 88a is formed” and "the surface of the second frame 82b on which the recess 88b is formed”. are provided.
  • the outer periphery (outer edge) of the bag-shaped filter cloth 81 has a “surface of the first frame 82a on which the recess 88a is formed (outer edge)” and a “surface of the second frame 82b on which the recess 88b is formed ( A closed space is formed in the central portion by being sandwiched by “outer edge” ”(in addition, movement of gas and liquid passing through the filter cloth is possible).
  • the shape of the opening part of the recessed part 88a of the 1st frame 82a and the shape of the opening part of the recessed part 88b of the 2nd frame 82b were made into the same size circle.
  • the first frame 82a and the second frame are formed such that the circular shape of the opening of the recess 88a of the first frame 82a and the circular shape of the opening of the recess 88b of the second frame 82b overlap without being displaced.
  • the body 82b is arranged.
  • the diameter of the opening of the recess 88a of the first frame 82a was 180 mm
  • the diameter of the opening of the recess 88b of the second frame 82b was 180 mm.
  • FIG. 16 is a schematic diagram illustrating a cross section of the filter 83 used in the first embodiment.
  • tube 12 which the sludge introduction pipe
  • the sludge supplied from the inlet C flows into the sludge introduction pipe 87 from the inlet C, and is supplied to the bag-like filter cloth 1 through the sludge introduction pipe 87.
  • sludge pressurization in the pressure filtration process is performed.
  • a rubber film 86 for squeezing is disposed in the recess 88b of the second frame 82b, and the rubber film 86 for squeezing allows a space by the recess 88b to be separated into a space 88ba on the bottom side of the recess 88b and a recess 88b. Is divided into a space 88bb on the opening side (surface side on which the recess 88b is formed).
  • the filter 83 is a space formed by the filter cloth 81 and the recess 88a of the first frame 82a and a space 88bb on the opening side of the filter cloth 81 and the recess 88b of the second frame 82b. Is the secondary space 85. Further, the space in the bag of the bag-shaped filter cloth 81 becomes the primary space 84.
  • the filter 83 was used by being arranged so that the joint surface between the first frame body 82a and the second frame body 82b was orthogonal to the horizontal plane.
  • the filter 83 in order to depressurize the “space formed by the filter cloth 81 and the concave portion 88a of the first frame 82a (primary side space 85)” and discharge the filtrate,
  • An “outlet A” is formed on the lower side in the vertical direction of the first frame 82a to allow the primary space 85 and the outside to pass through.
  • the second frame 82b is vertically below.
  • an “outlet B” is formed through the primary space 85 and the outside.
  • the outlet A and the outlet B are connected to the filtrate storage tank 14 (see FIG. 1).
  • the “pressurizing port D” for introducing the pressurized gas into the space 88ba on the bottom side of the recess 88b of the second frame 82b is the second. It is formed above the frame body 82b in the vertical direction.
  • a pressurized gas is introduced into the space 88ba on the bottom side of the recess 88b from the pressure port D of the second frame 82b, and the inside of the space 88ba on the bottom side of the recess 88b is pressurized to compress the rubber film 86 for pressing.
  • the filter cloth 81 containing sludge is pressed by the rubber film 86 for squeezing and the sludge is squeezed.
  • the pressurizing port D is connected to the sludge pressurizing means 13 (see FIG. 1).
  • sludge pressurizing means 13 As the sludge pressurizing means 13 (see FIG. 1), a nitrogen cylinder was used. A pressure reducing valve was used as the pressure adjusting means 13a (see FIG. 1). As the sludge storage tank 12a (see FIG. 1), a 25 liter tank formed of iron was used. The filtrate discharge tank 61 was made of iron. As the filter cloth 51, a filter cloth formed by satin weaving nylon monofilament was used. As the filtrate storage tank 14, a tank made of transparent vinyl chloride was used. A vacuum pump was used as the decompression means 11 (see FIG. 7) for decompressing the filtrate storage tank 14.
  • solid-liquid separation was performed using sludge having a solid content of 0.74% by mass discharged at the water purification plant.
  • sludge was supplied to the primary space for 60 minutes while reducing the secondary space at “ ⁇ 0.033 MPa (gauge pressure)” (suction filtration was performed for 60 minutes).
  • sludge was pressurized at 0.4 MPa (gauge pressure) while the secondary side space was depressurized at “ ⁇ 0.033 MPa (gauge pressure)”, and supplied to the primary side space for 10 minutes. This step-up operation was performed once.
  • sludge pressurizing means is applied from the pressurizing port D of the second frame 82b to the space 88ba on the bottom side of the recess 88b while reducing the secondary side space at “ ⁇ 0.033 MPa (gauge pressure)”.
  • Pressurized gas from 13 was introduced.
  • the inside of the space 88ba on the bottom side of the concave portion 88b of the second frame 82b is pressurized with the introduced pressurized gas to swell the rubber film 86 for squeezing outward, and the sludge is sludged by the rubber film 86 for squeezing.
  • the filter cloth 81 containing was pressed and sludge was squeezed.
  • the pressing pressure was 1.5 MPa (gauge pressure), and the pressing time was 10 minutes.
  • the first frame 82a and the second frame 82b are separated, the filter cloth 81 having the compressed sludge in the filter body 82 is taken out, and the compressed sludge is peeled off from the filter cloth and taken out. .
  • the solid content concentration of the obtained compressed sludge was measured by the following method. The results are shown in Table 1.
  • the “pressure” column of the “suction filtration step” indicates the pressure of the secondary space being depressurized, and the “time” column indicates the time of vacuum filtration.
  • the “pressure” column indicates the pressure in the primary space being pressurized, and the “time” column indicates the pressure filtration time.
  • the “pressure” column of the “squeezing step” indicates the pressure applied to the concentrated sludge when the concentrated sludge is compressed, and the “time” column indicates the time of pressing.
  • the column “solid content concentration” indicates the solid content concentration of the compressed sludge.
  • the column “Solid Concentration” in Comparative Example 1 indicates the solid concentration of the concentrated sludge obtained by the suction filtration process.
  • Solid content concentration Measure the mass (mass before drying) of the measurement object (pressed sludge or concentrated sludge) before drying, measure the mass (mass after drying) of the measurement object after drying with a dryer, A value obtained by dividing the value obtained by subtracting the mass after drying by the mass before drying is 100 times the solid content concentration (% by mass).
  • the measurement object was dried at 110 ° C. for 8 hours.
  • Example 2 Sludge was separated into solid and liquid in the same manner as in Example 1 except that the “pressure (gauge pressure)” and “time” in the pressure filtration step and the pressing step were changed as shown in Table 1.
  • the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
  • “0.2-0.8” in the “Pressure” column of “Pressure filtration step” is a pressure increase from ⁇ 0.033 MPa to 0.2 MPa in 1 minute, and is held at 0.2 MPa for 9 minutes.
  • the pressure was increased from 0.2 MPa to 0.4 MPa in 1 minute, held at 0.4 MPa for 9 minutes, then increased from 0.4 MPa to 0.6 MPa in 1 minute, then at 0.6 MPa for 4 minutes, and then 0 It shows that the primary space was continuously pressurized in a pressure increasing pattern in which the pressure was increased from 6 MPa to 0.8 MPa in 1 minute and held at 0.8 MPa for 4 minutes. Then, “30” in the “time” column of the “pressure filtration step” indicates that the time for pressurizing the primary space (time for performing pressure filtration) is 30 minutes in total.
  • “1.5-1.8” in the “Pressure” column of the “Pressing step” is a pressure increase from 0.8 MPa to 1.5 MPa in 1 minute, and is held at 1.5 MPa for 4 minutes. It shows that the concentrated sludge was continuously squeezed (pressurized) in a pressure increasing pattern in which the pressure was increased from 5 MPa to 1.8 MPa in 1 minute and held at 1.8 MPa for 5 minutes. And “10" of the column of "time” of a “squeezing process” shows that the time which squeezes the said concentrated sludge is 10 minutes in total.
  • Example 1 Sludge was subjected to solid-liquid separation in the same manner as in Example 1 except that the pressure filtration step and the pressing step were not performed. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
  • the solid-liquid separation method of Example 1 from Table 1, using one solid-liquid separation device, the solid content concentration of 0.74% by mass (about 1% by mass) from the sludge with a solid content concentration of 45% by mass is obtained. It turns out that sludge was obtained.
  • the suction filtration time in the suction filtration process was shortened to 10 minutes, and each “pressure” was increased step by step in the pressure filtration process and the compression process. It can be seen that the total time for liquid separation was significantly reduced.
  • concentration of concentrated sludge does not rise so much only by the suction filtration process by the solid-liquid separation method of the comparative example 1.
  • Example 3 The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed.
  • the pressure in the secondary space was set to “ ⁇ 0.025 MPa (gauge pressure)” and the filtration time was set to 10 minutes (conditions of the suction filtration step).
  • the pressure in the secondary space is maintained at “ ⁇ 0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.20 MPa (gauge pressure)” for 30 minutes.
  • FIG. 15 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
  • FIG. 15 is a graph showing the relationship between the filtration time and the filtrate amount in the solid-liquid separation methods of Examples 3 and 4.
  • Example 4 The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed.
  • the pressure in the secondary space was set to “ ⁇ 0.025 MPa (gauge pressure)”, and the filtration time was set to 90 minutes (conditions of the suction filtration step).
  • the pressure in the secondary space is maintained at “ ⁇ 0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.39 MPa (gauge pressure)” for 10 minutes ( Pressure filtration process conditions).
  • FIG. 15 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
  • Example 3 From FIG. 15, in the solid-liquid separation method of Example 3, 3.5 kg of filtrate was discharged in about 70 minutes, whereas in the solid-liquid separation method of Example 4, 3.5 kg was discharged in about 110 minutes. It can be seen that the filtrate is discharged. From this, in the solid-liquid separation method of this invention, it turns out that solid-liquid separation of sludge can be performed in a short time by shortening a suction filtration process to about 10 minutes and switching to a pressure filtration process. The difference between Example 3 and Example 4 is that in Example 3, when the pressure filtration for 40 minutes was performed after the suction filtration for 10 minutes (total of 50 minutes), the amount of filtrate reached 3 kg.
  • Example 4 the amount of the filtrate reached 3 kg after suction filtration for 90 minutes. That is, rather than continuing the suction filtration process for a long time, the filtration time can be significantly shortened by ending the suction filtration process in a short time and switching to the pressure filtration process.
  • the solid-liquid separation method of the present invention can be suitably used for treating sludge having a solid content concentration of about 1% by mass discharged from a water purification plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Abstract

The disclosed solid-liquid separation method comprises: a suction filtration step, wherein, whilst decompressing a secondary-side space (5) which is the space on one surface side of a filter cloth (1), sludge (16) is supplied to a primary-side space (4) which is the space on the other surface side of the filter cloth (1), the sludge (16) is filtered by the filter cloth (1), and concentrated sludge (initial concentrated sludge) is attached to a primary-side surface (6) which is the other surface, as described above, of the filter cloth (1); a pressure filtration step, wherein the secondary-side space (5) is decompressed, both sludge is supplied to the primary-side space (4) and said space is pressurised, the sludge (16) is filtered by the filter cloth (1), and additional concentrated sludge (17) (second layer concentrated sludge) is attached on top of the concentrated sludge (16) (initial concentrated sludge) which is attached to the primary-side surface (6) of the filter cloth (1); a compression step wherein the concentrated sludge (17) attached to the primary-side surface (6) of the filter cloth (1) is compressed, and compressed sludge is obtained; and an extraction step wherein the compressed sludge is peeled off the filter cloth. The disclosed solid-liquid separation method uses a single solid-liquid separation device, and enables sludge which is 1% by mass solid content to be concentrated to sludge which is at least 40% by mass solid content.

Description

固液分離方法Solid-liquid separation method
 本発明は、固液分離方法に関し、さらに詳しくは、一つの固液分離装置を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能な固液分離方法に関する。 The present invention relates to a solid-liquid separation method, and more specifically, it is possible to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more using a single solid-liquid separator. The present invention relates to a simple solid-liquid separation method.
 浄水場では、凝集沈殿等の方法を用いて、取水した原水から固形分を除去して飲料用水等を製造している。このとき、原水中の固形分は、固形分濃度0.1~1.0質量%程度の汚泥として排出される。 In water purification plants, water for drinking is produced by removing solids from the raw water taken using a method such as coagulation sedimentation. At this time, the solid content in the raw water is discharged as sludge having a solid content concentration of about 0.1 to 1.0% by mass.
 従来、この固形分濃度0.1質量%程度の汚泥を、自然沈降等により固形分濃度1~2質量%程度に濃縮し、その後、濾過装置及び脱水装置を用いて固形分濃度50質量%程度まで濃縮し、得られた高濃度の汚泥を廃棄又は再利用していた。更に具体的には、固形分濃度1~2質量%程度に濃縮された汚泥を、サイホン式濾過濃縮装置等(例えば、特許文献1を参照)により固形分濃度3~5質量%程度に濃縮し、得られた濃縮汚泥を、加圧脱水装置等(例えば、特許文献2を参照)により固形分濃度40質量%以上に濃縮していた。 Conventionally, the sludge having a solid content concentration of about 0.1% by mass is concentrated to about 1 to 2% by mass by natural sedimentation and the like, and then the solid content concentration is about 50% by mass using a filtration device and a dehydrator. The high-concentration sludge obtained was discarded or reused. More specifically, the sludge concentrated to a solid content concentration of about 1 to 2% by mass is concentrated to a solid content concentration of about 3 to 5% by mass using a siphon type filtration concentration device or the like (see, for example, Patent Document 1). The obtained concentrated sludge was concentrated to a solid content concentration of 40% by mass or more by a pressure dehydrator or the like (for example, see Patent Document 2).
特公昭61-57043号公報Japanese Examined Patent Publication No. 61-57043 特開平7-124412号公報Japanese Patent Laid-Open No. 7-124212
 一般的に、加圧脱水装置等は原水濃度が低くなるにつれて処理性能が悪化し、例えば、原水濃度2%の場合の濾過速度(単位時間当たりの乾燥固形分量)は、原水濃度5%の場合の濾過速度の3分の1程度である。更に、原水濃度1%以下の場合は、性能が著しく低いため処理が困難となる。また、焼却などの乾燥方式等の場合は、原水濃度が低くなるにつれて燃焼に必要なエネルギーが増加し、コスト増や排ガス量増加を招く。そこで濾過濃縮装置等を用いて適正な濃度に調整した後に脱水、乾燥を行うことが一般的であった。つまり、従来は1%以下の汚泥を加圧脱水機で処理するというのは現実的ではなかった。 In general, the pressure dehydration apparatus and the like deteriorates as the raw water concentration decreases. For example, when the raw water concentration is 2%, the filtration rate (the amount of dry solids per unit time) is when the raw water concentration is 5%. Is about one third of the filtration rate. Furthermore, when the raw water concentration is 1% or less, the performance becomes extremely low, making the treatment difficult. Further, in the case of a drying method such as incineration, as the raw water concentration decreases, the energy required for combustion increases, leading to an increase in cost and an increase in the amount of exhaust gas. Therefore, it is common to perform dehydration and drying after adjusting to an appropriate concentration using a filtration concentrator or the like. That is, conventionally, it was not realistic to treat 1% or less of sludge with a pressure dehydrator.
 このため、従来の汚泥の処理方法においては、固形分濃度1質量%程度の汚泥を、固形分濃度40質量%以上に濃縮するためには、濾過装置と脱水装置の2つの装置を必要としていた。つまり、固形分濃度1質量%程度の汚泥を、1つの装置によって固形分濃度40質量%以上に濃縮することはできなかった。 For this reason, in the conventional sludge treatment method, in order to concentrate the sludge having a solid content concentration of about 1% by mass to a solid content concentration of 40% by mass or more, two devices of a filtration device and a dehydration device are required. . In other words, sludge having a solid content concentration of about 1% by mass could not be concentrated to a solid content concentration of 40% by mass or more with one apparatus.
 更に詳細に説明すると、従来の、濾過装置と脱水装置との2つの装置を用いて行う汚泥の処理方法においては、濾過装置で用いる濾布はモノフィラメントによって形成された開口径の大きなものであり、脱水装置で用いる濾布はマルチフィラメントによって形成された開口径の小さなものであった。特に、濾過装置においては、目詰まり防止、剥離性の向上等の観点から、ナイロン等から作製されたモノフィラメントによって形成された濾布を使用し、脱水装置によって汚泥を脱水する際には、高い圧力で脱水を行うため、固形分の捕捉効率の向上、強度の向上、耐久性の向上等の観点から、ポリエステル等から作製されたマルチフィラメントによって形成された濾布を使用していた。尚、濾過装置を用いて汚泥の濾過を行う場合には、濾布に付着した濃縮汚泥の固形分濃度が低いため、付着した濃縮汚泥の剥離性が低下する傾向にあるが、モノフィラメントによって形成された濾布を使用することにより、濃縮汚泥の剥離性を向上させることができる。ここで、濾過装置は、濾布を用いて1.0MPa以下の圧力で固液分離を行う装置であり、脱水装置は、濾布を用いて1.0MPaを超える圧力で固液分離を行う装置である。 More specifically, in the conventional sludge treatment method using two devices, a filtration device and a dewatering device, the filter cloth used in the filtration device has a large opening formed by a monofilament, The filter cloth used in the dehydrator had a small opening diameter formed by multifilaments. In particular, in the filtration device, from the viewpoint of prevention of clogging, improvement of peelability, etc., a high pressure is applied when dewatering sludge with a dehydrator using a filter cloth formed of monofilament made of nylon or the like. In order to perform dehydration, a filter cloth formed from a multifilament made of polyester or the like has been used from the viewpoints of improvement in solid content capture efficiency, improvement in strength, improvement in durability, and the like. Note that when sludge is filtered using a filtration device, the concentration of the concentrated sludge adhering to the filter cloth is low, and the peelability of the adhering concentrated sludge tends to decrease. By using the filter cloth, the peelability of the concentrated sludge can be improved. Here, the filtration device is a device that performs solid-liquid separation at a pressure of 1.0 MPa or less using a filter cloth, and the dehydration device is a device that performs solid-liquid separation at a pressure exceeding 1.0 MPa using a filter cloth. It is.
 このように、濾過装置と脱水装置とでは、使用できる濾布の種類が異なる。仮に、濾過装置に使用される濾布を脱水装置に使用すると、当該濾布がモノフィラメントで形成されているため、高い圧力で脱水を行う脱水装置では、脱水を行う際に固形分が濾布を通過するという問題が生じる。また、仮に、脱水装置に使用される濾布を濾過装置に使用すると、当該濾布がマルチフィラメントで形成されているため、濾過を行う際に濾布が目詰まりし易く、更に濾布に付着した濃縮汚泥が剥離し難くなるという問題が生じる。 Thus, the types of filter cloth that can be used differ between the filtration device and the dehydration device. If the filter cloth used in the filtration device is used in the dehydration device, the filter cloth is formed of monofilament. Therefore, in the dehydration device that performs dehydration at a high pressure, the solid content is removed when the dehydration is performed. The problem of passing through arises. Also, if the filter cloth used in the dehydrator is used in the filter apparatus, the filter cloth is formed of multifilaments, so the filter cloth is likely to be clogged during filtration, and further adheres to the filter cloth. There arises a problem that the concentrated sludge is difficult to peel off.
 上記のように、濾過装置と脱水装置とでは、異なる濾布を使用する必要があるため、汚泥を濃縮する際には、濾過装置と脱水装置という2つの装置を使用することが一般的であった。このため、二つの装置を設置するためのスペースが必要となるだけでなく、両装置間の汚泥移動作業なども必要となっていた。また、両装置では脱水速度が異なるため、連続作業が困難であった。つまり、脱水装置による脱水時間が、濾過装置による濾過時間より短いため、脱水、濾過工程全体の時間が、濾過装置による濾過時間によって、制約されていた。さらには、両装置間で時間調整のために、汚泥一時保管場所が必要となっていた。 As described above, since it is necessary to use different filter cloths for the filtration device and the dehydration device, it is common to use two devices, a filtration device and a dehydration device, when concentrating sludge. It was. For this reason, not only a space for installing the two devices is required, but also a sludge transfer operation between the two devices is required. Moreover, since the dehydration speed is different between the two apparatuses, continuous work is difficult. That is, since the dehydration time by the dehydrator is shorter than the filtration time by the filter device, the entire time of the dehydration and filtration process is limited by the filtration time by the filter device. Furthermore, in order to adjust the time between the two devices, a temporary sludge storage place is required.
 本発明は、上述した問題に鑑みてなされたものであり、一つの固液分離装置を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能な固液分離方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and uses a single solid-liquid separator to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more. An object of the present invention is to provide a solid-liquid separation method capable of achieving the above.
 上述の課題を解決するため、本発明は、以下の固液分離方法を提供する。 In order to solve the above-described problems, the present invention provides the following solid-liquid separation method.
[1] 濾布の一方の面側の空間である2次側空間を減圧しながら、前記濾布の他方の面側の空間である1次側空間に汚泥を供給して、前記濾布によって汚泥を濾過し、前記濾布の前記他方の面である1次側の面に濃縮汚泥を付着させる吸引濾過工程と、前記2次側空間を減圧するとともに、前記1次側空間に汚泥を供給するとともに加圧して、前記濾布によって汚泥を濾過し、前記濾布の前記1次側の面に付着した濃縮汚泥の上から更に濃縮汚泥を付着させる加圧濾過工程と、前記濾布の前記1次側の面に付着した濃縮汚泥を圧搾して圧搾汚泥を得る圧搾工程と、前記圧搾汚泥を濾布から剥離させる排出工程とを有する固液分離方法。 [1] While reducing the pressure on the secondary side space on one side of the filter cloth, the sludge is supplied to the primary side space on the other side of the filter cloth, Filtration of sludge, suction filtration step of attaching the concentrated sludge to the primary surface, which is the other surface of the filter cloth, and decompressing the secondary space, and supplying the sludge to the primary space And pressurizing and filtering the sludge with the filter cloth, and further applying the concentrated sludge on the concentrated sludge attached to the primary side surface of the filter cloth, and the filter cloth A solid-liquid separation method comprising: a pressing step for compressing concentrated sludge adhering to a primary side surface to obtain compressed sludge; and a discharging step for peeling the pressed sludge from a filter cloth.
[2] 前記吸引濾過工程において、前記2次側空間に流出する濾液の固形分濃度が、0.02~0.04質量%になったところで、前記加圧濾過工程を開始する[1]に記載の固液分離方法。 [2] In the suction filtration step, when the solid content concentration of the filtrate flowing out to the secondary space reaches 0.02 to 0.04 mass%, the pressure filtration step is started. The solid-liquid separation method described.
[3] 前記吸引濾過工程において、減圧された前記2次側空間の圧力を-0.08~-0.02MPa(ゲージ圧)とする[1]又は[2]に記載の固液分離方法。 [3] The solid-liquid separation method according to [1] or [2], wherein in the suction filtration step, the pressure in the secondary side space reduced in pressure is set to −0.08 to −0.02 MPa (gauge pressure).
[4] 前記加圧濾過工程において、汚泥を加圧する圧力を、0.2~0.4MPa(ゲージ圧)から、0.6~1.5MPa(ゲージ圧)まで、断続的に上げていく[1]~[3]のいずれかに記載の固液分離方法。 [4] In the pressure filtration step, the pressure for pressurizing sludge is intermittently increased from 0.2 to 0.4 MPa (gauge pressure) to 0.6 to 1.5 MPa (gauge pressure) [ [1] The solid-liquid separation method according to any one of [3].
[5] 前記圧搾工程において、濃縮汚泥を圧搾するときの圧力を、0.2~1.8MPa(ゲージ圧)とする[1]~[4]のいずれかに記載の固液分離方法。 [5] The solid-liquid separation method according to any one of [1] to [4], wherein the pressure when the concentrated sludge is squeezed is 0.2 to 1.8 MPa (gauge pressure) in the pressing step.
[6] 前記1次側空間に供給される汚泥の固形分濃度が、0.7~2.0質量%であり、前記圧搾工程おいて得られる圧搾汚泥の固形分濃度が40~45質量%である[1]~[5]のいずれかに記載の固液分離方法。 [6] The solid content concentration of the sludge supplied to the primary side space is 0.7 to 2.0% by mass, and the solid content concentration of the compressed sludge obtained in the pressing step is 40 to 45% by mass. The solid-liquid separation method according to any one of [1] to [5].
 本発明の固液分離方法によれば、吸引濾過工程において、濾布の1次側の面に濃縮汚泥を付着させ、加圧濾過工程において、上記「濾布の1次側の面に付着した濃縮汚泥」の上から更に濃縮汚泥を付着させ、段階的に加圧することにより、新たな付着層を形成させながら、旧付着層(吸引濾過工程において生成した付着層または先の加圧により形成された付着層)を圧縮して緻密化し、最後に、圧搾工程において、濾布の1次側の面に付着した濃縮汚泥(全体)を圧搾して圧搾汚泥を得るため、1つの固液分離装置を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能である。 According to the solid-liquid separation method of the present invention, in the suction filtration step, the concentrated sludge is attached to the primary side surface of the filter cloth, and in the pressure filtration step, the above-mentioned “attached to the primary side surface of the filter cloth”. Concentrated sludge is further deposited on top of the `` concentrated sludge '', and pressure is applied in stages to form a new adhesion layer, while forming an old adhesion layer (adhesion layer generated in the suction filtration process or the previous pressurization). In order to obtain the compressed sludge by compressing the concentrated sludge (whole) adhering to the primary side surface of the filter cloth in the pressing step, finally, one solid-liquid separator It is possible to concentrate sludge having a solid content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
本発明の固液分離方法の一の実施形態に用いる固液分離装置を示す模式図である。It is a schematic diagram which shows the solid-liquid separation apparatus used for one Embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の一の実施形態に用いる濾過器の断面を示す模式図である。It is a schematic diagram which shows the cross section of the filter used for one Embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の一の実施形態に用いる濾過器の断面を示すとともに、吸引濾過工程において、濾布の一次側の面に汚泥が付着している状態を示す模式図である。It is a schematic diagram which shows the state which the sludge has adhered to the surface of the primary side of a filter cloth in the suction filtration process while showing the cross section of the filter used for one Embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の一の実施形態に用いる濾過器の断面を示すとともに、加圧濾過工程において、濾布の一次側の面に汚泥が付着している状態を示す模式図である。It is a schematic diagram which shows the state which the sludge has adhered to the primary side surface of the filter cloth in the pressure filtration process while showing the cross section of the filter used for one Embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の一の実施形態に用いる濾過器の断面及び汚泥圧搾機構を示すとともに、圧搾工程において、濃縮汚泥が圧搾される状態を示す模式図である。It is a schematic diagram which shows the state by which concentrated sludge is squeezed in a pressing process while showing the cross section and sludge pressing mechanism of a filter used for one embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の一の実施形態に用いる濾過器の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。While showing the cross section of the filter used for one embodiment of the solid-liquid separation method of the present invention, it is a mimetic diagram showing signs that compressed sludge is discharged in a discharge process. 本発明の固液分離方法の他の実施形態に用いる固液分離装置を示す模式図である。It is a schematic diagram which shows the solid-liquid separation apparatus used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示す模式図である。It is a schematic diagram which shows the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の他の実施形態に用いる濾過器を模式的に示す側面図である。It is a side view which shows typically the filter used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示すとともに、吸引濾過工程において、濾布の一次側の面に汚泥が付着している状態を示す模式図である。It is a schematic diagram which shows the state which the sludge has adhered to the primary side surface of the filter cloth in the suction filtration process while showing the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示すとともに、加圧濾過工程において、濾布の一次側の面に汚泥が複数の層を形成しながら付着している状態を示す模式図である。The section which shows the section of the filter used for other embodiments of the solid-liquid separation method of the present invention, and in the pressure filtration process, the state where the sludge adheres to the primary side surface of the filter cloth while forming a plurality of layers It is a schematic diagram which shows. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示すとともに、圧搾工程において、濃縮汚泥が圧搾される状態を示す模式図である。While showing the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention, it is a schematic diagram which shows the state by which concentrated sludge is squeezed in a pressing process. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。It is a schematic diagram which shows a mode that discharged | squeezed sludge is discharged | emitted in a discharge process while showing the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示す模式図である。It is a schematic diagram which shows the cross section of the filter used for other embodiment of the solid-liquid separation method of this invention. 本発明の固液分離方法の更に他の実施形態に用いる濾過器及び減圧手段の断面を示す模式図である。It is a schematic diagram which shows the cross section of the filter and pressure-reducing means used for other embodiment of the solid-liquid separation method of this invention. 実施例3,4の固液分離方法における、濾過時間と濾液量との関係を示すグラフである。It is a graph which shows the relationship between the filtration time and the amount of filtrates in the solid-liquid separation method of Examples 3 and 4. 実施例1で用いられる濾過器の断面を示す模式図である。1 is a schematic diagram showing a cross section of a filter used in Example 1. FIG.
 次に本発明を実施するための形態を図面を参照しながら詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be understood that design changes, improvements, and the like can be made as appropriate based on ordinary knowledge.
 本発明の固液分離方法は、「濾布の一方の面側の空間である2次側空間を減圧しながら、上記濾布の他方の面側の空間である1次側空間に汚泥を供給して、上記濾布によって汚泥を濾過し、上記濾布の上記「他方の面」である1次側の面に濃縮汚泥(初期濃縮汚泥)を付着させる」吸引濾過工程と、「上記2次側空間を減圧するとともに、上記1次側空間に、汚泥を供給するとともに加圧して、上記濾布によって汚泥を濾過し、上記濾布の1次側の面に付着した濃縮汚泥(初期濃縮汚泥)の上から更に濃縮汚泥(2層目濃縮汚泥)を付着させる」加圧濾過工程と、「上記濾布の1次側の面に付着した濃縮汚泥を圧搾して圧搾汚泥を得る」圧搾工程と、「圧搾汚泥を上記濾布から剥離させる」排出工程とを有するものである。尚、「1次側空間に、汚泥を供給するとともに加圧する」とは、1次側空間に、「汚泥を加圧しながら供給する」か、又は「汚泥を供給した後に汚泥を加圧する」ことを意味する。また、「汚泥を加圧しながら供給する」場合も、「汚泥を供給した後に汚泥を加圧する」場合も、1次側空間内が加圧され、その圧力により濾液が濾布を通過して2次側空間に押し出される状態となる。 According to the solid-liquid separation method of the present invention, “sludge is supplied to the primary side space that is the space on the other side of the filter cloth while the secondary side space that is the space on the one side of the filter cloth is decompressed. Then, the sludge is filtered by the filter cloth, and the concentrated sludge (initial concentrated sludge) is attached to the primary side surface which is the “other surface” of the filter cloth. Concentrated sludge (initial concentrated sludge) adhered to the primary side surface of the filter cloth by reducing the pressure of the side space, supplying sludge to the primary side space and applying pressure, filtering the sludge with the filter cloth ) Pressure filtration step to further attach concentrated sludge (second layer concentrated sludge) from above, and “pressing concentrated sludge adhering to the primary side surface of the filter cloth to obtain compressed sludge” And a discharge step of “peeling the compressed sludge from the filter cloth”. “Supplying sludge to the primary side space and pressurizing” means “suppressing sludge while pressurizing” or “pressurizing sludge after supplying sludge” to the primary side space. Means. Moreover, in the case of “supplying sludge while pressurizing” and “pressing sludge after supplying sludge”, the pressure in the primary side is pressurized, and the filtrate passes through the filter cloth by the pressure. It will be pushed out to the secondary space.
 このように、本発明の固液分離方法は、吸引濾過工程において、濾布の1次側の面に濃縮汚泥を付着させ、加圧濾過工程において、1次側空間に、汚泥を、供給すると共に加圧して、上記「濾布の1次側の面に付着した濃縮汚泥」の上から更に濃縮汚泥を付着させつつ、先に濾布面に付着している汚泥を圧縮(緻密化)して濾布の濾過機能を高め、最後に、圧搾工程において、濾布の1次側の面に付着した濃縮汚泥を圧搾して圧搾汚泥を得るため、1つの固液分離装置を用いて、固形分1質量%程度の汚泥を濃縮して、固形分40質量%以上の汚泥とすることが可能である。 As described above, in the solid-liquid separation method of the present invention, the concentrated sludge is attached to the primary side surface of the filter cloth in the suction filtration step, and the sludge is supplied to the primary side space in the pressure filtration step. And pressurize together to compress (densify) the sludge previously attached to the filter cloth surface while further attaching the concentrated sludge from above the “concentrated sludge attached to the primary surface of the filter cloth”. In order to obtain the compressed sludge by squeezing the concentrated sludge adhering to the primary side surface of the filter cloth in the squeezing process, and finally using a single solid-liquid separator, It is possible to concentrate sludge having a content of about 1% by mass to obtain a sludge having a solid content of 40% by mass or more.
(1)本発明の固液分離方法の一の実施形態:
 本発明の固液分離方法の一の実施形態を実施するための固液分離装置は、特に限定されないが、例えば、図1に示すような固液分離装置100を用いることができる。固液分離装置100は、濾布1、及び、濾布1によって内部が仕切られた濾過器本体2を有し、濾布1の一方の面側の空間であるとともに濾液が排出される空間である2次側空間5及び濾布1の他方の面側の空間であるとともに汚泥が供給される空間である1次側空間4が形成された濾過器3と、2次側空間5を減圧することができる減圧手段11と、1次側空間4に汚泥を供給することができる汚泥供給手段12と、1次側空間4に供給する汚泥を加圧することができる汚泥加圧手段13とを備えるものである。そして、固液分離装置100は、図5に示すように、1次側空間に供給された汚泥が濾布1によって濾過されたときに、濾布1の1次側空間側の面である1次側の面6に付着した濃縮汚泥を、圧搾することができる汚泥圧搾機構15を備えるものである。圧搾された濃縮汚泥は、圧搾汚泥18になる。本実施形態の固液分離方法において用いる汚泥供給手段12は、濾過器3の鉛直方向上方に配置された汚泥貯留槽12aである。これは、濾過器3の鉛直方向上方に汚泥貯留槽12aを配置することにより、重力により汚泥貯留槽12aから濾過器3に汚泥16を供給するものである。
(1) One embodiment of the solid-liquid separation method of the present invention:
The solid-liquid separation apparatus for carrying out one embodiment of the solid-liquid separation method of the present invention is not particularly limited. For example, a solid-liquid separation apparatus 100 as shown in FIG. 1 can be used. The solid-liquid separator 100 includes a filter cloth 1 and a filter body 2 that is partitioned by the filter cloth 1. The solid-liquid separator 100 is a space on one side of the filter cloth 1 and a space where the filtrate is discharged. The secondary side space 5 is depressurized with the filter 3 in which the secondary side space 5 and the primary side space 4 which is the space on the other surface side of the filter cloth 1 and the sludge are supplied are formed. Pressure reducing means 11 capable of supplying sludge to the primary side space 4, and sludge pressurizing means 13 capable of pressurizing the sludge supplied to the primary side space 4. Is. As shown in FIG. 5, the solid-liquid separator 100 is a surface on the primary side space side of the filter cloth 1 when the sludge supplied to the primary side space is filtered by the filter cloth 1. The sludge pressing mechanism 15 which can squeeze the concentrated sludge adhering to the surface 6 of the next side is provided. The concentrated sludge that has been pressed becomes compressed sludge 18. The sludge supply means 12 used in the solid-liquid separation method of the present embodiment is a sludge storage tank 12a arranged vertically above the filter 3. This is to supply the sludge 16 from the sludge storage tank 12a to the filter 3 by gravity by disposing the sludge storage tank 12a above the filter 3 in the vertical direction.
 ここで、図1は、本発明の固液分離方法の一の実施形態に用いる固液分離装置を示す模式図(フロー図)である。図5は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面及び汚泥圧搾機構を示すとともに、圧搾工程において、濃縮汚泥が圧搾される(圧搾汚泥18が形成される)状態を示す模式図である。尚、図1において、汚泥貯留槽12aは、内部に貯留されている汚泥16が透けて見えるように表現されている。また、濾過器3は、内部に配設されている濾布1及び濾液透過部材27、そして濾布に付着している濃縮汚泥が透けて見えるように表現されている。また、濾液貯留槽14は、内部に貯留されている濾液19が透けて見えるように表現されている。 Here, FIG. 1 is a schematic diagram (flow diagram) showing a solid-liquid separation apparatus used in one embodiment of the solid-liquid separation method of the present invention. FIG. 5 shows the cross section of the filter 3 and the sludge pressing mechanism used in one embodiment of the solid-liquid separation method of the present invention, and the concentrated sludge is compressed (pressed sludge 18 is formed) in the pressing step. It is a schematic diagram which shows a state. In addition, in FIG. 1, the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through. Moreover, the filter 3 is expressed so that the filter cloth 1 and the filtrate permeation | transmission member 27 arrange | positioned inside, and the concentrated sludge adhering to the filter cloth can be seen through. Moreover, the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
 また、図2に示すように、濾過器3は、「一方の端部21に底部24を有し他方の端部22に開口部25を有する有底筒状の本体部23」及び「本体部23の開口部25に着脱可能に配設された蓋部26」を有する濾過器本体2と、濾過器本体2を蓋部26側の空間(1次側空間4)と底部24側の空間(2次側空間5)とに仕切るように濾過器本体2に配設された濾布1と、を備えるものである。そして、蓋部26に流入口26aが形成され、底部24に排出口24aが形成されたものである。蓋部26の流入口26aには、流入ノズル26bが配設され、底部24の排出口24aには、排出ノズル24bが配設されている。濾布1は、モノフィラメントにより形成された濾布であることが好ましい。また、本実施形態の濾過器本体2は、円筒状であるがこの形状に限定されるものではない。底面が四角形等の多角形の筒状や、底面が楕円形の筒状であってもよい。ここで、図2は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面を示す模式図である。 Further, as shown in FIG. 2, the filter 3 includes a “bottomed cylindrical main body 23 having a bottom 24 at one end 21 and an opening 25 at the other end 22” and “main body 23, the filter body 2 having a lid 26 "detachably disposed in the opening 25 of the 23, the filter body 2 in the space on the lid 26 side (primary side space 4) and the space on the bottom 24 side ( And a filter cloth 1 disposed in the filter body 2 so as to be partitioned into a secondary space 5). An inflow port 26 a is formed in the lid portion 26, and a discharge port 24 a is formed in the bottom portion 24. An inflow nozzle 26 b is disposed at the inflow port 26 a of the lid portion 26, and a discharge nozzle 24 b is disposed at the discharge port 24 a of the bottom portion 24. The filter cloth 1 is preferably a filter cloth formed of monofilament. Moreover, although the filter main body 2 of this embodiment is cylindrical, it is not limited to this shape. The bottom surface may be a polygonal cylinder such as a square, or the bottom surface may be an elliptical cylinder. Here, FIG. 2 is a schematic view showing a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention.
 また、濾過器3の二次側空間5には、濾布1を支えるように濾液透過部材27が配設されている。濾液透過部材27は、内部を濾液が透過する構造物である。濾液透過部材27は、加圧に対して大きな変形を生じることが無い程度の剛性を有しつつ、濾液を容易に通過させることができるものである。具体的な濾液透過部材27としては、ステンレス鋼等の金属線により3次元的に形成された金網、「セラミック、合成樹脂等」から形成され「厚さ方向に複数の貫通孔が形成された」板など、を用いることができる。また、本発明の固液分離方法で固液分離を行う汚泥は、浄水場において上水(水道水)を作製する時に排出される汚泥であって、固形分濃度が0.7~2.0質量%であることが好ましい。 Further, a filtrate transmitting member 27 is disposed in the secondary side space 5 of the filter 3 so as to support the filter cloth 1. The filtrate transmitting member 27 is a structure through which the filtrate passes. The filtrate permeable member 27 is capable of allowing the filtrate to pass through easily while having a rigidity that does not cause a large deformation with respect to pressure. Specifically, the filtrate permeating member 27 is formed of a wire mesh formed of a metal wire such as stainless steel, “ceramic, synthetic resin, etc.”, and “a plurality of through holes are formed in the thickness direction”. A board etc. can be used. The sludge that is subjected to solid-liquid separation by the solid-liquid separation method of the present invention is sludge that is discharged when preparing clean water (tap water) at a water purification plant, and has a solid content concentration of 0.7 to 2.0. It is preferable that it is mass%.
 本発明の固液分離方法の一の実施形態について、工程毎に説明する。 One embodiment of the solid-liquid separation method of the present invention will be described step by step.
(1-1)吸引濾過工程;
 本実施形態の固液分離方法における吸引濾過工程は、図1~3に示すように、「濾布1の一方の面(2次側の面7)側の空間である2次側空間5を減圧しながら、濾布1の他方の面側の空間である1次側空間4に汚泥16を供給して、濾布1によって汚泥16を濾過し、濾布1の上記「他方の面」である1次側の面6に濃縮汚泥17(初期濃縮汚泥17a)を付着させる」工程である。吸引濾過工程においては、図1に示すように、汚泥16を汚泥供給手段12に供給し、汚泥供給手段12から濾過器3の一次側空間4に汚泥16を供給している。そして供給後、濾過器3の2次側空間5は、濾液貯留槽14を介して減圧手段11によって減圧されている。これにより、濾布1によって、汚泥16中の固形分が濃縮汚泥17として捕集され、濾布1を透過した濾液19が、2次側空間5を通過して、濾液貯留槽14に送られて貯留される。尚、固液分離装置100では、汚泥加圧手段13と汚泥貯留槽12aとが配管で繋がれ、汚泥貯留槽12aと濾過器3とが配管で繋がれ、濾過器3と濾液貯留槽14とが配管で繋がれ、濾液貯留槽14と減圧手段11とが配管で繋がれている。各配管及び装置には、必要に応じて、バルブ、計器類が装備されていることが好ましい。ここで、図3は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面を示すとともに、吸引濾過工程において、濾布1の一次側の面6に汚泥(初期濃縮汚泥17a)が付着している状態を示す模式図である。
(1-1) suction filtration step;
As shown in FIGS. 1 to 3, the suction filtration step in the solid-liquid separation method of the present embodiment is described as follows: “A secondary side space 5 that is a space on one side (secondary side surface 7) side of the filter cloth 1 is removed. While reducing the pressure, the sludge 16 is supplied to the primary side space 4 that is the space on the other side of the filter cloth 1, and the sludge 16 is filtered by the filter cloth 1. This is a step of “adhering the concentrated sludge 17 (initial concentrated sludge 17a) to a certain primary surface 6”. In the suction filtration step, as shown in FIG. 1, the sludge 16 is supplied to the sludge supply means 12, and the sludge 16 is supplied from the sludge supply means 12 to the primary space 4 of the filter 3. After the supply, the secondary space 5 of the filter 3 is depressurized by the depressurization means 11 through the filtrate storage tank 14. Thereby, the solid content in the sludge 16 is collected as the concentrated sludge 17 by the filter cloth 1, and the filtrate 19 that has passed through the filter cloth 1 passes through the secondary side space 5 and is sent to the filtrate storage tank 14. Stored. In the solid-liquid separator 100, the sludge pressurizing means 13 and the sludge storage tank 12a are connected by a pipe, the sludge storage tank 12a and the filter 3 are connected by a pipe, and the filter 3 and the filtrate storage tank 14 are connected. Are connected by piping, and the filtrate storage tank 14 and the decompression means 11 are connected by piping. Each pipe and device is preferably equipped with valves and instruments as necessary. Here, FIG. 3 shows a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and sludge (initial concentrated sludge) on the primary side surface 6 of the filter cloth 1 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
 このように、本実施形態の固液分離方法は、まず、吸引濾過工程において、濾布1の一次側の面6に、初期濃縮汚泥17aを付着させるため、次の加圧濾過工程において、濾過器3の一次側空間4に、汚泥を、供給すると共に加圧しても、汚泥中の固形分が濾布1を透過して2次側空間5に漏れ出すことを抑制することができる。これは、濾布1に付着した初期濃縮汚泥17aが、濾布1と共に、汚泥中の固形分を捕集する機能を有するためである。これにより、吸引濾過工程において、通常使用されるような、「ナイロンからなるモノフィラメントによって形成されるとともに開口径の大きな濾布」を備えた装置(濾過器3)を使用した場合においても、吸引濾過工程において使用した当該装置(濾過器3)を用いて、加圧濾過工程における加圧濾過を行うことができる。つまり、吸引濾過と加圧濾過とを、1つの濾過器3(固液分離装置100)で行うことができる。 As described above, in the solid-liquid separation method of the present embodiment, first, in the suction filtration step, the initial concentrated sludge 17a is attached to the primary side surface 6 of the filter cloth 1, so that the filtration is performed in the next pressure filtration step. Even if sludge is supplied to the primary side space 4 of the vessel 3 and pressurized, it is possible to suppress the solid content in the sludge from passing through the filter cloth 1 and leaking into the secondary side space 5. This is because the initial concentrated sludge 17a attached to the filter cloth 1 has a function of collecting solids in the sludge together with the filter cloth 1. Thus, even when a device (filter 3) provided with “a filter cloth formed of a monofilament made of nylon and having a large opening diameter”, which is normally used in the suction filtration step, is used. The pressure filtration in the pressure filtration step can be performed using the apparatus (filter 3) used in the step. That is, suction filtration and pressure filtration can be performed by one filter 3 (solid-liquid separation device 100).
 吸引濾過工程において、2次側空間5に流出する濾液の固形分濃度が、0.02~0.04質量%なったところで、加圧濾過工程を開始することが好ましい。0.02質量%より低いと、初期濃縮汚泥17aが十分に形成されず、加圧濾過工程における加圧力によって、初期濃縮汚泥17a自体が、濾布1を通過して2次側空間5に漏れ出すことがある。0.04質量%より高いと、吸引濾過工程の時間が長くなるため、汚泥を固液分離する全体時間が長くなることがある。 In the suction filtration step, it is preferable to start the pressure filtration step when the solid content concentration of the filtrate flowing out to the secondary space 5 reaches 0.02 to 0.04 mass%. If it is lower than 0.02% by mass, the initial concentrated sludge 17a is not sufficiently formed, and the initial concentrated sludge 17a itself passes through the filter cloth 1 and leaks into the secondary space 5 due to the applied pressure in the pressure filtration process. May be issued. If it is higher than 0.04% by mass, the time for the suction filtration process becomes longer, and therefore the total time for solid-liquid separation of sludge may become longer.
 吸引濾過工程における濾過時間が短すぎると、初期濃縮汚泥17aが十分に濾布1に付着せず、加圧濾過工程における加圧力によって初期濃縮汚泥17a自体が濾布1を通過して2次側空間5に流れ出ることがある。濾布1によって汚泥を濾過する時間が長いと、濾過時間全体が延びるという不具合を生じる。 If the filtration time in the suction filtration process is too short, the initial concentrated sludge 17a does not sufficiently adhere to the filter cloth 1, and the initial concentrated sludge 17a itself passes through the filter cloth 1 due to the applied pressure in the pressure filtration process, and the secondary side. May flow into space 5. When the time for filtering the sludge with the filter cloth 1 is long, the entire filtration time is extended.
 吸引濾過工程において、2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、浄水場の汚泥を原料とする場合、-0.08~-0.02MPa(ゲージ圧)であることが好ましい。-0.08MPaより低いと、固形分が濾布面でとどまる事無く通過して2次側空間5に流出し、濾布1の1次側の面6に初期濃縮汚泥17aが付着しない場合がある。-0.02MPaより高いと、吸引濾過工程に長時間を要することがある。尚、「ゲージ圧」とは、大気圧を「0MPa」とした圧力計に表示される圧力である。 In the suction filtration step, the pressure when the secondary side space 5 is depressurized (the pressure of the depressurized secondary side space 5) is −0.08 to −0.02 MPa when the sludge of the water purification plant is used as a raw material. Gauge pressure) is preferable. If it is lower than −0.08 MPa, the solid content may pass through the secondary side space 5 without staying on the filter cloth surface, and the initial concentrated sludge 17a may not adhere to the primary side surface 6 of the filter cloth 1. is there. If it is higher than −0.02 MPa, the suction filtration process may take a long time. The “gauge pressure” is a pressure displayed on a pressure gauge with the atmospheric pressure set to “0 MPa”.
 吸引濾過工程において、濾過器3の2次側空間5を減圧する減圧手段11としては、真空ポンプ等を用いることができる。また、減圧手段11としては、サイホンの原理によって濾過器3の2次側空間5を減圧する手段も好ましい態様である。尚、濾過器3の2次側空間5を減圧する減圧手段11として真空ポンプを用いた場合には(図1参照)、加圧濾過工程及び圧搾工程においても、濾過器3の2次側空間5を減圧するための減圧手段としては、吸引濾過工程において用いた減圧手段11を用いることが好ましい。また、濾過器3の2次側空間5を減圧する減圧手段11としてサイホンの原理による減圧手段を用いた場合には、加圧濾過工程においては、サイホンの原理による減圧手段を用いても真空ポンプを用いてもよく、圧搾工程においては、真空ポンプを用いてもよい。 In the suction filtration step, a vacuum pump or the like can be used as the decompression means 11 that decompresses the secondary space 5 of the filter 3. Further, as the decompression means 11, a means for decompressing the secondary side space 5 of the filter 3 according to the principle of siphon is also a preferable aspect. In addition, when a vacuum pump is used as the decompression means 11 for decompressing the secondary side space 5 of the filter 3 (see FIG. 1), the secondary side space of the filter 3 is also used in the pressure filtration process and the squeezing process. As the decompression means for decompressing 5, it is preferable to use the decompression means 11 used in the suction filtration step. Further, when a pressure reducing means based on the principle of siphon is used as the pressure reducing means 11 for reducing the pressure on the secondary space 5 of the filter 3, a vacuum pump can be used in the pressure filtration step even if the pressure reducing means based on the principle of siphon is used. May be used, and a vacuum pump may be used in the pressing step.
 図2に示される、本実施形態の固液分離方法で用いる固液分離装置を構成する濾過器3の大きさは、特に限定されず、工業的な使用に際しては、浄水場や下水処理場における処理量に対応する大きさであることが好ましい。また、本体部23及び蓋部26の材質は特に限定されず、ステンレス鋼等を好適に用いることができる。 The magnitude | size of the filter 3 which comprises the solid-liquid separation apparatus used with the solid-liquid separation method of this embodiment shown by FIG. 2 is not specifically limited, In industrial use, in a water purification plant or a sewage treatment plant It is preferable that the size corresponds to the processing amount. Moreover, the material of the main-body part 23 and the cover part 26 is not specifically limited, Stainless steel etc. can be used suitably.
 また、濾布1は、モノフィラメントにより形成された濾布であることが好ましく、ポリアミド樹脂のモノフィラメントにより形成された濾布であることが更に好ましい。濾布の通気度は、20~90(cm/(cm・秒))であることが好ましい。濾布の通気度は、1次側から2次側に向かって濾布を通過する、単位面積・単位時間当りの空気量を、測定した値である。また、汚泥供給手段は、図1に示すような、濾過器3の鉛直方向上方に配置された汚泥貯留槽12aであってもよいが、「汚泥貯留槽12a」と、汚泥貯留槽12a内の汚泥を濾過器3に送液するための「ポンプ等」とから構成されるものであってもよい。汚泥供給手段が、濾過器3の鉛直方向上方に配置された汚泥貯留槽12aである場合には、汚泥貯留槽12aから、重力によって濾過器3の一次側空間に、汚泥が供給される。また、汚泥供給手段が、「汚泥貯留槽12a」と、「汚泥貯留槽12a内の汚泥を濾過器3に送液するための「ポンプ等」」とから構成される場合、汚泥貯留槽12aからポンプ等を用いて汚泥を濾過器3に供給することができる。 The filter cloth 1 is preferably a filter cloth formed of monofilaments, and more preferably a filter cloth formed of polyamide resin monofilaments. The air permeability of the filter cloth is preferably 20 to 90 (cm 3 / (cm 2 · sec)). The air permeability of the filter cloth is a value obtained by measuring the amount of air per unit area / unit time passing through the filter cloth from the primary side toward the secondary side. The sludge supply means may be a sludge storage tank 12a arranged vertically above the filter 3 as shown in FIG. 1, but the “sludge storage tank 12a” and the sludge storage tank 12a You may comprise from the "pump etc." for sending sludge to the filter 3. FIG. In the case where the sludge supply means is the sludge storage tank 12a disposed vertically above the filter 3, the sludge is supplied from the sludge storage tank 12a to the primary space of the filter 3 by gravity. Further, when the sludge supply means is constituted by “sludge storage tank 12 a” and “a“ pump or the like ”for feeding the sludge in the sludge storage tank 12 a to the filter 3”, the sludge storage tank 12 a Sludge can be supplied to the filter 3 using a pump or the like.
 汚泥貯留槽12aの大きさは、特に限定されず、処理すべき汚泥の量等によって、適宜決定することができる。また、汚泥貯留槽12aの材質は、特に限定されないが、スチール(鋼)、ポリ塩化ビニル等を好適に用いることができ、スチール(鋼)としてはステンレス鋼を好適に用いることができる。また、汚泥貯留槽12aには、汚泥を内部に受け入れるために、汚泥貯留槽12aを設置したときの鉛直方向上方側に、汚泥受入口12bが形成されていることが好ましい。また、汚泥貯留槽12aには、汚泥を排出するために、汚泥貯留槽12aを設置したときの鉛直方向下方側に、汚泥排出口12cが形成されていることが好ましい。また、汚泥排出口12cは、汚泥貯留槽12aを設置したときの、鉛直方向に対して「横方向(例えば、水平方向)」を向く壁面(汚泥貯留槽12aの壁面)に形成されていてもよい。例えば、ピット方式(コンクリート製)の場合に、「横方向」を向く壁面に汚泥排出口12cが形成されることが好ましい。汚泥受入口12b及び汚泥排出口12cには、それぞれ配管が配設されていることが好ましい。汚泥供給手段が、濾過器3の鉛直方向上方に配置された汚泥貯留槽12aである場合には、汚泥排出口12cに接続された配管が、直接、濾過器3に接続されることになる。また、汚泥供給手段が、「汚泥貯留槽12a」と、「汚泥貯留槽12a内の汚泥を濾過器3に送液するためのポンプ等」とから構成される場合、汚泥排出口12cに接続された配管が、「ポンプ等」を介して濾過器3に接続されることになる。 The size of the sludge storage tank 12a is not particularly limited, and can be appropriately determined depending on the amount of sludge to be processed. Moreover, although the material of the sludge storage tank 12a is not specifically limited, Steel (steel), polyvinyl chloride, etc. can be used conveniently, and stainless steel can be used suitably as steel (steel). Moreover, in order to receive sludge in the sludge storage tank 12a, it is preferable that a sludge inlet 12b is formed on the upper side in the vertical direction when the sludge storage tank 12a is installed. Moreover, in order to discharge the sludge, it is preferable that a sludge discharge port 12c is formed in the sludge storage tank 12a on the lower side in the vertical direction when the sludge storage tank 12a is installed. Moreover, even if the sludge discharge port 12c is formed in the wall surface (wall surface of the sludge storage tank 12a) which faces a "lateral direction (for example, horizontal direction)" with respect to the vertical direction when the sludge storage tank 12a is installed. Good. For example, in the case of the pit method (made of concrete), it is preferable that the sludge discharge port 12c is formed on the wall surface facing the “lateral direction”. It is preferable that piping is arrange | positioned at the sludge inlet 12b and the sludge outlet 12c, respectively. When the sludge supply means is the sludge storage tank 12a arranged vertically above the filter 3, the pipe connected to the sludge discharge port 12c is directly connected to the filter 3. Further, when the sludge supply means is constituted by “sludge storage tank 12a” and “a pump or the like for feeding the sludge in the sludge storage tank 12a to the filter 3”, it is connected to the sludge discharge port 12c. The pipe is connected to the filter 3 via a “pump or the like”.
(1-2)加圧濾過工程;
 本実施形態の固液分離方法における加圧濾過工程は、図1、図4に示すように、2次側空間5を減圧するとともに、1次側空間4に、汚泥16を「加圧しながら」供給し、濾布1によって汚泥16をさらに濾過する工程である。本工程の前段の吸引濾過工程において、濾布上に濃縮汚泥が付着するため、濾液の濁度は低下するが、濾液の流量は減少することとなる。そこで、加圧して濾液の処理流量を確保するための工程である。これに加えて本工程では、濾布1の1次側の面6に付着した濃縮汚泥17(初期濃縮汚泥17a)の上から更に濃縮汚泥17(2層目濃縮汚泥17b)を付着させるとともに、初期濃縮汚泥17aを圧縮してその密度を高めて(緻密化して)、濾布とこれに付着した濃縮汚泥により濾過機能を高める工程でもある。濾布1を透過した濾液19は、排出口24aから排出され、排出ノズル24b及び配管を通じて、濾液貯留槽14に送られ、濾液貯留槽14に貯留される。1次側空間4に、汚泥を「加圧しながら」供給する際には、汚泥16によって濾布1の「1次側の面6」の全面を加圧することが好ましい。図4は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面を示すとともに、加圧濾過工程において、濾布1の一次側の面6に汚泥(濃縮汚泥17(初期濃縮汚泥17a及び2層目濃縮汚泥17b))が付着している状態を示す模式図である。
(1-2) pressure filtration step;
As shown in FIGS. 1 and 4, the pressure filtration step in the solid-liquid separation method of the present embodiment decompresses the secondary side space 5 and “pressurizes” the sludge 16 in the primary side space 4. In this step, the sludge 16 is further filtered by the filter cloth 1. In the suction filtration step preceding this step, concentrated sludge adheres on the filter cloth, so that the turbidity of the filtrate is reduced, but the flow rate of the filtrate is reduced. Therefore, it is a process for ensuring the processing flow rate of the filtrate by pressurization. In addition to this, in this step, the concentrated sludge 17 (second-layer concentrated sludge 17b) is further adhered on the concentrated sludge 17 (initial concentrated sludge 17a) adhering to the primary side surface 6 of the filter cloth 1, It is also a step of compressing the initial concentrated sludge 17a to increase its density (densify) and enhance the filtration function with the filter cloth and the concentrated sludge adhering thereto. The filtrate 19 that has passed through the filter cloth 1 is discharged from the discharge port 24 a, sent to the filtrate storage tank 14 through the discharge nozzle 24 b and the piping, and stored in the filtrate storage tank 14. When supplying the sludge to the primary side space 4 while “pressurizing”, it is preferable to pressurize the entire “primary side surface 6” of the filter cloth 1 with the sludge 16. FIG. 4 shows a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention, and sludge (concentrated sludge 17 (initial stage) on the primary side surface 6 of the filter cloth 1 in the pressure filtration step. It is a schematic diagram which shows the state which the concentrated sludge 17a and the 2nd layer concentrated sludge 17b) have adhered.
 このように、加圧濾過工程は、濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過するため、濾布1が汚泥によって加圧されるとともに、初期濃縮汚泥17aも圧縮されて、初期濃縮汚泥17aの緻密化の程度に応じた濾過機能を果たす。これにより、濾布1がモノフィラメントであっても、固形分の漏れを防止しながら加圧濾過を行うことが可能となる。また、加圧濾過工程によって、固形分濃度9~16質量%の濃縮汚泥を得ることができる。 Thus, in the pressure filtration step, the filter cloth 1 is pressurized with sludge and the initial concentrated sludge 17a is compressed in order to filter the sludge under pressure with the initial concentrated sludge 17a attached to the filter cloth 1. Thus, it performs a filtering function according to the degree of densification of the initial concentrated sludge 17a. Thereby, even if the filter cloth 1 is a monofilament, pressure filtration can be performed while preventing leakage of solid contents. Further, concentrated sludge having a solid content concentration of 9 to 16% by mass can be obtained by the pressure filtration step.
 濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過する際に、供給する汚泥の圧力が急激に変化する(上昇する)と、濾布表面に形成された濃縮汚泥が濾布を通過して2次側空間に流出することがある。その場合、固形分の回収が不十分になるとともに、濃縮汚泥による固液分離が十分に行えなくなる。そのため、濾布1に初期濃縮汚泥17aが付着した状態で、汚泥を加圧濾過する際には、一回の昇圧における圧力変化を小さくし、段階的に複数回昇圧することが好ましい。これにより、固形分が2次側空間に漏れだすことを防止しながら、濾布1に付着した濃縮汚泥を緻密化することができ、最終的に高い圧力で濾過を行うことが可能となる。そして、濃縮汚泥を緻密化することが可能であるため、最終的に得られる(排出する)濃縮汚泥の固形分濃度を高くすることができる。 When the sludge is supplied under pressure with the initial concentrated sludge 17a attached to the filter cloth 1 and the pressure of the supplied sludge changes (rises) rapidly, the concentrated sludge formed on the filter cloth surface is filtered. It may flow out into the secondary space through the cloth. In that case, the solid content is not sufficiently recovered, and solid-liquid separation by concentrated sludge cannot be performed sufficiently. Therefore, when the sludge is filtered under pressure with the initial concentrated sludge 17a attached to the filter cloth 1, it is preferable to reduce the pressure change in one pressurization and increase the pressure several times stepwise. Thereby, the concentrated sludge adhering to the filter cloth 1 can be densified while preventing the solid content from leaking into the secondary side space, and finally it is possible to perform filtration at a high pressure. And since it is possible to densify concentrated sludge, the solid content density | concentration of the concentrated sludge finally obtained (discharged) can be made high.
 加圧濾過工程においては、汚泥を加圧する圧力を、0.2~0.4MPa(ゲージ圧)(最小濾過圧力)から、0.6~1.5MPa(ゲージ圧)(最大濾過圧力)まで、断続的に上げていくことが好ましい。これにより、汚泥中の固形分が濾布を透過して濾液側に流出することを、より効果的に防止することができる。ここで、「最小濾過圧力」とは、加圧濾過工程において、汚泥を加圧するときの、最初(最初の段階)の圧力であって最も低い圧力のことである。「最大濾過圧力」とは、汚泥を加圧するときの、最後(最後の段階)の圧力であって最も高い圧力のことである。最小濾過圧力が、0.2MPaより低いと、固液分離にかかる時間が長くなることがある。最小濾過圧力が、0.4MPaより高いと、加圧濾過を行う際に、固形分が濾布を透過し易くなることがある。また、最大濾過圧力が、0.6MPaより低いと、固液分離にかかる時間が長くなることがある。最大濾過圧力が、1.5MPaより高いと、固形分が濾布を透過し易くなることがある。尚、「汚泥を加圧する圧力を断続的に上げる」とは、汚泥を加圧する圧力を階段状に上昇させることであり、「一定圧力の状態(一定圧力の維持)」と「昇圧している状態(昇圧操作)」とを交互に繰り返しながら「汚泥を加圧する圧力」を上げることである。また、加圧濾過工程においては、汚泥によって濾布を加圧するため、汚泥で濾過器3の1次側空間4を満たし、1次側空間内の汚泥の圧力(1次側空間内の圧力)を上記所定の圧力とすることが好ましい。従って、汚泥を、上記所定の圧力で、濾過器3の1次側空間4に供給することが好ましい。 In the pressure filtration step, the pressure for pressurizing the sludge is from 0.2 to 0.4 MPa (gauge pressure) (minimum filtration pressure) to 0.6 to 1.5 MPa (gauge pressure) (maximum filtration pressure). It is preferable to raise it intermittently. Thereby, it can prevent more effectively that solid content in sludge permeate | transmits a filter cloth, and flows out into the filtrate side. Here, the “minimum filtration pressure” is the first (first stage) pressure and the lowest pressure when the sludge is pressurized in the pressure filtration step. The “maximum filtration pressure” is the last (last stage) pressure and the highest pressure when the sludge is pressurized. If the minimum filtration pressure is lower than 0.2 MPa, the time required for solid-liquid separation may become longer. When the minimum filtration pressure is higher than 0.4 MPa, solid content may easily pass through the filter cloth when performing pressure filtration. Moreover, when the maximum filtration pressure is lower than 0.6 MPa, the time required for solid-liquid separation may become longer. When the maximum filtration pressure is higher than 1.5 MPa, the solid content may easily pass through the filter cloth. “To increase the pressure to pressurize the sludge intermittently” means to increase the pressure to pressurize the sludge in a stepped manner, and to “Pressure constant (maintain constant pressure)” and “Pressure increase” It is to increase the “pressure to pressurize sludge” while repeating “state (pressure increase operation)” alternately. Moreover, in the pressure filtration process, since the filter cloth is pressurized with sludge, the sludge pressure fills the primary space 4 of the filter 3 and the sludge pressure in the primary space (pressure in the primary space). Is preferably set to the predetermined pressure. Therefore, it is preferable to supply the sludge to the primary space 4 of the filter 3 at the predetermined pressure.
 また、加圧濾過工程において、1次側空間内の圧力(汚泥を加圧する圧力)を、最小濾過圧力から最大濾過圧力まで断続的に昇圧する場合、一回の昇圧(昇圧操作)において上昇させる圧力は、0.2~0.7MPa(上昇幅)であることが好ましく、0.2~0.4MPaであることが更に好ましい。これにより、より効果的に、濾布に付着した濃縮汚泥を緻密化し、濾布からの固形分の漏れを抑制することができる。一回の昇圧で上昇させる圧力が、0.2MPaより小さいと、固液分離に要する時間が長くなることがある。一回の昇圧で上昇させる圧力が、0.7MPaより大きいと、固形分が、濾布から漏れ易くなることがある。また、一回の昇圧で上昇させる圧力は、一定の値であってもよいし、昇圧の段階によって異なってもよい。また、昇圧操作における昇圧速度(MPa/分)は、特に限定されないが、濾液に固形分が混入しない程度の速度とすることが好ましい。昇圧速度を速くし過ぎると、濾液に固形分が混入することがあり、また、濾布に付着した濃縮汚泥の層が崩れる可能性もあるため、好ましくない。昇圧速度としては、例えば、0.5~2分が好ましい。このような昇圧速度の範囲内において、「濾液に固形分が混入したり、濾布に付着した濃縮汚泥の層が崩れたり」することがないように、適宜、昇圧速度を調整することが好ましい。 Further, in the pressure filtration step, when the pressure in the primary side space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased by a single pressure increase (pressure increase operation). The pressure is preferably 0.2 to 0.7 MPa (rising range), and more preferably 0.2 to 0.4 MPa. Thereby, the concentrated sludge adhering to the filter cloth can be densified more effectively, and solid content leakage from the filter cloth can be suppressed. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is greater than 0.7 MPa, the solid content may easily leak from the filter cloth. Further, the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage. Further, the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable. As the pressure increase rate, for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
 そして、加圧濾過工程において、1次側空間内の圧力(汚泥を加圧する圧力)を、最小濾過圧力から最大濾過圧力まで断続的に上げる場合、「一定圧力の状態」から「昇圧している状態」への切り替えは、濾液の状況を確認して行うこととなる。 In the pressure filtration step, when the pressure in the primary space (pressure for pressurizing sludge) is intermittently increased from the minimum filtration pressure to the maximum filtration pressure, the pressure is increased from the “constant pressure state”. Switching to “state” is performed after confirming the state of the filtrate.
 具体的には、昇圧直後、濾液の濁度は上昇する。この濁度は時間経過とともに減少していく。この濁度低下は、初期濃縮汚泥17aの緻密化および、初期濃縮汚泥17aの上に新たな濃縮汚泥の層(2層目濃縮汚泥17b)が形成されることにより、これらの「初期濃縮汚泥17a及び2層目濃縮汚泥17b」が濾布1とともに濾過機能を果たし、新たな(高い)圧力においても汚泥を良好に濾過することができるような、汚泥の濾過に適した状態になったことを示す。したがって、この濁度低下により、初期濃縮汚泥17aの緻密化および、初期濃縮汚泥17aの上に新たな濃縮汚泥の層が形成されたと判断することができる。 Specifically, immediately after pressurization, the turbidity of the filtrate increases. This turbidity decreases with time. This decrease in turbidity is caused by densification of the initial concentrated sludge 17a and formation of a new layer of concentrated sludge (second layer concentrated sludge 17b) on the initial concentrated sludge 17a. And the second-layer concentrated sludge 17b "has achieved a filtration function together with the filter cloth 1, and is in a state suitable for sludge filtration so that the sludge can be satisfactorily filtered even at a new (high) pressure. Show. Therefore, it can be determined that the initial concentrated sludge 17a is densified and a new concentrated sludge layer is formed on the initial concentrated sludge 17a due to the decrease in turbidity.
 昇圧後の初期濃縮汚泥17aの緻密化および、新たな濃縮汚泥の層の形成のための時間、すなわち濁度が所定の値に低下するまでの時間は、処理すべき汚泥の組成や濃度などによって異なる。したがって、初期濃縮汚泥17aの緻密化状況や、新たな濃縮汚泥の層形成が十分であるか否かの判断は、濾液の濁度、濃度を計測して判断する。また、濁度計により濁度を計測し、濁度が一定値以下になった場合に上記判断を下してもよい。 The time for densification of the initial concentrated sludge 17a after pressurization and the formation of a new concentrated sludge layer, that is, the time until the turbidity is lowered to a predetermined value depends on the composition and concentration of the sludge to be treated. Different. Accordingly, whether the initial concentrated sludge 17a is densified or whether a new concentrated sludge layer is sufficiently formed is determined by measuring the turbidity and concentration of the filtrate. Alternatively, the turbidity may be measured with a turbidimeter, and the above determination may be made when the turbidity is below a certain value.
 また、初期濃縮汚泥17aの緻密化および、新たな濃縮汚泥の層の形成に伴い、昇圧直後の濾液流量も変化するため、この流量変化により、初期濃縮汚泥17aの緻密化状況や、新たな濃縮汚泥の層が形成されたことの判断を行うことも可能である。これらの判断のために、一時的に濾液を濾液貯留槽14の槽外に取り出すようにしても良い。また、濁度が高い濾液が発生する時間は濾液全体から見ると微量であるためそのまま濾液貯留槽14に流入させても良い。 In addition, the flow rate of the filtrate immediately after pressurization changes with the densification of the initial concentrated sludge 17a and the formation of a new concentrated sludge layer. It is also possible to determine that a sludge layer has been formed. For these determinations, the filtrate may be temporarily taken out of the filtrate storage tank 14. Moreover, since the time when a filtrate with high turbidity is generated is very small when viewed from the whole filtrate, it may be allowed to flow into the filtrate storage tank 14 as it is.
 また、通常の吸引濾過においては、濾過の進行に伴い濾布面への汚泥の付着が進み、濾過流量が低下し、汚泥の処理量が減少する。しかし、本発明の加圧濾過工程の段階的な昇圧により、付着した濃縮汚泥を濾布の一部として機能させつつ、汚泥処理量を確保できるため、従来の吸引濾過を主体とした濾過濃縮工程より短時間で所定量の汚泥を濃縮することができる。 Also, in normal suction filtration, as the filtration proceeds, the sludge adheres to the filter cloth surface, the filtration flow rate decreases, and the amount of sludge treatment decreases. However, the step-by-step pressure increase of the pressure filtration process of the present invention allows the sludge treatment amount to be secured while functioning the adhering concentrated sludge as a part of the filter cloth. A predetermined amount of sludge can be concentrated in a shorter time.
 また、本発明における加圧濾過工程においては、汚泥を加圧しながら濾過を行うため、汚泥が濾布に供給される状態を維持しつつ、新な汚泥を、「濾布面に先に付着している汚泥」上に付着するとともに、「先に付着している汚泥」が圧縮されながら、濾過が行なわれる。特に、汚泥が濾布に供給される状態を維持することは、汚泥が濾布に供給されずに、濾布に付着した濃縮汚泥を機械的に加圧(構造物を押し付けて加圧)して、濃縮汚泥中の水分を搾り取る「圧搾工程」とは異なる点である。 Further, in the pressure filtration step in the present invention, filtration is performed while the sludge is pressurized, so that the new sludge is attached to the filter cloth surface first while maintaining the state where the sludge is supplied to the filter cloth. Filtration is performed while the “sludge adhering first” is compressed, while adhering onto the “sludge”. In particular, maintaining the state in which the sludge is supplied to the filter cloth means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure) without the sludge being supplied to the filter cloth. Thus, it is different from the “squeezing process” in which the moisture in the concentrated sludge is squeezed.
 加圧濾過工程においては、1次側空間4を濾液で加圧する(濾布1を濾液で加圧する)とともに、2次側空間5を減圧するが、2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、-0.08~-0.02MPa(ゲージ圧)が好ましい。-0.02MPaより高いと、最終的に得られる圧搾汚泥の濃度が40質量%未満となることがあり、また、圧搾汚泥の濃度を40質量%以上に上げようとすると、長時間を要することがある。 In the pressure filtration step, the primary space 4 is pressurized with the filtrate (the filter cloth 1 is pressurized with the filtrate) and the secondary space 5 is depressurized, but the pressure when the secondary space 5 is depressurized. The (pressure in the reduced secondary space 5) is preferably −0.08 to −0.02 MPa (gauge pressure). If it is higher than -0.02 MPa, the concentration of the finally obtained compressed sludge may be less than 40% by mass, and it takes a long time to increase the concentration of the compressed sludge to 40% by mass or more. There is.
 加圧濾過工程においては、図1に示すように、濾過器3の1次側空間4に供給する汚泥16を、汚泥加圧手段13によって加圧し、加圧された汚泥によって濾布1(1次側空間4内)が加圧される。汚泥加圧手段13としては、空気、「窒素等の不活性ガス」等のボンベ、空気圧縮装置(コンプレッサー)等を用いる方式や、油圧等によりピストンで直接汚泥を圧縮する機械的な加圧方式を採用することができる。汚泥16を汚泥加圧手段13により加圧する際には、図1に示すように、汚泥加圧手段13によって「汚泥が貯留された汚泥貯留槽12a」内の汚泥を加圧し、加圧された汚泥貯留槽12a内の汚泥を濾過器3の1次側空間4に送り、1次側空間4内(濾布)を加圧することが好ましい。この場合、汚泥加圧手段13から、加圧された「空気、窒素等の加圧媒体」が、汚泥貯留槽12aに送られることにより、汚泥貯留槽12a内が加圧される。 In the pressure filtration step, as shown in FIG. 1, the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13, and the filter cloth 1 (1 The inside of the secondary space 4) is pressurized. As the sludge pressurizing means 13, a method using air, a cylinder such as “inert gas such as nitrogen”, an air compression device (compressor) or the like, or a mechanical pressurization method in which sludge is compressed directly with a piston by hydraulic pressure or the like. Can be adopted. When the sludge 16 is pressurized by the sludge pressurizing means 13, as shown in FIG. 1, the sludge in the “sludge storage tank 12 a storing sludge” is pressurized and pressurized by the sludge pressurizing means 13. It is preferable to send the sludge in the sludge storage tank 12a to the primary space 4 of the filter 3 and pressurize the primary space 4 (filter cloth). In this case, the pressurized “pressurizing medium such as air and nitrogen” is sent from the sludge pressurizing means 13 to the sludge storage tank 12a, whereby the inside of the sludge storage tank 12a is pressurized.
 加圧濾過工程においては、図1に示すように、汚泥加圧手段13によって、濾過器3の1次側空間4に供給する汚泥16を加圧する際に、圧力調整手段13aによって、汚泥の圧力を調整することが好ましい。圧力調整手段13aとしては、圧力調整弁を挙げることができる。圧力調整手段13aは、汚泥加圧手段13と汚泥貯留槽12aとを繋ぐ、配管に設けられていることが好ましい。 In the pressure filtration step, as shown in FIG. 1, when the sludge 16 supplied to the primary space 4 of the filter 3 is pressurized by the sludge pressurizing means 13, the pressure of the sludge is adjusted by the pressure adjusting means 13 a. Is preferably adjusted. An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
(1-3)圧搾工程;
 本実施形態の固液分離方法における圧搾工程は、図5に示すように、濾布1の1次側の面6に付着した濃縮汚泥を圧搾して圧搾汚泥18を得る工程である。加圧濾過の操作(加圧濾過工程)が終了した後、濾過器内に残留する汚泥を除去した後に濃縮汚泥の圧搾(圧搾工程)を行う。また、加圧濾過の操作(加圧濾過工程)により、汚泥が濾過器内に残留しない状態になる場合には、加圧濾過工程を完了させた後に、残留する汚泥を除去する操作等を行わずに、圧搾工程を開始することができる。濾過器内に残留する汚泥を除去した際には、濾過器から取り出した汚泥は、再度汚泥貯留槽に戻し、固液分離を行うことが好ましい。
(1-3) pressing process;
As shown in FIG. 5, the pressing step in the solid-liquid separation method of the present embodiment is a step of obtaining the pressing sludge 18 by pressing the concentrated sludge adhering to the primary side surface 6 of the filter cloth 1. After the pressure filtration operation (pressure filtration step) is completed, the sludge remaining in the filter is removed, and then the concentrated sludge is squeezed (squeezing step). Also, if the sludge does not remain in the filter by the pressure filtration operation (pressure filtration step), after the pressure filtration step is completed, an operation to remove the remaining sludge is performed. Without squeezing, the pressing process can be started. When the sludge remaining in the filter is removed, the sludge taken out from the filter is preferably returned to the sludge storage tank and subjected to solid-liquid separation.
 圧搾工程において、「濃縮汚泥を圧搾する」とは、汚泥を濾布に供給せずに、濾布に付着した濃縮汚泥を機械的に加圧(構造物を押し付けて加圧、又は構造物で挟んで加圧)して、濃縮汚泥中の水分を搾り取ることを意味する。 In the pressing process, “squeezing the concentrated sludge” means that the concentrated sludge adhering to the filter cloth is mechanically pressurized (pressed by pressing the structure, or the structure without supplying the sludge to the filter cloth). It means that the moisture in the concentrated sludge is squeezed out.
 圧搾工程においては、濃縮汚泥を圧搾するときの圧力は、0.2~1.8MPa(ゲージ圧)であることが好ましい。更に、上記圧力範囲内において、濃縮汚泥を圧搾するときの圧力を断続的に上げながら濃縮汚泥を圧搾することが好ましい。断続的に昇圧する際には、加圧濾過工程における「最大濾過圧力」より高い圧力から昇圧を開始することが好ましい。濃縮汚泥を圧搾するときの圧力が、0.2MPaより低いと、圧搾汚泥の固形分濃度が高くならないことがあり、圧搾工程に長時間を要することがある。濃縮汚泥を圧搾するときの圧力が、1.8MPaより高いと、濃縮汚泥(又は圧搾汚泥)の一部が、濾布を透過することがある。ここで、「濃縮汚泥を圧搾するときの圧力を断続的に上げる」とは、濃縮汚泥を圧搾する圧力を階段状に上昇させることであり、「一定圧力の状態(一定圧力の維持)」と「昇圧している状態(昇圧操作)」とを交互に繰り返しながら、「濃縮汚泥を圧搾する圧力」を上げることである。 In the pressing step, the pressure when pressing the concentrated sludge is preferably 0.2 to 1.8 MPa (gauge pressure). Furthermore, in the said pressure range, it is preferable to squeeze concentrated sludge, raising the pressure when squeezing concentrated sludge intermittently. When the pressure is intermittently increased, it is preferable to start the pressure increase from a pressure higher than the “maximum filtration pressure” in the pressure filtration step. When the pressure at the time of pressing concentrated sludge is lower than 0.2 MPa, the solid content concentration of the compressed sludge may not increase, and the pressing process may take a long time. When the pressure at the time of pressing concentrated sludge is higher than 1.8 MPa, a part of concentrated sludge (or compressed sludge) may permeate | transmit a filter cloth. Here, “intermittently increasing the pressure when squeezing the concentrated sludge” means increasing the pressure for squeezing the concentrated sludge in a stepped manner, and “constant pressure state (maintenance of constant pressure)” It is to increase the “pressure for squeezing the concentrated sludge” while alternately repeating “the state of increasing pressure (pressure increasing operation)”.
 また、圧搾工程において、濃縮汚泥にかける圧力を、上記のように断続的に上げる場合、加圧濾過工程における「最大濾過圧力」より0.2~0.4MPaだけ高い圧力(最小圧搾圧力)から、加圧濾過工程における「最大濾過圧力」より0.7~1.0MPaだけ高い圧力(最大圧搾圧力)まで、断続的に上げていくことが好ましい。これにより、濾布1に付着した濃縮汚泥の層を壊すことなく、それらを濾過膜として機能させた脱水を行うことが可能となる。すなわち濃縮汚泥中の固形分が濾布を透過して濾液側に流出することを、より効果的に防止することができる。ここで、「最小圧搾圧力」とは、圧搾工程において、濃縮汚泥を加圧するときの、最初(最初の段階)の圧力であって最も低い圧力のことである。「最大圧搾圧力」とは、濃縮汚泥を加圧するときの、最後(最後の段階)の圧力であって最も高い圧力のことである。最小圧搾圧力が、「加圧濾過工程における最大濾過圧力より0.4MPaだけ高い圧力」より高いと、濃縮汚泥を加圧する際に、固形分が濾布を透過し易くなることがある。また、本実施形態の固液分離方法においては、圧搾工程において濾過器3を上記のような高い圧力にまで昇圧するため、濾過器3は、耐圧構造であることが好ましい。また、圧搾工程において、最終的に濃縮汚泥にかける圧力を、1.5~1.8MPaとすることが、好ましい態様である。 In addition, when the pressure applied to the concentrated sludge is intermittently increased as described above in the pressing process, from a pressure (minimum pressing pressure) that is 0.2 to 0.4 MPa higher than the “maximum filtering pressure” in the pressure filtering process. The pressure is preferably intermittently increased to a pressure (maximum pressing pressure) higher by 0.7 to 1.0 MPa than the “maximum filtration pressure” in the pressure filtration step. Thereby, it becomes possible to perform dehydration by causing them to function as a filtration membrane without breaking the layer of concentrated sludge adhering to the filter cloth 1. That is, it is possible to more effectively prevent the solid content in the concentrated sludge from passing through the filter cloth and flowing out to the filtrate side. Here, the “minimum pressing pressure” is the first (first stage) pressure and the lowest pressure when the concentrated sludge is pressurized in the pressing step. The “maximum squeezing pressure” is the last (last stage) pressure and the highest pressure when the concentrated sludge is pressurized. When the minimum squeezing pressure is higher than “a pressure higher by 0.4 MPa than the maximum filtration pressure in the pressure filtration step”, the solid content may easily pass through the filter cloth when the concentrated sludge is pressurized. Moreover, in the solid-liquid separation method of this embodiment, in order to pressurize the filter 3 to the above high pressure in a pressing process, it is preferable that the filter 3 is a pressure | voltage resistant structure. In the pressing step, it is preferable that the pressure finally applied to the concentrated sludge is 1.5 to 1.8 MPa.
 また、圧搾工程において、濃縮汚泥にかける圧力を、最小圧搾圧力から最大圧搾圧力まで断続的に上げる場合、一回の昇圧(昇圧操作)において上昇させる圧力は、0.2~0.4MPa(上昇幅)であることが好ましい。これにより、より効果的に、濾布からの固形分の漏れを抑制しながら、固形分濃度の高い圧搾汚泥を得ることができる。一回の昇圧で上昇させる圧力が、0.2MPaより小さいと、固液分離に要する時間が長くなることがある。一回の昇圧で上昇させる圧力が、0.4MPaより大きいと、固形分が、濾布から漏れ易くなることがある。また、一回の昇圧で上昇させる圧力は、一定の値であってもよいし、昇圧の段階によって異なってもよい。また、昇圧操作における昇圧速度(MPa/分)は、特に限定されないが、濾液に固形分が混入しない程度の速度とすることが好ましい。昇圧速度を速くし過ぎると、濾液に固形分が混入することがあり、また、濾布に付着した濃縮汚泥の層が崩れる可能性もあるため、好ましくない。昇圧速度としては、例えば、0.5~2分が好ましい。このような昇圧速度の範囲内において、「濾液に固形分が混入したり、濾布に付着した濃縮汚泥の層が崩れたり」することがないように、適宜、昇圧速度を調整することが好ましい。 In the pressing process, when the pressure applied to the concentrated sludge is intermittently increased from the minimum pressing pressure to the maximum pressing pressure, the pressure to be increased in one pressurization (pressure increasing operation) is 0.2 to 0.4 MPa (increase) Width). Thereby, pressing sludge with high solid content concentration can be obtained, suppressing the leakage of solid content from a filter cloth more effectively. If the pressure raised by one pressurization is less than 0.2 MPa, the time required for solid-liquid separation may be increased. If the pressure raised by one pressurization is larger than 0.4 MPa, the solid content may easily leak from the filter cloth. Further, the pressure to be raised by one boosting may be a constant value or may be different depending on the boosting stage. Further, the pressure increase rate (MPa / min) in the pressure increase operation is not particularly limited, but it is preferable to set the rate so that the solid content is not mixed into the filtrate. If the pressure increase rate is too high, solids may be mixed in the filtrate, and the concentrated sludge layer adhering to the filter cloth may be broken, which is not preferable. As the pressure increase rate, for example, 0.5 to 2 minutes is preferable. Within the range of the pressure increase rate, it is preferable to adjust the pressure increase rate appropriately so that “the solid content is not mixed in the filtrate or the layer of concentrated sludge adhering to the filter cloth does not collapse”. .
 そして、圧搾工程において、濃縮汚泥にかける圧力を、最小圧搾圧力から最大圧搾圧力まで断続的に上げる場合、「一定圧力の状態」から「昇圧している状態」への切り替えは、濾液の流量が、「一定圧力の状態」における初期の流量に対して15~25%となったときに行うことが好ましい。 In the pressing process, when the pressure applied to the concentrated sludge is intermittently increased from the minimum pressing pressure to the maximum pressing pressure, switching from the “constant pressure state” to the “pressurizing state” requires that the flow rate of the filtrate be It is preferably performed when the flow rate is 15 to 25% of the initial flow rate in the “constant pressure state”.
 圧搾工程においては、濃縮汚泥を加圧するとともに、2次側空間5を減圧することが好ましい。濃縮汚泥を加圧するとともに、2次側空間5を減圧することにより、圧搾汚泥の表面(特に、濾布に接する面)付近の濾液19が迅速に排出されるため、その表面がより乾燥した状態となり、圧搾汚泥を濾布から剥離させるときに、より容易に剥離させることができるようになる。2次側空間5を減圧するときの圧力(減圧された2次側空間5の圧力)は、-0.08~-0.02MPa(ゲージ圧)が好ましい。-0.02MPaより高いと、圧搾汚泥の表面が乾燥し難いことがある。 In the pressing step, it is preferable to pressurize the concentrated sludge and depressurize the secondary space 5. Since the filtrate 19 near the surface of the compressed sludge (particularly the surface in contact with the filter cloth) is quickly discharged by pressurizing the concentrated sludge and depressurizing the secondary space 5, the surface is more dry. Thus, when the compressed sludge is peeled off from the filter cloth, it can be peeled off more easily. The pressure when the secondary side space 5 is decompressed (the pressure of the decompressed secondary side space 5) is preferably −0.08 to −0.02 MPa (gauge pressure). If it is higher than −0.02 MPa, the surface of the pressed sludge may be difficult to dry.
 圧搾工程おいて得られる圧搾汚泥の固形分濃度は、40~45質量%であることが好ましい。圧搾汚泥の固形分濃度が、40質量%より低いと、圧搾汚泥を燃焼廃棄するときに、燃焼炉の負荷が大きくなることがある。圧搾汚泥の固形分濃度は高いほど好ましいが、本実施形態の固液分離方法では、45質量%程度が上限となる。 The solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass. When the solid content concentration of the compressed sludge is lower than 40% by mass, the load on the combustion furnace may be increased when the compressed sludge is burned and discarded. The higher the solid content concentration of the compressed sludge, the better. However, in the solid-liquid separation method of the present embodiment, the upper limit is about 45% by mass.
 図5に示される、圧搾工程において用いられる汚泥圧搾機構15は、シリンダー部15bと、「シリンダー部15b内を往復移動することができるピストン部15e」及び「ピストン部15eの先端に配設されピストン部15eの移動方向に直交する加圧面15gを有する加圧板15f」を有する加圧部15aと、シリンダー部15b内を加圧して加圧部15aを移動させる加圧手段15cと、を備えるものである。また、加圧手段15cによってシリンダー部15b内を加圧するときの圧力調整を行うために、加圧手段15cとシリンダー部15bとを繋ぐ配管に、圧力調整手段15dが取り付けられていることが好ましい。図5は、本発明の固液分離方法の一の実施形態に用いる濾過器3の断面及び汚泥圧搾機構15を示すとともに、圧搾工程において、濃縮汚泥が圧搾される状態を示す模式図である。尚、図5には、蓋部26(図2参照)は図示していない。 The sludge squeezing mechanism 15 used in the squeezing process shown in FIG. 5 includes a cylinder part 15b, a “piston part 15e capable of reciprocating in the cylinder part 15b”, and a “piston part 15e disposed at the tip of the piston part 15e. A pressurizing part 15a having a pressurizing plate 15f having a pressurizing surface 15g perpendicular to the moving direction of the part 15e, and a pressurizing means 15c that pressurizes the inside of the cylinder part 15b and moves the pressurizing part 15a. is there. In order to adjust the pressure when the inside of the cylinder portion 15b is pressurized by the pressurizing means 15c, it is preferable that the pressure adjusting means 15d is attached to a pipe connecting the pressurizing means 15c and the cylinder portion 15b. Drawing 5 is a mimetic diagram showing the state where concentrated sludge is squeezed while showing the section of filter 3 and sludge pressing mechanism 15 used for one embodiment of the solid-liquid separation method of the present invention. Note that the lid 26 (see FIG. 2) is not shown in FIG.
 圧搾工程において、上記汚泥圧搾機構15を用いる際には、蓋部26(図2参照)を濾過器3から取りはずすことが好ましい。また、蓋部又は蓋部の一部を、加圧部15aとして使用できるような構造にすることも好ましい態様である。 In the pressing step, when the sludge pressing mechanism 15 is used, it is preferable to remove the lid 26 (see FIG. 2) from the filter 3. Moreover, it is also a preferable aspect that the lid part or a part of the lid part has a structure that can be used as the pressurizing part 15a.
 汚泥圧搾機構15において、シリンダー部15b及び加圧部15aの構造及び材質は、特に限定されず、濃縮汚泥の全面を均等に、所定の圧力で加圧できるものであればよい。また、加圧手段15cは、特に限定されないが、空気圧縮装置(コンプレッサー)等を用いることができる。また、圧力調整手段15dとしは、特に限定されないが、圧力調整弁を挙げることができる。 In the sludge squeezing mechanism 15, the structure and material of the cylinder portion 15b and the pressurizing portion 15a are not particularly limited as long as they can press the entire surface of the concentrated sludge evenly with a predetermined pressure. The pressurizing means 15c is not particularly limited, but an air compression device (compressor) or the like can be used. Further, the pressure adjusting means 15d is not particularly limited, but may include a pressure adjusting valve.
(1-4)排出工程;
 本実施形態の固液分離方法における排出工程は、図6に示すように、圧搾汚泥18を濾布1から剥離させる工程であり、濾布1から剥離させた圧搾汚泥18は、濾過器3から排出される。図6は本発明の固液分離方法の一の実施形態に用いる濾過器3の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。尚、図6には汚泥圧搾機構15は図示していない。
(1-4) Discharging process;
As shown in FIG. 6, the discharge step in the solid-liquid separation method of the present embodiment is a step of peeling the compressed sludge 18 from the filter cloth 1, and the pressed sludge 18 peeled from the filter cloth 1 is removed from the filter 3. Discharged. FIG. 6 is a schematic view showing a state of discharging the compressed sludge in the discharging step while showing a cross section of the filter 3 used in one embodiment of the solid-liquid separation method of the present invention. In addition, the sludge pressing mechanism 15 is not illustrated in FIG.
 排出工程においては、2次側空間から1次側空間に向かって(濾布1を通過するように)圧縮空気を流し、当該圧縮空気によって圧搾汚泥18を濾布1から剥離させることが好ましい。また、櫛状の部材を濾過膜に沿って移動させて機械的に剥離させることも可能である。さらに、濾過器が小さく、人間の手で容易に取り扱える場合には、人間の手で圧搾汚泥を掻き出す方法、濾過器を傾斜させて圧搾汚泥を排出する方法、圧搾汚泥を濾布とともに取り出した後に濾布から剥離させたりする方法等により、圧搾汚泥を濾布から剥離させることも可能である。 In the discharging step, it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 1) and to peel the compressed sludge 18 from the filter cloth 1 by the compressed air. It is also possible to mechanically peel the comb-shaped member by moving it along the filtration membrane. In addition, if the filter is small and can be easily handled by human hands, the method of scraping out the compressed sludge with human hands, the method of discharging the compressed sludge by tilting the filter, and after removing the compressed sludge with the filter cloth It is also possible to peel the pressed sludge from the filter cloth by a method such as peeling from the filter cloth.
(2)本発明の固液分離方法の他の実施形態:
 次に、本発明の固液分離方法の他の実施形態について説明する。本発明の固液分離方法の他の実施形態を実施するための固液分離装置200(図7参照)は、図1に示す固液分離装置100において、濾過器3(図1参照)を、図8A、図8Bに示すような濾過器53に置き替えたものである。従って、本実施形態の固液分離方法は、濾過器として図8A、図8Bに示される濾過器53を使用した以外は、上記本発明の固液分離方法の一の実施形態と同様である。図7は、本発明の固液分離方法の他の実施形態に用いる固液分離装置200を示す模式図(フロー図)である。図8Aは、本発明の固液分離方法の他の実施形態に用いる濾過器53の断面を示す模式図である。図8Bは、本発明の固液分離方法の他の実施形態に用いる濾過器53を模式的に示す側面図である。尚、図7において、汚泥貯留槽12aは、内部に貯留されている汚泥16が透けて見えるように表現されている。また、濾過器53は、断面を示すように表現されている。また、濾液貯留槽14は、内部に貯留されている濾液19が透けて見えるように表現されている。
(2) Another embodiment of the solid-liquid separation method of the present invention:
Next, another embodiment of the solid-liquid separation method of the present invention will be described. A solid-liquid separation device 200 (see FIG. 7) for carrying out another embodiment of the solid-liquid separation method of the present invention includes a filter 3 (see FIG. 1) in the solid-liquid separation device 100 shown in FIG. The filter 53 is replaced with a filter 53 as shown in FIGS. 8A and 8B. Therefore, the solid-liquid separation method of the present embodiment is the same as that of the above-described embodiment of the solid-liquid separation method of the present invention except that the filter 53 shown in FIGS. 8A and 8B is used as the filter. FIG. 7 is a schematic diagram (flow diagram) showing a solid-liquid separation device 200 used in another embodiment of the solid-liquid separation method of the present invention. FIG. 8A is a schematic view showing a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention. FIG. 8B is a side view schematically showing a filter 53 used in another embodiment of the solid-liquid separation method of the present invention. In addition, in FIG. 7, the sludge storage tank 12a is expressed so that the sludge 16 stored inside can be seen through. The filter 53 is expressed so as to show a cross section. Moreover, the filtrate storage tank 14 is expressed so that the filtrate 19 stored inside can be seen through.
 図8A、図8Bに示される、本実施形態の固液分離方法に用いる濾過器53は、濾過器本体52が、「間隔を開けて配置され内部が2次側空間55となる」2つの濾液排出槽61,61と、「2つの濾液排出槽61,61に挟まれるように配置されるとともに内部が1次側空間54となる」濃縮槽62とを有し、2つの濾液排出槽61,61のそれぞれと濃縮槽62との境界に濾布51を1枚ずつ備えるとともに、2つの濾液排出槽61,61内に、濾布51を支えるように濾液透過部材63,63を備えるものである。そして、汚泥圧搾機構が、2つの濾液排出槽61,61が1次側空間54を狭めて互いに近づくように移動し、2枚の濾布51,51のそれぞれの1次側の面56,56に付着した濃縮汚泥を、2つの濾液排出槽61,61の間に挟んで圧搾する機構である。 The filter 53 used in the solid-liquid separation method of the present embodiment shown in FIGS. 8A and 8B has two filtrates in which the filter body 52 is “disposed at an interval and the inside becomes the secondary space 55”. A drain tank 61, 61, and a concentration tank 62, which is arranged so as to be sandwiched between the two filtrate discharge tanks 61, 61 and becomes the primary side space 54, and has two filtrate discharge tanks 61, One filter cloth 51 is provided at the boundary between each of 61 and the concentration tank 62, and filtrate permeating members 63 and 63 are provided in the two filtrate discharge tanks 61 and 61 so as to support the filter cloth 51. . Then, the sludge squeezing mechanism moves so that the two filtrate discharge tanks 61 and 61 approach each other by narrowing the primary side space 54, and the primary side surfaces 56 and 56 of the two filter cloths 51 and 51, respectively. This is a mechanism for sandwiching and squeezing the concentrated sludge adhering to the two filtrate discharge tanks 61, 61.
 2つの濾液排出槽61,61は、互いに対向する壁65,65に開口部65a,65aが形成されるとともに内部が中空に形成された四角柱状の槽であり、当該開口部65a,65aを塞ぐように濾布51,51が配設されたものである。そして、濃縮槽62は、2つの濾液排出槽61,61の互いに対向する壁65,65及び濾布51,51と、「2つの濾液排出槽61,61の間の空間(1次側空間54)を囲むように「2つの濾液排出槽61,61の互いに対向する壁65,65」の外縁に沿って配設された」胴体部64とにより形成されている。従って、2つの濾液排出槽61,61の互いに対向する壁65,65及び濾布51,51は、濃縮槽62の一部にもなっている。また、濃縮槽62には、汚泥16を内部に流入させるための流入口71が形成されており、濾液排出槽61には、濾液19を外部に流出させるための流出口72が形成されている。 The two filtrate discharge tanks 61 and 61 are square columnar tanks in which openings 65a and 65a are formed in opposite walls 65 and 65 and the inside is formed in a hollow shape, and close the openings 65a and 65a. Thus, the filter cloths 51 and 51 are provided. The concentrating tank 62 includes walls 65 and 65 and filter cloths 51 and 51 facing each other of the two filtrate discharge tanks 61 and 61, and a “space between the two filtrate discharge tanks 61 and 61 (primary space 54. ) Is formed by a body portion 64 "disposed along the outer edge of the mutually opposing walls 65, 65 of the two filtrate discharge tanks 61, 61". Therefore, the opposing walls 65 and 65 and the filter cloths 51 and 51 of the two filtrate discharge tanks 61 and 61 are also part of the concentration tank 62. The concentration tank 62 is formed with an inlet 71 for allowing the sludge 16 to flow inside, and the filtrate discharge tank 61 is formed with an outlet 72 for allowing the filtrate 19 to flow outside. .
 また、濃縮槽62の外周を形成する胴体部64は筒状に形成されており、一方の端部が一方の濾液排出槽61の上記「対向する壁65」に接合され、他方の端部が他方の濾液排出槽61の上記「対向する壁65」に接合されて、内部に1次側空間54が形成されている。更に、胴体部64は、2つの濾液排出槽61,61を近づけるように移動させたり、2つの濾液排出槽61,61を遠ざけるように移動させたりすることができるように、伸縮可能に形成されている。また、図8A、図8Bに示すように、筒状の胴体部64の中心軸が水平方向を向くようにして、濾過器53が配置された場合における、胴体部64の鉛直方向下側に、開閉部73が形成されている。開閉部73は、吸引濾過工程、加圧濾過工程及び圧搾工程においては、閉じた状態であるが、排出工程において、2つの濾液排出槽61,61を遠ざけるように移動させて胴体部64を伸ばしたときに、開口する部分である。そして、排出工程において、圧搾汚泥が「開口した開閉部73」より排出される。 Further, the body part 64 forming the outer periphery of the concentration tank 62 is formed in a cylindrical shape, and one end part is joined to the “opposing wall 65” of one filtrate discharge tank 61, and the other end part is The primary side space 54 is formed inside by joining to the “opposing wall 65” of the other filtrate discharge tank 61. Further, the body portion 64 is formed to be extendable so that the two filtrate discharge tanks 61 and 61 can be moved closer to each other and the two filtrate discharge tanks 61 and 61 can be moved away from each other. ing. Further, as shown in FIGS. 8A and 8B, when the filter 53 is arranged so that the central axis of the cylindrical body part 64 faces the horizontal direction, on the lower side in the vertical direction of the body part 64, An opening / closing part 73 is formed. The opening / closing part 73 is in a closed state in the suction filtration process, the pressure filtration process and the compression process, but in the discharge process, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the body part 64. It is the part that opens when In the discharging step, the compressed sludge is discharged from the “opening / closing portion 73”.
 本実施形態の固液分離方法においては、流入口71から汚泥16が濃縮槽62内(1次側空間54)に流入し、汚泥16が濾布51によって濾過されて、濾液19が濾液排出槽61内(2次側空間55)に流入し、固形分(濃縮汚泥)は、濾布51の1次側の面56に付着し、濾液排出槽61内(2次側空間55)に流入した濾液19は、流出口72から外部に流出する。 In the solid-liquid separation method of this embodiment, the sludge 16 flows into the concentration tank 62 (primary space 54) from the inlet 71, the sludge 16 is filtered by the filter cloth 51, and the filtrate 19 is the filtrate discharge tank. 61 (secondary side space 55), the solid (concentrated sludge) adheres to the primary surface 56 of the filter cloth 51 and flows into the filtrate discharge tank 61 (secondary side space 55). The filtrate 19 flows out from the outlet 72.
 以下、本発明の固液分離方法の他の実施形態について、工程毎に説明する。 Hereinafter, another embodiment of the solid-liquid separation method of the present invention will be described for each step.
(2-1)吸引濾過工程;
 本実施形態の固液分離方法における吸引濾過工程は、図7~図9に示すように、まず1次側空間54に汚泥16を供給する。その後「濾布51の一方の面(2次側の面57)側の空間である2次側空間55を減圧しながら、濾布51の他方の面側の空間である1次側空間54に汚泥16をさらに供給して、濾布51によって汚泥16を濾過し、濾布51の他方の面である1次側の面56に濃縮汚泥17(初期濃縮汚泥17a)を付着させる」工程である。濾過器53の2次側空間55は、濾液貯留槽14を介して減圧手段11によって減圧されている。これにより、濾布51によって汚泥16中の固形分が、濃縮汚泥17(初期濃縮汚泥17a)として捕集され、濾布51を透過した濾液19が、2次側空間55を通過して、濾液貯留槽14に送られて貯留される。尚、汚泥貯留槽12aと濾過器53の濃縮槽62とが配管で繋がれ、濾過器53の濾液排出槽61と濾液貯留槽14とが配管で繋がれている。各配管及び装置には、必要に応じて、バルブ、計器類が装備されていることが好ましい。ここで、図9は、本発明の固液分離方法の他の実施形態に用いる濾過器53の断面を示すとともに、吸引濾過工程において、濾布51の一次側の面56に汚泥(初期濃縮汚泥17a)が付着している状態を示す模式図である。
(2-1) Suction filtration step;
In the suction filtration step in the solid-liquid separation method of the present embodiment, the sludge 16 is first supplied to the primary space 54 as shown in FIGS. Then, while reducing the pressure on the secondary side space 55 that is the space on the one side (secondary side surface 57) side of the filter cloth 51, the primary side space 54 that is the space on the other side of the filter cloth 51 The sludge 16 is further supplied, the sludge 16 is filtered by the filter cloth 51, and the concentrated sludge 17 (initial concentrated sludge 17a) is attached to the primary side surface 56 which is the other surface of the filter cloth 51. . The secondary side space 55 of the filter 53 is decompressed by the decompression means 11 via the filtrate storage tank 14. As a result, the solid content in the sludge 16 is collected by the filter cloth 51 as the concentrated sludge 17 (initial concentrated sludge 17a), and the filtrate 19 that has passed through the filter cloth 51 passes through the secondary side space 55 to pass through the filtrate. It is sent to the storage tank 14 and stored. In addition, the sludge storage tank 12a and the concentration tank 62 of the filter 53 are connected by piping, and the filtrate discharge tank 61 and the filtrate storage tank 14 of the filter 53 are connected by piping. Each pipe and device is preferably equipped with valves and instruments as necessary. Here, FIG. 9 shows a cross section of the filter 53 used in another embodiment of the solid-liquid separation method of the present invention, and sludge (initial concentrated sludge) on the primary side surface 56 of the filter cloth 51 in the suction filtration step. It is a schematic diagram which shows the state which 17a) has adhered.
 このように、本実施形態の固液分離方法は、まず、吸引濾過工程において、濾布51の1次側の面56に、初期濃縮汚泥17aを付着させるため、次の加圧濾過工程において、濾過器53の一次側空間54に、汚泥16を、供給するとともに加圧しても、汚泥16中の汚泥中の固形分が濾布51を透過して2次側空間55に漏れ出すことを抑制することができる。これは、濾布51に付着した初期濃縮汚泥17aが、濾布51と共に、汚泥中の固形分を捕集する機能を有するためである。これにより、吸引濾過工程において、通常使用されるような、「ナイロンからなるモノフィラメントによって形成されるとともに開口径の大きな濾布」を備えた装置(濾過器53)を使用した場合においても、吸引濾過工程において使用した当該装置(濾過器53)を用いて、加圧濾過工程における加圧濾過を行うことができる。つまり、吸引濾過と加圧濾過とを、1つの濾過器53(固液分離装置200)で行うことができる。 Thus, in the solid-liquid separation method of the present embodiment, first, in the suction filtration step, the initial concentrated sludge 17a is attached to the primary side surface 56 of the filter cloth 51. Even if the sludge 16 is supplied to the primary side space 54 of the filter 53 and pressurized, the solid content in the sludge 16 is prevented from passing through the filter cloth 51 and leaking into the secondary side space 55. can do. This is because the initial concentrated sludge 17a attached to the filter cloth 51 has a function of collecting solids in the sludge together with the filter cloth 51. Thus, even when a device (filter 53) provided with a “filter cloth formed of a monofilament made of nylon and having a large opening diameter”, which is normally used in the suction filtration step, is used. The pressure filtration in the pressure filtration process can be performed using the apparatus (filter 53) used in the process. That is, suction filtration and pressure filtration can be performed by one filter 53 (solid-liquid separation device 200).
 吸引濾過工程において、「濾布によって汚泥を濾過する時間」、及び「2次側空間を減圧するときの圧力(減圧された2次側空間の圧力)」は、上記本発明の固液分離方法の一の実施形態において好ましいとされた条件であることが好ましい。 In the suction filtration step, “time for filtering sludge with filter cloth” and “pressure when decompressing the secondary space (pressure of the decompressed secondary space)” are the solid-liquid separation method of the present invention. It is preferable that the conditions are preferable in one embodiment.
 吸引濾過工程において、濾過器53の2次側空間55を減圧する減圧手段11としては、真空ポンプ等を用いることができる。また、図14に示すように、減圧手段11として、サイホン管74を用いてもよい。図14に示される濾過器53aは、減圧手段11としてサイホン管74を用い、サイホンの原理によって、濾過器53aの2次側空間55を減圧するものである。サイホンの原理によって減圧する場合、濾布51に付着した初期濃縮汚泥17aを壊しにくい利点がある。尚、濾過器53の2次側空間55を減圧する減圧手段11として真空ポンプを用いた場合には(図7参照)、加圧濾過工程及び圧搾工程においても、濾過器53の2次側空間55を減圧するための減圧手段としては、吸引濾過工程において用いた減圧手段11を用いることが好ましい。また、濾過器53aの2次側空間55を減圧する減圧手段11としてサイホン管74を用いた場合には(図14参照)、加圧濾過工程においては、サイホン管74を用いても真空ポンプを用いてもよく、圧搾工程においては、真空ポンプを用いることが好ましい。従って、図14に示すように、濾過器に減圧手段としてサイホン管を配設した場合でも、図7に示すような真空ポンプ等の他の減圧手段11を更に備えることが好ましい。図14は、本発明の固液分離方法の更に他の実施形態に用いる濾過器53a及び減圧手段11(サイホン管74)の断面を示す模式図である。 In the suction filtration step, a vacuum pump or the like can be used as the decompression means 11 for decompressing the secondary side space 55 of the filter 53. Further, as shown in FIG. 14, a siphon tube 74 may be used as the decompression unit 11. The filter 53a shown in FIG. 14 uses a siphon tube 74 as the pressure reducing means 11, and depressurizes the secondary space 55 of the filter 53a according to the principle of siphon. When the pressure is reduced by the principle of siphon, there is an advantage that the initial concentrated sludge 17a adhering to the filter cloth 51 is hardly broken. In addition, when a vacuum pump is used as the decompression means 11 for decompressing the secondary space 55 of the filter 53 (see FIG. 7), the secondary space of the filter 53 is also used in the pressure filtration process and the squeezing process. As the depressurizing means for depressurizing 55, it is preferable to use the depressurizing means 11 used in the suction filtration step. Further, when the siphon tube 74 is used as the decompression means 11 for decompressing the secondary space 55 of the filter 53a (see FIG. 14), the vacuum pump can be used even in the pressurization filtration process even if the siphon tube 74 is used. You may use, and it is preferable to use a vacuum pump in a pressing process. Therefore, as shown in FIG. 14, even when a siphon tube is provided as a pressure reducing means in the filter, it is preferable to further include another pressure reducing means 11 such as a vacuum pump as shown in FIG. FIG. 14 is a schematic diagram showing a cross section of the filter 53a and the decompression means 11 (siphon tube 74) used in still another embodiment of the solid-liquid separation method of the present invention.
 また、濾布51及び汚泥供手段は、上記本発明の固液分離方法の一の実施形態において好ましいとされた、濾布1(図2参照)及び汚泥供給手段の条件であることが好ましい。 Further, the filter cloth 51 and the sludge supply means are preferably the conditions of the filter cloth 1 (see FIG. 2) and the sludge supply means, which are preferable in the embodiment of the solid-liquid separation method of the present invention.
(2-2)加圧濾過工程;
 本実施形態の固液分離方法における加圧濾過工程は、図7、図10に示すように、2次側空間55を減圧するとともに、1次側空間54に汚泥16を加圧しながら供給し、濾布51によって汚泥16を濾過し、濾布51の1次側の面56に付着した濃縮汚泥17(初期濃縮汚泥17a)の上から更に濃縮汚泥17(2層目濃縮汚泥17b)を付着させるとともに、初期濃縮汚泥17aを圧縮してその密度を高めて濾過機能を高める工程である。さらに、吸引濾過工程において、濾布上に付着した濃縮汚泥により低下した濾液の流量を回復させる(大きくする)ための工程でもある。濾布51を透過した濾液19は、流出口72から排出され、配管を通じて、濾液貯留槽14に送られ、濾液貯留槽14に貯留される。1次側空間54に「濾布51を加圧しながら」汚泥16を供給する際には、汚泥16によって濾布51の全面を加圧することが好ましい。図10は、本発明の固液分離方法の他の実施形態に用いる濾過器53の断面を示すとともに、加圧濾過工程において、濾布51の一次側の面56に汚泥(濃縮汚泥17(初期濃縮汚泥17a及び2層目濃縮汚泥17b))が、複数の層を形成しながら付着している状態を示す模式図である。濃縮汚泥17(2層目濃縮汚泥17b)は、初期濃縮汚泥17aの上に付着している。
(2-2) pressure filtration step;
In the pressure filtration step in the solid-liquid separation method of the present embodiment, as shown in FIGS. 7 and 10, the secondary side space 55 is decompressed and the sludge 16 is supplied to the primary side space 54 while being pressurized, The sludge 16 is filtered by the filter cloth 51, and the concentrated sludge 17 (second-layer concentrated sludge 17b) is further adhered on the concentrated sludge 17 (initial concentrated sludge 17a) adhering to the primary-side surface 56 of the filter cloth 51. At the same time, the initial concentrated sludge 17a is compressed to increase its density to enhance the filtration function. Furthermore, in the suction filtration step, it is also a step for recovering (increasing) the flow rate of the filtrate that has decreased due to the concentrated sludge adhering to the filter cloth. The filtrate 19 that has passed through the filter cloth 51 is discharged from the outlet 72, sent to the filtrate storage tank 14 through the piping, and stored in the filtrate storage tank 14. When the sludge 16 is supplied to the primary side space 54 while “pressurizing the filter cloth 51”, the entire surface of the filter cloth 51 is preferably pressurized by the sludge 16. FIG. 10 shows a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention, and sludge (concentrated sludge 17 (initial stage) on the primary side surface 56 of the filter cloth 51 in the pressure filtration step. It is a schematic diagram which shows the state which the concentrated sludge 17a and the 2nd layer concentrated sludge 17b)) have adhered, forming a some layer. The concentrated sludge 17 (second layer concentrated sludge 17b) is attached on the initial concentrated sludge 17a.
 このように、加圧濾過工程は、濾布51に初期濃縮汚泥17aが付着した状態で、汚泥を濾過するため、初期濃縮汚泥17aも濾布51とともに汚泥を濾過する役割を果たし、濾布51がモノフィラメントであっても、固形分の漏れを防止しながら加圧濾過を行うことが可能となる。 Thus, in the pressure filtration step, the sludge is filtered with the initial concentrated sludge 17a attached to the filter cloth 51. Therefore, the initial concentrated sludge 17a also serves to filter the sludge together with the filter cloth 51. Even if it is a monofilament, pressure filtration can be performed while preventing leakage of solid content.
 加圧濾過工程において、「汚泥によって濾布を加圧する圧力(圧力の上げ方、圧力の範囲)」、「最小濾過圧力から最大濾過圧力まで昇圧するときの昇圧速度(MPa/分)」、「濾過器から濾液が排出される速度」、「最小濾過圧力から最大濾過圧力まで断続的に昇圧する場合の、一回の昇圧で上昇させる圧力」、「最小濾過圧力から最大濾過圧力まで断続的に昇圧する場合、昇圧の間隔(1回の昇圧を終了した時から、次回の昇圧開始時までの時間)」及び「2次側空間を減圧するときの圧力(減圧された2次側空間の圧力)」は、上記本発明の固液分離方法の一の実施形態において好ましいとされた、それぞれの条件であることが好ましい。 In the pressure filtration process, “pressure to pressurize the filter cloth with sludge (pressure increase, pressure range)”, “pressure increase rate when increasing pressure from minimum filtration pressure to maximum filtration pressure (MPa / min)”, “ "Speed at which the filtrate is discharged from the filter", "Pressure to be increased by one pressurization when intermittently increasing pressure from the minimum filtration pressure to the maximum filtration pressure", "Intermittently from the minimum filtration pressure to the maximum filtration pressure" In the case of boosting, the interval between boosting (the time from the end of one boosting to the start of the next boosting) and the pressure for decompressing the secondary space (pressure in the decompressed secondary space) ")" Is preferably the respective conditions that are preferable in one embodiment of the solid-liquid separation method of the present invention.
 加圧濾過工程においては、図7に示すように、濾過器53の1次側空間54に供給する汚泥16を、汚泥加圧手段13によって加圧し、加圧された汚泥によって濾布(1次側空間)を加圧することが好ましい。汚泥加圧手段の条件としては、上記本発明の固液分離方法の一の実施形態において好ましいとされた条件であることが好ましい。 In the pressure filtration process, as shown in FIG. 7, the sludge 16 supplied to the primary space 54 of the filter 53 is pressurized by the sludge pressurizing means 13, and the filter cloth (primary It is preferable to pressurize the side space. The condition of the sludge pressurizing means is preferably a condition that is preferable in one embodiment of the solid-liquid separation method of the present invention.
 加圧濾過工程においては、図7に示すように、汚泥加圧手段13によって、濾過器53の1次側空間54に供給する汚泥16を加圧する際に、圧力調整手段13aによって、汚泥の圧力を調整することが好ましい。圧力調整手段13aとしては、圧力調整弁を挙げることができる。圧力調整手段13aは、汚泥加圧手段13と汚泥貯留槽12aとを繋ぐ、配管に設けられていることが好ましい。 In the pressure filtration process, as shown in FIG. 7, when the sludge 16 supplied to the primary space 54 of the filter 53 is pressurized by the sludge pressurizing means 13, the pressure of the sludge is adjusted by the pressure adjusting means 13 a. Is preferably adjusted. An example of the pressure adjusting means 13a is a pressure adjusting valve. It is preferable that the pressure adjustment means 13a is provided in piping which connects the sludge pressurization means 13 and the sludge storage tank 12a.
(2-3)圧搾工程;
 本実施形態の固液分離方法における圧搾工程は、図11に示すように、濾布51の1次側の面56に付着した濃縮汚泥(初期濃縮汚泥及び2層目濃縮汚泥)を圧搾して圧搾汚泥18を得る工程である。本実施形態の固液分離方法に用いる濾過器53は、加圧濾過の操作(加圧濾過工程)が終了した後に、汚泥が濾過器内に残留するため、残留する汚泥を除去した後に濃縮汚泥の圧搾を行う。濾過器内に残留する汚泥を除去した際には、濾過器から取り出した汚泥は、再度汚泥貯留槽に戻し、固液分離を行うことが好ましい。1次側空間54に残留する汚泥を排出する際には、2つの濾液排出槽61,61を、互いに遠ざける方向に移動させ、濃縮槽62の胴体部64の開閉部73を開口させて、当該開口した開閉部73から排出することが好ましい。図11は、本発明の固液分離方法の他の実施形態に用いる濾過器53の断面を示すとともに、圧搾工程の一部を示す模式図である。
(2-3) pressing process;
As shown in FIG. 11, the pressing step in the solid-liquid separation method of the present embodiment compresses concentrated sludge (initial concentrated sludge and second-layer concentrated sludge) adhering to the primary side surface 56 of the filter cloth 51. This is a step of obtaining the compressed sludge 18. The filter 53 used in the solid-liquid separation method of the present embodiment has a sludge that remains in the filter after the pressure filtration operation (pressure filtration step) is completed. Therefore, the concentrated sludge is removed after the remaining sludge is removed. Squeeze. When the sludge remaining in the filter is removed, the sludge taken out from the filter is preferably returned to the sludge storage tank and subjected to solid-liquid separation. When discharging the sludge remaining in the primary side space 54, the two filtrate discharge tanks 61, 61 are moved away from each other, and the opening / closing part 73 of the body part 64 of the concentration tank 62 is opened, It is preferable to discharge from the opened opening / closing part 73. FIG. 11 is a schematic view showing a section of the filter 53 used in another embodiment of the solid-liquid separation method of the present invention and a part of the pressing process.
 圧搾工程において、「濃縮汚泥を圧搾するときの圧力」、「濃縮汚泥を圧搾するときの圧力(濃縮汚泥にかける圧力)の上げ方等」は、上記本発明の固液分離方法の一の実施形態において好ましいとされた、それぞれの条件であることが好ましい。 In the pressing step, “pressure when squeezing concentrated sludge”, “how to increase pressure when squeezing concentrated sludge (pressure applied to concentrated sludge), etc.” are one implementation of the solid-liquid separation method of the present invention. It is preferable that each of the conditions is preferable in the form.
 圧搾工程においては、濃縮汚泥を加圧するとともに、2次側空間55を減圧することが好ましい。濃縮汚泥を加圧するとともに、2次側空間55を減圧することにより、圧搾汚泥の表面(特に、濾布に接する面)が、より乾燥した状態となり、圧搾汚泥を濾布から剥離させるときに、より容易に剥離させることができるようになる。2次側空間を減圧するときの圧力(減圧された2次側空間の圧力)は、上記本発明の固液分離方法の一の実施形態において好ましいとされた条件であることが好ましい。 In the pressing step, it is preferable to pressurize the concentrated sludge and depressurize the secondary side space 55. When the concentrated sludge is pressurized and the secondary side space 55 is depressurized, the surface of the compressed sludge (particularly the surface in contact with the filter cloth) becomes a more dry state, and when the compressed sludge is peeled off from the filter cloth, It can be more easily peeled off. The pressure when depressurizing the secondary side space (the pressure of the depressurized secondary side space) is preferably a condition that is preferable in one embodiment of the solid-liquid separation method of the present invention.
 圧搾工程おいて得られる圧搾汚泥の固形分濃度は、40~45質量%であることが好ましい。圧搾汚泥の固形分濃度が、40質量%より低いと、圧搾汚泥を燃焼廃棄するときに、燃焼炉の負荷が大きくなることがある。圧搾汚泥の固形分濃度は高いほど好ましいが、本実施形態の固液分離方法では、45質量%程度が上限となる。 The solid concentration of the compressed sludge obtained in the pressing step is preferably 40 to 45% by mass. When the solid content concentration of the compressed sludge is lower than 40% by mass, the load on the combustion furnace may be increased when the compressed sludge is burned and discarded. The higher the solid content concentration of the compressed sludge, the better. However, in the solid-liquid separation method of the present embodiment, the upper limit is about 45% by mass.
 本実施形態の固液分離方法においては、図11に示されるように、圧搾工程において用いられる汚泥圧搾機構が、2つの濾液排出槽61,61が1次側空間54を狭めて互いに近づくように移動し、2枚の濾布51,51のそれぞれの1次側の面56,56に付着した濃縮汚泥を、2つの濾液排出槽61,61の間に挟んで圧搾する機構である。濃縮汚泥は、2枚の、「2次側の面57側が濾液透過部材63で支えられた濾布51」に、挟まれて圧搾される。濃縮汚泥の圧搾により排出される濾液は、濾布51を透過して1次側空間54に流入し、流出口72から排出される。また、2枚の濾布51,51に挟まれて水分(濾液)が搾り出された濃縮汚泥は、圧搾汚泥18になる。尚、本実施形態の固液分離方法において用いられる濾液透過部材63の条件は、上記本発明の固液分離方法の一の実施形態において好ましいとされた条件であることが好ましい。 In the solid-liquid separation method of the present embodiment, as shown in FIG. 11, the sludge squeezing mechanism used in the squeezing process is such that the two filtrate discharge tanks 61 and 61 narrow the primary side space 54 and approach each other. It is a mechanism that moves and squeezes the concentrated sludge adhering to the primary- side surfaces 56 and 56 of the two filter cloths 51 and 51 between the two filtrate discharge tanks 61 and 61. The concentrated sludge is squeezed between two “filter cloths 51 whose secondary surface 57 side is supported by the filtrate permeable member 63”. The filtrate discharged by pressing the concentrated sludge passes through the filter cloth 51 and flows into the primary space 54 and is discharged from the outlet 72. The concentrated sludge from which moisture (filtrate) has been squeezed between the two filter cloths 51, 51 becomes the compressed sludge 18. In addition, it is preferable that the conditions of the filtrate permeation | transmission member 63 used in the solid-liquid separation method of this embodiment are the conditions made preferable in one embodiment of the said solid-liquid separation method of this invention.
 濾液排出槽61を移動させる方法としては、特に限定されないが、例えば、図13に示すように、各濾液排出槽61に配設された支持部77と、支持部77の先端が移動可能に取り付けられたガイド部76とを備える移動機構75を用いる方法が好ましい。移動機構75の個数及び取り付け位置は、特に限定されないが、各濾液排出槽61を安定して支えることができる本数及び位置であることが好ましい。図13に示すように、各濾液排出槽61に2本ずつの支持部77を、それぞれ対向する壁に取り付けることも好ましい態様である。また、支持部77を取り付ける「対向する壁」は、鉛直方向上側の壁と、鉛直方向下側の壁であることが好ましい。また、ガイド部76は、取り付けられた「支持部77の先端」が移動する方向が、全て平行になるように配置されることが好ましい。濾液排出層61には、上記のような移動機構75が配設されているため、支持部77の先端がガイド部76に沿って移動することにより、支持部77が取り付けられた濾液排出層61は支持部77と共に移動することができる。図13は、本発明の固液分離方法の他の実施形態に用いる濾過器53の断面を示す模式図である。 The method for moving the filtrate discharge tank 61 is not particularly limited. For example, as shown in FIG. 13, a support portion 77 disposed in each filtrate discharge tank 61 and the tip of the support portion 77 are movably attached. A method using a moving mechanism 75 including a guide portion 76 is preferable. The number and the mounting position of the moving mechanism 75 are not particularly limited, but it is preferable that the number and the position can stably support each filtrate discharge tank 61. As shown in FIG. 13, it is also a preferable aspect that two support portions 77 are attached to each of the filtrate discharge tanks 61 on the opposing walls. Moreover, it is preferable that the “facing walls” to which the support portion 77 is attached are a wall on the upper side in the vertical direction and a wall on the lower side in the vertical direction. Moreover, it is preferable that the guide part 76 is arrange | positioned so that all the directions to which the attached "front-end | tip of the support part 77" moves may become parallel. Since the filtrate discharging layer 61 is provided with the moving mechanism 75 as described above, the filtrate discharging layer 61 to which the supporting portion 77 is attached is moved by moving the tip of the supporting portion 77 along the guide portion 76. Can move with the support 77. FIG. 13 is a schematic view showing a cross section of a filter 53 used in another embodiment of the solid-liquid separation method of the present invention.
 支持部77の形状は、特に限定されないが、例えば、棒状又は板状の部材の先端に車輪が配設されたもの等を挙げることができる。支持部77の材質は、特に限定されないが、ステンレス鋼等挙げることができる。ガイド部76の形状は、特に限定されないが、支持部77の先端に車輪が配設されている場合、当該車輪によって支持部77が移動できるようなレールを有する形状であることが好ましい。 The shape of the support portion 77 is not particularly limited, and examples thereof include a member in which a wheel is disposed at the tip of a rod-like or plate-like member. Although the material of the support part 77 is not specifically limited, Stainless steel etc. can be mentioned. Although the shape of the guide part 76 is not specifically limited, When the wheel is arrange | positioned at the front-end | tip of the support part 77, it is preferable that it is a shape which has a rail which the support part 77 can move with the said wheel.
(2-4)排出工程;
 本実施形態の固液分離方法における排出工程は、図12に示すように、圧搾汚泥18を濾布51から剥離させる工程であり、濾布51から剥離させた圧搾汚泥18は、濾過器53から排出される。図12は、本発明の固液分離方法の他の実施形態に用いる濾過器の断面を示すとともに、排出工程において、圧搾汚泥を排出する様子を示す模式図である。
(2-4) Discharging process;
As shown in FIG. 12, the discharging step in the solid-liquid separation method of the present embodiment is a step of peeling the compressed sludge 18 from the filter cloth 51, and the compressed sludge 18 peeled from the filter cloth 51 is removed from the filter 53. Discharged. FIG. 12 is a schematic diagram showing a cross section of a filter used in another embodiment of the solid-liquid separation method of the present invention and showing how the compressed sludge is discharged in the discharge step.
 本実施形態の固液分離方法における排出工程においては、2つの濾液排出槽61,61を遠ざけるように移動させて胴体部64を伸ばし、濃縮槽62の胴体部64の鉛直方向下側に形成された開閉部73を開口させ、当該「開口した開閉部73」から圧搾汚泥を排出する。開閉部73は、胴体部64に形成された「切り込み」であることが好ましい。 In the discharge step in the solid-liquid separation method of the present embodiment, the two filtrate discharge tanks 61 and 61 are moved away from each other to extend the trunk part 64 and are formed on the lower side in the vertical direction of the trunk part 64 of the concentration tank 62. The opened opening / closing part 73 is opened, and the compressed sludge is discharged from the “opened opening / closing part 73”. The opening / closing part 73 is preferably a “cut” formed in the body part 64.
 排出工程においては、2次側空間から1次側空間に向かって(濾布51を通過するように)圧縮空気を流し、当該圧縮空気によって圧搾汚泥18を濾布51から剥離させることが好ましい。 In the discharging step, it is preferable to flow compressed air from the secondary side space toward the primary side space (so as to pass through the filter cloth 51), and the compressed sludge 18 is peeled off from the filter cloth 51 by the compressed air.
 以下、本発明を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
 図1に示される固液分離装置100において「濾過器として図16に示すような濾過器83を用いた」、固液分離装置を作製した。濾過器83は、凹部88aが形成された第1枠体82a(直方体に凹部が形成された形状)及び凹部88bが形成された第2枠体82b(直方体に凹部が形成された形状)を有する濾過器本体82と、「第1枠体82aの、凹部88aが形成された面」と「第2枠体82bの、凹部88bが形成された面」とにより挟まれた袋状の濾布81と、を備えるものである。袋状の濾布81は、外周(外縁)が、「第1枠体82aの、凹部88aが形成された面(外縁)」と「第2枠体82bの、凹部88bが形成された面(外縁)」とにより挟まれることにより、中央部に閉じた空間を形成している(尚、濾布を通過する、気体及び液体の移動は可能である)。また、第1枠体82aの凹部88aの開口部の形状、及び第2枠体82bの凹部88bの開口部の形状は、同じ大きさの円形とした。そして、第1枠体82aの凹部88aの開口部の円形と、第2枠体82bの凹部88bの開口部の円形とが、ずれずに重なり合うようにして、第1枠体82aと第2枠体82bとが配置されるようにした。第1枠体82aの凹部88aの開口部の直径を180mmとし、第2枠体82bの凹部88bの開口部の直径を180mmとした。また、第1枠体82aの凹部88aの深さ(最も深い位置の深さ)を、50mmとし、第2枠体82bの凹部88bの深さ(圧搾用ゴム膜86までの深さ)を、50mmとした。図16は、実施例1で用いられる濾過器83の断面を示す模式図である。
Example 1
In the solid-liquid separation apparatus 100 shown in FIG. 1, “a filter 83 as shown in FIG. 16 was used as a filter” to produce a solid-liquid separation apparatus. The filter 83 has a first frame 82a (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88a and a second frame 82b (a shape in which a recess is formed in a rectangular parallelepiped) having a recess 88b. A bag-like filter cloth 81 sandwiched between the filter body 82, "the surface of the first frame 82a on which the recess 88a is formed" and "the surface of the second frame 82b on which the recess 88b is formed". Are provided. The outer periphery (outer edge) of the bag-shaped filter cloth 81 has a “surface of the first frame 82a on which the recess 88a is formed (outer edge)” and a “surface of the second frame 82b on which the recess 88b is formed ( A closed space is formed in the central portion by being sandwiched by “outer edge” ”(in addition, movement of gas and liquid passing through the filter cloth is possible). Moreover, the shape of the opening part of the recessed part 88a of the 1st frame 82a and the shape of the opening part of the recessed part 88b of the 2nd frame 82b were made into the same size circle. Then, the first frame 82a and the second frame are formed such that the circular shape of the opening of the recess 88a of the first frame 82a and the circular shape of the opening of the recess 88b of the second frame 82b overlap without being displaced. The body 82b is arranged. The diameter of the opening of the recess 88a of the first frame 82a was 180 mm, and the diameter of the opening of the recess 88b of the second frame 82b was 180 mm. Moreover, the depth (depth of the deepest position) of the recessed part 88a of the 1st frame 82a shall be 50 mm, and the depth (depth to the rubber film 86 for pressing) of the recessed part 88b of the 2nd frame 82b, 50 mm. FIG. 16 is a schematic diagram illustrating a cross section of the filter 83 used in the first embodiment.
 そして、第1枠体82aには、汚泥導入管87が配設され、汚泥加圧手段13(図1参照)と圧力調整手段13a(図1参照)を有する汚泥供給手段12(図1参照)から供給された汚泥が、流入口Cから汚泥導入管87内に流入し、汚泥導入管87を通って袋状の濾布1内に供給されるように形成されている。この供給圧力を増加させて、汚泥を加圧することにより、加圧濾過工程における汚泥加圧が行われる。 And the sludge supply pipe | tube 12 (refer FIG. 1) which the sludge introduction pipe | tube 87 is arrange | positioned by the 1st frame 82a, and has the sludge pressurization means 13 (refer FIG. 1) and the pressure adjustment means 13a (refer FIG. 1). The sludge supplied from the inlet C flows into the sludge introduction pipe 87 from the inlet C, and is supplied to the bag-like filter cloth 1 through the sludge introduction pipe 87. By increasing the supply pressure and pressurizing sludge, sludge pressurization in the pressure filtration process is performed.
 また、第2枠体82bの凹部88b内には、圧搾用ゴム膜86が配設され、圧搾用ゴム膜86によって、凹部88bによる空間を、凹部88bの凹部底側の空間88baと、凹部88bの開口部側(凹部88bが形成される面側)の空間88bbとに分割した状態になっている。 In addition, a rubber film 86 for squeezing is disposed in the recess 88b of the second frame 82b, and the rubber film 86 for squeezing allows a space by the recess 88b to be separated into a space 88ba on the bottom side of the recess 88b and a recess 88b. Is divided into a space 88bb on the opening side (surface side on which the recess 88b is formed).
 濾過器83は、濾布81と第1枠体82aの凹部88aとにより形成される空間と、濾布81と第2枠体82bの凹部88bの開口部側の空間88bbとにより形成される空間とが、2次側空間85となる。また、袋状の濾布81の袋内の空間が1次側空間84となる。 The filter 83 is a space formed by the filter cloth 81 and the recess 88a of the first frame 82a and a space 88bb on the opening side of the filter cloth 81 and the recess 88b of the second frame 82b. Is the secondary space 85. Further, the space in the bag of the bag-shaped filter cloth 81 becomes the primary space 84.
 また、濾過器83は、第1枠体82aと第2枠体82bとの接合面が、水平面に対して直交するように配置して使用した。濾過器83をこのように配置したときに、「濾布81と第1枠体82aの凹部88aとにより形成される空間(1次側空間85)」を減圧し、濾液を排出するために、第1枠体82aの鉛直方向下側に、1次側空間85と外部とを通じさせる「流出口A」が形成されている。更に、「濾布81と第2枠体82bの凹部88bの開口部側の空間88bb(1次側空間85)」を減圧し、濾液を排出するために、第2枠体82bの鉛直方向下側に、1次側空間85と外部とを通じさせる「流出口B」が形成されている。流出口A及び流出口Bは、濾液貯留槽14(図1参照)に繋がっている。 Further, the filter 83 was used by being arranged so that the joint surface between the first frame body 82a and the second frame body 82b was orthogonal to the horizontal plane. When the filter 83 is arranged in this way, in order to depressurize the “space formed by the filter cloth 81 and the concave portion 88a of the first frame 82a (primary side space 85)” and discharge the filtrate, An “outlet A” is formed on the lower side in the vertical direction of the first frame 82a to allow the primary space 85 and the outside to pass through. Furthermore, in order to depressurize “the space 88bb (primary space 85) on the opening side of the recess 88b of the filter cloth 81 and the second frame 82b” and discharge the filtrate, the second frame 82b is vertically below. On the side, an “outlet B” is formed through the primary space 85 and the outside. The outlet A and the outlet B are connected to the filtrate storage tank 14 (see FIG. 1).
 また、圧搾工程において濾布81内の汚泥を圧搾するために、第2枠体82bの凹部88bの底側の空間88baに加圧ガスを導入するための「加圧口D」が、第2枠体82bの鉛直方向上側に形成されている。圧搾工程においては、第2枠体82bの加圧口Dから凹部88bの底側の空間88baに加圧ガスを導入し、凹部88bの底側の空間88ba内を加圧して圧搾用ゴム膜86を外側に向かって膨れさせ、圧搾用ゴム膜86によって汚泥が入った濾布81を押圧し、汚泥を圧搾する。加圧口Dは、汚泥加圧手段13(図1参照)に繋がっている。 Further, in order to squeeze the sludge in the filter cloth 81 in the squeezing step, the “pressurizing port D” for introducing the pressurized gas into the space 88ba on the bottom side of the recess 88b of the second frame 82b is the second. It is formed above the frame body 82b in the vertical direction. In the pressing step, a pressurized gas is introduced into the space 88ba on the bottom side of the recess 88b from the pressure port D of the second frame 82b, and the inside of the space 88ba on the bottom side of the recess 88b is pressurized to compress the rubber film 86 for pressing. The filter cloth 81 containing sludge is pressed by the rubber film 86 for squeezing and the sludge is squeezed. The pressurizing port D is connected to the sludge pressurizing means 13 (see FIG. 1).
 汚泥加圧手段13(図1参照)としては、窒素ボンベを使用した。圧力調整手段13a(図1参照)としては、減圧弁を用いた。汚泥貯留槽12a(図1参照)としては、鉄により形成された25リットルのタンクを用いた。濾液排出槽61は鉄により形成した。濾布51としては、ナイロン製のモノフィラメントを朱子織して形成した濾布を用いた。濾液貯留槽14としては、透明な塩化ビニルにより形成されたタンクを用いた。濾液貯留槽14内を減圧するための減圧手段11(図7参照)としては、真空ポンプを用いた。 As the sludge pressurizing means 13 (see FIG. 1), a nitrogen cylinder was used. A pressure reducing valve was used as the pressure adjusting means 13a (see FIG. 1). As the sludge storage tank 12a (see FIG. 1), a 25 liter tank formed of iron was used. The filtrate discharge tank 61 was made of iron. As the filter cloth 51, a filter cloth formed by satin weaving nylon monofilament was used. As the filtrate storage tank 14, a tank made of transparent vinyl chloride was used. A vacuum pump was used as the decompression means 11 (see FIG. 7) for decompressing the filtrate storage tank 14.
 得られた固液分離装置を用いて、浄水場において排出された固形分0.74質量%の汚泥を用いて、固液分離を行った。 Using the obtained solid-liquid separator, solid-liquid separation was performed using sludge having a solid content of 0.74% by mass discharged at the water purification plant.
 吸引濾過工程においては、「-0.033MPa(ゲージ圧)」で2次側空間を減圧しながら、汚泥を、1次側空間に60分間供給した(60分間、吸引濾過を行った)。 In the suction filtration step, sludge was supplied to the primary space for 60 minutes while reducing the secondary space at “−0.033 MPa (gauge pressure)” (suction filtration was performed for 60 minutes).
 加圧濾過工程においては、2次側空間を「-0.033MPa(ゲージ圧)」で減圧しながら、汚泥を0.4MPa(ゲージ圧)で加圧し、1次側空間に10分間供給した。この昇圧操作は1回実施した。 In the pressure filtration step, sludge was pressurized at 0.4 MPa (gauge pressure) while the secondary side space was depressurized at “−0.033 MPa (gauge pressure)”, and supplied to the primary side space for 10 minutes. This step-up operation was performed once.
 圧搾工程においては、2次側空間を「-0.033MPa(ゲージ圧)」で減圧しながら、第2枠体82bの加圧口Dから凹部88bの底側の空間88baに、汚泥加圧手段13(図1参照)からの加圧ガスを導入した。そして、導入された加圧ガスによって、第2枠体82bの凹部88bの底側の空間88ba内を加圧して、圧搾用ゴム膜86を外側に向かって膨れさせ、圧搾用ゴム膜86によって汚泥が入った濾布81を押圧し、汚泥を圧搾した。圧搾の圧力は1.5MPa(ゲージ圧)であり、圧搾の時間は10分間とした。 In the squeezing step, sludge pressurizing means is applied from the pressurizing port D of the second frame 82b to the space 88ba on the bottom side of the recess 88b while reducing the secondary side space at “−0.033 MPa (gauge pressure)”. Pressurized gas from 13 (see FIG. 1) was introduced. Then, the inside of the space 88ba on the bottom side of the concave portion 88b of the second frame 82b is pressurized with the introduced pressurized gas to swell the rubber film 86 for squeezing outward, and the sludge is sludged by the rubber film 86 for squeezing. The filter cloth 81 containing was pressed and sludge was squeezed. The pressing pressure was 1.5 MPa (gauge pressure), and the pressing time was 10 minutes.
 排出工程においては、第1枠体82aと第2枠体82bとを分離し、濾過器本体82内の圧搾汚泥を内部に有する濾布81を取り出し、圧搾汚泥を濾布から剥離させて取り出した。 In the discharging step, the first frame 82a and the second frame 82b are separated, the filter cloth 81 having the compressed sludge in the filter body 82 is taken out, and the compressed sludge is peeled off from the filter cloth and taken out. .
 得られた圧搾汚泥の固形分濃度を以下の方法で測定した。結果を表1に示す。表1において、「吸引濾過工程」の「圧力」の欄は、減圧している2次側空間の圧力を示し、「時間」の欄は減圧濾過の時間を示す。また、「加圧濾過工程」の「圧力」の欄は、加圧している1次側空間の圧力を示し、「時間」の欄は、加圧濾過の時間を示す。また、「圧搾工程」の「圧力」の欄は、濃縮汚泥の圧搾に際して、濃縮汚泥に加える圧力を示し、「時間」の欄は、圧搾の時間を示す。また、「固形分濃度」の欄は、圧搾汚泥の固形分濃度を示す。尚、比較例1の「固形分濃度」の欄は、吸引濾過工程により得られた濃縮汚泥の固形分濃度を示す。 The solid content concentration of the obtained compressed sludge was measured by the following method. The results are shown in Table 1. In Table 1, the “pressure” column of the “suction filtration step” indicates the pressure of the secondary space being depressurized, and the “time” column indicates the time of vacuum filtration. In the “pressure filtration step”, the “pressure” column indicates the pressure in the primary space being pressurized, and the “time” column indicates the pressure filtration time. Further, the “pressure” column of the “squeezing step” indicates the pressure applied to the concentrated sludge when the concentrated sludge is compressed, and the “time” column indicates the time of pressing. The column “solid content concentration” indicates the solid content concentration of the compressed sludge. The column “Solid Concentration” in Comparative Example 1 indicates the solid concentration of the concentrated sludge obtained by the suction filtration process.
(固形分濃度)
 乾燥前の測定対象物(圧搾汚泥又は濃縮汚泥)の質量(乾燥前質量)を測定し、乾燥機で乾燥させた後の測定対象物の質量(乾燥後質量)を測定し、乾燥前質量から乾燥後質量を差し引いた値を乾燥前質量で除算した値を100倍した値を固形分濃度(質量%)とする。測定対象物の乾燥は、110℃、8時間の条件で行った。
(Solid content concentration)
Measure the mass (mass before drying) of the measurement object (pressed sludge or concentrated sludge) before drying, measure the mass (mass after drying) of the measurement object after drying with a dryer, A value obtained by dividing the value obtained by subtracting the mass after drying by the mass before drying is 100 times the solid content concentration (% by mass). The measurement object was dried at 110 ° C. for 8 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 加圧濾過工程及び圧搾工程における「圧力(ゲージ圧)」及び「時間」を表1に示すように変化させた以外は実施例1と同様にして、汚泥の固液分離を行った。実施例1の場合と同様にして、上記方法で、圧搾汚泥の「固形分濃度」の測定を行った。結果を表1に示す。表1において、「加圧濾過工程」の「圧力」の欄の「0.2-0.8」は、-0.033MPaから0.2MPaまで1分間で昇圧し、0.2MPaで9分間保持し、その後0.2MPaから0.4MPaまで1分間で昇圧し、0.4MPaで9分間保持し、その後0.4MPaから0.6MPaまで1分間で昇圧し、0.6MPaで4分間、その後0.6MPaから0.8MPaまで1分間で昇圧し、0.8MPaで4分間保持する、という昇圧パターンで、連続して1次側空間を加圧したことを示す。そして、「加圧濾過工程」の「時間」の欄の「30」は、上記1次側空間を加圧する時間(加圧濾過を行う時間)が、合計で30分であることを示す。また、「圧搾工程」の「圧力」の欄の「1.5-1.8」は、0.8MPaから1.5MPaまで1分間で昇圧し、1.5MPaで4分間保持し、その後1.5MPaから1.8MPaまで1分間で昇圧し、1.8MPaで5分間保持するという昇圧パターンで、連続して濃縮汚泥を圧搾(加圧)したことを示す。そして、「圧搾工程」の「時間」の欄の「10」は、上記濃縮汚泥を圧搾する時間が、合計で10分であることを示す。
(Example 2)
Sludge was separated into solid and liquid in the same manner as in Example 1 except that the “pressure (gauge pressure)” and “time” in the pressure filtration step and the pressing step were changed as shown in Table 1. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1. In Table 1, “0.2-0.8” in the “Pressure” column of “Pressure filtration step” is a pressure increase from −0.033 MPa to 0.2 MPa in 1 minute, and is held at 0.2 MPa for 9 minutes. Then, the pressure was increased from 0.2 MPa to 0.4 MPa in 1 minute, held at 0.4 MPa for 9 minutes, then increased from 0.4 MPa to 0.6 MPa in 1 minute, then at 0.6 MPa for 4 minutes, and then 0 It shows that the primary space was continuously pressurized in a pressure increasing pattern in which the pressure was increased from 6 MPa to 0.8 MPa in 1 minute and held at 0.8 MPa for 4 minutes. Then, “30” in the “time” column of the “pressure filtration step” indicates that the time for pressurizing the primary space (time for performing pressure filtration) is 30 minutes in total. “1.5-1.8” in the “Pressure” column of the “Pressing step” is a pressure increase from 0.8 MPa to 1.5 MPa in 1 minute, and is held at 1.5 MPa for 4 minutes. It shows that the concentrated sludge was continuously squeezed (pressurized) in a pressure increasing pattern in which the pressure was increased from 5 MPa to 1.8 MPa in 1 minute and held at 1.8 MPa for 5 minutes. And "10" of the column of "time" of a "squeezing process" shows that the time which squeezes the said concentrated sludge is 10 minutes in total.
(比較例1)
 加圧濾過工程及び圧搾工程を行わなかった以外は、実施例1と同様にして、汚泥の固液分離を行った。実施例1の場合と同様にして、上記方法で、圧搾汚泥の「固形分濃度」の測定を行った。結果を表1に示す。
(Comparative Example 1)
Sludge was subjected to solid-liquid separation in the same manner as in Example 1 except that the pressure filtration step and the pressing step were not performed. In the same manner as in Example 1, the “solid content concentration” of the compressed sludge was measured by the above method. The results are shown in Table 1.
 表1より、実施例1の固液分離方法により、1つの固液分離装置を用いて、固形分濃度0.74質量%(1質量%程度)の汚泥から、固形分濃度45質量%の圧搾汚泥が得られたことがわかる。また、実施例2の固液分離方法により、吸引濾過工程の吸引濾過時間を10分と短くし、加圧濾過工程及び圧搾工程において、段階的に各「圧力」を上昇させたことにより、固液分離の合計時間が大幅に短縮されたことが分かる。また、比較例1の固液分離方法により、吸引濾過工程だけでは、濃縮汚泥の固形分濃度は、あまり上がらないことがわかる。 According to the solid-liquid separation method of Example 1, from Table 1, using one solid-liquid separation device, the solid content concentration of 0.74% by mass (about 1% by mass) from the sludge with a solid content concentration of 45% by mass is obtained. It turns out that sludge was obtained. In addition, by the solid-liquid separation method of Example 2, the suction filtration time in the suction filtration process was shortened to 10 minutes, and each “pressure” was increased step by step in the pressure filtration process and the compression process. It can be seen that the total time for liquid separation was significantly reduced. Moreover, it turns out that the solid content density | concentration of concentrated sludge does not rise so much only by the suction filtration process by the solid-liquid separation method of the comparative example 1.
(実施例3)
 固液分離に使用する汚泥の固形分濃度を1.2質量%とし、吸引濾過工程、加圧濾過工程及び圧搾工程の条件を以下のように変更した以外は、実施例1と同様にして、汚泥の固液分離を行った。吸引濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」とし、濾過時間を10分とした(吸引濾過工程の条件)。加圧濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「0.20MPa(ゲージ圧)」で30分間加圧した後に「0.39MPa(ゲージ圧)」で20分間加圧した(加圧濾過工程の条件)。圧搾工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「1.5MPa(ゲージ圧)」で10分間加圧した(圧搾工程の条件)。濾過時間と2次側空間に排出された濾液量との関係を図15に示す。図15は、実施例3,4の固液分離方法における、濾過時間と濾液量との関係を示すグラフである。
(Example 3)
The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed. In the suction filtration step, the pressure in the secondary space was set to “−0.025 MPa (gauge pressure)” and the filtration time was set to 10 minutes (conditions of the suction filtration step). In the pressure filtration step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.20 MPa (gauge pressure)” for 30 minutes. Pressurization was carried out for 20 minutes at “0.39 MPa (gauge pressure)” (conditions for pressure filtration step). In the pressing step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “1.5 MPa (gauge pressure)” for 10 minutes (pressing step) Conditions). FIG. 15 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space. FIG. 15 is a graph showing the relationship between the filtration time and the filtrate amount in the solid-liquid separation methods of Examples 3 and 4.
(実施例4)
 固液分離に使用する汚泥の固形分濃度を1.2質量%とし、吸引濾過工程、加圧濾過工程及び圧搾工程の条件を以下のように変更した以外は、実施例1と同様にして、汚泥の固液分離を行った。吸引濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」とし、濾過時間を90分とした(吸引濾過工程の条件)。加圧濾過工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「0.39MPa(ゲージ圧)」で10分間加圧した(加圧濾過工程の条件)。圧搾工程においては、2次側空間の圧力を「-0.025MPa(ゲージ圧)」で維持するとともに、1次側空間を「1.5MPa(ゲージ圧)」で16分間加圧した(圧搾工程の条件)。濾過時間と2次側空間に排出された濾液量との関係を図15に示す。
Example 4
The solid content concentration of the sludge used for the solid-liquid separation is 1.2% by mass, except that the conditions of the suction filtration process, the pressure filtration process and the compression process are changed as follows, as in Example 1, Solid-liquid separation of sludge was performed. In the suction filtration step, the pressure in the secondary space was set to “−0.025 MPa (gauge pressure)”, and the filtration time was set to 90 minutes (conditions of the suction filtration step). In the pressure filtration step, the pressure in the secondary space is maintained at “−0.025 MPa (gauge pressure)” and the primary space is pressurized at “0.39 MPa (gauge pressure)” for 10 minutes ( Pressure filtration process conditions). In the pressing step, the pressure in the secondary side space is maintained at “−0.025 MPa (gauge pressure)” and the primary side space is pressurized at “1.5 MPa (gauge pressure)” for 16 minutes (pressing step) Conditions). FIG. 15 shows the relationship between the filtration time and the amount of filtrate discharged into the secondary space.
 図15より、実施例3の固液分離方法では、70分程度で3.5kgの濾液を排出しているのに対し、実施例4の固液分離方法では、110分程度で3.5kgの濾液を排出していることが分かる。これより、本発明の固液分離方法では、吸引濾過工程を10分程度と短くして、加圧濾過工程に切り替えることにより、短時間で汚泥の固液分離を行うことができることが分かる。実施例3と実施例4との違いは、主として、実施例3においては、10分間の吸引濾過の後に40分間の加圧濾過を行ったところ(合計50分)で濾液量が3kgに達しているのに対し、実施例4においては、吸引濾過を90分間行ったところで濾液量が3kgに達した点である。つまり、吸引濾過工程を長時間続けるよりも、吸引濾過工程を短時間で終了させて、加圧濾過工程に切り替えるほうが、濾過時間を大幅に短縮できるのである。 From FIG. 15, in the solid-liquid separation method of Example 3, 3.5 kg of filtrate was discharged in about 70 minutes, whereas in the solid-liquid separation method of Example 4, 3.5 kg was discharged in about 110 minutes. It can be seen that the filtrate is discharged. From this, in the solid-liquid separation method of this invention, it turns out that solid-liquid separation of sludge can be performed in a short time by shortening a suction filtration process to about 10 minutes and switching to a pressure filtration process. The difference between Example 3 and Example 4 is that in Example 3, when the pressure filtration for 40 minutes was performed after the suction filtration for 10 minutes (total of 50 minutes), the amount of filtrate reached 3 kg. On the other hand, in Example 4, the amount of the filtrate reached 3 kg after suction filtration for 90 minutes. That is, rather than continuing the suction filtration process for a long time, the filtration time can be significantly shortened by ending the suction filtration process in a short time and switching to the pressure filtration process.
 本発明の固液分離方法は、浄水場から排出される固形分濃度1質量%程度の汚泥を処理するために、好適に利用することができる。 The solid-liquid separation method of the present invention can be suitably used for treating sludge having a solid content concentration of about 1% by mass discharged from a water purification plant.
1:濾布、2:濾過器本体、3:濾過器、4:1次側空間、5:2次側空間、6:1次側の面、7:2次側の面、11:減圧手段、12:汚泥供給手段、12a:汚泥貯留槽、13:汚泥加圧手段、13a:圧力調整手段、14:濾液貯留槽、15:汚泥圧搾機構、15a:加圧部、15b:シリンダー部、15c:加圧手段、15d:圧力調整手段、15e:ピストン部、15f:加圧板、15g:加圧面、16:汚泥、17:濃縮汚泥、17a:初期濃縮汚泥、17b:2層目濃縮汚泥、18:圧搾汚泥、19:濾液、21:一方の端部、22:他方の端部、23:本体部、24:底部、24a:排出口、24b:排出ノズル、25:開口部、26:蓋部、26a:流入口、26b:流入ノズル、27:濾液透過部材、51:濾布、52:濾過器本体、53:濾過器、54:1次側空間、55:2次側空間、56:1次側の面、57:2次側の面、61:濾液排出槽、62:濃縮槽、63:濾液透過部材、64:胴体部、65:対向する壁、65a:開口部、71:流入口、72:流出口、73:開閉部、74:サイホン管、75:移動機構、76:ガイド部、77:支持部、81:濾布、82:濾過器本体、82a:第1枠体、82b:第2枠体、83:濾過器、84:1次側空間、85:2次側空間、86:圧搾用ゴム膜、87:汚泥導入管、88a:(第1枠体の)凹部、88b:(第2枠体の)凹部、88ba:底側の空間、88bb:開口部側の空間、A,B:流出口、C:流入口、D:加圧口、100,200:固液分離装置。 1: filter cloth, 2: filter body, 3: filter, 4: primary space, 5: secondary space, 6: primary surface, 7: secondary surface, 11: pressure reducing means , 12: sludge supply means, 12a: sludge storage tank, 13: sludge pressurization means, 13a: pressure adjustment means, 14: filtrate storage tank, 15: sludge pressing mechanism, 15a: pressurization part, 15b: cylinder part, 15c : Pressurizing means, 15d: Pressure adjusting means, 15e: Piston part, 15f: Pressurizing plate, 15g: Pressurizing surface, 16: Sludge, 17: Concentrated sludge, 17a: Initial concentrated sludge, 17b: Second layer concentrated sludge, 18 : Pressed sludge, 19: filtrate, 21: one end, 22: the other end, 23: main body, 24: bottom, 24a: discharge port, 24b: discharge nozzle, 25: opening, 26: lid 26a: inlet, 26b: inflow nozzle, 27: filtrate permeation member, 51: filter cloth, 52 Filter body, 53: Filter, 54: Primary side space, 55: Secondary side space, 56: Primary side surface, 57: Secondary side surface, 61: Filtrate discharge tank, 62: Concentration tank, 63: Filtrate permeable member, 64: Body part, 65: Opposing wall, 65a: Opening part, 71: Inlet, 72: Outlet, 73: Opening / closing part, 74: Siphon tube, 75: Moving mechanism, 76: Guide Part, 77: support part, 81: filter cloth, 82: filter body, 82a: first frame, 82b: second frame, 83: filter, 84: primary side space, 85: secondary side space 86: Rubber film for pressing, 87: Sludge introduction pipe, 88a: Recessed portion (of the first frame), 88b: Recessed portion (of the second frame), 88ba: Space on the bottom side, 88bb: Space on the opening side A, B: Outlet, C: Inlet, D: Pressurization port, 100, 200: Solid-liquid separator.

Claims (6)

  1.  濾布の一方の面側の空間である2次側空間を減圧しながら、前記濾布の他方の面側の空間である1次側空間に汚泥を供給して、前記濾布によって汚泥を濾過し、前記濾布の前記他方の面である1次側の面に濃縮汚泥を付着させる吸引濾過工程と、
     前記2次側空間を減圧するとともに、前記1次側空間に汚泥を供給するとともに加圧して、前記濾布によって汚泥を濾過し、前記濾布の前記1次側の面に付着した濃縮汚泥の上から更に濃縮汚泥を付着させる加圧濾過工程と、
     前記濾布の前記1次側の面に付着した濃縮汚泥を圧搾して圧搾汚泥を得る圧搾工程と、
     前記圧搾汚泥を濾布から剥離させる排出工程とを有する固液分離方法。
    While depressurizing the secondary side space that is the space on one side of the filter cloth, the sludge is supplied to the primary side space that is the space on the other side of the filter cloth, and the sludge is filtered by the filter cloth. And a suction filtration step of attaching concentrated sludge to the primary side surface, which is the other surface of the filter cloth,
    The secondary side space is depressurized, the sludge is supplied to the primary side space and pressurized, the sludge is filtered by the filter cloth, and the concentrated sludge adhering to the primary side surface of the filter cloth A pressure filtration process for further attaching concentrated sludge from above;
    A squeezing step of squeezing the concentrated sludge adhering to the primary side surface of the filter cloth to obtain a compressed sludge;
    A solid-liquid separation method including a discharging step of peeling the compressed sludge from the filter cloth.
  2.  前記吸引濾過工程において、前記2次側空間に流出する濾液の固形分濃度が、0.02~0.04質量%になったところで、前記加圧濾過工程を開始する請求項1に記載の固液分離方法。 2. The solid filtration according to claim 1, wherein, in the suction filtration step, the pressure filtration step is started when a solid content concentration of the filtrate flowing out into the secondary space reaches 0.02 to 0.04 mass%. Liquid separation method.
  3.  前記吸引濾過工程において、減圧された前記2次側空間の圧力を-0.08~-0.02MPaとする請求項1又は2に記載の固液分離方法。 The solid-liquid separation method according to claim 1 or 2, wherein, in the suction filtration step, the pressure in the secondary side space reduced in pressure is -0.08 to -0.02 MPa.
  4.  前記加圧濾過工程において、汚泥を加圧する圧力を、0.2~0.4MPaから、0.6~1.5MPaまで、断続的に上げていく請求項1~3のいずれかに記載の固液分離方法。 The solid pressure according to any one of claims 1 to 3, wherein in the pressure filtration step, the pressure for pressurizing the sludge is intermittently increased from 0.2 to 0.4 MPa to 0.6 to 1.5 MPa. Liquid separation method.
  5.  前記圧搾工程において、濃縮汚泥を圧搾するときの圧力を、0.2~1.8MPaとする請求項1~4のいずれかに記載の固液分離方法。 The solid-liquid separation method according to any one of claims 1 to 4, wherein a pressure when the concentrated sludge is squeezed is 0.2 to 1.8 MPa in the pressing step.
  6.  前記1次側空間に供給される汚泥の固形分濃度が、0.7~2.0質量%であり、前記圧搾工程おいて得られる圧搾汚泥の固形分濃度が40~45質量%である請求項1~5のいずれかに記載の固液分離方法。 The solid content concentration of sludge supplied to the primary side space is 0.7 to 2.0% by mass, and the solid content concentration of the compressed sludge obtained in the pressing step is 40 to 45% by mass. Item 6. The solid-liquid separation method according to any one of Items 1 to 5.
PCT/JP2011/052933 2010-03-26 2011-02-10 Solid-liquid separation method WO2011118283A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127027945A KR101435308B1 (en) 2010-03-26 2011-02-10 Solid-Liquid separation method
JP2012506880A JP5636040B2 (en) 2010-03-26 2011-02-10 Solid-liquid separation method
CN201180007960.5A CN102741174B (en) 2010-03-26 2011-02-10 Solid-liquid separation method
HK13101043.0A HK1173717A1 (en) 2010-03-26 2013-01-24 Solid-liquid separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071244 2010-03-26
JP2010-071244 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118283A1 true WO2011118283A1 (en) 2011-09-29

Family

ID=44672856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052933 WO2011118283A1 (en) 2010-03-26 2011-02-10 Solid-liquid separation method

Country Status (5)

Country Link
JP (1) JP5636040B2 (en)
KR (1) KR101435308B1 (en)
CN (1) CN102741174B (en)
HK (1) HK1173717A1 (en)
WO (1) WO2011118283A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112107901A (en) * 2020-09-10 2020-12-22 北京沄汇智能科技有限公司 Solid-liquid suction filtration device
CN113582504A (en) * 2021-07-29 2021-11-02 海南天鸿市政设计股份有限公司 Simple and easy high-efficient sludge thickening dehydration all-in-one
CN115043566A (en) * 2022-08-15 2022-09-13 阳信东泰精密金属有限公司 Sludge cake squeezing dehydrator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502803A (en) * 1986-07-02 1989-09-28 ショッテン・アルフォンス disc filter
JP2000153103A (en) * 1998-11-17 2000-06-06 Tsukishima Kikai Co Ltd Filter press apparatus and sludge dewatering
JP2001038152A (en) * 1999-05-27 2001-02-13 Sanyo Electric Co Ltd Removing method of material to be removed in fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103360U (en) * 1991-10-08 1992-05-06 广东省盐业机械研究室 Vacuum band type pressing filter
JP3359409B2 (en) * 1994-01-12 2002-12-24 株式会社ナガオカ Pressurized dehydrator for sludge treatment and sludge treatment method
JP3489397B2 (en) * 1997-07-02 2004-01-19 均 大同 Activated sludge filtration device
CN101168467A (en) * 2007-09-28 2008-04-30 天津大学 Sludge replacing and dewatering method and device
CN201293524Y (en) * 2008-11-12 2009-08-19 岳正喜 Vacuum belt combination dewaterer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502803A (en) * 1986-07-02 1989-09-28 ショッテン・アルフォンス disc filter
JP2000153103A (en) * 1998-11-17 2000-06-06 Tsukishima Kikai Co Ltd Filter press apparatus and sludge dewatering
JP2001038152A (en) * 1999-05-27 2001-02-13 Sanyo Electric Co Ltd Removing method of material to be removed in fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112107901A (en) * 2020-09-10 2020-12-22 北京沄汇智能科技有限公司 Solid-liquid suction filtration device
CN112107901B (en) * 2020-09-10 2024-06-07 北京沄汇智能科技有限公司 Solid-liquid suction filtration device
CN113582504A (en) * 2021-07-29 2021-11-02 海南天鸿市政设计股份有限公司 Simple and easy high-efficient sludge thickening dehydration all-in-one
CN115043566A (en) * 2022-08-15 2022-09-13 阳信东泰精密金属有限公司 Sludge cake squeezing dehydrator
CN115043566B (en) * 2022-08-15 2022-11-22 阳信东泰精密金属有限公司 Sludge cake squeezing dehydrator

Also Published As

Publication number Publication date
CN102741174A (en) 2012-10-17
KR20130018279A (en) 2013-02-20
JPWO2011118283A1 (en) 2013-07-04
JP5636040B2 (en) 2014-12-03
HK1173717A1 (en) 2013-05-24
CN102741174B (en) 2014-06-25
KR101435308B1 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
NO333606B1 (en) Mobile device and sludge and wastewater treatment process
JP5636040B2 (en) Solid-liquid separation method
JP2018192431A (en) Solid-liquid separator, and solid-liquid separation method for solid-liquid mixture
CN113087349A (en) Deep dehydration method for sludge belt
WO2013191245A1 (en) Turbid-water treatment system and turbid-water treatment method
JP5985984B2 (en) Solid-liquid separator
JP5108163B1 (en) Filtration method and filtration device
WO2020136439A1 (en) Staged filtration feed system and method
KR20120127040A (en) Sludge Dewatering Tower Filter Press Apparatus
JP5867923B2 (en) Anaerobic treatment liquid treatment system and treatment method
JP2015223569A (en) Turbid water treatment system and method
CN102078716B (en) Method and device for air pulsating filtering screening and concentrating
JP4677374B2 (en) Filtration concentration apparatus and filtration concentration method
CN110433544A (en) A kind of sewage filter device
JP5149133B2 (en) Apparatus and method for concentrating backwash wastewater from membrane filtration
EA038051B1 (en) Method for operating a filter press and filter press
WO2016107878A9 (en) Tubular elements for cake filtration and method of providing a filtration cake
CN111204892A (en) Seawater desalination and permeation device
JP5764346B2 (en) Pressurizing apparatus and pressurizing method
JP2014188469A (en) Filtration method, and filtration apparatus and water treatment system using the same
CN209645981U (en) A kind of steeping tank with filtering function
JP2581600B2 (en) Method for overconcentration of sludge
CN107827259B (en) Purification device for removing heavy metal sewage by using supercharging molecular technology
JPS61249514A (en) Automatic backwashing system filter equipped with drain recovery machine
WO2014030358A1 (en) System comprising dehydration unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007960.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506880

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027945

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11759091

Country of ref document: EP

Kind code of ref document: A1