WO2011118170A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2011118170A1
WO2011118170A1 PCT/JP2011/001598 JP2011001598W WO2011118170A1 WO 2011118170 A1 WO2011118170 A1 WO 2011118170A1 JP 2011001598 W JP2011001598 W JP 2011001598W WO 2011118170 A1 WO2011118170 A1 WO 2011118170A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radial slit
antenna according
minute gap
point
Prior art date
Application number
PCT/JP2011/001598
Other languages
French (fr)
Japanese (ja)
Inventor
工藤敏夫
湖東雅弘
柏原一之
中村智一
阿部真之
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Publication of WO2011118170A1 publication Critical patent/WO2011118170A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to an antenna.
  • Conventional antennas have to have a three-dimensional shape in order to obtain omnidirectional characteristics, and when the antenna is installed on a ceiling or the like, the antenna protrudes from the ceiling and has a disadvantage of poor appearance.
  • a planar omnidirectional loop antenna has been proposed.
  • One example is a crowbar antenna having a plurality of linear loops. Since this crowbar type antenna is composed of a linear loop, it can only deal with a single frequency band, and the frequency range where a predetermined VSWR value can be obtained is limited to a narrow band. Therefore, with a conventional crowbar antenna, it is difficult to cover all of a plurality of frequencies in a frequency division duplex (FDD) of a mobile phone with a single antenna.
  • FDD frequency division duplex
  • the present invention provides an antenna that exhibits excellent VSWR (voltage standing wave ratio) characteristics in a wide frequency band and that can radiate radio waves uniformly over a wide range.
  • the purpose is to provide.
  • the thin-sided antenna element is formed by arranging three or more thin-sided antenna elements made of a conductive material in rotational symmetry around one point and close to each other with a minute gap. Has an outermost corner portion at a position farthest from the one point, and has a radial slit from the one point to the outermost corner portion, and the inner end of the radial slit is at the inner end of the minute gap portion. It is continuous.
  • the one point is used as a common first feeding point for the three or more antenna elements, and the second feeding point is arranged at an inner corner where the inner end of the radial slit and the inner end of the minute gap portion are continuous. It is set.
  • An imaginary path connecting the first feeding point and the second feeding point along the outer peripheral edge of the antenna element is an outer loop, and the first feeding point and the second feeding point are the antenna.
  • the outer peripheral path length dimension of the outer peripheral loop is 1.8 to 2.2 times the electrical wavelength corresponding to the lower limit frequency of the required frequency band.
  • the inner circumference path length dimension of the inner circumference loop is 1.3 times to 1.7 times the electrical wavelength corresponding to the upper limit frequency of the required frequency band.
  • the antenna of the present invention it becomes possible to deal with a plurality of radio waves having different frequency ranges without impairing omnidirectional characteristics (broadband), and a plurality of relay antennas can be integrated into one antenna. Therefore, it is possible to radiate radio waves efficiently and uniformly over a wide range with a small number of installations. Moreover, since it is planar, it does not protrude from the ceiling or the like, and can be installed without conspicuous, improving the practicality.
  • a thin single-sided antenna element 1 made of a conductive material is rotationally symmetric about one point C and is arranged close to each other with a minute gap 3. Further, the thin single-sided antenna element 1 includes an outermost corner portion 10 at a position farthest from one point C, and has a radial slit 2 extending from the one point C toward the outermost corner portion 10. Further, the inner end of the radial slit 2 is continuous with the inner end of the minute gap 3.
  • the antenna A has a single point C as a common first feeding point E1 for three or more antenna elements 1, and the antenna A is connected to the inner corner 12 where the inner end of the radial slit 2 and the inner end of the minute gap 3 are continuous.
  • Two feeding points E2 are arranged.
  • a conducting wire (not shown) is connected to the antenna A so as to energize from the first feeding point E1 to the second feeding point E2.
  • the three or more thin single-sided antenna elements 1 are preferably composed of a single thin metal plate.
  • the antenna element 1 can be a thin metal plate (metal foil) such as Cu, Al, Ag, or Au, and can be used by being attached to glass, a resin sheet and a resin film, an electronic substrate, or the like.
  • a metal film, a transparent conductive film and a conductive paint film can be used by directly forming them on glass and an electronic substrate, or a film once formed on a resin sheet, a resin film, etc. is further stretched on the glass and the electronic substrate. Can also be used.
  • metal film Au, Ag, Cu, Al, Pd, Pt and alloys containing them can be used.
  • transparent conductive film metal oxides such as ITO, zinc oxide and tin oxide can be used. It can be manufactured by sputtering, plating, electrodeposition or the like.
  • metal paste or carbon paste can be used, and can be manufactured by screen printing, roll coating, transfer, or the like.
  • the visible light transmittance is 70% or more.
  • a metal mesh type extremely thin (for example, 0) (.05 ⁇ m) metal foil, or a transparent conductive film or metal translucent film.
  • the metal translucent film Ag—Cu, Ag—Pd, Ni—Au or the like can be used.
  • tensioning or tensioning means tensioning the outer surface of the glass surface with an adhesive or pressure-sensitive adhesive, etc., or baking and laminating, or otherwise sandwiching or sandwiching between glass layers. Include.
  • each antenna element 1 if an imaginary path connecting the first feeding point E 1 and the second feeding point E 2 along the outer peripheral edge 13 of the antenna element 1 is an outer loop 18, the outer loop 18
  • the outer peripheral path length dimension L18 is configured to be approximately twice as long as the electrical wavelength ⁇ eL corresponding to the lower limit frequency FL of the required frequency band.
  • the outer peripheral path length dimension L18 is preferably set to 1.8 times to 2.2 times the electrical wavelength ⁇ eL, and more specifically set to 1.9 times to 2.1 times. .
  • an inner peripheral path length dimension L19 of the inner peripheral loop 19 is shown.
  • the length is about 1.5 times the electrical wavelength ⁇ eH corresponding to the upper limit frequency FH of the required frequency band.
  • the inner circumferential path length dimension L19 is preferably set to 1.3 times to 1.7 times the electrical wavelength ⁇ eH, and more specifically, set to 1.4 times to 1.6 times. preferable. As a result, VSWR characteristics corresponding to a plurality of types of radio wave frequency ranges can be obtained.
  • the outer peripheral edge 13 means a range excluding the radial slit 2 in the outline of the antenna element 1
  • the inner peripheral edge 14 is a radial in the outline of the antenna element 1.
  • the range of the slit 2 is meant.
  • the electrical wavelength ⁇ e (mm) is a wavelength in a state where the current of the frequency F (GHz) flows through the antenna element 1 having the wavelength shortening rate K (%), and is represented by the following equation.
  • the inner circumferential path length dimension L19 of the inner circumferential loop 19 can be adjusted by appropriately setting the length dimension L2 from the inner end to the outer end of the radial slit 2.
  • outer peripheral path length dimension L18 of the outer peripheral loop 18 is such that the adjacent corner portions 11 and 11 of the thin-sided antenna element 1 forming the outer end portion of the minute gap portion 3 are chamfered in an arc shape, and the radius of curvature R11 of the arc is set. Can be adjusted by appropriately setting.
  • the outermost corner 10 is formed between the outer end of the radial slit 2 and the remainder of 0.5 mm to 2.0 mm.
  • the outermost corner 10 may have an appropriate radius of curvature, and may be formed, for example, so that the radius of curvature is 0.5 mm.
  • the width dimension W2 of the radial slit 2 is preferably set to 1.0 mm to 5.0 mm, and the gap dimension W3 of the minute gap 3 is preferably set to 0.5 mm to 2.0 mm.
  • the outer end of the radial slit 2 is illustrated as having a tapered shape, it may have an appropriate radius of curvature and may be sharp.
  • the inner end of the radial slit 2 is tapered and decreases to the same width as the inner end of the minute gap 3, and continues to the inner end of the minute gap 3.
  • a portion where the radial slit 2 and the minute gap portion 3 are continuous is a curved shape, and an arc-shaped inner corner portion 12 is formed.
  • the antenna A according to the first embodiment shown in FIG. 1 includes four square-shaped single-sided antenna elements 1 and is formed into a square shape as a whole.
  • the outermost corner portions 10 disposed at the four corners of the antenna A are formed at right angles and sharply.
  • the antenna A integrally connects the four thin plane antenna elements 1 by a central connecting portion having a first feeding point E1 (one point C).
  • the antenna A according to the second embodiment shown in FIG. 2 includes three rectangular thin-sided antenna elements 1 and is formed into a regular triangle shape as a whole.
  • the outermost corner portion 10 disposed at each apex of the antenna A is formed with an angle of 60 ° and a sharp shape.
  • the antenna A integrally connects the three thin-plate antenna elements 1 by a central connecting portion having a first feeding point E1 (one point C).
  • the antenna A according to the third embodiment shown in FIG. 3 includes three regular hexagonal thin single-sided antenna elements 1 and is formed in a three-pronged shape as a whole.
  • the three lamellar planar antenna elements 1 are formed so that each outermost corner portion 10 is formed at an angle of 120 ° and sharp, and is integrally connected by a central connecting portion having a first feeding point E1 (one point C). .
  • the antenna A is connected to an indoor relay antenna 30 for drawing mobile phone radio waves indoors, and the outdoor radio waves are transmitted to closed indoor spaces such as a building interior 31 and an underground mall 32. Relay to reach.
  • the antenna A is installed on the ceiling of the indoor space 31 of the building or the indoor space of the underground mall 32 without protruding.
  • the antenna A is used in two-way wireless communication of a cellular phone, for example, frequency division duplex (FDD) reception radio waves (frequency: 1.94 GHz to 1.96 GHz) and transmission radio waves (frequency: 2.13 GHz to 2.13 GHz). 15 GHz).
  • FDD frequency division duplex
  • a plurality of antennas A are arranged at predetermined equal intervals on the ceiling of an indoor space such as the room 31 of the building, and the service areas S supplemented by the respective antennas A are overlapped with each other. Design so that there are as few areas in the indoor space as possible that are not affected by radio waves.
  • the antenna A has a non-directional characteristic that uniformly radiates and absorbs radio waves, and generates the service area S in a circular shape in plan view. That is, the omnidirectional antenna A efficiently forms a service area S in a wide range with a small number of installations. Further, since frequency division duplex (FDD) is handled by one antenna A, the number of installations can be further reduced.
  • FDD frequency division duplex
  • the graph shown in FIG. 6 is the first embodiment shown in FIG. 1, and the material is Cu, the thickness dimension is 35 ⁇ m, the length dimension L0 between the outermost corner portions 10 and 10 is 100 mm, The width dimension W2 of the radial slit 2 is 3.0 mm, the gap dimension W3 of the minute gap portion 3 is 1.0 mm, the length dimension L2 of the radial slit 2 is 65 mm, and the radius of curvature R11 of the adjacent corner portion 11 is 7.5 mm.
  • the antenna 100 of the comparative example shown in FIG. 8 is formed by improving a conventional crowbar type antenna into a flat plate shape (foil shape).
  • the antenna 100 of the comparative example includes four linear loop elements 101.
  • the four linear loop elements 101 are arranged rotationally symmetrical around one point and close to each other with a minute gap.
  • the outer diameter Ld is 100 mm.
  • the measured data is shown, with the horizontal axis representing the frequency (GHz) and the vertical axis representing the VSWR value (voltage standing wave ratio).
  • the frequency band in which the antenna of the example shows a VSWR value of 2.0 or less is sufficiently wide. It has a first deepest portion P1 in the vicinity of the frequency (1.94 GHz) of the received radio wave, and a second deepest portion P2 in the vicinity of the frequency (2.15 GHz) of the transmitted radio wave. That is, the graph showing the VSWR characteristics of the antenna of the embodiment draws a bimodal locus in which the first deepest portion P1 and the second deepest portion P2 exist, and the frequency of two types of radio waves of frequency division duplex (FDD). It can be said that an effective VSWR was obtained over a wide band corresponding to.
  • FDD frequency division duplex
  • the antenna of the comparative example has a very narrow frequency band showing a VSWR value of 2.0 or less, and the frequency of the received radio wave (1.94 GHz) and the frequency of the transmitted radio wave (2.15 GHz). It can be seen that the VSWR characteristics are unimodal (only one minimum peak of the VSWR value) that cannot correspond to both.
  • the graph shown in FIG. 7 illustrates the evaluation result of the directivity of the antenna of the example.
  • the antenna of the example has non-directional characteristics. That is, radio waves are radiated uniformly in both the frequency range of the received radio wave (1.94 GHz) and the frequency of the transmit radio wave (2.15 GHz) corresponding to frequency division duplex (FDD). It is confirmed that the directivity is not impaired.
  • the antenna ⁇ prototype (i) ⁇ having the same configuration as that of the above-described embodiment and the antenna of the embodiment have a length dimension L0 between the outermost corner portions 10 and 10.
  • the graph lines are shown as graph lines (i) to (ix), where the horizontal axis represents the frequency (GHz) and the vertical axis represents the VSWR value (voltage standing wave ratio).
  • a measurement graph line (i) is a VSWR characteristic obtained from an antenna ⁇ prototype (i) ⁇ having the same configuration as that of the example.
  • the measurement graph lines (ii) to (ix) are VSWR characteristics obtained from the corresponding prototypes (ii) to (ix).
  • the measurement graph line (i) and the measurement graph line (ii) show the VSWR characteristics obtained from the antenna in which the length L0 between the outermost corner portions 10 and 10 is set to different conditions. Yes. It can be seen that the graph showing the VSWR characteristic shifts to the high frequency side as a whole by setting the length L0 between the outermost corner portions 10 and 10 short.
  • the measurement graph line (ii) to the measurement graph line (v) indicate the VSWR characteristics obtained from the antennas in which the curvature radii R11 of the adjacent corner portions 11 are set to different conditions. It can be seen that by setting the radius of curvature R11 of the close corner 11 large, only the matching frequency on the low frequency side of the graph showing the VSWR characteristics is shifted to the high frequency side.
  • the measurement graph line (i), the measurement graph line (vi), and the measurement graph line (vii) are obtained from the antenna in which the length dimension L2 of the radial slit 2 is set to different conditions. VSWR characteristics are shown. It can be seen that by setting the length dimension L2 of the radial slit 2 large, only the matching frequency on the high frequency side of the graph showing the VSWR characteristics is shifted to the low frequency side.
  • the measurement graph line (viii) shows the VSWR characteristics obtained from an antenna which is the same antenna as that of the example but whose outermost corner portions 10 at the four corners are chamfered by 2 mm.
  • the measurement graph line (ix) shows the VSWR characteristics obtained from the antenna in which the outermost corner portions 10 at the four corners of the antenna of the example are chamfered by 5 mm. It can be seen that chamfering the outermost corners 10 at the four corners hardly affects the VSWR characteristics of the antenna.
  • the length dimension L0 between two adjacent outermost corner portions 10 and 10 is It is confirmed that an antenna corresponding to a required frequency band can be obtained by appropriately setting the radius of curvature R11 of the close corner 11 and the length dimension L2 of the radial slit 2.
  • the outer circumference path length dimension L18 of the outer circumference loop 18 is set to about twice the electrical wavelength corresponding to the frequency of the received radio wave, and the inner circumference path length dimension L19 of the inner circumference loop 19 is set to an electric power corresponding to the frequency of the transmission radio wave. This is achieved by setting it to about 1.5 times the target wavelength.
  • the single-sided antenna element 1 made of three or more conductive materials is rotationally symmetric about one point C and arranged close to each other with the minute gap portion 3.
  • the lamellar planar antenna element 1 includes an outermost corner 10 at a position farthest from one point C, and has a radial slit 2 from the point C to the outermost corner 10, and the inner end of the radial slit 2 is Since it is continuous to the inner end of the minute gap 3, it can handle multiple radio waves with different frequency ranges without impairing the omnidirectional characteristics (broadband). Multiple relay antennas can be combined into one antenna. Can be integrated.
  • radio waves can be radiated or received uniformly and efficiently over a wide range without being noticeable.
  • it since it is planar, it does not protrude from the ceiling or the like, and can be installed without conspicuous, improving the practicality.
  • One point C is a common first feeding point E1 for three or more antenna elements 1, and the second feeding point is connected to the inner corner 12 where the inner end of the radial slit 2 and the inner end of the minute gap 3 are continuous. Since E2 is disposed, the entire antenna can be reduced in size, and a high-performance antenna with a wide band can be obtained without impairing omnidirectionality.
  • An imaginary path connecting the first feeding point E1 and the second feeding point E2 along the outer peripheral edge portion 13 of the antenna element 1 is defined as an outer peripheral loop 18, and the first feeding point E1 and the second feeding point E2 are Assuming that an imaginary path connected along the inner peripheral edge portion 14 of the antenna element 1 is an inner peripheral loop 19, the outer peripheral path length dimension L18 of the outer peripheral loop 18 is 1 of the electrical wavelength ⁇ eL corresponding to the lower limit frequency FL of the required frequency band. .8 times to 2.2 times so that the inner circumference path length dimension L19 of the inner circumference loop 19 is 1.3 times to 1.7 times the electrical wavelength ⁇ eH corresponding to the upper limit frequency FH of the required frequency band. Since it comprised, it can respond
  • the present invention is useful for antennas.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

At least three thin-layer shaped antenna elements (1) formed from conductive material are arranged so as to be rotationally symmetrical around a single point (C) and so as to be close to one-another whilst having a minute gap (3) there-between. The thin-layer shaped antenna elements (1) are provided with an outer-most corner section (10) at the point furthest from the single point (C), and have a radial slit (2) which goes from the single point (C) toward the outer-most corner section (10), and the inner edges of which are continuous with the inner edges of the minute gaps (3).

Description

アンテナantenna
 本発明はアンテナに関する。 The present invention relates to an antenna.
 ビルの各室内や地下街でも携帯電話やPHSが使えるように、屋外の携帯電話の電波を引き込み、屋内の小出力アンテナで中継するシステムが各所で導入されている。 In order to be able to use mobile phones and PHS in each building and underground mall, systems that introduce radio waves from outdoor mobile phones and relay them using indoor small output antennas have been introduced in various places.
 従来、このシステム用の上記小出力アンテナとしては、屋内の通話エリア設計のため、アンテナには無指向性の特性が要求されることから、ダイポールアンテナやモノポールアンテナが使用されてきた(特許文献1参照)。 Conventionally, as the small output antenna for this system, a dipole antenna or a monopole antenna has been used because the antenna is required to have omnidirectional characteristics for designing an indoor conversation area (Patent Document) 1).
特開2007-215133号公報JP 2007-215133 A
 従来のアンテナは、無指向性の特性を得るために立体形状と成らざるを得ず、天井等にアンテナを設置する場合、天井からアンテナが突出し、見栄えが悪くなるという欠点があった。 Conventional antennas have to have a three-dimensional shape in order to obtain omnidirectional characteristics, and when the antenna is installed on a ceiling or the like, the antenna protrudes from the ceiling and has a disadvantage of poor appearance.
 これを解決するために、平面状で無指向性のループアンテナが提案され、その一例としては、複数の線状ループを備えたクローバ形アンテナがある。このクローバ形アンテナは、線状ループで構成されているため、単一の周波数帯にしか対応できず、所定のVSWR値が得られる周波数域は狭帯域に限定されていた。従って、従来のクローバ形アンテナでは、携帯電話の周波数分割複信(FDD;Frequency Division Duplex)における複数の周波数全体を、ひとつのアンテナでカバーすることが困難であった。 In order to solve this problem, a planar omnidirectional loop antenna has been proposed. One example is a crowbar antenna having a plurality of linear loops. Since this crowbar type antenna is composed of a linear loop, it can only deal with a single frequency band, and the frequency range where a predetermined VSWR value can be obtained is limited to a narrow band. Therefore, with a conventional crowbar antenna, it is difficult to cover all of a plurality of frequencies in a frequency division duplex (FDD) of a mobile phone with a single antenna.
 そこで、本発明は、広い周波数帯域にて、優れたVSWR(電圧定在波比)特性を示し、かつ、広範囲に亘って均一に電波を放射することのできる良好な指向性を発揮するアンテナを提供することを目的とする。 Therefore, the present invention provides an antenna that exhibits excellent VSWR (voltage standing wave ratio) characteristics in a wide frequency band and that can radiate radio waves uniformly over a wide range. The purpose is to provide.
 本発明に係るアンテナは、3個以上の導電性材料から成る薄片面状アンテナ素子を一点廻りに回転対称として、かつ、微小間隙部をもって相互に近接して配設し、上記薄片面状アンテナ素子は、上記一点から最も離れた箇所に最外角部を備えると共に、上記一点から上記最外角部へ向かうラジアルスリットを有し、さらに、該ラジアルスリットの内端は、上記微小間隙部の内端に連続しているものである。 In the antenna according to the present invention, the thin-sided antenna element is formed by arranging three or more thin-sided antenna elements made of a conductive material in rotational symmetry around one point and close to each other with a minute gap. Has an outermost corner portion at a position farthest from the one point, and has a radial slit from the one point to the outermost corner portion, and the inner end of the radial slit is at the inner end of the minute gap portion. It is continuous.
 また、上記一点を上記3個以上のアンテナ素子の共通の第1給電点とすると共に、上記ラジアルスリットの内端と上記微小間隙部の内端とが連続する内角部に第2給電点を配設したものである。 The one point is used as a common first feeding point for the three or more antenna elements, and the second feeding point is arranged at an inner corner where the inner end of the radial slit and the inner end of the minute gap portion are continuous. It is set.
 また、上記第1給電点と上記第2給電点とを上記アンテナ素子の外周縁部に沿って結んだ仮想の経路を外周ループとし、上記第1給電点と上記第2給電点とを上記アンテナ素子の内周縁部に沿って結んだ仮想の経路を内周ループとすると、上記外周ループの外周経路長寸法が所要周波数帯域の下限周波数に対応する電気的波長の1.8倍~2.2倍に、上記内周ループの内周経路長寸法が所要周波数帯域の上限周波数に対応する電気的波長の1.3倍~1.7倍になるように構成したものである。 An imaginary path connecting the first feeding point and the second feeding point along the outer peripheral edge of the antenna element is an outer loop, and the first feeding point and the second feeding point are the antenna. Assuming that an imaginary path connected along the inner peripheral edge of the element is an inner peripheral loop, the outer peripheral path length dimension of the outer peripheral loop is 1.8 to 2.2 times the electrical wavelength corresponding to the lower limit frequency of the required frequency band. The inner circumference path length dimension of the inner circumference loop is 1.3 times to 1.7 times the electrical wavelength corresponding to the upper limit frequency of the required frequency band.
 本発明のアンテナによれば、無指向性の特性を損なうことなく、周波数域の異なる複数の電波に対応可能(広帯域化)となり、複数の中継アンテナを、ひとつのアンテナに統合することができる。よって、少ない設置数で、効率よく広い範囲に均一に電波を放射することができる。また、平面状であるため、天井等から突出することがなく、目立つことなく設置することができ、実用性が向上する。 According to the antenna of the present invention, it becomes possible to deal with a plurality of radio waves having different frequency ranges without impairing omnidirectional characteristics (broadband), and a plurality of relay antennas can be integrated into one antenna. Therefore, it is possible to radiate radio waves efficiently and uniformly over a wide range with a small number of installations. Moreover, since it is planar, it does not protrude from the ceiling or the like, and can be installed without conspicuous, improving the practicality.
第1の実施の形態の構成を示した図であって、(a)は平面図であり、(b)は最外角部近傍の拡大図であり、(c)は要部説明図である。It is the figure which showed the structure of 1st Embodiment, Comprising: (a) is a top view, (b) is an enlarged view of the outermost corner part vicinity, (c) is principal part explanatory drawing. 第2の実施の形態の構成を示した図であって、(a)は平面図であり、(b)は最外角部近傍の拡大図である。It is the figure which showed the structure of 2nd Embodiment, Comprising: (a) is a top view, (b) is an enlarged view of the outermost corner part vicinity. 第3の実施の形態の構成を示した図であって、(a)は平面図であり、(b)は最外角部近傍の拡大図である。It is the figure which showed the structure of 3rd Embodiment, Comprising: (a) is a top view, (b) is an enlarged view of the outermost corner part vicinity. アンテナの設置例を示した簡略図である。It is the simple figure which showed the example of installation of the antenna. アンテナの設置例を示した簡略平面図である。It is the simple top view which showed the example of installation of an antenna. アンテナのVSWR特性を示したグラフ図である。It is the graph which showed the VSWR characteristic of the antenna. アンテナの指向性及び利得特性を示したグラフ図である。It is the graph which showed the directivity and gain characteristic of an antenna. 比較例のアンテナを示した平面図である。It is the top view which showed the antenna of the comparative example. 比較例のアンテナのVSWR特性を示したグラフ図である。It is the graph which showed the VSWR characteristic of the antenna of a comparative example. 種々のアンテナの実測データに基づくVSWR特性を示したグラフ図である。It is the graph which showed the VSWR characteristic based on the measurement data of various antennas. 種々のアンテナの実測データに基づくVSWR特性を示したグラフ図である。It is the graph which showed the VSWR characteristic based on the measurement data of various antennas.
 以下、実施の形態を示す図面に基づき詳説する。 Hereinafter, a detailed description will be given based on the drawings showing the embodiments.
 図1,図2,図3に於て、アンテナAの第1の実施の形態、第2の実施の形態、第3の実施の形態の全てに共通する構成を説明すると、3個以上の導電性材料から成る薄片面状アンテナ素子1を一点C廻りに回転対称として、かつ、微小間隙部3をもって相互に近接して配設している。また、薄片面状アンテナ素子1は、一点Cから最も離れた箇所に最外角部10を備えると共に、一点Cから最外角部10へ向かうラジアルスリット2を有している。さらに、ラジアルスリット2の内端は、微小間隙部3の内端に連続している。 1, 2, and 3, the configuration common to all of the first embodiment, the second embodiment, and the third embodiment of the antenna A will be described. A thin single-sided antenna element 1 made of a conductive material is rotationally symmetric about one point C and is arranged close to each other with a minute gap 3. Further, the thin single-sided antenna element 1 includes an outermost corner portion 10 at a position farthest from one point C, and has a radial slit 2 extending from the one point C toward the outermost corner portion 10. Further, the inner end of the radial slit 2 is continuous with the inner end of the minute gap 3.
 また、アンテナAは、一点Cを、3個以上のアンテナ素子1の共通の第1給電点E1とし、ラジアルスリット2の内端と微小間隙部3の内端とが連続する内角部12に第2給電点E2を配設している。アンテナAには、第1給電点E1から第2給電点E2に通電するように図示省略の導線が接続されている。 Further, the antenna A has a single point C as a common first feeding point E1 for three or more antenna elements 1, and the antenna A is connected to the inner corner 12 where the inner end of the radial slit 2 and the inner end of the minute gap 3 are continuous. Two feeding points E2 are arranged. A conducting wire (not shown) is connected to the antenna A so as to energize from the first feeding point E1 to the second feeding point E2.
 3個以上の薄片面状アンテナ素子1は、望ましくは、一枚の金属薄板をもって構成する。具体的には、アンテナ素子1は、Cu,Al,Ag,Au等の金属薄板(金属箔)を用いることができ、ガラス、樹脂シート及び樹脂フィルム、電子基板等に張着して使用できる。 The three or more thin single-sided antenna elements 1 are preferably composed of a single thin metal plate. Specifically, the antenna element 1 can be a thin metal plate (metal foil) such as Cu, Al, Ag, or Au, and can be used by being attached to glass, a resin sheet and a resin film, an electronic substrate, or the like.
 また、金属膜、透明導電膜及び導電塗料膜を、直接ガラス及び電子基板等に成膜して使用したり、一旦樹脂シート、樹脂フィルム等に成膜したものを更にガラス及び電子基板に張設して使用することもできる。 In addition, a metal film, a transparent conductive film and a conductive paint film can be used by directly forming them on glass and an electronic substrate, or a film once formed on a resin sheet, a resin film, etc. is further stretched on the glass and the electronic substrate. Can also be used.
 金属膜としては、Au,Ag,Cu,Al,Pd,Ptやこれらを含む合金を使用でき、透明導電膜としては、ITO,酸化亜鉛、酸化スズ等の金属酸化物を使用でき、真空蒸着法、スパッタリング法、メッキ、電着等で製造できる。 As the metal film, Au, Ag, Cu, Al, Pd, Pt and alloys containing them can be used. As the transparent conductive film, metal oxides such as ITO, zinc oxide and tin oxide can be used. It can be manufactured by sputtering, plating, electrodeposition or the like.
 導電塗料膜としては、金属ペーストやカーボンペーストを使用でき、スクリーン印刷、ロールコーティング、転写等で製造することができる。 As the conductive paint film, metal paste or carbon paste can be used, and can be manufactured by screen printing, roll coating, transfer, or the like.
 窓ガラス等のガラス面に張設して使用するときは、可視光線の透過率を70%以上にすることが望ましく、このような透明性を求められる用途では金属メッシュ型、極めて薄い(例えば0.05μmの)金属箔、あるいは、透明導電膜や金属半透明膜から構成することが好ましい。金属半透明膜としては、Ag-Cu,Ag-Pd,Ni-Au等を使用することができる。 When it is used while being stretched on a glass surface such as a window glass, it is desirable that the visible light transmittance is 70% or more. In applications where such transparency is required, a metal mesh type, extremely thin (for example, 0) (.05 μm) metal foil, or a transparent conductive film or metal translucent film. As the metal translucent film, Ag—Cu, Ag—Pd, Ni—Au or the like can be used.
 なお、張設又は張着とは、ガラス面の外面に接着剤や粘着剤等で張ったり、あるいは、焼付けて積層したり、それ以外にもガラス層の間に狭設・挟着させる場合も包含する。 In addition, tensioning or tensioning means tensioning the outer surface of the glass surface with an adhesive or pressure-sensitive adhesive, etc., or baking and laminating, or otherwise sandwiching or sandwiching between glass layers. Include.
 また、各々のアンテナ素子1に於て、第1給電点E1と第2給電点E2とをアンテナ素子1の外周縁部13に沿って結んだ仮想の経路を外周ループ18とすると、外周ループ18の外周経路長寸法L18が、所要周波数帯域の下限周波数FLに対応する電気的波長λeLの約2倍の長さ寸法になるように構成している。なお、外周経路長寸法L18は電気的波長λeLの1.8倍~2.2倍に設定されるのが好ましく、さらに詳しくは、1.9倍~2.1倍に設定するのがより好ましい。一方、第1給電点E1と第2給電点E2とをアンテナ素子1の内周縁部14に沿って結んだ仮想の経路を内周ループ19とすると、内周ループ19の内周経路長寸法L19が、所要周波数帯域の上限周波数FHに対応する電気的波長λeHの約1.5倍の長さ寸法になるように構成している。なお、内周経路長寸法L19は電気的波長λeHの1.3倍~1.7倍に設定されるのが好ましく、さらに詳しくは、1.4倍~1.6倍に設定するのがより好ましい。これにより、複数種類の電波の周波数域に対応したVSWR特性が得られる。 In each antenna element 1, if an imaginary path connecting the first feeding point E 1 and the second feeding point E 2 along the outer peripheral edge 13 of the antenna element 1 is an outer loop 18, the outer loop 18 The outer peripheral path length dimension L18 is configured to be approximately twice as long as the electrical wavelength λeL corresponding to the lower limit frequency FL of the required frequency band. The outer peripheral path length dimension L18 is preferably set to 1.8 times to 2.2 times the electrical wavelength λeL, and more specifically set to 1.9 times to 2.1 times. . On the other hand, when an imaginary path connecting the first feeding point E1 and the second feeding point E2 along the inner peripheral edge portion 14 of the antenna element 1 is an inner peripheral loop 19, an inner peripheral path length dimension L19 of the inner peripheral loop 19 is shown. However, the length is about 1.5 times the electrical wavelength λeH corresponding to the upper limit frequency FH of the required frequency band. The inner circumferential path length dimension L19 is preferably set to 1.3 times to 1.7 times the electrical wavelength λeH, and more specifically, set to 1.4 times to 1.6 times. preferable. As a result, VSWR characteristics corresponding to a plurality of types of radio wave frequency ranges can be obtained.
 ここで、アンテナ素子1に於て、外周縁部13とは、アンテナ素子1の輪郭のうちラジアルスリット2を除いた範囲を意味し、内周縁部14とは、アンテナ素子1の輪郭のうちラジアルスリット2の範囲を意味している。 Here, in the antenna element 1, the outer peripheral edge 13 means a range excluding the radial slit 2 in the outline of the antenna element 1, and the inner peripheral edge 14 is a radial in the outline of the antenna element 1. The range of the slit 2 is meant.
 また、電気的波長λe(mm)とは、周波数F(GHz)の電流が波長短縮率K(%)を有するアンテナ素子1を流れる状態での波長であって、次式で表される。 Further, the electrical wavelength λe (mm) is a wavelength in a state where the current of the frequency F (GHz) flows through the antenna element 1 having the wavelength shortening rate K (%), and is represented by the following equation.
 λe=(300/F)*K
 内周ループ19の内周経路長寸法L19は、ラジアルスリット2の内端から外端までの長さ寸法L2を適宜設定することにより調整可能である。
λe = (300 / F) * K
The inner circumferential path length dimension L19 of the inner circumferential loop 19 can be adjusted by appropriately setting the length dimension L2 from the inner end to the outer end of the radial slit 2.
 また、外周ループ18の外周経路長寸法L18は、微小間隙部3の外端部を形成する薄片面状アンテナ素子1の近接角部11,11を、円弧状に面取りし、円弧の曲率半径R11を適宜設定することにより調整可能である。 Further, the outer peripheral path length dimension L18 of the outer peripheral loop 18 is such that the adjacent corner portions 11 and 11 of the thin-sided antenna element 1 forming the outer end portion of the minute gap portion 3 are chamfered in an arc shape, and the radius of curvature R11 of the arc is set. Can be adjusted by appropriately setting.
 なお、最外角部10は、ラジアルスリット2の外端との間に、0.5mm~2.0mmの残部を残して形成されている。最外角部10は、適当な曲率半径を有していても良く、例えば、曲率半径が0.5mmとなるように形成すれば良い。 The outermost corner 10 is formed between the outer end of the radial slit 2 and the remainder of 0.5 mm to 2.0 mm. The outermost corner 10 may have an appropriate radius of curvature, and may be formed, for example, so that the radius of curvature is 0.5 mm.
 また、ラジアルスリット2の幅寸法W2は1.0mm~5.0mm、微小間隙部3の間隙寸法W3は0.5mm~2.0mmに設定されるのが望ましい。ラジアルスリット2の外端は、テーパー状に形成されている場合を図示しているが、適当な曲率半径を有していれば良く、尖っていても良い。ラジアルスリット2の内端は、テーパー状に形成され微小間隙部3の内端と同じ幅員に減少し、微小間隙部3の内端に連続している。ラジアルスリット2と微小間隙部3とが連続する箇所は、弯曲状とし、円弧状の内角部12を形成している。 The width dimension W2 of the radial slit 2 is preferably set to 1.0 mm to 5.0 mm, and the gap dimension W3 of the minute gap 3 is preferably set to 0.5 mm to 2.0 mm. Although the outer end of the radial slit 2 is illustrated as having a tapered shape, it may have an appropriate radius of curvature and may be sharp. The inner end of the radial slit 2 is tapered and decreases to the same width as the inner end of the minute gap 3, and continues to the inner end of the minute gap 3. A portion where the radial slit 2 and the minute gap portion 3 are continuous is a curved shape, and an arc-shaped inner corner portion 12 is formed.
 次に、各実施の形態について説明すると、図1に示す第1の実施の形態のアンテナAは、4個の正方形状薄片面状アンテナ素子1を備え、全体が正方形状に成形されている。アンテナAの四隅に配設された最外角部10は、直角かつ尖鋭状に形成されている。アンテナAは、第1給電点E1(一点C)を有する中央連結部によって4個の薄片面状アンテナ素子1を一体に連結している。 Next, each embodiment will be described. The antenna A according to the first embodiment shown in FIG. 1 includes four square-shaped single-sided antenna elements 1 and is formed into a square shape as a whole. The outermost corner portions 10 disposed at the four corners of the antenna A are formed at right angles and sharply. The antenna A integrally connects the four thin plane antenna elements 1 by a central connecting portion having a first feeding point E1 (one point C).
 図2に示す第2の実施の形態のアンテナAは、3個の四角形状薄片面状アンテナ素子1を備え、全体が正三角形状に成形されている。アンテナAの各頂点に配設された最外角部10は、角度60°かつ尖鋭状に形成されている。アンテナAは、第1給電点E1(一点C)を有する中央連結部によって3個の薄片面状アンテナ素子1を一体に連結している。 The antenna A according to the second embodiment shown in FIG. 2 includes three rectangular thin-sided antenna elements 1 and is formed into a regular triangle shape as a whole. The outermost corner portion 10 disposed at each apex of the antenna A is formed with an angle of 60 ° and a sharp shape. The antenna A integrally connects the three thin-plate antenna elements 1 by a central connecting portion having a first feeding point E1 (one point C).
 図3に示す第3の実施の形態のアンテナAは、3個の正六角形状薄片面状アンテナ素子1を備え、全体が三叉状に形成されている。3個の薄片面状アンテナ素子1は、夫々の最外角部10を角度120°かつ尖鋭状に形成され、第1給電点E1(一点C)を有する中央連結部によって一体状に連結されている。 The antenna A according to the third embodiment shown in FIG. 3 includes three regular hexagonal thin single-sided antenna elements 1 and is formed in a three-pronged shape as a whole. The three lamellar planar antenna elements 1 are formed so that each outermost corner portion 10 is formed at an angle of 120 ° and sharp, and is integrally connected by a central connecting portion having a first feeding point E1 (one point C). .
 上述したアンテナの使用方法(作用)について説明する。 The method (action) of using the antenna described above will be described.
 図4に示すように、アンテナAは、携帯電話の電波を室内に引き込むための屋内中継用アンテナ30に接続され、屋外の電波をビルの室内31や地下街32等の閉じた室内空間に、電波が及ぶように中継する。アンテナAは、ビルの室内31や地下街32の室内空間の天井に、突出することなく設置される。 As shown in FIG. 4, the antenna A is connected to an indoor relay antenna 30 for drawing mobile phone radio waves indoors, and the outdoor radio waves are transmitted to closed indoor spaces such as a building interior 31 and an underground mall 32. Relay to reach. The antenna A is installed on the ceiling of the indoor space 31 of the building or the indoor space of the underground mall 32 without protruding.
 アンテナAは、携帯電話の双方向無線通信に於て、例えば、周波数分割複信(FDD)の受信電波(周波数:1.94GHz~1.96GHz)及び送信電波(周波数:2.13GHz~2.15GHz)の両方に対応する。 The antenna A is used in two-way wireless communication of a cellular phone, for example, frequency division duplex (FDD) reception radio waves (frequency: 1.94 GHz to 1.96 GHz) and transmission radio waves (frequency: 2.13 GHz to 2.13 GHz). 15 GHz).
 図5に示すように、ビルの室内31等の室内空間の天井に、複数のアンテナA…を所定の等間隔をもって配設し、夫々のアンテナAが補うサービスエリアSを相互に重ね合わせて、室内空間に通信電波の及ばない地域ができるだけ少なくなるように設計する。アンテナAは、均一に電波を放射・吸収する無指向性の特性を有し、平面視円形状にサービスエリアSを発生させる。つまり、無指向性のアンテナAは、少ない設置数で、効率よく広い範囲にサービスエリアSを形成する。また、周波数分割複信(FDD)を、ひとつのアンテナAで対応するため、より一層、設置数が少なく済む。 As shown in FIG. 5, a plurality of antennas A are arranged at predetermined equal intervals on the ceiling of an indoor space such as the room 31 of the building, and the service areas S supplemented by the respective antennas A are overlapped with each other. Design so that there are as few areas in the indoor space as possible that are not affected by radio waves. The antenna A has a non-directional characteristic that uniformly radiates and absorbs radio waves, and generates the service area S in a circular shape in plan view. That is, the omnidirectional antenna A efficiently forms a service area S in a wide range with a small number of installations. Further, since frequency division duplex (FDD) is handled by one antenna A, the number of installations can be further reduced.
 次に、図6に示すグラフ図は、図1に示した第1の実施の形態であって、材質がCu,厚さ寸法35μm,最外角部10,10間の長さ寸法L0を100mm,ラジアルスリット2の幅寸法W2を3.0mm,微小間隙部3の間隙寸法W3を1.0mmとし、ラジアルスリット2の長さ寸法L2を65mm,近接角部11の曲率半径R11を7.5mmとしたアンテナを実施例として、1.6mm厚のエポキシガラス基板(波長短縮率K=62%)に形成したときの実測データを図示し、横軸に周波数(GHz),縦軸にVSWR値(電圧定在波比)をとっている。 Next, the graph shown in FIG. 6 is the first embodiment shown in FIG. 1, and the material is Cu, the thickness dimension is 35 μm, the length dimension L0 between the outermost corner portions 10 and 10 is 100 mm, The width dimension W2 of the radial slit 2 is 3.0 mm, the gap dimension W3 of the minute gap portion 3 is 1.0 mm, the length dimension L2 of the radial slit 2 is 65 mm, and the radius of curvature R11 of the adjacent corner portion 11 is 7.5 mm. As an example, measured data when an antenna is formed on a 1.6 mm thick epoxy glass substrate (wavelength shortening rate K = 62%) is shown, with the horizontal axis representing frequency (GHz) and the vertical axis representing VSWR value (voltage Standing wave ratio).
 図8に示す比較例のアンテナ100は、従来のクローバ形アンテナを改良して平板状(箔状)に形成したものである。比較例のアンテナ100は、4個の線状ループ素子101を備えている。4個の線状ループ素子101は、一点廻りに回転対称として、かつ、微小間隙部をもって相互に近接して配設されている。なお、外径寸法Ldを100mmとしている。 The antenna 100 of the comparative example shown in FIG. 8 is formed by improving a conventional crowbar type antenna into a flat plate shape (foil shape). The antenna 100 of the comparative example includes four linear loop elements 101. The four linear loop elements 101 are arranged rotationally symmetrical around one point and close to each other with a minute gap. The outer diameter Ld is 100 mm.
 図9に示すグラフ図は、比較例のアンテナ100であって、材質がCu,厚さ寸法35μmに設定し、1.6mm厚のエポキシガラス基板(波長短縮率K=62%)に形成したときの実測データを図示し、横軸に周波数(GHz),縦軸にVSWR値(電圧定在波比)をとっている。 The graph shown in FIG. 9 is the antenna 100 of the comparative example, when the material is set to Cu and the thickness dimension is 35 μm, and it is formed on a 1.6 mm thick epoxy glass substrate (wavelength reduction rate K = 62%). The measured data is shown, with the horizontal axis representing the frequency (GHz) and the vertical axis representing the VSWR value (voltage standing wave ratio).
 図6に於て、実施例のアンテナが、VSWR値2.0以下を示す周波数帯域が十分に広いことが判る。受信電波の周波数(1.94GHz)の近傍に第1最深部P1を有し、送信電波の周波数(2.15GHz)の近傍に第2最深部P2を有している。即ち、実施例のアンテナのVSWR特性を示すグラフは、第1最深部P1及び第2最深部P2が存在する双峰的な軌跡を描き、周波数分割複信(FDD)の2種類の電波の周波数に対応する広帯域にわたって、有効なVSWRを得たと言える。 In FIG. 6, it can be seen that the frequency band in which the antenna of the example shows a VSWR value of 2.0 or less is sufficiently wide. It has a first deepest portion P1 in the vicinity of the frequency (1.94 GHz) of the received radio wave, and a second deepest portion P2 in the vicinity of the frequency (2.15 GHz) of the transmitted radio wave. That is, the graph showing the VSWR characteristics of the antenna of the embodiment draws a bimodal locus in which the first deepest portion P1 and the second deepest portion P2 exist, and the frequency of two types of radio waves of frequency division duplex (FDD). It can be said that an effective VSWR was obtained over a wide band corresponding to.
 一方、図9に於ては、比較例のアンテナが、VSWR値2.0以下を示す周波数帯域が非常に狭く、受信電波の周波数(1.94GHz)と送信電波の周波数(2.15GHz)の両方に対応することができない単峰的な(VSWR値の最小値ピークが1つのみ)VSWR特性となっていることが判る。 On the other hand, in FIG. 9, the antenna of the comparative example has a very narrow frequency band showing a VSWR value of 2.0 or less, and the frequency of the received radio wave (1.94 GHz) and the frequency of the transmitted radio wave (2.15 GHz). It can be seen that the VSWR characteristics are unimodal (only one minimum peak of the VSWR value) that cannot correspond to both.
 次に、図7に示すグラフ図は、実施例のアンテナの指向性の評価結果を図示したものである。図7に於て、実施例のアンテナが、無指向性の特性を有していることが判る。即ち、周波数分割複信(FDD)に対応する受信電波の周波数(1.94GHz)と送信電波の周波数(2.15GHz)の両方の周波数域に於て、均一に電波を放射しており、無指向特性が損なわれていないことが確認される。 Next, the graph shown in FIG. 7 illustrates the evaluation result of the directivity of the antenna of the example. In FIG. 7, it can be seen that the antenna of the example has non-directional characteristics. That is, radio waves are radiated uniformly in both the frequency range of the received radio wave (1.94 GHz) and the frequency of the transmit radio wave (2.15 GHz) corresponding to frequency division duplex (FDD). It is confirmed that the directivity is not impaired.
 図10及び図11に示すグラフ図は、上述の実施例と同様の構成から成るアンテナ{試作品(i)}と、実施例のアンテナとは最外角部10,10間の長さ寸法L0,近接角部11の曲率半径R11,ラジアルスリット2の長さ寸法L2のうち少なくとも一つが異なるように設定した複数種類のアンテナ{試作品(ii)~(vii)}と、実施例のアンテナの四隅の最外角部10を面取りしたアンテナ{試作品(viii)~(ix)}とを、1.6mm厚のエポキシガラス基板(波長短縮率K=62%)に形成して得たVSWR特性を測定グラフ線(i)~(ix)として図示したものであって、横軸に周波数(GHz),縦軸にVSWR値(電圧定在波比)をとっている。 10 and 11, the antenna {prototype (i)} having the same configuration as that of the above-described embodiment and the antenna of the embodiment have a length dimension L0 between the outermost corner portions 10 and 10. A plurality of types of antennas {prototypes (ii) to (vii)} set so that at least one of the radius of curvature R11 of the adjacent corner portion 11 and the length dimension L2 of the radial slit 2 is different, and the four corners of the antenna of the embodiment VSWR characteristics obtained by forming an antenna {prototypes (viii) to (ix)} with chamfered outermost corners 10 on a 1.6 mm thick epoxy glass substrate (wavelength reduction rate K = 62%) The graph lines are shown as graph lines (i) to (ix), where the horizontal axis represents the frequency (GHz) and the vertical axis represents the VSWR value (voltage standing wave ratio).
 各アンテナの条件は、以下の表1及び表2の通りである。
さらに、各アンテナに於て、外周経路長寸法L18と下限周波数FLに対応する電気的波長λeLとの倍率と、内周経路長寸法L19と上限周波数FHに対応する電気的波長λeHとの倍率とを、表3に示す。
Conditions for each antenna are as shown in Table 1 and Table 2 below.
Further, in each antenna, the magnification between the outer circumference path length dimension L18 and the electrical wavelength λeL corresponding to the lower limit frequency FL, and the magnification between the inner circumference path length dimension L19 and the electrical wavelength λeH corresponding to the upper limit frequency FH, Is shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図10及び図11に於て、測定グラフ線(i)は、実施例と同様の構成から成るアンテナ{試作品(i)}から得たVSWR特性である。以下、測定グラフ線(ii)~(ix)は、対応する試作品(ii)~(ix)から得たVSWR特性である。 10 and 11, a measurement graph line (i) is a VSWR characteristic obtained from an antenna {prototype (i)} having the same configuration as that of the example. Hereinafter, the measurement graph lines (ii) to (ix) are VSWR characteristics obtained from the corresponding prototypes (ii) to (ix).
 図10に於て、測定グラフ線(i)と測定グラフ線(ii)は、最外角部10,10間の長さ寸法L0が夫々異なる条件に設定されたアンテナから得たVSWR特性を示している。最外角部10,10間の長さ寸法L0を短く設定することによりVSWR特性を示すグラフが全体的に高周波数側にシフトすることが判る。 In FIG. 10, the measurement graph line (i) and the measurement graph line (ii) show the VSWR characteristics obtained from the antenna in which the length L0 between the outermost corner portions 10 and 10 is set to different conditions. Yes. It can be seen that the graph showing the VSWR characteristic shifts to the high frequency side as a whole by setting the length L0 between the outermost corner portions 10 and 10 short.
 また、測定グラフ線(ii)~測定グラフ線(v)は、近接角部11の曲率半径R11が夫々異なる条件に設定されたアンテナから得たVSWR特性を示している。近接角部11の曲率半径R11を大きく設定することにより、VSWR特性を示すグラフの低域側の整合周波数のみが高周波数側にシフトすることが判る。 The measurement graph line (ii) to the measurement graph line (v) indicate the VSWR characteristics obtained from the antennas in which the curvature radii R11 of the adjacent corner portions 11 are set to different conditions. It can be seen that by setting the radius of curvature R11 of the close corner 11 large, only the matching frequency on the low frequency side of the graph showing the VSWR characteristics is shifted to the high frequency side.
 次に、図11に於て、測定グラフ線(i)と測定グラフ線(vi)と測定グラフ線(vii)は、ラジアルスリット2の長さ寸法L2が夫々異なる条件に設定されたアンテナから得たVSWR特性を示している。ラジアルスリット2の長さ寸法L2を大きく設定することにより、VSWR特性を示すグラフの高域側の整合周波数のみが低周波数側にシフトすることが判る。 Next, in FIG. 11, the measurement graph line (i), the measurement graph line (vi), and the measurement graph line (vii) are obtained from the antenna in which the length dimension L2 of the radial slit 2 is set to different conditions. VSWR characteristics are shown. It can be seen that by setting the length dimension L2 of the radial slit 2 large, only the matching frequency on the high frequency side of the graph showing the VSWR characteristics is shifted to the low frequency side.
 また、測定グラフ線(viii)は、実施例と同様のアンテナであるが四隅の最外角部10を2mm面取りしたアンテナから得たVSWR特性を示している。測定グラフ線(ix)は、実施例のアンテナの四隅の最外角部10を5mm面取りしたアンテナから得たVSWR特性を示している。四隅の最外角部10を面取りすることはアンテナのVSWR特性にほとんど影響を与えないことが判る。 Further, the measurement graph line (viii) shows the VSWR characteristics obtained from an antenna which is the same antenna as that of the example but whose outermost corner portions 10 at the four corners are chamfered by 2 mm. The measurement graph line (ix) shows the VSWR characteristics obtained from the antenna in which the outermost corner portions 10 at the four corners of the antenna of the example are chamfered by 5 mm. It can be seen that chamfering the outermost corners 10 at the four corners hardly affects the VSWR characteristics of the antenna.
 以上、表1~表3及び測定グラフ線(i)~測定グラフ線(ix)にて示したアンテナのVSWR特性を検証すると、隣り合う2つの最外角部10,10間の長さ寸法L0と、近接角部11の曲率半径R11及びラジアルスリット2の長さ寸法L2を適宜設定することで、所要の周波数帯域に対応するアンテナが得られることが確認される。言い換えると、携帯電話の周波数分割複信(FDD)における受信電波(周波数:1.94GHz~1.96GHz)及び送信電波(周波数:2.13GHz~2.15GHz)の両方に対応した周波数帯域の設定は、外周ループ18の外周経路長寸法L18を受信電波の周波数に対応する電気的波長の約2倍とし、かつ、内周ループ19の内周経路長寸法L19を送信電波の周波数に対応する電気的波長の約1.5倍とすることで達成される。 As described above, when the VSWR characteristics of the antenna shown in Tables 1 to 3 and measurement graph line (i) to measurement graph line (ix) are verified, the length dimension L0 between two adjacent outermost corner portions 10 and 10 is It is confirmed that an antenna corresponding to a required frequency band can be obtained by appropriately setting the radius of curvature R11 of the close corner 11 and the length dimension L2 of the radial slit 2. In other words, setting of frequency bands corresponding to both reception radio waves (frequency: 1.94 GHz to 1.96 GHz) and transmission radio waves (frequency: 2.13 GHz to 2.15 GHz) in frequency division duplex (FDD) of mobile phones. The outer circumference path length dimension L18 of the outer circumference loop 18 is set to about twice the electrical wavelength corresponding to the frequency of the received radio wave, and the inner circumference path length dimension L19 of the inner circumference loop 19 is set to an electric power corresponding to the frequency of the transmission radio wave. This is achieved by setting it to about 1.5 times the target wavelength.
 以上のように、本実施形態は、3個以上の導電性材料から成る薄片面状アンテナ素子1を一点C廻りに回転対称として、かつ、微小間隙部3をもって相互に近接して配設し、薄片面状アンテナ素子1は、一点Cから最も離れた箇所に最外角部10を備えると共に、一点Cから最外角部10へ向かうラジアルスリット2を有し、さらに、ラジアルスリット2の内端は、微小間隙部3の内端に連続しているので、無指向性の特性を損なうことなく、周波数域の異なる複数の電波に対応可能(広帯域化)となり、複数の中継アンテナを、ひとつのアンテナに統合することができる。よって、少ない設置数で、目立つことなく、効率よく広い範囲に均一に電波を放射し、又は、受信することができる。また、平面状であるため、天井等から突出することがなく、目立つことなく設置することができ、実用性が向上する。 As described above, in the present embodiment, the single-sided antenna element 1 made of three or more conductive materials is rotationally symmetric about one point C and arranged close to each other with the minute gap portion 3. The lamellar planar antenna element 1 includes an outermost corner 10 at a position farthest from one point C, and has a radial slit 2 from the point C to the outermost corner 10, and the inner end of the radial slit 2 is Since it is continuous to the inner end of the minute gap 3, it can handle multiple radio waves with different frequency ranges without impairing the omnidirectional characteristics (broadband). Multiple relay antennas can be combined into one antenna. Can be integrated. Therefore, with a small number of installations, radio waves can be radiated or received uniformly and efficiently over a wide range without being noticeable. Moreover, since it is planar, it does not protrude from the ceiling or the like, and can be installed without conspicuous, improving the practicality.
 また、一点Cを3個以上のアンテナ素子1の共通の第1給電点E1とすると共に、ラジアルスリット2の内端と微小間隙部3の内端とが連続する内角部12に第2給電点E2を配設したので、全体を小型化でき、かつ、無指向性を損なうことなく広帯域化した性能の高いアンテナを得ることができる。 One point C is a common first feeding point E1 for three or more antenna elements 1, and the second feeding point is connected to the inner corner 12 where the inner end of the radial slit 2 and the inner end of the minute gap 3 are continuous. Since E2 is disposed, the entire antenna can be reduced in size, and a high-performance antenna with a wide band can be obtained without impairing omnidirectionality.
 また、第1給電点E1と第2給電点E2とをアンテナ素子1の外周縁部13に沿って結んだ仮想の経路を外周ループ18とし、第1給電点E1と第2給電点E2とをアンテナ素子1の内周縁部14に沿って結んだ仮想の経路を内周ループ19とすると、外周ループ18の外周経路長寸法L18が所要周波数帯域の下限周波数FLに対応する電気的波長λeLの1.8倍~2.2倍に、内周ループ19の内周経路長寸法L19が所要周波数帯域の上限周波数FHに対応する電気的波長λeHの1.3倍~1.7倍になるように構成したので、1個のアンテナをもって、2種類以上の異なる周波数を含む所望の周波数帯域に好適に対応できる。 An imaginary path connecting the first feeding point E1 and the second feeding point E2 along the outer peripheral edge portion 13 of the antenna element 1 is defined as an outer peripheral loop 18, and the first feeding point E1 and the second feeding point E2 are Assuming that an imaginary path connected along the inner peripheral edge portion 14 of the antenna element 1 is an inner peripheral loop 19, the outer peripheral path length dimension L18 of the outer peripheral loop 18 is 1 of the electrical wavelength λeL corresponding to the lower limit frequency FL of the required frequency band. .8 times to 2.2 times so that the inner circumference path length dimension L19 of the inner circumference loop 19 is 1.3 times to 1.7 times the electrical wavelength λeH corresponding to the upper limit frequency FH of the required frequency band. Since it comprised, it can respond | correspond suitably to the desired frequency band containing two or more types of different frequencies with one antenna.
 本発明はアンテナについて有用である。 The present invention is useful for antennas.
1 薄片面状アンテナ素子
2 ラジアルスリット
3 微小間隙部
10 最外角部
11 近接角部
12 内角部
13 外周縁部
14 内周縁部
18 外周ループ
19 内周ループ
C 一点
E1 第1給電点
E2 第2給電点
L0 長さ寸法
L18 外周経路長寸法
FL 下限周波数
λeL 電気的波長
L19 内周経路長寸法
FH 上限周波数
λeH 電気的波長
DESCRIPTION OF SYMBOLS 1 Thin plane antenna element 2 Radial slit 3 Minute gap part 10 Outermost corner part 11 Proximal corner part 12 Inner corner part 13 Outer peripheral edge part 14 Inner peripheral edge part 18 Outer peripheral loop 19 Inner peripheral loop C One point E1 First feeding point E2 Second feeding Point L0 Length dimension L18 Outer circumference path length dimension FL Lower limit frequency λeL Electrical wavelength L19 Inner circumference path length dimension FH Upper limit frequency λeH Electrical wavelength

Claims (16)

  1.  3個以上の導電性材料から成る薄片面状アンテナ素子(1)を一点(C)廻りに回転対称として、かつ、微小間隙部(3)をもって相互に近接して配設し、
     上記薄片面状アンテナ素子(1)は、上記一点(C)から最も離れた箇所に最外角部(10)を備えると共に、上記一点(C)から上記最外角部(10)へ向かうラジアルスリット(2)を有し、
     さらに、該ラジアルスリット(2)の内端は、上記微小間隙部(3)の内端に連続していることを特徴とするアンテナ。
    Three thin plane antenna elements (1) made of three or more conductive materials are arranged rotationally symmetrical around one point (C) and close to each other with a minute gap (3),
    The flaky antenna element (1) includes an outermost corner (10) at a position farthest from the one point (C) and a radial slit (10) from the one point (C) toward the outermost corner (10). 2)
    Furthermore, the inner end of the radial slit (2) is continuous with the inner end of the minute gap (3).
  2.  上記一点(C)を上記3個以上のアンテナ素子(1)の共通の第1給電点(E1)とすると共に、上記ラジアルスリット(2)の内端と上記微小間隙部(3)の内端とが連続する内角部(12)に第2給電点(E2)を配設した請求項1記載のアンテナ。 The one point (C) is a common first feeding point (E1) for the three or more antenna elements (1), and the inner end of the radial slit (2) and the inner end of the minute gap portion (3). The antenna according to claim 1, wherein the second feeding point (E2) is disposed at an inner corner (12) where the two are continuous.
  3.  上記第1給電点(E1)と上記第2給電点(E2)とを上記アンテナ素子(1)の外周縁部(13)に沿って結んだ仮想の経路を外周ループ(18)とし、上記第1給電点(E1)と上記第2給電点(E2)とを上記アンテナ素子(1)の内周縁部(14)に沿って結んだ仮想の経路を内周ループ(19)とすると、
     上記外周ループ(18)の外周経路長寸法(L18)が所要周波数帯域の下限周波数(FL)に対応する電気的波長(λeL)の1.8倍~2.2倍に、上記内周ループ(19)の内周経路長寸法(L19)が所要周波数帯域の上限周波数(FH)に対応する電気的波長(λeH)の1.3倍~1.7倍になるように構成した請求項2記載のアンテナ。
    An imaginary path connecting the first feeding point (E1) and the second feeding point (E2) along the outer peripheral edge (13) of the antenna element (1) is defined as an outer loop (18). When an imaginary path connecting one feeding point (E1) and the second feeding point (E2) along the inner peripheral edge (14) of the antenna element (1) is an inner peripheral loop (19),
    The outer circumference path length dimension (L18) of the outer circumference loop (18) is 1.8 to 2.2 times the electrical wavelength (λeL) corresponding to the lower limit frequency (FL) of the required frequency band, and the inner circumference loop ( The inner circumference path length dimension (L19) of 19) is configured to be 1.3 to 1.7 times the electrical wavelength (λeH) corresponding to the upper limit frequency (FH) of the required frequency band. Antenna.
  4.  上記薄片面状アンテナ素子(1)は、金属薄板、金属膜、透明導電膜、又は導電塗料膜で構成されている請求項1乃至3のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 3, wherein the thin single-sided antenna element (1) is composed of a thin metal plate, a metal film, a transparent conductive film, or a conductive paint film.
  5.  上記薄片面状アンテナ素子(1)は、ガラス、樹脂シート、樹脂フィルム、又は電子基板に張着されている請求項1乃至4のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 4, wherein the thin-sided antenna element (1) is attached to glass, a resin sheet, a resin film, or an electronic substrate.
  6.  上記薄片面状アンテナ素子(1)は、メッシュで構成されている請求項1乃至5のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 5, wherein the thin-sided antenna element (1) is formed of a mesh.
  7.  上記薄片面状アンテナ素子(1)は、透明又は半透明である請求項1乃至6のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 6, wherein the thin-sided antenna element (1) is transparent or translucent.
  8.  上記最外角部(10)は、上記ラジアルスリット(2)の外端との間に0.5mm~2.0mmの残部を残して形成されている請求項1乃至7のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 7, wherein the outermost corner (10) is formed with a remaining portion of 0.5 mm to 2.0 mm between the outer end of the radial slit (2). .
  9.  上記ラジアルスリット(2)の幅寸法が1.0mm~5.0mmである請求項1乃至8のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 8, wherein a width dimension of the radial slit (2) is 1.0 mm to 5.0 mm.
  10.  上記微小間隙部(3)の間隙寸法が0.5mm~2.0mmである請求項1乃至9のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 9, wherein a gap dimension of the minute gap (3) is 0.5 mm to 2.0 mm.
  11.  上記ラジアルスリット(2)の外端が尖っている請求項1乃至10のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 10, wherein an outer end of the radial slit (2) is pointed.
  12.  上記ラジアルスリット(2)の内端は、上記微小間隙部(3)の内端と同じ幅員に減少して上記微小間隙部(3)の内端に連続している請求項1乃至11のいずれかに記載のアンテナ。 The inner end of the radial slit (2) decreases to the same width as the inner end of the minute gap (3) and continues to the inner end of the minute gap (3). The antenna according to Crab.
  13.  上記ラジアルスリット(2)と上記微小間隙部(3)とが連続する箇所が弯曲状である請求項1乃至12のいずれかに記載のアンテナ。 The antenna according to any one of claims 1 to 12, wherein a portion where the radial slit (2) and the minute gap portion (3) are continuous is curved.
  14.  上記薄片面状アンテナ素子(1)は正方形状に形成されていると共に、該正方形状の薄片面状アンテナ素子(1)を4個備え、該4個の薄片面状アンテナ素子(1)が四隅に配設されて全体が正方形状に形成されている請求項1乃至13のいずれかに記載のアンテナ。 The lamellar planar antenna element (1) is formed in a square shape and includes four square lamellar planar antenna elements (1), and the four lamellar planar antenna elements (1) have four corners. The antenna according to claim 1, wherein the antenna is formed in a square shape as a whole.
  15.  上記薄片面状アンテナ素子(1)は四角形状に形成されていると共に、該四角形状の薄片面状アンテナ素子(1)を3個備え、該3個の薄片面状アンテナ素子(1)により全体が正三角形状に形成されている請求項1乃至13のいずれかに記載のアンテナ。 The lamellar planar antenna element (1) is formed in a quadrangular shape and includes three rectangular lamellar planar antenna elements (1). The three lamellar planar antenna elements (1) The antenna according to claim 1, wherein the antenna is formed in an equilateral triangle shape.
  16.  上記薄片面状アンテナ素子(1)は正六角形状に形成されていると共に、該正六角形状の薄片面状アンテナ素子(1)を3個備え、該3個の薄片面状アンテナ素子(1)により全体が三叉形状に形成されている請求項1乃至13のいずれかに記載のアンテナ。 The lamellar planar antenna element (1) is formed in a regular hexagonal shape and includes three regular hexagonal lamellar planar antenna elements (1), and the three lamellar planar antenna elements (1). The antenna according to any one of claims 1 to 13, wherein the antenna is entirely formed in a trigeminal shape.
PCT/JP2011/001598 2010-03-23 2011-03-17 Antenna WO2011118170A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010065819A JP5635787B2 (en) 2010-03-23 2010-03-23 antenna
JP2010-065819 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011118170A1 true WO2011118170A1 (en) 2011-09-29

Family

ID=44672749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001598 WO2011118170A1 (en) 2010-03-23 2011-03-17 Antenna

Country Status (3)

Country Link
JP (1) JP5635787B2 (en)
TW (1) TW201203700A (en)
WO (1) WO2011118170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025382A1 (en) * 2021-08-25 2023-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198401A (en) * 1987-02-13 1988-08-17 Toppan Printing Co Ltd Transparent antenna
JPS6449302A (en) * 1987-08-19 1989-02-23 Dainippon Printing Co Ltd Film antenna
JP2006157209A (en) * 2004-11-26 2006-06-15 Dx Antenna Co Ltd Radiator and antenna with radiator
JP2008098993A (en) * 2006-10-12 2008-04-24 Dx Antenna Co Ltd Antenna
JP2009010865A (en) * 2007-06-29 2009-01-15 Figla Co Ltd Antenna system for light-transmissive rfid, and furniture and system using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198401A (en) * 1987-02-13 1988-08-17 Toppan Printing Co Ltd Transparent antenna
JPS6449302A (en) * 1987-08-19 1989-02-23 Dainippon Printing Co Ltd Film antenna
JP2006157209A (en) * 2004-11-26 2006-06-15 Dx Antenna Co Ltd Radiator and antenna with radiator
JP2008098993A (en) * 2006-10-12 2008-04-24 Dx Antenna Co Ltd Antenna
JP2009010865A (en) * 2007-06-29 2009-01-15 Figla Co Ltd Antenna system for light-transmissive rfid, and furniture and system using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025382A1 (en) * 2021-08-25 2023-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Mobile communication antenna

Also Published As

Publication number Publication date
JP5635787B2 (en) 2014-12-03
JP2011199715A (en) 2011-10-06
TW201203700A (en) 2012-01-16

Similar Documents

Publication Publication Date Title
JP4394732B1 (en) Broadband antenna
US20200076072A1 (en) Ebg structure, ebg component, and antenna device
EP3739687B1 (en) Antenna radiation element and antenna
US7898499B2 (en) Electromagnetic wave shielding body
CN106486787B (en) HDTV antenna assembly
US20180212318A1 (en) Low-profile, wideband, high gain spiral radiating element above an artificial magnetic conductor ground plane
JP4784115B2 (en) Radome
CN108091996B (en) Trapezoid multi-slit-hexagonal array composite ultra-wideband antenna and manufacturing method thereof
CN112701480B (en) Antenna device and electronic equipment
JP4780662B2 (en) Planar antenna
JP4922339B2 (en) Broadband antenna
JP5563537B2 (en) antenna
EP2416445A1 (en) Wide band antenna
CN106997986A (en) A kind of circular polarized antenna array of X-band
WO2011118170A1 (en) Antenna
JP2006140789A (en) Invisible antenna
CN210668679U (en) Transparent film antenna
JP2017092663A (en) Broadband non-directional antenna
CN102916244B (en) Asymmetric dipole antenna
JP6421057B2 (en) Broadband omnidirectional antenna
JP5513459B2 (en) Antenna device
EP3425731A1 (en) Antenna assembly, wireless communication electronic device having same, and remote control
CN101771193A (en) Dipole antenna
US8232927B2 (en) Antenna element
CN210866474U (en) Slotted helical antenna applied to global positioning satellite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758981

Country of ref document: EP

Kind code of ref document: A1