JP2017092663A - Broadband non-directional antenna - Google Patents

Broadband non-directional antenna Download PDF

Info

Publication number
JP2017092663A
JP2017092663A JP2015218832A JP2015218832A JP2017092663A JP 2017092663 A JP2017092663 A JP 2017092663A JP 2015218832 A JP2015218832 A JP 2015218832A JP 2015218832 A JP2015218832 A JP 2015218832A JP 2017092663 A JP2017092663 A JP 2017092663A
Authority
JP
Japan
Prior art keywords
ground plate
radiating element
antenna
meander
parasitic elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218832A
Other languages
Japanese (ja)
Inventor
中野 久松
Hisamatsu Nakano
久松 中野
雅俊 多田
Masatoshi Tada
雅俊 多田
嵩明 鴻上
Takaaki Kokami
嵩明 鴻上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Yagi Solutions Inc
Original Assignee
Hitachi Kokusai Yagi Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Yagi Solutions Inc filed Critical Hitachi Kokusai Yagi Solutions Inc
Priority to JP2015218832A priority Critical patent/JP2017092663A/en
Publication of JP2017092663A publication Critical patent/JP2017092663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable further band widening while simplifying and downsizing a structure to be disposed on a reflector.SOLUTION: An element 2 consisting of a rotational symmetry body having a longitudinal cross-sectional shape of an index curve is used as a radiation element. Around the radiation element 2, four parasitic elements 31-34 are radially disposed in parallel with a ground plate 1 and with the radiation element 2 defined as a center while being spaced apart from each other at an interval of 90 degrees. The parasitic elements 31-34 consist of: meander parts 313-343 of which the one-side ends are disposed on a peripheral surface of the radiation element 2 while being spaced apart from each other by a gap Δg; horizontal parts 312-342 which are formed while being folded at an angle of 90 degrees in a horizontal direction from other-side ends of the meander parts 313-343; and short-circuiting parts 311-341 which are connected to the ground plate 1 while being folded and formed vertically downwards from other-side ends of the horizontal parts 312-342.SELECTED DRAWING: Figure 1

Description

この発明は、例えば、携帯電話の無線信号波やテレビジョン放送の地上波を中継する中継装置、船舶や車両、航空機等の移動局、或いは陸上基地局に使用される広帯域無指向性アンテナに関する。   The present invention relates to, for example, a relay device that relays a radio signal wave of a mobile phone or a terrestrial wave of a television broadcast, a mobile station such as a ship, a vehicle, or an aircraft, or a broadband omnidirectional antenna used for a land base station.

一般に、携帯電話システムの無線信号波やテレビジョン放送等の地上波を地下街等の不感地帯に再送信する中継装置で使用されるアンテナには、設置場所や美観等の問題から小型軽量のアンテナが要求される。また、中継用アンテナとしては、垂直偏波水平面無指向性のものが使用される場合が多い。   In general, antennas used in repeaters that retransmit radio waves from mobile phone systems and terrestrial waves such as television broadcasts to dead zones such as underground shopping malls are small and lightweight due to problems such as installation location and aesthetics. Required. In addition, as a relay antenna, a vertically polarized horizontal omnidirectional antenna is often used.

この要求を満たすアンテナ装置として、双指向性偏波アンテナ装置が知られている。このアンテナ装置は、例えば線状もしくは面状のインピーダンス整合素子部に対しその背面より1点給電で励振を行い、かつ上記整合素子部に垂直に設けられ先端を接地するように配置された複数の線状放射素子部を有する水平偏波用双指向性アンテナを、接地板上に配置したものとなっている(例えば、特許文献1参照)。   As an antenna device that satisfies this requirement, a bidirectionally polarized antenna device is known. This antenna device is, for example, a plurality of linear or planar impedance matching element portions that are excited by one-point feeding from the back side, and are arranged perpendicularly to the matching element portion and arranged to ground the tip. A horizontally polarized bi-directional antenna having a linear radiating element is arranged on a ground plate (see, for example, Patent Document 1).

一方、船舶や車両、航空機等の移動局や、陸上基地局等で使用される通信用アンテナとしては、全ての到来方向からの電波を受信するために水平面指向性が無指向であること、構造的な設置強度等の観点から低姿勢であること、アンテナ本数を削減するために広帯域であることが求められている。さらに近年においては、艦艇及び航空機等の低RCS(Rader Cross Section)化のため、船体及び機体形状とアンテナ形状との一体化が求められており、アンテナの低姿勢化および平面化が要求されている。   On the other hand, as a communication antenna used in a mobile station such as a ship, a vehicle, an aircraft, or a land base station, the horizontal plane directivity is omnidirectional in order to receive radio waves from all directions of arrival, From the viewpoint of general installation strength, etc., it is required to have a low attitude and to have a wide band in order to reduce the number of antennas. Further, in recent years, in order to reduce the RCS (Rader Cross Section) of ships and aircraft, it has been required to integrate the hull and fuselage shapes with the antenna shape. Yes.

アンテナを広帯域を維持して低姿勢かつ平面化する技術としては、正方形に形成した導体板上に例えば4本の放射素子を放射状に設けると共に、各放射素子の終端に板状の短絡素子を導体板上に垂直に取付け、上記放射素子の下側中心部に給電素子を介して給電することにより、低姿勢で且つ広帯域特性が得られるようにした技術が知られている(例えば、特許文献2、3または4を参照)。   As a technique for flattening the antenna while maintaining a wide bandwidth, for example, four radiating elements are provided radially on a conductor plate formed in a square shape, and a plate-like short-circuit element is provided at the end of each radiating element as a conductor. A technique is known in which a low-profile and wide-band characteristic can be obtained by mounting vertically on a plate and feeding power to the lower central portion of the radiating element via a feeding element (for example, Patent Document 2). 3 or 4).

また、低姿勢で広帯域化を図った広帯域無指向性アンテナの他の例として、特許文献5の図15に示すように、接地板上に所定の間隔を隔てて、下限動作周波数fL に対応する波長λLの1/4の長さに設定された4本の放射素子を等角度で放射状に配置し、当該放射素子の中心部の下側に給電点を設けたアンテナも提案されている。このアンテナによれば、低姿勢で垂直偏波水平面指向性を得ることができる。 In addition, as another example of a wideband omnidirectional antenna with a low bandwidth, as shown in FIG. 15 of Patent Document 5, it corresponds to the lower limit operating frequency f L at a predetermined interval on the ground plate. There has also been proposed an antenna in which four radiating elements set to a length of ¼ of the wavelength λ L are arranged radially at equal angles and a feeding point is provided below the center of the radiating element. . According to this antenna, vertical polarization horizontal plane directivity can be obtained with a low attitude.

さらに、広帯域無指向性アンテナの別の例として、特許文献6、7または8に示すように給電点の上方にある構造物により低姿勢、広帯域性を実現したアンテナも提案されている。   Furthermore, as another example of the wideband omnidirectional antenna, an antenna that realizes a low attitude and wideband by a structure above the feeding point as shown in Patent Document 6, 7 or 8 has been proposed.

特開平11−20503号公報Japanese Patent Laid-Open No. 11-20503 特開2008−219853号公報JP 2008-219853 A 特開2011−239094号公報JP 2011-239094 A 特開2007−336296号公報JP 2007-336296 A 特開2014−179859号公報JP 2014-179859 A 特許第3793456号公報Japanese Patent No. 3793456 特許第4287293号公報Japanese Patent No. 4287293 特許第3927680号公報Japanese Patent No. 3927680

ところが、特許文献5に記載された広帯域無指向性アンテナでは、低姿勢を可能としているが、水平面指向性の帯域内の偏差、特に250MHz、400MHzの周波数における偏差が5〜10dBと非常に大きくなっており、安定した無指向性が得られず、また比帯域についても十分な広帯域特性が得られない。また、径方向の寸法が、下限動作周波数fL に対応する波長λLに対し0.75λLと大きく、さらなる小型化が求められる。 However, the wide-band omnidirectional antenna described in Patent Document 5 enables a low attitude, but the deviation in the horizontal plane directivity band, particularly the deviation at 250 MHz and 400 MHz, is as large as 5 to 10 dB. Therefore, stable omnidirectionality cannot be obtained, and sufficient wideband characteristics cannot be obtained with respect to the specific bandwidth. Further, the radial dimension is as large as 0.75λ L with respect to the wavelength λ L corresponding to the lower limit operating frequency f L , and further miniaturization is required.

また、特許文献6または7に記載されたアンテナは、いずれもその構造が複雑もしくは大型であり、動作周波数帯の低域化要求に応じて寸法を拡大することが難しい。特許文献8に記載されたアンテナは、低姿勢アンテナを実現できるが、十分な広帯域性を得ることが困難である。   In addition, the antennas described in Patent Documents 6 and 7 are all complex or large in structure, and it is difficult to increase the dimensions in response to a request for lowering the operating frequency band. Although the antenna described in Patent Document 8 can realize a low-profile antenna, it is difficult to obtain a sufficient broadband property.

この発明は上記事情に着目してなされたもので、その目的とするところは、反射板上に配置される構造が簡易かつ小型でありながら、さらなる広帯域化を可能とした広帯域無指向性アンテナを提供することにある。   The present invention has been made paying attention to the above circumstances, and its object is to provide a wide-band omnidirectional antenna that can be further broadened while the structure disposed on the reflector is simple and small. It is to provide.

上記目的を達成するためにこの発明の第1の態様は、四角形以上の多角形または円形状をなし、中央部に給電部が設けられた接地板と、前記接地板の前記給電部の直上に立設され、縦断面形状が指数曲線または当該指数曲線を近似した折れ線をなす回転対称導体により構成され、下端部が前記給電部に接続された放射素子と、前記放射素子を中心にその周辺に互いに一定の角度を隔てて放射状に配置された複数の無給電素子とを具備する。そして、前記複数の無給電素子の各々を、前記放射素子の周面に対し一定の間隔を隔てた状態で前記接地板に対し平行に配置されたメアンダ部と、該メアンダ部から前記接地板に対し平行な状態を保持して少なくとも1回折曲形成された水平部と、該水平部から前記接地板に対し垂直に折曲形成されて前記接地板に接続された短絡部とにより構成したものである。   In order to achieve the above object, a first aspect of the present invention includes a ground plate having a polygonal or circular shape that is equal to or greater than a quadrangle and provided with a power feeding portion at a central portion, and the ground plate directly above the power feeding portion. A radiating element that is erected and has a longitudinal cross-sectional shape formed of an exponential curve or a rotationally symmetric conductor that forms a polygonal line that approximates the exponential curve, and a lower end portion connected to the feeding portion, and the radiating element as a center and the periphery thereof And a plurality of parasitic elements arranged radially at a certain angle from each other. Then, each of the plurality of parasitic elements is arranged in parallel to the ground plate with a certain distance from the peripheral surface of the radiating element, and from the meander portion to the ground plate A horizontal portion that is held in a parallel state and formed at least one diffraction curve, and a short-circuit portion that is bent perpendicularly to the ground plate from the horizontal portion and connected to the ground plate. is there.

この発明の第2の態様は、前記複数の無給電素子を、前記放射素子を中心にその周辺に互いに90度の角度を隔てて4方向に配置したものである。   According to a second aspect of the present invention, the plurality of parasitic elements are arranged in four directions at an angle of 90 degrees with respect to the periphery of the radiating element.

この発明の第3の態様は、前記メアンダ部を、動作最低周波数の目標値をfM とするとき、幅方向の外形寸法を0.0327fM(線径を除く)、長さ方向の外形寸法を0.0358fM(線径を除く)、中心位置を0.0302fM、素子径を0.00406fM、反複数を4回(間隔0.005fM)にそれぞれ設定したものである。 According to a third aspect of the present invention, when the meander unit has a target value of the minimum operating frequency as f M , the width dimension is 0.0327 f M (excluding the wire diameter) and the length dimension is outside. Is set to 0.0358 f M (excluding the wire diameter), the center position is set to 0.0302 f M , the element diameter is set to 0.00406 f M , and the anti-plurality is set to 4 times (interval 0.005 f M ).

この発明の第1の態様によれば、低姿勢かつ小型な構造でありながら、低い給電インピーダンスにおいて、きわめて広いVSWRの比帯域と水平面指向性の比帯域を得ることができ、特に下限動作周波数をさらに低く設定することが可能となる。   According to the first aspect of the present invention, it is possible to obtain a very wide VSWR ratio band and a horizontal plane direction ratio band with a low feeding impedance while having a low profile and a small structure, and in particular, the lower limit operating frequency is reduced. It becomes possible to set it lower.

この発明の第2の態様によれば、必要十分な無給電素子数で、簡単かつ小型に構造で、安価に所望の帯域特性および指向特性を得ることができる。   According to the second aspect of the present invention, it is possible to obtain desired band characteristics and directivity characteristics at a low cost with a simple and compact structure with the necessary and sufficient number of parasitic elements.

この発明の第3の態様によれば、VSWRが3.0のときの下限動作周波数をfL とするとき、動作最低周波数の目標値fMに対し、fL =0.853fM とすることができる。 According to a third aspect of the invention, when the VSWR is the lower limit operating frequency when the 3.0 and f L, with respect to the target value f M of the minimum operating frequency, be f L = 0.853f M Can do.

この発明の第1の実施形態に係る広帯域無指向性アンテナの全体構成を示す斜視図。1 is a perspective view showing the overall configuration of a wideband omnidirectional antenna according to a first embodiment of the present invention. 図1に示した広帯域無指向性アンテナの無給電素子のサイズを説明するための示す図で、(a)は平面図、(b)はメアンダ部の一部を拡大して示した図。2A and 2B are diagrams for explaining the size of a parasitic element of the broadband omnidirectional antenna illustrated in FIG. 1, in which FIG. 2A is a plan view, and FIG. 2B is an enlarged view of a part of a meander unit. 図1に示した広帯域無指向性アンテナの放射素子のサイズを説明するための図。The figure for demonstrating the size of the radiation | emission element of the broadband omnidirectional antenna shown in FIG. 図2および図3に示した無給電素子および放射素子のサイズの具体例を示す図。The figure which shows the specific example of the size of the parasitic element and radiation | emission element which were shown in FIG. 2 and FIG. 図1に示した広帯域無指向性アンテナのVSWR特性を示す図。The figure which shows the VSWR characteristic of the broadband omnidirectional antenna shown in FIG. 図1に示した広帯域無指向性アンテナの垂直面指向性および水平面指向性を示す特性図。The characteristic view which shows the vertical surface directivity and horizontal surface directivity of the broadband omnidirectional antenna shown in FIG. 図1に示した広帯域無指向性アンテナのメアンダ部のサイズの最良値を示す図。The figure which shows the best value of the size of the meander part of the broadband omnidirectional antenna shown in FIG. 図7に示した広帯域無指向性アンテナのVSWR特性を示す図。The figure which shows the VSWR characteristic of the broadband omnidirectional antenna shown in FIG. 図1に示した広帯域無指向性アンテナの効果を従来のアンテナと対比して説明するための図。The figure for demonstrating the effect of the broadband omnidirectional antenna shown in FIG. 1 in contrast with the conventional antenna. 図1に示した広帯域無指向性アンテナの効果を従来のアンテナと対比して説明するための図。The figure for demonstrating the effect of the broadband omnidirectional antenna shown in FIG. 1 in contrast with the conventional antenna. 図1に示した広帯域無指向性アンテナの効果を従来のアンテナと対比して説明するための図。The figure for demonstrating the effect of the broadband omnidirectional antenna shown in FIG. 1 in contrast with the conventional antenna. 図1に示した広帯域無指向性アンテナの効果を従来のアンテナと対比して説明するための図。The figure for demonstrating the effect of the broadband omnidirectional antenna shown in FIG. 1 in contrast with the conventional antenna. 図1に示した広帯域無指向性アンテナの効果を従来のアンテナと対比して説明するための図。The figure for demonstrating the effect of the broadband omnidirectional antenna shown in FIG. 1 in contrast with the conventional antenna.

以下、図面を参照してこの発明に係わる実施形態を説明する。
[第1の実施形態]
図1は、この発明の第1の実施形態に係る広帯域無指向性アンテナの全体構成を示す斜視図である。
この発明の第1の実施形態に係る広帯域無指向性アンテナは、円板状をなす接地板1の中央部に配置された給電部4の直上に放射素子2を立設している。放射素子2は、縦断面形状が指数曲線をなす回転対称体からなる導体により構成され、下端部が上記給電部4に接続される。なお、給電部4は、接地板1に形成された給電パターンを介して図示しない無線回路に接続される。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a perspective view showing the overall configuration of a wideband omnidirectional antenna according to a first embodiment of the present invention.
In the wide-band omnidirectional antenna according to the first embodiment of the present invention, the radiating element 2 is erected directly above the power feeding portion 4 disposed at the center of the ground plate 1 having a disc shape. The radiating element 2 is composed of a conductor made of a rotationally symmetric body whose longitudinal section forms an exponential curve, and its lower end is connected to the power feeding section 4. The power feeding unit 4 is connected to a wireless circuit (not shown) through a power feeding pattern formed on the ground plate 1.

また、上記放射素子2の周辺部には、当該放射素子2を中心に、4個の無給電素子31〜34が水平方向に互いに90度の角度を隔てて放射状に配置されている。これらの無給電素子31〜34はいずれも線状導体からなり、上記放射素子2の周面に一端が所定の間隔(ギャップ)を隔てて配置されたメアンダ部313〜343と、このメアンダ部313〜343の他端から水平方向に90度の角度で折曲形成された水平部312〜342と、この水平部312〜342の他端から垂直下方向に折曲形成されて接地板1に接続された短絡部311〜341とから構成される。なお、無給電素子31〜34は線状のワイヤに限るものではなく、例えば短冊型や扇型をなす板状体であってもよい。   Further, around the radiating element 2, four parasitic elements 31 to 34 are arranged radially at an angle of 90 degrees with respect to the radiating element 2 in the horizontal direction. These parasitic elements 31 to 34 are all made of a linear conductor, and meander parts 313 to 343 having one end arranged on the peripheral surface of the radiating element 2 with a predetermined gap (gap), and the meander part 313. The horizontal portions 312 to 342 that are bent at an angle of 90 degrees in the horizontal direction from the other end of ˜343, and the lower portions of the horizontal portions 312 to 342 are bent vertically downward and connected to the ground plate 1. The short circuit parts 311 to 341 are configured. The parasitic elements 31 to 34 are not limited to linear wires, and may be, for example, strip-shaped or fan-shaped plates.

図2(a),(b)は上記無給電素子31〜34のサイズを説明するための示す図で、(a)は平面図、(b)はメアンダ部の一部を拡大して示した図である。また、図3は上記放射素子2のサイズを説明するための図である。   FIGS. 2A and 2B are diagrams for explaining the sizes of the parasitic elements 31 to 34. FIG. 2A is a plan view, and FIG. 2B is an enlarged view of a part of the meander part. FIG. FIG. 3 is a diagram for explaining the size of the radiating element 2.

例えば、送受信対象の周波数帯域の動作最低周波数の目標値をfM 、当該目標値fM に対応する波長をλM とすると、無給電素子31〜34のワイヤの半径2a、上記短絡部311〜341の高さH、上記メアンダ部313〜343の先端と上記放射素子2の周面との間隔(ギャップ)Δg、メアンダ部313〜343と水平部312〜342との合計長L0 、メアンダ部313〜343の全長Lbent、メアンダ部313〜343の個々の折り曲げ部の寸法M、M/2、放射素子2の上端部の最大径2Xp 、放射素子2の全高Zp 、放射素子2のZq 、X0は、上記動作最低周波数の目標値fM に対応する波長λMに換算して、図4に示すように設定される。 For example, if the target value of the lowest operating frequency in the frequency band to be transmitted / received is f M and the wavelength corresponding to the target value f M is λ M , the radius 2a of the parasitic elements 31 to 34, the short-circuit part 311 A height H of 341, an interval (gap) Δg between the tip of the meander parts 313 to 343 and the peripheral surface of the radiating element 2, a total length L 0 of the meander parts 313 to 343 and the horizontal parts 312 to 342, and the meander part The total length L bent of 313 to 343, the dimensions M and M / 2 of the individual bent portions of the meander parts 313 to 343, the maximum diameter 2X p of the upper end of the radiating element 2, the total height Z p of the radiating element 2, Z q and X 0 are set as shown in FIG. 4 in terms of the wavelength λ M corresponding to the target value f M of the minimum operating frequency.

また、放射素子2の断面の指数曲線は、図3に示す回転対称体曲線式により求めることができる。なお、回転対称体曲線は指数曲線に限らず、指数曲線を近似した折れ線を用いてもよい。   Further, the exponential curve of the cross section of the radiating element 2 can be obtained by the rotationally symmetric body curve formula shown in FIG. The rotationally symmetric curve is not limited to an exponential curve, and a polygonal line approximating the exponential curve may be used.

以上のように構成された広帯域無指向性アンテナの各部位の寸法を図4に示した値に設定し、周波数比(fM 比)に対する電圧定在波比(Voltage Standing Wave Ratio:VSWR)を測定したところと、図5に示すような特性が得られた。このVSWR特性から明らかなように、VSWRが2.0以下について比帯域幅177%以上というきわめて広い周波数特性が得られることが分かる。 The dimensions of each part of the configuration wideband omnidirectional antenna as described above is set to the values shown in FIG. 4, the voltage standing wave ratio with respect to the frequency ratio (f M ratio): the (Voltage Standing Wave Ratio VSWR) When measured, the characteristics shown in FIG. 5 were obtained. As is apparent from this VSWR characteristic, it can be seen that an extremely wide frequency characteristic having a specific bandwidth of 177% or more can be obtained when the VSWR is 2.0 or less.

また、指向性についてみると、先ず垂直面においては例えば図6(a)に示すように、0.967λM のとき、垂直上方を0度として30度〜90度の範囲で−5.00dB以上の利得が得られ、水平面においては例えば図6(b)に示すように、0.967λM のとき、全方位にわたり0dB以上の利得が得られる。 As for directivity, first, in the vertical plane, for example, as shown in FIG. 6A, at 0.967λ M , −5.00 dB or more in the range of 30 ° to 90 ° with the vertical upward being 0 °. gain is obtained, as shown in FIG. 6 (b) for example in the horizontal plane, when the 0.967λ M, 0dB or more gain can be obtained over the entire azimuth.

ところで、上記メアンダ部311〜341の構成には、以下のような最良値があることを本発明者は確認した。
すなわち、図7(a)に示すような形状のメアンダ部311〜341の場合、その構成要素は図7(b)に示すように、幅方向の外形寸法Aと、長さ方向の外形寸法Bと、中心位置Cと、素子径Dと、反復数Eにより表される。そして、動作最低周波数の目標値をfM とするとき、上記各要素を、
A=0.0327fM(線径を除く)
B=0.0358fM(線径を除く)
C=0.0302fM
D=0.00406fM
E=4回(間隔0.005fM
にそれぞれ設定する。
By the way, this inventor confirmed that there exist the following best values in the structure of the said meander parts 311-341.
That is, in the case of the meander parts 311 to 341 having a shape as shown in FIG. 7A, the constituent elements are an outer dimension A in the width direction and an outer dimension B in the length direction as shown in FIG. 7B. And the center position C, the element diameter D, and the number of repetitions E. Then, when the target value of the minimum operating frequency is f M ,
A = 0.0327f M (excluding wire diameter)
B = 0.0358f M (excluding wire diameter)
C = 0.0302f M
D = 0.00406 f M
E = 4 times (interval 0.005 f M )
Set to each.

図8は、上記最良値を採用した場合の、低周波域から中周波域にかけてのVSWR特性のシミュレーション値を示した図である。同図から明らかなように、メアンダ部311〜341の各要素として上記した最良値を採用すると、VSWRが3.0のときの下限動作周波数fL は、上記動作最低周波数の目標値fMに対し、fL =0.853fM となる。 FIG. 8 is a diagram showing simulation values of the VSWR characteristics from the low frequency region to the medium frequency region when the above best value is adopted. As can be seen from the figure, when the above-mentioned best value is adopted as each element of the meander units 311 to 341, the lower limit operating frequency f L when the VSWR is 3.0 is set to the target value f M of the minimum operating frequency. On the other hand, f L = 0.853 f M.

ちなみに、メアンダ部311〜341の幅方向の外形寸法Aを増加させると、下限動作周波数fL は低下して1.2fL 付近で極大となり、VSWRが3.0を超える。また、長さ方向の外形寸法Bを増加させた場合にも、下限動作周波数fL は低下して1.2fL 付近で極大となり、VSWRが3.0を超える。中心位置Cを放射素子2へ近づけると、動作周波数帯域の全域にわたってVSWRは増加する傾向が見られた。素子径Dを太くすると、下限動作周波数fL は漸近的に低下して、隣接する素子と接触すると下限動作周波数fL は増加する。これに対し素子径Dを細くすると、動作周波数帯域の全域にわたってVSWRは増加する傾向がある。反復数Eを増やすと、下限動作周波数fL は変化せず、1.2fL 付近で極大となりVSWRが3.0を超える。 Incidentally, increasing the external dimensions A in the width direction of the meander portions 311-341, becomes maximum in the vicinity 1.2f L lower limit operating frequency f L decreases, VSWR exceeds 3.0. Also, when increasing the length direction of the outer dimensions B, the lower limit operating frequency f L becomes maximum in the vicinity 1.2f L decreases, VSWR exceeds 3.0. When the center position C was brought close to the radiating element 2, the VSWR tended to increase over the entire operating frequency band. When the element diameter D is increased, the lower limit operating frequency f L is asymptotically decreased, and when the element is in contact with an adjacent element, the lower limit operating frequency f L is increased. On the other hand, when the element diameter D is reduced, the VSWR tends to increase over the entire operating frequency band. Increasing the number of iterations E, the lower limit operating frequency f L unchanged, VSWR becomes maximum in the vicinity 1.2f L exceeds 3.0.

以上詳述したように、第1の実施形態の広帯域無指向性アンテナでは、放射素子として指数曲線の縦断面形状を有する回転対称体からなる素子2を使用し、かつこの放射素子2の周辺に、接地板1と平行な状態で、放射素子2を中心に4個の無給電素子31〜34を互いに90度の角度を隔てて放射状に配置する。そして、無給電素子31〜34を、上記放射素子2の周面に一端がギャップΔgを隔てて配置されたメアンダ部313〜343と、このメアンダ部313〜343の他端から水平方向に90度の角度で折曲形成された水平部312〜342と、この水平部312〜342の他端から垂直下方向に折曲形成されて接地板1に接続された短絡部311〜341とにより構成している。   As described in detail above, the broadband omnidirectional antenna according to the first embodiment uses the element 2 made of a rotationally symmetric body having a longitudinal section of an exponential curve as the radiating element, and around the radiating element 2. In the state parallel to the ground plate 1, the four parasitic elements 31 to 34 are arranged radially at an angle of 90 degrees with the radiating element 2 as the center. Then, the parasitic elements 31 to 34 are arranged at 90 degrees in the horizontal direction from the meander parts 313 to 343 arranged at one end with a gap Δg on the peripheral surface of the radiating element 2 and the other ends of the meander parts 313 to 343. The horizontal portions 312 to 342 are bent at an angle of 3 mm and the short-circuit portions 311 to 341 are bent vertically downward from the other ends of the horizontal portions 312 to 342 and connected to the ground plate 1. ing.

したがって、給電インピーダンスが50Ωにおいて、きわめて広いVSWRの比帯域と水平面指向性の比帯域を得ることができ、特に下限動作周波数fL をさらに低く設定することが可能となる。また、接地板1を除いたアンテナ素子部分の全高Hが0.1λL 、幅寸法が0.29λL という低姿勢かつ小型な構造を維持できるので、重量および受風荷重がともに大幅に小さくなり、高い耐風速性能を持つアンテナを提供することができる。特に低重量化により材料費を抑えてアンテナの低価格化を実現できる。 Therefore, when the feed impedance is 50Ω, it is possible to obtain a very wide VSWR ratio band and horizontal plane directivity ratio band, and in particular, the lower limit operating frequency f L can be set lower. In addition, since the overall height H of the antenna element portion excluding the ground plate 1 is 0.1λ L and the width dimension is 0.29λ L, a low-profile and compact structure can be maintained, so that both weight and wind receiving load are significantly reduced. An antenna having high wind-resistant performance can be provided. In particular, it is possible to reduce the cost of the antenna by reducing the material cost by reducing the weight.

さらに、誘電体材料を必要としないので耐火性があり、難燃性および耐熱性設計に対応できるため、地下施設やトンネルなどの耐火規定のある環境に適したアンテナを提供できる。また、アンテナ素子や給電線路は接地板1の同一平面上(表面)に配置され、接地板1の裏面は反射面となるため、金属筐体や壁面への直付けが可能となる。このため、UWB(Ultra Wide Band)などを採用した超広帯域無線通信用システムに適したアンテナを提供できる。   Furthermore, since a dielectric material is not required, it has fire resistance and can be adapted to flame retardancy and heat resistance design. Therefore, it is possible to provide an antenna suitable for an environment with fire resistance regulations such as underground facilities and tunnels. Further, since the antenna element and the feed line are arranged on the same plane (front surface) of the ground plate 1 and the back surface of the ground plate 1 is a reflective surface, it can be directly attached to a metal housing or a wall surface. Therefore, it is possible to provide an antenna suitable for an ultra-wideband wireless communication system that employs UWB (Ultra Wide Band) or the like.

すなわち、アンテナ素子部分の全高Hが0.1λL 、幅寸法が0.29λL という低姿勢かつ小型な構造でありながら、給電インピーダンスが50Ωにおいて、きわめて広いVSWRの比帯域と水平面指向性の比帯域を得ることができ、特に下限動作周波数fL をさらに低く設定可能とした広帯域無指向性アンテナを提供することができる。 That is, the antenna element portion has a low profile and a small structure with an overall height H of 0.1λ L and a width dimension of 0.29λ L , but with a feed impedance of 50Ω, the ratio of the extremely wide VSWR ratio band to the horizontal plane directivity It is possible to provide a wideband omnidirectional antenna that can obtain a band and that can set the lower limit operating frequency f L even lower.

次に、第1の実施形態に係る広帯域無指向性アンテナの効果を、従来の各種アンテナと対比して説明する。
先ず図9に示すような最も基本的なモノポールアンテナ20では、基準動作周波数fAに対応する波長をλAとすると、素子長がλA /4と高くなる。これに対し、第1の実施形態のアンテナであれば、先に述べたように下限動作周波数fL の波長λL に対し全高Hが0.1λL と低くすることができる。
Next, the effect of the broadband omnidirectional antenna according to the first embodiment will be described in comparison with various conventional antennas.
First, at the most basic monopole antenna 20 as shown in FIG. 9, when the wavelength corresponding to the reference working frequency f A and lambda A, element length is increased and λ A / 4. On the other hand, with the antenna according to the first embodiment, as described above, the overall height H can be reduced to 0.1λ L with respect to the wavelength λ L of the lower limit operating frequency f L.

次に、アンテナの高さを低くするために、図10に示すように素子21をコ型に折り曲げてループアンテナの半分の形に構成する。このようにすると、アンテナの高さHをλA/8相当と低くすることができる。しかし、この構造のアンテナ21では、水平面内において無指向性を得ることができない。 Next, in order to reduce the height of the antenna, as shown in FIG. 10, the element 21 is bent into a U shape to form a half of the loop antenna. In this way, the height H of the antenna can be reduced to the equivalent of λ A / 8. However, the antenna 21 having this structure cannot obtain omnidirectionality in a horizontal plane.

そこで、図10に示すように、給電部4に接続された垂直素子210の先端部から、4方向に等角度で放射状に素子211〜214を配置した十文字アンテナを構成したとする。この場合、アンテナ高を低くした上で水平面内無指向性を得ることが可能となる。しかしながら、この十文字アンテナでは給電インピーダンスが200〜1kΩに増加してしまうという別の問題が発生し、さらに広帯域特性を得ることができない。   Therefore, as shown in FIG. 10, it is assumed that a cross antenna having elements 211 to 214 arranged radially at equal angles in four directions is configured from the tip of the vertical element 210 connected to the power feeding unit 4. In this case, it is possible to obtain omnidirectionality in the horizontal plane while lowering the antenna height. However, this cross-shaped antenna has another problem that the feeding impedance is increased to 200 to 1 kΩ, and further broadband characteristics cannot be obtained.

一方、広帯域特性を得るために、図11に示すように給電部4に接続された放射素子22との間にギャップを介して4個の無給電素子221〜224を配置したギャップ装荷十字型アンテナが知られている。このアンテナであれば、2つの共振周波数をギャップにより形成される容量により結合させ、これにより上限動作周波数fH と下限動作周波数fL との比(fH /fL )の2倍程度の広帯域特性を得ることができる。しかし、この構造のアンテナでは、90Ω程度の給電インピーダンスのときに最も広帯域になるため、給電インピーダンスを50Ωに設定した状態で広帯域を得ることが難しい。 On the other hand, in order to obtain wideband characteristics, a gap-loaded cross-shaped antenna in which four parasitic elements 221 to 224 are arranged with a gap between them and a radiating element 22 connected to the feeder 4 as shown in FIG. It has been known. In this antenna, two resonance frequencies are coupled by a capacitance formed by a gap, and thereby, a wide band of about twice the ratio (f H / f L ) between the upper limit operating frequency f H and the lower limit operating frequency f L. Characteristics can be obtained. However, since the antenna having this structure has the widest band when the feeding impedance is about 90Ω, it is difficult to obtain a wide band with the feeding impedance set to 50Ω.

また、給電インピーダンスを50Ωにするために、図12に示すように4個の無給電素子231〜234の中間部位を水平方向に折曲したギャップ装荷折り曲げ十字型アンテナが考えられる。この構造のアンテナであれば、給電インピーダンスが50Ωに調整され、アンテナ径を小型化することができる。しかし、上限動作周波数fH をさらに高くすることができない。 In order to set the feeding impedance to 50Ω, a gap-loaded folded cross antenna in which intermediate portions of the four parasitic elements 231 to 234 are bent in the horizontal direction as shown in FIG. 12 can be considered. With an antenna having this structure, the feeding impedance is adjusted to 50Ω, and the antenna diameter can be reduced. However, it is not possible to further increase the upper limit operating frequency f H.

そこで、上限動作周波数fH をさらに高くするために、図13に示すように放射素子を、指数曲線の断面形状を有する回転対称体により構成することが提案されている。指数曲線の断面形状を有する回転対称体からなる放射素子2を使用すると、高周波域をさらに広帯域化することができる。しかし、低周波域については広帯域化が困難である。 Therefore, in order to further increase the upper limit operating frequency f H , it has been proposed to configure the radiating element with a rotationally symmetric body having a cross-sectional shape of an exponential curve as shown in FIG. When the radiating element 2 made of a rotationally symmetric body having an exponential cross-sectional shape is used, the high frequency region can be further broadened. However, it is difficult to increase the bandwidth in the low frequency range.

これに対し第1の実施形態に係る高周波無指向性アンテナでは、先に述べたように4個の無給電素子31〜34の水平部位にメアンダ部341〜344設けているので、無給電素子31〜34の素子長をアンテナ径を大きくすることなく長くすることができ、これにより低周波域をさらに広帯域化することが可能となる。例えば、VSWRが3.0のときに、下限動作周波数fLを3.16GHz から2.84GHz に低下させることが可能となる。これにより動作周波数の高低比を19以上にすることができる。なお、下限動作周波数fLを2.84GHz に低下させた場合には、無給電素子31〜34の素子径を0.2mmのまま変更せずに、アンテナ高Hを0.095λL とさらに低くすることができる。 In contrast, in the high-frequency omnidirectional antenna according to the first embodiment, the meander portions 341 to 344 are provided in the horizontal portions of the four parasitic elements 31 to 34 as described above. The element length of .about.34 can be increased without increasing the antenna diameter, which makes it possible to further widen the low frequency range. For example, when the VSWR is 3.0, the lower limit operating frequency f L can be lowered from 3.16 GHz to 2.84 GHz. Thereby, the height ratio of the operating frequency can be 19 or more. When the lower limit operating frequency f L is lowered to 2.84 GHz, the antenna height H is further lowered to 0.095λ L without changing the element diameters of the parasitic elements 31 to 34 while being 0.2 mm. can do.

[他の実施形態]
第1の実施形態では、無給電素子31〜34の水平部312〜342を、メアンダ部313〜343に対し接地板1と平行な状態で1回90度に折曲形成したものとしたが、接地板1と平行な状態で複数回折曲形成したものとしてもよい。その他、接地板の形状、放射素子および各無給電素子の寸法については、目標動作周波数に応じてどのように設定してもよい。
[Other Embodiments]
In the first embodiment, the horizontal portions 312 to 342 of the parasitic elements 31 to 34 are bent at 90 degrees once in a state parallel to the ground plate 1 with respect to the meander portions 313 to 343. A plurality of diffraction curves may be formed in parallel with the ground plate 1. In addition, the shape of the ground plate, the radiating element, and the dimensions of each parasitic element may be set in any manner according to the target operating frequency.

また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1…接地板、2…放射素子、31〜34…無給電素子、311〜341…短絡部、312〜342…水平部、313〜343…メアンダ部、4…給電部。   DESCRIPTION OF SYMBOLS 1 ... Ground plate, 2 ... Radiation element, 31-34 ... Parasitic element, 311-341 ... Short-circuit part, 312-342 ... Horizontal part, 313-343 ... Meander part, 4 ... Feed part.

Claims (3)

四角形以上の多角形または円形状をなし、中央部に給電部が設けられた接地板と、
前記接地板の前記給電部の直上に立設され、縦断面形状が指数曲線または当該指数曲線を近似した折れ線をなす回転対称導体により構成され、下端部が前記給電部に接続された放射素子と、
前記放射素子を中心にその周辺に互いに一定の角度を隔てて放射状に配置された複数の無給電素子と
を具備し、
前記複数の無給電素子の各々は、前記放射素子の周面に対し一定の間隔を隔てた状態で前記接地板に対し平行に配置されたメアンダ部と、該メアンダ部から前記接地板に対し平行な状態を保持して少なくとも1回折曲形成された水平部と、該水平部から前記接地板に対し垂直に折曲形成されて前記接地板に接続された短絡部とを有することを特徴とする広帯域無指向性アンテナ。
A ground plate with a polygonal or circular shape that is equal to or greater than a quadrangle, and a power feeding portion is provided in the center,
A radiating element that is erected immediately above the power feeding portion of the ground plate, and that is configured by a rotationally symmetric conductor having a longitudinal cross-sectional shape forming an exponential curve or a polygonal line approximating the exponential curve, and having a lower end connected to the power feeding portion; ,
A plurality of parasitic elements arranged radially around the radiating element at a certain angle around the radiating element;
Each of the plurality of parasitic elements includes a meander portion arranged in parallel to the ground plate in a state spaced from the peripheral surface of the radiating element, and parallel to the ground plate from the meander portion. A horizontal portion formed with at least one diffraction curve while maintaining a simple state, and a short-circuit portion that is bent perpendicularly to the ground plate from the horizontal portion and connected to the ground plate. Broadband omnidirectional antenna.
前記複数の無給電素子は、前記放射素子を中心にその周辺に互いに90度の角度を隔てて4方向に配置されてなることを特徴とする請求項1記載の広帯域無指向性アンテナ。   The broadband omnidirectional antenna according to claim 1, wherein the plurality of parasitic elements are arranged in four directions around the radiating element at an angle of 90 degrees with each other. 前記メアンダ部は、動作最低周波数の目標値をfM とするとき、幅方向の外形寸法を0.0327fM(線径を除く)、長さ方向の外形寸法を0.0358fM(線径を除く)、中心位置を0.0302fM、素子径を0.00406fM、反複数を4回(間隔0.005fM)にそれぞれ設定したことを特徴とする請求項2記載の広帯域無指向性アンテナ。
The meander section, when the target value of the minimum operating frequency and f M, (excluding diameter) 0.0327f M the outer dimension of the width direction, the 0.0358f M (wire diameter the external dimensions in the length direction excluded), the center position 0.0302f M, 0.00406f the element size M, claim 2, wherein the broadband omnidirectional antenna, characterized in that respectively set in the counter several four times (interval 0.005F M) .
JP2015218832A 2015-11-06 2015-11-06 Broadband non-directional antenna Pending JP2017092663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015218832A JP2017092663A (en) 2015-11-06 2015-11-06 Broadband non-directional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218832A JP2017092663A (en) 2015-11-06 2015-11-06 Broadband non-directional antenna

Publications (1)

Publication Number Publication Date
JP2017092663A true JP2017092663A (en) 2017-05-25

Family

ID=58770992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218832A Pending JP2017092663A (en) 2015-11-06 2015-11-06 Broadband non-directional antenna

Country Status (1)

Country Link
JP (1) JP2017092663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336488A (en) * 2018-01-29 2018-07-27 佛山市粤海信通讯有限公司 A kind of Wide-frequency antenna on ceiling of top-loaded
KR101920616B1 (en) * 2018-07-17 2018-11-21 주식회사비엠테크 Omni directional wave antenna
CN110783698A (en) * 2019-11-07 2020-02-11 武汉虹信通信技术有限责任公司 Dual-frequency radiation unit and base station antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336488A (en) * 2018-01-29 2018-07-27 佛山市粤海信通讯有限公司 A kind of Wide-frequency antenna on ceiling of top-loaded
CN108336488B (en) * 2018-01-29 2024-02-20 佛山市粤海信通讯有限公司 Top-loaded broadband ceiling antenna
KR101920616B1 (en) * 2018-07-17 2018-11-21 주식회사비엠테크 Omni directional wave antenna
WO2020017742A1 (en) * 2018-07-17 2020-01-23 주식회사비엠테크 Omnidirectional wave antenna
CN110783698A (en) * 2019-11-07 2020-02-11 武汉虹信通信技术有限责任公司 Dual-frequency radiation unit and base station antenna
CN110783698B (en) * 2019-11-07 2022-04-15 中信科移动通信技术股份有限公司 Dual-frequency radiation unit and base station antenna

Similar Documents

Publication Publication Date Title
US11303016B2 (en) Multi-sector antennas
US8193989B2 (en) Antenna apparatus
EP3739687B1 (en) Antenna radiation element and antenna
CN104037496B (en) A kind of omnidirectional circular-polarized antenna
TW201429053A (en) Omni directional antenna
CN107863996B (en) Omnidirectional array antenna and beam forming method thereof
EP3316397B1 (en) Fixed multibeam stereoscopic helical antenna array and helical antenna flexible support device thereof
US6917346B2 (en) Wide bandwidth base station antenna and antenna array
JP2017092663A (en) Broadband non-directional antenna
CN102460830A (en) An electrically small ultra-wideband antenna for mobile handsets and computer networks
Diez et al. A highly efficient Car2Car-multiband rooftop automotive antenna
Seo et al. Wide beam coverage dipole antenna array with parasitic elements for UAV communication
JP2007336296A (en) Plane type antenna
JP6421057B2 (en) Broadband omnidirectional antenna
US9774090B2 (en) Ultra-wide band antenna
US20160211584A1 (en) Antenna element with high gain toward the horizon
JP2008219853A (en) Antenna device
JP5024826B2 (en) Antenna device
Ghazizadeh et al. 60 GHz omni-directional segmented loop antenna
JP5572476B2 (en) Low profile broadband omnidirectional antenna
JP2005079982A (en) Combined antenna
Sharma et al. Design of Quadrifilar Helical Antenna For S-Band Applications
TR201705171A2 (en) An antenna.
Ullah et al. A Tri-Cell Hexagonal Wire Antenna for 5G Applications at 28 GHz Band
Sharma et al. Ultra-wideband Compact Circularly Polarized Antenna Using Coupled Dipoles