WO2011117934A1 - Light emitting device and backlight module using same - Google Patents

Light emitting device and backlight module using same Download PDF

Info

Publication number
WO2011117934A1
WO2011117934A1 PCT/JP2010/005122 JP2010005122W WO2011117934A1 WO 2011117934 A1 WO2011117934 A1 WO 2011117934A1 JP 2010005122 W JP2010005122 W JP 2010005122W WO 2011117934 A1 WO2011117934 A1 WO 2011117934A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
emitted
emitting element
Prior art date
Application number
PCT/JP2010/005122
Other languages
French (fr)
Japanese (ja)
Inventor
山中一彦
片山琢磨
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011117934A1 publication Critical patent/WO2011117934A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a light emitting device and a backlight module using the light emitting device.
  • the liquid crystal display device uses a liquid crystal panel as a transmissive light modulation element, and irradiates the liquid crystal panel with light from a light source device disposed on the back surface thereof.
  • the liquid crystal panel irradiated with light forms an image by controlling the light transmittance.
  • a cold cathode tube (CCFL) has been used as a light source of the light source device.
  • CCFL cold cathode tube
  • a semiconductor laser element or LED Light Emitting Diode
  • Development of a light source device using a semiconductor light emitting element such as As an example of a light source device using a semiconductor laser element as a light source, for example, it is shown in the following Non-Patent Document 1, and a structure combined with an optical fiber using the high directivity of the semiconductor laser element is proposed. Yes.
  • LED light source devices which are light source devices using LEDs as light sources
  • a direct type in which a plurality of LEDs are arranged in a two-dimensional array on the entire back surface of a display screen, and a side edge of a liquid crystal panel.
  • an edge type in which LEDs are arranged in a portion and light is irradiated from the back surface of a liquid crystal panel by a light guide plate.
  • LED light source devices that use semiconductor laser elements as the light source
  • LED light source devices are rapidly spreading.
  • the LED light source device is mainly the direct type, but it is considered that the edge type will be widely used in accordance with the demand for a thinner liquid crystal display device in the future.
  • the LED light source device used in the edge-type liquid crystal display device has a problem that the efficiency of incident light on the light guide plate of the light emitted from the LED chip is poor and the utilization efficiency of the light emitted from the LED chip is low.
  • Patent Document 1 proposes a structure in which the surface of an LED chip is covered with a scattering lens that is a cylindrical lens.
  • the light source device 224 includes a substrate 223, an LED chip 224a, and a scattering lens 224c.
  • a plurality of LED chips 224a are linearly arranged on the component mounting surface 223a of the substrate 223.
  • the scattering lens 224c which is a cylindrical lens, covers the LED chip 224a.
  • the scattering lens 224c is formed to include a curved surface 224c2 that is convex with respect to the component mounting surface 223a and a tapered surface 224c1 that is tapered from the end of the curved surface toward the component mounting surface 223a.
  • light emitted from the LED chip 224a is emitted in all directions from the surface of the LED chip 224a toward the front surface of the component mounting surface 223a, and a part of the light is refracted by the curved surface 224c2 of the scattering lens 224c. The remaining portion of the light is reflected by the tapered surface 224 c 1, further refracted by the curved surface 224 c 2, and guided to the light guide plate 221.
  • the liquid crystal display device using the conventional LED light source device has a problem that the light guide plate cannot be thinned.
  • the size of the LED chip is about 0.5 mm ⁇ 0.5 mm.
  • the emission angle of the light emitted from the LED chip is so-called Lambertian, and light having a full width at half maximum of 120 ° is emitted.
  • the size of the lens needs to be about 5 to 10 times the size of the LED chip. That is, since the size of the lens is required to be about 2.5 mm to 5 mm, in order to efficiently guide light to the light guide plate, it is necessary to increase the thickness of the light guide plate to the same level as the lens. As a result, it becomes a limitation when the liquid crystal panel is thinned.
  • the light emission angle is Lambertian, that is, 120 °, and a plurality of LED chips are usually arranged at a predetermined interval. For this reason, the incidence of light in a direction parallel to the light guide plate decreases the light intensity in the region between the LED chips, which is the connection portion of the light guide plate to the light source device. As a result, there is a problem that the uniformity of the light distribution inside the light guide plate becomes insufficient.
  • the light emitting device is configured to transmit the emitted light emitted from the light emitting element through the optical element having the diffraction grating or the concave portion and the phosphor layer.
  • a first light emitting device includes a light emitting element made of a semiconductor having a waveguide, an optical element having a diffraction grating provided in the propagation direction of the emitted light from the light emitting element, and receiving the emitted light. And a phosphor layer formed on a surface opposite to the diffraction grating in the optical element.
  • the optical element having the diffraction grating that receives the emitted light since the optical element having the diffraction grating that receives the emitted light is provided, a part of the emitted light is diffracted by the diffraction grating, and thus the aspect ratio of the emitted light (the light in the x-axis direction) A light-emitting device having a large value (ratio between the divergence angle and the divergence angle of light in the y-axis direction) can be realized. For this reason, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. As a result, even in the thin light guide plate of the backlight module, the optical coupling rate between the light emitting device and the light guide plate can be increased.
  • the cross-sectional shape of the light exit end face of the waveguide may be a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating.
  • the diffraction grating may have a grating pattern with irregular grating intervals.
  • the first light-emitting device may further include a reflective film that reflects the emitted light from the light-emitting element and makes the reflected emitted light incident on the diffraction grating.
  • the light emitting element is a double-sided emission type light emitting element
  • the reflection films may be provided on one light emitting end face side and the other light emitting end face side of the light emitting element, respectively.
  • a second light-emitting device includes a light-emitting element made of a semiconductor having a waveguide, an optical element having a semi-cylindrical concave portion that is provided in the propagation direction of light emitted from the light-emitting element, and that receives the emitted light; And a phosphor layer formed on a surface opposite to the concave portion of the optical element.
  • the optical element having the semicylindrical concave portion that receives the outgoing light since the optical element having the semicylindrical concave portion that receives the outgoing light is provided, the outgoing light is refracted by the semicylindrical concave portion of the optical element.
  • a light emitting device having a large value can be realized. For this reason, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. As a result, even in the thin light guide plate of the backlight module, the optical coupling rate between the light emitting device and the light guide plate can be increased.
  • the cross-sectional shape of the light exit end face of the waveguide may be a rectangular shape whose long side is parallel to the central axis direction of the recess.
  • the optical element may be formed in a convex shape along the concave portion on the surface opposite to the surface on which the concave portion is formed.
  • a diffraction grating may be provided in the concave portion of the optical element.
  • the shape of the recess (concave shape) can be formed with a higher degree of freedom in accordance with the outgoing light pattern converted by the recess of the optical element.
  • a semiconductor laser element or a super luminescent diode can be used as the light emitting element.
  • a first backlight module includes the first light emitting device of the present invention and a light guide plate that receives light emitted from the first light emitting device on a side surface.
  • the second backlight module according to the present invention includes the second light emitting device of the present invention and a light guide plate that receives light emitted from the second light emitting device on its side surface.
  • the first or second backlight module a light source having a large aspect ratio value of emitted light can be realized. Therefore, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. Therefore, even in the thin light guide plate of the backlight module, the light emitting device The optical coupling rate between the light guide plate and the light guide plate can be increased.
  • the cross-sectional shape of the light emitting end face of the waveguide of the optical element may be a rectangular shape whose short side is parallel to the in-plane direction of the main surface of the light guide plate.
  • a semiconductor laser element or a super luminescent diode can be used as the light emitting element.
  • the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform.
  • FIG. 1A and 1B show a light emitting device according to a first embodiment of the present invention and a backlight module using the same
  • FIG. 1A is a front view
  • FIG. ) Is a cross-sectional view taken along line Ib-Ib in FIG. 2A to 2C show a light emitting device and a backlight module using the same according to the first embodiment of the present invention
  • FIG. 2A is a perspective view of the light emitting device.
  • 2 (b) is an exploded perspective view of the backlight module
  • FIG. 2 (c) is a perspective view schematically showing how light from the light emitting device in the backlight module propagates.
  • FIG. 3 is a cross-sectional view showing the light emitting device according to the first embodiment of the present invention.
  • FIG. 4A to 4C schematically show the operation of the light emitting device according to the first embodiment of the present invention.
  • FIG. 4A is a cross-sectional view of the light emitting device
  • FIG. ) Is a perspective view showing light emitted from the light emitting element
  • FIG. 4C is a perspective view showing light emitted through the diffraction grating.
  • FIG. 5A shows the diffraction grating in the light emitting device according to the first embodiment of the present invention
  • FIG. 5B shows the angle dependence of the light intensity by calculation in the light emitting element according to the first embodiment of the present invention.
  • FIG. 5C is a graph showing the angular dependence of the light intensity by calculation in the light emitting device according to the first embodiment of the present invention.
  • FIG. 6 (a) to 6 (d) show a light emitting device according to a modification of the first embodiment of the present invention
  • FIG. 6 (a) shows a diffraction grating
  • FIG. 6 (b) shows a diffraction grating
  • FIG. 6C is a graph showing the angular dependence of the light intensity calculated in the light emitting element
  • FIG. 6D is the angular dependence of the light intensity calculated in the light emitting device. It is a graph which shows. 7 (a) and 7 (b) show a light emitting device according to a second embodiment of the present invention
  • FIG. 7 (a) is a sectional view
  • FIG. 7 (b) is an exploded perspective view (partially). Are omitted).
  • FIG. 8 is a sectional view showing a light emitting device according to a first modification of the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a light emitting device according to a second modification of the second embodiment of the present invention.
  • FIGS. 10A to 10C show a light emitting device and a backlight module using the same according to a third embodiment of the present invention.
  • FIG. 10A is a perspective view of the light emitting device.
  • 10 (b) is an exploded perspective view of the backlight module
  • FIG. 10 (c) is a perspective view schematically showing how light from the light emitting device propagates in the backlight module.
  • FIG. 11 is a sectional view showing a light emitting device according to the third embodiment of the present invention.
  • FIG. 12A and 12B schematically show the operation of the light-emitting device according to the third embodiment of the present invention.
  • FIG. 12A is a cross-sectional view of the light-emitting device
  • FIG. ) Is a perspective view showing light emitted from the light emitting device.
  • FIG. 13: is sectional drawing which shows the light-emitting device which concerns on the modification of the 3rd Embodiment of this invention.
  • 14 (a) to 14 (c) schematically show the operation of the light emitting device according to a modification of the third embodiment of the present invention
  • FIG. 14 (a) is a cross-sectional view of the light emitting device.
  • FIG. 14B is a perspective view showing light emitted from the light emitting element, and FIG.
  • FIG. 14C is a perspective view showing light emitted from the light emitting device.
  • FIG. 15 is a cross-sectional view schematically showing the operation of the light emitting device according to the fourth embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view showing a conventional light emitting device.
  • the backlight module 100 is provided, for example, on the light guide plate 90 and a lower end surface (edge) on the lower side of the light guide plate 90 with a space therebetween.
  • Each light emitting device 1 is mounted on each holding unit 85 divided into a plurality of parts, and a wiring 86 is connected to the holding unit 85.
  • the light emitting device 1 includes a package 20, a light emitting element (not shown), a transparent optical element 30, and a phosphor layer 35.
  • Outgoing light emitted from a light emitting element described later has an divergence angle between the illuminating device 1 and the divergence angle in the minor axis direction (x axis direction) 62a and the divergence angle in the major axis direction (y axis direction) 62b. It is emitted as white light 62 having a large ratio value.
  • each light emitting device 1 has the holding portion 85. They are interposed so that the spread angle is large in the y direction and the spread angle is small in the x direction.
  • the white light 62 emitted from each light emitting device 1 is efficiently incident because the divergence angle is small in the x-axis direction of the light guide plate 90, and the light guide plate 90. Propagate through.
  • the light emitting device 1 includes a light emitting element 10, a submount 11 that fixes and holds the light emitting element 10, and a package that fixes and holds the submount 11. 20, a transparent optical element 30 that is fixed to the package 20 and transmits light emitted from the light emitting element 10 to change the optical path, and a phosphor layer 35 formed on the upper surface of the transparent optical element 30.
  • the package 20 is made of a metal such as copper (Cu) or Kovar (Fe / Ni / Co alloy), for example, and is a flat plate-like base material 20a and a mounting surface on the mounting surface 20c of the base material 20a.
  • the base 20b is held perpendicular to the base 20c, at least two leads 20d1 and 20d2, and a cap member 20f fixed on the base member 20a so as to cover the base 20b.
  • the first lead 20d1 is insulated from the base material 20a by an insulating portion 20e made of an insulating material such as glass, and the second lead 20d2 is electrically connected to the base material 20a.
  • the light emitting element 10 is fixed to the mounting surface 20c of the base 20b via the submount 11. Further, the light emitting element 10 is electrically connected to the first lead 20d1 via the wire 9, and is electrically connected to the second lead 20d2 via the submount 11, the wire 9 and the base 20b. Yes.
  • the light emitting element 10 is, for example, a semiconductor laser element or a super luminescent diode (SLD) that emits light having a wavelength of 430 nm to 480 nm, and an end face emission type in which emitted light is emitted from one end face of the light emitting element 10. It is a light emitting element. Note that the light emitting element 10 is more preferably an SLD because of low coherence of emitted light.
  • a diffraction grating 30a is formed on one surface of the transparent optical element 30 made of a transparent substrate, and the other surface is made of a transparent material such as silicone resin with Ce: YAG (cerium-added yttrium, aluminum, garnet).
  • a phosphor layer 35 made of a material in which phosphor materials such as the above are mixed is formed.
  • the diffraction grating 30a of the transparent optical element 30 is formed on the side facing the light emitting element 10, and is arranged at a predetermined interval, for example, 1.5 mm with respect to the light emitting element 10 with the cap material 20f interposed.
  • the outgoing light 50 emitted from the light emitting element 10 has an elliptical divergence angle having a divergence angle in the minor axis direction 50a and an divergence angle in the major axis direction 50b. Is emitted.
  • the short axis direction 50a coincides with the x axis direction when the stacking direction of the semiconductor layers is the y axis and the emission direction is the z axis.
  • the major axis direction 50b coincides with the y-axis direction.
  • the outgoing light 50 from the light emitting element 10 is incident on the diffraction grating 30a of the transparent optical element 30.
  • FIG. A part of the incident light is diffracted by the diffraction grating 30a and becomes an outgoing light 60 having a divergence angle larger than that of the incident light, and is incident on the phosphor layer 35.
  • the light transmitted through the diffraction grating 30a has an divergence angle in the minor axis direction (x-axis direction) 60a and an divergence angle in the major axis direction (y-axis direction) 60b.
  • the emitted light 60 has a large aspect ratio.
  • the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10 has a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating 30a. That is, the light emitting element 10 and the diffraction grating 30a are arranged so that the rectangular shape of the cross section at the light emitting end face of the waveguide is parallel to the extending direction of the grating pattern in the diffraction grating 30a.
  • the light divergence angle in the direction in which the aspect ratio is large can be further increased.
  • a part of the incident light that has entered the phosphor layer 35 is, for example, fluorescent light 61 that is yellow light centered at a wavelength of 580 nm by the phosphor of the phosphor layer 35. Is emitted.
  • the light emitted from the light emitting device 1 is light in which the emitted light 60 and the fluorescent light 61 are mixed. Therefore, by setting the outgoing light 60 to blue light and the fluorescent light 61 to yellow light, pseudo white light 62 can be emitted.
  • gratings extending in the x-axis direction as shown in FIG. 5A are arranged in the y-axis direction. It is a periodic lattice pattern.
  • the light quantity ratio of the first-order diffracted light can be adjusted by the depth of the diffraction grating 30a, when the ratio of the 0th-order diffracted light and the first-order diffracted light is 1: 1, as shown in FIG.
  • a light source having a radiation angle characteristic with a very large aspect ratio value can be obtained.
  • the backlight module 100 with high efficiency and uniform light distribution inside the light guide plate 90 can be manufactured.
  • the light emitting element 10 is arranged on the pedestal 20b via the submount 11.
  • the mounting surface 20c on the pedestal 20b is solder-plated to attach the light emitting element 10 to the pedestal 20b. It is good also as a structure arrange
  • the grating pattern of the diffraction grating 30b provided in the transparent optical element 30 is irregularly (randomly) formed.
  • the lattice pattern is irregular includes the case where the interval of the lattice is irregular, that is, the period is irregular, the case where the size of one lattice is irregular, and the like.
  • the diffraction grating 30b is a grating pattern in which, for example, gratings extending in the x-axis direction are arranged in the y-axis direction, as in the first embodiment.
  • the pattern period is random.
  • the pitch of the diffraction grating 30b of the transparent optical element 30 is random
  • the light transmitted through the diffraction grating 30 is a radiation angle distribution in the air represented by a Lambert distribution as shown in FIG. It becomes light with.
  • a light source having a radiation angle characteristic with a very large aspect ratio value can be obtained.
  • the light emitting device 1A according to the second embodiment is provided with a semicylindrical recess 30c instead of the diffraction grating provided on the surface of the transparent optical element 30 on the light emitting element 10 side.
  • the transparent optical element 30 is arranged such that the concave surface, which is the inner surface of the concave portion 30c, has a predetermined distance, for example, 1.5 mm, from the light emitting element 10 with the cap material 20f constituting the package 20 interposed.
  • the concave portion 30c of the transparent optical element 30 is formed so that the central axis of the concave surface coincides with the x-axis direction.
  • the light emitting element 10 is disposed on the base 20b via the submount 11 so that the waveguide is parallel to the xz plane. Furthermore, also in this embodiment, the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10 has a rectangular shape whose long side is parallel to the central axis direction (x-axis direction) of the recess 30c.
  • the emitted light emitted from the light emitting element 10 has a major axis in the y-axis direction and a minor axis in the x-axis direction, as in the first embodiment.
  • the elliptical shaped outgoing light is emitted.
  • the light emitting device 1 ⁇ / b> A having a larger spread angle aspect ratio value can be realized by the concave surface formed by the concave portion 30 c.
  • the optical element 30A in the light emitting device 1B according to the present modification has a surface (upper surface) opposite to the surface on which the recess 30c is formed in a convex shape along the shape of the recess 30c.
  • a diffraction grating 30a is formed on the concave surface formed by the concave portion 30c.
  • the grating pattern of the diffraction grating 30a is formed so that the striped pattern is parallel to the central axis of the recess 30c.
  • the light emitting device 1D has a large aspect ratio value between the divergence angle in the minor axis direction 62a and the divergence angle in the major axis direction 62b from the light emitting end face.
  • the white light 62 having a divergence angle is output.
  • the backlight module 100A includes a plurality of light emitting devices 1D, and a plurality of wiring boards each holding and electrically connecting the plurality of light emitting devices 1D. 185 and a light guide plate 90 optically connected to the plurality of light emitting devices 1D.
  • the wiring board 185 is formed with an electrode pad 186, an extraction electrode pad 188, and an internal wiring 187 that electrically connects them.
  • Each light emitting device 1 ⁇ / b> D is connected to the electrode pad 186 on the lower surface, and is arranged so that the light emitting surface, which is the upper surface, faces the side end surface of the light guide plate 90.
  • each light emitting device 1D is arranged parallel to the thickness direction (x-axis direction) of the light guide plate 90, and the one with the larger divergence angle of the emitted light (long)
  • the axial direction 62b) is installed so as to be parallel to the longitudinal direction (y-axis direction) of the light guide plate 90.
  • the white light 62 emitted from each light emitting device 1 ⁇ / b> D is efficiently incident on the light guide plate 90 in the x-axis direction where the divergence angle is small, and Propagate through.
  • the white light 62 emitted from each light emitting device 1D is incident on the light guide plate 90, the light spreads efficiently in the yz plane direction of the light guide plate 90. The occurrence of unevenness of light inside the light guide plate 90 can be greatly reduced.
  • the configuration of the light emitting device 1D will be described with reference to FIG.
  • a light emitting device 1D includes a light emitting element 10A, a package 120 that holds the light emitting element 10A in a fixed manner, and is fixed to the package 120. It is composed of a transparent optical element 30B made of a transparent substrate that transmits outgoing light and changes the optical path, and a phosphor layer 35 formed on the upper surface of the transparent optical element 30B.
  • the package 120 is made of, for example, a metal material obtained by plating silver (Ag) or the like on the surface of a metal having conductivity, pressability, and high thermal conductivity such as C194 (copper alloy), and includes the first electrode 120a and the second electrode 120a. And an edge portion having a region for forming the insulating portion 120c and the reflective film 120e made of a plastic material such as PA (polyamide), PPA (polyphthalamide), or PPS (polyphenylene sulfide), for example. 120d.
  • a metal material obtained by plating silver (Ag) or the like on the surface of a metal having conductivity, pressability, and high thermal conductivity such as C194 (copper alloy)
  • C194 copper alloy
  • an edge portion having a region for forming the insulating portion 120c and the reflective film 120e made of a plastic material such as PA (polyamide), PPA (polyphthalamide), or PPS (polyphenylene sulfide), for example
  • the insulating part 120c electrically insulates the first electrode 120a and the second conductive plate 120b.
  • a reflective film 120e that forms an angle of 45 ° with respect to the optical axis of the light emitting element is formed on one surface of the edge portion 120d that faces the light emitting element.
  • the reflective film 120e is configured by, for example, a metal film such as silver (Ag), aluminum (Al), or copper (Cu), a dielectric multilayer film, or a combination of a metal film and a dielectric multilayer film.
  • the reflective film 120e can be made of the same material as the insulating portion 120c and the edge portion 120d. it can.
  • the light emitting element 10A is fixed on the first electrode 120a with the submount 11A interposed therebetween and the light emitting end face facing the reflective film 120e.
  • the light emitting element 10 ⁇ / b> A is electrically connected to the second electrode 120 b by the wire 9.
  • the light emitting element 10A is, for example, a semiconductor laser element or a super luminescent diode (SLD) that emits light having a wavelength of 430 nm to 480 nm, and is an end face emission type in which emitted light is emitted from one end face of the light emitting element 10A. It is a light emitting element.
  • the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10A has a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating 30a.
  • a diffraction grating 30a is formed on the lower surface of the transparent optical element 30B facing the light emitting end face side of the light emitting element 10A and the reflecting film 120e.
  • the grating pattern of the diffraction grating 30a is formed so that the striped pattern is orthogonal to the optical axis of the emitted light.
  • the transparent optical element 30B on which the diffraction grating 30a is formed is fixed on the edge 120d of the package 120 so as to cover the light emitting element 10A with a predetermined distance, for example, 500 ⁇ m, from the light emitting element 10A.
  • a phosphor layer 35 made of a material obtained by mixing a phosphor material such as Ce: YAG with a transparent material such as silicone resin is formed. Has been.
  • the emitted light 50 emitted from the light emitting element 10A is reflected above the package 120 by the reflective film 120e provided on the package 120, so that the transparent optical Incident on element 30B.
  • a part of the incident light incident on the transparent optical element 30B is diffracted by the diffraction grating 30a provided in the transparent optical element 30B, and becomes an outgoing light 60 having a larger divergence angle than the incident light.
  • Incident light that has passed through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is caused by the phosphor, for example, with a wavelength centering on 580 nm.
  • the fluorescent light 61 that is yellow light is emitted.
  • the light emitted from the light emitting device 1D is light in which the emitted light 60 and the fluorescent light 61 are mixed. Therefore, the light emitting device 1D can emit white light 62 by using the emitted light 60 as blue light and the fluorescent light 61 as yellow light.
  • the change in the radiation angle of the emitted light 50 from the light emitting element 10A by the diffraction grating 30a is the same as in the first embodiment.
  • the light emitting element 10B that emits light having a wavelength of 430 nm to 480 nm. Therefore, in the package 120A that holds the light emitting element 10B, the first reflective film 120e1 and the second reflective film 120e2 are formed on both edge portions 120d that face the two light emitting end faces of the light emitting element 10B. ing. In addition, the constituent material of each reflective film 120e1 and 120e2 is equivalent to the reflective film 120e of 3rd Embodiment.
  • the diffraction grating 30a of the transparent optical element 30B is formed over almost the entire surface above the first reflective film 120e1, the second reflective film 120e2, and the light emitting element 10B.
  • 70 are respectively reflected above the package 120A by the first reflective film 120e1 and the second reflective film 120e2 provided on the package 120A, and enter the transparent optical element 30B.
  • a part of each incident light incident on the transparent optical element 30B is diffracted by the diffraction grating 30a provided in the transparent optical element 30B, and becomes outgoing lights 60 and 80 having a divergence angle larger than the incident light.
  • Each incident light transmitted through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is centered at a wavelength of, for example, 580 nm by the phosphor.
  • the light emitted from the light-emitting device 1E is light in which the outgoing lights 60 and 80 and the fluorescent lights 61 and 81 are mixed, and the outgoing lights 60 and 80, respectively.
  • white light 62 and 82 can be emitted.
  • the light amplified in the longitudinal direction by the stripe 10a formed on the light emitting element 10B is emitted as emitted light 50 and 70 from the front end face and the optical end face, respectively.
  • the outgoing lights 50 and 70 have a short axis direction in the direction parallel to the top surface of the light emitting element 10B, and a long axis direction in the direction perpendicular to the top surface. Is emitted as outgoing light having an elliptical divergence angle.
  • the outgoing lights 50 and 70 emitted from the light emitting element 10B are reflected above the package 120A by the two reflective films 120e1 and 120e2 in the package 120A, and the diffraction gratings 30a and 30a of the transparent optical element 30B are reflected.
  • the light passes through the phosphor layer 35 and is emitted from the light emitting device 1E.
  • the emitted white lights 62 and 82 are emitted with a larger divergence angle in the major axis direction by the diffraction grating 30a, that is, with a larger aspect ratio value.
  • a double-sided emission type semiconductor laser element or a super luminescent diode (SLD) is used as the light emitting element 10B that emits light having a wavelength of 430 nm to 480 nm.
  • the first reflection type diffraction grating 120f1 and the second reflection type diffraction grating 120f2 are provided at both edge portions 120d facing the two light emitting end faces of the light emission element 10B. Is formed.
  • Each reflective diffraction grating can be transferred, for example, by forming a concavo-convex shape on the mold side in advance when forming both edge portions 120d of the package 120A by molding. It can be obtained by forming a reflective film.
  • the constituent material of the reflective film constituting each of the reflective diffraction gratings 120f1 and 120f2 is the same as that of the reflective film 120e of the third embodiment.
  • the transparent optical element 30B is a flat transparent substrate, and the phosphor layer 35 is formed on the transparent optical element 30B.
  • the first reflected diffraction diffracted light 50 and 70 emitted from the both end surfaces of the front end surface and the rear end surface of the waveguide (stripe) 10a are provided in the package 120A.
  • the light is reflected above the package 120A by the grating 120f1 and the second reflective diffraction grating 120f2, and enters the transparent optical element 30B.
  • the outgoing lights 50 and 70 become outgoing lights 60 and 80 having a divergence angle larger than that of the incident light when reflected by a reflective diffraction grating, as will be described later.
  • Each incident light transmitted through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is centered at a wavelength of, for example, 580 nm by the phosphor.
  • the light emitted from the light emitting device 1F is light in which the outgoing lights 60 and 80 and the fluorescent lights 61 and 81 are mixed, and the outgoing lights 60 and 80 are blue light, respectively, and the fluorescent lights 61 and 81 are emitted.
  • white light 62 and 82 can be emitted.
  • the light amplified in the longitudinal direction by the stripe formed in the light emitting element 10B is emitted as emitted light 50 and 70 from the front end face and the optical end face, respectively.
  • the outgoing lights 50 and 70 have an elliptical divergence angle in which the divergence angle in the direction parallel to the upper surface of the light emitting element 10B is the minor axis direction, and the divergence angle in the direction perpendicular to the upper surface is the divergence angle in the major axis direction. It is emitted as outgoing light having
  • the outgoing lights 50 and 70 emitted from the light emitting element 10B are reflected above the package 120A by the two reflective diffraction gratings 120f1 and 120f2 in the package 120A, and the transparent optical element 30B and the phosphor.
  • the light passes through the layer 35 and is emitted from the light emitting device 1F.
  • the emitted white lights 62 and 82 are emitted with a larger divergence angle in the major axis direction by the reflection type diffraction gratings 120f1 and 120f2, that is, with a larger aspect ratio value.
  • each of the reflection type diffraction gratings 120f1 and 120f2 can be formed at the same time when the package 120 is molded. Therefore, the light emitting device 1F can be configured with a simpler configuration.
  • light is emitted only from one end face of the light emitting element 10B, and the reflection type diffraction grating 120f1 is formed only on the reflection face facing the emission end face. It is good.
  • the light-emitting device according to the present invention and the backlight module using the light-emitting device can efficiently enter the light emitted from the light-emitting element into the light guide plate, and can make the light distribution in the light guide plate uniform,
  • the present invention is useful for a backlight light source device in a liquid crystal display device or a light emitting device applicable to a panel-shaped illuminator and a backlight module using the light emitting device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

Disclosed is a light emitting device (1) which is provided with: a light emitting element (10) composed of a semiconductor having a waveguide; an optical element (30), which is provided in the propagating direction of outputted light (50) emitted from the light emitting element (10), and which has a diffraction grating (30a) that receives the outputted light (50); and a phosphor layer (35), which is formed on the optical element (30) surface on the reverse side of the surface having the diffraction grating (30a) formed thereon.

Description

発光装置及びそれを用いたバックライトモジュールLight emitting device and backlight module using the same
 本発明は、発光装置及びそれを用いたバックライトモジュールに関する。 The present invention relates to a light emitting device and a backlight module using the light emitting device.
近年、薄型テレビ等の表示装置として、液晶パネルを用いた液晶表示装置の市場が急速に伸びてきている。液晶表示装置は、透過型の光変調素子として液晶パネルを用い、その裏面に配された光源装置から液晶パネルに光を照射する。光を照射された液晶パネルは、光の透過率を制御することにより画像を形成する。 In recent years, the market of liquid crystal display devices using liquid crystal panels as display devices such as flat-screen televisions has been rapidly growing. The liquid crystal display device uses a liquid crystal panel as a transmissive light modulation element, and irradiates the liquid crystal panel with light from a light source device disposed on the back surface thereof. The liquid crystal panel irradiated with light forms an image by controlling the light transmittance.
 光源装置の光源には、従来、冷陰極管(CCFL:Cold Cathode Fluorescent Lamp)が用いられてきたが、近年の省エネルギー化及び水銀レス化の流れのなかで、半導体レーザ素子又はLED(Light Emitting Diode)等の半導体発光素子を光源とする光源装置の開発が進んでいる。光源に半導体レーザ素子を用いた光源装置の例としては、例えば下記の非特許文献1に示されており、半導体レーザ素子の高い指向性を利用して、光ファイバと組み合わせた構造が提案されている。一方、光源にLEDを用いた光源装置であるLED光源装置には主に2種類があり、表示画面の裏面の全面に複数のLEDを2次元配列として配置する直下型と、液晶パネルの側端部にLEDを配置して導光板により液晶パネルの背面から光を照射するエッジ型とが提案されている。 Conventionally, a cold cathode tube (CCFL) has been used as a light source of the light source device. However, in recent years of energy saving and mercury-less trend, a semiconductor laser element or LED (Light Emitting Diode) Development of a light source device using a semiconductor light emitting element such as As an example of a light source device using a semiconductor laser element as a light source, for example, it is shown in the following Non-Patent Document 1, and a structure combined with an optical fiber using the high directivity of the semiconductor laser element is proposed. Yes. On the other hand, there are mainly two types of LED light source devices, which are light source devices using LEDs as light sources, a direct type in which a plurality of LEDs are arranged in a two-dimensional array on the entire back surface of a display screen, and a side edge of a liquid crystal panel. There has been proposed an edge type in which LEDs are arranged in a portion and light is irradiated from the back surface of a liquid crystal panel by a light guide plate.
 現在、光源に半導体レーザ素子を用いた光源装置については、レーザ光源の高い干渉性により発生するスペックルノイズ対策のための振動子が必要であることや、レーザ光源からの光を光源装置の内部に均一に拡げることが難しい等の理由により市販はまだされていない。一方、LED光源装置については、急速に普及が進みつつある。LED光源装置は、現在、直下型が主流であるが、今後の液晶表示装置の薄型化の要望に伴い、エッジ型の普及が進むと考えられている。しかしながら、エッジ型の液晶表示装置に使用されるLED光源装置は、LEDチップが発光する光の導光板への入射効率が悪く、LEDチップが発光する光の利用効率が低いという問題がある。 Currently, for light source devices that use semiconductor laser elements as the light source, there is a need for a vibrator to combat speckle noise that occurs due to the high interference of the laser light source, and the light from the laser light source It has not been marketed yet because it is difficult to spread it uniformly. On the other hand, LED light source devices are rapidly spreading. Currently, the LED light source device is mainly the direct type, but it is considered that the edge type will be widely used in accordance with the demand for a thinner liquid crystal display device in the future. However, the LED light source device used in the edge-type liquid crystal display device has a problem that the efficiency of incident light on the light guide plate of the light emitted from the LED chip is poor and the utilization efficiency of the light emitted from the LED chip is low.
 この問題を解決するため、例えば下記の特許文献1には、LEDチップの表面をシリンドリカルレンズである散乱レンズで覆う構造が提案されている。 In order to solve this problem, for example, Patent Document 1 below proposes a structure in which the surface of an LED chip is covered with a scattering lens that is a cylindrical lens.
 以下、図16を用いて、特許文献1に記載された従来技術について説明する。図16において、光源装置224は、基板223、LEDチップ224a及び散乱レンズ224cから構成される。基板223の部品実装面223aには、複数のLEDチップ224aが直線状に配置される。シリンドリカルレンズである散乱レンズ224cは、LEDチップ224aを覆っている。このとき、散乱レンズ224cは、部品実装面223aに対して凸面になる湾曲面224c2と、湾曲面の端部から部品実装面223aに向かって先細りとなるテーパ面224c1とを含むように形成される。この構成において、LEDチップ224aから出射される光は、LEDチップ224aの表面から部品実装面223aの前面方向に全方位に出射され、光の一部は散乱レンズ224cの湾曲面224c2で屈折され、光の残部はテーパ面224c1で反射され、さらに湾曲面224c2で屈折されて、導光板221に導かれる。 Hereinafter, the conventional technique described in Patent Document 1 will be described with reference to FIG. In FIG. 16, the light source device 224 includes a substrate 223, an LED chip 224a, and a scattering lens 224c. A plurality of LED chips 224a are linearly arranged on the component mounting surface 223a of the substrate 223. The scattering lens 224c, which is a cylindrical lens, covers the LED chip 224a. At this time, the scattering lens 224c is formed to include a curved surface 224c2 that is convex with respect to the component mounting surface 223a and a tapered surface 224c1 that is tapered from the end of the curved surface toward the component mounting surface 223a. . In this configuration, light emitted from the LED chip 224a is emitted in all directions from the surface of the LED chip 224a toward the front surface of the component mounting surface 223a, and a part of the light is refracted by the curved surface 224c2 of the scattering lens 224c. The remaining portion of the light is reflected by the tapered surface 224 c 1, further refracted by the curved surface 224 c 2, and guided to the light guide plate 221.
特開2009-158274号公報JP 2009-158274 A
 しかしながら、前記従来のLED光源装置を用いた液晶表示装置は、導光板を薄くすることができないという問題がある。現状、LEDチップの大きさは0.5mm×0.5mm程度である。また、LEDチップから出射される光の放射角度は、いわゆるランバーシアンであり、半値幅で120°の拡がりを有する光が出射される。このような放射特性を有する出射光をレンズによって効率良く集光させる場合は、レンズの大きさとしてLEDチップの大きさの5倍から10倍程度が必要となる。すなわち、レンズの大きさが2.5mm~5mm程度が必要となるため、導光板に効率良く光を導くには、導光板の厚さをレンズと同程度にまで厚くする必要がある。その結果、液晶パネルを薄くする際の制限となってしまう。 However, the liquid crystal display device using the conventional LED light source device has a problem that the light guide plate cannot be thinned. At present, the size of the LED chip is about 0.5 mm × 0.5 mm. The emission angle of the light emitted from the LED chip is so-called Lambertian, and light having a full width at half maximum of 120 ° is emitted. In order to efficiently collect the emitted light having such a radiation characteristic by the lens, the size of the lens needs to be about 5 to 10 times the size of the LED chip. That is, since the size of the lens is required to be about 2.5 mm to 5 mm, in order to efficiently guide light to the light guide plate, it is necessary to increase the thickness of the light guide plate to the same level as the lens. As a result, it becomes a limitation when the liquid crystal panel is thinned.
 さらに、上述したように、導光板の厚さ方向と同様に光の放射角度がランバーシアン、すなわち120°であり、通常、複数のLEDチップが所定の間隔をおいて配置される。このため、導光板に平行な方向の光の入射は、導光板の光源装置との接続部分であるLEDチップ同士の間の領域において光の強度が低くなる。その結果、導光板の内部の光分布の均一性が不十分になるという問題がある。 Further, as described above, similarly to the thickness direction of the light guide plate, the light emission angle is Lambertian, that is, 120 °, and a plurality of LED chips are usually arranged at a predetermined interval. For this reason, the incidence of light in a direction parallel to the light guide plate decreases the light intensity in the region between the LED chips, which is the connection portion of the light guide plate to the light source device. As a result, there is a problem that the uniformity of the light distribution inside the light guide plate becomes insufficient.
 本発明は、前記の問題を解決し、発光素子から出射される光を効率良く導光板に入射すると共に、導光板内での光の分布を均一にできるようにすることを目的とする。 It is an object of the present invention to solve the above-described problems and to make light emitted from a light emitting element efficiently enter a light guide plate and make the light distribution in the light guide plate uniform.
 前記の目的を達成するため、本発明は、発光装置を、発光素子から出射される出射光を、回折格子又は凹部を有する光学素子と蛍光体層とに透過させる構成とする。 In order to achieve the above object, according to the present invention, the light emitting device is configured to transmit the emitted light emitted from the light emitting element through the optical element having the diffraction grating or the concave portion and the phosphor layer.
 具体的に、本発明に係る第1の発光装置は、導波路を有する半導体からなる発光素子と、発光素子からの出射光の伝搬方向に設けられ、出射光を受ける回折格子を有する光学素子と、光学素子における回折格子と反対側の面上に形成された蛍光体層とを備えている。 Specifically, a first light emitting device according to the present invention includes a light emitting element made of a semiconductor having a waveguide, an optical element having a diffraction grating provided in the propagation direction of the emitted light from the light emitting element, and receiving the emitted light. And a phosphor layer formed on a surface opposite to the diffraction grating in the optical element.
 第1の発光装置によると、出射光を受ける回折格子を有する光学素子を備えているため、出射光の一部が回折格子によって回折されるので、出射光のアスペクト比(x軸方向の光の拡がり角とy軸方向の光の拡がり角との比)の値が大きい発光装置を実現することができる。このため、発光素子から出射される光を効率良く導光板に入射できると共に、導光板内での光の分布を均一にすることができる。その結果、バックライトモジュールの薄型の導光板においても、発光装置と導光板との光学結合率を高めることができる。 According to the first light emitting device, since the optical element having the diffraction grating that receives the emitted light is provided, a part of the emitted light is diffracted by the diffraction grating, and thus the aspect ratio of the emitted light (the light in the x-axis direction) A light-emitting device having a large value (ratio between the divergence angle and the divergence angle of light in the y-axis direction) can be realized. For this reason, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. As a result, even in the thin light guide plate of the backlight module, the optical coupling rate between the light emitting device and the light guide plate can be increased.
 第1の発光装置において、導波路の光出射端面における断面形状は、長辺が回折格子における格子パターンの延伸方向と平行な長方形状であってもよい。 In the first light emitting device, the cross-sectional shape of the light exit end face of the waveguide may be a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating.
 このようにすると、発光素子の出射光におけるアスペクト比が大きい方向の光の拡がり角をさらに拡大させることができる。 This makes it possible to further increase the light divergence angle in the direction in which the aspect ratio of the light emitted from the light emitting element is large.
 第1の発光装置において、回折格子は、格子の間隔が不規則な格子パターンを有していてもよい。 In the first light emitting device, the diffraction grating may have a grating pattern with irregular grating intervals.
 このようにすると、アスペクト比の値が極めて大きい放射角特性を有する光源を実現することができる。 In this way, a light source having a radiation angle characteristic with a very large aspect ratio can be realized.
 第1の発光装置は、発光素子からの出射光を反射し、反射した出射光を回折格子に入射する反射膜をさらに備えていてもよい。 The first light-emitting device may further include a reflective film that reflects the emitted light from the light-emitting element and makes the reflected emitted light incident on the diffraction grating.
 このようにすると、発光素子の出射光の出射方向を反射膜によって変えることができるため、光学素子の発光素子に対する配置位置の自由度が向上する。 In this case, since the emission direction of the emitted light from the light emitting element can be changed by the reflective film, the degree of freedom of the arrangement position of the optical element with respect to the light emitting element is improved.
 この場合に、発光素子は両端面出射型の発光素子であり、反射膜は、発光素子における一方の光出射端面側と他方の光出射端面側とにそれぞれ設けられていてもよい。 In this case, the light emitting element is a double-sided emission type light emitting element, and the reflection films may be provided on one light emitting end face side and the other light emitting end face side of the light emitting element, respectively.
 このようにすると、出射光のアスペクト比がより大きい光源を実現することができる。 In this way, a light source with a larger aspect ratio of the emitted light can be realized.
 本発明に係る第2の発光装置は、導波路を有する半導体からなる発光素子と、発光素子からの出射光の伝搬方向に設けられ、出射光を受ける半円筒状の凹部を有する光学素子と、光学素子における凹部と反対側の面上に形成された蛍光体層とを備えている。 A second light-emitting device according to the present invention includes a light-emitting element made of a semiconductor having a waveguide, an optical element having a semi-cylindrical concave portion that is provided in the propagation direction of light emitted from the light-emitting element, and that receives the emitted light; And a phosphor layer formed on a surface opposite to the concave portion of the optical element.
 第2の発光装置によると、出射光を受ける半円筒状の凹部を有する光学素子を備えているため、出射光が光学素子の半円筒状の凹部によって屈折されるので、出射光のアスペクト比の値が大きい発光装置を実現することができる。このため、発光素子から出射される光を効率良く導光板に入射できると共に、導光板内での光の分布を均一にすることができる。その結果、バックライトモジュールの薄型の導光板においても、発光装置と導光板との光学結合率を高めることができる。 According to the second light emitting device, since the optical element having the semicylindrical concave portion that receives the outgoing light is provided, the outgoing light is refracted by the semicylindrical concave portion of the optical element. A light emitting device having a large value can be realized. For this reason, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. As a result, even in the thin light guide plate of the backlight module, the optical coupling rate between the light emitting device and the light guide plate can be increased.
 第2の発光装置において、導波路の光出射端面における断面形状は、長辺が凹部の中心軸方向と平行な長方形状であってもよい。 In the second light emitting device, the cross-sectional shape of the light exit end face of the waveguide may be a rectangular shape whose long side is parallel to the central axis direction of the recess.
 このようにすると、発光素子の出射光におけるアスペクト比が大きい方向の光の拡がり角をさらに拡大させることができる。 This makes it possible to further increase the light divergence angle in the direction in which the aspect ratio of the light emitted from the light emitting element is large.
 第2の発光装置において、光学素子は、凹部が形成された面と反対側の面が凹部に沿った凸面状に形成されていてもよい。 In the second light emitting device, the optical element may be formed in a convex shape along the concave portion on the surface opposite to the surface on which the concave portion is formed.
 このようにすると、光学素子の凸面の上に形成された蛍光体層に屈折光が均一に透過するため、出射光の演色性を向上することができる。 In this way, since the refracted light is uniformly transmitted through the phosphor layer formed on the convex surface of the optical element, the color rendering properties of the emitted light can be improved.
 第2の発光装置において、光学素子における凹部には、回折格子が設けられていてもよい。 In the second light emitting device, a diffraction grating may be provided in the concave portion of the optical element.
 このようにすると、光学素子の凹部で変換される出射光パターンに合わせて、より高い自由度で凹部の形状(凹面形状)を形成することができる。 In this way, the shape of the recess (concave shape) can be formed with a higher degree of freedom in accordance with the outgoing light pattern converted by the recess of the optical element.
 第1又は第2の発光装置において、発光素子には、半導体レーザ素子又はスーパールミネッセントダイオードを用いることができる。 In the first or second light emitting device, a semiconductor laser element or a super luminescent diode can be used as the light emitting element.
 このようにすると、出射光のアスペクト比が大きい光源を確実に得ることができる。また、スーパールミネッセントダイオードを用いる場合には、スペックルノイズを低減させることができるので、画像表示装置の画質を向上させることができる。 In this way, it is possible to reliably obtain a light source with a large aspect ratio of emitted light. Further, when a super luminescent diode is used, speckle noise can be reduced, so that the image quality of the image display device can be improved.
 本発明に係る第1のバックライトモジュールは、本発明の第1の発光装置と、該第1の発光装置からの出射光を側面に受ける導光板とを備えている。 A first backlight module according to the present invention includes the first light emitting device of the present invention and a light guide plate that receives light emitted from the first light emitting device on a side surface.
 また、本発明に係る第2のバックライトモジュールは、本発明の第2の発光装置と、該第2の発光装置からの出射光を側面に受ける導光板とを備えている。 The second backlight module according to the present invention includes the second light emitting device of the present invention and a light guide plate that receives light emitted from the second light emitting device on its side surface.
 第1又は第2のバックライトモジュールによると、出射光のアスペクト比の値が大きい光源を実現することができる。このため、発光素子から出射される光を効率良く導光板に入射できると共に、導光板内での光の分布を均一にすることができるので、バックライトモジュールの薄型の導光板においても、発光装置と導光板との光学結合率を高めることができる。 According to the first or second backlight module, a light source having a large aspect ratio value of emitted light can be realized. Therefore, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform. Therefore, even in the thin light guide plate of the backlight module, the light emitting device The optical coupling rate between the light guide plate and the light guide plate can be increased.
 第1又は第2のバックライトモジュールにおいて、光学素子の導波路の光出射端面における断面形状は、短辺が導光板の主面の面内方向と平行な長方形状であってもよい。 In the first or second backlight module, the cross-sectional shape of the light emitting end face of the waveguide of the optical element may be a rectangular shape whose short side is parallel to the in-plane direction of the main surface of the light guide plate.
 このようにすると、発光素子の出射光におけるアスペクト比が大きい方向の光の拡がり角をさらに拡大させることができるため、導光板の面内の光分布をより均一にすることができる。 This makes it possible to further increase the divergence angle of the light in the direction with a large aspect ratio in the light emitted from the light emitting element, so that the light distribution in the plane of the light guide plate can be made more uniform.
 第1又は第2のバックライトモジュールにおいて、発光素子には、半導体レーザ素子又はスーパールミネッセントダイオードを用いることができる。 In the first or second backlight module, a semiconductor laser element or a super luminescent diode can be used as the light emitting element.
 このようにすると、出射光のアスペクト比が大きい光源を確実に得ることができる。また、スーパールミネッセントダイオードを用いる場合には、スペックルノイズを低減させることができるので、画質を向上させることができる。 In this way, it is possible to reliably obtain a light source with a large aspect ratio of emitted light. Further, when a super luminescent diode is used, speckle noise can be reduced, so that the image quality can be improved.
 本発明に係る発光装置及びそれを用いたバックライトモジュールによると、発光素子から出射される光を効率良く導光板に入射できると共に、導光板内での光の分布を均一にすることができる。 According to the light emitting device and the backlight module using the same according to the present invention, the light emitted from the light emitting element can be efficiently incident on the light guide plate, and the light distribution in the light guide plate can be made uniform.
図1(a)及び図1(b)は本発明の第1の実施形態に係る発光装置及びそれを用いたバックライトモジュールを示し、図1(a)は正面図であり、図1(b)は図1(a)のIb-Ib線における断面図である。1A and 1B show a light emitting device according to a first embodiment of the present invention and a backlight module using the same, FIG. 1A is a front view, and FIG. ) Is a cross-sectional view taken along line Ib-Ib in FIG. 図2(a)~図2(c)は本発明の第1の実施形態に係る発光装置及びそれを用いたバックライトモジュールを示し、図2(a)は発光装置の斜視図であり、図2(b)はバックライトモジュールの分解斜視図であり、図2(c)はバックライトモジュールにおける発光装置からの光が伝搬する様子を模式的に示した斜視図である。2A to 2C show a light emitting device and a backlight module using the same according to the first embodiment of the present invention, and FIG. 2A is a perspective view of the light emitting device. 2 (b) is an exploded perspective view of the backlight module, and FIG. 2 (c) is a perspective view schematically showing how light from the light emitting device in the backlight module propagates. 図3は本発明の第1の実施形態に係る発光装置を示す断面図である。FIG. 3 is a cross-sectional view showing the light emitting device according to the first embodiment of the present invention. 図4(a)~図4(c)は本発明の第1の実施形態に係る発光装置の動作を模式的に示し、図4(a)は発光装置の断面図であり、図4(b)は発光素子からの出射光を示す斜視図であり、図4(c)は回折格子を透過した出射光を示す斜視図である。4A to 4C schematically show the operation of the light emitting device according to the first embodiment of the present invention. FIG. 4A is a cross-sectional view of the light emitting device, and FIG. ) Is a perspective view showing light emitted from the light emitting element, and FIG. 4C is a perspective view showing light emitted through the diffraction grating. 図5(a)は本発明の第1の実施形態に係る発光装置における回折格子を示し、図5(b)は本発明の第1の実施形態に係る発光素子における計算による光強度の角度依存性を示すグラフであり、図5(c)は本発明の第1の実施形態に係る発光装置における計算による光強度の角度依存性を示すグラフである。FIG. 5A shows the diffraction grating in the light emitting device according to the first embodiment of the present invention, and FIG. 5B shows the angle dependence of the light intensity by calculation in the light emitting element according to the first embodiment of the present invention. FIG. 5C is a graph showing the angular dependence of the light intensity by calculation in the light emitting device according to the first embodiment of the present invention. 図6(a)~図6(d)は本発明の第1の実施形態の一変形例に係る発光装置を示し、図6(a)は回折格子を示し、図6(b)は回折格子の部分的な拡大斜視図であり、図6(c)は発光素子における計算による光強度の角度依存性を示すグラフであり、図6(d)は発光装置における計算による光強度の角度依存性を示すグラフである。6 (a) to 6 (d) show a light emitting device according to a modification of the first embodiment of the present invention, FIG. 6 (a) shows a diffraction grating, and FIG. 6 (b) shows a diffraction grating. FIG. 6C is a graph showing the angular dependence of the light intensity calculated in the light emitting element, and FIG. 6D is the angular dependence of the light intensity calculated in the light emitting device. It is a graph which shows. 図7(a)及び図7(b)は本発明の第2の実施形態に係る発光装置を示し、図7(a)は断面図であり、図7(b)は分解斜視図(一部の部材を省略)である。7 (a) and 7 (b) show a light emitting device according to a second embodiment of the present invention, FIG. 7 (a) is a sectional view, and FIG. 7 (b) is an exploded perspective view (partially). Are omitted). 図8は本発明の第2の実施形態の第1変形例に係る発光装置を示す断面図である。FIG. 8 is a sectional view showing a light emitting device according to a first modification of the second embodiment of the present invention. 図9は本発明の第2の実施形態の第2変形例に係る発光装置を示す断面図である。FIG. 9 is a cross-sectional view showing a light emitting device according to a second modification of the second embodiment of the present invention. 図10(a)~図10(c)は本発明の第3の実施形態に係る発光装置及びそれを用いたバックライトモジュールを示し、図10(a)は発光装置の斜視図であり、図10(b)はバックライトモジュールの分解斜視図であり、図10(c)はバックライトモジュールにおける発光装置からの光が伝搬する様子を模式的に示した斜視図である。FIGS. 10A to 10C show a light emitting device and a backlight module using the same according to a third embodiment of the present invention. FIG. 10A is a perspective view of the light emitting device. 10 (b) is an exploded perspective view of the backlight module, and FIG. 10 (c) is a perspective view schematically showing how light from the light emitting device propagates in the backlight module. 図11は本発明の第3の実施形態に係る発光装置を示す断面図である。FIG. 11 is a sectional view showing a light emitting device according to the third embodiment of the present invention. 図12(a)及び図12(b)は本発明の第3の実施形態に係る発光装置の動作を模式的に示し、図12(a)は発光装置の断面図であり、図12(b)は発光装置からの出射光を示す斜視図である。12A and 12B schematically show the operation of the light-emitting device according to the third embodiment of the present invention. FIG. 12A is a cross-sectional view of the light-emitting device, and FIG. ) Is a perspective view showing light emitted from the light emitting device. 図13は本発明の第3の実施形態の一変形例に係る発光装置を示す断面図である。FIG. 13: is sectional drawing which shows the light-emitting device which concerns on the modification of the 3rd Embodiment of this invention. 図14(a)~図14(c)は本発明の第3の実施形態の一変形例に係る発光装置の動作を模式的に示し、図14(a)は発光装置の断面図であり、図14(b)は発光素子からの出射光を示す斜視図であり、図14(c)は発光装置からの出射光を示す斜視図である。14 (a) to 14 (c) schematically show the operation of the light emitting device according to a modification of the third embodiment of the present invention, and FIG. 14 (a) is a cross-sectional view of the light emitting device. FIG. 14B is a perspective view showing light emitted from the light emitting element, and FIG. 14C is a perspective view showing light emitted from the light emitting device. 図15は本発明の第4の実施形態に係る発光装置の動作を模式的に示す断面図である。FIG. 15 is a cross-sectional view schematically showing the operation of the light emitting device according to the fourth embodiment of the present invention. 図16は従来の発光装置を示す模式的な断面図である。FIG. 16 is a schematic cross-sectional view showing a conventional light emitting device.
 (第1の実施形態)
 本発明の第1の実施形態に係る発光装置及びそれを用いたバックライトモジュールについて図1~図5を参照しながら説明する。
(First embodiment)
A light emitting device and a backlight module using the same according to a first embodiment of the present invention will be described with reference to FIGS.
 図1(a)及び図1(b)に示すように、バックライトモジュール100は、例えば、導光板90と、該導光板90の下側の端面(エッジ)に互いに間隔をおいて設けられた複数の発光装置1と、導光板90における図示しない液晶パネル95と反対側の面(裏面)上に設けられた反射板91と、導光板90と液晶パネル95との間に設けられた拡散板92とから構成される。 As shown in FIG. 1A and FIG. 1B, the backlight module 100 is provided, for example, on the light guide plate 90 and a lower end surface (edge) on the lower side of the light guide plate 90 with a space therebetween. A plurality of light emitting devices 1, a reflector 91 provided on a surface (back surface) opposite to the liquid crystal panel 95 (not shown) in the light guide plate 90, and a diffusion plate provided between the light guide plate 90 and the liquid crystal panel 95. 92.
 各発光装置1は、複数に分割された各保持部85の上にそれぞれ実装されており、保持部85には配線86が接続されている。 Each light emitting device 1 is mounted on each holding unit 85 divided into a plurality of parts, and a wiring 86 is connected to the holding unit 85.
 次に、図2を用いて発光装置1と導光板90との構成及びその動作について説明する。 Next, the configuration and operation of the light emitting device 1 and the light guide plate 90 will be described with reference to FIG.
 図2(a)に示すように、発光装置1は、パッケージ20、図示しない発光素子、透明光学素子30及び蛍光体層35により構成される。後述する発光素子から出射される出射光は、発光装置1から、短軸方向(x軸方向)62aの拡がり角と長軸方向(y軸方向)62bの拡がり角との拡がり角を持ち、アスペクト比の値が大きい白色光62として出射される。 2A, the light emitting device 1 includes a package 20, a light emitting element (not shown), a transparent optical element 30, and a phosphor layer 35. Outgoing light emitted from a light emitting element described later has an divergence angle between the illuminating device 1 and the divergence angle in the minor axis direction (x axis direction) 62a and the divergence angle in the major axis direction (y axis direction) 62b. It is emitted as white light 62 having a large ratio value.
 図2(b)に示すように、バックライトモジュール100において、導光板90の厚さ方向をx軸方向、下端面の長手方向をy軸方向とすると、各発光装置1は、保持部85を介在させて、y方向に拡がり角が大きく且つx方向に拡がり角が小さい方向となるように組み込まれる。これにより、図2(c)に示すように、各発光装置1から出射された白色光62は、導光板90のx軸方向には拡がり角が小さいため効率良く入射されて、該導光板90の中を伝搬する。これに対し、導光板90のy軸方向には、各発光装置1から出射された光の拡がり角が大きいため、導光板90のyz面方向に効率良く拡がるので、導光板90の内部での光のむらの発生を大きく低減することができる。 As shown in FIG. 2B, in the backlight module 100, when the thickness direction of the light guide plate 90 is the x-axis direction and the longitudinal direction of the lower end surface is the y-axis direction, each light emitting device 1 has the holding portion 85. They are interposed so that the spread angle is large in the y direction and the spread angle is small in the x direction. As a result, as shown in FIG. 2C, the white light 62 emitted from each light emitting device 1 is efficiently incident because the divergence angle is small in the x-axis direction of the light guide plate 90, and the light guide plate 90. Propagate through. On the other hand, since the spread angle of the light emitted from each light emitting device 1 is large in the y-axis direction of the light guide plate 90, the light spreads efficiently in the yz plane direction of the light guide plate 90. The occurrence of light unevenness can be greatly reduced.
 次に、図3を用いて発光装置1の構成について説明する。 Next, the configuration of the light emitting device 1 will be described with reference to FIG.
 図3に示すように、第1の実施形態に係る発光装置1は、発光素子10と、該発光素子10を固着して保持するサブマウント11と、該サブマウント11を固着して保持するパッケージ20と、該パッケージ20に固着され、発光素子10からの出射光を透過して光路を変換する透明光学素子30と、該透明光学素子30の上面に形成された蛍光体層35とから構成される。 As shown in FIG. 3, the light emitting device 1 according to the first embodiment includes a light emitting element 10, a submount 11 that fixes and holds the light emitting element 10, and a package that fixes and holds the submount 11. 20, a transparent optical element 30 that is fixed to the package 20 and transmits light emitted from the light emitting element 10 to change the optical path, and a phosphor layer 35 formed on the upper surface of the transparent optical element 30. The
 パッケージ20は、例えば銅(Cu)又はコバール(Fe/Ni/Co合金)等の金属からなり、平面円形の板状であるベース材20aと、ベース材20aの実装面20cの上に該実装面20cに対して垂直に保持された台座20bと、少なくとも2本のリード20d1、20d2と、べース材20aの上に台座20bを覆うように固着されるキャップ材20fとから構成される。第1のリード20d1は、ベース材20aとはガラス等の絶縁材料からなる絶縁部20eによって絶縁され、第2のリード20d2は、ベース材20aと電気的に接続されている。 The package 20 is made of a metal such as copper (Cu) or Kovar (Fe / Ni / Co alloy), for example, and is a flat plate-like base material 20a and a mounting surface on the mounting surface 20c of the base material 20a. The base 20b is held perpendicular to the base 20c, at least two leads 20d1 and 20d2, and a cap member 20f fixed on the base member 20a so as to cover the base 20b. The first lead 20d1 is insulated from the base material 20a by an insulating portion 20e made of an insulating material such as glass, and the second lead 20d2 is electrically connected to the base material 20a.
 発光素子10は、台座20bの実装面20cの上にサブマウント11を介して固着される。さらに、発光素子10は、第1のリード20d1とはワイヤ9を介して電気的に接続され、第2のリード20d2とはサブマウント11、ワイヤ9及び台座20bを介して電気的に接続されている。発光素子10は、例えば波長が430nm~480nmの光を出射する半導体レーザ素子又はスーパールミネッセントダイオード(Super Luminescent Diode:SLD)であり、出射光が発光素子10の一端面から出射する端面出射型の発光素子である。なお、発光素子10は、出射光の干渉性が低いことから、SLDがより好ましい。 The light emitting element 10 is fixed to the mounting surface 20c of the base 20b via the submount 11. Further, the light emitting element 10 is electrically connected to the first lead 20d1 via the wire 9, and is electrically connected to the second lead 20d2 via the submount 11, the wire 9 and the base 20b. Yes. The light emitting element 10 is, for example, a semiconductor laser element or a super luminescent diode (SLD) that emits light having a wavelength of 430 nm to 480 nm, and an end face emission type in which emitted light is emitted from one end face of the light emitting element 10. It is a light emitting element. Note that the light emitting element 10 is more preferably an SLD because of low coherence of emitted light.
 透明基板からなる透明光学素子30の一の面には、回折格子30aが形成されており、他の面には、例えばシリコーン樹脂等の透明材料にCe:YAG(セリウム添加イットリウム・アルミニウム・ガーネット)等の蛍光体材料が混合された材料からなる蛍光体層35が形成されている。透明光学素子30の回折格子30aは、発光素子10と対向する側に形成されており、キャップ材20fを介在させて発光素子10と所定の間隔、例えば1.5mmをおいて配置される。 A diffraction grating 30a is formed on one surface of the transparent optical element 30 made of a transparent substrate, and the other surface is made of a transparent material such as silicone resin with Ce: YAG (cerium-added yttrium, aluminum, garnet). A phosphor layer 35 made of a material in which phosphor materials such as the above are mixed is formed. The diffraction grating 30a of the transparent optical element 30 is formed on the side facing the light emitting element 10, and is arranged at a predetermined interval, for example, 1.5 mm with respect to the light emitting element 10 with the cap material 20f interposed.
 次に、図4を用いて発光装置1の動作について説明する。 Next, the operation of the light emitting device 1 will be described with reference to FIG.
 図4(a)及び図4(b)に示すように、発光素子10から出射した出射光50は、短軸方向50aの拡がり角と、長軸方向50bの拡がりとを有する楕円形状の拡がり角をもって放射される。このとき、発光素子10自体が複数の半導体層を積層してなる場合に、半導体層の積層方向をy軸とし、出射方向をz軸とすると、短軸方向50aはx軸方向と一致し、長軸方向50bはy軸方向と一致する。 As shown in FIGS. 4A and 4B, the outgoing light 50 emitted from the light emitting element 10 has an elliptical divergence angle having a divergence angle in the minor axis direction 50a and an divergence angle in the major axis direction 50b. Is emitted. At this time, when the light emitting element 10 itself is formed by stacking a plurality of semiconductor layers, the short axis direction 50a coincides with the x axis direction when the stacking direction of the semiconductor layers is the y axis and the emission direction is the z axis. The major axis direction 50b coincides with the y-axis direction.
 図4(a)~図4(c)に示すように、発光素子10からの出射光50は、透明光学素子30の回折格子30aに入射される。入射された光は、回折格子30aによって一部が回折されて、その拡がり角が入射光よりも大きい出射光60となって蛍光体層35に入射される。このとき、図4(c)に示すように、回折格子30aを透過した光は、短軸方向(x軸方向)60aの拡がり角と、長軸方向(y軸方向)60bの拡がり角とを有するアスペクト比の値が大きい出射光60となる。 As shown in FIGS. 4A to 4C, the outgoing light 50 from the light emitting element 10 is incident on the diffraction grating 30a of the transparent optical element 30. FIG. A part of the incident light is diffracted by the diffraction grating 30a and becomes an outgoing light 60 having a divergence angle larger than that of the incident light, and is incident on the phosphor layer 35. At this time, as shown in FIG. 4C, the light transmitted through the diffraction grating 30a has an divergence angle in the minor axis direction (x-axis direction) 60a and an divergence angle in the major axis direction (y-axis direction) 60b. The emitted light 60 has a large aspect ratio.
 さらに、本実施形態においては、発光素子10の導波路の光出射端面における断面形状が、長辺が回折格子30aにおける格子パターンの延伸方向と平行な長方形状を有している。すなわち、発光素子10と回折格子30aとは、導波路の光出射端面における断面の長方形状が、その長辺が回折格子30aにおける格子パターンの延伸方向と平行となるように配置されているため、アスペクト比が大きい方向の光の拡がり角をさらに拡大させることができる。 Furthermore, in this embodiment, the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10 has a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating 30a. That is, the light emitting element 10 and the diffraction grating 30a are arranged so that the rectangular shape of the cross section at the light emitting end face of the waveguide is parallel to the extending direction of the grating pattern in the diffraction grating 30a. The light divergence angle in the direction in which the aspect ratio is large can be further increased.
 次に、図4(a)に示すように、蛍光体層35に入射した入射光の一部は蛍光体層35の蛍光体により、例えば波長580nmを中心とした黄色光である蛍光光61となって放射される。このとき、発光装置1から出射される光は、出射光60と蛍光光61とが混色した光である。従って、出射光60を青色光とし、蛍光光61を黄色光とすることにより、擬似的に白色光62を放射することができる。 Next, as shown in FIG. 4A, a part of the incident light that has entered the phosphor layer 35 is, for example, fluorescent light 61 that is yellow light centered at a wavelength of 580 nm by the phosphor of the phosphor layer 35. Is emitted. At this time, the light emitted from the light emitting device 1 is light in which the emitted light 60 and the fluorescent light 61 are mixed. Therefore, by setting the outgoing light 60 to blue light and the fluorescent light 61 to yellow light, pseudo white light 62 can be emitted.
 次に、図5を用いて回折格子30aの設計方法について説明する。 Next, a method for designing the diffraction grating 30a will be described with reference to FIG.
 透明光学素子30に設けられた回折格子30aは、出射光50のアスペクト比の値を大きくするために、例えば図5(a)に示すようなx軸方向に延びた格子がy軸方向に並ぶ周期的な格子パターンである。 For the diffraction grating 30a provided in the transparent optical element 30, in order to increase the value of the aspect ratio of the outgoing light 50, for example, gratings extending in the x-axis direction as shown in FIG. 5A are arranged in the y-axis direction. It is a periodic lattice pattern.
 ここで、図5(b)及び図5(c)に示す計算結果を用いて、回折格子30aによる出射光50の放射角の変化を説明する。 Here, the change in the radiation angle of the emitted light 50 by the diffraction grating 30a will be described using the calculation results shown in FIGS. 5 (b) and 5 (c).
 まず、発光素子10から出射する出射光50の波長を450nmとし、空気中での放射角を図5(b)に示すように、半値幅で、短軸方向(x軸方向)50aの拡がり角をθx=10°とし、長軸方向(y軸方向)50bの拡がり角をθy=30°とする。透明光学素子30の回折格子30aのピッチが0.64μmであるとすると、回折格子30aを透過する光の1次回折光の放射角度は入射光の入射角度に対して、±50°となる。また1次回折光の光量比率は、回折格子30aの深さによって調整できるため、0次回折光と1次回折光との比率を1:1とすると、図5(c)に示すような、空気中での放射角分布を持つ光が得られる。すなわち、x方向はθx=10°と狭く、y方向はθy=120°と非常に広くすることができる。これにより、アスペクト比の値が極めて大きい放射角特性を有する光源を得ることができる。 First, the wavelength of the emitted light 50 emitted from the light emitting element 10 is set to 450 nm, and the radiation angle in the air is a half-value width and the divergence angle in the minor axis direction (x-axis direction) 50a as shown in FIG. Is θx = 10 °, and the divergence angle in the major axis direction (y-axis direction) 50b is θy = 30 °. If the pitch of the diffraction grating 30a of the transparent optical element 30 is 0.64 μm, the radiation angle of the first-order diffracted light transmitted through the diffraction grating 30a is ± 50 ° with respect to the incident angle of the incident light. Further, since the light quantity ratio of the first-order diffracted light can be adjusted by the depth of the diffraction grating 30a, when the ratio of the 0th-order diffracted light and the first-order diffracted light is 1: 1, as shown in FIG. The light with the radiation angle distribution is obtained. That is, the x direction can be as narrow as θx = 10 ° and the y direction can be as wide as θy = 120 °. As a result, a light source having a radiation angle characteristic with a very large aspect ratio value can be obtained.
 以上説明したように、第1の実施形態によると、図5(c)に示したような放射パターンを有する出射光60を出射する発光装置1を導光板90と接続することにより、光の結合効率が高く、且つ導光板90の内部での光分布が均一なバックライトモジュール100を作製することができる。 As described above, according to the first embodiment, by coupling the light emitting device 1 that emits the emitted light 60 having the radiation pattern as shown in FIG. The backlight module 100 with high efficiency and uniform light distribution inside the light guide plate 90 can be manufactured.
 なお、本実施形態において、発光素子10を台座20b上にサブマウント11を介して配置する構成としたが、台座20b上の実装面20cに半田メッキ等を施すことにより、発光素子10を台座20bの上に直接に配置する構成としてもよい。この場合、サブマウント11が不要となり、その結果、発光装置1の構成部品数の低減が可能となる。 In the present embodiment, the light emitting element 10 is arranged on the pedestal 20b via the submount 11. However, the mounting surface 20c on the pedestal 20b is solder-plated to attach the light emitting element 10 to the pedestal 20b. It is good also as a structure arrange | positioned directly on top. In this case, the submount 11 becomes unnecessary, and as a result, the number of components of the light emitting device 1 can be reduced.
 (第1の実施形態の一変形例)
 以下、本発明の第1の実施形態の一変形例に係る発光装置について図6を参照しながら説明する。
(One modification of the first embodiment)
Hereinafter, a light-emitting device according to a modification of the first embodiment of the present invention will be described with reference to FIG.
 本変形例は、透明光学素子30に設ける回折格子30bの格子パターンを不規則(ランダム)に形成している。ここで、格子パターンが不規則とは、格子の間隔が不規則、すなわち周期が不規則の場合と、一格子の大きさが不規則の場合等を含む。 In this modification, the grating pattern of the diffraction grating 30b provided in the transparent optical element 30 is irregularly (randomly) formed. Here, the lattice pattern is irregular includes the case where the interval of the lattice is irregular, that is, the period is irregular, the case where the size of one lattice is irregular, and the like.
 図6(a)及び図6(b)に示すように、回折格子30bは、第1の実施形態と同様に、例えばx軸方向に延びた格子がy軸方向に並ぶ格子パターンであり、そのパターン周期はランダムである。 As shown in FIGS. 6A and 6B, the diffraction grating 30b is a grating pattern in which, for example, gratings extending in the x-axis direction are arranged in the y-axis direction, as in the first embodiment. The pattern period is random.
 ここで、図6(c)及び図6(d)に示す計算結果を用いて、回折格子30bによる出射光50の放射角の変化を説明する。 Here, the change in the radiation angle of the emitted light 50 by the diffraction grating 30b will be described using the calculation results shown in FIGS. 6 (c) and 6 (d).
 まず、発光素子10から出射する出射光50の波長を450nmとし、空気中での放射角を図6(c)に示すように、半値幅で、短軸方向(x軸方向)50aの拡がり角をθx=10°とし、長軸方向(y軸方向)50bの拡がり角をθy=30°とする。透明光学素子30の回折格子30bのピッチがランダムであるとすると、回折格子30を透過する光は、図6(d)に示すような、ランバート分布で表される、空気中での放射角分布を持つ光となる。すなわち、x方向はθx=10°と狭く、y方向はθy=120°と非常に広くすることができる。これにより、アスペクト比の値が極めて大きい放射角特性を有する光源を得ることができる。 First, the wavelength of the outgoing light 50 emitted from the light emitting element 10 is set to 450 nm, and the radiation angle in the air is a half-width and the spread angle in the minor axis direction (x-axis direction) 50a as shown in FIG. Is θx = 10 °, and the divergence angle in the major axis direction (y-axis direction) 50b is θy = 30 °. Assuming that the pitch of the diffraction grating 30b of the transparent optical element 30 is random, the light transmitted through the diffraction grating 30 is a radiation angle distribution in the air represented by a Lambert distribution as shown in FIG. It becomes light with. That is, the x direction can be as narrow as θx = 10 ° and the y direction can be as wide as θy = 120 °. As a result, a light source having a radiation angle characteristic with a very large aspect ratio value can be obtained.
 (第2の実施形態)
 以下、本発明の第2の実施形態に係る発光装置について図7を参照しながら説明する。図7において、図3に示した構成部材と同一の構成部材には同一の符号を付している。
(Second Embodiment)
Hereinafter, a light-emitting device according to a second embodiment of the present invention will be described with reference to FIG. In FIG. 7, the same components as those shown in FIG. 3 are denoted by the same reference numerals.
 図7(a)に示すように、第2の実施形態に係る発光装置1Aは、透明光学素子30における発光素子10側の面に設けられる回折格子に代えて、半円筒状の凹部30cを設けている。また、透明光学素子30は、凹部30cの内側の面である凹面がパッケージ20を構成するキャップ材20fを介在させて発光素子10と所定の間隔、例えば1.5mmをおくように配置される。さらに、図7(b)に示すように、透明光学素子30の凹部30cは、その凹面の中心軸がx軸方向に一致するように形成される。 As shown in FIG. 7A, the light emitting device 1A according to the second embodiment is provided with a semicylindrical recess 30c instead of the diffraction grating provided on the surface of the transparent optical element 30 on the light emitting element 10 side. ing. Further, the transparent optical element 30 is arranged such that the concave surface, which is the inner surface of the concave portion 30c, has a predetermined distance, for example, 1.5 mm, from the light emitting element 10 with the cap material 20f constituting the package 20 interposed. Further, as shown in FIG. 7B, the concave portion 30c of the transparent optical element 30 is formed so that the central axis of the concave surface coincides with the x-axis direction.
 また、発光素子10は、その導波路がxz平面に平行となるように、台座20bにサブマウント11を介して配置される。さらに、本実施形態においても、発光素子10の導波路の光出射端面における断面形状が、長辺が凹部30cの中心軸方向(x軸方向)と平行な長方形状を有している。 Further, the light emitting element 10 is disposed on the base 20b via the submount 11 so that the waveguide is parallel to the xz plane. Furthermore, also in this embodiment, the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10 has a rectangular shape whose long side is parallel to the central axis direction (x-axis direction) of the recess 30c.
 以上説明したように、第2の実施形態によると、発光素子10から出射される出射光は、第1の実施形態と同様に、y軸方向が長軸となり、且つx軸方向が短軸となる楕円形状の出射光が出射される。その上、凹部30cにより形成される凹面によって、拡がり角のアスペクト比の値がさらに大きい発光装置1Aを実現できる。 As described above, according to the second embodiment, the emitted light emitted from the light emitting element 10 has a major axis in the y-axis direction and a minor axis in the x-axis direction, as in the first embodiment. The elliptical shaped outgoing light is emitted. In addition, the light emitting device 1 </ b> A having a larger spread angle aspect ratio value can be realized by the concave surface formed by the concave portion 30 c.
 (第2の実施形態の第1変形例)
 以下、本発明の第2の実施形態の第1変形例に係る発光装置について図8を参照しながら説明する。
(First Modification of Second Embodiment)
Hereinafter, a light emitting device according to a first modification of the second embodiment of the present invention will be described with reference to FIG.
 本変形例に係る発光装置1Bにおける光学素子30Aは、凹部30cが形成された面と反対側の面(上面)が凹部30cの形状に沿った凸面状に形成されている。 The optical element 30A in the light emitting device 1B according to the present modification has a surface (upper surface) opposite to the surface on which the recess 30c is formed in a convex shape along the shape of the recess 30c.
 この構成により、第2の実施形態と同様の効果を得られる上に、凹部30cにより形成される凹面で屈折した出射光が蛍光体層35を均一に透過するため、出射光の演色性を向上することができる。 With this configuration, the same effects as those of the second embodiment can be obtained, and the emitted light refracted by the concave surface formed by the concave portion 30c can be uniformly transmitted through the phosphor layer 35, thereby improving the color rendering of the emitted light. can do.
 (第2の実施形態の第2変形例)
 以下、本発明の第2の実施形態の第2変形例に係る発光装置について図9を参照しながら説明する。
(Second modification of the second embodiment)
Hereinafter, a light emitting device according to a second modification of the second embodiment of the present invention will be described with reference to FIG.
 本変形例に係る発光装置1Cにおける光学素子30Aには、凹部30cにより形成される凹面に回折格子30aが形成されている。ここで、回折格子30aの格子パターンは、その縞状パターンが凹部30cの中心軸と平行となるように形成される。 In the optical element 30A in the light emitting device 1C according to this modification, a diffraction grating 30a is formed on the concave surface formed by the concave portion 30c. Here, the grating pattern of the diffraction grating 30a is formed so that the striped pattern is parallel to the central axis of the recess 30c.
 この構成により、第2の実施形態の第1変形例と同様の効果を得られる上に、回折格子30aを有する凹部30cで変換される出射光パターンに合わせて、より高い自由度で凹面を形成することができる。 With this configuration, the same effect as the first modification of the second embodiment can be obtained, and a concave surface can be formed with a higher degree of freedom in accordance with the outgoing light pattern converted by the concave portion 30c having the diffraction grating 30a. can do.
 なお、図7に示した透明光学素子30の凹部30cの表面にも回折格子30aを形成してもよい。 In addition, you may form the diffraction grating 30a also in the surface of the recessed part 30c of the transparent optical element 30 shown in FIG.
 (第3の実施形態)
 以下、本発明の第3の実施形態に係る発光装置及びそれを用いたバックライトモジュールについて図10~図12を参照しながら説明する。
(Third embodiment)
Hereinafter, a light emitting device and a backlight module using the same according to a third embodiment of the present invention will be described with reference to FIGS.
 図10(a)に示すように、第3の実施形態に係る発光装置1Dは、光出射端面から、短軸方向62aの拡がり角と長軸方向62bの拡がり角とのアスペクト比の値が大きい拡がり角を有する白色光62を出力する。 As shown in FIG. 10A, the light emitting device 1D according to the third embodiment has a large aspect ratio value between the divergence angle in the minor axis direction 62a and the divergence angle in the major axis direction 62b from the light emitting end face. The white light 62 having a divergence angle is output.
 図10(b)に示すように、第3の実施形態に係るバックライトモジュール100Aは、複数の発光装置1Dと、それぞれが複数の発光装置1D保持すると共に電気的に接続された複数の配線基板185と、複数の発光装置1Dと光学的に接続される導光板90とから構成される。 As shown in FIG. 10B, the backlight module 100A according to the third embodiment includes a plurality of light emitting devices 1D, and a plurality of wiring boards each holding and electrically connecting the plurality of light emitting devices 1D. 185 and a light guide plate 90 optically connected to the plurality of light emitting devices 1D.
 配線基板185には、電極パッド186、取り出し電極パッド188、及びこれらを電気的に接続する内部配線187とが形成されている。各発光装置1Dは、電極パッド186とそれぞれ下面で接続され、且つその上面である光出射面が導光板90の側端面と対向するようにそれぞれ配置される。さらに、各発光装置1Dの出射光の拡がり角が小さい方(短軸方向62a)を導光板90の厚さ方向(x軸方向)と平行に配置し、出射光の拡がり角が大きい方(長軸方向62b)を導光板90の長手方向(y軸方向)と平行になるように設置している。 The wiring board 185 is formed with an electrode pad 186, an extraction electrode pad 188, and an internal wiring 187 that electrically connects them. Each light emitting device 1 </ b> D is connected to the electrode pad 186 on the lower surface, and is arranged so that the light emitting surface, which is the upper surface, faces the side end surface of the light guide plate 90. Further, the one with the smaller divergence angle of the emitted light (short axis direction 62a) of each light emitting device 1D is arranged parallel to the thickness direction (x-axis direction) of the light guide plate 90, and the one with the larger divergence angle of the emitted light (long) The axial direction 62b) is installed so as to be parallel to the longitudinal direction (y-axis direction) of the light guide plate 90.
 このようにすると、図10(c)に示すように、各発光装置1Dから出射された白色光62が、拡がり角が小さいx軸方向には効率良く導光板90に入射されて導光板90の中を伝搬する。一方、導光板90のy軸方向には、各発光装置1Dから出射された白色光62が、導光板90の中に入射された後、該導光板90のyz面方向に効率良く拡がるため、導光板90の内部での光のむらの発生を大きく低減することができる。 In this way, as shown in FIG. 10C, the white light 62 emitted from each light emitting device 1 </ b> D is efficiently incident on the light guide plate 90 in the x-axis direction where the divergence angle is small, and Propagate through. On the other hand, in the y-axis direction of the light guide plate 90, since the white light 62 emitted from each light emitting device 1D is incident on the light guide plate 90, the light spreads efficiently in the yz plane direction of the light guide plate 90. The occurrence of unevenness of light inside the light guide plate 90 can be greatly reduced.
 図11を用いて発光装置1Dの構成を説明する。 The configuration of the light emitting device 1D will be described with reference to FIG.
 図11に示すように、第3の実施形態に係る発光装置1Dは、発光素子10Aと、該発光素子10Aを固着して保持するパッケージ120と、該パッケージ120に固着され、発光素子10Aからの出射光を透過して光路を変換する透明基板からなる透明光学素子30Bと、該透明光学素子30Bの上面に形成された蛍光体層35とから構成される。 As shown in FIG. 11, a light emitting device 1D according to the third embodiment includes a light emitting element 10A, a package 120 that holds the light emitting element 10A in a fixed manner, and is fixed to the package 120. It is composed of a transparent optical element 30B made of a transparent substrate that transmits outgoing light and changes the optical path, and a phosphor layer 35 formed on the upper surface of the transparent optical element 30B.
 パッケージ120は、例えば、C194(銅合金)等の導電性、プレス性及び高熱伝度率を有する金属の表面に銀(Ag)等をめっきした金属材料からなり、第1の電極120aと第2の電極120bとを構成するフレームと、例えば、PA(ポリアミド)、PPA(ポリフタルアミド)又はPPS(ポリフェニレン・サルファイド)等のプラスチック材からなる絶縁部120c及び反射膜120eの形成領域を有する縁部120dとから構成される。 The package 120 is made of, for example, a metal material obtained by plating silver (Ag) or the like on the surface of a metal having conductivity, pressability, and high thermal conductivity such as C194 (copper alloy), and includes the first electrode 120a and the second electrode 120a. And an edge portion having a region for forming the insulating portion 120c and the reflective film 120e made of a plastic material such as PA (polyamide), PPA (polyphthalamide), or PPS (polyphenylene sulfide), for example. 120d.
 絶縁部120cは、第1の電極120aと第2の導電板120bとを電気的に絶縁する。縁部120dにおける発光素子と対向する一方の面には、発光素子の光軸に対して45°の角度をなす反射膜120eが形成されている。反射膜120eは、例えば、銀(Ag)、アルミニウム(Al)又は銅(Cu)等の金属膜、誘電体多層膜、又は金属膜と誘電体多層膜とを組み合わせて構成される。なお、絶縁部120c及び縁部120dに例えば、波長が420nm~500nmにおける反射率が高いPPA材料を用いることにより、反射膜120eを、絶縁部120c及び縁部120dと同一の材料で構成することができる。 The insulating part 120c electrically insulates the first electrode 120a and the second conductive plate 120b. A reflective film 120e that forms an angle of 45 ° with respect to the optical axis of the light emitting element is formed on one surface of the edge portion 120d that faces the light emitting element. The reflective film 120e is configured by, for example, a metal film such as silver (Ag), aluminum (Al), or copper (Cu), a dielectric multilayer film, or a combination of a metal film and a dielectric multilayer film. For example, by using a PPA material having a high reflectance at a wavelength of 420 nm to 500 nm for the insulating portion 120c and the edge portion 120d, the reflective film 120e can be made of the same material as the insulating portion 120c and the edge portion 120d. it can.
 発光素子10Aは、第1の電極120aの上に、サブマウント11Aを介在させ、且つ光出射端面を反射膜120eと対向させて固着されている。また、発光素子10Aは第2の電極120bとワイヤ9によって電気的に接続されている。ここでも、発光素子10Aは、例えば波長が430nm~480nmの光を出射する半導体レーザ素子又はスーパールミネッセントダイオード(SLD)であり、出射光が発光素子10Aの一端面から出射する端面出射型の発光素子である。また、発光素子10Aの導波路の光出射端面における断面形状が、長辺が回折格子30aにおける格子パターンの延伸方向と平行な長方形状を有している。 The light emitting element 10A is fixed on the first electrode 120a with the submount 11A interposed therebetween and the light emitting end face facing the reflective film 120e. The light emitting element 10 </ b> A is electrically connected to the second electrode 120 b by the wire 9. Here, the light emitting element 10A is, for example, a semiconductor laser element or a super luminescent diode (SLD) that emits light having a wavelength of 430 nm to 480 nm, and is an end face emission type in which emitted light is emitted from one end face of the light emitting element 10A. It is a light emitting element. Further, the cross-sectional shape of the light emitting end face of the waveguide of the light emitting element 10A has a rectangular shape whose long side is parallel to the extending direction of the grating pattern in the diffraction grating 30a.
 なお、SLDを発光素子10Aに用いると、該SLDは出射光の干渉性が低いためより好ましい。 Note that it is more preferable to use an SLD for the light emitting element 10A because the SLD has low coherence of emitted light.
 透明光学素子30Bにおける発光素子10Aの光出射端面側の上方及び反射膜120eの上方と対向する下面には、回折格子30aが形成されている。ここで、回折格子30aの格子パターンは、その縞状パターンが出射光の光軸と直交する方向に形成されている。回折格子30aが形成された透明光学素子30Bは、パッケージ120の縁部120dの上に、発光素子10Aと所定の間隔、例えば500μmをおいて発光素子10Aを覆うように固着される。 A diffraction grating 30a is formed on the lower surface of the transparent optical element 30B facing the light emitting end face side of the light emitting element 10A and the reflecting film 120e. Here, the grating pattern of the diffraction grating 30a is formed so that the striped pattern is orthogonal to the optical axis of the emitted light. The transparent optical element 30B on which the diffraction grating 30a is formed is fixed on the edge 120d of the package 120 so as to cover the light emitting element 10A with a predetermined distance, for example, 500 μm, from the light emitting element 10A.
 また、透明光学素子30Bにおける回折格子30aと反対側の面(上面)には、例えばシリコーン樹脂等の透明材料にCe:YAG等の蛍光体材料が混合された材料からなる蛍光体層35が形成されている。 Further, on the surface (upper surface) opposite to the diffraction grating 30a in the transparent optical element 30B, a phosphor layer 35 made of a material obtained by mixing a phosphor material such as Ce: YAG with a transparent material such as silicone resin is formed. Has been.
 次に、図12を用いて発光装置1Dの動作について説明する。 Next, the operation of the light emitting device 1D will be described with reference to FIG.
 図12(a)及び図12(b)に示すように、発光素子10Aから出射された出射光50は、パッケージ120に設けられた反射膜120eにより該パッケージ120の上方に反射されて、透明光学素子30Bに入射する。透明光学素子30Bに入射した入射光は、透明光学素子30Bに設けられた回折格子30aによってその一部が回折され、拡がり角が入射光よりも大きい出射光60となる。透明光学素子30Bを透過した入射光は、透明光学素子30Bの上の蛍光体層35に入射し、該蛍光体層35に入射した光の一部は蛍光体により、例えば波長が580nmを中心とした黄色光である蛍光光61となって放射される。このとき、発光装置1Dから出射される光は、出射光60と蛍光光61とが混色した光である。従って、発光装置1Dは、出射光60を青色光とし、蛍光光61を黄色光とすることにより、白色光62を放射することができる。 As shown in FIG. 12A and FIG. 12B, the emitted light 50 emitted from the light emitting element 10A is reflected above the package 120 by the reflective film 120e provided on the package 120, so that the transparent optical Incident on element 30B. A part of the incident light incident on the transparent optical element 30B is diffracted by the diffraction grating 30a provided in the transparent optical element 30B, and becomes an outgoing light 60 having a larger divergence angle than the incident light. Incident light that has passed through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is caused by the phosphor, for example, with a wavelength centering on 580 nm. The fluorescent light 61 that is yellow light is emitted. At this time, the light emitted from the light emitting device 1D is light in which the emitted light 60 and the fluorescent light 61 are mixed. Therefore, the light emitting device 1D can emit white light 62 by using the emitted light 60 as blue light and the fluorescent light 61 as yellow light.
 ここで、上記の構成において、回折格子30aによる発光素子10Aからの出射光50の放射角の変化は、第1の実施形態と同様である。 Here, in the above configuration, the change in the radiation angle of the emitted light 50 from the light emitting element 10A by the diffraction grating 30a is the same as in the first embodiment.
 (第3の実施形態の一変形例)
 以下、本発明の第3の実施形態の一変形例に係る発光装置について図13及び図14を参照しながら説明する。
(One Modification of Third Embodiment)
Hereinafter, a light-emitting device according to a modification of the third embodiment of the present invention will be described with reference to FIGS. 13 and 14.
 本変形例に係る発光装置1Eには、波長が430nm~480nmの光を出射する発光素子10Bとして、両端面出射型の半導体レーザ素子又はスーパールミネッセントダイオード(SLD)を用いている。このため、該発光素子10Bを保持するパッケージ120Aには、発光素子10Bの2つの光出射端面とそれぞれ対向する両縁部120dに、第1の反射膜120e1及び第2の反射膜120e2が形成されている。なお、各反射膜120e1、120e2の構成材料は、第3の実施形態の反射膜120eと同等である。 In the light emitting device 1E according to this modification, a double-sided emission type semiconductor laser element or a super luminescent diode (SLD) is used as the light emitting element 10B that emits light having a wavelength of 430 nm to 480 nm. Therefore, in the package 120A that holds the light emitting element 10B, the first reflective film 120e1 and the second reflective film 120e2 are formed on both edge portions 120d that face the two light emitting end faces of the light emitting element 10B. ing. In addition, the constituent material of each reflective film 120e1 and 120e2 is equivalent to the reflective film 120e of 3rd Embodiment.
 また、本変形例においては、透明光学素子30Bの回折格子30aは、第1の反射膜120e1、第2の反射膜120e2及び発光素子10Bの上方のほぼ全面にわたって形成されている。 In this modification, the diffraction grating 30a of the transparent optical element 30B is formed over almost the entire surface above the first reflective film 120e1, the second reflective film 120e2, and the light emitting element 10B.
 次に、図14を用いて発光装置1Eの動作について説明する。 Next, the operation of the light emitting device 1E will be described with reference to FIG.
 図14(a)及び図14(b)に示すように、本変形例に係る発光素子10Bからは、導波路(ストライプ)10aの前端面及び後端面の両端面からそれぞれ出射される出射光50、70が、パッケージ120Aに設けられた第1の反射膜120e1及び第2の反射膜120e2により該パッケージ120Aの上方にそれぞれ反射されて、透明光学素子30Bに入射する。透明光学素子30Bに入射した各入射光は、透明光学素子30Bに設けられた回折格子30aによってその一部が回折されて、拡がり角が入射光よりも大きい出射光60、80となる。透明光学素子30Bを透過した各入射光は、透明光学素子30Bの上の蛍光体層35に入射し、該蛍光体層35に入射した光の一部は蛍光体により、例えば波長が580nmを中心とした黄色光である蛍光光61、81となってそれぞれ放射される。このとき、図14(c)に示すように、発光装置1Eから出射される光は、出射光60、80と蛍光光61、81とがそれぞれ混色した光であり、それぞれ、出射光60、80を青色光とし、蛍光光61、81を黄色光とすることにより、白色光62、82を放射することができる。 As shown in FIGS. 14 (a) and 14 (b), from the light emitting element 10B according to this modification, emitted light 50 emitted from both end faces of the front end face and the rear end face of the waveguide (stripe) 10a, respectively. , 70 are respectively reflected above the package 120A by the first reflective film 120e1 and the second reflective film 120e2 provided on the package 120A, and enter the transparent optical element 30B. A part of each incident light incident on the transparent optical element 30B is diffracted by the diffraction grating 30a provided in the transparent optical element 30B, and becomes outgoing lights 60 and 80 having a divergence angle larger than the incident light. Each incident light transmitted through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is centered at a wavelength of, for example, 580 nm by the phosphor. Are emitted as fluorescent light 61 and 81 which are yellow light. At this time, as shown in FIG. 14C, the light emitted from the light-emitting device 1E is light in which the outgoing lights 60 and 80 and the fluorescent lights 61 and 81 are mixed, and the outgoing lights 60 and 80, respectively. By making blue light and fluorescent light 61 and 81 yellow light, white light 62 and 82 can be emitted.
 次に、本変形例に係る発光装置1Eが出射する出射光のアスペクト比について、図14(a)~図14(c)を用いて説明する。 Next, the aspect ratio of the emitted light emitted from the light emitting device 1E according to the present modification will be described with reference to FIGS. 14 (a) to 14 (c).
 発光素子10BにSLDを用いたとすると、該発光素子10Bに形成されたストライプ10aによってその長手方向に増幅された光は、前端面及び光端面からそれぞれ出射光50、70として放射される。このとき、図14(b)に示すように、出射光50、70は発光素子10Bの上面に平行な方向の拡がり角が短軸方向となり、該上面に垂直な方向の拡がり角が長軸方向の拡がり角となる楕円形状の拡がり角を有する出射光として出射される。 If an SLD is used for the light emitting element 10B, the light amplified in the longitudinal direction by the stripe 10a formed on the light emitting element 10B is emitted as emitted light 50 and 70 from the front end face and the optical end face, respectively. At this time, as shown in FIG. 14B, the outgoing lights 50 and 70 have a short axis direction in the direction parallel to the top surface of the light emitting element 10B, and a long axis direction in the direction perpendicular to the top surface. Is emitted as outgoing light having an elliptical divergence angle.
 発光素子10Bから出射された出射光50、70は、前述したように、パッケージ120A内の2つの反射膜120e1、120e2によって、該パッケージ120Aの上方に反射され、透明光学素子30Bの回折格子30a及び蛍光体層35を透過して発光装置1Eから出射される。このとき、出射される白色光62、82は、回折格子30aによって長軸方向の拡がり角がより大きくなり、すなわちアスペクト比の値が大きくなって出射される。 As described above, the outgoing lights 50 and 70 emitted from the light emitting element 10B are reflected above the package 120A by the two reflective films 120e1 and 120e2 in the package 120A, and the diffraction gratings 30a and 30a of the transparent optical element 30B are reflected. The light passes through the phosphor layer 35 and is emitted from the light emitting device 1E. At this time, the emitted white lights 62 and 82 are emitted with a larger divergence angle in the major axis direction by the diffraction grating 30a, that is, with a larger aspect ratio value.
 (第4の実施形態)
 以下、本発明の第4の実施形態に係る発光装置及びそれを用いたバックライトモジュールについて図15を参照しながら説明する。
(Fourth embodiment)
Hereinafter, a light emitting device and a backlight module using the same according to a fourth embodiment of the present invention will be described with reference to FIG.
 本実施例に係る発光装置1Fには、波長が430nm~480nmの光を出射する発光素子10Bとして、両端面出射型の半導体レーザ素子又はスーパールミネッセントダイオード(SLD)を用いている。また、該発光素子10Bを保持するパッケージ120Aには、発光素子10Bの2つの光出射端面とそれぞれ対向する両縁部120dに、第1の反射型回折格子120f1及び第2の反射型回折格子120f2が形成されている。各反射型回折格子は、例えば、パッケージ120Aの両縁部120dを成型により形成する際に、あらかじめ金型側に凹凸形状を形成することにより転写することができ、さらにその後、凹凸形状の上に反射膜を成膜することにより得ることができる。このとき、各反射型回折格子120f1、120f2を構成する反射膜の構成材料は、第3の実施形態の反射膜120eと同等である。さらに、本実施形態においては、透明光学素子30Bは平坦な透明基板であり、透明光学素子30Bの上に蛍光体層35が形成される。 In the light emitting device 1F according to the present embodiment, a double-sided emission type semiconductor laser element or a super luminescent diode (SLD) is used as the light emitting element 10B that emits light having a wavelength of 430 nm to 480 nm. Further, in the package 120A holding the light emitting element 10B, the first reflection type diffraction grating 120f1 and the second reflection type diffraction grating 120f2 are provided at both edge portions 120d facing the two light emitting end faces of the light emission element 10B. Is formed. Each reflective diffraction grating can be transferred, for example, by forming a concavo-convex shape on the mold side in advance when forming both edge portions 120d of the package 120A by molding. It can be obtained by forming a reflective film. At this time, the constituent material of the reflective film constituting each of the reflective diffraction gratings 120f1 and 120f2 is the same as that of the reflective film 120e of the third embodiment. Further, in the present embodiment, the transparent optical element 30B is a flat transparent substrate, and the phosphor layer 35 is formed on the transparent optical element 30B.
 次に、本実施形態に係る発光装置1Fの動作について説明する。 Next, the operation of the light emitting device 1F according to this embodiment will be described.
 本実施形態に係る発光素子10Bからは、導波路(ストライプ)10aの前端面及び後端面の両端面からそれぞれ出射される出射光50、70が、パッケージ120Aに設けられた第1の反射型回折格子120f1及び第2の反射型回折格子120f2により該パッケージ120Aの上方にそれぞれ反射されて、透明光学素子30Bに入射する。このとき出射光50及び70は、後述するように反射型回折格子にて反射される際に、拡がり角が入射光よりも大きい出射光60、80となる。透明光学素子30Bを透過した各入射光は、透明光学素子30Bの上の蛍光体層35に入射し、該蛍光体層35に入射した光の一部は蛍光体により、例えば波長が580nmを中心とした黄色光である蛍光光61、81となってそれぞれ放射される。このとき、発光装置1Fから出射される光は、出射光60、80と蛍光光61、81とがそれぞれ混色した光であり、それぞれ、出射光60、80を青色光とし、蛍光光61、81を黄色光とすることにより、白色光62、82を放射することができる。 From the light emitting element 10B according to the present embodiment, the first reflected diffraction diffracted light 50 and 70 emitted from the both end surfaces of the front end surface and the rear end surface of the waveguide (stripe) 10a are provided in the package 120A. The light is reflected above the package 120A by the grating 120f1 and the second reflective diffraction grating 120f2, and enters the transparent optical element 30B. At this time, the outgoing lights 50 and 70 become outgoing lights 60 and 80 having a divergence angle larger than that of the incident light when reflected by a reflective diffraction grating, as will be described later. Each incident light transmitted through the transparent optical element 30B is incident on the phosphor layer 35 on the transparent optical element 30B, and a part of the light incident on the phosphor layer 35 is centered at a wavelength of, for example, 580 nm by the phosphor. Are emitted as fluorescent light 61 and 81 which are yellow light. At this time, the light emitted from the light emitting device 1F is light in which the outgoing lights 60 and 80 and the fluorescent lights 61 and 81 are mixed, and the outgoing lights 60 and 80 are blue light, respectively, and the fluorescent lights 61 and 81 are emitted. By making yellow light, white light 62 and 82 can be emitted.
 次に、本実施例に係る発光装置1Fが出射する出射光のアスペクト比について説明する。 Next, the aspect ratio of the emitted light emitted from the light emitting device 1F according to the present embodiment will be described.
 発光素子10BにSLDを用いたとすると、該発光素子10Bに形成されたストライプによってその長手方向に増幅された光は、前端面及び光端面からそれぞれ出射光50、70として放射される。このとき、出射光50、70は発光素子10Bの上面に平行な方向の拡がり角が短軸方向となり、該上面に垂直な方向の拡がり角が長軸方向の拡がり角となる楕円形状の拡がり角を有する出射光として出射される。 If an SLD is used for the light emitting element 10B, the light amplified in the longitudinal direction by the stripe formed in the light emitting element 10B is emitted as emitted light 50 and 70 from the front end face and the optical end face, respectively. At this time, the outgoing lights 50 and 70 have an elliptical divergence angle in which the divergence angle in the direction parallel to the upper surface of the light emitting element 10B is the minor axis direction, and the divergence angle in the direction perpendicular to the upper surface is the divergence angle in the major axis direction. It is emitted as outgoing light having
 発光素子10Bから出射された出射光50、70は、前述したように、パッケージ120A内の2つの反射型回折格子120f1、120f2によって、該パッケージ120Aの上方に反射され、透明光学素子30B及び蛍光体層35を透過して発光装置1Fから出射される。このとき、出射される白色光62、82は、反射型回折格子120f1、120f2によって長軸方向の拡がり角がより大きくなり、すなわちアスペクト比の値が大きくなって出射される。 As described above, the outgoing lights 50 and 70 emitted from the light emitting element 10B are reflected above the package 120A by the two reflective diffraction gratings 120f1 and 120f2 in the package 120A, and the transparent optical element 30B and the phosphor. The light passes through the layer 35 and is emitted from the light emitting device 1F. At this time, the emitted white lights 62 and 82 are emitted with a larger divergence angle in the major axis direction by the reflection type diffraction gratings 120f1 and 120f2, that is, with a larger aspect ratio value.
 このような構成において、各反射型回折格子120f1、120f2は、パッケージ120を成型する際に、同時に形成することができるため、より簡易な構成で発光装置1Fを構成することが可能となる。 In such a configuration, each of the reflection type diffraction gratings 120f1 and 120f2 can be formed at the same time when the package 120 is molded. Therefore, the light emitting device 1F can be configured with a simpler configuration.
 なお、本実施形態においても、第3の実施形態のように、発光素子10Bの一方の端面のみから光が出射し、この出射端面と対向する反射面にのみ反射型回折格子120f1を形成する構成としてもよい。 In the present embodiment as well, as in the third embodiment, light is emitted only from one end face of the light emitting element 10B, and the reflection type diffraction grating 120f1 is formed only on the reflection face facing the emission end face. It is good.
 本発明に係る発光装置及びそれを用いたバックライトモジュールは、発光素子から出射される出射光を効率良く導光板に入射できると共に、導光板内での光の分布を均一にすることができ、例えば、液晶表示装置におけるバックライト光源装置又はパネル状の照明具に適用可能な発光装置及びそれを用いたバックライトモジュール等に有用である。 The light-emitting device according to the present invention and the backlight module using the light-emitting device can efficiently enter the light emitted from the light-emitting element into the light guide plate, and can make the light distribution in the light guide plate uniform, For example, the present invention is useful for a backlight light source device in a liquid crystal display device or a light emitting device applicable to a panel-shaped illuminator and a backlight module using the light emitting device.
1    発光装置
1A   発光装置
1B   発光装置
1C   発光装置
1D   発光装置
1E   発光装置
1F   発光装置
9    ワイヤ
10   発光素子
10A  発光素子
10B  発光素子
10a  導波路(ストライプ)
11   サブマウント
11A  サブマウント
20   パッケージ
20a  ベース材
20b  台座
20c  実装面
20d1 第1のリード
20d2 第2のリード
20e  絶縁部
20f  キャップ材
30   透明光学素子
30A  透明光学素子
30B  透明光学素子
30a  回折格子
30b  回折格子
30c  凹部
35   蛍光体層
50   出射光(回折前)
50a  短軸方向
50b  長軸方向
60   出射光(回折後)
60a  短軸方向
60b  長軸方向
61   蛍光光
62   白色光
70   出射光(回折前)
80   出射光(回折後)
81   蛍光光
82   白色光
85   保持部
86   配線
90   導光板
91   反射板
92   拡散板
95   液晶パネル
100  バックライトモジュール
100A バックライトモジュール
120  パッケージ
120A パッケージ
120a 第1の電極
120b 第2の電極
120c 絶縁部
120d 縁部
120e 反射膜
120e1 第1の反射膜
120e2 第2の反射膜
120f1 第1の反射型回折格子
120f2 第2の反射型回折格子
185  配線基板
186  電極パッド
187  内部配線
188  取り出し電極パッド
DESCRIPTION OF SYMBOLS 1 Light emitting device 1A Light emitting device 1B Light emitting device 1C Light emitting device 1D Light emitting device 1E Light emitting device 1F Light emitting device 9 Wire 10 Light emitting element 10A Light emitting element 10B Light emitting element 10a Waveguide (stripe)
11 Submount 11A Submount 20 Package 20a Base material 20b Base 20c Mounting surface 20d1 First lead 20d2 Second lead 20e Insulating portion 20f Cap material 30 Transparent optical element 30A Transparent optical element 30B Transparent optical element 30a Diffraction grating 30b Diffraction grating 30c Concave portion 35 Phosphor layer 50 Emitted light (before diffraction)
50a minor axis direction 50b major axis direction 60 outgoing light (after diffraction)
60a minor axis direction 60b major axis direction 61 fluorescent light 62 white light 70 outgoing light (before diffraction)
80 Outgoing light (after diffraction)
81 fluorescent light 82 white light 85 holding part 86 wiring 90 light guide plate 91 reflecting plate 92 diffuser plate 95 liquid crystal panel 100 backlight module 100A backlight module 120 package 120A package 120a first electrode 120b second electrode 120c insulating part 120d edge Part 120e Reflective film 120e1 First reflective film 120e2 Second reflective film 120f1 First reflective diffraction grating 120f2 Second reflective diffraction grating 185 Wiring substrate 186 Electrode pad 187 Internal wiring 188 Extraction electrode pad

Claims (13)

  1.  導波路を有する半導体からなる発光素子と、
     前記発光素子からの出射光の伝搬方向に設けられ、前記出射光を受ける回折格子を有する光学素子と、
     前記光学素子における前記回折格子と反対側の面上に形成された蛍光体層とを備えている発光装置。
    A light-emitting element made of a semiconductor having a waveguide;
    An optical element provided in the propagation direction of the outgoing light from the light emitting element, and having a diffraction grating for receiving the outgoing light;
    And a phosphor layer formed on a surface of the optical element opposite to the diffraction grating.
  2.  請求項1において、
     前記導波路の光出射端面における断面形状は、長辺が前記回折格子における格子パターンの延伸方向と平行な長方形状である発光装置。
    In claim 1,
    The cross-sectional shape in the light-projection end surface of the said waveguide is a light-emitting device whose long side is a rectangular shape parallel to the extending direction of the grating pattern in the said diffraction grating.
  3.  請求項1又は2において、
     前記回折格子は、格子の間隔が不規則な格子パターンを有している発光装置。
    In claim 1 or 2,
    The diffractive grating is a light emitting device having a grating pattern with irregular grating intervals.
  4.  請求項1又は2において、
     前記発光素子からの出射光を反射し、反射した前記出射光を前記回折格子に入射する反射膜をさらに備えている発光装置。
    In claim 1 or 2,
    A light-emitting device further comprising a reflective film that reflects outgoing light from the light-emitting element and makes the reflected outgoing light incident on the diffraction grating.
  5.  請求項4において、
     前記発光素子は、両端面出射型の発光素子であり、
     前記反射膜は、前記発光素子における一方の光出射端面側と他方の光出射端面側とにそれぞれ設けられている発光装置。
    In claim 4,
    The light emitting element is a double-sided emission type light emitting element,
    The reflective film is a light emitting device provided on one light emitting end face side and the other light emitting end face side of the light emitting element, respectively.
  6.  導波路を有する半導体からなる発光素子と、
     前記発光素子からの出射光の伝搬方向に設けられ、前記出射光を受ける半円筒状の凹部を有する光学素子と、
     前記光学素子における前記凹部と反対側の面上に形成された蛍光体層とを備えている発光装置。
    A light-emitting element made of a semiconductor having a waveguide;
    An optical element provided in the propagation direction of the emitted light from the light emitting element and having a semi-cylindrical recess for receiving the emitted light;
    A light emitting device comprising: a phosphor layer formed on a surface of the optical element opposite to the concave portion.
  7.  請求項6において、
     前記導波路の光出射端面における断面形状は、長辺が前記凹部の中心軸方向と平行な長方形状である発光装置。
    In claim 6,
    The cross-sectional shape of the light emitting end face of the waveguide is a light emitting device whose long side is a rectangular shape parallel to the central axis direction of the recess.
  8.  請求項6又は7において、
     前記光学素子は、前記凹部が形成された面と反対側の面が前記凹部に沿った凸面状に形成されている発光装置。
    In claim 6 or 7,
    The optical element is a light emitting device in which a surface opposite to a surface on which the concave portion is formed is formed in a convex shape along the concave portion.
  9.  請求項6~8のいずれか1項において、
     前記光学素子における前記凹部には、回折格子が設けられている発光装置。
    In any one of claims 6 to 8,
    A light emitting device in which a diffraction grating is provided in the concave portion of the optical element.
  10.  請求項1~9のいずれか1項において、
     前記発光素子は、半導体レーザ素子又はスーパールミネッセントダイオードである発光装置。
    In any one of claims 1 to 9,
    The light emitting device is a light emitting device which is a semiconductor laser element or a super luminescent diode.
  11.  請求項1~10のいずれか1項に記載の発光装置と、
     前記発光装置からの出射光を側面に受ける導光板とを備えているバックライトモジュール。
    A light emitting device according to any one of claims 1 to 10;
    A backlight module comprising a light guide plate that receives light emitted from the light emitting device on a side surface.
  12.  請求項11において、
     前記発光素子の導波路の光出射端面における断面形状は、短辺が前記導光板の主面の面内方向と平行な長方形状であるバックライトモジュール。
    In claim 11,
    The cross-sectional shape of the light emitting end face of the waveguide of the light emitting element is a backlight module whose short side is a rectangular shape parallel to the in-plane direction of the main surface of the light guide plate.
  13.  請求項11又は12において、
     前記発光素子は、半導体レーザ素子又はスーパールミネッセントダイオードであるバックライトモジュール。
    In claim 11 or 12,
    The light emitting element is a backlight module which is a semiconductor laser element or a super luminescent diode.
PCT/JP2010/005122 2010-03-25 2010-08-19 Light emitting device and backlight module using same WO2011117934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-070362 2010-03-25
JP2010070362A JP2011204888A (en) 2010-03-25 2010-03-25 Light-emitting device and backlight module using the same

Publications (1)

Publication Number Publication Date
WO2011117934A1 true WO2011117934A1 (en) 2011-09-29

Family

ID=44672533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005122 WO2011117934A1 (en) 2010-03-25 2010-08-19 Light emitting device and backlight module using same

Country Status (2)

Country Link
JP (1) JP2011204888A (en)
WO (1) WO2011117934A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054226A1 (en) * 2011-10-12 2013-04-18 Koninklijke Philips Electronics N.V. Light-emitting arrangement
CN103986058A (en) * 2014-05-20 2014-08-13 深圳市易飞扬通信技术有限公司 Can-shaped packaging structure and method of vertical-cavity surface emitting laser device
JP2015506071A (en) * 2011-12-16 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ Optical apparatus provided with diffractive optical element
JP2016062966A (en) * 2014-09-16 2016-04-25 スタンレー電気株式会社 Wavelength conversion body and wavelength conversion device
EP3474047A1 (en) * 2017-10-19 2019-04-24 Panasonic Intellectual Property Management Co., Ltd. Laser projection device
US10700487B2 (en) 2017-03-29 2020-06-30 Nichia Corporation Light source device
JP2022513293A (en) * 2018-12-17 2022-02-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic lighting equipment and manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173676A (en) * 2011-02-24 2012-09-10 Seiko Epson Corp Light source device and projector
JP6146735B2 (en) * 2013-03-27 2017-06-14 スタンレー電気株式会社 Semiconductor light emitting device
JP6272172B2 (en) * 2014-07-29 2018-01-31 京セラ株式会社 LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE HAVING THE SAME
EP3358244B1 (en) * 2015-09-29 2019-06-19 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection device
WO2017149566A1 (en) * 2016-03-04 2017-09-08 パナソニックIpマネジメント株式会社 Wavelength conversion device and illuminating device
WO2017159043A1 (en) * 2016-03-16 2017-09-21 ソニー株式会社 Light emitting device, display apparatus, and illumination apparatus
JP7092988B2 (en) * 2018-01-30 2022-06-29 日亜化学工業株式会社 Light emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104483A (en) * 1992-08-05 1994-04-15 Motorola Inc Superluminescent absorption edge light- emitting device and method for formation of above device
JPH08264885A (en) * 1995-03-27 1996-10-11 Sony Corp Semiconductor laser device
JPH09307174A (en) * 1996-05-15 1997-11-28 Ricoh Co Ltd Scattered light source device
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2006032885A (en) * 2003-11-18 2006-02-02 Sharp Corp Light source device and optical transmission apparatus using it
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
WO2007097011A1 (en) * 2006-02-27 2007-08-30 Fujitsu Limited Illumination device and liquid crystal display device
JP2008518461A (en) * 2004-10-25 2008-05-29 クリー インコーポレイテッド Solid metal block semiconductor light emitting device mounting substrate and package including cavity and heat sink and method for packaging them
JP2008198650A (en) * 2007-02-08 2008-08-28 Toshiba Discrete Technology Kk Semiconductor light-emitting element and semiconductor light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104483A (en) * 1992-08-05 1994-04-15 Motorola Inc Superluminescent absorption edge light- emitting device and method for formation of above device
JPH08264885A (en) * 1995-03-27 1996-10-11 Sony Corp Semiconductor laser device
JPH09307174A (en) * 1996-05-15 1997-11-28 Ricoh Co Ltd Scattered light source device
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2006032885A (en) * 2003-11-18 2006-02-02 Sharp Corp Light source device and optical transmission apparatus using it
JP2008518461A (en) * 2004-10-25 2008-05-29 クリー インコーポレイテッド Solid metal block semiconductor light emitting device mounting substrate and package including cavity and heat sink and method for packaging them
JP2006303038A (en) * 2005-04-18 2006-11-02 Kyocera Corp Light emitting device and lighting system
WO2007097011A1 (en) * 2006-02-27 2007-08-30 Fujitsu Limited Illumination device and liquid crystal display device
JP2008198650A (en) * 2007-02-08 2008-08-28 Toshiba Discrete Technology Kk Semiconductor light-emitting element and semiconductor light-emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054226A1 (en) * 2011-10-12 2013-04-18 Koninklijke Philips Electronics N.V. Light-emitting arrangement
JP2015506071A (en) * 2011-12-16 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ Optical apparatus provided with diffractive optical element
CN103986058A (en) * 2014-05-20 2014-08-13 深圳市易飞扬通信技术有限公司 Can-shaped packaging structure and method of vertical-cavity surface emitting laser device
JP2016062966A (en) * 2014-09-16 2016-04-25 スタンレー電気株式会社 Wavelength conversion body and wavelength conversion device
US10700487B2 (en) 2017-03-29 2020-06-30 Nichia Corporation Light source device
EP3474047A1 (en) * 2017-10-19 2019-04-24 Panasonic Intellectual Property Management Co., Ltd. Laser projection device
JP2019074706A (en) * 2017-10-19 2019-05-16 パナソニックIpマネジメント株式会社 Laser projection device
JP2022513293A (en) * 2018-12-17 2022-02-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic lighting equipment and manufacturing method
JP7259038B2 (en) 2018-12-17 2023-04-17 エイエムエス-オスラム インターナショナル ゲーエムベーハー Optoelectronic lighting device and manufacturing method

Also Published As

Publication number Publication date
JP2011204888A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
WO2011117934A1 (en) Light emitting device and backlight module using same
US11906156B2 (en) Light emitting device
WO2011108038A1 (en) Light emitting device and backlight module using same
US8680585B2 (en) Light emitting diode package and method of manufacturing the same
JP6852336B2 (en) Light emitting device
US7736044B2 (en) Indirect lighting device for light guide illumination
US20110018012A1 (en) Led lighting device
US20080198597A1 (en) Illumination Device
US9097833B2 (en) Light emitting device
US7490962B2 (en) Light emitting module and surface light source device
JP2023052790A (en) Light-emitting device
JP2006286638A (en) Light emitting device having a plurality of light guide plates adjoining each other and overlapping
JP2007123777A (en) Semiconductor light-emitting apparatus
KR20130121602A (en) Light emitting device
JP2010537364A (en) Lighting assembly
JP2009252380A (en) Hollow type surface lighting device
WO2006087872A1 (en) Planar illumination device
JP7189464B2 (en) light emitting device
JP6773156B2 (en) Light emitting device
JP2019197885A (en) Chip scale linear light emitting device
JP6923832B2 (en) Light emitting device
WO2022196300A1 (en) Light-emitting device and surface light source
WO2013105303A1 (en) Light emitting device, backlight unit using same, surface light source device and display device
JP2011003342A (en) Directly beneath type surface light source device, and light-emitting unit used for the same
JP2008252015A (en) Light-emitting device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848328

Country of ref document: EP

Kind code of ref document: A1