JPH08264885A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH08264885A
JPH08264885A JP7067804A JP6780495A JPH08264885A JP H08264885 A JPH08264885 A JP H08264885A JP 7067804 A JP7067804 A JP 7067804A JP 6780495 A JP6780495 A JP 6780495A JP H08264885 A JPH08264885 A JP H08264885A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
laser device
semiconductor
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7067804A
Other languages
Japanese (ja)
Other versions
JP3577773B2 (en
Inventor
Takashi Otobe
孝 乙部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6780495A priority Critical patent/JP3577773B2/en
Publication of JPH08264885A publication Critical patent/JPH08264885A/en
Application granted granted Critical
Publication of JP3577773B2 publication Critical patent/JP3577773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To provide a light source adaptable to optical space transmission for a relatively short distance by reducing the spatial coherence of a semiconductor laser and solving the problem of the safety for eyes. CONSTITUTION: The surface of a sealing member 3A for forming a window for emitting a laser beam L of a vessel containing a semiconductor laser element 1 for emitting an infrared light having a wavelength of 1.4 to 1.6μm is formed in the structure of a scattering surface 4, and the spatial coherence of the beam L through it is reduced. The member 3A is formed of a silicon plate or a hologram plate. As other means for reducing the spatial coherence, there is a method of using together with the laser beam emitted from the rear surface of the laser element or a method of using a plurality of small semiconductor laser elements disposed linearly or planely. Thus, a light source having low spatial coherence in which the problem of the safety for eyes is solved can be easily handled as a single device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ装置に関
し、更に詳しくはレーザ光の空間的コヒーレンシーを低
下させる手段を有する半導体レーザ装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a semiconductor laser device having means for reducing the spatial coherency of laser light.

【0002】[0002]

【従来の技術】従来の半導体レーザ装置について図4を
参照して、また、レーザの空間的コヒーレンシーと眼に
対する影響について図5ないし図7を参照して説明す
る。
2. Description of the Related Art A conventional semiconductor laser device will be described with reference to FIG. 4, and the spatial coherency of the laser and its effect on the eye will be described with reference to FIGS.

【0003】まず、従来の半導体レーザ装置200の構
成は図4に示すように半導体レーザ素子1が装着台2に
電極の片面を接して固着され、また装着台2はケース基
台5に、半導体レーザ素子1がケースの略中央部に位置
するように固定されている。電極8Aは絶縁体9を介し
て、また電極8Bは直接ケース基台5に挿着されていて
半導体レーザ素子1にリード線10A、10Bを介して
電気を供給している。また、キャップ6が半導体レーザ
素子1等を封入する為、ケース基台5に固着されてい
る。更に、キャップ6の中心にはレーザ光Lの出射窓と
してレーザ光Lを透過する封止部材3が設けられてい
る。
First, in the structure of a conventional semiconductor laser device 200, as shown in FIG. 4, a semiconductor laser element 1 is fixed to a mounting base 2 by contacting one side of an electrode, and the mounting base 2 is mounted on a case base 5 and a semiconductor. The laser element 1 is fixed so as to be located at a substantially central portion of the case. The electrode 8A is inserted through the insulator 9, and the electrode 8B is directly inserted in the case base 5 to supply electricity to the semiconductor laser device 1 through the lead wires 10A and 10B. A cap 6 is fixed to the case base 5 in order to encapsulate the semiconductor laser device 1 and the like. Further, at the center of the cap 6, a sealing member 3 that transmits the laser light L is provided as an emission window of the laser light L.

【0004】上述した半導体レーザ装置200のリード
線10A、10Bに電圧を印加することにより半導体レ
ーザ素子1の活性層端面から空間的コヒーレンシーの高
いレーザ光Lを放射することになる。
By applying a voltage to the lead wires 10A and 10B of the semiconductor laser device 200 described above, the laser light L having a high spatial coherency is emitted from the end face of the active layer of the semiconductor laser device 1.

【0005】つぎに、本発明に係わる、レーザの空間的
コヒーレンシーについて図5および図6を参照して説明
する。空間的コヒーレンシーは時間的なコヒーレンシー
と共に可干渉性を決めており、光源から等距離にある2
つの光線の重ね合わせにより干渉縞の現れる程度を示す
量として定義されている。この量は光の指向性、つまり
レンズを用いたときの放射光の広がりと集光性に関連し
ている。
Next, the spatial coherency of the laser according to the present invention will be described with reference to FIGS. 5 and 6. Spatial coherency determines coherence along with temporal coherency and is equidistant from the light source.
It is defined as a quantity indicating the degree of appearance of interference fringes due to the superposition of two light rays. This amount is related to the directivity of light, that is, the spread and condensing property of emitted light when a lens is used.

【0006】まず、図5を参照して光の指向性と空間的
コヒーレンシーについて説明する。図5(a)は空間的
コヒーレンシーの悪い、広がりを持つ光源について示し
ていて、光源の大きさをd、レンズ40の焦点距離をf
とすると、レンズ40から出る光線は幾何学的に半角で
θg=d/fとなり、θgで示される広がりを持つこと
になる。例えばd=1mm、f=10mmとしたときθ
g=0.1radとなる。この他にレンズ口径が有限で
ある為、回折効果による広がりを生じるが、この量は一
般的にθgに較べて極めて小さい値である。従って、図
5(a)に示す広がりを持った光源の指向性を良くする
ためにはdを小さくする必要があり、dが大きい場合に
は集束性の悪い光束しか得られないことになる。
First, the directivity of light and the spatial coherency will be described with reference to FIG. FIG. 5 (a) shows a light source having a spatial coherency and a spread, in which the size of the light source is d and the focal length of the lens 40 is f.
Then, the light ray emitted from the lens 40 has a geometrical half-angle θg = d / f, and has a spread represented by θg. For example, when d = 1 mm and f = 10 mm, θ
g = 0.1 rad. In addition to this, since the lens aperture is finite, there is spread due to the diffraction effect, but this amount is generally an extremely small value compared to θg. Therefore, in order to improve the directivity of the light source having the spread shown in FIG. 5A, it is necessary to reduce d, and when d is large, only a light beam having poor focusing properties can be obtained.

【0007】また、図5(b)は光源をレーザ光とした
場合であって、そのスポットサイズをω0 、発振波長を
λとしたとき、放射光の広がりはθL =d/f=ω0
fより、例えばω0 =10μm、f=10mmのときθ
L =10-3rad程度となり、前述した一般の光源に較
べてその広がり角は極めて小さい。即ちレーザ光の空間
的コヒーレンシーは一般の光源に比較して極めて高いと
言うことができる。
FIG. 5B shows the case where the light source is laser light, and the spread of the emitted light is θ L = d / f = ω when the spot size is ω 0 and the oscillation wavelength is λ. 0 /
From f, for example, when ω 0 = 10 μm and f = 10 mm, θ
It becomes about L = 10 −3 rad, and its divergence angle is extremely small as compared with the general light source described above. That is, it can be said that the spatial coherency of laser light is extremely higher than that of general light sources.

【0008】つぎに、図6を参照して光の集光性と空間
的コヒーレンシーについて説明する。図6(a)は空間
的コヒーレンシーの悪い、広がりを持つ光源の場合であ
って、点P1に光源を置き、レンズ40で点Q1に結像
した場合、像も広がりを持った大きなものとなる。この
とき、空間を伝播する光の波面は様々な曲率の球面波で
構成されていて、空間的コヒーレンシーと波面を構成す
る球面波の純粋性とは強い相関がある。
Next, the light converging property and the spatial coherency will be described with reference to FIG. FIG. 6A shows a case of a light source having poor spatial coherency and having a spread. When the light source is placed at the point P1 and the lens 40 forms an image at the point Q1, the image also becomes large with a spread. . At this time, the wavefront of the light propagating in the space is composed of spherical waves of various curvatures, and there is a strong correlation between the spatial coherency and the purity of the spherical wave forming the wavefront.

【0009】また、図6(b)は半導体レーザの様に空
間的コヒーレンシーの高い光源を用いた場合であって、
点P1の微小な点から高出力で光が放射されている。こ
の光をレンズ40で点Q1に結像した場合、像の大きさ
は小さく、光パワー密度は極めて高い光点となる。この
とき、空間を伝播する光の波面は略同一の球面波で構成
されていて、広がりを持つ光源とは逆に点光源からの光
の空間的コヒーレンシーは高いと言うことができる。
FIG. 6B shows a case where a light source having a high spatial coherency such as a semiconductor laser is used.
Light is emitted at a high output from a minute point of the point P1. When this light is focused on the point Q1 by the lens 40, the size of the image is small and the light power density is an extremely high light spot. At this time, the wavefront of the light propagating in the space is composed of substantially the same spherical wave, and it can be said that the spatial coherency of the light from the point light source is high, contrary to the light source having the spread.

【0010】以上説明したように半導体レーザは、その
発光面積は非常に小さく、空間的コヒーレンシーが高い
ので、遠距離への光空間伝送を行う場合の光源として本
質的に必要な要素を有するものである。しかし一方では
そのコヒーレンシーの高さの故に人体に対する影響、即
ち眼に対する安全性から、レーザの単位面積当たりのパ
ワー密度が制限されていて、特に可視光帯域では眼球の
透過性と吸収性の高さから、その値は極めて小さい値と
なっている。
As described above, the semiconductor laser has an extremely small light emitting area and a high spatial coherency, and therefore has essential elements as a light source for optical spatial transmission over a long distance. is there. However, on the other hand, because of its high coherency, the power density per unit area of the laser is limited due to the effect on the human body, that is, the safety to the eye, and in particular, in the visible light band, the transparency and absorption of the eyeball are high. Therefore, the value is extremely small.

【0011】つぎに図7を参照して光の波長と眼に対す
る影響について説明する。同図は角膜から入った光の眼
底までの透過率と眼底での吸収率の波長との関係を示し
ていて、両者とも角膜上を100%としている。図7よ
り紫外線または1400nmよりも長波超の遠赤外線で
は、光は眼底に到達するまでに吸収されて殆ど眼底まで
到達しない。一方、可視光および近赤外線の略400n
m〜1200nmに対して角膜および水晶体は透明であ
り、水晶体の集光作用によって眼底では単位面積当たり
の光強度は、極めて大きなものとなる。また、眼底での
光の吸収率は青色光では大きいが、波長が長くなるに従
って減少し、長い波長の光が眼底に達してもエネルギー
の絶対吸収量は極めて小さくなることが分かる。
Next, the wavelength of light and the effect on the eye will be described with reference to FIG. This figure shows the relationship between the transmittance of the light entering the cornea to the fundus and the wavelength of the absorptance of the light, and both are assumed to be 100% on the cornea. As shown in FIG. 7, with ultraviolet rays or far infrared rays with a wavelength longer than 1400 nm, light is absorbed by the time it reaches the fundus and hardly reaches the fundus. On the other hand, about 400n for visible light and near infrared
The cornea and crystalline lens are transparent for m to 1200 nm, and the light condensing action of the crystalline lens causes the light intensity per unit area at the fundus to be extremely large. Further, it is understood that the light absorption rate at the fundus is large for blue light, but decreases as the wavelength becomes longer, and the absolute absorption amount of energy becomes extremely small even when light having a long wavelength reaches the fundus.

【0012】従って、このような観点から眼に対する安
全性を考慮して、レーザの波長に対する許容パワー密度
が規定されている。例えば、波長1400nm〜160
0nmの半導体レーザの最大許容露光量は、長時間の露
光状態において100mW/cm2 であり、従来一般に
用いられている波長780nm〜830nmの0.32
mW/cm2 に比して極めて大きな値となっている。
From this point of view, therefore, the allowable power density with respect to the wavelength of the laser is defined in consideration of eye safety. For example, a wavelength of 1400 nm to 160
The maximum allowable exposure amount of a 0 nm semiconductor laser is 100 mW / cm 2 in a long-time exposure state, and a wavelength of 780 nm to 830 nm, which is generally used in the related art, is 0.32.
It is an extremely large value as compared with mW / cm 2 .

【0013】他方、比較的距離の短い屋内での光空間伝
送では、光源に要求される性質上、レーザの替わりに発
光面積の大きな発光ダイオードが広く用いられてきた。
しかしながら、発光ダイオードはその特性上、大出力と
高速応答が両立しないという問題があった。例えば、高
精細度の画像伝送においては、送信情報量が多くなり、
変調周波数も高くなる為、発光ダイオードによる送信は
困難であった。
On the other hand, in indoor optical space transmission with a relatively short distance, a light emitting diode having a large light emitting area has been widely used instead of a laser due to the property required of a light source.
However, the light emitting diode has a problem that a large output and a high speed response are not compatible due to its characteristics. For example, in high-definition image transmission, the amount of transmitted information increases,
Since the modulation frequency also becomes high, it is difficult to transmit by the light emitting diode.

【0014】従って、現状においては、眼に光が触れる
可能性のある状況においては発光ダイオードを使わざる
をえないにも係わらず、発光ダイオードの低い変調可能
周波数、および低い出力の為、光空間伝送に用いる光源
の選択範囲が極めて限定されていた。
Therefore, under the present circumstances, although the light emitting diode has to be used in a situation where the light may come into contact with the eyes, the light modulating diode has a low modulation frequency and a low output. The selection range of the light source used for transmission was extremely limited.

【0015】[0015]

【発明が解決しようとする課題】従って、本発明は半導
体レーザが有する超高速変調特性を備え、眼に対して悪
影響を与える程の高い空間的コヒーレンシーは持たず、
比較的距離が短く高速、大容量の空間伝送に用いて最適
である光源を提供しようとするものである。
Therefore, the present invention has the ultra-high speed modulation characteristic of a semiconductor laser and does not have a high spatial coherency that adversely affects the eyes.
It is intended to provide a light source that is optimal for use in space transmission with a relatively short distance and high speed and large capacity.

【0016】[0016]

【課題を解決するための手段】本発明はこれらの問題点
を解決する為に案出されたものであって、半導体レーザ
の発振波長を1.4μmないし1.6μmにすると共
に、前記半導体レーザを収納する容器に、レーザ光の空
間的コヒーレンシーを低下させる封止部材を設け、この
封止部材にレーザ光を透過、または反射させることによ
り任意に設計された低い値の空間的コヒーレンシーを有
する光を発生する光源を形成する。
The present invention has been devised in order to solve these problems, and the oscillation wavelength of the semiconductor laser is set to 1.4 μm to 1.6 μm, and the semiconductor laser is also provided. A container for accommodating is provided with a sealing member that lowers the spatial coherency of laser light, and the sealing member transmits or reflects the laser light, and the light having a spatial coherency of a low value arbitrarily designed. Forming a light source that generates

【0017】前記封止部材をシリコン板、或いはホログ
ラムで構成する。
The sealing member is composed of a silicon plate or a hologram.

【0018】また、収納容器の窓構造とは反対側の半導
体レーザ端面から放射するレーザ光を反射する反射部材
を、前記半導体レーザを介して前記窓構造とは反対側に
設け、前記反射部材で反射したレーザ光と直接光とが前
記収納容器の外部に出射する構成にする。
Further, a reflecting member for reflecting the laser light emitted from the end face of the semiconductor laser on the side opposite to the window structure of the storage container is provided on the side opposite to the window structure via the semiconductor laser, and the reflecting member is used. The reflected laser light and the direct light are emitted to the outside of the storage container.

【0019】また、複数個の半導体レーザを、収納容器
内部にレーザ光の放射方向を一致させて配設し、前記各
々の半導体レーザを同時に点灯して、複数のレーザ光を
前記収納容器の外部に出射する構造にする。更に、前記
複数個の半導体レーザの各々を個別の駆動回路で駆動す
る構成にして上記課題を解決する。
Further, a plurality of semiconductor lasers are arranged inside the container so that the emission directions of the laser beams coincide with each other, the respective semiconductor lasers are simultaneously turned on, and the plurality of laser beams are emitted outside the container. The structure is such that the light is emitted to. Further, the above problem is solved by adopting a configuration in which each of the plurality of semiconductor lasers is driven by an individual drive circuit.

【0020】[0020]

【作用】レーザ光とレーザ光の空間的コヒーレンシーを
低下させる封止部材との相互作用により、超高速変調特
性を有し、一方では眼に対して害を与えることはないが
近距離の光空間伝送装置の光源としては十分な空間的コ
ヒーレンシーを有する光を発生することができる。
[Function] Due to the interaction between the laser light and the sealing member that reduces the spatial coherency of the laser light, it has ultra-high-speed modulation characteristics, while it does not harm the eyes, but it is a short distance optical space. As a light source of the transmission device, light having sufficient spatial coherency can be generated.

【0021】[0021]

【実施例】本発明による空間的コヒーレンシーを低下さ
せた光を生成する半導体レーザ装置について図1ないし
図3を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor laser device for generating light with reduced spatial coherency according to the present invention will be described with reference to FIGS.

【0022】実施例1 まず、第一の実施例である半導体レーザ装置100につ
いて図1を参照して説明する。尚、半導体レーザは前述
したように、その発振波長が1.4μmないし1.6μ
mであって眼に対して安全性の高いものを用いることと
する。
First Embodiment First, a semiconductor laser device 100 of the first embodiment will be described with reference to FIG. As described above, the semiconductor laser has an oscillation wavelength of 1.4 μm to 1.6 μm.
m, which is highly safe to the eyes.

【0023】前記半導体レーザ装置100の構成は図1
に示すように半導体レーザ素子1が装着台2Aに電極の
片面を接して固着され、更に前記装着台2Aはケース基
台5に半導体レーザ素子1がケースの略中央部に位置す
るように固定されている。電極8Aは絶縁体9を介し
て、また電極8Bは直接ケース基台5に挿着されていて
半導体レーザ素子1にリード線10A、10Bを介して
電気を供給している。更に、キャップ6がケース基台5
に固着されていて半導体レーザ素子1等を封入してい
る。また、キャップ6の中心にはレーザ光Lの出射窓と
して赤外光に透明な封止部材3Aが設けられている。
The structure of the semiconductor laser device 100 is shown in FIG.
As shown in FIG. 1, the semiconductor laser device 1 is fixed to the mounting base 2A by contacting one side of the electrode, and the mounting base 2A is fixed to the case base 5 so that the semiconductor laser device 1 is located at the substantially central portion of the case. ing. The electrode 8A is inserted through the insulator 9, and the electrode 8B is directly inserted in the case base 5 to supply electricity to the semiconductor laser device 1 through the lead wires 10A and 10B. Furthermore, the cap 6 is the case base 5.
And the semiconductor laser device 1 and the like are enclosed. Further, at the center of the cap 6, a sealing member 3A that is transparent to infrared light is provided as an emission window for the laser light L.

【0024】ここで本発明の特徴を形成する前記封止部
材3Aについて述べる。封止部材3Aは少なくとも前記
発振波長が1.4μmないし1.6μmの赤外線を透過
する部材で構成され、その片面または両面は光を散乱す
る散乱面4が形成されていて、前記封止部材3Aを透過
するレーザ光は空間的コヒーレンシーの低い光に変換さ
れるものである。
Now, the sealing member 3A forming the feature of the present invention will be described. The sealing member 3A is composed of a member that transmits at least the infrared ray having an oscillation wavelength of 1.4 μm to 1.6 μm, and one side or both sides thereof has a scattering surface 4 that scatters light. The laser light passing through is converted into light with low spatial coherency.

【0025】前記封止部材3Aとして、シリコン板は好
適な材料の一つである。前記シリコン板は1μm以上の
長波長の光を透過させると共に、エッチング技術を用い
ることで容易に最適な散乱面4を形成することができ
る。尚、空間的コヒーレンシーの低下の度合いは、光源
の使用環境、眼に対する安全性等を勘案して決定され、
それに応じて散乱面4を形成する。
A silicon plate is one of the preferred materials for the sealing member 3A. The silicon plate allows light having a long wavelength of 1 μm or more to pass therethrough, and an optimum scattering surface 4 can be easily formed by using an etching technique. The degree of decrease in spatial coherency is determined in consideration of the usage environment of the light source, the safety to the eyes, etc.
The scattering surface 4 is formed accordingly.

【0026】また、前記封止部材3Aをホログラム板で
形成する方法もある。予めホログラム板には前記半導体
レーザ素子1が発する赤外帯域のレーザ光が照射すると
空間的コヒーレンシーの低下した赤外光が生成するパタ
ーンを作成しておくものである。前記ホログラム板の作
成も空間的コヒーレンシーの低下の度合いを勘案して行
われる。
There is also a method of forming the sealing member 3A with a hologram plate. The hologram plate is preliminarily prepared with a pattern in which infrared light whose spatial coherency is lowered is generated when the laser light in the infrared band emitted from the semiconductor laser device 1 is irradiated. The hologram plate is also produced in consideration of the degree of reduction in spatial coherency.

【0027】実施例2 つぎに、第二の実施例である半導体レーザ装置110に
ついて図2を参照して説明する。本実施例は封止部材3
Aとは反対側の半導体レーザ素子1の端面から放射する
レーザ光も利用する点においてのみ実施例1とは異なる
ものであって、その他の構成と働きについては同一であ
り、その説明は省略する。
Second Embodiment Next, a semiconductor laser device 110 according to a second embodiment will be described with reference to FIG. In this embodiment, the sealing member 3
This embodiment is different from the embodiment 1 only in that the laser light emitted from the end face of the semiconductor laser element 1 on the side opposite to A is also used, and other configurations and functions are the same, and the description thereof is omitted. .

【0028】半導体レーザ素子1は収納容器の略中央部
に封止部材3Aとは反対側の面からの光も利用できるよ
うに空間を有して装着台2Bにより保持されている。正
面から放射した光は実施例1で説明したように散乱面4
を有する封止部材3Aを通過して空間的コヒーレーンシ
ーの低下したレーザ光Lとなって半導体レーザ装置11
0から射出する。更に、反対側の面からの光は、所定の
位置に設けられた反射部材7によって反射し、この光も
前記封止部材3Aを通過して空間的コヒーレーンシーの
低下したレーザ光Lとなって半導体レーザ装置110の
外部に射出する。また、前記反射部材7の反射面には散
乱面4を形成してもよい。
The semiconductor laser device 1 is held by the mounting table 2B in a substantially central portion of the container with a space so that light from the surface opposite to the sealing member 3A can be used. The light emitted from the front is scattered by the scattering surface 4 as described in the first embodiment.
The semiconductor laser device 11 becomes laser light L having a reduced spatial coherency by passing through the sealing member 3A having
Eject from 0. Further, the light from the opposite surface is reflected by the reflecting member 7 provided at a predetermined position, and this light also passes through the sealing member 3A to become the laser light L having a reduced spatial coherency. And is emitted to the outside of the semiconductor laser device 110. Further, the scattering surface 4 may be formed on the reflecting surface of the reflecting member 7.

【0029】上述した構成により、レーザ光の空間的コ
ヒーレーンシーの低下を図ることができると共に、発光
の為のエネルギーが有効に利用することができる。
With the above-mentioned structure, the spatial coherency of the laser light can be reduced, and the energy for light emission can be effectively used.

【0030】実施例3 つぎに、第三の実施例である半導体レーザ装置120に
ついて図3を参照して説明する。本実施例は光源として
発振波長が1.4μmないし1.6μmである小さな半
導体レーザ素子1Aを複数個用いたものであり、その他
の構成と働きについては従来例と同一でありその説明は
省略する。
Third Embodiment Next, a semiconductor laser device 120 according to a third embodiment will be described with reference to FIG. The present embodiment uses a plurality of small semiconductor laser elements 1A having an oscillation wavelength of 1.4 μm to 1.6 μm as a light source. Other configurations and functions are the same as those of the conventional example, and description thereof will be omitted. .

【0031】図3に示すように装着基台2Cは複数個の
半導体レーザ素子1Aを固着する櫛歯状の部位を有して
いて、その部位に前記半導体レーザ素子1Aのレーザ光
放射方向を、封止部材3を透過して外部に射出するよう
に揃えて固着する。
As shown in FIG. 3, the mounting base 2C has a comb-teeth-shaped portion for fixing a plurality of semiconductor laser elements 1A, and the laser beam emitting direction of the semiconductor laser element 1A is located at the portion. The sealing member 3 is aligned and fixed so as to be transmitted and emitted to the outside.

【0032】半導体レーザ素子1Aは発光部が小さく、
単体では空間的コヒーレンシーは高い。しかし、これら
を複数個組合わせるとにより、ある広がりを有した面か
ら放射しているレーザ素子として捕らえることができ
る。従って、これら複数の小さなレーザ素子を総合して
単一のレーザ素子として見たときには、発光部が広く分
散している為、空間的コヒーレンシーは低下したものと
等価になる。また、各半導体レーザ素子1Aの発振波長
も全く同一にならない為、時間的なコヒーレンシーも低
下し干渉縞の明暗比が低下することになる。
The semiconductor laser device 1A has a small light emitting portion,
The spatial coherency is high by itself. However, by combining a plurality of these, it can be regarded as a laser element emitting from a surface having a certain spread. Therefore, when the plurality of small laser elements are combined and viewed as a single laser element, the light emitting portions are widely dispersed, and thus the spatial coherency is equivalent to the lowered one. Moreover, since the oscillation wavelengths of the respective semiconductor laser elements 1A are not completely the same, the temporal coherency is lowered and the contrast ratio of the interference fringes is lowered.

【0033】また、図3では全てのレーザ素子を電極8
Aを介して一緒に駆動しているが、レーザ素子単体での
寄生容量は小さいので、各レーザ素子毎に駆動回路を設
けて発光させることにより、より高い周波数までの変調
が可能な光源とすることができる。
Further, in FIG. 3, all the laser elements are connected to the electrodes 8
Although they are driven together via A, since the parasitic capacitance of the laser element alone is small, a drive circuit is provided for each laser element to emit light, thereby providing a light source capable of modulation up to a higher frequency. be able to.

【0034】更に、封止部材3を実施例1で説明した光
散乱機能を持たせたシリコン板、或いはホログラム板で
構成しても良い。
Further, the sealing member 3 may be composed of a silicon plate having a light scattering function described in the first embodiment or a hologram plate.

【0035】尚、半導体レーザ素子1Aの配置としては
線状と平面状とが考えられるが、より好ましくは平面状
に配置するほうが良い。また、個別のレーザ素子に替わ
って、一つのチップに複数個のレーザ素子を完全に分離
して作成したものであっても良い。
The semiconductor laser element 1A may be arranged in a linear shape or a planar shape, but it is more preferable to arrange it in a planar shape. Further, instead of individual laser elements, a plurality of laser elements may be completely separated and formed on one chip.

【0036】[0036]

【発明の効果】本発明によれば半導体レーザの超高速変
調特性を有し、一方では眼に対して悪影響を与える程の
集光性はないが、比較的距離が短い光空間伝送に用いて
十分な空間的コヒーレンシーを有する光を発生する光源
を提供するものであり、距離が短く大容量で周波数の高
い光空間伝送に用いて効果が大きい。
EFFECTS OF THE INVENTION According to the present invention, the semiconductor laser has an ultra-high-speed modulation characteristic, and on the other hand, it does not have a converging property enough to adversely affect the eyes. The present invention provides a light source that generates light having sufficient spatial coherency, and is highly effective when used for optical space transmission with a short distance, large capacity, and high frequency.

【0037】波長1.4μm〜1.6μmの光は、屋内
で使われる蛍光灯の発光スペクトルから外れており簡単
なフィルターで信号光と妨害光とを分離することがで
き、光でのS/Nの悪化を防止することができる。
Light having a wavelength of 1.4 μm to 1.6 μm is out of the emission spectrum of a fluorescent lamp used indoors, and the signal light and the interfering light can be separated by a simple filter. It is possible to prevent the deterioration of N.

【0038】半導体レーザと空間的コヒーレンシーを下
げる手段が同一の収納容器に相対的位置関係が定められ
て固着されており、更に、収納容器から空間的コヒーレ
ンシーの高いレーザ光が放出されることのない構造であ
るから、本発明による半導体レーザ装置を空間的コヒー
レンシーの低い光源として単体で扱うことができると共
に、眼に対する危険性を考慮する必要はない。
The semiconductor laser and the means for lowering the spatial coherency are fixed and fixed in the same container with a relative positional relationship, and the laser beam having high spatial coherency is not emitted from the container. Due to the structure, the semiconductor laser device according to the present invention can be handled alone as a light source with low spatial coherency, and it is not necessary to consider the danger to the eyes.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による半導体レーザ装置の第一の実施
例を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a first embodiment of a semiconductor laser device according to the present invention.

【図2】 本発明による半導体レーザ装置の第二の実施
例を示す概略断面図である。
FIG. 2 is a schematic sectional view showing a second embodiment of the semiconductor laser device according to the present invention.

【図3】 本発明による半導体レーザ装置の第三の実施
例を示す概略断面図である。
FIG. 3 is a schematic sectional view showing a third embodiment of the semiconductor laser device according to the present invention.

【図4】 従来の半導体レーザ装置を示す概略断面図で
ある。
FIG. 4 is a schematic cross-sectional view showing a conventional semiconductor laser device.

【図5】 光源の空間的コヒーレンシーと指向性につい
て説明するための図であって、(a)は空間的コヒーレ
ンシーの低い光源の場合、(b)は空間的コヒーレンシ
ーの高い光源の場合を示す。
FIG. 5 is a diagram for explaining spatial coherency and directivity of a light source, where (a) shows a case of a light source with low spatial coherency and (b) shows a case of a light source with high spatial coherency.

【図6】 光源の空間的コヒーレンシーと集光性につい
て説明するための図であって、(a)は空間的コヒーレ
ンシーの低い光源の場合、(b)は空間的コヒーレンシ
ーの高い光源の場合を示す。
6A and 6B are diagrams for explaining the spatial coherency and the light collecting property of the light source, where FIG. 6A shows a case of a light source having a low spatial coherency, and FIG. 6B shows a case of a light source having a high spatial coherency. .

【図7】 眼の角膜から入った光の眼底までの透過率と
眼底での吸収率を示す図である。
FIG. 7 is a diagram showing the transmittance of light entering the cornea of the eye to the fundus and the absorption rate of the light at the fundus.

【符号の説明】[Explanation of symbols]

1、1A 半導体レーザ素子 2、2A、2B、2C 装着台 3、3A 封止部材 4 散乱面 5 ケース基台 6 キャップ 7 反射部材 8A、8B 電極 9 絶縁体 10A、10B リード線 1, 1A Semiconductor laser device 2, 2A, 2B, 2C Mounting base 3, 3A Sealing member 4 Scattering surface 5 Case base 6 Cap 7 Reflecting member 8A, 8B Electrode 9 Insulator 10A, 10B Lead wire

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を放射する窓構造を具備した収
納容器に半導体レーザを収納した半導体レーザ装置にお
いて、 前記レーザ光が前記窓構造を透過する際に、前記レーザ
光の空間的コヒーレンシーが低下する封止部材で前記窓
構造を形成すると共に、 前記半導体レーザの発振波長を1.4μmないし1.6
μmで構成したことを特徴とする半導体レーザ装置。
1. A semiconductor laser device in which a semiconductor laser is housed in a housing container having a window structure for emitting laser light, wherein the spatial coherency of the laser light is reduced when the laser light passes through the window structure. The window structure is formed by a sealing member for controlling the oscillation wavelength of the semiconductor laser from 1.4 μm to 1.6 μm.
A semiconductor laser device characterized in that the semiconductor laser device is configured by μm.
【請求項2】 前記封止部材を光散乱板で構成したこと
を特徴とする、請求項1に記載の半導体レーザ装置。
2. The semiconductor laser device according to claim 1, wherein the sealing member is composed of a light scattering plate.
【請求項3】 前記封止部材をシリコン板で構成したこ
とを特徴とする、請求項1に記載の半導体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein the sealing member is made of a silicon plate.
【請求項4】 前記封止部材をホログラム板で構成した
ことを特徴とする、請求項1に記載の半導体レーザ装
置。
4. The semiconductor laser device according to claim 1, wherein the sealing member is composed of a hologram plate.
【請求項5】 レーザ光を放射する窓構造を具備した収
納容器に半導体レーザを収納した半導体レーザ装置にお
いて、 前記収納容器の前記窓構造とは反対側の半導体レーザ素
子端面から放射するレーザ光を反射する反射部材を、前
記半導体レーザに対して前記窓構造とは反対側に設け、 前記反射部材で反射したレーザ光が前記窓構造を透過し
て前記収納容器の外部に出射する構成にすると共に、 前記半導体レーザの発振波長を1.4μmないし1.6
μmで構成したことを特徴とする半導体レーザ装置。
5. A semiconductor laser device in which a semiconductor laser is housed in a container having a window structure for emitting a laser beam, wherein laser light emitted from an end face of the semiconductor laser element opposite to the window structure of the container is provided. A reflecting member for reflecting is provided on the side opposite to the window structure with respect to the semiconductor laser, and the laser light reflected by the reflecting member passes through the window structure and is emitted to the outside of the storage container. The oscillation wavelength of the semiconductor laser is 1.4 μm to 1.6
A semiconductor laser device characterized in that the semiconductor laser device is configured by μm.
【請求項6】 前記反射部材は、レーザ光が反射する際
に、前記レーザ光の空間的コヒーレンシーが低下する構
造であることを特徴とする、請求項5に記載の半導体レ
ーザ装置。
6. The semiconductor laser device according to claim 5, wherein the reflection member has a structure in which the spatial coherency of the laser light is reduced when the laser light is reflected.
【請求項7】 複数個の半導体レーザを、収納容器内部
にレーザの放射方向を前記窓構造の方向に一致させて配
設し、 前記半導体レーザを同時に点灯して、複数のレーザ光を
前記収納容器の外部に出射する構造にしたことを特徴と
する半導体レーザ装置。
7. A plurality of semiconductor lasers are arranged inside a storage container such that the emission directions of the lasers coincide with the direction of the window structure, the semiconductor lasers are simultaneously turned on, and the plurality of laser beams are stored in the storage container. A semiconductor laser device having a structure for emitting light to the outside of a container.
【請求項8】 前記複数個の半導体レーザの発振波長を
1.4μmないし1.6μmで構成したことを特徴とす
る、請求項7に記載の半導体レーザ装置。
8. The semiconductor laser device according to claim 7, wherein the oscillation wavelengths of the plurality of semiconductor lasers are 1.4 μm to 1.6 μm.
【請求項9】 前記複数個の半導体レーザの各々を、個
別の駆動回路で駆動する構成にしたことを特徴とする、
請求項7に記載の半導体レーザ装置。
9. A configuration in which each of the plurality of semiconductor lasers is driven by an individual drive circuit,
The semiconductor laser device according to claim 7.
JP6780495A 1995-03-27 1995-03-27 Semiconductor laser device Expired - Fee Related JP3577773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6780495A JP3577773B2 (en) 1995-03-27 1995-03-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6780495A JP3577773B2 (en) 1995-03-27 1995-03-27 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH08264885A true JPH08264885A (en) 1996-10-11
JP3577773B2 JP3577773B2 (en) 2004-10-13

Family

ID=13355515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6780495A Expired - Fee Related JP3577773B2 (en) 1995-03-27 1995-03-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3577773B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060711A1 (en) * 1999-04-05 2000-10-12 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
JP2001148515A (en) * 1999-11-22 2001-05-29 Sharp Corp Light-emitting device, manufacturing method therefor, and electronic equipment mounted with the light- emitting device
JP2001156378A (en) * 1999-11-29 2001-06-08 Sharp Corp Light-emitting device and electronic equipment on which light-emitting device is loaded
JP2001160647A (en) * 1999-09-24 2001-06-12 Sharp Corp Semiconductor laser device, optical transmission device, optical transmission system, electronic apparatus, control unit, connector, communication device, optical transmission method and data transmitting and receiving method
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2005191483A (en) * 2003-12-26 2005-07-14 Sharp Corp Light-emitting device
US7295592B2 (en) 2002-03-08 2007-11-13 Sharp Kabushiki Kaisha Light source device and optical communication module employing the device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
WO2011117934A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Light emitting device and backlight module using same
JP2011243369A (en) * 2010-05-17 2011-12-01 Sharp Corp Light-emitting device, illumination device, and vehicle headlight
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
JP2014531132A (en) * 2011-10-20 2014-11-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram OptoSemiconductors GmbH Radiation emission parts
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
DE102016116439A1 (en) 2016-09-02 2018-03-08 Osram Opto Semiconductors Gmbh Arrangement with a housing with a radiation-emitting optoelectronic component

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778574B1 (en) 1999-04-05 2004-08-17 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
EP1746692A2 (en) 1999-04-05 2007-01-24 Sharp Kabushiki Kaisha Semiconductor laser device including a resin section
EP1746692A3 (en) * 1999-04-05 2007-03-21 Sharp Kabushiki Kaisha Semiconductor laser device including a resin section
WO2000060711A1 (en) * 1999-04-05 2000-10-12 Sharp Kabushiki Kaisha Semiconductor laser device and its manufacturing method, and optical communication system and optical sensor system
JP2001160647A (en) * 1999-09-24 2001-06-12 Sharp Corp Semiconductor laser device, optical transmission device, optical transmission system, electronic apparatus, control unit, connector, communication device, optical transmission method and data transmitting and receiving method
JP2001148515A (en) * 1999-11-22 2001-05-29 Sharp Corp Light-emitting device, manufacturing method therefor, and electronic equipment mounted with the light- emitting device
JP2001156378A (en) * 1999-11-29 2001-06-08 Sharp Corp Light-emitting device and electronic equipment on which light-emitting device is loaded
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
US7295592B2 (en) 2002-03-08 2007-11-13 Sharp Kabushiki Kaisha Light source device and optical communication module employing the device
JP4572071B2 (en) * 2003-12-26 2010-10-27 シャープ株式会社 Light emitting element
JP2005191483A (en) * 2003-12-26 2005-07-14 Sharp Corp Light-emitting device
JP2008282984A (en) * 2007-05-10 2008-11-20 Nichia Corp Semiconductor light-emitting device
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
WO2011117934A1 (en) * 2010-03-25 2011-09-29 パナソニック株式会社 Light emitting device and backlight module using same
JP2011243369A (en) * 2010-05-17 2011-12-01 Sharp Corp Light-emitting device, illumination device, and vehicle headlight
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10281102B2 (en) 2010-10-29 2019-05-07 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10465873B2 (en) 2010-10-29 2019-11-05 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
JP2014531132A (en) * 2011-10-20 2014-11-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram OptoSemiconductors GmbH Radiation emission parts
US9379517B2 (en) 2011-10-20 2016-06-28 Osram Opto Semiconductors Gmbh Radiation-emitting component
DE102016116439A1 (en) 2016-09-02 2018-03-08 Osram Opto Semiconductors Gmbh Arrangement with a housing with a radiation-emitting optoelectronic component

Also Published As

Publication number Publication date
JP3577773B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JPH08264885A (en) Semiconductor laser device
US6005262A (en) Flip-chip bonded VCSEL CMOS circuit with silicon monitor detector
US3609706A (en) Method and apparatus for generating three-dimensional patterns
EP0055317A1 (en) Electrochromic display module and reflective projection system therefor
CN100489654C (en) Laser projector
JP2004281932A (en) Laser light emitting module, window cap, laser pointer, and light emitting module
JP5722068B2 (en) Light source device, lighting device and vehicle headlamp
US20040227998A1 (en) Lens, light irradiation apparatus, and laser pointer
KR102295253B1 (en) light irradiation device
CN113534587B (en) Laser and projection apparatus
US20200201161A1 (en) Laser array, laser source and laser projection device
CN113534588B (en) Laser and projection apparatus
JPH08202247A (en) Semiconductor laser device and production of hologram plate used for it
JP3606023B2 (en) Optical module
CN117111391A (en) Laser array, laser light source and laser projection equipment
CN112393692B (en) Laser projection module, image acquisition module, depth camera and electronic equipment
JPH1187782A (en) Light emitting diode
US5883915A (en) Longitudinally pumped laser
JP2623093B2 (en) Laser optics
CN210323743U (en) Light source device and projection system
CN110266379B (en) Backlight monitoring optical assembly
RU94032157A (en) METHOD AND DEVICE FOR RECORDING INFORMATION
CN219623827U (en) Medical light source
US20240110687A1 (en) Illumination apparatus
CN218647239U (en) Aerial imaging device and vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees