WO2011117555A1 - Dispositif d'inversion de poussée - Google Patents

Dispositif d'inversion de poussée Download PDF

Info

Publication number
WO2011117555A1
WO2011117555A1 PCT/FR2011/050657 FR2011050657W WO2011117555A1 WO 2011117555 A1 WO2011117555 A1 WO 2011117555A1 FR 2011050657 W FR2011050657 W FR 2011050657W WO 2011117555 A1 WO2011117555 A1 WO 2011117555A1
Authority
WO
WIPO (PCT)
Prior art keywords
front frame
cover
hood
movable
nozzle
Prior art date
Application number
PCT/FR2011/050657
Other languages
English (en)
Inventor
Pierre Caruel
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Priority to US13/635,951 priority Critical patent/US20130009005A1/en
Priority to BR112012023764A priority patent/BR112012023764A2/pt
Priority to EP11717298A priority patent/EP2550471A1/fr
Priority to CA2792973A priority patent/CA2792973A1/fr
Priority to RU2012144581/06A priority patent/RU2571705C2/ru
Priority to CN201180014886.XA priority patent/CN102812273B/zh
Publication of WO2011117555A1 publication Critical patent/WO2011117555A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/003Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/80Couplings or connections
    • F02K1/805Sealing devices therefor, e.g. for movable parts of jet pipes or nozzle flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/28Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow
    • F02K1/32Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto using fluid jets to influence the jet flow for reversing thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/68Reversers mounted on the engine housing downstream of the fan exhaust section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a thrust reversal device of a nacelle of an aircraft.
  • the invention also relates to a nacelle comprising such a device and a method implemented by such a device.
  • An aircraft is driven by several turbojet engines each housed in a nacelle also housing a set of ancillary actuating devices related to its operation and providing various functions when the turbojet engine is in operation or stopped.
  • ancillary actuating devices include, in particular, a mechanical thrust reversal system.
  • a nacelle generally has a tubular structure comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section housing the thrust reverser means and intended to surround the engine room. combustion of turbojet engine and, generally terminated by an ejection nozzle located downstream of the turbojet engine.
  • This nacelle is intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air from the combustion chamber of the turbojet engine, and a flow of cold air circulating outside the turbojet engine through an annular channel called vein.
  • the thrust reversal device is, during landing of the aircraft, intended to improve the braking capacity thereof by redirecting forward at least a portion of the thrust generated by the turbojet engine.
  • the thrust reverser device obstructs the stream of cold air flow and directs the latter towards the front of the nacelle, thereby generating a counter-thrust which is added to the braking of the wheels of the aircraft, the means implemented to achieve this reorientation of the cold air flow vary depending on the type of inverter.
  • an inverter comprises a movable cover movable between, on the one hand, an extended position in which it opens in the nacelle a passage for the flow of deflected air, and secondly , a retraction position in which it closes this passage.
  • This hood can perform a deflection function or simply activation of other deflection means.
  • the reorientation of the air flow is carried out by deflection grids, associated with inversion flaps, the hood having a simple sliding function to discover or cover these deflection grilles.
  • the inversion flaps form locking doors that can be activated by the sliding of the hood causing a closing of the vein downstream of the grids, so as to optimize the reorientation of the cold air flow.
  • the deflection grids are attached to the turbojet engine casing and the median section of the nacelle using a front frame.
  • the sliding cowl belongs to the rear section and has a downstream side forming the ejection nozzle for channeling the ejection of the air flows.
  • the optimum section of the ejection nozzle can be adapted according to the different flight phases, namely the take-off, climb, cruise, descent and landing phases of the aircraft.
  • An object of the present invention is to overcome these disadvantages.
  • the invention proposes a thrust reverser device comprising an upstream structure comprising a front frame, a cover, said cover being extended by a nozzle of variable section, said cover being movable in translation towards at least one deployed position causing a variation of the nozzle section and a retracted position in which the nozzle is in a position in which it provides aerodynamic continuity of the hood, said device being remarkable in that at least a part of the frame before is movable in translation with the hood during its displacement to a position causing a variation of the nozzle section.
  • the geometrical tolerances and the relative deformations between the movable cowl and the fixed structure comprising the front frame have less impact during movements of said hood to vary the section of the nozzle, in the sense that the hood no longer moves relative to the front frame during operation in the nozzle variation mode and that the functional clearance between these two parts can be selected at a lower value.
  • a device according to the invention may comprise one or more of the following characteristics, taken individually or in combination technically possible:
  • the entire front frame is movable in translation with the hood during its movement to a position causing a variation of the nozzle section;
  • the front frame comprising a cover panel with a fan casing and a deflection edge, said panel and at least a portion of the deflection edge are movable in translation with the hood during its displacement to a position causing a variation of the nozzle section;
  • the front frame is mounted on at least one guide rail placed in the plane of the cover panel;
  • the front frame is able to move away from the hood during a movement of the cover to a position ensuring a reverse thrust of the device.
  • the invention also relates to a nacelle comprising a thrust reverser device as mentioned above and a fan casing remarkable in that the fan casing comprises an extension structure upstream of the front frame adapted to receive at least partly the cover panel and ensure its movement inside the extension structure.
  • a nacelle according to the invention may comprise one or more of the following characteristics, taken in isolation or in combination technically possible:
  • the extension structure has dimensions adapted to allow longitudinal movement of the inner cover panel upstream and downstream relative to the position of the front frame corresponding to the retracted position of the cover;
  • the interface between the cover panel and the extension structure comprises sliding sealing means
  • the nacelle further comprises a removable axial abutment adapted to limit the downstream movement of the cover panel;
  • the nacelle further comprises removable locking means of the hood and the front frame.
  • the invention also relates to a method implemented with a thrust reverser device as aforesaid in which at least a portion of the front frame is moved when the cap is moved to a position causing a variation of the nozzle section.
  • FIG. 1 shows a partial sectional view of a nacelle of an aircraft according to the present invention
  • FIG. 2 is a sectional view of a first embodiment of a thrust reverser device according to the present invention
  • FIG. 3 and 4 are sectional views respectively of a second and a third embodiment of a thrust reverser device according to the present invention.
  • FIGS 5, 5b, 5c and 6 are sectional views of a thrust reverser device according to Figure 2, wherein the nozzle has, respectively, a reduced section, normal, increased and reverse jet;
  • FIG. 7 to 9 illustrate sectional views of successive steps of a maintenance method of a thrust reverser device according to the invention
  • FIGS. 10a and 10b are an alternative embodiment of the figures
  • a nacelle 1 is intended to constitute a tubular housing for a turbojet engine and serves to channel the air flows that it generates by means of blades of a fan 2 that is to say a flow of hot air passing through a combustion chamber and a cold air flow circulating outside the turbojet engine.
  • the nacelle 1 generally has a structure comprising an upstream section 3 forming an air inlet, a central section 4 surrounding the turbojet fan and a downstream section 5 surrounding the turbojet engine.
  • the downstream section 5 comprises an external structure 1 1 comprising a thrust reverser device 20 and an internal engine fairing structure 10 defining with the external structure 1 1 a vein 13 intended for the circulation of a cold stream in the case of the turbojet turbojet engine nacelle as presented here.
  • the downstream section 10 further comprises a front frame 30, a hood
  • the front frame 30 is extended by a hood 40 slidably mounted along the longitudinal axis of the nacelle.
  • the front frame 30 supports a plurality of deflection grids
  • the front frame 30 includes a front panel (not shown) for attaching the center section of the basket to a structural member (not shown). It is called a sail belonging to the front frame. This structural element allows possible resistance to fire.
  • the front frame 30 also includes a deflection edge member 31 providing the aerodynamic line.
  • This element 31 is extended at these two ends by covering panels 32, 3 ensuring the overlap between the front frame 30 and respectively the fan casing 6 and the median section of the pod 4. These panels will be described in more detail with reference in Figure 2.
  • the interface between the front frame 30 and the mobile hood 40 is conventional and known to those skilled in the art.
  • a seal 15 is placed at the interface between the front frame 30 and the upstream portion of the hood 40 (see FIG. 2).
  • the cover 40 movable meanwhile, is intended to be actuated in a substantially longitudinal direction of the nacelle 1 between a closed position in which it comes in partial overlap of the front frame 30 and ensures the aerodynamic continuity of the outer lines of the section downstream 10 and an open position in which it is spaced from the front frame 30, then opening a passage in the nacelle by discovering the airflow deflection grids.
  • the passage allows the secondary flow of the turbojet engine to escape at least partially, this portion of flux being redirected towards the front of the nacelle 1 by the deflection grids, thereby generating a counter-thrust capable of aiding braking of the plane.
  • the thrust reverser device 20 comprises a plurality of inversion flaps 21, distributed around the circumference of the inner cover 40 of the inverter 20, and each mounted pivotally by one end about an axis of articulation, on the cover 40 sliding between a retracted position in which the flap 21 closes the opening and ensures the internal aerodynamic continuity of the vein 13 and an extended position in which, in situation of reverse thrust, it at least partially closes the vein 1 3 to deflect a flow of gas to the grids.
  • Such an installation can be carried out conventionally with the aid of a set of connecting rods 22 terminated by a spring blade 23.
  • the sliding cover 40 forms all or part of a downstream part of the nacelle 1, the flaps 21 then being retracted into the sliding cover 40 which closes the gateway.
  • the inversion flaps 21 can remain in the retracted position when the movable cover 40 is displaced from the stroke required for the variation of the nozzle section 41, and begin their pivoting beyond only when the spring 23 is fully compressed.
  • the sliding cover 40 is moved downstream position and the flaps 21 pivot in the closed position so as to deflect the secondary flow to the grids and to form an inverted flow guided by the grids.
  • the sliding cover 40 has a downstream side forming the exhaust nozzle 41 for channeling the ejection of the air flows.
  • the optimum section of the exhaust nozzle 41 can be adapted according to the different phases of flight, namely the take-off, climb, cruise, descent and landing phases of the aircraft.
  • the movable hood 40 is thus movable in a nozzle section variation position, namely at least one nozzle section decrease position and a nozzle section increase position.
  • the nozzle 41 may comprise a series of movable panels rotatably mounted at a downstream end of the movable cap 40 and distributed over the periphery of the ejection nozzle section 41.
  • Each panel is adapted to, on the one hand, pivot to a position causing a variation of the section of the nozzle 41 and, on the other hand, pivot to a position in which they ensure the aerodynamic continuity of the hood.
  • Each panel is carried by the movable hood 40 via pivot points along an axis perpendicular to the longitudinal axis of the nacelle with the inner part of the mobile cover 40 and with said movable panel.
  • the passage from one position to another of a movable panel is controlled by actuating means connected to the panel by means of a drive system 60 consisting for example of driving rods.
  • the actuating means 50 are able to activate the displacement of the movable cover 40 as well as the pivoting of the panel towards a position causing the variation of the section of the nozzle 41.
  • Moving the movable cover 40 can thus be done by a rail / slider system known to those skilled in the art or any other suitable actuating means 50 comprising at least one electric, hydraulic or pneumatic linear actuator.
  • At least part of the front frame 30 is movable in translation with the cover 40 during its displacement towards a position causing a variation of the nozzle section 41.
  • the front frame 30 is adapted to slide together with the cover 40 movable between the extreme positions of section variation and to deviate from the cover 40 when moving the cover 40 to a thrust reverser position.
  • Two independent actuating systems can be considered or a single system capable of independently achieving the movement of the front frame 30 or the movable cowl 40, such as a telescopic jack.
  • the entire front frame 30 including the cover panels 32, 33 with the blower housing 6 and the deflection grilles are movable in a manner that is translation.
  • such a sliding front frame does not modify its interface with the movable cover 40, in particular for the management of the sealing and positioning tolerances.
  • the interface between the front frame 30 and the fan casing 6 is the following. As illustrated in FIG. 2, the interface between the fan casing 6 and the movable front frame 30 is slippery with overlapping provided by the above-mentioned cover panels 32, 33.
  • the fan casing 6 is extended, in its internal part, downstream, by an extension structure 60 so as to ensure the overlap with the movable front frame 30 and in particular the internal cover panel 32 of the front frame 30.
  • This extension structure 60 has a section of generally rectangular shape with a downstream opening adapted for the passage of the inner cover panel 32 of the front frame 30.
  • the dimensions of the extension structure 60 are adapted to allow longitudinal displacement of the inner cover panel 32 upstream and downstream relative to the position of the front frame 30 corresponding to the position of the cover 40 associated with the nominal section.
  • a sliding seal 62 seals between the extension structure 60 of the fan casing 6 and the movable front frame 30. This seal 62 is extended to the seal located between the movable cover 40 and the front frame 30, and slides along the reactor mast (not shown).
  • the extension structure 60 further comprises an axial stop 63 to prevent movement of the front frame 30 beyond a position corresponding to a position of the hood 40 assigned to a maximum increase of nozzle section 41 and to take the axial forces from grids in reverse jet.
  • This abutment 63 of general section I is placed at the opening required for the passage of the inner cover panel 32 of the front frame 30.
  • Such a stop 63 advantageously allows the front frame 30 to remain in contact with the extension structure 60 of the fan casing 6 during the thrust reversal phase for which the cover 40 is moved in translation further downstream, in order to allow the flaps to pivot inversion 21 in a closed position of the vein 13 of cold flow and the complete clearance of the passage to the deflection grids.
  • the geometric tolerances and relative deformations between the movable cover 40 and the fixed front structure of the state of the art do not disturb plus closing the hood 40 on the front frame 30 since the latter moves partly with the hood 40 in the nozzle section variation phases.
  • the front frame 30 can be mounted on at least one rail placed in the plane of the grids and, preferably on two rails, one of which is placed in the plane of the internal cover panel 32.
  • Each rail can slide directly on the reactor mast so as to allow the retraction of the grids in the case where the structure of the inverter is only one part and must be translated to give access to the engine equipment.
  • two rails are placed in the upper and lower beams.
  • the front frame 30 comprises actuating means adapted to actuate the front frame 30 relative to the fan casing 6 or to a part which is integral therewith.
  • Non-limiting examples include hydraulic, pneumatic or electric actuators or motorized connecting rod screws.
  • the movable hood 40 can be actuated either with respect to the fan casing, or preferentially with respect to the front frame 30.
  • the actuators of the movable cover 40 remain stationary during the variable nozzle variation phase and the hood 40 moves in concert with the front frame 30 through the means of actuating the front frame 30.
  • the movable cover 40 can be locked with respect to the front frame 30 in a direct jet and this for all the nozzle positions, in order to preserve two lines of defense against an inadvertent tripping in flight of the inversion. thrust.
  • the movable front frame 30 and the movable cover 40 can thus be connected by conventional latching locking means 70 in the actuator or hooks connecting the two structures.
  • Such locking means 70 are adapted to lock the cover 40 movable with the front frame 30 during the phases of nozzle section variation 41 direct jet and to release the cover 40 mobile reverse jet during the reverse thrust.
  • the fan housing extension structure 60 is integral with the beams of the inverter.
  • the sliding seal 62 sealing between the extension of the fan casing 6 and the movable front frame 30 slides, meanwhile, along the upper and / or lower bifurcation.
  • a second embodiment proposes that a front frame portion 30 only be movable in translation with the movable hood 40, namely the internal cover panel 32 and the deflection edge portion 31 defined until to the seal 15 between the front frame 30 and the hood 40.
  • the operating principle of the thrust reverser device 20 is as follows.
  • the cover 40 In direct jet and the nozzle 41 being in normal section position, namely ensuring the aerodynamic continuity of the cover 40, the cover 40 is in a closed position ensuring the aerodynamic continuity with the front frame 30. It is locked with the latter ( Figure 5b) with the locking means 70 above.
  • the movable hood 40 moves upstream of the nacelle causing a decrease in the nozzle section 41.
  • the front frame 30 locked with the movable hood 40 also moves upstream of the nacelle, the inner cover panel 32 moving in the extension structure 60 of the fan casing 6.
  • the flaps 21 in turn retain their position ensuring the aerodynamic continuity of the inner cover 40.
  • the front frame 30 is in a position of abutment against the extension structure 60 of the fan casing 6.
  • the cover 40 is released from the front frame 30 by disengaging the locking means 70, this to allow its further displacement downstream of the nacelle in a position in which it discovers the deflection grids and causes the pivoting of the flaps 21 reverse thrust in the vein to redirect air from the vein to the grids.
  • FIGS. 7 to 9 show a first embodiment of a method of maintenance of a thrust reverser device 20 according to the invention, allowing access to the equipment housed inside the nacelle. 1 to ensure their maintenance by translation of all moving parts.
  • the displacement is ensured by the stroke of the actuators of the front frame 30.
  • a suitable space E is thus available to access the equipment of the nacelle for maintenance, as shown in FIG. 9.
  • This method offers the advantage of using the actuators already in place in the device and to preserve the structural continuity of the front frame 30.
  • Figures 10a and 10b illustrate a second embodiment of a maintenance method of a thrust reverser device according to the invention.
  • the inner cover panel 32 is separated from the rest of the front frame 30 to access the equipment of the nacelle.
  • a removable axial interface 80 of the assembly type comprising an inverted U-shaped structure 81 cooperating with a plurality of grooves 82, 83 respectively carried by the internal covering panel 32 and the front frame 30 coming into engagement as shown in Figure 10a.
  • the front frame assembly 30 is moved without translation without an internal cover panel 32, a movable cover 40 and deflection grids downstream of the platform 1 by means of an actuating system dedicated to maintenance. and known to those skilled in the actuator type art 90.
  • this maintenance actuator 90 is placed near or even inside the axis of the hinge of the U-shaped structure 80, so as not to interfere with the trajectory of this structure 80 during opening. or closing the hood 40.
  • This embodiment offers the advantage of segregating the variable nozzle function to that of maintaining and maintaining the support of the seal sliding seal even during maintenance operations to limit the risk of damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Body Structure For Vehicles (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un dispositif d'inversion de poussée comprenant une structure amont fixe comprenant un cadre avant (30), un capot (40), ledit capot (40) étant prolongé par une tuyère (41) de section variable, ledit capot (40) étant mobile en translation entre une position déployée entraînant une variation de section de tuyère (41) et une position d'escamotage dans laquelle la tuyère (41) est dans une position dans laquelle elle assure une continuité aérodynamique du capot (40), ledit dispositif étant remarquable en ce qu'au moins une partie du cadre avant (30) est mobile en translation avec le capot (40) lors de son déplacement vers une position entraînant une variation de la section de tuyère.

Description

DISPOSITIF D'INVERSION DE POUSSEE
La présente invention concerne u n d ispositif d' inversion de poussée d'une nacelle d'un aéronef. L'invention concerne également une nacelle comportant un tel dispositif et un procédé mis en œuvre par un tel dispositif.
Un avion est mû par plusieurs turboréacteurs logés chacun dans une nacelle abritant également un ensemble de dispositifs d'actionnement annexes lié à son fonctionnement et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt.
Ces dispositifs d'actionnement annexes comprennent, notamment, un système mécanique d'inversion de poussée.
Plus précisément, une nacelle présente généralement une structure tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval abritant les moyens d'inversion de poussée et destinés à entourer la chambre de combustion de turboréacteur et, généralement terminée par une tuyère d'éjection située en aval du turboréacteur.
Cette nacelle est destinée à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pales de la soufflante en rotation un flux d'air chaud, issu de la chambre de la combustion du turboréacteur, et un flux d'air froid qui circule à l'extérieur du turboréacteur à travers un canal annulaire que l'on appelle veine.
Le dispositif d'inversion de poussée est, lors de l'atterrissage de l'aéronef, destiné à améliorer la capacité de freinage de celui-ci en redirigeant vers l'avant au moins une partie de la poussée générée par le turboréacteur.
Dans cette phase, le dispositif d'inversion de poussée obstrue la veine de flux d'air froid et dirige ce dernier vers l'avant de la nacelle, générant de ce fait une contre-poussée qui vient s'ajouter au freinage des roues de l'aéronef, les moyens mis en œuvre pour réaliser cette réorientation du flux d'air froid varient suivant le type d'inverseur.
Cependant, dans tous les cas, la structure d'un inverseur comprend un capot mobile déplaçable entre, d'une part, une position déployée dans laquelle il ouvre dans la nacelle un passage destiné au flux d'air dévié, et d'autre part, une position d'escamotage dans laquelle il ferme ce passage. Ce capot peut remplir une fonction de déviation ou simplement d'activation d'autres moyens de déviation.
Dans le cas d'un inverseur à grilles de déviation, la réorientation du flux d'air est effectuée par des grilles de déviation, associées à des volets d'inversion, le capot n'ayant qu'une simple fonction de coulissage visant à découvrir ou recouvrir ces grilles de déviation.
Les volets d'inversion, quant à eux, forment des portes de blocage pouvant être activées par le coulissement du capot engendrant une fermeture de la veine en aval des grilles, de manière à optimiser la réorientation du flux d'air froid.
De façon connue, les grilles de déviation sont attachées au carter du turboréacteur et à la section médiane de la nacelle à l'aide d'un cadre avant.
Par ailleurs, outre sa fonction d'inversion de poussée, le capot coulissant appartient à la section arrière et présente un côté aval formant la tuyère d'éjection visant à canaliser l'éjection des flux d'air.
La section optimale de la tuyère d'éjection peut être adaptée en fonction des différentes phases de vol, à savoir les phases de décollage, de montée, de croisière, de descente et d'atterrissage de l'avion.
Elle est associée à un système d'actionnement permettant de faire varier et d'optimiser sa section en fonction de la phase de vol dans laquelle se trouve l'avion.
La variation de cette section, illustrant la variation de section de la veine de flux d'air froid, est effectuée par une translation partielle du capot mobile.
Or, on constate, notamment au cours de déplacement du capot en amont vers la structure fixe du dispositif d'inversion de poussée pour rejoindre sa position d'escamotage, des pertes aérodynamiques à l'interface entre le capot mobile et la structure fixe comprenant le cadre avant et une mise en pression du capot.
Ces pertes aérodynamiques sont dues à un désaffleurement entre les surfaces à l'amont et à l'aval de l'interface entre le capot mobile et le cadre avant.
Des tolérances serrées pour réduire ces pertes et assurer la continuité aérodynamique de la structure fixe et du capot lors du recouvrement de cette dernière par le capot et les déformations relatives entre le capot et le cadre avant rendent l'interface entre le capot et le cadre avant difficile à maîtriser.
Par ailleurs, on constate également un risque d'endommagement fréquent des joints destinés à assurer l'étanchéité de la veine d'air de flux froid que l'on place entre le capot mobile et le cadre avant pour être comprimés dès lors que le capot mobile est translaté dans sa position d'escamotage, ceci diminuant la qualité d'étanchéité de la veine.
Un but de la présente invention est de remédier à ces inconvénients.
A cet effet, l'invention propose un dispositif d'inversion de poussée comprenant une structure amont comprenant un cadre avant, un capot, ledit capot étant prolongé par une tuyère de section variable, ledit capot étant mobile en translation vers au moins une position déployée entraînant une variation de section de tuyère et une position d'escamotage dans laquelle la tuyère est dans u ne position dans laquel le elle assure u ne contin u ité aérodynamique du capot, ledit dispositif étant remarquable en ce qu'au moins une partie du cadre avant est mobile en translation avec le capot lors de son déplacement vers une position entraînant une variation de la section de tuyère.
Grâce à la présente invention, les tolérances géométriques et les déformations relatives entre le capot mobile et la structure fixe comprenant le cadre avant ont moins d'incidence lors des déplacements dudit capot pour faire varier la section de la tuyère, dans le sens où le capot ne se déplace plus relativement au cadre avant lors du fonctionnement en mode de variation de tuyère et que le jeu fonctionnel entre ces deux parties peut être choisi à une valeur plus faible.
Selon des modes particuliers de réalisation de l'invention, un dispositif selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou en combinaison techniquement possibles :
- tout le cadre avant est mobile en translation avec le capot lors de son déplacement vers une position entraînant une variation de la section de tuyère ;
- le cadre avant comprenant un panneau de recouvrement avec un carter de soufflante et un bord de déviation, ledit panneau et au moins une partie du bord de déviation sont mobiles en translation avec le capot lors de son déplacement vers une position entraînant une variation de la section de tuyère ;
- le cadre avant est monté sur au moins un rail de guidage placé dans le plan du panneau de recouvrement ;
- le cadre avant est apte à s'écarter du capot lors d'un déplacement du capot vers une position assurant une inversion de poussée du dispositif.
L'invention concerne également une nacelle comprenant un dispositif d'inversion de poussée tel que précité et un carter de soufflante remarquable en ce que le carter de soufflante comprend une structure d'extension en amont du cadre avant adaptée pour recevoir au moins en partie le panneau de recouvrement et assurer son déplacement à l'intérieur de la structure d'extension.
Selon des modes particuliers de réalisation de l'invention, une nacelle selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes, prises isolément ou en combinaison techniquement possibles :
- la structure d'extension a des dimensions adaptées pour permettre un déplacement longitudinal du panneau de recouvrement interne en amont et en aval par rapport à la position du cadre avant correspondante à la position d'escamotage du capot ;
- l'interface entre le panneau de recouvrement et la structure d'extension comprend des moyens d'étanchéité glissants ;
- la nacelle comprend, en outre, une butée axiale amovible adaptée pour limiter le déplacement en aval du panneau de recouvrement ;
- la nacelle comprend, en outre, des moyens de verrouillage amovibles du capot et du cadre avant.
L'invention concerne également un procédé mis en œuvre avec un dispositif d'inversion de poussée tel que précité dans lequel on déplace au moins une partie du cadre avant lors du déplacement du capot vers une position entraînant une variation de la section de tuyère.
D'autres caractéristiques, buts et avantages de la présente invention, apparaîtront à la lecture de la description détaillée qui va suivre, selon les modes de réalisation donnés à titre d'exemples non limitatifs, et en référence aux dessins annexés sur lesquels :
- la figure 1 représente une vue partielle en coupe d'une nacelle d'un aéronef selon la présente invention ; - la figure 2 est une vue en coupe d'un premier mode de réalisation d'un dispositif d'inversion de poussée selon la présente invention ;
- les figures 3 et 4 sont respectivement des vues en coupe d'un second et d'un troisième mode de réalisation d'un dispositif d'inversion de poussée selon la présente invention ;
- les figures 5, 5b, 5c et 6 sont des vues en coupe d'un dispositif d'inversion de poussée selon la figure 2, dans lequel la tuyère présente, respectivement, une section réduite, normale, augmentée et à jet inversé ;
- les figures 7 à 9 illustrent des vues en coupe d'étapes successives d'un procédé de maintenance d'un dispositif d'inversion de poussée selon l'invention;
- les figures 10a et 10b sont une variante de réalisation des figures
7 à 9. En référence à la figure 1 , une nacelle 1 est destinée à constituer un logement tubulaire pour un turboréacteur double flux et sert à canaliser les flux d'air qu'il génère par l'intermédiaire de pales d'une soufflante 2, à savoir un flux d'air chaud traversant une chambre de combustion et un flux d'air froid circulant à l'extérieur du turboréacteur.
La nacelle 1 possède de façon générale une structure comprenant une section amont 3 formant une entrée d'air, une section médiane 4 entourant la soufflante du turboréacteur et une section aval 5 entourant le turboréacteur.
La section aval 5 comprend une structure externe 1 1 comportant un dispositif d'inversion de poussée 20 et une structure interne 10 de carénage de moteur définissant avec la structure externe 1 1 une veine 13 destinée à la circulation d'un flux froid dans le cas de la nacelle de turboréacteur double flux telle que présentée ici.
La section aval 10 comprend, en outre, un cadre avant 30, un capot
40 mobile et une section de tuyère d'éjection 41 .
Tel qu'illustré sur la figure 1 , le cadre avant 30 est prolongé par un capot 40 monté coulissant le long de l'axe longitudinal de la nacelle.
Le cadre avant 30 supporte une pluralité de grilles de déviation
(non illustrées) logées dans l'épaisseur du capot 40 mobile, lorsque celui-ci est en position de fermeture.
Le cadre avant 30 comprend un panneau avant (non illustré) destiné à fixer la section médiane de la nacelle à un élément structural (non il l ustré) appelé voile con iq ue appartenant au cadre avant. Cet élément structural permet éventuellement la tenue au feu.
Le cadre avant 30 comporte, également, un élément de bord de déviation 31 assurant la ligne aérodynamique.
Cet élément 31 est prolongé à ces deux extrémités par des panneaux de recouvrement 32,33 assurant le recouvrement entre le cadre avant 30 et respectivement le carter de soufflante 6 et la section médiane de la nacelle 4. Ces panneaux seront décrits plus en détails en référence à la figure 2.
L'interface entre le cadre avant 30 et le capot 40 mobile est classique et connu de l'homme du métier.
En particulier, un joint d'étanchéité 15 est placé à l'interface entre le cadre avant 30 et la partie amont du capot 40 (voir figure 2).
Le capot 40 mobile, quant à lui, est destiné à être actionné selon une direction sensiblement longitudinale de la nacelle 1 entre une position de fermeture dans laquelle il vient en recouvrement partiel du cadre avant 30 et assure la continuité aérodynamique des lignes externes de la section aval 10 et une position d'ouverture dans laquelle il est écarté du cadre avant 30, ouvrant alors un passage dans la nacelle en découvrant les grilles de déviation de flux d'air.
Il coulisse classiquement le long d'une poutre (non illustrée) ou du mât réacteur supportant le turboréacteur (non illustré) selon la configuration de la nacelle 1 .
Le passage permet au flux secondaire du turboréacteur de s'échapper au moins partiellement, cette portion de flux étant réorientée vers l'avant de la nacelle 1 par les grilles de déviation, générant de ce fait une contre-poussée apte à aider au freinage de l'avion.
Afin d'augmenter la portion de flux secondaire traversant les grilles, le dispositif d'inversion de poussée 20 comprend une pluralité de volets d'inversion 21 , répartis sur la circonférence du capot 40 interne de l'inverseur 20, et montés chacun pivotant par une extrémité autour d'un axe d'articulation, sur le capot 40 coulissant entre une position rétractée dans laquelle le volet 21 ferme l'ouverture et assure la continuité aérodynamique intérieure de la veine 13 et une position déployée dans laquelle, en situation d'inversion de poussée, il obture au moins partiellement la veine 1 3 en vue de dévier un flux de gaz vers les grilles. Une telle installation peut être réalisée classiquement à l'aide d'un ensemble de bielles 22 terminées par une lame ressort 23.
Lors du fonctionnement du turboréacteur en poussée directe, le capot 40 coulissant forme tout ou partie d'une partie aval de la nacelle 1 , les volets 21 étant alors rétractés dans le capot 40 coulissant qui obture le passage à grilles.
Lors d'une phase de variation de section de tuyère, les volets d'inversion 21 peuvent rester en position rétractée lorsque le capot 40 mobile est déplacé de la course nécessaire à la variation de section de tuyère 41 , et commencer leur pivotement au-delà uniquement lorsque le ressort 23 est entièrement comprimé.
Pour inverser la poussée du turboréacteur, le capot 40 coulissant est déplacé en position aval et les volets 21 pivotent en position d'obturation de manière à dévier le flux secondaire vers les grilles et à former un flux inversé guidé par les grilles.
Par ailleurs, tel que précité, le capot 40 coulissant présente un côté aval formant la tuyère d'éjection 41 visant à canaliser l'éjection des flux d'air.
La section optimale de la tuyère d'éjection 41 peut être adaptée en fonction des différentes phases de vol, à savoir les phases de décollage, de montée, de croisière, de descente et d'atterrissage de l'avion.
La variation de cette section, illustrant la variation de section de la veine de flux d'air froid, est effectuée par une translation partielle du capot 40 mobile.
Le capot 40 mobile est ainsi déplaçable dans une position de variation de section de tuyère, à savoir au moins une position de diminution de section de tuyère et une position d'augmentation de section de tuyère.
Dans une variante de réalisation de la présente invention, la tuyère 41 peut comprendre une série de panneaux mobiles montés en rotation à une extrémité aval du capot 40 mobile et répartis sur la périphérie de la section de tuyère d'éjection 41 .
Chaque panneau est adapté pour, d'une part, pivoter vers une position entraînant une variation de la section de la tuyère 41 et, d'autre part, pivoter vers une position dans laquelle ils assurent la continuité aérodynamique du capot.
Chaque panneau est porté par le capot 40 mobile par l'intermédiaire de points pivot selon un axe perpendiculaire à l'axe longitudinal de la nacelle avec la partie interne du capot 40 mobile et avec ledit panneau mobile.
Le passage d'une position à une autre d'un panneau mobile est commandé par des moyens d'actionnement reliés au panneau par l'interméd iaire d'un système d'entraînement 60 constitué par exemple de bielles d'entraînement.
Les moyens d'actionnement 50 sont aptes à activer le déplacement du capot 40 mobile ainsi que le pivotement du panneau vers une position entraînant la variation de la section de la tuyère 41 .
Ces moyens d'actionnement 50 et le système d'entraînement sont connus de l'homme de l'art et ne seront pas décrits plus en détails par la suite.
Le déplacement du capot 40 mobile peut ainsi se faire par un système de rail/coulisseau connu de l'homme de métier ou tout autre moyen d'actionnement 50 adapté comprenant au moins un actionneur linéaire électrique, hydraulique ou pneumatique.
Selon l'invention, au moins une partie du cadre avant 30 est mobile en translation avec le capot 40 lors de son déplacement vers une position entraînant une variation de la section de tuyère 41 .
Plus précisément, le cadre avant 30 est adapté pour coulisser de concert avec le capot 40 mobile entre les positions extrêmes de variation de section et à s'écarter du capot 40 lors du déplacement du capot 40 vers une positon d'inversion de poussée.
Deux systèmes d'actionnement indépendants peuvent être considérés ou un seul système capable de réaliser indépendamment le mouvement du cadre avant 30 ou du capot mobile 40, comme par exemple un vérin télescopique.
Tel qu'illustré sur la figure 2 dans un premier mode de réalisation de la présente invention, l'ensemble du cadre avant 30 y compris les panneaux de recouvrement 32,33 avec le carter de soufflante 6 ainsi que les grilles de déviation sont mobiles en translation.
Avantageusement, un tel cadre avant 30 coulissant ne modifie pas son interface avec le capot 40 mobile, en particulier pour la gestion de l'étanchéité et des tolérances de positionnement.
Concernant l'interface entre le cadre avant 30 et le carter de soufflante 6, elle est la suivante. Tel qu'illustré sur la figure 2, l'interface entre le carter de soufflante 6 et le cadre avant 30 mobile est glissante avec un recouvrement assuré par les panneaux de recouvrement 32,33 précités.
Plus précisément, le carter de soufflante 6 est prolongé, dans sa partie interne, vers l'aval, par une structure d'extension 60 de façon à assurer le recouvrement avec le cadre avant 30 mobile et, notamment le panneau de recouvrement interne 32 du cadre avant 30.
Cette structure d'extension 60 présente une section de forme générale rectangulaire avec une ouverture en aval adaptée pour le passage du panneau de recouvrement interne 32 du cadre avant 30.
Les dimensions de la structure d'extension 60 sont adaptées pour permettre un déplacement longitudinal du panneau de recouvrement interne 32 en amont et en aval par rapport à la position du cadre avant 30 correspondante à la position du capot 40 associée à la section nominale.
Un joint glissant 62 assure l'étanchéité entre la structure d"extension 60 du carter de soufflante 6 et le cadre avant 30 mobile. Ce joint 62 est prolongé jusqu'au joint situé entre le capot 40 mobile et le cadre avant 30, et glisse le long du mât réacteur (non illustré).
Dans une variante de réalisation, la structure d'extension 60 comprend, en outre une butée axiale 63 afin d'empêcher le mouvement du cadre avant 30 au delà d'une position correspondante à une position du capot 40 affectée à u ne augmentation maximale de section de tuyère 41 et de reprendre les efforts axiaux issus des grilles en jet inverse.
Cette butée 63 de section générale en I est placée au niveau de l'ouverture nécessaire au passage du panneau de recouvrement interne 32 du cadre avant 30.
Elle est destinée à coopérer avec un profilé 64 solidaire du joint d'étanchéité 62 glissant de section en L dont l'une des branches vient en butée contre une partie correspondante de la butée 63 axiale sur la partie aval de la structure d'extension 60, rendant impossible tout déplacement supplémentaire du cadre avant 30.
Une telle butée 63 permet avantageusement au cadre avant 30 de rester en contact avec la structure d'extension 60 du carter de soufflante 6 lors des phase d'inversion de poussée pour lesquels le capot 40 est déplacé en translation plus en aval , ceci afin de permettre le pivotement des volets d'inversion 21 dans une position d'obturation de la veine 13 de flux froid et le dégagement complet du passage vers les grilles de déviation.
Grâce à la présente invention offrant un cadre avant 30 mobile en translation lors des phases de variation de section de tuyère 4, les tolérances géométriques et déformations relatives entre le capot 40 mobile et la structure avant fixe de l'état de l'art ne perturbent plus la fermeture du capot 40 sur le cadre avant 30 puisque ce dernier se déplace en partie avec le capot 40 dans les phases de variation de section de tuyère.
De plus, les parties coulissantes nécessaires à la variation de section de tuyère sont simplifiées par rapport à l'état de l'art puisque l'interface entre le cadre avant 30 mobile et l'extension 60 du carter de soufflante 6 est toujou rs engagée, le joint 62 assu rant l'étanchéité est ainsi toujours en compression, y compris en jet inverse.
Les risques d'endommagement des joints d'étanchéité sont ainsi réduits.
Pour se déplacer en translation, le cadre avant 30 peut être monté sur au moins un rail placé dans le plan des grilles et, de préférence sur deux rails dont l'un est placé dans le plan du panneau de recouvrement interne 32.
Chaque rail peut coulisser directement sur le mât réacteur de façon à permettre l'escamotage des grilles dans le cas où la structure de l'inverseur est en u ne seu l e partie et doit être translatée pou r don ner l 'accès aux équipements moteur.
Dans une variante de réalisation, deux rails sont placés dans les poutres supérieures et inférieures.
Le cadre avant 30 comprend des moyens d'actionnement adaptés pour actionner le cadre avant 30 par rapport au carter de soufflante 6 ou à une pièce qui lui est solidaire.
Ces moyens d'actionnement sont connus de l'homme du métier et ne seront pas détaillés. Dans des exemples non limitatifs, on peut citer des actionneurs hydrauliques, pneumatiques ou électriques ou des vis à bielles motorisées.
Tel que précité, le capot 40 mobile peut être actionné soit par rapport au carter de soufflante, ou préférentiellement par rapport au cadre avant 30.
Dans cette dernière configuration, les actionneurs du capot 40 mobile restent immobiles pendant la phase de variation de tuyère variable et le capot 40 se déplace de concert avec le cadre avant 30 grâce aux moyens d'actionnement du cadre avant 30.
Dans une variante de réalisation, le capot 40 mobile peut être verrouillé par rapport au cadre avant 30 en jet direct et ceci pour toutes les positions de tuyère, afin de conserver deux l ignes de défense face à un déclenchement intempestif en vol de l'inversion de poussée.
Le cadre avant 30 mobile et le capot 40 mobile peuvent ainsi être reliés par des moyens de verrouillage 70 conventionnels de type verrouillage dans l'actionneur ou crochets reliant les deux structures.
De tels moyens de verrouillage 70 sont adaptés pour verrouiller le capot 40 mobile avec le cadre avant 30 lors des phases de variation de section de tuyère 41 en jet direct et à libérer le capot 40 mobile en jet inverse lors de l'inversion de poussée.
Dans une variante de réalisation illustrée sur la figure 3 dans laquelle le dispositif d'inversion de poussée 20 est composé de deux demi inverseurs, la structure d'extension 60 de carter de soufflante 6 est solidaire des poutres de l'inverseur.
Elle comprend dans sa partie amont un couteau 65 de section en U renversé permettant de se loger dans une cannelure portée par le carter de soufflante 6.
Le joint glissant 62 assurant l'étanchéité entre l'extension du carter de soufflante 6 et le cadre avant 30 mobile glisse, quant à lui, le long de la bifurcation supérieure et/ou inférieure.
En référence à la figure 4, un second mode de réalisation propose qu'une partie de cadre avant 30 uniquement soit mobile en translation avec le capot 40 mobile, à savoir le panneau de recouvrement interne 32 et la partie du bord de déviation 31 définie jusqu'au joint d'étanchéité 15 entre le cadre avant 30 et le capot 40.
On l im ite ainsi la ta il le du cadre avant 30 mobile et les efforts associés permettant une réduction de masse et des actionneurs plus petits pour le cadre avant 30 dans le cas où les actionneurs du capot 40 mobile ne lui sont pas connectés.
En référence aux figures 5a, 5b, 5c et 6, le principe de fonctionnement du dispositif d'inversion de poussée 20 selon l'invention est le suivant. En jet direct et la tuyère 41 étant en position de section normale, à savoir assurant la continuité aérodynamique du capot 40, le capot 40 est dans une position de fermeture assurant la continuité aérodynamique avec le cadre avant 30. Il est verrouillé avec ce dern ier (figure 5b) grâce aux moyens de verrouillage 70 précités.
Lors d'une phase de diminution de section de tuyère 41 illustrée sur la figure 5a, le capot 40 mobile se déplace vers l'amont de la nacelle entraînant une diminution de la section de tuyère 41 . Simultanément, le cadre avant 30 verrouillé avec le capot 40 mobile se déplace également vers l'amont de la nacelle, le panneau de recouvrement interne 32 se déplaçant dans la structure d'extension 60 du carter de soufflante 6.
Les volets 21 quant à eux conservent leur position assurant la continuité aérodynamique du capot 40 interne.
Lors d'une phase d'augmentation de section de tuyère 41 illustrée sur la figure 5c, le principe est similaire à la figure 5a à la différence que le capot 40 et le cadre avant 30 se déplacent vers l'aval de la nacelle.
La variation de compression du ressort 23 de la bielle d'entraînement 22 du volet 21 permet d'accommoder la translation de ce dernier en interdisant son ouverture.
En jet inverse, comme illustré sur la figure 6, le cadre avant 30 est dans une position de butée contre la structure d'extension 60 du carter de soufflante 6.
Le capot 40 est libéré du cadre avant 30 en désengageant les moyens de verrouillage 70, ceci afin de permettre son déplacement supplémentaire vers l'aval de la nacelle dans une position dans laquelle il découvre les gril les de déviation et entraîne le pivotement des volets 21 d'inversion de poussée dans la veine afin de rediriger l'air de la veine vers les grilles.
Sur les figures 7 à 9, on observe un premier mode de réalisation d'un procédé de maintenance d'un dispositif d'inversion de poussée 20 selon l'invention, permettant l'accès aux équ ipements logeant à l'intérieur de l a nacelle 1 pour assurer leur maintenance par translation de l'ensemble des parties mobiles.
En premier lieu, on déplace en translation vers l'aval de la nacelle 1 , l'ensemble du cadre avant 30 et du capot 40 mobile ainsi que les grilles de déviation. En fin de course du capot 40 et du cadre avant 30 de variation de section de tuyère comme illustré sur la figure 7, il est nécessaire de déconnecter la butée 63 axiale ainsi que toute source de puissance des actionneurs du capot 40, l ibérant ainsi le cad re avant 30 qui se déplace désormais de concert avec le capot 40 (figure 8).
Le déplacement est assuré par la course des actionneurs du cadre avant 30.
Un espace E adapté est ainsi disponible pour accéder aux équipements de la nacelle pour maintenance, comme illustré sur la figure 9.
Ce procédé offre l'avantage d'utiliser les actionneurs déjà mis en place dans le dispositif et de conserver la continuité structurale du cadre avant 30.
Les figures 10a et 10b illustrent un second mode de réalisation d'un procédé de maintenance d'un dispositif d'inversion de poussée selon l'invention.
Dans ce procédé, on sépare le panneau de recouvrement interne 32 du reste du cadre avant 30 pour accéder aux équipements de la nacelle.
Pour cela, on sépare au niveau d'une interface 80 axiale amovible de type ensemble comprenant une structure en forme de U renversé 81 coopérant avec plusieurs cannelures 82,83 portées respectivement par le panneau de recouvrement interne 32 et le cadre avant 30 venant en prise, comme illustré sur la figure 10a.
Ensuite, il est nécessaire de déconnecter toute source de puissance des actionneurs du capot 40.
Comme illustré sur la figure 10b, on déplace en translation l'ensemble cadre avant 30 sans panneau de recouvrement interne 32, capot 40 mobile et grilles de déviation vers l'aval de la nacelle 1 grâce à un système d'actionnement dédié à la maintenance et connu de l'homme de l'art de type actionneur 90.
De préférence, cet actionneur de maintenance 90 est placé à proximité ou même à l'intérieur de l'axe de la charnière de la structure en U 80, de façon à ne pas interférer avec la trajectoire de cette structure 80 lors de l'ouverture ou fermeture du capot 40.
Ce mode de réalisation offre l'avantage de ségréger la fonction de tuyère variable à celle de maintenance et de conserver l'appui du joint d'étanchéité glissant même pendant les opérations de maintenance pour limiter le risque d'endommagement.

Claims

REVENDICATIONS
1 . Dispositif d'inversion de poussée (20) comprenant une structure amont comprenant un cadre avant (30), un capot (40), ledit capot (40) étant prolongé par une tuyère (41 ) de section variable, ledit capot (40) étant mobile en translation vers au moins une position déployée entraînant une variation de section de tuyère (41 ) et une position d'escamotage dans laquelle la tuyère (41 ) est dans une position dans laquelle elle assure une continuité aérodynamique du capot (40), ledit dispositif étant remarquable en ce qu'au moins une partie du cadre avant (30) est mobile en translation avec le capot (40) lors de son déplacement vers une position entraînant une variation de la section de tuyère.
2. Dispositif selon la revendication 1 caractérisé en ce que tout le cadre avant (30) est mobile en translation avec le capot (40) lors de son déplacement vers une position entraînant une variation de la section de tuyère.
3. Dispositif selon la revendication 1 caractérisé en ce que le cadre avant (30) comprenant un panneau de recouvrement (32) avec un carter de soufflante (6) et un bord de déviation (31 ), ledit panneau (32) et au moins une partie du bord de déviation (31 ) sont mobiles en translation avec le capot (40) lors de son déplacement vers une position entraînant une variation de la section de tuyère.
4. Dispositif selon la revendication 3 caractérisé en ce que le cadre avant (30) est monté sur au moins un rail de guidage placé dans le plan du panneau de recouvrement (32).
5. Dispositif selon l'une des revendications 1 à 4 caractérisé en ce que le cadre avant (30) est apte à s'écarter du capot (40) lors d'un déplacement du capot (40) vers une position assurant une inversion de poussée du dispositif.
6. Nacelle comprenant un dispositif d'inversion de poussée selon la revendication 3 et un carter de soufflante 6 caractérisée en ce que le carter de soufflante 6 comprend une structure d'extension (60) en amont du cadre avant (30) adaptée pour recevoir au moins en partie le panneau de recouvrement (32) et assurer son déplacement à l'intérieur de la structure d'extension (60).
7. Nacelle selon la revendication 6 caractérisée en ce que la structure d'extension (60) a des dimensions adaptées pour permettre un déplacement longitudinal du panneau de recouvrement interne (32) en amont et en aval par rapport à la position du cadre avant (30) correspondante à la position d'escamotage du capot (40).
8. Nacelle selon la revendication 6 caractérisée en ce que l'interface entre le panneau de recouvrement (32) et la structure d'extension (60) comprend des moyens d'étanchéité glissants.
9. Nacelle selon l'une des revendications 6 à 8 caractérisée en ce qu' elle comprend, en outre, une butée axiale amovible adaptée pour limiter le déplacement en aval du panneau de recouvrement (32).
10. Nacelle selon l'une des revendications 6 à 9 caractérisé en ce qu'elle comprend, en outre, des moyens de verrouillage (70) amovibles entre le capot (40) et le cadre avant (30).
1 1 . Procédé mis en œuvre avec un dispositif d'inversion de poussée selon l'une des revendications 1 à 5 dans lequel on déplace au moins une partie du cadre avant (30) lors du déplacement du capot (40) vers une position entraînant une variation de la section de tuyère.
PCT/FR2011/050657 2010-03-25 2011-03-25 Dispositif d'inversion de poussée WO2011117555A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/635,951 US20130009005A1 (en) 2010-03-25 2011-03-25 Reverse thrust device
BR112012023764A BR112012023764A2 (pt) 2010-03-25 2011-03-25 dispositivo de reversão de empuxo, nacela incluindo o mesmo e um invólucro de ventoinha, e método implementado com o mesmo
EP11717298A EP2550471A1 (fr) 2010-03-25 2011-03-25 Dispositif d'inversion de poussée
CA2792973A CA2792973A1 (fr) 2010-03-25 2011-03-25 Dispositif d'inversion de poussee
RU2012144581/06A RU2571705C2 (ru) 2010-03-25 2011-03-25 Реверсор тяги, гондола, содержащая такой реверсор тяги, и способ изменения поперечного сечения сопла, реализуемый с помощью такого реверсора тяги
CN201180014886.XA CN102812273B (zh) 2010-03-25 2011-03-25 推力反向设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052192A FR2957979B1 (fr) 2010-03-25 2010-03-25 Dispositif d'inversion de poussee
FR10/52192 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011117555A1 true WO2011117555A1 (fr) 2011-09-29

Family

ID=42989468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050657 WO2011117555A1 (fr) 2010-03-25 2011-03-25 Dispositif d'inversion de poussée

Country Status (8)

Country Link
US (1) US20130009005A1 (fr)
EP (1) EP2550471A1 (fr)
CN (1) CN102812273B (fr)
BR (1) BR112012023764A2 (fr)
CA (1) CA2792973A1 (fr)
FR (1) FR2957979B1 (fr)
RU (1) RU2571705C2 (fr)
WO (1) WO2011117555A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123388A1 (fr) * 2021-05-31 2022-12-02 Safran Nacelles Ensemble inverseur de poussée pour turboréacteur

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008071B1 (fr) 2013-07-04 2017-07-28 Aircelle Sa Nacelle de turboreacteur a tuyere variable
FR3047522B1 (fr) 2016-02-04 2018-03-16 Safran Aircraft Engines Ensemble propulsif pour aeronef
US10865737B2 (en) * 2017-08-29 2020-12-15 Honeywell International Inc. Hidden linkage for a translating cowl thrust reverser
US11073105B2 (en) * 2018-10-02 2021-07-27 Rohr, Inc. Acoustic torque box
FR3091691A1 (fr) 2019-01-14 2020-07-17 Airbus Operations NACELLE D’UN TURBOREACTEUR COMPORTANT UNE porte d’inversion ET UN SYSTEME D’AIDE AU DEPLOIEMENT De la porte d’inversion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057150A (en) * 1961-03-27 1962-10-09 United Aircraft Corp Two dimensional floating blow-in-door and flap ejector
GB1343888A (fr) * 1970-11-06 1974-01-16
US3797785A (en) * 1972-08-31 1974-03-19 Rohr Industries Inc Thrust modulating apparatus
US5054285A (en) * 1988-12-29 1991-10-08 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Thrust reverser for turbofan engine
EP0779429A2 (fr) * 1995-12-14 1997-06-18 United Technologies Corporation Tuyère à section variable pour turbosoufflante
US5794434A (en) * 1996-10-09 1998-08-18 The Boeing Company Aircraft thrust reverser system with linearly translating inner and outer doors
EP1619376A2 (fr) * 2004-07-23 2006-01-25 General Electric Company Tuyère d'échappement à virole divisée

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829020A (en) * 1973-06-13 1974-08-13 Boeing Co Translating sleeve variable area nozzle and thrust reverser
US5778659A (en) * 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5655360A (en) * 1995-05-31 1997-08-12 General Electric Company Thrust reverser with variable nozzle
US5806302A (en) * 1996-09-24 1998-09-15 Rohr, Inc. Variable fan exhaust area nozzle for aircraft gas turbine engine with thrust reverser
US7127880B2 (en) * 2003-08-29 2006-10-31 The Nordam Group, Inc. Induction coupled variable nozzle
RU2315887C2 (ru) * 2005-12-23 2008-01-27 Открытое акционерное общество "Авиадвигатель" Турбореактивный двигатель сверхвысокой степени двухконтурности
FR2902839B1 (fr) * 2006-06-21 2011-09-30 Aircelle Sa Inverseur de poussee formant une tuyere adaptative
FR2911372B1 (fr) * 2007-01-15 2009-02-27 Aircelle Sa Inverseur de poussee translatable pour moteur a reaction
CN101939528B (zh) * 2007-08-08 2013-07-24 罗尔股份有限公司 具有旁通流的面积可调风扇喷嘴
FR2959532B1 (fr) * 2010-04-30 2013-01-04 Aircelle Sa Nacelle de turboreacteur
US20120079804A1 (en) * 2010-09-30 2012-04-05 Alan Roy Stuart Cowl assembly
FR2987600B1 (fr) * 2012-03-02 2014-02-28 Aircelle Sa Nacelle aplatie de turboreacteur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057150A (en) * 1961-03-27 1962-10-09 United Aircraft Corp Two dimensional floating blow-in-door and flap ejector
GB1343888A (fr) * 1970-11-06 1974-01-16
US3797785A (en) * 1972-08-31 1974-03-19 Rohr Industries Inc Thrust modulating apparatus
US5054285A (en) * 1988-12-29 1991-10-08 Mtu Motoren- Und Turbinen-Union Munchen Gmbh Thrust reverser for turbofan engine
EP0779429A2 (fr) * 1995-12-14 1997-06-18 United Technologies Corporation Tuyère à section variable pour turbosoufflante
US5794434A (en) * 1996-10-09 1998-08-18 The Boeing Company Aircraft thrust reverser system with linearly translating inner and outer doors
EP1619376A2 (fr) * 2004-07-23 2006-01-25 General Electric Company Tuyère d'échappement à virole divisée

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3123388A1 (fr) * 2021-05-31 2022-12-02 Safran Nacelles Ensemble inverseur de poussée pour turboréacteur
WO2022254141A1 (fr) * 2021-05-31 2022-12-08 Safran Nacelles Ensemble inverseur de poussee pour turboreacteur
US12078124B2 (en) 2021-05-31 2024-09-03 Safran Nacelles Thrust reverser assembly for a turbojet engine

Also Published As

Publication number Publication date
US20130009005A1 (en) 2013-01-10
FR2957979B1 (fr) 2012-03-30
RU2571705C2 (ru) 2015-12-20
CN102812273A (zh) 2012-12-05
CA2792973A1 (fr) 2011-09-29
EP2550471A1 (fr) 2013-01-30
BR112012023764A2 (pt) 2016-08-23
CN102812273B (zh) 2015-06-24
FR2957979A1 (fr) 2011-09-30
RU2012144581A (ru) 2014-04-27

Similar Documents

Publication Publication Date Title
EP2739841B1 (fr) Inverseur à grilles mobiles et tuyère variable par translation
EP2117932B1 (fr) Nacelle de moteur a reaction pour un avion
CA2763523A1 (fr) Inverseur de poussee pour nacelle de turboreacteur double flux
EP0836000B1 (fr) Inverseur de poussée à portes à débit de fuite contrôlé
CA2719155A1 (fr) Nacelle de turboreacteur a double flux
WO2007147954A1 (fr) Inverseur de poussee formant une tuyere adaptative
EP2084385A1 (fr) Inverseur de poussée à grilles pour moteur à réaction
FR2917788A1 (fr) Actionneur double action a effet programme
FR2978800A1 (fr) Nacelle de turboreacteur a tuyere variable
WO2011117555A1 (fr) Dispositif d'inversion de poussée
WO2010012878A1 (fr) Dispositif d'inversion de poussée
FR2966882A1 (fr) Inverseur de poussee pour turboreacteur d'aeronef a nombre d'actionneurs reduit
WO2011135238A1 (fr) Nacelle de turboréacteur
FR2962978A1 (fr) Nacelle de turboreacteur
WO2011144837A1 (fr) Inverseur de poussée à grilles ou à cascade, pour un turboréacteur d'avion
WO2010012874A2 (fr) Dispositif d'inversion de poussée
FR2939477A1 (fr) Nacelle de turboreacteur a section de tuyere variable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014886.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11717298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2792973

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011717298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011717298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13635951

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012144581

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023764

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023764

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120920