WO2011117121A1 - Dispositif et procédé de séparation d'un mélange gazeux au moyen de membranes - Google Patents

Dispositif et procédé de séparation d'un mélange gazeux au moyen de membranes Download PDF

Info

Publication number
WO2011117121A1
WO2011117121A1 PCT/EP2011/053929 EP2011053929W WO2011117121A1 WO 2011117121 A1 WO2011117121 A1 WO 2011117121A1 EP 2011053929 W EP2011053929 W EP 2011053929W WO 2011117121 A1 WO2011117121 A1 WO 2011117121A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
mixture
retentate
fluid
permeate
Prior art date
Application number
PCT/EP2011/053929
Other languages
German (de)
English (en)
Inventor
Manfred Baldauf
Marc Hanebuth
Harald Landes
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2011117121A1 publication Critical patent/WO2011117121A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/227Multiple stage diffusion in parallel connexion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/08Use of membrane modules of different kinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/04Elements in parallel

Definitions

  • the invention relates to a device for separating a fluid mixture and a method for separating a fluid mixture.
  • Apparatus for separating a fluid mixture of substances are relevant, for example, during loading ⁇ powered by power plants. ⁇ coal power plants example, the deposition of carbonaceous components of the fuel is important to reduce C02 emissions per kilowatt hour.
  • the separation or separation takes place with the help of membranes.
  • a driving force must be applied ran ⁇ essentially by a partial pressure difference at Vorlie ⁇ gen a gas mixture of the respective gases is determined.
  • ba ⁇ Siert the separating action of the membrane on a membrane-specific selectivity that is, the membrane acts to passing through the membrane materials to different degrees opposed.
  • a Derar ⁇ term sequential arrangement of membranes exploits the fact that for an initial separation with a first membrane, a higher pressure of the permeate is allowed, as it is necessary for the attainment of a predetermined Abtrenngrades forshingtren- nenden fabric.
  • the decreases Energybe ⁇ may total about different compression levels, however, are more components in the form of modules, compression levels, larger membrane surfaces, etc., are needed. Due to the finite selectivity of membranes, it is mög ⁇ Lich that a predetermined purity of a substance to be separated with a single membrane can not be achieved. In order to solve this problem, it is already known to pass the permeate already passed through a membrane through further membranes and to concentrate it in this way.
  • the device defined in claim 1 for separating a fluid mixture and the method defined in claim 8 for separating a fluid mixture have the advantage that less energy must be expended to achieve a certain purity ⁇ be ⁇ separated a substance. Furthermore, a desired high purity of a substance to be separated can be obtained.
  • the means for passing through a compressor and / or a purge gas is provided.
  • the advantage of a compressor that this one ⁇ times can be integrated into existing lines extremely.
  • the advantage of a sweep gas is that this precisely ⁇ so as to be separated fluid mixture must not be unnecessarily high compressed, whereby the total energy required for the separation of the fluid mixture of substances is set down ⁇ .
  • the first membrane and the second membrane are each arranged in a first and second membrane module.
  • the first and second Memb ⁇ ranmodul preferably each comprises at least an input for a feed mixture, a first output for a meat Per- and a second output for a retentate.
  • the advantage here is that it allows a simple coupling of the first and second membrane module and thus increases the flexibility of the first and second membrane module.
  • the input of the second membrane module is fluidly connected to the output for the retention of the first membrane module.
  • the advantage here is that the retentate of the first membrane module can now urge the second membrane module and the second membrane ⁇ sen in a simple manner to separate therein the second material from the retentate.
  • combinations of the first and second membrane modules are fluidly arranged in multiple succession, so that at least one of the exits for a retentate of the second
  • Membrane module is connected to at least one input of the first membrane ⁇ module for a feed mixture.
  • the advantage here is that the first and the second substance can successively be separated from one another without large changes in the partial pressures relevant for a separation occurring and a first and second permeate for the first and second substances being contaminated by undesirable co-permeation ,
  • the first and second membranes are arranged in a common module in such a way that the first and second membranes can be acted on substantially simultaneously by the fluid substance mixture.
  • the advantage here is that two membranes with respective selectivity for the first and the second substance are arranged in a single membrane module.
  • Such an arrangement essentially corresponds to an infinite number of successively arranged combinations of first and second membrane module.
  • the effort to separate the fluid mixture can be further reduced.
  • the dimensions of the device can be reduced.
  • the substance mixture is essentially a carbon dioxide / hydrogen, a nitrogen / oxygen, carbon monoxide / hydrogen or a carbon dioxide / nitrogen mixture.
  • the second retentate forms the feed mixture for at least one repetition of steps i-vi.
  • the advantage here is that the fluid mixture is successively separated without the formation of appreciable undesired partial pressure profiles along the first and second membranes.
  • the energy required for a separation of the fluid mixture is lowered, at the same time increases the purity of the first and second permeate.
  • the respective first and the respective second permeate permeate are brought together ⁇ .
  • the advantage here is that in a simple way, the first and second substance with the appropriate purity for further processing are provided.
  • the first permeate is thereby enriched in accordance with the first material, the second Per ⁇ meat with the second fabric.
  • FIG. 1 shows a first conventional apparatus for the separation of fluid mixtures in a schematic form.
  • FIG. 2 shows a further conventional device for separating fluid mixtures in schematic form
  • FIG. 4 shows a device or a method according to a first embodiment of the present invention in schematic form
  • FIG. 5 shows a device or a method according to a second embodiment of the present invention in schematic form
  • FIG. 7 shows a flow diagram of a possible embodiment of the method according to the invention for separating a fluid mixture (S).
  • FIG. 1 shows a device for separating fluids
  • reference numeral 1 denotes a feed for a fluid mixture S of gases to be separated.
  • the gas mixture S consisting of two different gases is conducted via an inlet of a membrane module 2 into the membrane module 2 and acts there on a membrane M, which separates the mixture S at least partially due to the finite selectivity of the membrane M.
  • the membrane M separates the substance mixture S into a retentate R and makes this available at an outlet of the membrane module 2 and into a permeate P which is made available at a further outlet of the membrane module 2.
  • a compressor 4 which compresses the permeate P, is arranged at the permeate-side outlet of the membrane module 2 in order to pass the gas mixture S through the membrane M of the membrane module 2.
  • Figure 2 shows a further device for the separation of fluid mixtures in a schematic form.
  • Figure 2 essentially corresponds to a series connection of k membrane modules 2 according to Figure 1.
  • a to be separated gas mixture S is fed via an input of a Membranmo ⁇ duls 2 k in this and pressurized there, a membrane M k, selective for at least one gas the gas mixture S is formed.
  • the membrane M k separates the gas mixture S into a retentate R k and a permeate P k , which is provided at corresponding outputs of the membrane module 2 k .
  • the retentate R k is now again a second membrane module 2 k + i supplied.
  • the membrane M k + i again separates the added retentate R k into a second residue R k + i and a second permeate P k + i.
  • the second retentate R k + i can then in turn be supplied to a third membrane module 2 k + 2 for further separation.
  • N separation steps are carried out sequentially, wherein the pressure of the permeate P k is lowered in each step. This energy of the permeate P k is saved, since in this arrangement no longer the entire permeate P k is obtained at the lowest pressure level.
  • All membranes M k are se ⁇ selectively designed for the same gas.
  • compressors 4 k , membrane surfaces M k etc. are required, so that the outlay for this is greater.
  • FIG. 3 shows a third device for separating fluid mixtures.
  • a gas mixture S consisting of at least two different gases, a membrane module 2a is supplied and applied to it there, a membrane Mi.
  • the membrane Mi has a selectivity for a first gas of the to be separated Gasge ⁇ premix S and the gas mixture separates S in a retentate Ri and a permeate Pi.
  • the resulting permeate Pi is provided.
  • the permeate Pi is then compressed by a compressor 4 and passed through an input of a further membrane module 2b in this.
  • the permeate Pi now again acts on a membrane Mi, which allows the same gas as the membrane Mi of the membrane module 2a to permeate.
  • the membrane Mi further separates the gases of the permeate, so that the permeate P2 has a higher purity than the permeate Pi with respect to the first gas.
  • the permeate P2 is then further compressed by a compressor 7.
  • the retentate R2 of the second membrane module 2b is now fed back to the gas mixture S to be separated before the first membrane module 2a is charged.
  • the membranes Mi have selectivities which are not sufficient for a desired purity of the permeate. chen. For this reason, the retentate R2 is fed to the gas mixture S for re-admission of the membrane modules 2a, 2b for concentration of the permeate Pi, P2.
  • the purpose of the compressor 4 between the first membrane module 2 a and the second membrane module 2 b is firstly to pass the first permeate Pi through the second membrane module 2 b and secondly to provide sufficient pressure for the retentate R 2 in order to be able to reintroduce it to the gas mixture S and Furthermore, in order to apply a sufficiently large driving force for the mass or gas transport through membrane Mi.
  • the flow rate of the retentate R2 must be sufficiently large to provide a sufficient ⁇ the volume of permeate P 2 in order to allow high Abtrenngrade of the f ⁇ th gas.
  • the compressor 4 therefore requires a corresponding amount of energy.
  • FIG. 4 shows a device or a method according to a first embodiment of the present invention in a schematic form.
  • a gas mixture S to be separated consisting of two different gases, is fed to a first membrane module 2a with a membrane Mi.
  • the membrane Mi has a selectivity with respect to the first gas of the gas mixture S.
  • the membrane Mi now partially separates the gas mixture S with respect to the first gas.
  • the permeate P2 a is a molar ⁇ share of the first gas compared with a mole fraction of the first gas in the gas mixture S increases, whereas in the retentate R2 a, the second gas is present correspondingly with a higher mole fraction.
  • the retentate R2 a now a second membrane module 2b is acted upon.
  • the retentate R2a 2b through a second membrane M2 is further ge separates ⁇ .
  • the membrane M2 has a selectivity with respect to the second gas of the gas mixture S.
  • the membrane M2 now separates the two gases of the retentate R2 a, which has a particular slightly higher proportion of the second gas so that the permeate P2 has a higher mole fraction of the second gas as the retentate R2 a and as the gas ⁇ mixture S
  • the retentate R2 is then re-used as a starting point. or feed gas mixture S in turn analogously to the manner described above fed to a membrane module 2a.
  • Both gas mixtures 7 can be 6 compresses it here by means of at least one compressor 4. However, the compressors 4, 6 are not necessary for each de application. Further, the retentate R 2 may be combined depending on the application 9 with the gas mixture ⁇ 7.
  • Figure 5 shows a device or a method according to a second embodiment of the present invention in a schematic form.
  • a gas mixture S to be separated consisting of two different gases, is fed to a membrane module 2 ab .
  • the membrane module 2 from in this case has membranes Mi, M 2 , which each have a corresponding selectivity for the two different gases.
  • the gas mixture S since ⁇ at in the membrane module 2 from the two membranes contained therein Mi, M 2 substantially simultaneously apply.
  • the membrane module 2 ab has a total of three outputs.
  • the first exit provides a permeate 9 for the membrane Mi, that is, at the exit a gas mixture 9 is made available, which is enriched with the first gas.
  • the permeate 7 is enriched with the second gas of the gas mixture S, for which the membrane M 2 has a corresponding Se ⁇ selectivity. Furthermore, a third exit can be provided, which provides a retentate 8.
  • the two permeates 7, 9 can in each case additionally be compressed by means of compressors 4, 6, so that in each case a gas mixture is compressed at an outlet of the respective compressor 4, 6, which has an increased proportion of the first and second gas.
  • the separation properties of the membrane module 2 match from which the overall in Figure 4 show device, but for an infinite number of repetitions N ⁇ °°.
  • the gas mixture S to be separated can also consist of more than two gases.
  • the membrane module 2 ab then has membranes Mi, M 2 , each having a respective selectivity for the two relevant, ie to be separated, different gases.
  • Figure 6 shows a diagram illustrating the energy required for the separation of carbon dioxide CO 2 from a äquimo ⁇ stellar mixture of hydrogen and carbon dioxide in dependence of the carbon dioxide Abtrenngrades.
  • reference numerals LI-L6 denote necessary electric power for separating carbon dioxide from an equimolar mixture of hydrogen and carbon dioxide depending on the degree of carbon dioxide separation.
  • the degree of separation is defined as the quotient of a molar mass flow of the separated carbon dioxide, which passes into a permeate, and a molar mass flow of the carbon dioxide in the gas
  • the respective power for the compression to the original pressure of the gas mixture S is plotted above the degree of separation.
  • Reference character LI denotes a curve for the necessary power for an arrangement according to FIG. 1 with a carbon dioxide-selective membrane.
  • Reference character L6 denotes the necessary electrical performance processing for a device according to FIG 5 with carbon dioxide selective membrane ⁇ Mi and hydrogen-selective membrane m 2. All curves shown LI, L2, L3, L4, L5, L6 need no electrical power L for a degree of separation of 0. With increasing degree of separation of the energy demand increases disproportionately, with the curve LI has the highest energy demand in descending order and the curve L5 the cu ⁇ rigsten. Linearly, however, the curve L6 increases and lies at the respective degree of separation in each case below the curves LI - L5. The energy requirement of the arrangement according to FIG. 5 is thus significantly lower, in particular at higher degrees of separation.
  • the basis for the calculations of the necessary electric power L are the following assumptions.
  • the necessary electric power L is for an equimolar mixture of H2 and CO 2 (per one mole per second) is calculated in dependence of the carbon dioxide ⁇ Abtrenngrades.
  • the gas mixture to be separated has 30 bar and both gas streams, that is, the Kohlendi ⁇ oxide stream and the hydrogen, are to be recompressed after separation to 30 bar to compare corresponding values for energy requirements and electrical performance can.
  • the carbon dioxide of separation always refers to the entire process, and not on a single Tren ⁇ voltage through a membrane. In the calculation of the hydrogen-carbon dioxide-of separation and the degree of separation is the same, chosen from within the module 2 in figure 5 in order to avoid partial pressure changes in the gas mixture to be separated.
  • FIG. 7 shows a flowchart of an exemplary embodiment of the method according to the invention for separating a substance mixture.
  • the method comprises the following steps: i) pressurizing Sl of a first membrane Mi with the fluid mixture S to separate it, wherein the first membrane Mi is selectively designed for a first substance, ii) passing S2 through at least a part of the substance mixture S first diaphragm Mi by a means 4, 6 for the passage of the fluid substance mixture S, iii) separating S3 of the material mixture S by means of the first Memb ⁇ ran Mi into a first permeate P2 a and a first retentate R2a means of the first membrane Mi, iv) applying S4 a second membrane M2 with the mixture S and / or with the first retentate R2a / wherein the second membrane M2 is selectively formed for a second substance, v) passing S5 at least a portion of the fluid mixture ⁇ S and / or at least one part the first reten
  • the steps S2 and S3 as well as correspondingly S5 and S6 can in each case also take place substantially simultaneously at the same time.
  • the separation S3, S6 takes place by means of the Membrane Mi, M 2 , which allows at least a portion of the mixture S and / or the retentate R2a pass through the respective membrane Mi, M2 on the basis of their respective selectivity.
  • the method may be carried out by a controller which drives the device according to FIG. 4 or FIG. 5.
  • the invention has as a particular advantage that mixtures of fluid substances in respective Ge ⁇ mixtures can be separated with higher purity of a substance and at the same time the energy requirements for a separation can be significantly reduced.
  • the mixture of substances may be a mixture of two or more gases or gas substances or a mixture of two or more other fluids, in particular liquids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

L'invention concerne un dispositif et un procédé de séparation d'un mélange de substances fluides, en particulier d'un mélange gazeux. Le dispositif comprend au moins une première membrane de séparation du mélange de substances fluides, ladite première membrane (M1) étant réalisée pour séparer sélectivement une première substance de ce mélange. Le dispositif comprend également au moins une deuxième membrane (M2) réalisée pour séparer sélectivement une deuxième substance du mélange, ainsi qu'un moyen pour faire passer des substances, en particulier des gaz, à travers la première membrane et la deuxième membrane. Ce dispositif permet de séparer des mélanges de substances fluides (S) avec une pureté élevée tout en minimisant la consommation d'énergie.
PCT/EP2011/053929 2010-03-24 2011-03-16 Dispositif et procédé de séparation d'un mélange gazeux au moyen de membranes WO2011117121A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010012601A DE102010012601A1 (de) 2010-03-24 2010-03-24 Vorrichtung und Verfahren zum Trennen eines fluiden Stoffgemisches
DE102010012601.2 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011117121A1 true WO2011117121A1 (fr) 2011-09-29

Family

ID=43975220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053929 WO2011117121A1 (fr) 2010-03-24 2011-03-16 Dispositif et procédé de séparation d'un mélange gazeux au moyen de membranes

Country Status (2)

Country Link
DE (1) DE102010012601A1 (fr)
WO (1) WO2011117121A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580472A (zh) * 2012-03-05 2012-07-18 厦门国麟科技有限公司 一种工业废气资源化利用治理方法
CN111321022A (zh) * 2018-12-14 2020-06-23 乔治洛德方法研究和开发液化空气有限公司 利用调节的第二渗透物的吸气压力通过膜渗透处理气流的设备和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119417A (en) * 1975-11-17 1978-10-10 Tokyo Shibaura Electric Co., Ltd. Gas separator
US4944882A (en) * 1989-04-21 1990-07-31 Bend Research, Inc. Hybrid membrane separation systems
US5164081A (en) * 1989-03-24 1992-11-17 The Standard Oil Company Apparatus for separation and for treatment of fluid feedstreams, wafers for use therein and related methods
EP0754487A1 (fr) * 1995-07-17 1997-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif pour séparer et récupérer des composés perfluoriques gazeux
US20050045029A1 (en) * 2003-08-28 2005-03-03 Colling Craig W. Selective separation of fluid compounds utilizing a membrane separation process
WO2009017054A1 (fr) * 2007-07-27 2009-02-05 Nippon Oil Corporation Procédé et appareil pour la production d'hydrogène et la récupération de dioxyde de carbone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302223A (en) * 1969-03-26 1981-11-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Air removal device
JPS5944081B2 (ja) * 1980-07-03 1984-10-26 日東電工株式会社 複合型選択分離膜モジユ−ル
AU647856B2 (en) * 1990-12-28 1994-03-31 Terumo Kabushiki Kaisha Transfusion filtering device
US5306427A (en) * 1992-12-18 1994-04-26 Permea, Inc. Low pressure feed membrane separation process
DE4300438C1 (de) * 1993-01-09 1994-06-30 Sartorius Gmbh Verfahren und Vorrichtung zur Trennung von Öl/Wasser-Gemischen
DE10138319A1 (de) * 2001-08-10 2003-04-24 Geesthacht Gkss Forschung Membrankörper sowie Verfahren zur Herstellung desselben

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119417A (en) * 1975-11-17 1978-10-10 Tokyo Shibaura Electric Co., Ltd. Gas separator
US5164081A (en) * 1989-03-24 1992-11-17 The Standard Oil Company Apparatus for separation and for treatment of fluid feedstreams, wafers for use therein and related methods
US4944882A (en) * 1989-04-21 1990-07-31 Bend Research, Inc. Hybrid membrane separation systems
EP0754487A1 (fr) * 1995-07-17 1997-01-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et dispositif pour séparer et récupérer des composés perfluoriques gazeux
US20050045029A1 (en) * 2003-08-28 2005-03-03 Colling Craig W. Selective separation of fluid compounds utilizing a membrane separation process
WO2009017054A1 (fr) * 2007-07-27 2009-02-05 Nippon Oil Corporation Procédé et appareil pour la production d'hydrogène et la récupération de dioxyde de carbone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580472A (zh) * 2012-03-05 2012-07-18 厦门国麟科技有限公司 一种工业废气资源化利用治理方法
CN111321022A (zh) * 2018-12-14 2020-06-23 乔治洛德方法研究和开发液化空气有限公司 利用调节的第二渗透物的吸气压力通过膜渗透处理气流的设备和方法

Also Published As

Publication number Publication date
DE102010012601A1 (de) 2011-09-29

Similar Documents

Publication Publication Date Title
DE60102788T3 (de) Integriertes Verfahren zur Luftzerlegung und Energieerzeugung
EP0083433B1 (fr) Procédé d'adsorption pour la séparation d'hydrocarbures
WO2017137581A1 (fr) Procédé de synthèse de méthanol
DE69819809T2 (de) Verfahren mit fester elektrolytischer Membran zur Herstellung von Sauerstoff mit kontrollierter Reinheit
DE2854060A1 (de) Verfahren zum bereitstellen eines einsatzgases fuer eine chemische reaktion und zum abtrennen eines gasfoermigen reaktionsproduktes
EP2365859A1 (fr) Procédé et dispositif de traitement d'un courant de gaz contenant du dioxyde de carbone provenant d'une grande installation de combustion
EP2300361A1 (fr) Procédé et dispositif pour la production d'hydrogène
DE60013212T2 (de) Verfahren zur Konzentrationsregelung einer Gasmischung
WO2011117121A1 (fr) Dispositif et procédé de séparation d'un mélange gazeux au moyen de membranes
EP3180104B1 (fr) Dispositif et procédé destinés a la separation d'un melange gazeux par une unité de membrane
DE1919557A1 (de) Verfahren und Vorrichtung zum Regeln eines selektiven Adsorptions-Druckkreisprozesses
DE2847310A1 (de) Verfahren zum trennen von gasen
EP2567748A1 (fr) Test d'intégrité hygiénique pour installations d'ultra-filtration
DE102010003507A1 (de) Gaspermeationsanlage und Verfahren zur Gaspermeation
EP1750321B1 (fr) Procédé d'opération d'un ensemble de piles à combustible avec un mélange gazeux comprenant une proportion d'un gaz inerte et une proportion d'un gaz de réaction et batterie de piles à combustible pour celui-ci
EP1975123A2 (fr) Procédé et dispositif pour la génération de gaz de synthèse
EP4087820B1 (fr) Procédé et installation de production d'acide nitrique
WO2020229261A1 (fr) Procédé et installation de synthèse de méthanol
EP0146646B1 (fr) Procédé pour séparer et produire des gaz ayant des propriétés adsorbables relativement élevées, par des adsorbants préparés à partir de mélanges gazeux contenant également des gaz moins adsorbants
EP3020696A1 (fr) Procede et installation de fabrication d'un ou plusieurs produits de reaction
DE60313149T2 (de) Verfahren und anlage zur anreicherung mindestens einer komponente eines brennbaren gasgemisches
DE4434101C1 (de) Druckwechsel-Adsorptionsverfahren
AT513061B1 (de) Vorrichtung und Verfahren zur Regelung der Konzentration an Produktgas in einem Offgas
DE102007011879A1 (de) Vorrichtung und Verfahren zur CO2-Abtrennung aus einem Prozessgas
DE19610722B4 (de) Verfahren zum Herstellen von Schutz- oder Reaktionsgasen für die Wärmebehandlung von Metallen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11708850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11708850

Country of ref document: EP

Kind code of ref document: A1