WO2011116631A1 - 矢量叉乘发动机 - Google Patents

矢量叉乘发动机 Download PDF

Info

Publication number
WO2011116631A1
WO2011116631A1 PCT/CN2011/000477 CN2011000477W WO2011116631A1 WO 2011116631 A1 WO2011116631 A1 WO 2011116631A1 CN 2011000477 W CN2011000477 W CN 2011000477W WO 2011116631 A1 WO2011116631 A1 WO 2011116631A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
working fluid
sliding structure
disposed
storage tank
Prior art date
Application number
PCT/CN2011/000477
Other languages
English (en)
French (fr)
Inventor
靳北彪
Original Assignee
Jin Beibiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010101641599A external-priority patent/CN101892901B/zh
Application filed by Jin Beibiao filed Critical Jin Beibiao
Publication of WO2011116631A1 publication Critical patent/WO2011116631A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/02Engines characterised by precombustion chambers the chamber being periodically isolated from its cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • F01L1/462Valve return spring arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/20Shapes or constructions of valve members, not provided for in preceding subgroups of this group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/18Transfer passages between chamber and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B21/00Engines characterised by air-storage chambers
    • F02B21/02Chamber shapes or constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L2003/25Valve configurations in relation to engine
    • F01L2003/258Valve configurations in relation to engine opening away from cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of engines, and more particularly to a vector cross-over engine. Background technique
  • the fuel and the air are combusted to generate high temperature and high pressure gas.
  • the pressure of the gas in the cylinder reaches a maximum, but the torque obtained by the crankshaft of the engine is very small, even zero.
  • the high pressure of the gas increases the noise of the engine, and also increases the impact on the moving parts such as the piston, the connecting rod and the crankshaft, so that the moving parts must be designed to be bulky and heavy, which not only improves the manufacturing cost of the engine, but also
  • the total weight of the engine is increased, and the bulkiness of the moving parts also increases the centrifugal force when it is rotated or oscillated, which brings about a series of problems.
  • the high temperature of the gas not only affects the performance and reliability of the contact surface material, but also increases the heat transfer to the cylinder liner, cylinder head and cooling system, thereby reducing the thermal efficiency of the engine.
  • pistons and/or connecting rods have been designed to be elastic so that at the moment of combustion explosion, the elastic pistons and/or connecting rods are compressed and a portion of the gas's energy is stored in a resilient piston and/or joint.
  • the volume of the same gas is instantaneously expanded, and the temperature and pressure are rapidly decreased; the energy stored in the compressed elastic piston and/or the connecting rod is gradually released after the top dead center and the pressure of the gas gradually decreases.
  • this design is not only complicated in structure, difficult to manufacture, high in manufacturing cost, but also low in reliability, and it is difficult to achieve true mass production.
  • the first exhaust stroke can be entered when the first work stroke is completed, and then another part of the high temperature and high pressure gas is released when the exhaust stroke is completed, so that the piston enters the second one.
  • the power stroke when the second power stroke is completed, enters the second exhaust stroke, which allows the piston to have two power strokes between the compressed air and the intake air, thereby improving the efficiency of the engine.
  • a vector cross-plied engine includes a combustion chamber envelope space, the vector cross-plied engine further includes a high-pressure working fluid storage tank, and a combustion chamber passage is disposed on an outer wall of the combustion chamber envelope space, the combustion chamber envelope A space is communicated with the high pressure working fluid tank via the combustion chamber passage.
  • a sliding structure is disposed in the combustion chamber passage.
  • a large inner diameter end seal ring is disposed in the combustion chamber passage near the junction of the combustion chamber passage and the high pressure working fluid storage tank.
  • a combustion chamber sealing seat disposed in the combustion chamber passage near the combustion chamber passage and the combustion chamber envelope space connection, adjacent to the combustion chamber passage and the high pressure working fluid tank connection a tank sealing seat is arranged in the combustion chamber passage;
  • the tank sealing seat is disposed in the combustion chamber passage near the joint, and the sliding structure is disposed in the combustion chamber passage between the combustion chamber sealing seat and the tank sealing seat a gap is provided between the sliding structure body and the combustion chamber passage;
  • the combustion chamber sealing seat When the sliding structure is in contact with the combustion chamber sealing seat, the combustion chamber sealing seat is closed, that is, the combustion chamber envelope space and the high-pressure working storage tank are isolated, and the sliding structure body and the sliding structure
  • the tank sealing seat is closed when the tank sealing seat is in contact, that is, the combustion chamber envelope space and the high-pressure working medium tank are isolated, when the sliding structure is in neither the combustion chamber
  • the combustion chamber envelope space and the high pressure working fluid storage tank are in communication when the seal seat contact is not in contact with the tank seal seat.
  • the combustion chamber passage is configured as an inner tapered combustion chamber passage
  • the sliding structure is configured as a tapered sliding structure
  • an opening stroke defining structure of the tapered sliding structure is disposed in the inner tapered combustion chamber passage .
  • An inner ring seal ring is disposed in the combustion chamber passage, and the sliding structure body is disposed in an inner ring of the inner ring seal ring, and the sliding structure body is slidably engaged with an inner diameter side surface of the inner ring seal ring.
  • the sliding structure is controlled by a reset control mechanism; the reset control mechanism is a non-spring type reset control mechanism or a spring type reset control mechanism composed of a spring and a control lever.
  • a part of the reset control mechanism is disposed in the high-pressure working fluid storage tank, and another part of the reset control mechanism is disposed outside the high-pressure working fluid storage tank;
  • a part of the reset control mechanism is disposed in the high-pressure working fluid storage tank, another part of the reset control mechanism is disposed outside the high-pressure working fluid storage tank, and a sealing shell is disposed outside the high-pressure working fluid storage tank.
  • the portion of the reset control mechanism disposed outside the high-pressure working fluid storage tank is disposed in the sealed casing, and the sealed casing is sealingly connected to the high-pressure working fluid storage tank.
  • sealing valve body on the control rod, and providing a tank inner wall seat on the inner wall of the high-pressure working fluid storage tank
  • the sealing valve body cooperates with the inner wall seat of the storage tank to realize the control rod and the high-pressure working fluid tank wall shell when the pressure in the high-pressure working fluid storage tank reaches a set level The gap between them is sealed.
  • the combustion chamber passage and the high-pressure working fluid storage tank are disposed as equal-diameter cavities, and the sliding structural body is in sliding sealing fit or clearance fit with the inner diameter cavities, and the sliding structure body is away from the An elastic body is disposed at one end of the envelope space of the combustion chamber, and a combustion chamber sealing seat is disposed in the inner diameter cavity near the connection between the inner diameter cavity and the combustion chamber envelope space, the sliding structure body and the The combustion chamber sealing seat cooperates to open or close the combustion chamber sealing seat.
  • the inner sealing seat in the high-pressure working fluid storage tank, the inner sealing seat port dividing the high-pressure working fluid storage tank into an upper cavity and a lower cavity, wherein the elastic body is disposed on the upper Providing an end seal structure ring on the sliding structure body, the end seal structure ring cooperating with the inner seal seat opening to realize when the sliding structure body is away from the combustion chamber envelope space The direction is displaced to a set degree, and a gap between the sliding structure body and the can seal seat is sealed.
  • a working fluid flow controlled valve is disposed at the combustion chamber passage, and the working fluid flow controlled valve is controlled by a working fluid flow control mechanism to open or close the combustion chamber passage according to a control requirement to realize the combustion chamber envelope
  • the space and the high-pressure working fluid storage tank are connected and controlled according to control requirements;
  • the working fluid flow controlled valve Cooperating to push the piston to work, when the exhaust stroke is completed, the working fluid flow controlled valve is closed and maintained in a closed state until the next explosive combustion start time, the working fluid flow controlled valve is reopened; or the working fluid flow is adjusted
  • the control mechanism causes the working fluid flow controlled valve to open when the piston is in the in-cylinder explosion near the top dead center of the explosion stroke, and the working fluid flow controlled valve is opened so that a part of the high temperature and high pressure working medium is charged into the high pressure working medium.
  • the working fluid flow control valve is closed, so that a part of the working medium is stored in the high-pressure working fluid storage tank, the closing state of the working fluid flow control valve is maintained, and the engine intake and exhaust valves are adjusted.
  • the high-pressure working fluid storage tank is provided with a volume adjusting device, and/or a flow resistance adjusting device is arranged on the combustion chamber passage.
  • the high pressure working fluid storage tank is in communication with a source of high pressure gas.
  • the so-called high-pressure working fluid storage tank of the present invention mainly functions as a temporary high-temperature high-pressure working medium, and is not used as an additional combustion chamber.
  • the so-called sliding structure body normally-passing passage means that no matter how the sliding structure body moves, the sliding structure body normally-passing passage is not sealed and kept unobstructed, so that the combustion chamber envelope space and the high-pressure working medium storage tank are maintained. Unblocked.
  • the so-called sliding structure unidirectional passage of the present invention means that when the sliding structure body is matched with the small inner diameter end sealing seat and the large inner diameter end sealing seat, when the sliding structure is at different positions, the sliding structure is unidirectional The passage remains unblocked or sealed; specifically, when the sliding structure is in contact with the small inner diameter end seal seat, the unidirectional passage of the sliding structure is sealed, and the sliding structure is in contact with the large inner diameter end seal seat The unidirectional passage of the sliding structure remains unobstructed.
  • the so-called small inner diameter end seal seat of the present invention means that when the sliding structure body is in contact with the small inner diameter end seal seat, the small inner diameter end seal seat not only functions as a limit but also on the sliding structure.
  • the seat of the sliding structure is sealed by a one-way passage.
  • the so-called large inner diameter end seal seat mouth means that when the sliding structure body is in contact with the large inner diameter end seal seat, the large inner diameter end seal seat only serves as a limit position, and will not be on the sliding structure body.
  • the sliding structure body unidirectional passage or the sliding structure body is normally blocked by the passage opening.
  • the so-called sliding structure suspension channel of the present invention means that when the sliding structure body is in contact with the combustion chamber sealing seat or the tank sealing seat, the combustion chamber sealing seat or the tank sealing seat can completely hang the sliding structure body. Sealed; only the sliding structure does not touch the combustion chamber seal seat or the tank seal seat When the sliding structure is suspended, the suspension channel remains unobstructed.
  • the so-called work of the present invention - the exhaust stroke group and the explosion - stroke stroke group, respectively, refers specifically to the combination of the two strokes of the engine.
  • the exhaust stroke group includes two strokes of the power stroke and the exhaust stroke, but the work stroke—the work stroke in the exhaust stroke group refers to the explosion stroke that does not include the point in time of combustion (ie, Does not include the power stroke of the burning point in time).
  • the blasting ⁇ stroke group also includes two strokes of the power stroke and the exhaust stroke, but the blast-stroke stroke group refers to the explosion stroke including the burning point (ie including combustion) The stroke of the work at that point in time).
  • the so-called unsealed fit of the present invention refers to a fit that does not have a sealing function, such as a clearance fit.
  • the sliding structure in the present invention means an object having a certain structural shape, and may be a slider, a sliding cylinder, a sliding sphere or the like.
  • the high-pressure working fluid storage tank in the present invention may be a cavity having a spherical shape, a columnar shape or the like, or may be a cavity of any other shape.
  • the so-called reset control mechanism in the present invention may be a spring type, an electromagnetic type, a hydraulic type, or a pneumatic type.
  • the so-called combustion chamber envelope space in the present invention means that fuel and air are carried out when the piston is located at or near the point.
  • the space in which the explosion blasts is located including the cylinder head, the piston crown, and a portion of the side wall of the cylinder liner between the cylinder head and the piston crown when the piston is at or near the top dead center.
  • the passage between the combustion chamber envelope space and the high-pressure working fluid storage tank may be disposed on the cylinder head in the envelope of the combustion chamber, on the outer wall of the cylinder liner between the top dead center and the cylinder head, and the piston On or in other parts of the envelope space of the combustion chamber.
  • the high temperature and high pressure gas generated by one explosion combustion pushes the piston to expand work in stages, which is actually equivalent to increasing the expansion work of the piston, so that the high temperature and high pressure gas generated by the combustion explosion can fully expand and work. It releases more energy to the piston and converts it into mechanical work, which improves the heat transfer efficiency of the engine.
  • a single inhalation, compression, and combustion process realizes multiple work and exhaust strokes, thereby A high expansion ratio of the engine is achieved.
  • the sliding structure can be controlled in the channel to control the on/off of the channel and/or the flow resistance in different directions, thereby realizing the control of the working space between the combustion chamber envelope space and the high-pressure working medium storage tank according to the design requirements.
  • Flow rate It is also possible to control the on/off of the channel and/or the flow resistance in different directions by setting the control structure to control the flow rate of the working medium between the combustion chamber envelope space and the high-pressure working medium storage tank according to the design requirements.
  • the volume of the high-pressure working fluid storage tank and the flow resistance of the combustion chamber passage can be adjusted to realize the work.
  • the sliding structure body by adjusting the gap between the sliding structure body and the combustion chamber passage, the sliding structure body through passage, the sliding structure body unidirectional passage and the sliding structure body suspension passage are sized to realize the engine
  • the working fluid flow between the combustion chamber envelope space and the high-pressure working fluid storage tank is small or no working fluid flows, and the combustion chamber package is maintained during the explosion working stroke of the engine
  • the flow of large fluid flow between the space and the high-pressure working fluid storage tank is sized to realize the engine
  • the suction stroke, compression stroke and exhaust stroke the working fluid flow between the combustion chamber envelope space and the high-pressure working fluid storage tank is small or no working fluid flows, and the combustion chamber package is maintained during the explosion working stroke of the engine
  • the flow of large fluid flow between the space and the high-pressure working fluid storage tank In the suction stroke, compression stroke and exhaust stroke, the working fluid flow between the combustion chamber envelope space and the high-pressure working fluid storage tank is small or no working fluid flows, and the combustion chamber package is maintained during the explosion working stroke of the engine The flow of large fluid flow
  • pressure refers to pressure, since the use of pressure to refer to pressure has almost become an unwritten practice in the field of the engine, and thus the practice is followed in the specification of the present invention.
  • the sliding structure body leaves the inner ring seal ring to the combustion chamber passage Side movement, the combustion chamber passage is opened; when the pressure difference across the combustion chamber passage is less than or equal to a certain value A, the sliding structure is reset under the control of the reset mechanism, and the combustion chamber passage is shut down.
  • the high-pressure gas source described in the present invention can be set as a high-pressure gas such as compressed air or high-pressure water vapor, and the pressure in the high-pressure gas source can be adjusted to achieve more precise control of the sliding structure.
  • the purpose of providing a high-pressure gas source in the present invention is to maintain the gas pressure above the sliding structure, and the gas pressure can be adjusted to ensure that the moving state of the sliding structure conforms to the design requirements.
  • the gas pressure in the high-pressure gas source not only can the sliding structure be displaced only at the beginning of the explosion, but also the compression ratio of the engine can be adjusted by adjusting the gas pressure in the high-pressure gas source to ensure that the engine is pressed under different working conditions.
  • the contraction stroke is completed, the pressure in the combustion chamber is maintained at an ideal state to improve the efficiency of the engine.
  • the high-pressure gas in the high-pressure gas source enters the cylinder during the engine power stroke to increase the function of the piston, especially when the high-pressure gas source
  • the high-pressure gas is the high-pressure steam generated by the residual heat of the engine
  • the water vapor can be injected into the cylinder in the power stroke in this way, thereby realizing the simple, reliable and effective utilization of the residual heat of the engine.
  • the invention has simple structure, low manufacturing cost and high reliability.
  • the invention solves the problem that the existing piston type internal combustion engine has the largest pressure in the cylinder when the piston is located near the top dead center of the power stroke, but the torque is very small or even zero, and the mechanical work cannot be effectively outputted externally;
  • the pressure, temperature and NOx production of the gas at the moment of combustion explosion weaken the impact of the high pressure of the gas on the piston, connecting rod, crankshaft and other components, which can reduce the weight of the engine, manufacturing cost and friction loss, and improve the torque of the engine;
  • the present invention also discloses a scheme in which a combustion explosion is performed multiple times, and the efficiency and environmental protection of the engine are further greatly improved.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 3 and FIG. 4 are schematic structural views of Embodiment 2 of the present invention.
  • FIG. 5 and FIG. 6 are schematic structural views of Embodiment 3 of the present invention.
  • FIG. 8 and FIG. 9 are schematic structural views of Embodiment 4 of the present invention.
  • Figure 10 is a schematic view showing the structure of Embodiment 5 of the present invention.
  • FIG. 1 and 12 are schematic structural views of Embodiment 6 of the present invention.
  • FIG. 13 and 14 are schematic views showing the structure of Embodiment 7 of the present invention.
  • FIG. 15 is a schematic structural view of Embodiment 8 of the present invention.
  • 16 and FIG. 17 are schematic structural views of Embodiment 9 of the present invention.
  • Figure 20 is a schematic view showing the structure of Embodiment 11 of the present invention.
  • Figure 21 is a schematic view showing the structure of Embodiment 12 of the present invention.
  • Figure 22 is a schematic view showing the structure of Embodiment 13 of the present invention.
  • Figure 23 is a schematic view showing the structure of Embodiment 14 of the present invention.
  • Figure 24 is a schematic view showing the structure of Embodiment 15 of the present invention.
  • 25 and 26 are schematic views showing the structure of Embodiment 16 of the present invention. detailed description
  • the vector cross-plied engine shown in FIG. 1 includes a combustion chamber envelope space 1, and the vector cross-count engine further includes a high-pressure working fluid storage tank 2, a cylinder head 3, a cylinder wall 4, a piston 5, an intake valve 6 and an exhaust gas.
  • the door 7, on the outer wall of the combustion chamber envelope space 1, is provided with a combustion chamber passage 101, and the combustion chamber envelope space 1 communicates with the high-pressure working fluid storage tank 2 via the combustion chamber passage 101.
  • the flow oscillation between the combustion chamber envelope space and the high-pressure working medium storage tank can be realized, thereby improving the efficiency of the engine and The purpose of environmental protection.
  • the vector cross-counting engine shown in FIG. 2, FIG. 3 and FIG. 4 differs from the first embodiment in that a sliding structure 1051 is provided in the combustion chamber passage 101, and a sliding structure is provided on the sliding structure 1051.
  • the passage 1053 and the sliding structure unidirectional passage 1054, the sliding structure normal passage 1053 and the sliding structure unidirectional passage 1054 penetrate the sliding structure 1051 in a direction connecting the combustion chamber envelope space 1 and the high-pressure working fluid tank 2,
  • the sliding structure 1051 and the combustion chamber passage 101 are sealingly or non-sealed;
  • a small inner diameter end seal ring 1056 is disposed in the combustion chamber passage 101 near the junction of the combustion chamber passage 101 and the combustion chamber envelope space 1, and the combustion chamber passage 101 near the junction of the combustion chamber passage 101 and the high pressure working fluid storage tank 2
  • a large inner diameter end seal ring 1055 is provided inside.
  • the sliding structure of the sliding structure is controlled in the passage to control the opening and closing of the passage and/or the flow resistance in different directions, thereby realizing the control of the working fluid flow between the combustion chamber envelope space and the high-pressure working medium storage tank according to the design requirements. .
  • the vector cross-plied engine shown in Figures 5 and 6 differs from the second embodiment in that a large inner diameter end seal is provided in the combustion chamber passage 101 near the junction of the combustion chamber passage 101 and the combustion chamber envelope space 1.
  • Ring 1055 provides a small inner diameter end seal ring 1056 in the combustor passage 101 adjacent the junction of the combustor passage 101 and the high pressure working fluid tank 2.
  • the sliding structure of the sliding structure is controlled in the passage to control the opening and closing of the passage and/or the flow resistance in different directions, thereby realizing the control of the working fluid flow between the combustion chamber envelope space and the high-pressure working medium storage tank according to the design requirements. .
  • the vector cross-counting engine shown in FIG. 7, FIG. 8, and FIG. 9 is different from the first embodiment in that a sliding structure 1051 is provided in the combustion chamber passage 101, and a sliding structure floating passage is provided on the sliding structure 1051. 1059, the sliding structure suspension passage 1059 penetrates the sliding structure 1051 in a direction connecting the combustion chamber envelope space 1 and the high-pressure working fluid tank 2, and the combustion chamber near the junction of the combustion chamber passage 101 and the combustion chamber envelope space 1 a combustion chamber sealing seat 1013 is disposed in the passage 101, and a tank sealing seat opening 1014 is disposed in the combustion chamber passage 101 near the junction of the combustion chamber passage 101 and the high-pressure working fluid storage tank 2;
  • the combustion chamber sealing seat opening 1013 is closed, that is, the combustion chamber envelope space 1 and the high-pressure working medium storage tank 2 are isolated, and the sliding structure body 1051 is in contact with the tank sealing seat opening 1014.
  • the tank sealing seat opening 1014 is closed, the combustion chamber envelope space 1 and the high-pressure working medium storage tank 2 are isolated, when the sliding structure body 1051 is in neither the combustion chamber sealing seat 1013 nor the tank sealing seat.
  • the combustion chamber envelope space 1 is in communication with the high pressure working fluid storage tank 2 at the position of contact of 1014.
  • the sliding of the sliding structure in the channel is used to control the on-off of the channel and/or the flow resistance in different directions, thereby realizing the control of the working fluid flow between the combustion chamber envelope space and the high-pressure working fluid storage tank according to the design requirements. .
  • Example 5
  • the vector cross-plied engine shown in Fig. 10 differs from the first embodiment in that: a sliding structure 1051 is provided in the combustion chamber passage 101, and combustion is performed near the junction of the combustion chamber passage 101 and the combustion chamber envelope space 1.
  • a combustion chamber sealing seat 1013 is disposed in the chamber passage 101, and a tank sealing seat 1014 is disposed in the combustion chamber passage 101 near the junction of the combustion chamber passage 101 and the high-pressure working fluid tank 2, at the combustion chamber sealing seat 1013 and
  • a sliding structure 1051 is disposed in the combustion chamber passage 101 between the tank sealing seats 1014, and a gap is provided between the sliding structure 1051 and the combustion chamber passage 101.
  • the sliding structure of the sliding structure is controlled in the passage to control the opening and closing of the passage and/or the flow resistance in different directions, thereby realizing the control of the working fluid flow between the combustion chamber envelope space and the high-pressure working medium storage tank according to the design requirements. .
  • the vector cross-plied engine shown in FIGS. 11 and 12 differs from the first embodiment in that a sliding structure 1051 is provided in the combustion chamber passage 101, and the combustion chamber passage 101 is set as an inner tapered combustion chamber passage 1011, which slides.
  • the structural body 1051 is defined as a tapered sliding structural body 10511, and an opening stroke defining structure 1012 of the tapered sliding structural body 10511 is disposed in the inner tapered combustion chamber passage 1011.
  • the vector cross-counting engine shown in FIG. 13 and FIG. 14 differs from the embodiment 6 in that: the directions of the tapered surfaces are opposite, that is, the combustion chamber passage 101 is also set as the inner tapered combustion chamber passage 1011, and the sliding structure 1051 A tapered sliding structure 10511 is provided, and an opening stroke defining structure 1012 of the tapered sliding structure 10511 is disposed in the inner tapered combustion chamber passage 1011.
  • the vector cross-counting engine shown in FIG. 15 differs from the second embodiment in that an inner ring seal ring 1018 is disposed in the combustion chamber passage 101, and a sliding structure body 1051 is provided in the inner ring of the inner ring seal ring 1018.
  • the structure 1051 is slidably engaged with the inner diameter side of the inner ring seal ring 1018, and the slide structure 1051 is controlled by the reset control mechanism 1058.
  • the reset control mechanism 1058 is provided with a spring type reset control mechanism 10581 composed of a spring 10583 and a control lever 10582.
  • Example 9 The vector cross-counting engine shown in Figs. 16 and 17 differs from the embodiment 8 in that a part of the reset control mechanism 1058 is disposed in the high-pressure working fluid tank 2, and another portion of the reset control mechanism 1058 is disposed in the high-pressure work. Outside the quality storage tank 2, a sealing shell 10586 is disposed outside the high-pressure working medium storage tank 2, and a partial reset control mechanism 1058 disposed outside the high-pressure working medium storage tank 2 is disposed in the sealing casing 10586, and the sealing casing 10586 and the high-pressure working medium are stored. Tank 2 is sealed.
  • the vector cross-counting engine shown in FIG. 18 and FIG. 19 differs from the embodiment 9 in that a sealing valve body 10584 is provided on the control rod 10582, and a tank inner wall seat is provided on the inner wall of the high-pressure working fluid storage tank 2. 10585, the sealing valve body 10584 cooperates with the tank inner wall seat 10585 to achieve a gap between the control rod 10582 and the wall of the high pressure working fluid tank 2 when the pressure in the high pressure working fluid tank 2 reaches a set level. .
  • the vector cross-plied engine shown in Fig. 20 differs from the first embodiment in that a sliding structure 1051 is provided in the combustion chamber passage 101.
  • the combustion chamber passage 101 and the high-pressure working fluid storage tank 2 are set as the equal-diameter cavity 2101, and the sliding structural body 1051 is in sliding sealing fit or clearance fit with the equal-diameter cavity 2101, and the sliding structure body 1051 is away from the combustion chamber envelope space 1
  • the elastic body 10512 is disposed at one end, and the combustion chamber sealing seat 1013 is disposed in the equal inner diameter cavity 2101 near the junction of the equal inner diameter cavity 2101 and the combustion chamber envelope space 1.
  • the sliding structural body 1051 is matched with the combustion chamber sealing seat 1013.
  • the combustion chamber seal seat 1013 is opened or closed. This embodiment achieves the design objective by sliding the sliding structure within the passage.
  • the vector cross-counting engine shown in FIG. 21 differs from the embodiment 11 in that: a can-sealing seat opening 2000 is provided in the high-pressure working fluid storage tank 2, and a high-pressure working fluid storage tank is provided in the in-tank sealing seat opening 2000.
  • the elastic body 10512 is disposed in the upper cavity 2001
  • the end seal structure ring 10513 is disposed on the sliding structure body 1051, and the end seal structure ring 10513 cooperates with the can seal seat 2000. It is achieved that the gap between the sliding structure 1051 and the can seal seat 2000 is sealed when the sliding structure 1051 is displaced in a direction away from the combustion chamber envelope space 1 to a set degree.
  • a working fluid flow control valve 102 is provided at the combustion chamber passage 101, and the working fluid flow control valve 102 is controlled by the working fluid flow control mechanism 103.
  • the combustion chamber passage 101 is opened or closed according to the control requirement, and the combustion chamber envelope space 1 and the high-pressure working medium storage tank 2 are switched on and off according to the control requirements;
  • the working fluid flow control mechanism 103 adjusts the working fluid flow control valve 102 to be near the top dead center of the explosion stroke of the piston.
  • the combustion fluid flow control valve 102 is opened to enable a considerable portion of the high temperature and high pressure working fluid to be charged into the high pressure working fluid storage.
  • Tank 2 as the piston descends, the pressure in the cylinder 14 drops, and the high temperature and high pressure working medium that has been charged into the high pressure working fluid storage tank 2 is returned to the cylinder 14 to cooperate with the high temperature and high pressure working medium in the cylinder 14 to promote the piston work.
  • the working fluid controlled valve 102 When the exhaust stroke is completed, the working fluid controlled valve 102 is closed and maintained in the closed state until the next explosive combustion start time, the working fluid controlled valve 102 is reopened; or the working fluid flow control mechanism 103 is adjusted to make the working fluid controlled valve 102 when the piston is in the in-cylinder explosion near the top end of the explosion stroke, the working fluid flow control valve 102 is opened, so that a part of the high temperature and high pressure working medium is charged into the high pressure working fluid storage tank 2, and the working fluid flow control valve 102 is closed.
  • the high-pressure working fluid storage tank 2 stores a considerable part of the working medium, maintains the closed state of the working fluid flow control valve 102, and adjusts the engine intake and exhaust valve control mode to realize the exhaust gas.
  • the vector cross-counting engine shown in Fig. 23 differs from the first embodiment in that a high-pressure working fluid tank 2 is provided with a volume adjusting device 1 1.
  • a vector cross-plied engine as shown in FIG. 25 or FIG. 26, comprising a combustion chamber envelope space 1, a high-pressure working fluid storage tank 2, a cylinder head 3, a cylinder wall 4, a piston 5, an intake valve 6 and an exhaust valve 7, a combustion chamber passage 101 is disposed on an outer wall of the combustion chamber envelope space 1, and a lower end seal ring 8101 is disposed in the combustion chamber passage 101 And the upper end seal ring 8102, the sliding structure body 1051 is disposed in the combustion chamber passage 101 between the lower end seal ring 8101 and the upper end seal ring 8102, and the upper end seal ring 8102 is in communication with the high pressure gas source 8104 via the connecting passage 8103.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

矢量叉乘发动机 技术领域 本发明涉及发动机领域, 尤其涉及一种矢量叉乘发动机。 背景技术
现有的活塞式内燃机当活塞位于上止点附近时,燃料与空气燃烧爆炸生成 高温高压燃气。此时缸内燃气的压力达到最大值, 但是此时发动机曲轴获得的 力矩却非常的小, 甚至为零。 不仅如此, 燃气的高压除增加发动机的噪音外, 还加大了对活塞、 连杆、 曲轴等运动件的冲击, 使得这些运动件必须设计的庞 大笨重, 不仅提高了发动机的制造成本, 同时也提高了发动机的总重量, 运动 件的笨重还提高了其旋转或摆动时的离心力, 带来了一系列的问题。 燃气的高 温不仅影响接触面材料的性能和可靠性, 还加大了热量向气缸套、气缸盖及冷 却系统的热传递, 从而降低了发动机的热效率。
为了解决上述问题, 人们曾经尝试了许多技术方案, 但是其效果往往并不 明显, 或者又带来了新的问题。 比如, 人们曾经将活塞和 /或连杆设计成弹性 的, 这样在燃烧爆炸的瞬间, 弹性的活塞和 /或连杆被压縮, 一部分燃气的能 量被储存在了弹性的活塞和 /或连杆中; 同吋燃气的体积瞬间膨胀, 温度和压 力迅速下降; 储存在被压縮的弹性活塞和 /或连杆中的能量在上止点过后、 燃 气的压力逐渐下降时,又逐渐的释放出来;从而解决了前述提到的问题。但是, 这种设计不仅结构复杂、 制造难度大、 制造成本高, 而且可靠性低, 难于实现 真正的量产化。
另外, 众所周知, 高温高压的燃气只有让其自由充分的膨胀做功, 其中蕴 含的能量才能最大限度的释放出来。具体到活塞式内燃机中就是, 在其它条件 已定的情况下, 活塞的膨胀做功行程越大, 从燃气中转化来的机械功就越多, 即发动机的热功转换效率就越高。 但是, 在现有发动机的结构设计之下, 单方 面提高活塞的膨胀做功行程是十分的困难的。即使有些现有技术中的设计可以 达到提高活塞的膨胀做功行程的目的, 但也往往结构复杂、 制造成本高、 难于 真正大规模应用。
如果能够把活塞爆炸瞬间所产生的高温高压气体储存起来,待处于作功冲 程中的活塞下行至一定距离(即有一定力矩)时, 再将全部或部分高温高压气 体释放出来,将有效地提高发动机的效率。采用部分释放高温高压气体的方案, 可以在第一个作功冲程完了时进入第一个排气冲程,然后在此排气冲程完了时 开始释放另一部分高温高压气体, 使活塞进入第二个作功冲程, 在第二个作功 冲程完了时进入第二个排气冲程,这样可以使活塞在压气和吸气之间具有两个 作功冲程, 从而提高发动机的效率。
因此, 急需发明一种结构简单、 制造成本低、 可靠性高的新设计来解决上 述问题。
发明内容
为了解决上述现有发动机中存在的问题, 本发明的技术方案如下:
一种矢量叉乘发动机, 包括燃烧室包络空间, 所述矢量叉乘发动机还包括 高压工质储罐, 在所述燃烧室包络空间的外壁上设燃烧室通道, 所述燃烧室包 络空间经所述燃烧室通道与所述高压工质储罐连通。
在所述燃烧室通道内设置滑动结构体。
在所述滑动结构体上设置滑动结构体常通通道和滑动结构体单向通道,所 述滑动结构体常通通道和所述滑动结构体单向通道在连通所述燃烧室包络空 间和所述高压工质储罐的方向上贯通所述滑动结构体,所述滑动结构体和所述 燃烧室通道密封配合或者非密封配合;
在所述燃烧室通道和所述燃烧室包络空间连接处附近的所述燃烧室通道 内设置大内径端部密封环,在所述燃烧室通道和所述高压工质储罐连接处附近 的所述燃烧室通道内设置小内径端部密封环;或者在所述燃烧室通道和所述燃 烧室包络空间连接处附近的所述燃烧室通道内设置小内径端部密封环,在所述 燃烧室通道和所述高压工质储罐连接处附近的所述燃烧室通道内设置大内径 端部密封环。
在所述滑动结构体上设置滑动结构体悬空通道,所述滑动结构体悬空通道 在连通所述燃烧室包络空间和所述高压工质储罐的方向上贯通所述滑动结构 体,在所述燃烧室通道和所述燃烧室包络空间连接处附近的所述燃烧室通道内 设置燃烧室密封座口,在所述燃烧室通道和所述高压工质储罐连接处附近的所 述燃烧室通道内设置储罐密封座口;
或在所述燃烧室通道和所述燃烧室包络空间的连接处附近的所述燃烧室 通道内设置所述燃烧室密封座口,在所述燃烧室通道和所述高压工质储罐的连 接处附近的所述燃烧室通道内设置所述储罐密封座口,在所述燃烧室密封座口 和所述储罐密封座口之间的所述燃烧室通道内设置所述滑动结构体,所述滑动 结构体和所述燃烧室通道之间设置间隙;
所述滑动结构体与所述燃烧室密封座口接触时所述燃烧室密封座口被关 闭即所述燃烧室包络空间和所述高压工质储罐被隔离,所述滑动结构体与所述 储罐密封座口接触时所述储罐密封座口被关闭即所述燃烧室包络空间和所述 高压工质储罐被隔离, 当所述滑动结构体处于既不与所述燃烧室密封座口接触 也不与所述储罐密封座口接触的位置时所述燃烧室包络空间和所述高压工质 储罐连通。
所述燃烧室通道设为内锥面燃烧室通道,所述滑动结构体设为锥形滑动结 构体,在所述内锥面燃烧室通道内设置所述锥形滑动结构体的开启行程限定结 构。
在所述燃烧室通道内设置内环密封环,在所述内环密封环的内环内设所述 滑动结构体, 所述滑动结构体与所述内环密封环的内径侧面滑动配合, 所述滑 动结构体受复位控制机构控制;所述复位控制机构设为非弹簧式复位控制机构 或者设为由弹簧和控制杆构成的弹簧式复位控制机构。
所述复位控制机构的一部分设置在所述高压工质储罐内,所述复位控制机 构的另一部分设置在所述高压工质储罐外;
或所述复位控制机构的一部分设置在所述高压工质储罐内,所述复位控制 机构的另一部分设置在所述高压工质储罐外,在所述高压工质储罐外设置密封 壳,设置在所述高压工质储罐之外的部分所述复位控制机构设置在所述密封壳 内, 所述密封壳与所述高压工质储罐密封连接。
在所述控制杆上设密封阀体,在所述高压工质储罐的内壁上设储罐内壁座 口,所述密封阀体与所述储罐内壁座口相配合以实现当所述高压工质储罐内的 压力达到设定程度时所述控制杆和所述高压工质储罐壁壳之间的间隙被密封。
所述燃烧室通道与所述高压工质储罐设为等内径腔体,所述滑动结构体与 所述等内径腔体滑动密封配合或有间隙配合,在所述滑动结构体的远离所述燃 烧室包络空间的一端设置弹性体,在所述等内径腔体和所述燃烧室包络空间连 接处附近的所述等内径腔体内设置燃烧室密封座口,所述滑动结构体与所述燃 烧室密封座口配合将所述燃烧室密封座口打开或关闭。
在所述高压工质储罐内设置罐内密封座口,所述罐内密封座口将所述高压 工质储罐分为上腔体和下腔体, 所述弹性体设在所述上腔体内, 在所述滑动结 构体上设置端密封结构环,所述端密封结构环与所述罐内密封座口相配合以实 现当所述滑动结构体向远离所述燃烧室包络空间的方向位移到设定程度吋所 述滑动结构体和所述罐内密封座口之间的间隙被密封。
在所述燃烧室通道处设工质流受控阀,所述工质流受控阀受工质流控制机 构控制使所述燃烧室通道按控制要求打开或关闭, 实现所述燃烧室包络空间和 所述高压工质储罐间按控制要求通断;
调整所述工质流控制机构使所述工质流受控阀在活塞处于爆炸冲程的上 止点附近爆炸燃烧开始时所述工质流受控阀打开使得相当一部分高温高压工 质充入所述高压工质储罐, 随着活塞下行, 气缸内的压力下降, 已经充入所述 高压工质储罐的高温高压工质重新回到所述气缸内与所述气缸内的高温高压 工质共同推动活塞做功, 当排气冲程完了时, 所述工质流受控阀关闭并维持关 闭状态直到下一个爆炸燃烧开始时刻所述工质流受控阀重新打开;或者调整所 述工质流控制机构使所述工质流受控阀在活塞处于爆炸冲程的上止点附近缸 内爆炸燃烧开始时所述工质流受控阀打开使得相当一部分高温高压工质充入 所述高压工质储罐后所述工质流控制阀关闭,使所述高压工质储罐中保存有相 当一部分工质, 维持所述工质流控制阀的关闭状态, 调整发动机进排气门控制 方式以实现当排气冲程完了时关闭发动机的进气门和排气门并维持此关闭状 态, 打开所述工质流受控阀, 使所述高压工质储罐中保存的高温高压工质进入 气缸继续推动活塞做功,使得发动机的工作循环在完成吸——压——爆——排 冲程之后增加至少一个作功——排气冲程组后再进入下一个吸——压——爆
——排冲程。
所述高压工质储罐上设有容积调节装置, 和 /或在所述燃烧室通道上设流 动阻力调节装置。
所述高压工质储罐与高压气体源连通。
在所述燃烧室通道内设置下端密封环,在所述下端密封环和所述高压工质 储罐之间的所述燃烧室通道内设滑动结构体;或者在所述燃烧室通道内设置下 端密封环和上端密封环,在所述下端密封环和上端密封环之间的所述燃烧室通 道内设滑动结构体。
本发明所谓的高压工质储罐, 主要起暂存高温高压工质的作用, 不作为附 加的燃烧室使用。
本发明所谓的滑动结构体常通通道, 是指无论滑动结构体怎么运动, 滑动 结构体常通通道都不被封死保持畅通,从而使得燃烧室包络空间和高压工质储 罐之间保持畅通。
本发明所谓的滑动结构体单向通道,是指当滑动结构体与小内径端部密封 座口、大内径端部密封座口相配合使得当滑动结构体处于不同位置时, 滑动结 构体单向通道保持畅通或被封死; 具体说, 当滑动结构体与小内径端部密封座 口相接触时滑动结构体单向通道被封死, 当滑动结构体与大内径端部密封座口 相接触时滑动结构体单向通道保持畅通。
本发明所谓的小内径端部密封座口,是指当滑动结构体与小内径端部密封 座口接触时, 小内径端部密封座口不仅起限位作用, 而且要将滑动结构体上的 滑动结构体单向通道封死的座口。
本发明所谓的大内径端部密封座口,是指当滑动结构体与大内径端部密封 座口接触时, 大内径端部密封座口仅仅起限位作用, 不会将滑动结构体上的滑 动结构体单向通道或者滑动结构体常通通道封死的座口。
本发明所谓的滑动结构体悬空通道,是指当滑动结构体与燃烧室密封座口 或储罐密封座口接触时,燃烧室密封座口或储罐密封座口能够将滑动结构体悬 空通道全部封死;只有在滑动结构体与燃烧室密封座口或储罐密封座口不接触 时, 滑动结构体悬空通道才保持畅通。
本发明所谓的作功——排气冲程组和爆——排冲程组,分别特指发动机的 两个冲程的组合。其中的作功——排气冲程组包括作功冲程和排气冲程两个冲 程,但是作功——排气冲程组中的作功冲程是指不包括燃烧那一个时间点的爆 炸冲程 (即不包括燃烧那一个时间点的作功冲程)。 其中的爆 ~~ ^冲程组也 包括作功冲程和排气冲程两个冲程,但是爆——排冲程组中的作功冲程是指包 括了燃烧那一个时间点的爆炸冲程(即包括了燃烧那一个时间点的作功冲程)。
本发明所谓的非密封配合, 是指有间隙配合等不具有密封功能的配合。 本发明中所谓的滑动结构体,是指具有一定结构形状的物体,可以是滑块、 滑动柱体、 滑动球体等。
本发明中所谓的高压工质储罐, 可以是球状、 柱状等形状的内腔, 也可以 是任意其它形状的腔体。
本发明中所谓的复位控制机构, 可以是弹簧式、 电磁式、 液压式、 气压式 本发明中所谓的燃烧室包络空间, 是指当活塞位于上至点或其附近时, 燃 料和空气进行燃烧爆炸时, 燃烧爆炸所在的空间, 包括气缸盖, 活塞顶和当活 塞位于上止点或其附近时处于气缸盖和活塞顶之间的气缸缸套的一部分侧壁。
本发明中燃烧室包络空间与高压工质储罐之间的通道可以设在燃烧室包 络空间内的气缸盖上, 上止点与所述气缸盖之间的气缸套的外壁上, 活塞上或 者燃烧室包络空间内的其它部位。
本发明中, 在燃烧爆炸的瞬间, 相当量的燃气充入高压工质储罐, 一部分 燃气的能量被储存起来, 储存的该部分能量在活塞过上止点之后、 燃气的压力 逐渐下降时, 高压工质储罐中储存的一部分燃气能量又逐渐的释放出来。
本发明中, 一次爆炸燃烧生成的高温高压燃气分阶段多次推动活塞膨胀做 功, 实际上相当于加大了活塞的膨胀做功行程, 使得燃烧爆炸生成的高温高压 燃气能够更加充分的膨胀做功,使其释放出了更多的能量给活塞而转化为机械 功, 从而提高了发动机的热功转换效率。
本发明中, 一次吸气、 压縮、 燃烧过程, 实现多次做功、 排气冲程, 从而 实现了发动机的高膨胀比。
本发明中可以通过滑动结构体在通道内的滑动来控制通道的通断和 /或不 同方向的流动阻力大小,实现按设计要求控制燃烧室包络空间和高压工质储罐 之间的工质流量; 也可以通过设置控制结构来控制通道的通断和 /或不同方向 的流动阻力大小,实现按设计要求控制燃烧室包络空间和高压工质储罐之间的 工质流量。
本发明中, 当燃烧室包络空间与高压工质储罐之间不设专门的控制机构或 者滑动结构体时, 可以通过调节高压工质储罐的容积和燃烧室通道的流动阻 力, 实现工质在燃烧室包络空间和高压工质储罐之间的流动振荡, 进而达到提 高发动机的效率和环保性的目的。在设有滑动结构体的结构中, 通过调节滑动 结构体与燃烧室通道之间的间隙, 滑动结构体常通通道、滑动结构体单向通道 和滑动结构体悬空通道的大小, 以实现在发动机吸气冲程、压縮冲程和排气冲 程中在燃烧室包络空间和高压工质储罐之间工质流量较小或没有工质流动,而 在发动机的爆炸作功冲程中保持燃烧室包络空间和高压工质储罐之间的工质 大流量的流动。
本发明中所谓的压力, 是指压强, 因为用压力来指代压强几乎已经成为了 发动机领域一种不成文的惯例, 因此本发明的说明书中沿用了该惯例。
当滑动结构体不受复位控制机构或弹性体控制时,所述燃烧室包络空间和 高压工质储罐内的压力不同时, 所述滑动结构体受其压差推动发生位移, 控制 所述燃烧室包络空间和高压工质储罐之间的工质流量变化或通断。
本发明中在设有复位机构的结构中, 当所述燃烧室通道两端的压差大于某 一值 A时,所述滑动结构体离开所述内环密封环向所述燃烧室通道的某一侧移 动, 所述燃烧室通道被打开; 当所述燃烧室通道两端的压差小于等于某一值 A 时, 所述滑动结构体在所述复位机构的控制下复位, 所述燃烧室通道被关闭。
本发明中所述的高压气体源可设为压縮空气、高压水蒸汽等高压气体, 高 压气体源内的压力可进行调整, 以实现对滑动结构体更精准的控制。
本发明中设置高压气体源的目的是为了维持滑动结构体上方的气体压力, 并可以对此气体压力进行调整, 以确保滑动结构体的运动状态符合设计要求。 通过调整高压气体源中的气体压力不仅可以保证滑动结构体只在爆炸开始时 发生位移, 也可以通过调整高压气体源中的气体压力调整发动机的压縮比, 以 确保发动机在不同工况下压縮冲程完了时燃烧室内的压力保持理想状态,提高 发动机的效率。
不仅如此,还可以通过在滑动结构体上设置滑动结构体悬空通道使得高压 气体源中的一部分高压气体在发动机作功冲程中进入气缸内以增大活塞的作 功能力,特别是当高压气体源中的高压气体为发动机余热所产生的高压水蒸汽 时, 可以通过此种方式向处于作功冲程的气缸内喷射水蒸汽, 实现对发动机余 热的简单、 可靠、 有效的利用。
本发明的有益效果如下:
1、 本发明结构简单、 制造成本低、 可靠性高。
2、 本发明解决了现有活塞式内燃机当活塞位于作功冲程的上止点附近时 缸内的压力最大, 但是力矩却非常的小甚至为零, 无法对外有效输出机械功的 问题; 降低了燃烧爆炸的瞬间燃气的压力、 温度和 NOx的生成量, 减弱了燃气 的高压对活塞、 连杆、 曲轴等部件的冲击, 可以减少发动机的重量, 制造成本 和摩擦损失, 提高了发动机的扭矩; 不仅如此, 本发明还公开了一次燃烧爆炸 多次作功的方案, 进一步大幅度提高了发动机的效率和环保性。
3、 本发明实质上加大了活塞的膨胀做功行程, 提高了发动机的热功转换 效率。
附图说明
图 1所示的是本发明实施例 1的结构示意图;
图 2、 图 3和图 4所示的是本发明实施例 2的结构示意图;
图 5和图 6所示的是本发明实施例 3的结构示意图;
图 7、 图 8和图 9所示的是本发明实施例 4的结构示意图;
图 10所示的是本发明实施例 5的结构示意图;
图 1 1和图 12所示的是本发明实施例 6的结构示意图;
图 13和图 14所示的是本发明实施例 7的结构示意图;
图 1 5所示的是本发明实施例 8的结构示意图; 图 16和图 17所示的是本发明实施例 9的结构示意图;
图 18和图 19所示的是本发明实施例 10的结构示意图;
图 20所示的是本发明实施例 11的结构示意图;
图 21所示的是本发明实施例 12的结构示意图;
图 22所示的是本发明实施例 13的结构示意图;
图 23所示的是本发明实施例 14的结构示意图;
图 24所示的是本发明实施例 15的结构示意图;
图 25和图 26所示的是本发明实施例 16的结构示意图。 具体实施方式
实施例 1
如图 1所示的矢量叉乘发动机, 包括燃烧室包络空间 1, 矢量叉乘发动机 还包括高压工质储罐 2、 气缸盖 3、 气缸壁 4、 活塞 5、 进气门 6和排气门 7, 在燃烧室包络空间 1的外壁上设燃烧室通道 101, 燃烧室包络空间 1经燃烧室 通道 101与高压工质储罐 2连通。本实施例中可以通过调节高压工质储罐的容 积和燃烧室通道的流动阻力,实现工质在燃烧室包络空间和高压工质储罐之间 的流动振荡, 进而达到提高发动机的效率和环保性的目的。即在燃烧爆炸的瞬 间, 相当量的燃气充入高压工质储罐, 一部分燃气的能量被储存起来, 储存的 该部分能量在活塞过上止点之后、燃气的压力逐渐下降时, 高压工质储罐中储 存的一部分燃气能量又逐渐的释放出来,与气缸中原有的高温高压工质共同推 动活塞做功。
实施例 2
如图 2、 图 3和图 4所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃烧室通道 101内设置滑动结构体 1051, 在滑动结构体 1051上设置滑动结 构体常通通道 1053和滑动结构体单向通道 1054, 滑动结构体常通通道 1053 和滑动结构体单向通道 1054在连通燃烧室包络空间 1和高压工质储罐 2的方 向上贯通滑动结构体 1051, 滑动结构体 1051和燃烧室通道 101密封配合或者 非密封配合; 在燃烧室通道 101和燃烧室包络空间 1连接处附近的燃烧室通道 101内设 置小内径端部密封环 1056,在燃烧室通道 101和高压工质储罐 2连接处附近的 燃烧室通道 101内设置大内径端部密封环 1055。本实施例通过滑动结构体在通 道内的滑动来控制通道的通断和 /或不同方向的流动阻力大小, 实现按设计要 求控制燃烧室包络空间和高压工质储罐之间的工质流量。
实施例 3
如图 5和图 6所示的矢量叉乘发动机, 其与实施例 2的区别在于: 在燃烧 室通道 101和燃烧室包络空间 1连接处附近的燃烧室通道 101内设置大内径端 部密封环 1055,在燃烧室通道 101和高压工质储罐 2连接处附近的燃烧室通道 101内设置小内径端部密封环 1056。本实施例通过滑动结构体在通道内的滑动 来控制通道的通断和 /或不同方向的流动阻力大小, 实现按设计要求控制燃烧 室包络空间和高压工质储罐之间的工质流量。
实施例 4
如图 7、 图 8和图 9所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃烧室通道 101内设置滑动结构体 1051, 在滑动结构体 1051上设置滑动结 构体悬空通道 1059, 滑动结构体悬空通道 1059在连通燃烧室包络空间 1和高 压工质储罐 2的方向上贯通滑动结构体 1051,在燃烧室通道 101和燃烧室包络 空间 1连接处附近的燃烧室通道 101内设置燃烧室密封座口 1013,在燃烧室通 道 101和高压工质储罐 2连接处附近的燃烧室通道 101内设置储罐密封座口 1014;
滑动结构体 1051与燃烧室密封座口 1013接触时燃烧室密封座口 1013被 关闭即燃烧室包络空间 1和高压工质储罐 2被隔离, 滑动结构体 1051与储罐 密封座口 1014接触时储罐密封座口 1014被关闭即燃烧室包络空间 1和高压工 质储罐 2被隔离, 当滑动结构体 1051处于既不与燃烧室密封座口 1013接触也 不与储罐密封座口 1014接触的位置时燃烧室包络空间 1和高压工质储罐 2连 通。 本实施例通过滑动结构体在通道内的滑动来控制通道的通断和 /或不同方 向的流动阻力大小,实现按设计要求控制燃烧室包络空间和高压工质储罐之间 的工质流量。 实施例 5
如图 10所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃烧室通 道 101内设置滑动结构体 1051,在燃烧室通道 101和燃烧室包络空间 1的连接 处附近的燃烧室通道 101内设置燃烧室密封座口 1013,在燃烧室通道 101和高 压工质储罐 2的连接处附近的燃烧室通道 101内设置储罐密封座口 1014,在燃 烧室密封座口 1013和储罐密封座口 1014之间的燃烧室通道 101内设置滑动结 构体 1051, 滑动结构体 1051和燃烧室通道 101之间设置间隙。 本实施例通过 滑动结构体在通道内的滑动来控制通道的通断和 /或不同方向的流动阻力大 小, 实现按设计要求控制燃烧室包络空间和高压工质储罐之间的工质流量。
实施例 6
如图 11和图 12所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃 烧室通道 101内设置滑动结构体 1051,燃烧室通道 101设为内锥面燃烧室通道 1011 ,滑动结构体 1051设为锥形滑动结构体 10511,在内锥面燃烧室通道 1011 内设置锥形滑动结构体 10511的开启行程限定结构 1012。
实施例 7
如图 13和图 14所示的矢量叉乘发动机, 其与实施例 6的区别在于: 锥面 的方向相反,即同样是燃烧室通道 101设为内锥面燃烧室通道 1011,滑动结构 体 1051设为锥形滑动结构体 10511, 在内锥面燃烧室通道 1011内设置锥形滑 动结构体 10511的开启行程限定结构 1012。
实施例 8
如图 15所示的矢量叉乘发动机, 其与实施例 2的区别在于: 在燃烧室通 道 101内设置内环密封环 1018, 在内环密封环 1018的内环内设滑动结构体 1051 , 滑动结构体 1051与内环密封环 1018的内径侧面滑动配合, 滑动结构体 1051受复位控制机构 1058控制;复位控制机构 1058设为由弹簧 10583和控制 杆 10582构成的弹簧式复位控制机构 10581。 本实施例通过设置控制结构来控 制通道的通断和 /或不同方向的流动阻力大小, 实现按设计要求控制燃烧室包 络空间和高压工质储罐之间的工质流量。
实施例 9 如图 16和图 17所示的矢量叉乘发动机, 其与实施例 8的区别在于: 复位 控制机构 1058的一部分设置在高压工质储罐 2内, 复位控制机构 1058的另一 部分设置在高压工质储罐 2外, 在高压工质储罐 2外设置密封壳 10586, 设置 在高压工质储罐 2之外的部分复位控制机构 1058设置在密封壳 10586内, 密 封壳 10586与高压工质储罐 2密封连接。
实施例 10
如图 18和图 19所示的矢量叉乘发动机, 其与实施例 9的区别在于: 在控 制杆 10582上设密封阀体 10584, 在高压工质储罐 2的内壁上设储罐内壁座口 10585,密封阀体 10584与储罐内壁座口 10585相配合以实现当高压工质储罐 2 内的压力达到设定程度时控制杆 10582和高压工质储罐 2壁壳之间的间隙被密 封。
实施例 11
如图 20所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在所述燃烧 室通道 101内设置滑动结构体 1051。燃烧室通道 101与高压工质储罐 2设为等 内径腔体 2101,滑动结构体 1051与等内径腔体 2101滑动密封配合或有间隙配 合,在滑动结构体 1051的远离燃烧室包络空间 1的一端设置弹性体 10512,在 等内径腔体 2101和燃烧室包络空间 1连接处附近的等内径腔体 2101内设置燃 烧室密封座口 1013,滑动结构体 1051与燃烧室密封座口 1013配合将燃烧室密 封座口 1013打开或关闭。 本实施例通过滑动结构体在通道内的滑动来实现设 计目的。
实施例 12
如图 21所示的矢量叉乘发动机, 其与实施例 11的区别在于: 在高压工质 储罐 2内设置罐内密封座口 2000, 罐内密封座口 2000将高压工质储罐 2分为 上腔体 2001和下腔体 2002,弹性体 10512设在上腔体 2001内,在滑动结构体 1051上设置端密封结构环 10513, 端密封结构环 10513与罐内密封座口 2000 相配合以实现当滑动结构体 1051向远离燃烧室包络空间 1的方向位移到设定 程度时滑动结构体 1051和罐内密封座口 2000之间的间隙被密封。 如图 22所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃烧室通 道 101处设工质流受控阀 102, 工质流受控阀 102受工质流控制机构 103控制 使燃烧室通道 101按控制要求打开或关闭,实现燃烧室包络空间 1和高压工质 储罐 2间按控制要求通断;
调整工质流控制机构 103使工质流受控阀 102在活塞处于爆炸冲程的上止 点附近爆炸燃烧开始时工质流受控阀 102打开使得相当一部分高温高压工质充 入高压工质储罐 2, 随着活塞下行,气缸 14内的压力下降, 已经充入高压工质 储罐 2的高温高压工质重新回到气缸 14内与气缸 14内的高温高压工质共同推 动活塞做功, 当排气冲程完了时, 工质流受控阀 102关闭并维持关闭状态直到 下一个爆炸燃烧开始时刻工质流受控阀 102重新打开;或者调整工质流控制机 构 103使工质流受控阀 102在活塞处于爆炸冲程的上止点附近缸内爆炸燃烧开 始时工质流受控阀 102打开使得相当一部分高温高压工质充入高压工质储罐 2 后工质流控制阀 102关闭, 使高压工质储罐 2中保存有相当一部分工质, 维持 工质流控制阀 102的关闭状态,调整发动机进排气门控制方式以实现当排气冲 程完了时关闭发动机的进气门 6和排气门 7并维持此关闭状态,打开工质流受 控阀 102,使高压工质储罐 2中保存的高温高压工质进入气缸 14继续推动活塞 5做功, 使得发动机的工作循环在完成吸——压——爆——排冲程之后增加至 少一个作功——排气冲程组后再进入下一个吸——压——爆——排冲程。
实施例 14
如图 23所示的矢量叉乘发动机, 其与实施例 1的区别在于: 高压工质储 罐 2上设有容积调节装置 1 1。
实施例 15
如图 24所示的矢量叉乘发动机, 其与实施例 1的区别在于: 在燃烧室通 道 101上设流动阻力调节装置 13。
实施例 16
如图 25或图 26所示的矢量叉乘发动机, 包括燃烧室包络空间 1、 高压工 质储罐 2、 气缸盖 3、 气缸壁 4、 活塞 5、 进气门 6和排气门 7, 在燃烧室包络 空间 1的外壁上设燃烧室通道 101,在燃烧室通道 101内设置下端密封环 8101 和上端密封环 8102,在下端密封环 8101和上端密封环 8102之间的燃烧室通道 101 内设滑动结构体 1051, 上端密封环 8102经连接通道 8103与高压气体源 8104连通。
显然, 本发明不限于以上实施例, 还可以有许多变形。 本领域的普通技术 人员, 能从本发明公开的内容直接导出或联想到的所有变形, 均应认为是本发 明的保护范围。

Claims

权利 要求
1、 一种矢量叉乘发动机, 包括燃烧室包络空间 (1), 其特征在于: 所述 矢量叉乘发动机还包括高压工质储罐(2), 在所述燃烧室包络空间 (1) 的外 壁上设燃烧室通道(101),所述燃烧室包络空间(1)经所述燃烧室通道(101) 与所述高压工质储罐(2) 连通。
2、 根据权利要求 1所述的矢量叉乘发动机, 其特征在于: 在所述燃烧室 通道(101) 内设置滑动结构体(1051)。
3、 根据权利要求 2所述的矢量叉乘发动机, 其特征在于: 在所述滑动结 构体(1051)上设置滑动结构体常通通道(1053)和滑动结构体单向通道(1054), 所述滑动结构体常通通道(1053)和所述滑动结构体单向通道(1054)在连通 所述燃烧室包络空间 (1)和所述高压工质储罐(2)的方向上贯通所述滑动结 构体(1051), 所述滑动结构体(1051)和所述燃烧室通道(101)密封配合或 者非密封配合;
在所述燃烧室通道(101)和所述燃烧室包络空间 (1)连接处附近的所述 燃烧室通道(101 )内设置大内径端部密封环(1055),在所述燃烧室通道(101 ) 和所述高压工质储罐 (2)连接处附近的所述燃烧室通道(101) 内设置小内径 端部密封环(1056);或者在所述燃烧室通道(101 )和所述燃烧室包络空间(1 ) 连接处附近的所述燃烧室通道(101) 内设置小内径端部密封环(1056), 在所 述燃烧室通道(101)和所述高压工质储罐(2)连接处附近的所述燃烧室通道 (101) 内设置大内径端部密封环 (1055)。
4、 根据权利要求 2所述的矢量叉乘发动机, 其特征在于: 在所述滑动结 构体(1051)上设置滑动结构体悬空通道(1059), 所述滑动结构体悬空通道
(1059)在连通所述燃烧室包络空间 (1)和所述高压工质储罐(2) 的方向上 贯通所述滑动结构体(1051), 在所述燃烧室通道(101)和所述燃烧室包络空 间 (1)连接处附近的所述燃烧室通道(101) 内设置燃烧室密封座口 (1013), 在所述燃烧室通道(101)和所述高压工质储罐(2)连接处附近的所述燃烧室 通道(101) 内设置储罐密封座口 (1014);
或在所述燃烧室通道(101)和所述燃烧室包络空间 (1)的连接处附近的 所述燃烧室通道(101 ) 内设置所述燃烧室密封座口 (1013), 在所述燃烧室通 道(101 ) 和所述高压工质储罐(2) 的连接处附近的所述燃烧室通道(101 ) 内设置所述储罐密封座口 (1014), 在所述燃烧室密封座口 (1013) 和所述储 罐密封座口 (1014) 之间的所述燃烧室通道 (101 ) 内设置所述滑动结构体
( 1051 ), 所述滑动结构体(1051 )和所述燃烧室通道(101 )之间设置间隙; 所述滑动结构体(1051 )与所述燃烧室密封座口 (1013)接触时所述燃烧 室密封座口 (1013)被关闭即所述燃烧室包络空间 (1 )和所述高压工质储罐
(2)被隔离, 所述滑动结构体 (1051 ) 与所述储罐密封座口 (1014)接触时 所述储罐密封座口 (1014)被关闭即所述燃烧室包络空间 (1 )和所述高压工 质储罐(2)被隔离, 当所述滑动结构体 (1051 )处于既不与所述燃烧室密封 座口 (1013)接触也不与所述储罐密封座口 (1014)接触的位置时所述燃烧室 包络空间 (1 )和所述高压工质储罐(2) 连通。
5、 根据权利要求 2所述的矢量叉乘发动机, 其特征在于: 所述燃烧室通 道(101 )设为内锥面燃烧室通道(1011 ), 所述滑动结构体(1051 )设为锥形 滑动结构体(10511 ), 在所述内锥面燃烧室通道(1011 ) 内设置所述锥形滑动 结构体(10511 ) 的开启行程限定结构(1012)。
6、 根据权利要求 1所述的矢量叉乘发动机, 其特征在于: 在所述燃烧室 通道(101 ) 内设置内环密封环(1018), 在所述内环密封环(1018) 的内环内 设所述滑动结构体(1051 ),所述滑动结构体(1051 )与所述内环密封环(1018) 的内径侧面滑动配合,所述滑动结构体(1051 )受复位控制机构(1058)控制; 所述复位控制机构( 1058 )设为非弹簧式复位控制机构或者设为由弹簧( 10583 ) 和控制杆(10582)构成的弹簧式复位控制机构(10581 )。
7、 根据权利要求 6所述的矢量叉乘发动机, 其特征在于: 所述复位控制 机构(1058) 的一部分设置在所述高压工质储罐(2) 内, 所述复位控制机构
( 1058) 的另一部分设置在所述高压工质储罐(2) 夕卜;
或所述复位控制机构(1058)的一部分设置在所述高压工质储罐(2) 内, 所述复位控制机构 (1058) 的另一部分设置在所述高压工质储罐(2)外, 在 所述高压工质储罐(2)外设置密封壳(10586),设置在所述高压工质储罐(2) 之外的部分所述复位控制机构(1058)设置在所述密封壳(10586) 内, 所述 密封壳(10586) 与所述高压工质储罐(2) 密封连接。
8、 根据权利要求 7所述的矢量叉乘发动机, 其特征在于: 在所述控制杆 (10582)上设密封阀体(10584), 在所述高压工质储罐(2) 的内壁上设储罐 内壁座口 (10585), 所述密封阀体(10584)与所述储罐内壁座口 (10585)相 配合以实现当所述高压工质储罐(2) 内的压力达到设定程度时所述控制杆 (10582)和所述高压工质储罐 (2)壁壳之间的间隙被密封。
9、 根据权利要求 2所述的矢量叉乘发动机, 其特征在于: 所述燃烧室通 道(101 ) 与所述高压工质储罐(2)设为等内径腔体(2101 ), 所述滑动结构 体(1051 )与所述等内径腔体(2101 )滑动密封配合或有间隙配合, 在所述滑 动结构体(1051 )的远离所述燃烧室包络空间(1 )的一端设置弹性体(10512), 在所述等内径腔体(2101 )和所述燃烧室包络空间 (1 )连接处附近的所述等 内径腔体(2101 ) 内设置燃烧室密封座口 (1013), 所述滑动结构体(1051 ) 与所述燃烧室密封座口 (1013)配合将所述燃烧室密 ¾Τ座口 (1013)打开或关 闭。
10、 根据权利要求 9所述的矢量叉乘发动机, 其特征在于: 在所述高压工 质储罐 (2) 内设置罐内密封座口 (2000), 所述罐内密封座口 (2000)将所述 高压工质储罐(2)分为上腔体(2001 )和下腔体(2002),所述弹性体 ( 10512) 设在所述上腔体(2001 ) 内, 在所述滑动结构体(1051 )上设置端密封结构环
(10513), 所述端密封结构环(10513) 与所述罐内密封座口 (2000)相配合 以实现当所述滑动结构体 (1051 ) 向远离所述燃烧室包络空间 (1 ) 的方向位 移到设定程度时所述滑动结构体(1051 )和所述罐内密封座口 (2000)之间的 间隙被密封。
11、 根据权利要求 1所述的矢量叉乘发动机, 其特征在于: 在所述燃烧室 通道(101 )处设工质流受控阀 (102), 所述工质流受控阀 (102)受工质流控 制机构(103)控制使所述燃烧室通道(101 )按控制要求打开或关闭, 实现所 述燃烧室包络空间 (1 )和所述高压工质储罐(2) 间按控制要求通断。
12、根据权利要求 1至 11任意之一所述的矢量叉乘发动机, 其特征在于: 所述高压工质储罐(2)上设有容积调节装置(11), 和 /或在所述燃烧室通道 (101)上设流动阻力调节装置 (13)。
13、 根据权利要求 2所述的矢量叉乘发动机, 其特征在于: 所述高压工质 储罐(2) 与高压气体源 (8104) 连通。
14、 根据权利要求 13所述的矢量叉乘发动机, 其特征在于: 在所述燃烧 室通道(101) 内设置下端密封环(8101), 在所述下端密封环 (8101)和所述 高压工质储罐(2)之间的所述燃烧室通道(101) 内设滑动结构体(1051) ; 或者在所述燃烧室通道(101) 内设置下端密封环(8101)和上端密封环 (8102), 在所述下端密封环(8101)和上端密封环 (8102) 之间的所述燃烧 室通道(101) 内设滑动结构体 (1051)。
PCT/CN2011/000477 2010-03-04 2011-03-21 矢量叉乘发动机 WO2011116631A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010131355 2010-03-04
CN201010131355.6 2010-03-24
CN201010143111 2010-04-09
CN201010143111.X 2010-04-09
CN2010101641599A CN101892901B (zh) 2010-02-12 2010-05-06 矢量叉乘发动机
CN201010164159.9 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011116631A1 true WO2011116631A1 (zh) 2011-09-29

Family

ID=44672461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000477 WO2011116631A1 (zh) 2010-03-04 2011-03-21 矢量叉乘发动机

Country Status (1)

Country Link
WO (1) WO2011116631A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085718A1 (fr) * 2018-09-10 2020-03-13 Vianney Rabhi Dispositif de rappel magnetique de clapet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428175A1 (de) * 1993-08-11 1995-02-16 Lucas Ind Plc Kraftstoffeinspritzvorrichtung
CN101592108A (zh) * 2009-04-24 2009-12-02 靳北彪 发动机用阀头外位移燃油喷射器
CN101598094A (zh) * 2009-05-12 2009-12-09 靳北彪 新型发动机用直控式壳体形变流体喷射器
CN101660448A (zh) * 2009-10-09 2010-03-03 靳北彪 滑动缸配气悬浮活塞发动机
CN101709665A (zh) * 2009-12-31 2010-05-19 靳北彪 界面压缩发动机
CN101892901A (zh) * 2010-02-12 2010-11-24 靳北彪 矢量叉乘发动机
CN201826914U (zh) * 2010-10-15 2011-05-11 靳北彪 叠置气门机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428175A1 (de) * 1993-08-11 1995-02-16 Lucas Ind Plc Kraftstoffeinspritzvorrichtung
CN101592108A (zh) * 2009-04-24 2009-12-02 靳北彪 发动机用阀头外位移燃油喷射器
CN101598094A (zh) * 2009-05-12 2009-12-09 靳北彪 新型发动机用直控式壳体形变流体喷射器
CN101660448A (zh) * 2009-10-09 2010-03-03 靳北彪 滑动缸配气悬浮活塞发动机
CN101709665A (zh) * 2009-12-31 2010-05-19 靳北彪 界面压缩发动机
CN101892901A (zh) * 2010-02-12 2010-11-24 靳北彪 矢量叉乘发动机
CN201826914U (zh) * 2010-10-15 2011-05-11 靳北彪 叠置气门机构

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085718A1 (fr) * 2018-09-10 2020-03-13 Vianney Rabhi Dispositif de rappel magnetique de clapet
WO2020053501A1 (fr) * 2018-09-10 2020-03-19 Vianney Rabhi Dispositif de rappel magnetique de clapet
CN112654773A (zh) * 2018-09-10 2021-04-13 V·拉比 电磁阀复位装置
CN112654773B (zh) * 2018-09-10 2023-11-21 V·拉比 电磁阀复位装置

Similar Documents

Publication Publication Date Title
CN101892901B (zh) 矢量叉乘发动机
CN201560839U (zh) 内燃斯特林发动机
AU2011227531B2 (en) Split-cycle air-hybrid engine with compressor deactivation
EP2785996B1 (en) Crossover valve in double piston cycle engine
EP2956636A1 (en) Valve assembly and method for high temperature engines
WO2012079269A1 (zh) 放出式高效气体压縮机
WO2011116631A1 (zh) 矢量叉乘发动机
US10975798B2 (en) Enhanced piston for improving the efficiency of an internal combustion engine
CN102155296B (zh) 直动阀发动机
CN201891501U (zh) 矢量叉乘发动机
CN210440614U (zh) 一种自适应调节控制阀
CN209414289U (zh) 整体式调压换向阀
TWM614077U (zh) 內燃機增壓系統
WO2020124554A1 (zh) 气门配气机构及发动机
US6341585B1 (en) Variable inlet valve damper for an internal combustion engine
CN203441626U (zh) 热量回收系统
RU2576694C1 (ru) Способ управления рециркуляцией выхлопных газов в двигателе внутреннего сгорания системой пневматического привода трёхклапанного газораспределителя с зарядкой пневмоаккумулятора системы газом из компенсационного пневмоаккумулятора
CN110360337A (zh) 一种自适应调节控制阀
CN102562276A (zh) 一种内外燃发动机
CN115263235A (zh) 一种全金属耐高温自平衡放气阀
TWM272071U (en) Improved pressure-reduced magazine of a toy gun
UA84032C2 (ru) Способ работы двигателя внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758741

Country of ref document: EP

Kind code of ref document: A1