WO2011116565A1 - 蒸发镀膜设备 - Google Patents

蒸发镀膜设备 Download PDF

Info

Publication number
WO2011116565A1
WO2011116565A1 PCT/CN2010/074980 CN2010074980W WO2011116565A1 WO 2011116565 A1 WO2011116565 A1 WO 2011116565A1 CN 2010074980 W CN2010074980 W CN 2010074980W WO 2011116565 A1 WO2011116565 A1 WO 2011116565A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
evaporation
evaporator
baffle
winding
Prior art date
Application number
PCT/CN2010/074980
Other languages
English (en)
French (fr)
Inventor
杨明生
叶宗锋
刘惠森
范继良
王曼媛
王勇
张华�
Original Assignee
东莞宏威数码机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞宏威数码机械有限公司 filed Critical 东莞宏威数码机械有限公司
Publication of WO2011116565A1 publication Critical patent/WO2011116565A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material

Definitions

  • An evaporation coating device in particular, relates to a highly automated evaporation coating device for the production of organic light-emitting devices.
  • OLEDs Organic light-emitting devices
  • the structure of a typical organic light-emitting device is a sandwich structure, the anode is a transparent conductive glass, and has a high work function.
  • the cathode is a low work function metal, and an organic light-emitting film layer is added between the cathode and the anode at a suitable working voltage.
  • a hole transport layer is usually added between the anode and the organic light-emitting film layer, and an electron transport layer is added between the cathode and the organic light-emitting film layer.
  • the anode is a transparent metal oxide film mainly composed of hole conduction
  • the cathode mainly provides electrons
  • the electron transport layer transports the cathode-implanted electrons while blocking the hole carriers in the light-emitting layer.
  • the hole transport layer transports the anode-implanted holes while blocking the electron carriers in the light-emitting layer.
  • the organic light-emitting thin film layer is thin, a high field of -i0 5 v / cm can be generated, and once the electrons and holes form a high implantation density, they are concentrated in the organic light-emitting thin film layer and compositely form a large number of excitons ( That is, a hole-electron pair), these excitons are generated in a narrow region of the organic light-emitting film layer at the interface. When excitons are recombined, a large part of them generate radiation and emit light.
  • the coating technology plays an important role in the formation of many layers of organic light-emitting devices, especially the more mature vacuum evaporation coating technology.
  • the so-called vacuum evaporation coating is a substrate in which a substrate or a workpiece to be coated is placed in a vacuum chamber, and the evaporation material is vaporized (or sublimated) by heating to be deposited at a certain temperature. Or on the work surface, thereby forming a film.
  • the organic light-emitting device As the lifespan and luminous efficiency of the organic light-emitting device become higher and higher, the organic light-emitting device is required to have a uniform film layer, pure components, stable performance, no stress, strong adhesion, etc., and is required for preparation.
  • Vacuum coating equipment of various layers has an increasingly high degree of automation.
  • a film of a higher quality cannot be obtained because the film thickness cannot be measured and controlled in real time.
  • the vacuum environment in the vacuum chamber is often broken, thereby affecting the quality of the film layer.
  • the technical solution of the present invention is to provide an evaporation coating apparatus including a winding mechanism, a wire feeding mechanism, an evaporation source mechanism, a baffle assembly, and a vacuum chamber having a cavity, the winding mechanism
  • the wire feeding mechanism, the evaporation source mechanism and the baffle assembly are all disposed in the vacuum chamber, wherein the wire winding mechanism comprises a wire winding shaft and a winding wire wound around the evaporation wire, and the winding wire passes through the winding
  • the wire rotating shaft is pivotally connected to the vacuum cavity;
  • the wire feeding mechanism comprises a wire feeding driving mechanism, a mounting box, a driving shaft and a wire feeding wheel set for clamping and conveying the evaporation wire, wherein the wire feeding driving mechanism is installed on Outside the vacuum chamber, the mounting box is installed in the vacuum chamber, the wire feeding wheel set is installed in the mounting box, and one end of the driving shaft is connected to the wire feeding driving mechanism, and the transmission The other end of the shaft is sealingly connected to the wire feeding
  • the evaporation source mechanism further includes a recovery assembly, the recovery assembly includes a receiving container, an insulating block and a cooling seat, and the receiving container is disposed directly under the evaporator and connected through the insulating block
  • the cooling seat is installed in the vacuum chamber; during the evaporation process, when the rate at which the wire feeding mechanism transmits the evaporation wire is greater than the evaporation rate, the evaporation in the evaporator is more and more More, eventually overflowing, the receiving container is used to receive the overflowed evaporate, preventing the evaporating material from being transferred to the vacuum chamber through the evaporating material during the overflow process, causing the evaporator to fail to operate normally or cause electric shock; and at the same time, the insulating block
  • the cooling seat acts as an insulation, on the other hand, it cools the receiving container, reduces heat radiation and ensures the quality of the coating.
  • the wire feed wheel set includes a driving gear, a driven gear, a rotating shaft and an elastic member, and the driving gear is connected to the wire feeding driving mechanism through the transmission shaft, and the rotating shaft is grounded through
  • the driven gear is fixedly coupled to one end of the elastic member having elasticity, and the other end of the elastic member is fixedly coupled to an inner wall of the mounting box, and the driving gear meshes with the driven gear and drives
  • the driven gear rotates, the elastic member gives the driven gear an elastic force against the driving gear, and the driving gear and the driven gear are both grooved and driven by the driving gear and the driven gear a meshing passage is formed at a meshing portion of the gear
  • the mounting box is provided with a wire inlet hole and a wire opening hole opposite to the wire feeding passage;
  • the wire feeding mechanism is a gear meshing pinching mechanism, and the friction between the gear and the evaporation wire is utilized
  • the force and the meshing force between the two meshing gears give the evaporating wire traction force, and the evapor
  • the elastic member is a sheet-shaped elastic piece bracket
  • the elastic piece holder includes a fixing portion and two parallel elastic arms extending outwardly along one end of the fixing portion, and the elastic arms are provided with shafts a sleeve, the two ends of the rotating shaft are fixed in the sleeve; more specifically, the side end of the fixing portion of the elastic bracket is provided with a convex body, and the inner wall of the mounting box is open to the convex body Fit the card slot.
  • the male body is coupled to the card slot such that the elastic member is firmly fixed on the inner wall of the mounting box, and the elastic piece bracket
  • the two elastic arms make the spring support stronger to the driven gear, and the sleeve provided on the elastic arm enables the rotating shaft to be more firmly fixed to one end of the elastic member, and the active support is adjusted by the elastic support
  • the meshing force between the gear and the driven gear, thereby changing the wire feeding force of the wire feeding mechanism, and the structure is simple
  • the wire feeding mechanism further comprises a wire guide tube, the wire guide tube is detachably mounted at the wire opening of the mounting box and extends out of the wire, the wire tube is located at the Above the evaporator; during operation, the evaporation wire enters the guide wire tube from the wire exit hole under the wire feeding force of the wire feeding mechanism, and introduces the evaporation wire into the evaporator under the guiding action of the wire guide tube, the guide wire
  • the tube is used for preventing evaporation, dislocation or deformation of the evaporation wire.
  • the evaporation coating device of the present invention further comprises a frame, the frame comprises a base and an epitaxial arm, and the end of the epitaxial arm is provided with a mounting groove, the winding wire
  • the wheel is pivotally connected to the mounting slot through the wire winding shaft, and the mounting box is mounted on the base; more specifically, a cooling water circulation pipe having a hollow structure is formed in the base and is at the base The water inlet and the water outlet are formed on the surface, and the cooling water circulation pipeline is bent.
  • the wire feeding mechanism is prone to heat for a long time, and the evaporation wire is heated and softened and deformed, so that the carding phenomenon occurs during the conveying process.
  • the cooling water circulation line opened above can reduce the temperature, keep the wire feeding mechanism at a constant temperature, and the 3 ⁇ 4 bent cooling water circulation line effectively increases the length of the cooling water circulation line and improves the cooling water circulation line.
  • the cooling effect further reduces the temperature rise of the wire feeding mechanism caused by external radiant heat, and prevents the evaporation wire from becoming soft and deformed.
  • the evaporative coating apparatus of the present invention further comprises a protective cover surrounding the evaporation zone, the evaporator and the carrier are located in the protective cover; the protective cover is disposed in the vacuum according to the situation
  • the cavity does not need to be vapor-deposited and is easily sputtered by the vapor deposition material, or is disposed at a place where it is inconvenient to remove the vapor deposition material, thereby reducing the contamination of the vacuum chamber.
  • the evaporation coating apparatus of the present invention further includes an observation window and an observation window baffle disposed on the vacuum chamber, the observation window baffle is movably mounted at the observation window; through the observation window The vapor deposition in the vacuum chamber can be observed in a timely manner.
  • the observation window is closed by the observation window baffle to prevent the observation window from being contaminated.
  • the evaporative coating apparatus of the present invention further comprises a cooling water pipe disposed on the wall of the vacuum chamber; the cooling water pipe can efficiently lower the temperature in the vacuum chamber to maintain a specific evaporation process temperature and improve the quality of the evaporation process.
  • the evaporation coating apparatus of the present invention has a winding mechanism, a wire feeding mechanism and an evaporation source mechanism disposed in the vacuum chamber, wherein the winding mechanism comprises a winding wire around the wire and a winding wire wound around the evaporation wire.
  • the wire feeding mechanism comprises a wire feeding driving mechanism, a mounting box, a driving shaft and a feeding for clamping and conveying the evaporation wire a wire wheel drive mechanism, the wire feed drive mechanism is mounted on the outside of the vacuum chamber, the installation box is installed in the vacuum chamber, and the wire feed wheel set is installed in the installation box, One end of the shaft is coupled to the wire feed drive mechanism, and the other end of the drive shaft is sealingly connected to the wire feed wheel set through the vacuum cavity, and the wire feed wheel set is located at the wire winding wheel
  • the wire feeding driving mechanism drives the wire feeding wheel group to rotate by the transmission shaft, and the wire feeding wheel group drives the clamped evaporation wire to be conveyed
  • the evaporation source mechanism includes Evaporator, electrode, carrier and a thick sensor, the electrode is fixed in the vacuum chamber by an insulating device, the evaporator is fixed on the electrode and electrically
  • the thickness of the film deposited on the workpiece is obtained to control the thickness of the film layer to be deposited on the workpiece by deposition efficiency or deposition time, so that the thickness of the film layer on the workpiece is accurate, thereby improving the quality of the film layer; meanwhile, the wire winding mechanism And the wire feeding mechanism is disposed in the vacuum chamber, and the evaporation wire is wound on the wire winding mechanism according to actual needs, and the wire on the wire winding mechanism is smoothly and evenly distributed by the wire feeding mechanism. It is sent to the evaporator to extend the cycle of evaporation wire replacement. It does not damage the vacuum environment in the vacuum chamber due to the replacement of the evaporation wire, and improves the quality of the film formed by the evaporation coating. In addition, the system detects the film according to the film thickness sensor. Thickness controls the film thickness deposited on the workpiece, giving the evaporation coating equipment a high degree of automation.
  • FIG. 1 is a schematic sectional view showing the structure of an evaporation coating apparatus of the present invention.
  • Fig. 2 is a schematic view showing the structure of an evaporation source mechanism of the evaporation plating film of the present invention.
  • 3 is a schematic view showing the structure of the wire feeding mechanism and the winding mechanism of the evaporation coating device of the present invention.
  • 4 is a schematic view showing the structure of a wire feeding mechanism of the evaporation coating apparatus of the present invention.
  • Figure 5 is a schematic cross-sectional view of Figure 4.
  • Figure 6 is a top plan view of Figure 4.
  • Figure 7 is a schematic view showing the structure of the elastic member of Figure 4.
  • Fig. 8 is a schematic view showing the state in which the shutter of the evaporation coating apparatus of the present invention is closed.
  • Fig. 9 is a view showing the state of use of the evaporation coating apparatus of the present invention. detailed description
  • the evaporative coating apparatus 1 of the present invention comprises a wire winding mechanism 10, a wire feeding mechanism 20, an evaporation source mechanism 30, a baffle assembly 40, and a vacuum chamber 70 having a cavity, a vacuum chamber 70 and The vacuuming system is connected, the wire winding mechanism ⁇ 0, the wire feeding mechanism 20, the evaporation source mechanism 30 and the baffle assembly 40 are disposed in the vacuum cavity 70, and a frame 60 is further disposed in the vacuum cavity 70.
  • the wire winding mechanism 10 and the wire feeding mechanism 20 are mounted on the frame 60; wherein the wire winding mechanism 10 includes a winding shaft around the wire!
  • the wire winding wheel 11 is pivotally connected to the frame 60 by a wire winding shaft 12;
  • the wire feeding mechanism 20 comprises a wire feeding drive mechanism 21, a mounting box 22, a transmission shaft 23 and a clip
  • the wire feeding wheel set holding and conveying the evaporation wire, the wire feeding driving mechanism 21 is installed outside the vacuum chamber 70, the mounting box 22 is mounted on the frame 60, the wire feeding wheel set is installed in the mounting box 22, and one end of the driving shaft 23
  • the wire feed drive mechanism 21 is connected, and the other end of the drive shaft 23 is sealingly connected through the vacuum chamber 70 to the wire feed wheel set of the installation box 22, and the wire feed wheel set is located between the wire winding wheel 11 and the evaporation source mechanism 30.
  • the wire feeding drive mechanism 21 drives the wire feed wheel group to rotate by the transmission shaft 23, and the wire feeding wheel group drives the clamped evaporation wire to be conveyed;
  • the evaporation source mechanism 30 includes the electrode 31, the evaporator 32, the receiving container 33, and the film thickness.
  • the sensor 36 and the carrier 37, the electrode 31 includes electrodes 31a, 31b, and the electrodes 31a, 31b are fixed in the vacuum chamber 70 by an insulating device, and the evaporator 32 is fixed on the electrodes 31a, 31b and the electrodes. 31a, 3 ib Connection, electrode.
  • the electrodes 3 ia, 31b ensure good contact between the electrode lead and the evaporator 32, reduce the resistance at the joint, reduce the heat generation at the joint, and the evaporator 32 is located below the output end of the wire feeding mechanism 20; the receiving container 33 Provided below the evaporator 32 and connected to the cooling by the insulating block 34 On the seat 35, the cooling seat 35 is mounted in the vacuum chamber 70; the carrier 37 is used to carry the workpiece to be coated, the carrier 37 is fixedly connected to the vacuum chamber 70 and located directly above the evaporator 32, the carrier 37 and the evaporation A vapor deposition zone is formed between the devices 32, and a film thickness sensor 36 is disposed in the vapor deposition zone; during the evaporation process, when the wire feeding mechanism 20 feeds the wire at a rate higher than the evaporation rate of the evaporant, the evaporator is easily Evaporation in 32.
  • the receiving container 33 is used to receive the overflowed evaporate, preventing the evaporating material from passing through the evaporating fluid to the vacuum chamber 70 during the overflow process, causing evaporation
  • the device 32 cannot operate normally or is in shock or the like, and the receiving container 33 can better recycle the evaporating material; the insulating block 34 and the cooling seat 35 are used for insulation, and on the other hand, the receiving container 33 is cooled to reduce heat radiation and ensure coating.
  • the baffle assembly 40 includes a baffle drive mechanism 41, a rotating shaft 42 and a baffle 43.
  • the baffle drive mechanism 41 is mounted outside the vacuum chamber 70.
  • the baffle 43 is fixed to one end of the rotating shaft 42. Sealed at the other end
  • the baffle 43 is disposed between the evaporator 32 and the carrier 37, and the baffle drive mechanism 41 drives the baffle 43 to rotate to realize the evaporator 32. Isolation or communication with the workpiece to be coated.
  • the evaporation coating apparatus 1 of the present invention further comprises a shield 50, a cooling water pipe 71, a viewing window 73 and an observation window shutter 74.
  • the shield 50 surrounds the evaporation zone, and the evaporator 32 is located at the carrier 37.
  • the protective cover 50 the protective cover 50 is used for reducing the contamination of the vacuum chamber by the evaporating material;
  • the cooling water pipe 72 is disposed on the wall of the vacuum chamber, and the cooling water pipe 72 can efficiently lower the temperature in the vacuum chamber 70 to maintain a specific temperature.
  • the observation window 73 is disposed on the vacuum chamber 70, and the observation window shutter 74 is movably mounted on the observation window 73.
  • the observation window 73 can timely observe the evaporation in the vacuum chamber 70.
  • the viewing window shutter 74 closes the observation window 73 to prevent the observation window 73 from being contaminated.
  • the frame 60 of the evaporative coating apparatus 1 of the present invention comprises a base 61 and an epitaxial arm 62.
  • the end of the epitaxial arm 62 of the frame 60 is provided with a U-shaped mounting groove 63, and the winding wire 11 passes through the wire.
  • the rotating shaft 12 is pivotally connected to the mounting groove 63.
  • the mounting box 22 of the wire feeding mechanism 20 is mounted on the base 61.
  • the mounting box 22 is provided with a wire opening 221 corresponding to the wire winding wheel 11 of the wire winding mechanism 10, and evaporating.
  • the evaporator 32 of the source mechanism 30 corresponds to the wire opening 222.
  • the wire feeding wheel set is mounted in the mounting box 22 and connected to the wire feeding drive mechanism 21 via the transmission shaft 23, outward at the wire opening 222 of the mounting box 22. Extending to form a wire tube 225, the lumen of the wire tube 225 is connected to the wire opening 222, and the wire tube 225 is screwed or snapped with a wire guide tube 29, and the wire guide tube 29 is detachably mounted on the wire tube 225. On the wire tube 225, the guide wire tube 29 is located Above the evaporator 32; in operation, the evaporation wire is sent from the winding drum 11 to the evaporator 32 under the action of the wire feeding wheel set, and the winding wheel 11 is freely rotated around the winding shaft 12, effectively reducing Resistance.
  • the base 61 of the frame 60 of the present invention further has a cooling water circulation pipe formed in a hollow structure, and a water inlet and a water outlet are formed on the surface of the base 61.
  • the cooling water circulation pipe is a bent wire feeding mechanism 20 It is easy to heat up for a long time, and then the evaporating wire is softened and deformed by heat, so that the carding phenomenon occurs during the conveying process, and the cooling water circulation pipe opened on the base 61 can cool down, so that the wire feeding mechanism 20 can be kept at a constant temperature.
  • the bent cooling water circulation pipeline effectively increases the length of the cooling water circulation pipeline, improves the cooling effect of the cooling water circulation pipeline, further reduces the temperature rise of the wire feeding mechanism 20 caused by external radiant heat, and prevents the evaporation wire. Softened and deformed.
  • the wire feeding wheel set of the wire feeding mechanism 20 of the present invention comprises a driving gear 24, a driven gear 25, a rotating shaft 26 and an elastic member 27, and the driving gear 24 passes through the transmission shaft 23 and the wire feeding driving mechanism.
  • the rotating shaft 26 is pivotally grounded through the driven gear 25 and fixedly connected to one end of the elastic elastic member 27, and the other end of the elastic member 27 is fixedly connected to the inner wall 223 of the mounting box 22, the driving gear 24 and the driven gear 25 engages and drives the driven gear 25 to rotate, the elastic member 27 gives the driven gear 25 an elastic force against the driving gear 24, and the driving gear 24 is provided with a groove 281.
  • the driven gear 25 is provided with a groove 282, and the driving gear 24
  • a wire feeding passage 283 is formed at a meshing portion of the driven gear 25, and the wire feeding passage 283 corresponds to the wire opening 221 and the wire opening 222 formed in the mounting box 22;
  • the elastic member is a sheet-shaped elastic piece holder 27,
  • the elastic piece holder 27 includes a fixing portion 272 and two parallel elastic arms 273 extending outwardly along one end of the fixing portion 272.
  • the two elastic arms 273 are respectively provided with a sleeve 274, and the side end of the fixing portion 272 of the elastic piece holder 27 is further provided.
  • installation A locking groove 224 is formed on the inner wall of the inner wall.
  • the fixing portion 272 is further provided with a mounting hole.
  • a threaded knob When installed, a threaded knob passes through the mounting hole on the fixing portion 272 and the inner wall 223 of the mounting box 22.
  • the threaded connection is used to fix the fixing portion 272 of the elastic piece holder 27 to the inner wall 223 of the mounting box 22, and the convex portion 271 provided at the side end of the fixing portion 272 is coupled with the locking groove 224 to fix the elastic member 27 more firmly.
  • both ends of the rotating shaft 26 are fixed in the sleeve 274, so that the rotating shaft 26 is firmly fixed to the elastic piece bracket 27, and the two elastic arms 273 of the elastic piece holder 27 are made to the driven gear 25
  • the elastic force is stronger, the meshing force between the driving gear 24 and the driven gear 25 is adjusted by the elastic piece bracket 27, the wire feeding force of the wire feeding mechanism 20 is changed, and the structure is simple; the wire guide tube 29 is detachably mounted to the mounting box 22 At the wire opening 222
  • a wire guide hole 291 is defined in the middle of the wire guide tube 225, and the wire guide hole 291 passes through the lumen of the wire outlet tube 225.
  • the output port of the wire guide tube 29 is located above the evaporator 32.
  • the wire drive mechanism 21 drives the driving gear 24 to rotate through the transmission shaft 23
  • the driving gear 24 meshes with the driven gear 25 and drives the driven gear 25 to rotate, and utilizes the friction between the gear and the evaporation wire and the two meshing.
  • the meshing force between the gears gives the evaporating wire traction force, thereby continuously transmitting the evaporating wire to the evaporator 32
  • the shrapnel holder 27 gives the driven gear 25 an elastic force against the driving gear 24, and the driven gear 25 is positionally adjustable for mounting.
  • the elastic bracket 25 is used to automatically adjust the degree of meshing between the driven gear 25 and the driving gear 24, thereby keeping the pinching force received by the evaporating wire consistent, and the conveying is smooth; the evaporating wire is in the wire feeding mechanism 20 Under the action of the wire feeding force, the wire guide tube 29 is introduced from the wire opening 222, and the evaporation wire is introduced into the evaporator 32 under the guiding action of the wire guide tube 29, and the wire guide tube 29 is used to prevent the evaporation wire from being misaligned or deformed.
  • the evaporation coating apparatus 1 winds the evaporation wire around the winding drum n before the vacuum chamber 70 is evacuated, and the winding amount of the evaporation wire is determined according to the actual evaporation requirement, because the winding wire is wound.
  • the wheel 1 1 has no power source. Therefore, the wire winding n can only be rotated by the wire feeding mechanism 20; after entering the vapor deposition process, the shutter driving mechanism 4! drives the shutter 43 to rotate, blocking the upper portion of the evaporator 32.
  • the evaporator 32 is isolated from the carrier 37, and the workpiece 80 to be vapor-deposited is fed to the carrier 37 of the evaporation source mechanism 30 at a certain speed by a transport mechanism, and at the same time, the wire feeding drive mechanism of the wire feeding mechanism 20 21 driving the driving gear 24 through the transmission shaft 23, the driving gear 24 meshes with the driven gear 25 and drives the driven gear 25 to rotate, and the frictional force between the gear and the evaporation wire and the meshing force between the two meshing gears are given to the evaporation wire.
  • the evaporating wire is pulled out from the winding wheel 11, and the evaporating wire enters the wire guide tube 29 from the wire opening 222 under the wire feeding force of the wire feeding mechanism 20, and will evaporate under the guiding action of the wire guiding tube 29.
  • Wire introduced into evaporator 32; evaporator 32 The compressible electrodes 31a, 31b are electrically connected, and the two compressible electrodes 31a, 31b are connected to an external power source through the electrode leads. When current flows to the evaporator 32, the evaporator 32 generates heat due to the resistance effect.
  • the evaporation wire in the evaporator 32 is heated, and when the evaporation wire in the evaporator 32 reaches the condition required for evaporation, the baffle 43 is rotated by the baffle drive mechanism 41 to realize the evaporator 32 and the workpiece 80 to be vapor-deposited.
  • the workpiece 80 is vapor-deposited, and a film is formed on the surface of the workpiece 80.
  • the film thickness sensor 36 timely detects the thickness of the film deposited on itself, and the thickness of the system is thick.
  • the thickness of the film on the sensor 36 and a certain conversion formula can be found deposited in The thickness of the film on the workpiece 80 is such that the thickness of the film to be deposited on the workpiece 80 is controlled by deposition efficiency or deposition time, so that the thickness of the film on the workpiece 80 is accurate, thereby improving the quality of the film;
  • the gear 24 meshes with the driven gear 25 and drives the driven gear 25 to rotate.
  • the friction between the gear and the evaporating wire and the meshing force between the two meshing gears give the evaporating wire traction force, thereby continuously transmitting and evaporating to the evaporator 32.
  • the wire keeps the evaporation wire smooth; at the same time, the cooling water pipe 72 on the wall of the vacuum chamber 70 can efficiently reduce the temperature in the vacuum chamber 70 to ensure that the temperature of the evaporation process is controlled within a reasonable range;
  • the observation window 73 on the wall of the body 70 can timely observe the evaporation condition in the vacuum chamber 70.
  • the observation window shutter 74 can be closed to prevent the observation window 73 from being contaminated; and is disposed in the vacuum chamber 70.
  • the shield 50 can reduce the contamination of the interior of the vacuum chamber 70 and improve the quality of the evaporation coating.
  • the shutter 43 is rotated by the shutter drive mechanism 4! to isolate the evaporator 32 from the workpiece 80 on the carrier 37.
  • the evaporating coating apparatus 1 of the present invention has a winding mechanism 10, a wire feeding mechanism 20 and an evaporation source mechanism 30 disposed in the vacuum chamber 70, wherein the winding mechanism 10 includes a winding wire 11 and a winding shaft 12, and a winding wire
  • the winding mechanism 10 includes a winding wire 11 and a winding shaft 12, and a winding wire
  • the wheel 1 is pivotally connected to the vacuum chamber 70 by a wire winding shaft 12;
  • the wire feeding mechanism 20 includes a wire feeding driving mechanism 21, a mounting box 22, a transmission shaft 23, and a wire feeding wheel set for clamping and conveying the evaporation wire, and the transmission One end of the shaft 23 is connected to the wire feeding drive mechanism 2!, and the other end 23 of the transmission shaft is sealingly connected to the wire feeding wheel set through the vacuum chamber 70.
  • the wire feeding wheel set is located between the winding wire wheel 11 and the evaporation source mechanism 30.
  • the wire feeding drive mechanism 21 drives the wire feeding wheel group to rotate through the transmission shaft 23, and the wire feeding wheel group drives the clamped evaporation wire to be conveyed; the evaporator, the electrode, the carrier and the film thickness sensor, the electrode is insulated
  • the device is fixed in the vacuum chamber, and the evaporator is fixed on the electrode and electrically connected to the electrode.
  • the evaporation source mechanism 30 includes an electrode 31, an evaporator 32, a receiving container 33, a film thickness sensor 36, and a carrier 37.
  • the electrode 31 is fixed in the vacuum chamber 70 by an insulating device, and the evaporator 302 is fixed to the electrode 31 and coupled to the motor 31.
  • the evaporator 32 is located below the output end of the wire feeding mechanism 20, the carrier 37 is used to carry the workpiece to be coated, the carrier 37 is fixedly connected to the vacuum chamber and located directly above the evaporator 32, and the carrier and the evaporator 32 A vapor deposition zone is formed, and a film thickness sensor 36 is disposed in the vapor deposition zone; therefore, during the evaporation process, the film thickness sensor 36 timely measures the thickness of the film deposited thereon, and the system is based on the detected film thickness.
  • a certain conversion formula can be used to determine the thickness of the film deposited on the workpiece, so as to control the thickness of the film to be deposited on the workpiece by deposition efficiency or deposition time, so that the film on the workpiece
  • the layer thickness is accurate, thereby improving the quality of the film layer
  • the receiving container 33 is for receiving the overflowed evaporate, and recovering the evaporating material at the same time, effectively reducing the pollution to the vacuum chamber 70; meanwhile, the winding mechanism 10 and the wire feeding mechanism 20 are disposed.
  • the evaporation wire is wound on the wire winding mechanism 10 according to actual needs, and the evaporation wire on the wire winding mechanism 10 is smoothly and uniformly sent to the evaporator 32 through the wire feeding mechanism 20, thereby prolonging evaporation.
  • the cycle of the wire replacement does not destroy the vacuum environment in the vacuum chamber 70 by changing the evaporation wire, thereby improving the quality of the film formed by the evaporation coating; at the same time, the degree of automation of the evaporation coating device 1 is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

蒸发镀膜设备
个 一种蒸发镀膜设备, 尤其涉及- 于有机发光器件生产的 高自动化的蒸发镀膜设备。 背景技术
有机发光器件 (OLED)因为具有平面化、 高对比度, 重量轻、 可视度佳等特 点, 近年来广受关注。 典型有机发光器件的结构如三明治结构, 阳极为透明的 导电玻璃, 具有较高的功函数, 阴极为低功函数金属, 阴极与阳极之间加入一 层有机发光薄膜层, 在合适的工作电压下便可发光; 为了改善其性能, 通常在 阳极与有机发光薄膜层间加一层空穴传输层, 在阴极与有机发光薄膜层间加一 层电子传输层。
在有机发光器件的结构层中, 阳极是以空穴导电为主的透明金属氧化膜, 阴极则主要提供电子, 空穴传输层和电子传输层之间存在势垒, 分别阻挡电 子和空穴逸出, 即电子传输层传输阴极注入的电子, 同时将空穴载流子阻挡在 发光层内, 与此相反, 空穴传输层传输阳极注入的空穴, 同时将电子载流子阻 挡在发光层内。 由于有机发光薄膜层很薄, 可产生 - i05 v / cm的高场, 电子 和空穴一旦形成了较高的注入密度, 就会集中在有机发光薄膜层中并复合形成 大量的激子(即空穴一电子对), 这些激子是在界面处有机发光薄膜层一倒很窄 的区域内产生的。 当激子进行复合时, 其中很大一部分产生辐射而发光。
在有机发光器件的生产过程中, 很多结构层都依靠镀膜工艺生成, 因此, 镀膜技术在有机发光器件众多膜层的形成过程中扮演着相当重要的角色, 特别 是较为成熟的真空蒸发镀膜技术, 在有机发光器件的形成过程中被广泛应用; 所谓真空蒸发镀膜是把待镀膜的基片或工件置于真空室内, 通过加热使蒸发材 料气化(或升华) 而沉积到某一温度的基片或工作表面上, 从而形成一层薄膜。 随着有机发光器件的寿命及发光效率等要求越来越高,不仅要求有机发光器 件的膜层均匀、 组分纯净, 性能稳定、 无应力、 附着牢固等, 更要求用于制备 各种膜层的真空镀膜设备具有越来越高的自动化程度, 然而, 在现有的蒸发 镀膜设备中, 由于无法对膜厚进行实时地^ "测和控制, 无法得到较高质量的膜 层; 另外, 由于需要频繁的更换真空腔室内的蒸发材料, 因此常打破真空腔体 内的真空环境, 进而影响膜层的质量。
因此, 急需一种能实时地^^测和控制膜层厚度, 并能加长蒸发材料更 ·!奂周 期的高自动化的蒸发镀膜设备。 发明内容
本发明的目的在于提供一种能实时地检测和控制膜层厚度, 并能加长蒸发 材料更换周期的高自动化的蒸发镀膜设备。
为实现上述目的, 本发明的技术方案为: 提供一种蒸发镀膜设备, 其包括 绕丝机构、 送丝机构、 蒸发源机构, 挡板组件及具有腔 Π的真空腔体, 所述绕 丝机构、 送丝机构、 蒸发源机构及挡板组件均设置于所述真空腔体内, 其中, 所述绕丝机构包括绕丝转轴及缠绕蒸发丝的绕丝轮, 所述绕丝轮通过所述绕丝 转轴枢接于所述真空腔体内; 所述送丝机构包括送丝驱动机构、 安装箱、 传动 轴及用于夹持并传送蒸发丝的送丝轮组, 所述送丝驱动机构安装于所述真空腔 体外, 所述安装箱安装于所述真空腔体内, 所述送丝轮组安装于所述安装箱内, 所述传动轴的一端与所述送丝驱动机构连接, 所述传动轴的另一端密封地穿过 所述真空腔体与所述安装箱内的送丝轮组连接, 所述送丝轮组位于所述绕丝轮 与所述蒸发源机构之间 , 所述送丝驱动机构通过所述传动轴驱动所述送丝轮组 转动, 所述送丝轮组带动被夹持的蒸发丝传送出; 所述蒸发源机构包括蒸发器、 电极、 承载件及膜厚传感器, 所述电极通过绝缘装置固定于所述真空腔体内, 所述蒸发器固定于所述电极上且与所述电极电连接, 所述蒸发器位于所述送丝 机构的输出端下方, 所述承载件用于承载待镀膜工件, 所述承载件与所述真空 腔体固定连接且位于所述蒸发器正上方, 所述承载件与所述蒸发器之间形成蒸 镀区, 所述莫厚传感器设置于所述蒸镀区内; 所述挡板组件包括挡板驱动机构、 挡板及旋转轴, 所述挡板驱动机构安装于所述真空腔体外, 所述挡板固定于所 述旋转轴的一端, 所述旋转轴的另一端密封地穿过所述真空腔体与所述挡板驱 动机构连接, 所述挡板设置于所述蒸镀区内且位于所述蒸发器与所述承载件之 间, 所述挡板驱动机构驱动所述挡板旋转。
较佳地, 所述蒸发源机构还包括回收组件, 所述回收组件包括接收容器, 绝缘块及冷却座, 所述■ ^收容器设置于所述蒸发器的正下方并通过所述绝缘块 连接于所述冷却座上, 所述冷却座安装于所述真空腔体内; 蒸镀过程中, 当送 丝机构传输蒸发丝的速率大于蒸发的速率时, 易使蒸发器中的蒸发物越来越多, 最终溢出, 接收容器用于接收溢出的蒸发物, 防止蒸发物在溢出的过程中, 电 流通过蒸发物流体传到真空腔体, 造成蒸发器不能正常运作或触电等事故; 同 时, 绝缘块及冷却座一方面起绝缘作用, 另一方面冷却接受容器, 减少热辐射, 保证镀膜的质量。
较佳地, 所述送丝轮组包括主动齿轮、 从动齿轮, 转动轴及弹性部件, 所 述主动齿轮通过所述传动轴与所述送丝驱动机构连接, 所述转动轴枢接地穿过 所述从动齿轮并与具有弹性的所述弹性部件的一端固定连接, 所述弹性部件的 另一端与所述安装箱的内壁固定连接, 所述主动齿轮与所述从动齿轮相啮合并 带动所述从动齿轮旋转, 所述弹性部件给予所述从动齿轮产生抵触所述主动齿 轮的弹力, 所述主动齿轮与所述从动齿轮均开有凹槽并于所述主动齿轮与从动 齿轮的啮合处形成送丝通道, 所述安装箱开设有与所述送丝通道相对的进丝孔 和出丝孔; 送丝机构为齿轮啮合夹送机构, 利用齿轮与蒸发丝之间的摩擦力以 及两啮合齿轮间的啮合力给予蒸发丝牵引力, 从 f 向蒸发器源源不断的传送蒸 发丝; 所述弹性部件给予所述从动齿轮产生抵触所述主动齿轮的弹力, 使得所 述从动齿轮位置可调地安装于所述安装箱内, 并利用弹性部件来自动调节从动 齿轮与主动齿轮之间的啮合程度, 从而保持蒸发丝传送时受到的夹送力一致, 传送平稳。
较佳地, 所述弹性部件为呈片状的弹片支架, 所述弹片支架包括固定部及 沿固定部的一端向外延伸形成的两平行的弹性臂, 两所述弹性臂上均设有轴 套, 所述转动轴的两端固定于所述轴套内; 更具体地, 所述弹片支架的固定部 的侧端设有凸体, 所述安装箱内壁上开设有与所述凸体相配合的卡槽。 凸体与 卡槽配合连接使得所述弹性部件稳固的固定在所述安装箱的内壁上, 弹片支架 的两弹性臂使得所述弹片支架对从动齿轮的弹力更强, 而弹性臂上设有的轴套 使得所述转动轴更加稳固地固定在所述弹性部件的一端, 通过弹片支架来调整 主动齿轮与从动齿轮之间的啮合力, 从而改变所述送丝机构的送丝力, 结构简 单
较佳地, 所述送丝机构还包括导丝管, 所述导丝管可拆卸的安装于所述安 装箱的出丝孔处并延伸出所述出丝扎, 所述导丝管位于所述蒸发器的上方; 工 作时, 蒸发丝在送丝机构的送丝力作用下, 从出丝孔进入导丝管, 在导丝管的 导向作用下将蒸发丝引入蒸发器, 所述导丝管用于防止蒸发丝传送,错位或变形„ 较佳地, 本发明蒸发镀膜设备还包括机架, 所述机架包括底座及外延臂, 所述外延臂的末端开设有安装槽, 所述绕丝轮通过所述绕丝转轴枢接于所述安 装槽内, 所述安装箱安装于所述底座上; 更具体地, 所述底座内贯穿开设呈中 空结构的冷却水循环管路并在所述底座的表面上形成进水口和出水口, 所述冷 却水循环管路呈弯折状。 送丝机构长时间工作容易变热, 进而使蒸发丝受热变 软、 变形, 使传送过程中出现卡丝现象, 而底座上开设的冷却水循环管路可以 起到降温作用, 使送丝机构保持恒温, ,¾弯折状的冷却水循环管路, 有效地增 加了所述冷却水循环管路的长度, 提高了冷却水循环管路的降温作用, 进一步 降低了外部辐射热引起的送丝机构温度升高, 防止蒸发丝变软、 变形。
较佳地, 本发明蒸发镀膜设备还包括防护罩, 所述防护罩围于所述蒸镀区 外, 所述蒸发器与所述承载件位于所述防护罩内; 防护罩根据情况设置于真空 腔体内不需蒸镀且容易被蒸镀物溅射到的位置处, 或者设置于不方便清除蒸镀 物的地方, 减少真空腔体的污染。
较佳地, 本发明蒸发镀膜设备还包括设置于所述真空腔体上的观察窗及观 察窗挡板, 所述观察窗挡板活动地安装于所述所述.观察窗处; 通过观察窗可以 适时地观察真空腔体内的蒸镀情况, 在不需要观察时, 利用观察窗挡板将观察 窗关闭, 防止观察窗被污染
较佳地, 本发明蒸发镀膜设备还包括设置于真空腔体壁上的冷却水管; 冷 却水管可高效率的降低真空腔体内的温度, 以保持特定的蒸镀工艺温度, 提高 蒸镀的质量。 与现有技术相比, 由于本发明蒸发镀膜设备具有设置于真空腔体内的绕丝 机构、 送丝机构及蒸发源机构, 其中, 所述绕丝机构包括绕丝转轴及缠绕蒸发 丝的绕丝轮, 所述绕丝轮通过所述绕丝转轴粗接于所述.真空腔体内; 所述送丝 机构包括送丝驱动机构、 安装箱、 传动轴及用于夹持并传送蒸发丝的送丝轮组, 所述送丝驱动机构安装于所述-真空腔体外, 所述安装箱安装于所述_真空腔体内, 所述送丝轮组安装于所述安装箱内, 所述 _传动轴的一端与所述送丝驱动机构连 接, 所述传动轴的另一端密封地穿过所述真空腔体与所述送丝轮组连接, 所述 送丝轮组位于所述绕丝轮与所述蒸发源机构之间, 所述送丝驱动机构通过所述 传动轴驱动所述送丝轮组转动, 所述送丝轮组带动被夹持的蒸发丝传送出; 所 述蒸发源机构包括蒸发器、 电极、 承载件及膜厚传感器, 所述电极通过绝缘装 置固定于所述真空腔体内, 所述蒸发器固定于所述电极上且与所述电极电连接, 所述蒸发器位于所述送丝机构的输出端下方, 所述承载件用于承载待镀膜工件 , 所述承载件与所述真空腔体固定连接且位于所述蒸发器正上方, 所述承载件与 所述蒸发器之间形成蒸镀区, 所述膜厚传感器设置于所述蒸镀区内; 因此, 蒸 镀过程中, 膜厚传感器适时地 测沉积于其上的膜层厚度, 系统根据膜厚传感 器上的膜层厚度及一定的转换公式可得出沉积在工件上的膜层厚度, 以便通过 沉积效率或沉积时间来控制需要沉积于工件上的膜层厚度, 使工件上的膜层厚 度精确, 进而提高膜层质量; 同时, 绕丝机构及送丝机构设置于真空腔体内, 根据实际需要将蒸发丝缠绕于绕丝机构上, 通过送丝机构将绕丝机构上的蒸发 丝平稳、 均匀地送到蒸发器上, 延长了蒸发丝更换的周期, 不会因为跟换蒸发 丝而破坏真空腔体内的真空环境, 提高蒸发镀膜形成的膜层质量; 另外, 系统 根据膜厚传感器检测到的膜厚控制沉积于工件上的膜厚, 使蒸发镀膜设备具有 较高的自动化程度。 附图说明
图 1是本发明蒸发镀膜设备的截面结构示意图。
图 2是本发明蒸发镀.膜设 的蒸发源机构的结构示意图。
图 3是本发明蒸发镀膜设备的送丝机构与绕丝机构配合的结构示意图。 图 4是本发明蒸发镀膜设备的送丝机构的结构示意图。
图 5是图 4的截面结构示意图。
图 6是图 4的俯视结构示意图。
图 7是图 4中弹性部件的结构示意图
图 8本发明蒸发镀膜设备的挡板关闭的状态示意图。
图 9是本发明蒸发镀膜设备的使用状态示意图。 具体实施方式
现在参考附图描述本发明的实施例, 附图中类似的元件标号代表类^的元 件。
如图 I、 图 2所示, 本发明蒸发镀膜设备 1包括绕丝机构 10、 送丝机构 20、 蒸发源机构 30、 挡板组件 40及具有腔 Π的真空腔体 70, 真空腔体 70与抽真空 系统相连通, 绕丝机构 ] ί0、 送丝机构 20、 蒸发源机构 30及挡板组件 40均设置 于所述真空腔体 70内, 在真空腔体 70内还设置有机架 60, 绕丝机构 10及送丝 机构 20安装于机架 60上; 其中, 绕丝机构 10包括绕丝转轴!2及缠绕蒸发丝 的绕丝轮 11 , 绕丝轮 11通过绕丝转轴 12枢接于机架 60上; 送丝机构 20包括 送丝驱动机构 21、 安装箱 22、 传动轴 23及用于夹持并传送蒸发丝的送丝轮组, 送丝驱动机构 21安装于真空腔体 70外, 安装箱 22安装于机架 60上, 送丝轮 组安装于安装箱 22内, 传动轴 23的一端与送丝驱动机构 21连接, 传动轴 23 的另一端密封地穿过真空腔体 70与安装箱 22的送丝轮组连接, 送丝轮组位于 绕丝轮 11与蒸发源机构 30之间, 送丝驱动机构 21通过传动轴 23驱动送丝轮 组转动,所述送丝轮组带动被夹持的蒸发丝传送出;蒸发源机构 30包括电极 31、 蒸发器 32、 接收容器 33、 膜厚传感器 36及承载件 37, 电极 31包括电极 31a、 31b, 电极 31a、 31b均通过绝缘装置固定于真空腔体 70内, 蒸发器 32固定于电 极 31a、 31b上且与电极. 31a、 3 ib电连接, 电极. 31a、 3 ib通过电极引线与外部 电源电连接, 电极 3 ia、 31b保证电极引线与蒸发器 32之间的良好接触, 减小连 接处的电阻, 进^减少连接处的发热现象, 蒸发器 32位于送丝机构 20的输出 端下方; 接收容器 33设置于所述蒸发器 32的下方并通过绝缘块 34连接于冷却 座 35上, 冷却座 35安装于所述真空腔体 70内; 承载件 37用于承载待镀膜工 件, 承载件 37与真空腔体 70固定连接且位于蒸发器 32正上方, 承载件 37与 蒸发器 32之间形成蒸镀区, 膜厚传感器 36设置于所述蒸镀区内; 蒸镀过.程中, 当送丝机构 20送丝的速率大于蒸发物的蒸发速率时, 易使蒸发器 32中的蒸发. 物越来越多, 最终溢出, 接收容器 33用于接收溢出的蒸发物, 防止蒸发物在溢 出的过.程中, 电流通过蒸发物流体传到真空腔体 70, 造成蒸发器 32不能正常运 作或触电等事故, 同时接收容器 33能更好地回收利用蒸发物; 绝缘块 34及冷 却座 35—方面起绝缘作用, 另一方面冷却接受容器 33 , 减少热辐射, 保证镀膜 的质量; 挡板组件 40包括挡板驱动机构 41、 旋转軸 42及挡板 43, 挡板驱动机 构 41安装于真空腔体 70外, 挡板 43固定于旋转轴 42的一端, 旋转轴 42的另 一端密封地穿过真空腔体 70与挡板驱动机构 41连接, 挡板 43设置于蒸镀区内 且位于蒸发器 32与承载件 37之间, 挡板驱动机构 41驱动挡板 43旋转实现蒸 发器 32与待镀膜工件之间的隔离或连通。
较佳者, 本发明蒸发镀膜设备 1还包括防护罩 50、 冷却水管 71、 观察窗 73 及观察窗挡板 74, 防护罩 50围于所述蒸镀区外, 蒸发器 32与承载件 37位于防 护罩 50内, 防护罩 50用于减少蒸发物对真空腔体的污染; 冷却水管 72设置于 真空腔体壁上, 冷却水管 72可高效率的降低真空腔体 70 内的温度, 以保持特 定的蒸镀工艺温度; 观察窗 73设置于真空腔体 70上, 观察窗挡板 74活动地安 装于观察窗 73处, 通过观察窗 73可以适时地观察真空腔体 70内的蒸镀情况, 在不需要观察时,利周观察窗挡板 74将观察窗 73关闭,防止观察窗 73被污染。
如图 3所示, 本发明蒸发镀膜设备 1的机架 60包括底座 61及外延臂 62, 机架 60的外延臂 62的末端开设有呈 U型的安装槽 63 ,绕丝轮 11通过绕丝转轴 12枢接于安装槽 63处; 送丝机构 20的安装箱 22安装于底座 61上, 安装箱 22 上开设有与绕丝机构 10的绕丝轮 11相对应的进丝孔 221 , 与蒸发源机构 30的 蒸发器 32相对应的出丝孔 222, 送丝轮组安装于安装箱 22内并通过传动轴 23 与送丝驱动机构 21连接, 在安装箱 22的出丝孔 222处向外延伸形成一个出丝 管 225, 该出丝管 225的管腔与出丝孔 222相贯通, 在出丝管 225上螺纹连接或 者卡接有导丝管 29, 导丝管 29可拆卸的安装于出丝管 225上, 导丝管 29位于 所述蒸发器 32的上方; 工作时, 在送丝轮组的作用下将蒸发丝从绕丝轮 11送 至蒸发器 32, 而绕丝轮 11围绕着绕丝转轴 12自由旋转, 有效的减少了阻力。
较佳者, 本发明机架 60的底座 61 内还贯穿开设呈中空结构的冷却水循环 管路并在底座 61的表面上形成进水口和出水口, 冷却水循环管路呈弯折状 送 丝机构 20长时间工作容易变热, 进而使蒸发丝受热变软、 变形, 使传送过程中 出现卡丝现象, 而底座 61上开设的冷却水循环管路可以起到降温作用, 使送丝 机构 20保持恒温, 而弯折状的冷却水循环管路, 有效地增加了冷却水循环管路 的长度, 提高了冷却水循环管路的降温作用, 进一步降低了外部辐射热引起的 送丝机构 20温度升高, 防止蒸发丝变软、 变形。
如图 4-图 7所示, 本发明送丝机构 20的送丝轮组包括主动齿轮 24、 从动齿 轮 25、 转动轴 26及弹性部件 27, 主动齿轮 24通过传动轴 23与送丝驱动机构 21连接,转动轴 26枢接地穿过从动齿轮 25并与具有弹性的弹性部件 27的一端 固定连接, 弹性部件 27的另一端与安装箱 22的内壁 223 固定连接, 主动齿轮 24与从动齿轮 25相啮合并带动从动齿轮 25旋转, 弹性部件 27给予从动齿轮 25产生抵触主动齿轮 24的弹力, 主动齿轮 24上开设有凹槽 281 从动齿轮 25 上开有凹槽 282, 主动齿轮 24与从动齿轮 25的啮合处形成送丝通道 283, 送丝 通道 283与安装箱 22上开设的进丝孔 221和出丝孔 222相对应; 其中, 弹性部 件为呈片状的弹片支架 27,弹片支架 27包括固定部 272及沿固定部 272的一端 向外延伸形成的两平行的弹性臂 273, 两弹性臂 273上均设有轴套 274, 弹片支 架 27的固定部 272的侧端还设有凸体 271, 安装箱 22内壁上开设有与凸体 271 相配合的卡槽 224,, 固定部 272上还开设有安装孔, 安装时, 一螺紋旋钮穿过 固定部 272上的安装孔并与安装箱 22的内壁 223螺紋连接, 从而将弹片支架 27 的固定部 272固定在安装箱 22的内壁 223上, 而固定部 272的侧端设有的凸体 271与卡槽 224配合连接使弹性部件 27更加稳固的固定在安装箱 22的内壁 223 上, 转动轴 26的两端固定于轴套 274内, 使转动轴 26稳固地固定在弹片支架 27上, 弹片支架 27的两弹性臂 273使其对从动齿轮 25的弹力更强, 通过弹片 支架 27调整主动齿轮 24与从动齿轮 25之间的啮合力, 从^改变送丝机构 20 的送丝力, 结构简单; 导丝管 29可拆卸的安装于安装箱 22的出丝孔 222处的 出丝管 225上,导丝管 29的中间开设有导丝孔 291, 该导丝孔 291与出丝管 225 的管腔相贯通, 导丝管 29的输出口位于所述蒸发器 32的上方; 工作时, 送丝 驱动机构 21通过传动轴 23驱动主动齿轮 24转动, 主动齿轮 24与从动齿轮 25 相啮合并带动从动齿轮 25旋转, 利用齿轮与蒸发丝之间的摩擦力以及两啮合齿 轮间的啮合力给予蒸发丝牵引力, 从而向蒸发器 32源源不断的传送蒸发丝; 弹 片支架 27给予从动齿轮 25产生抵触主动齿轮 24的弹力, 使从动齿轮 25位置 可调地安装于安装箱 22内, 并利用弹片支架 27来自动调节从动齿轮 25与主动 齿轮 24之间的啮合程度., 从而保持蒸发丝传送时受到的夹送力一致, 传送平稳; 蒸发丝在送丝机构 20的送丝力作用下, 从出丝孔 222进入导丝管 29, 在导丝管 29的导向作用下将蒸发丝引入蒸发器 32 , 导丝管 29用于防止蒸发丝传送错位 或变形。
如图 8、 图 9所示, 蒸发镀膜设备 1在真空腔体 70未抽真空之前, 将蒸发 丝缠绕于绕丝轮 n上, 蒸发丝的缠绕量根据实际蒸镀需要而定, 由于绕丝轮 1 1 没有动力源, 因此, 绕丝轮 n 只能在送丝机构 20的带动下转动; 进入蒸镀工 序后, 挡板驱动机构 4!驱动挡板 43旋转, 遮挡于蒸发器 32的上方, 将蒸发器 32与承载件 37隔离, 待蒸镀的工件 80通过传输机构以一定速度被送入到蒸发 源机构 30的承载件 37上, 与此同时, 送丝机构 20的送丝驱动机构 21通过传 动轴 23带动主动齿轮 24转动, 主动齿轮 24与从动齿轮 25相啮合并带动从动 齿轮 25旋转, 利用齿轮与蒸发丝之间的摩擦力以及两啮合齿轮间的啮合力给予 蒸发丝牵引力, 将蒸发丝从绕丝轮 11 上拽出, 蒸发丝在送丝机构 20的送丝力 作用下, 从出丝孔 222进入导丝管 29, 在导丝管 29的导向作用下将蒸发丝引入 蒸发器 32;蒸发器 32与可压紧式电极 31a、 31b电连接,而两可压紧式电极 31 a、 31b则通过电极引线与外部电源连通, 当电流流通到蒸发器 32后, 蒸发器 32因 为电阻效应产生热量, 将蒸发器 32中的蒸发丝加热, 待蒸发器 32 中的蒸发丝 达到蒸发所需条件时, 挡板 43在挡板驱动机构 41 的驱动下旋转, 实现蒸发器 32与待蒸镀工件 80之间的连通, 开始对工件 80进行蒸镀, 进而在工件 80的表 面上形成薄膜; 在蒸镀的过程中, 膜厚传感器 36适时检测沉积在自身上的膜层 的厚度, 系统根椐膜厚传感器 36上的膜层厚度及一定的转换公式可得出沉积在 工件 80上的膜层厚度,以便通过沉积效率或沉积时间来控制需要沉积于工件 80 上的膜层厚度, 使工件 80上的膜层厚度精确, 进而提高膜层质量; 送丝机构 20 的主动齿轮 24与从动齿轮 25相啮合并带动从动齿轮 25旋转, 利用齿轮与蒸发 丝之间的摩擦力以及两啮合齿轮间的啮合力给予蒸发丝牵引力, 从而向蒸发器 32源源不断的传送蒸发丝, 保持蒸发丝传送平稳; 同时, 真空腔体 70壁上的冷 却水管 72可高效率的降低真空腔体 70 内的温度, 以保证蒸镀工艺的温度控制 在合理的范围内; 通过真空腔体 70壁上的观察窗 73可适时地观察真空腔体 70 内的蒸镀情况, 当不需观察时, 可关闭观察窗挡板 74, 防止观察窗 73被污染; 设置于真空腔体 70内的防护罩 50可减小对真空腔体 70内部的污染, 进 提高 蒸发镀膜的质量。 工件 80蒸镀完成或不需要蒸镀时, 挡板 43在挡板驱动机构 4!的驱动下旋转, 将蒸发器 32与承载件 37上的工件 80隔离。
由于本发明蒸发镀膜设备 I具有设置于真空腔体 70内的绕丝机构 10 ,送丝 机构 20及蒸发源机构 30, 其中, 绕丝机构 10包括绕丝轮 11及绕丝转轴 12, 绕丝轮 1 通过绕丝转轴 12枢接于真空腔体 70内; 送丝机构 20包括送丝驱动 机构 21、 安装箱 22、 传动轴 23及用于夹持并传送蒸发丝的送丝轮组, 传动轴 23的一端与送丝驱动机构 2!连接, 传动轴的另一端 23密封地穿过真空腔体 70 与送丝轮组连接, 送丝轮组位于绕丝轮 11与蒸发源机构 30之间, 送丝驱动机 构 21通过传动轴 23驱动送丝轮组转动, 所述送丝轮组带动被夹持的蒸发丝传 送出; 蒸发器、 电极、 承载件及膜厚传感器, 所述电极通过绝缘装置固定于所 述真空腔体内, 所述蒸发器固定于所述电极上且与所述电极电连接,
蒸发源机构 30包括电极 31、 蒸发器 32、 接收容器 33、 膜厚传感器 36及承 载件 37, 电极 31通过绝缘装置固定于真空腔体 70内, 蒸发器 302固定于电极 31上并与电机 31电连接, 蒸发器 32位于送丝机构 20的输出端下方, 承载件 37用于承载待镀膜工件, 承载件 37与真空腔体固定连接且位于蒸发器 32正上 方, 承载件与蒸发器 32之间形成蒸镀区, 膜厚传感器 36设置于所述蒸镀区内; 因此, 蒸镀过程中, 膜厚传感器 36适时地 测沉积于其上的膜层厚度, 系统根 据检测到的膜层厚度及一定的转换公式可得出沉积在工件上的膜层厚度, 以便 通过沉积效率或沉积时间来控制需要沉积于工件上的膜层厚度, 使工件上的膜 层厚度精确, 进而提高膜层质量, 接收容器 33用于接收溢出的蒸发物, 回收利 周蒸发物的同时有效减少对真空腔体 70的污染; 同时, 绕丝机构 10及送丝机 构 20设置于真空腔体 70内, 根据实际需要将蒸发丝缠绕于绕丝机构 10上, 通 过送丝机构 20将绕丝机构 10上的蒸发丝平稳、 均勾地送到蒸发器 32上, 延长 了蒸发丝更换的周期, 不会因为跟换蒸发丝而破坏真空腔体 70内的真空环境, 提高蒸发镀膜形成的膜层质量; 同时, 使蒸发镀膜设备 1的自动化程度进一步 提高。
本发明蒸发镀膜设备的送丝驱动机构、 挡板驱动机构及其原理等均为本领 域普通技术人员所熟知, 在此不再做详细的说明。
以上所揭露的仅为本发明的优选实施例而已, 当然不能以此来限定本发明 之权利范围, 因此依本发明申请专利范围所作的等同变化, 仍属本发明所涵盖 的范围。

Claims

1 ,一种蒸发镀膜设备, 包括绕丝机构、 送丝机构、 蒸发源机构、 挡板组件及 具有腔门的真空腔体, 所述绕丝机构、 送丝机构、 蒸发源机构及挡板组件均设
Figure imgf000014_0001
所述绕丝机构包括绕丝转轴及缠绕蒸发丝的绕丝轮, 所述绕丝轮通过所述 绕丝转轴枢接于所述真空腔体内;
所述送丝机构包括送丝驱动机构、 安装箱、 传动轴及用于夹持并传送蒸发 丝的送丝轮组, 所述送丝驱动机构安装于所述真空腔体外, 所述安装箱安装于 所述真空腔体内, 所述送丝轮组安装于所述安装箱内, 所述传动轴的一端与所 述送丝驱动机构连接, 所述传动轴的另一端密封地穿过所述真空腔体与所述安 装箱内的送丝轮组连接, 所述送丝轮组位于所述绕丝轮与所述蒸发源机构之间, 所述送丝驱动机构通过所述传动轴驱动所述送丝轮组转动, 所述送丝轮组带动 被夹持的蒸发丝传送出;
所述蒸发源机构包括蒸发器、 电极、 承载件及膜厚传感器, 所述电极通过 绝缘装置固定于所述真空腔体内, 所述蒸发器固定于所述电极上且与所述电极 电连接, 所述蒸发器位于所述送丝机构的输出端下方, 所述承载件用于承栽待 镀膜工件, 所述承载件与所述真空腔体固定连.接且位于所述蒸发器正上方, 所 述承载件与所述蒸发器之间形成蒸镀区, 所述.膜厚传感器设置于所述蒸镀区内; 所述挡板组件包括挡板驱动机构、 挡板及旋转轴, 所述挡板驱动机构安装 于所述真空腔体外, 所述挡板固定于所述旋转轴的一端, 所述旋转轴的另一端 密封地穿过所述真空腔体与所述挡板驱动机构连接, 所述挡板设置于所述蒸镀 区内且位于所述蒸发器与所述承载件之间, 所述挡板驱动机构驱动所述挡板.旋 转。
2. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 所述蒸发源机构还包 括回收组件, 所述回收组件包括接收容器, 绝缘块及冷却座, 所述接收容器设 置于所述蒸发器的正下方并通过所述绝缘块连接于所述冷却座上, 所述冷却座 安装于所述真空腔体内。
3. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 所述送丝轮组包括主 动齿轮、 从动齿轮、 转动轴及弹性部件, 所述主动齿轮通过所述传动轴与所述 送丝驱动机构连接, 所述转动轴枢接地穿过所述从动齿轮并与具有弹性的所述 弹性部件的一端固定连接, 所述弹性部件的另一端与所述安装箱的内壁固定连 接, 所述主动齿轮与所述从动齿轮相啮合并带动所述从动齿轮旋转, 所述弹性 部件给予所述从动齿轮产生抵触所述主动齿轮的弹力, 所述主动齿轮与所述从 动齿轮均开有凹槽并于所述主动齿轮与从动齿轮的啮合处形成送丝通道, 所述 安装箱开设有与所述送丝通道.相对的进丝孔和出丝孔。
4. 如权利要求 3所述的蒸发镀膜设备, 其特征在于: 所述弹性部件为呈片 状的弹片支架, 所述弹片支架包括固定部及沿固定部的一端向外延伸形成的两 平行的弹性臂, 两所述弹性臂上均设有轴套, 所述转动轴的两端固定于所述轴 套内。
5. 如权利要求 4所述的蒸发镀膜设备, 其特征在于: 所述弹片支架的固定 部的侧端设有凸体, 所述安装箱内壁上开设有与所述凸体相配合的卡槽。
6. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 所述送丝机构还包括 导丝管, 所述导丝管可拆卸的安装于所述安装箱的出丝孔处并延伸出所述出丝 孔, 所述导丝管位于所述蒸发器的上方。
7. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 还包括机架, 所述机 架包括底座及外延臂, 所述外延臂的末端开设有安装槽, 所述绕丝轮通过所述 绕丝转轴枢接于所述安装槽内, 所述安装箱安装于所述底座上。
8. 如权利要求 7所述的蒸发镀膜设备, 其特征在于: 所述底座内贯穿开设 呈中空结构的冷却水循环管路并在所述.底座的表面上形成进水口和出水口。
9. 如权利要求 8所述的蒸发镀膜设备, 其特征在于: 所述冷却水循环管路 呈弯折状。
10. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 还包括防护罩, 所述 防护罩围于所述蒸镀区外, 所述蒸发器与所述承载件位于所述防护罩内。
11. 如权利要求 I所述的蒸发镀膜设备, 其特征在于: 还包括设置于所述真 空腔体上的观察窗及观察窗挡板, 所述观察窗挡板活动地安装于所述观察窗处。
12. 如权利要求 1所述的蒸发镀膜设备, 其特征在于: 还包括设置于真空腔
PCT/CN2010/074980 2010-03-23 2010-07-05 蒸发镀膜设备 WO2011116565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101319548A CN101876056B (zh) 2010-03-23 2010-03-23 蒸发镀膜设备
CN201010131954.8 2010-03-23

Publications (1)

Publication Number Publication Date
WO2011116565A1 true WO2011116565A1 (zh) 2011-09-29

Family

ID=43018735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074980 WO2011116565A1 (zh) 2010-03-23 2010-07-05 蒸发镀膜设备

Country Status (2)

Country Link
CN (1) CN101876056B (zh)
WO (1) WO2011116565A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109553306B (zh) * 2018-12-04 2021-09-14 深圳市星三力光电科技有限公司 一种玻璃触摸屏盖板真空镀ar,af光学膜加工装置
CN112281132A (zh) * 2020-09-29 2021-01-29 维达力实业(深圳)有限公司 Pvd镀膜的方法及pvd镀膜装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525633A (ja) * 1991-07-23 1993-02-02 Shinkuron:Kk アルミニウム薄膜の形成方法および抵抗加熱用ボート
JPH0633226A (ja) * 1992-07-21 1994-02-08 Tdk Corp 真空蒸着における原料金属供給方法
CN1624191A (zh) * 2004-09-22 2005-06-08 吉林大学 有定向及自控制功能的真空镀膜机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101665913B (zh) * 2009-09-30 2012-05-23 东莞宏威数码机械有限公司 真空镀膜用处理装置
CN201713566U (zh) * 2010-03-23 2011-01-19 东莞宏威数码机械有限公司 蒸发镀膜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525633A (ja) * 1991-07-23 1993-02-02 Shinkuron:Kk アルミニウム薄膜の形成方法および抵抗加熱用ボート
JPH0633226A (ja) * 1992-07-21 1994-02-08 Tdk Corp 真空蒸着における原料金属供給方法
CN1624191A (zh) * 2004-09-22 2005-06-08 吉林大学 有定向及自控制功能的真空镀膜机

Also Published As

Publication number Publication date
CN101876056B (zh) 2011-12-14
CN101876056A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
US11447858B2 (en) System and method for fabricating perovskite film for solar cell applications
US9062369B2 (en) Deposition of high vapor pressure materials
CN100594254C (zh) 薄膜制备装置及薄膜生长的观察方法
US20190148642A1 (en) Methods of operating a deposition apparatus, and deposition apparatus
CN104169459B (zh) 在柔性衬底上形成光伏电池的系统
JP2017526176A (ja) マルチソース堆積に基づくペロブスカイト膜の製造システムおよび製造方法
CN101956176B (zh) 连续蒸镀设备
CN104313538B (zh) 蒸镀设备及蒸镀方法
EP1755154A1 (en) Method and apparatus for manufacturing a zinc oxide thin film at low temperatures
US20110311717A1 (en) Vapor deposition method and vapor deposition system
TW201123472A (en) In-line system for manufacturing solar cell
KR101125008B1 (ko) 하향식 증발원과 이를 구비한 증착장치
TW201830572A (zh) 用於固持基板的基板載具,用於在基板上沉積材料的沉積設備以及處理基板的方法
WO2011116565A1 (zh) 蒸发镀膜设备
CN104164649A (zh) 大面积碘化铅厚膜的制备方法及其实施设备
CN201305624Y (zh) 薄膜制备装置
CN107267920B (zh) 蒸镀设备、坩埚及蒸镀方法
CN201713566U (zh) 蒸发镀膜装置
US9905723B2 (en) Methods for plasma activation of evaporated precursors in a process chamber
US20120090546A1 (en) Source supplying unit, method for supplying source, and thin film depositing apparatus
US20140110245A1 (en) Non-bonded rotatable targets and their methods of sputtering
KR100767026B1 (ko) 유기발광소자 증착용 벨트형 면소스
US20130157407A1 (en) APPARATUS FOR INLINE PROCESSING OF Cu(In,Ga)(Se,S)2 EMPLOYING A CHALCOGEN SOLUTION COATING MECHANISM
CN211112190U (zh) 一种插拔式高真空蒸发源
KR20210115736A (ko) 단결정 금속산화물 반도체 에피 성장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848227

Country of ref document: EP

Kind code of ref document: A1