WO2011114840A1 - プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法 - Google Patents

プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法 Download PDF

Info

Publication number
WO2011114840A1
WO2011114840A1 PCT/JP2011/053714 JP2011053714W WO2011114840A1 WO 2011114840 A1 WO2011114840 A1 WO 2011114840A1 JP 2011053714 W JP2011053714 W JP 2011053714W WO 2011114840 A1 WO2011114840 A1 WO 2011114840A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
processing apparatus
conductor
wiring
electrically connected
Prior art date
Application number
PCT/JP2011/053714
Other languages
English (en)
French (fr)
Inventor
政弘 横川
和彦 一色
克史 岸本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2011800142651A priority Critical patent/CN102804932A/zh
Priority to EP11756029A priority patent/EP2549840A1/en
Publication of WO2011114840A1 publication Critical patent/WO2011114840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Definitions

  • the present invention relates to a plasma processing apparatus, a plasma processing method, and a semiconductor element manufacturing method using the plasma processing apparatus having a plurality of sets of discharge parts each consisting of a cathode and an anode in a chamber.
  • the plasma processing apparatus of the present invention includes a matching box for uniformly supplying power from a power source to each cathode through a conductor, and a support portion that supports the matching box.
  • a vertical type in which a cathode and an anode are arranged in a vertical direction for example, see Patent Document 1
  • a horizontal type in which a cathode and an anode are arranged in a horizontal direction for example, see Patent Document 2
  • These plasma processing apparatuses include a sealable chamber into which a reactive raw material gas is introduced, a plurality of sets of discharge units that are arranged in a facing manner in the chamber and generate a plasma discharge, and a plurality of discharge units.
  • a power supply unit that is disposed outside the chamber and supplies power to the entire discharge unit.
  • the vertical plasma processing apparatus further includes a matching box for matching the impedance between the power supply unit and the cathode. Further, in order to uniformly supply power to each discharge unit, the power introduction line between the matching box and the cathode is symmetrically branched by the same number as the number of cathodes. .
  • the cathodes of two adjacent discharge units are connected to the same power supply unit via individual amplifiers, or are connected to different power supply units via amplifiers.
  • the cathodes of the adjacent discharge units are connected to the power supply unit via different electrical systems, and as a result, even power is supplied to each discharge unit without using a matching box.
  • the matching box is a heavy object (about 10 kg). Therefore, when a matching box is used, it is problematic in terms of safety to place and fix the matching box on the top plate or the side surface of the chamber because a load is applied to the chamber.
  • a safe and appropriate arrangement method of the matching box has not been specifically proposed so far.
  • This invention is made
  • a sealable chamber into which a reactive raw material gas is introduced, a plurality of sets of discharge units that are arranged in a facing manner in the chamber to generate a plasma discharge, and a plurality of discharge units,
  • a power supply unit disposed outside the chamber to supply power for generating plasma discharge in the plurality of discharge units; a plurality of matching boxes electrically connected to the power supply unit outside the chamber; and And at least one support part disposed to support the plurality of matching boxes, and a plurality of conductors that electrically connect the plurality of matching boxes and the cathodes of the plurality of sets of discharge parts.
  • a plasma processing apparatus configured to support one or more matching boxes at positions where the lengths of the plurality of conductors can be made equal. It is provided.
  • a substrate is installed on the discharge unit in the plasma processing apparatus and a semiconductor film is stacked on the surface of the substrate, or a substrate having a semiconductor film on the surface is disposed on the discharge unit.
  • a plasma processing method is provided for etching the semiconductor film on the substrate.
  • a method for manufacturing a semiconductor element wherein a semiconductor element is formed on the substrate using the plasma processing method.
  • a matching box which is generally a heavy object, can be installed stably and safely without applying a load to the chamber. That is, the matching box can be appropriately disposed at a position where even power can be supplied to each discharge unit.
  • the plasma processing apparatus of the present invention to manufacture semiconductor elements such as thin film solar cells, TFTs, and photoreceptors using semiconductor thin films or optical thin films, variation in element characteristics can be suppressed, and the semiconductor The element can be stably produced with desired characteristics.
  • FIG. 1 It is a schematic block diagram which shows Embodiment 1 of the plasma processing apparatus of this invention. It is a block diagram which shows the 1st conductor and 1st case of the plasma processing apparatus of Embodiment 1.
  • FIG. 2 It is a schematic block diagram which shows Embodiment 2 of the plasma processing apparatus of this invention. It is a schematic block diagram which shows Embodiment 3 of the plasma processing apparatus of this invention. It is a schematic block diagram which shows Embodiment 4 of the plasma processing apparatus of this invention. It is a block diagram which shows the 1st conductor and 1st case of the plasma processing apparatus of Embodiment 5. It is a schematic block diagram which shows Embodiment 6 of the plasma processing apparatus of this invention.
  • the plasma processing apparatus of the present invention supplies a chamber, a plurality of sets of discharge parts composed of a cathode and an anode that generate plasma discharge, and power for generating plasma discharge to the plurality of sets of discharge parts.
  • Electrically connecting a power supply unit, a plurality of matching boxes electrically connected to the power supply unit, at least one support unit that supports the plurality of matching boxes, and a plurality of matching boxes and cathodes of a plurality of sets of discharge units A plurality of conductors to be connected.
  • the support portion is configured to support one or more matching boxes at positions where the lengths of the plurality of conductors can be made equal.
  • the “conductor” means the entire wiring from the matching box to the cathode.
  • the matching box is an impedance matching unit that is disposed in a power supply path between the power supply unit and each cathode and is generally used in the field for matching impedance between the power supply unit and each cathode.
  • the matching boxes can be connected to the individual power supply units synchronized with each other, the matching boxes may be connected to the power supply paths branched into a plurality from the same power supply unit.
  • a support portion is provided on the floor surface of the plasma processing apparatus installation location. It is comprised so that a matching box may be supported. At this time, if the length of each conductor from each matching box to each cathode is different, the impedance between the power supply unit and each cathode varies, thereby varying the power supplied to each discharge unit. As a result, the plasma processing in each discharge part cannot be performed uniformly. Therefore, the support portion is configured to support one or more matching boxes at positions where the lengths of the plurality of conductors can be made equal. Note that at least one of the plurality of matching boxes may be installed directly on the floor surface.
  • the direction of the electrodes may be horizontal or vertical.
  • the plasma processing apparatus according to the present invention includes a film-forming plasma processing apparatus that forms a film (for example, a semiconductor film) on a substrate and an etching type plasma processing apparatus that etches a film (for example, a semiconductor film) on the substrate. Applicable. Further, the plasma processing apparatus may be configured as in the following (1) to (10), and these may be appropriately combined.
  • the support part is installed on the floor surface of the plasma processing apparatus installation place, and the matching box can be supported at a height at which the lengths of the plurality of conductors can be made equal. It has a stand. If it does in this way, while being able to install a matching box from the floor surface through the support part to the said height easily, the electric power supply path
  • the structure which can adjust the installation height of a matching box easily using an elevator for example, jack
  • the matching box can be easily moved to a safe height that is easy for the operator to work. Can be reduced.
  • the plasma processing apparatus has n (n is a natural number of 2 or more) matching boxes, and has n ⁇ 2 m (m is a natural number) cathodes in the chamber.
  • Each of the matching boxes is connected to 2 m of the cathodes through the conductor. In this way, the number of cathodes connected to each matching box can be made the same.
  • the conductor is composed of transmission wiring, connection wiring, and branch wiring, and both ends of the branch wiring are electrically connected to different cathodes, and one end of the transmission wiring is electrically connected to the matching box.
  • One end of the connection wiring is electrically connected to the other end of the transmission wiring, and the other end of the connection wiring is electrically connected to a point equidistant from the both ends of the branch wiring.
  • the conductor includes a connection wiring and a branch wiring, and both ends of the branch wiring are electrically connected to different cathodes, and one end of the connection wiring is electrically connected to the matching box at one end. The other end of the connection wiring is electrically connected to a point equidistant from the both ends of the branch wiring.
  • This configuration is a connection form in which the transmission wiring of (3) is omitted and the connection wiring is directly electrically connected to the matching box.
  • the branch wiring is composed of m stages from the connection wiring side to the cathode side by 2 m-1 (m is a natural number) branch lines, Both ends of each branch line other than the m-th stage are electrically connected to points that are equidistant from both ends of the different next-stage branch lines, Both ends of the m-th branch line are electrically connected to different cathodes.
  • m is a natural number
  • the conductor includes a connection line and a transmission line, one end of the transmission line is electrically connected to the matching box, and one end of the connection line is electrically connected to the other end of the transmission line.
  • the other end of the connection wiring is electrically connected to the cathode.
  • This configuration is a connection configuration in which the branch wirings (2) and (3) are omitted, and the connection wiring is directly electrically connected to the cathode. In this way, the cathode and the matching box can be connected one-on-one. Therefore, for example, even when only the cathode or anode of the discharge part in which a problem has occurred is taken out from the chamber, the plasma treatment of the substrate by another discharge part can be performed.
  • the plurality of different conductors are composed of the same material and the same structure as a whole.
  • the “structure” means a structure including a size, a shape, a bent position, and a connection structure, in which a plurality of branch wirings are symmetrically arranged in the same conductor. In this way, variation in impedance between the matching box and the cathode can be further reduced, and the power supply to each discharge unit can be performed more uniformly.
  • the same parts can be used for the branch wiring, connection wiring, and transmission wiring, and the effect of improving maintainability and reducing costs can be obtained by sharing each part.
  • Part or all of the plurality of conductors is formed of a tubular conductor, a plate-like conductor, or a rectangular bar-like conductor.
  • power loss can be reduced. That is, in an alternating current, a skin effect that flows in a concentrated manner near the surface of the conductor occurs as the frequency increases. Therefore, the high frequency current has the property of flowing only near the conductor surface due to the skin effect. For this reason, when high-frequency power is supplied to a general circular solid conductor having a circular solid cross section, the electrical resistance near the center of the circular solid conductor increases, and near the surface of the circular solid conductor. Only current will not flow. As a result, the electrical resistance of the entire circular solid conductor increases, and the power loss increases.
  • the surface area of the inner peripheral surface of the hollow part increases, and the increased surface area makes it easier for high-frequency current to flow than a circular solid conductor, reducing power loss. Can be reduced. Furthermore, heat dissipation improves with the increase in the surface area of the tubular conductor, the temperature rise of the conductor when supplying high-frequency power can be suppressed, and the power loss caused by the increase in electrical resistance due to heat can be reduced.
  • plate-like conductors for example, rectangular solid, oval solid, oval solid, etc.
  • plate-like conductors have a larger surface area than circular solid conductors, and for the same reason as tubular conductors.
  • the surface area of the rod-shaped conductor is about 3.4 times the surface area of the circular solid conductor. Therefore, for the same reason as the tubular conductor, it is possible to reduce power loss when supplying high-frequency power as compared with the circular solid conductor.
  • the conductor is made of a metal material containing at least one of copper, aluminum, nickel, silver, gold and tin.
  • a case for accommodating a part or the whole of the conductor is further provided. In this way, it is possible to prevent the high frequency from leaking to the outside from the conductor when supplying the high frequency power, and to prevent the occurrence of an accident in which the operator accidentally contacts the conductor being fed.
  • FIG. 1 is a schematic configuration diagram showing Embodiment 1 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P1 according to the first embodiment is a horizontal plasma processing apparatus, and includes a chamber 1 that can be sealed, a gas introduction unit that introduces a reaction gas into the chamber 1, and an exhaust unit that exhausts the reaction gas from the chamber 1.
  • This plasma processing apparatus P1 can form a semiconductor element by installing a substrate S1 on the anode 12 of each discharge section 13 and laminating a semiconductor film on the surface of the substrate S1.
  • the chamber 1 has a leg portion and is formed in a vertically long box shape having an opening / closing door (not shown) on the front side.
  • the chamber 1 is provided with support pieces (not shown) for supporting the cathodes 11 and the anodes 12 at regular intervals on the left and right inner wall surfaces, and an exhaust unit 15 is connected to the bottom surface of the chamber 1. .
  • the anode 12 of one discharge unit 13 and the cathode 11 of another adjacent discharge unit 13 are also set at a constant interval.
  • Cases K11 and K12 made of an electric conductor such as aluminum or copper are disposed outside the left and right side walls of the chamber 1 so as to accommodate the conductors C11 and C12. Cases K11 and K12 prevent high frequency from leaking to the outside from the conductors C11 and C12 when high-frequency power is supplied, and prevent accidents in which an operator accidentally contacts the conductors C11 and C12 that are energized. Is.
  • FIG. 2 is a configuration diagram illustrating a first conductor and a first case of the plasma processing apparatus of the first embodiment.
  • first case one case (hereinafter referred to as “first case”) K11 is arranged in a vertical direction installed on one matching box (hereinafter referred to as “first matching box”) M1.
  • first matching box one matching box
  • An insertion hole through which the conductor C11 is inserted is formed in the connection portion.
  • the other case K12 (hereinafter referred to as “second case”) is also a first portion K12a installed on the other matching box (hereinafter referred to as “second matching box”) M2.
  • the second portion K12b connected to the chamber 1 side at the upper end of the first portion K12a, and the third portion K12c connecting the second portion K12b and the side wall of the chamber 1, and the connecting portion includes a conductor. An insertion hole for inserting C12 is formed.
  • the first and second cases K11 and K12 will be described in detail later.
  • Each cathode 11 has the same configuration, and each anode 12 has the same configuration.
  • the cathode 11 is made of stainless steel, aluminum alloy, or the like.
  • the dimension of each cathode 11 is set to an appropriate value according to the dimension of the substrate S1 to be deposited, and can be designed with the same dimensions (planar size and thickness) as the anode 12.
  • the cathode 11 has a hollow inside, and a plurality of through-holes connected to the hollow portion are formed in the plasma discharge surface facing the paired anodes 12 by drilling. This drilling process is desirably carried out with a circular hole having a diameter of 0.1 mm to 2 mm at a pitch of several mm to several cm.
  • a gas introduction pipe as a gas introduction section is connected to one end face of the cathode 1.
  • a gas supply source (not shown) and the gas introduction unit are connected by a connection pipe. Therefore, when the reaction gas is supplied from the gas supply source to the cavity formed in the cathode 11, the reaction gas is ejected from the multiple through holes toward the surface of the substrate S 1 on the anode 12.
  • a reaction gas (raw material gas) for film formation is selected according to the material of the film to be formed.
  • PH 3 phosphine
  • B 2 H 6 diborane
  • CO 2 gas etc.
  • SiH 4 monosilane
  • the anode 12 has a heater 14 inside, and a substrate S1 is provided on the upper surface thereof, and heats the substrate S1 during film formation under plasma discharge.
  • the substrate S1 is generally a semiconductor substrate (for example, a silicon substrate) or a glass substrate, but is not particularly limited thereto.
  • the anode 12 is made of a material having conductivity and heat resistance, such as stainless steel, aluminum alloy, and carbon.
  • the dimension of the anode 12 is determined to an appropriate value in accordance with the dimension of the substrate S1 for forming the thin film.
  • the dimensions of the anode 12 are designed to be 1000 to 1500 mm ⁇ 600 to 1000 mm with respect to the dimensions of the substrate S1 of 900 to 1200 mm ⁇ 400 to 900 mm.
  • a plurality of substrates S1 may be arranged side by side on one anode 12.
  • two substrates S1 having a size of 700 mm ⁇ 1000 mm may be arranged side by side, or four substrates S1 having a size of 700 mm ⁇ 400 mm are arranged in two rows. May be installed.
  • the heater 14 built in the anode 12 controls the heating of the anode 12 to room temperature to 300 ° C., for example, a built-in closed heating device such as a sheath heater and a closed temperature sensor such as a thermocouple in an aluminum alloy. Can be used.
  • the heater 14 is built in the anode 12, but the heater 14 and the anode 12 may be separated and installed. In that case, it is preferable that the heater 14 is configured to uniformly heat the substrate S1 in the surface.
  • a plate-like heater can be installed and used on the back side of the surface on which the substrate S1 of the anode 12 is installed.
  • first conductor C11 One conductor C11 accommodated in the first case K11 (hereinafter referred to as “first conductor”) C11 has a lower end electrically connected to the first matching box M1 and is disposed in the vertical direction.
  • the transmission wiring C11a is made of a metallic tubular conductor and is accommodated in the first portion K11a.
  • the connection wiring C11b is made of a metal plate-like conductor and is accommodated from the first portion K11a to the third portion K11c.
  • Branch line C11c includes a first line C11c 1 consisting of a normal conductor (e.g. copper), consisting of electrically connected metal rod-shaped conductor via a fastening member c to the first line ends of C11c 1 and a second line C 11c 2 Prefecture.
  • First line C 11c 1 is accommodated in the third part K11c
  • the second line C 11c 2 is connected to the third portion K11c through the sidewall of the chamber 1 to the cathode 11 and the electrical reaction chamber from.
  • a point equidistant from both ends of the branch lines C 11c (equidistant midpoint from both ends of the first line C 11c 1) is electrically connected to the connection wiring C11b.
  • branch wiring C11c is bent symmetrically at a position equidistant from the connection portion with the connection wiring C11b and is electrically connected to the same position on one end face (right end face) of the first and third cathodes 11 from the top. It is connected to the. All anodes 12 are grounded.
  • the other conductor (hereinafter referred to as “second conductor”) C12 is the same as the first conductor C11, and is connected to the transmission line C12a electrically connected to the second matching box M2 and the transmission line C12a.
  • a connection wiring C12b that is electrically connected via a component and a branch wiring C11c that is electrically connected to the connection wiring C11b via a fastening component are provided and accommodated in the second case K12. That is, the length from the lower end (connection portion with the first matching box M1) of the transmission wiring C11a of the first conductor C11 to the tip of the branch wiring C11c (connection portion with the cathode 11) and the transmission of the second conductor C12.
  • the length from the lower end of the wiring C12a (connection portion with the second matching box M2) to the tip of the branch wiring C12c (connection portion with the cathode 11) is equal. Furthermore, the position and number of the bent portions in the first conductor C11 are equal to the position and number of the bent portions in the second conductor C12.
  • the bent portion is a connection portion between the transmission wiring C11a and the connection wiring C11b, a connection portion between the connection wiring C11b and the branch wiring C11c, and a bent portion of the branch wiring C11c. In addition, it means a bent portion in the conductor. The same applies to the second conductor C12.
  • both ends of the branch wiring C12c of the second conductor C12 are electrically connected to intermediate positions in the longitudinal direction of the other end surfaces (left end surfaces) of the second and fourth cathodes 11 from the top.
  • the second conductor C12 and each cathode 11 are electrically connected to each other at the same position as the first conductor C11c without interfering with the first conductor C11c.
  • the transmission wiring and the branch wiring may be a plate-shaped conductor or a rectangular bar-shaped conductor.
  • the exhaust unit 15 includes a vacuum pump 15a, an exhaust pipe 15b connecting the vacuum pump 15a and the inside (reaction chamber) of the chamber 1, and a pressure controller 15c disposed between the chamber 1 and the vacuum pump 15a in the exhaust pipe 15b. And comprising.
  • the exhaust unit 15 is connected to the bottom surface of the chamber 1 at one location.
  • the connection surface of the exhaust unit 15 is not limited to the bottom surface, and a plurality of exhaust units 15 may be provided.
  • the exhaust part 15 can be provided in two places above and below the ceiling surface and bottom surface of the chamber 1.
  • the first matching box M1 matches the impedance between the power supply unit E1 and the first cathode 11 and between the power supply unit E1 and the third cathode 11.
  • the second matching box M2 matches the impedance between the power supply unit E2 and the second cathode 11 and between the power supply unit E2 and the fourth cathode 11.
  • the first matching box M1 and the second matching box M2 are the same, and their heights are the same.
  • the power supplies E1 and E2 are plasma excitation power supplies including a high-frequency generator and an amplifier that amplifies high-frequency power from the high-frequency generator and supplies the amplified power to the cathode 11, for example, at a frequency of AC 1.00 MHz to 60 MHz.
  • a power of 10 W to 100 kW, specifically, a power of 10 W to 10 kW is supplied to each cathode 1 at 13.56 MHz to 60 MHz.
  • the power supply path is branched from one power supply unit to the first and second matching boxes M1 and M2, respectively. You may connect.
  • a support portion (hereinafter referred to as “first support portion”) A11 that supports the first matching box M1 is a fixed base fixed on the floor surface on which the plasma processing apparatus P1 is installed, and has a predetermined height H11.
  • a support portion (hereinafter referred to as a “second support portion”) A12 that supports the second matching box M2 is a fixed base fixed on the floor surface, and has a predetermined height H12.
  • the first conductor C11 and the second conductor C12 are the same, but the height of the connection portion between the branch wiring C11c of the first conductor C11 and the connection wiring C11b, and the branch wiring of the second conductor C12.
  • the power supply path from the first matching box M1 to the first and third cathodes 11 and the second matching box M2 to the second and fourth cathodes 11 Since the power supply paths are equal, the high-frequency power supplied from the power source E1 to the first and third cathodes 11 and the high-frequency power supplied from the power source E2 to the second and fourth cathodes 11 are reduced. Can do. As a result, since the variation in plasma discharge of each discharge section 13 under the reaction gas atmosphere can be reduced, a film formed on each film-forming substrate (for example, a semiconductor substrate) installed on each anode 12 The uniformity of the quality of the semiconductor film (for example, a semiconductor film) can be improved.
  • the cathodes of the adjacent discharge units may be connected by the same conductor.
  • FIG. 3 is a schematic configuration diagram showing Embodiment 2 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P2 of Embodiment 2 is an etching plasma processing apparatus.
  • the discharge unit 23 includes an anode 22 disposed above and a cathode 21 disposed below.
  • the cathode 21 of each discharge part 23 is connected to the first and second conductors C21 and C22, and the anode 22 of each discharge part 23 is grounded.
  • the cathode 21 is structurally substantially the same as the anode 12 described with reference to FIG. 1
  • the anode 22 is structurally substantially the same as the cathode 11 described with reference to FIG. 22 is supplied.
  • a reactive gas corresponding to the material of the film to be etched is used as the reactive gas for etching.
  • a fluorine-based gas such as CF 4 or C 4 F 8 diluted with an inert gas such as Ar is mainly used.
  • the configurations of the first and second conductors C21 and C22 and the configurations of the first and second cases K21 and K22 are basically the same as those in the first embodiment, and other configurations are also included.
  • the first and second conductors C21 and C22 are configured, and the height positions of the first and second matching boxes M1 and M2 are adjusted by the first and second support portions A21 and A22 (H21).
  • the second support box A22 can be omitted and the second matching box M2 can be installed directly on the floor.
  • this plasma processing apparatus P2 it is possible to reduce the variation in plasma discharge of each discharge portion 23 in the reaction gas atmosphere, and to etch each etching substrate (for example, a semiconductor substrate) S2 installed on each cathode 21. Can improve the uniformity.
  • the substrate installation side may be the cathode, as in the second embodiment.
  • FIG. 4 is a schematic block diagram showing Embodiment 3 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P3 of the third embodiment is different from the first embodiment mainly in that the transmission wiring is omitted from the first and second conductors C31 and C32 and the connection wirings C31b and C32b connected to the branch wirings C31c and C32c. Is directly connected to the first and second matching boxes M1, M2, and the configuration of the first and second cases K31, K32.
  • Other configurations in the third embodiment are substantially the same as those in the first embodiment.
  • the first case K31 is composed of only the portion corresponding to the third portion K11c by omitting the portions corresponding to the first and second portions K11a and K11b shown in FIG.
  • Case K32 is also comprised only from the part corresponded to 3rd part K12c.
  • the first matching box M1 is supported at the height H31 by the first support A31 so as to be directly connected to the connection wiring C31b, and the second support A32 is used to directly connect the second matching box M2 to the connection wiring C32b. Is supported at a position of height H32.
  • the distances from the first and second matching boxes M1, M2 to the cathodes 11 are equal. Furthermore, the distance from the first matching box M1 to each bent portion of the first conductor C31 is equal to the distance from the second matching box M2 to each bent portion of the second conductor C32.
  • the power supply path from the first and second matching boxes M1, M2 to each cathode 11 can be shortened, the power consumption due to the wiring resistance of the power supply path can be reduced. . Furthermore, since the number of connection points between different wirings can be reduced, power consumption due to contact resistance can be reduced, and the first and second cases K31 and K32 can be simplified.
  • FIG. 5 is a schematic configuration diagram showing Embodiment 4 of the plasma processing apparatus of the present invention.
  • the same reference numerals are given to the same elements as those in FIG. 1.
  • differences from the first embodiment in the fourth embodiment will be mainly described.
  • the cathodes 11 and the anodes 12 of the four sets of discharge units 13 are vertically arranged in a horizontally long chamber 10 having legs and an opening / closing door (not shown) on the front side.
  • Each of the cathodes 11 and the anodes 12 is supported by a support member (not shown) provided on the inner wall of the chamber 10.
  • the interval between the cathode 11 and the anode 12 of each discharge unit 13 and the interval between two adjacent discharge units 13 are configured in the same manner as in the first embodiment.
  • the two branch wirings C41c of the first conductor C41 are connected to the upper ends of the first and third cathodes 11 from the left, and the two branch wirings C42c of the second conductor C42 are connected to the left.
  • the connection wiring C41b is arranged in the vertical direction
  • the transmission wiring C41a is arranged in the horizontal direction
  • the first matching box M1 is connected to the transmission wiring C41a
  • the first matching box M1 is a support portion. It is supported at a position higher than the chamber 10 by A41.
  • connection wiring C42b and the transmission wiring C42a are the same as the first conductor C41, the second matching box M2 is connected to the transmission wiring C42a, and the second matching box M2 is installed on the floor surface. ing.
  • the first and second conductors C41 and C42 are housed in first and second cases K41 and K42 having the same configuration as in the first embodiment. Also in the fourth embodiment, the distances from the first and second matching boxes M1 and M2 to the cathodes 11 are equal. Further, the distance from the first matching box M1 to each bent portion of the first conductor C41 is equal to the distance from the second matching box M2 to each bent portion of the second conductor C42.
  • the first case K41 is placed on the upper wall of the chamber 10, the first case K41 is not a heavy object like the first matching box M1, so that a large load is not applied to the chamber 10.
  • FIG. 6 is a configuration diagram showing a first conductor and a first case of the plasma processing apparatus of the fifth embodiment.
  • the plasma processing apparatus P5 of the fifth embodiment is different from the first embodiment in that the number of discharge parts, the number of branches of the branch wiring C51c of the first conductor C51, and the number of branches of the branch wiring of the second conductor (not shown) are two. It is the point which increased twice, and the other structure in Embodiment 5 is the same as that of Embodiment 1.
  • the points of the fifth embodiment different from the first embodiment will be mainly described.
  • the cathodes 11 are arranged in eight stages in the vertical direction (the anode is not shown).
  • the first conductor C51 includes a transmission line C11a, a connection line C11b, and a branch line C51c including three branch lines C51c 1 , C51c 2 , and C51c 2 .
  • Branch line C51c, the branch line C51c 1 of one of the first stage in the connection wiring C21b side is disposed, the cathode 11 two branch lines in the second stage to the side C51c 2, C51c 2 are arranged.
  • Each branch line C51c 2 in the second stage consists of different or the same members and the end portions and the intermediate portion, they are formed by electrically connecting at fastening part d.
  • the end part C51c 2 is shown as part of the branch line C51c 2.
  • both ends are electrically connected via different cathode 11, respectively the fastening component d
  • the branch of the point from both ends of equidistant through the fastening part c 1 stage is one end of the line C51c 1 electrically connected.
  • Second stage of the other branch line C51c 2 is the same.
  • the equidistant points are electrically connected to the connection wiring C21b via the fastening component b from both ends.
  • Both ends of each branch line C51c 2 of the second-stage first conductor C51 is a longitudinally intermediate position of the one end face of 1,3,5,7 from the top th cathode 11 (the right end surface) is electrically connected ing.
  • the first case K51 includes a first part K51a that accommodates the transmission wiring C11a, a second part K51b that accommodates the connection wiring C11b, a third part K51c that accommodates the first branch line C51c1, and two stages. comprising a fourth portion K51d for accommodating the branch line C51c 2 eyes.
  • the second conductor (not shown) is the same as the first conductor C51. However, both ends of each branch line of the second stage of the second conductor are electrically connected to the middle position in the longitudinal direction of the other end surface (left end surface) of the second, fourth, sixth, and eighth cathodes 11 from the top. Yes.
  • a second case (not shown) is the same as the first case K51.
  • the distances from the first and second matching boxes (not shown) to the respective cathodes 11 are equal. Furthermore, the distance from the first matching box to each bent portion of the first conductor C51 is equal to the distance from the second matching box to each bent portion of the second conductor. In this case, the position of each fastening part and the bent part of each branch line in the conductor are bent portions.
  • the number of discharge parts including the cathode 11 and the anode pair is eight, but the number of discharge parts can be further increased by increasing the number of branch lines to three or more.
  • the plasma processing apparatus of the present invention has n (n is a natural number of 2 or more) matching boxes and n ⁇ 2 m (m is a natural number) cathodes in the chamber. Each box can be configured to be connected to 2 m cathodes via a conductor.
  • n 2
  • m 2
  • n 2
  • m 1
  • the present invention can make the number of cathodes n ⁇ 2 m such as 16, 32 or the like.
  • FIG. 7 is a schematic block diagram showing Embodiment 6 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P6 of the sixth embodiment is a horizontal plasma processing apparatus for film formation having the upper and lower four-stage cathodes 31 as in the first embodiment.
  • the configuration of the cathodes 31 and the anodes 32 and the number of the anodes 32 are as follows. However, unlike the first embodiment, other configurations are generally the same as those of the first embodiment.
  • the points of the sixth embodiment different from the first embodiment will be mainly described.
  • the cathode 31 has a large number of through holes formed on both upper and lower surfaces, and is configured to eject reactive gas into the chamber 1 from both the upper and lower surfaces.
  • the anode 32 is configured to support the substrate S1 on one side or both upper and lower sides.
  • an inverted L-shaped support piece (not shown) is provided that can support the outer periphery of the substrate S1 in a state where the untreated surface of the substrate S1 is in close contact with the lower surface of the anode 32.
  • the anode 32 is also disposed above the uppermost cathode 31.
  • the sixth embodiment as in the first embodiment, it is possible to reduce variations in high-frequency power supplied from the power sources E1 and E2 to the cathodes 31. Furthermore, according to the sixth embodiment, more substrates S1 can be processed by a single plasma process, and the processing efficiency is improved.
  • FIG. 8 is a schematic configuration diagram showing Embodiment 7 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P7 of the seventh embodiment is similar to the plasma processing apparatus P6 (see FIG. 7) of the sixth embodiment, except that two anodes 42 are disposed between two adjacent cathodes 31. Yes.
  • the upper anode 42 is provided with the substrate S1 on its upper surface
  • the lower anode 42 is provided with the substrate S1 on its lower surface.
  • other configurations are substantially the same as those in the first and sixth embodiments.
  • differences from the first and sixth embodiments in the seventh embodiment will be mainly described.
  • the outer surface of the substrate S1 can be supported on the lower surface of the anode 42 between the cathodes 31 with the untreated surface of the substrate S1 in close contact with the lower surface of the anode 42, as in the sixth embodiment.
  • An inverted L-shaped support piece (not shown) is provided.
  • the distance D1 between the cathodes 31 is wider than the distance D between the cathodes 11 in the first embodiment (see FIG. 1).
  • the plasma processing apparatus P7 of the seventh embodiment configured as described above also has a structure in which all the cathodes 31 are sandwiched between the anodes 42, the reactive gas is ejected from both surfaces of each cathode 31, and all the cathodes 31 and the anodes are formed. A plasma discharge occurs between 42.
  • symbol 43 has shown the discharge part.
  • the seventh embodiment can also reduce variations in high-frequency power supplied from the power sources E1 and E2 to the cathodes 31, and can efficiently process a larger number of substrates S1 by a single plasma process.
  • FIG. 9 is a schematic block diagram showing Embodiment 8 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P8 of the eighth embodiment is a vertical plasma processing apparatus for film formation in which the cathodes 51 are arranged in four stages in the vertical direction, similarly to the plasma processing apparatus P4 (see FIG. 5) of the fourth embodiment.
  • the configuration of the cathode 51 and the anode 52, the number of the anodes 52, and the same branch wiring are connected to the two adjacent cathodes 51, and the other configurations are generally the same as those of the fourth embodiment.
  • the points of the eighth embodiment different from the fourth embodiment will be mainly described.
  • the cathode 51 has a large number of through holes on both the left and right sides, and is configured to eject reactive gas into the chamber 10 from both the left and right sides.
  • the anode 52 is configured to support the substrate S1 on one side or both left and right sides.
  • an inverted L-shaped support piece (not shown) is provided that can support the outer periphery of the substrate S1 with the non-processed surface of the substrate S1 in close contact.
  • the first and second conductors C51 and C52 and the first and second cases K51 and K52 for storing them are arranged above the chamber 10, and the first and second matching boxes M1 and M2 and the first and second support portions A51 and A52 that support them are disposed on both sides of the chamber 10. Further, both ends of the branch wiring C51c of the first conductor C51 are electrically connected to upper ends of two adjacent cathodes 51 on the left side, and both ends of the branch wiring C52c of the second conductor C52 are two adjacent cathodes on the right side. The upper end of 51 is electrically connected.
  • the variation in the high-frequency power supplied from the power sources E1 and E2 to the cathodes 51 can be reduced, and more substrates S1 can be processed efficiently by a single plasma process.
  • 9 illustrates the plasma processing apparatus in which the support portions A51 and A52 are arranged on both the left and right sides of the chamber 10, but the support portions A51 and A52 are arranged side by side behind the chamber 10.
  • a plasma processing apparatus may be configured. In this way, it is possible to manufacture a plasma processing apparatus having n (n is a natural number of 3 or more) matching boxes and n ⁇ 2 m (m is a natural number) cathodes in the chamber. This is the same in the ninth embodiment.
  • FIG. 10 is a schematic block diagram showing Embodiment 9 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P9 of the ninth embodiment is similar to the plasma processing apparatus P8 of the eighth embodiment (see FIG. 9), except that two anodes 62 are arranged between the left and right cathodes 51 adjacent to each other.
  • the substrate S1 is placed on the surface of each anode 62 facing the cathode 51.
  • the other configuration is substantially the same as that of the eighth embodiment.
  • the plasma processing apparatus P9 of the ninth embodiment configured as described above also has a structure in which all the cathodes 51 are sandwiched between the anodes 62, the reactive gas is ejected from both surfaces of each cathode 51, and all the cathodes 51 and anodes are formed. A plasma discharge occurs between 62.
  • reference numeral 53 indicates a discharge part.
  • the ninth embodiment can also reduce variations in the high-frequency power supplied from the power sources E1 and E2 to the cathodes 51, and can efficiently process more substrates S1 by a single plasma process.
  • FIG. 11 is a schematic block diagram showing Embodiment 10 of the plasma processing apparatus of the present invention.
  • the plasma processing apparatus P10 of the tenth embodiment is a vertical plasma processing apparatus for film formation in which the cathodes 61 are arranged in four stages in the vertical direction, similarly to the plasma processing apparatuses P8 and P9 of the eighth and ninth embodiments.
  • the power supply structure is different from those of the eighth and ninth embodiments, and other configurations are substantially the same as those of the eighth and ninth embodiments.
  • differences from the eighth and ninth embodiments in the tenth embodiment will be mainly described.
  • the plasma processing apparatus P10 of the tenth embodiment includes one power supply unit E, four matching boxes M electrically connected via a power supply path branched from the power supply unit E, each matching box M, and each A conductor C that is electrically connected to the cathode 61 on a one-to-one basis and a common support A that supports all the matching boxes M at the same height are provided.
  • the conductor C includes a transmission wiring Ca and a connection wiring Cb, and is stored in the case K.
  • Each conductor C is the same and is housed in the same case K.
  • the configuration and arrangement of the cathode 61 and the anode are the same as those in the fourth embodiment (FIG. 5), the eighth embodiment (FIG. 9), or the ninth embodiment (FIG. 10).
  • the cathode 61 and the matching box M can be connected on a one-to-one basis, for example, only the cathode or anode of the discharge part in which a failure has occurred is taken out from the chamber. Even in the state, the plasma treatment of the substrate by another discharge part can be performed.
  • the common support part which supports all the matching boxes M at the same height was illustrated as the support part A, since all the matching boxes M should be supported at the same height, Each matching box M may be supported by an individual support part, or a plurality of matching boxes M may be supported by a common support part.
  • semiconductor elements having desired element characteristics such as thin film solar cells, TFTs, and photoconductors using semiconductor thin films or optical thin films are suppressed in variation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

反応性原料ガスが導入される密封可能なチャンバーと、チャンバー内に対向状に配置されてプラズマ放電を発生させるカソードとアノードの組からなる複数組の放電部と、チャンバー外に配置されて複数組の放電部に電力を供給する電源部と、チャンバー外で電源部に電気的に接続された複数のマッチングボックスと、チャンバー外に配置されて複数のマッチングボックスを支持する少なくとも1つの支持部と、複数のマッチングボックスと複数組の放電部のカソードとを電気的に接続する複数の導電体とを備え、支持部は、複数の導電体の長さを等しくできる位置に1つ以上のマッチングボックスを支持するよう構成されたことを特徴とするプラズマ処理装置。

Description

プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法
 本発明はチャンバー内にカソードおよびアノードの組からなる放電部を複数組備えたプラズマ処理装置、プラズマ処理方法およびそれらによる半導体素子の製造方法に関する。詳しくは、本発明のプラズマ処理装置は、電源からの電力を導電体を介して各カソードに均等に供給するためのマッチングボックスおよびこれを支持する支持部を備える。
 従来のプラズマ処理装置として、カソードとアノードを垂直方向に配置した縦型(例えば、特許文献1参照)と、カソードとアノードを水平方向に配置した横型(例えば、特許文献2参照)が提案されている。これらのプラズマ処理装置は、反応性原料ガスが導入される密封可能なチャンバーと、前記チャンバー内に対向状に配置されてプラズマ放電を発生させるカソードとアノードの組からなる複数組の放電部と、チャンバー外に配置されて全組の放電部に電力を供給する電源部とを備える。
 前記縦型プラズマ処理装置は、電源部とカソードの間のインピーダンスを整合するためのマッチングボックスをさらに備えている。また、前記縦型プラズマ処理装置において、各放電部へ均等な電力供給を行うために、マッチングボックスとカソードとの間の電力導入線は、カソードの数と同じ数で対称的に分岐している。
 前記横型プラズマ処理装置は、隣接する2つの放電部のカソードが、同一の電源部に個別の増幅器を介してそれぞれ接続されるか、或いは異なる電源部に増幅器を介してそれぞれ接続されている。これにより、隣接する放電部同士のカソードは相互に異なる電気系統を介して電源部と接続され、この結果、マッチングボックスを用いることなく各放電部に均等な電力が供給される。
特開2006-196681号公報 特開2009-283235号公報
 一般的にマッチングボックスは重量物(10Kg程度)である。そのため、マッチングボックスを用いる場合、マッチングボックスをチャンバーの天板部や側面に配置し固定することは、チャンバーに負荷をかけるため安全面で問題がある。しかしながら、マッチングボックスの安全かつ適切な配置方法については、これまで具体的に提案されていない。
 本発明は、このような課題に鑑みてなされたものであり、マッチングボックスを安全かつ適切に配置することができるプラズマ処理装置を提供することを目的とする。
 本発明によれば、反応性原料ガスが導入される密封可能なチャンバーと、前記チャンバー内に対向状に配置されてプラズマ放電を発生するカソードとアノードの組からなる複数組の放電部と、前記チャンバー外に配置されて前記複数組の放電部にプラズマ放電を発生させる電力を供給する電源部と、前記チャンバー外で前記電源部に電気的に接続された複数のマッチングボックスと、前記チャンバー外に配置されて前記複数のマッチングボックスを支持する少なくとも1つの支持部と、前記複数のマッチングボックスと前記複数組の放電部のカソードとを電気的に接続する複数の導電体とを備え、前記支持部は、前記複数の導電体の長さを等しくできる位置に1つ以上の前記マッチングボックスを支持するよう構成されたプラズマ処理装置が提供される。
 また、本発明の別の観点によれば、前記プラズマ処理装置における前記放電部に基板を設置して前記基板の表面に半導体膜を積層するか、あるいは表面に半導体膜を有する基板を前記放電部に設置して前記基板上の前記半導体膜をエッチングするプラズマ処理方法が提供される。
 また、本発明のさらに別の観点によれば、前記プラズマ処理方法を用いて前記基板上に半導体素子を形成する半導体素子の製造方法が提供される。
 本発明のプラズマ処理装置によれば、一般的に重量物であるマッチングボックスを、チャンバーに負荷をかけることなく、安定かつ安全に設置することができる。つまり、各放電部に均等な電力を供給できるような位置にマッチングボックスを適切に配置することができる。
 この結果、本発明のプラズマ処理装置を用いて、半導体薄膜または光学的薄膜を用いた薄膜太陽電池、TFT、感光体などの半導体素子を製造することにより、素子特性のばらつきを抑制でき、前記半導体素子を所望の特性にて安定的に生産することができる。
本発明のプラズマ処理装置の実施形態1を示す概略構成図である。 実施形態1のプラズマ処理装置の第1導電体および第1ケースを示す構成図である。 本発明のプラズマ処理装置の実施形態2を示す概略構成図である。 本発明のプラズマ処理装置の実施形態3を示す概略構成図である。 本発明のプラズマ処理装置の実施形態4を示す概略構成図である。 実施形態5のプラズマ処理装置の第1導電体および第1ケースを示す構成図である。 本発明のプラズマ処理装置の実施形態6を示す概略構成図である。 本発明のプラズマ処理装置の実施形態7を示す概略構成図である。 本発明のプラズマ処理装置の実施形態8を示す概略構成図である。 本発明のプラズマ処理装置の実施形態9を示す概略構成図である。 本発明のプラズマ処理装置の実施形態10を示す概略構成図である。
 本発明のプラズマ処理装置は、前記のように、チャンバーと、プラズマ放電を発生するカソードとアノードの組からなる複数組の放電部と、複数組の放電部にプラズマ放電を発生させる電力を供給する電源部と、電源部に電気的に接続された複数のマッチングボックスと、複数のマッチングボックスを支持する少なくとも1つの支持部と、複数のマッチングボックスと複数組の放電部のカソードとを電気的に接続する複数の導電体とを備える。
 支持部は、複数の導電体の長さを等しくできる位置に1つ以上のマッチングボックスを支持するよう構成されている。
 ここで、「導電体」とは、マッチングボックスからカソードまでの配線全体を意味する。
 前記マッチングボックスは、電源部と各カソードとの間の電力供給経路に配置されて、電源部と各カソードの間のインピーダンスを整合させるための当該分野で一般的に用いられるインピーダンス整合器である。なお、互いに同期した個別の電源部にそれぞれマッチングボックスを接続することができるが、同一の電源部から複数に分岐した電力供給経路にそれぞれマッチングボックスを接続してもよい。
 すなわち、このプラズマ処理装置は、重量物であるマッチングボックスをチャンバーの天井や側面に設置してチャンバーに負荷をかけることを回避するために、プラズマ処理装置の設置場所の床面上に支持部を介してマッチングボックスを支持するよう構成されている。
 このとき、各マッチングボックスから各カソードに到る各導電体の長さが異なってしまうと、電源部と各カソードの間のインピーダンスがばらつき、それによって、各放電部に供給される電力にばらつきが生じ、この結果、各放電部でのプラズマ処理を均等になるように行うことができなくなる。そのため、支持部は、複数の導電体の長さを等しくできる位置に1つ以上のマッチングボックスを支持するよう構成されている。
 なお、複数のマッチングボックスのうち、少なくとも1つは直接床面上に設置してもよい。
 本発明のプラズマ処理装置において、電極の向きは水平方向でも垂直方向でもよい。また、本発明によるプラズマ処理装置は、基板上に膜(例えば、半導体膜)を成膜する成膜型プラズマ処理装置および基板上の膜(例えば、半導体膜)をエッチングするエッチング型プラズマ処理装置に適用可能である。
 また、前記プラズマ処理装置は次の(1)~(10)のように構成されてもよく、これらを適宜組み合わせてもよい。
(1)前記支持部が、プラズマ処理装置設置場所の床面に設置され、前記マッチングボックスを前記複数の導電体の長さを等しくできる高さに支持できる、固定台または高さ調整可能な昇降台を有してなる。
 このようにすれば、マッチングボックスを支持部を介して床面から前記の高さに容易に設置することができると共に、導電体を用いた電力供給経路も複雑にならず簡素化できる。
 また、カソードとアノードの間の電極間隔や、隣接する放電部の間の間隔等を調整する必要がない場合は、マッチングボックスを設置する高さを後から調整する必要がない。そのため、固定台を用いてマッチングボックスを所定の設置高さに容易かつ迅速に設置することができる。
 一方、カソードとアノードの間の電極間隔や、隣接する放電部の間の間隔等を調整する必要がある場合は、マッチングボックスを設置する高さも調整する必要がある。そのため、昇降台(例えば、ジャッキ)を用いてマッチングボックスの設置高さを容易に調整することができる構成が好ましい。
 この場合、マッチングボックスのメンテナンス時にも、マッチングボックスを作業者が作業しやすい安全な高さに容易に移動させることができ、高所作業や重量物であるマッチングボックスを高所から降ろす際の危険性を低減することができる。
(2)前記プラズマ処理装置が、n個(nは2以上の自然数)の前記マッチングボックスを有すると共に、前記チャンバー内にn×2m個(mは自然数)の前記カソードを有し、前記n個のマッチングボックスのそれぞれが前記導電体を介して2m個の前記カソードと接続される。
 このようにすれば、各マッチングボックスと接続するカソードの数を同一にすることができる。
(3)前記導電体が、伝送配線、接続配線および分岐配線からなり、前記分岐配線の両端がそれぞれ異なる前記カソードと電気的に接続され、前記伝送配線の一端が前記マッチングボックスと電気的に接続され、前記接続配線の一端が前記伝送配線の他端と電気的に接続され、前記接続配線の他端が前記分岐配線の前記両端から等距離の点と電気的に接続されている。
 このようにすれば、電源部およびマッチングボックスの数を低減しても、各放電部に均等になるように電力を供給することができ、プラズマ処理装置を簡素化および低コスト化することができる。
 さらに、横型プラズマ処理装置の場合、垂直方向に伝送配線を配置し、水平方向に接続配線を配置することができる。また、縦型プラズマ処理装置の場合は、水平方向に伝送配線を配置し、垂直方向に接続配線を配置することができる。そのため、マッチングボックスの設置位置の自由度が増加する。
(4)前記導電体が、接続配線および分岐配線からなり、前記分岐配線の両端がそれぞれ異なる前記カソードと電気的に接続され、前記接続配線の一端が前記マッチングボックスと電気的に一端で接続され、前記接続配線の他端が前記分岐配線の前記両端から等距離の点と電気的に接続されている。
 この構成は、前記(3)の伝送配線を省略して接続配線を直接マッチングボックスに電気的に接続した接続形態である。
 このようにしても、前記(3)と同様に、電源部およびマッチングボックスの数を低減しても、各放電部に均等になるように電力を供給することができ、プラズマ処理装置を簡素化および低コスト化することができる。
 さらに、マッチングボックスからカソードまでの電力供給経路が短くなるため、電力供給経路の配線抵抗に起因する電力消費を低減することができる。その上、異なる配線同士の接続箇所が低減するため、接触抵抗に起因する電力消費を低減することができる。
 これらの結果、電力供給効率を向上することができる。
(5)前記分岐配線が、2m-1本(mは自然数)の分岐線によって、前記接続配線側から前記カソード側に向かってm段で構成されており、
 m段目以外の前記各分岐線の両端が、それぞれ異なる次段の分岐線の両端から等距離にある点と電気的に接続され、
 m段目の分岐線の両端が、それぞれ異なるカソードと電気的に接続されている。
 このようにすれば、電源部およびマッチングボックスの数に対してカソードの数を増加しても、各放電部に均等に電力を供給することができ、プラズマ処理装置の処理能力がアップする。
(6)前記導電体が、接続配線および伝送配線からなり、前記伝送配線の一端が前記マッチングボックスと電気的に接続され、前記接続配線の一端が前記伝送配線の他端と電気的に接続され、前記接続配線の他端が前記カソードと電気的に接続されている。
 この構成は、前記(2)および(3)の分岐配線を省略して接続配線を直接カソードに電気的に接続した接続形態である。
 このようにすれば、カソードとマッチングボックスとを1対1で接続することができる。そのため、例えば、不具合が発生した放電部のカソードまたはアノードのみをチャンバー内から取り出した状態であっても、他の放電部による基板のプラズマ処理を行うことができる。
(7)前記異なる複数の導電体が、全体として互いに同じ材質および同じ構造で構成されている。
 この場合、「構造」とは、大きさ、形状、屈曲位置および接続構造を含み、同一の導電体において複数の分岐配線を対称的に配置した構造を意味する。
 このようにすれば、マッチングボックスとカソードとの間のインピーダンスのばらつきをさらに低減することができ、各放電部への電力供給をより一層均一に行うことができる。
 さらに、分岐配線、接続配線および伝送配線について、それぞれ同じ部品を用いることができ、各部品の共通化によるメンテナンス性向上とコスト低減の効果が得られる。
(8)前記複数の導電体の一部または全体が、管状導電体、板状導電体または角棒状導電体で構成されている。
 このようにすれば、電力損失を低減することができる。
 つまり、交流電流において、周波数が高くなるほど導電体の表面近くに集中して流れる表皮効果(skin effect)が生じる。よって、高周波電流においては、表皮効果によって導体表面付近でしか流れない性質がある。
 そのため、断面が円形中実である一般的な円形中実導電体に高周波電力を供給した場合、円形中実導電体の中心付近の電気抵抗が増加して、円形中実導電体の表面近傍でしか電流が流れなくなる。その結果、円形中実導電体全体の電気抵抗が大きくなり、電力損失が増大する。
 そこで、中空構造をもつ管状導電体とすることで、中空部の内周面分の表面積が増加し、増加した表面積の分、円形中実導電体よりも高周波電流が流れやすくなり、電力損失を低減することができる。
 さらに、管状導電体の表面積の増加に伴って放熱性が向上し、高周波電力供給時の導電体の温度上昇を抑えることができ、熱による電気抵抗上昇で生じる電力損失を低減することができる。
 また、板状導電体(例えば、断面が長方形中実、長円形中実、楕円形中実等)も、円形中実導電体と比較して表面積が大きくなるため、管状導電体と同じ理由によって、円形中実導電体よりも高周波電力供給時の電力損失を低減することができる。
 また、角棒状導電体(例えば、断面が正方形中実の角棒状導電体)の表面積と、円形中実導電体の表面積とを、同じ体積(断面積×長さ)の条件で比較すると、角棒状導電体の表面積は円形中実導電体の表面積の約3.4倍となる。したがって、管状導電体と同じ理由によって、円形中実導電体よりも高周波電力供給時の電力損失を低減することができる。
(9)前記導電体が、銅、アルミニウム、ニッケル、銀、金および錫のうちの少なくとも一つを含有する金属材料からなる。
(10)前記導電体の一部または全体を収納するケースをさらに備える。
 このようにすれば、高周波電力の供給時に導電体から高周波が外部に漏れることを防止できると共に、作業者が給電中の導電体に誤って接触する事故の発生を防止することができる。
 以下、図面を参照しながら本発明のプラズマ処理装置の実施形態を説明する。なお、本発明は図示した実施形態に限定されるものではない。
(実施形態1)
 図1は本発明のプラズマ処理装置の実施形態1を示す概略構成図である。
 実施形態1のプラズマ処理装置P1は、横型プラズマ処理装置であって、密封可能なチャンバー1と、チャンバー1に反応ガスを導入する図示しないガス導入部と、チャンバー1から反応ガスを排気する排気部15と、チャンバー1内に水平かつ対向状に配置されてプラズマ放電させるカソード11とアノード12の組からなる4組の放電部13と、各放電部13に電力を供給する電源部E1、E2と、各電源部E1、E2に電気的に接続されたマッチングボックスM1、M2と、各マッチングボックスM1、M2を支持する支持部A11、A12と、各マッチングボックスM1、M2と放電部13のカソード11とを電気的に接続する導電体C11、C12と、各導電体C11、C12の略全体を覆うケースK11、K12とを備える。このプラズマ処理装置P1は、各放電部13のアノード12に基板S1を設置し、基板S1の表面に半導体膜を積層して半導体素子を形成することができる。
 チャンバー1は、脚部を有し、かつ正面側に開閉扉(図示省略)を有する縦長箱型に形成されている。また、チャンバー1は、その左右の内壁面には各カソード11と各アノード12を一定間隔をもって支持する支持片(図示省略)が設けられると共に、チャンバー1の底面に排気部15が接続されている。なお、一の放電部13のアノード12と、隣接する他の放電部13のカソード11との間も、一定間隔に設定されている。
 チャンバー1の左右側壁外部には、導電体C11、C12を収納するように、アルミニウムや銅等の電気伝導体からなるケースK11、K12が配置されている。
 ケースK11、K12は、高周波電力の供給時に導電体C11、C12から高周波が外部に漏れることを防止し、かつ作業者が通電中の導電体C11、C12に誤って接触する事故の発生を防止するものである。
 図2は実施形態1のプラズマ処理装置の第1導電体および第1ケースを示す構成図である。
 図1と図2に示すように、一方のケース(以下、「第1ケース」という)K11は、一方のマッチングボックス(以下、「第1マッチングボックス」という)M1上に設置された垂直方向に長い第1部分K11aと、第1部分K11aの上端のチャンバー1側に連結された第2部分K11bと、第2部分K11bとチャンバー1の側壁とを連結する第3部分K11cとからなり、それらの連結部分には導電体C11を挿通させる挿通孔が形成されている。
 他方のケースK12(以下、「第2ケース」という)も、第1ケースK11と同様に、他方のマッチングボックス(以下、「第2マッチングボックス」という)M2上に設置された第1部分K12aと、第1部分K12aの上端のチャンバー1側に連結された第2部分K12bと、第2部分K12bとチャンバー1の側壁とを連結する第3部分K12cとからなり、それらの連結部分には導電体C12を挿通させる挿通孔が形成されている。
 なお、第1および第2ケースK11、K12についてさらに詳しくは後述する。
 各カソード11はそれぞれ同じ構成を有し、各アノード12はそれぞれ同じ構成を有している。
 カソード11は、ステンレス鋼やアルミニウム合金などから作製される。各カソード11の寸法は、成膜される基板S1の寸法に合わせて適当な値に設定され、アノード12と同じ寸法(平面サイズおよび厚み)で設計されることができる。
 カソード11は、内部が空洞であると共に、ペアを組むアノード12に面するプラズマ放電面には前記空洞部と導通した多数の貫通穴が穴開け加工により開けられている。この穴開け加工は、直径0.1mm~2mmの円形穴を数mm~数cmピッチで行うのが望ましい。
 また、カソード1の一端面には、図示しないガス導入部としてのガス導入管が接続されている。また、図示しないガス供給源とガス導入部とは接続パイプにて接続されている。したがって、反応ガスがガス供給源からカソード11の内部に形成された前記空洞に供給されると、前記多数の貫通穴からアノード12上の基板S1の表面に向かって反応ガスが噴出する。
 なお、成膜用の反応ガス(原料ガス)は、成膜する膜の材質に応じたものを使用する。例えば、不純物をドーピングしたシリコン系半導体膜を成膜する場合は、H2で希釈したSiH4(モノシラン)ガスとともに、PH3(ホスフィン)ガス、B26(ジボラン)ガス、CO2ガスなどが使用される。
 アノード12は、内部にヒータ14を有すると共に、その上面に基板S1が設置され、プラズマ放電下の成膜時に基板S1を加熱する。なお、基板S1は、半導体基板(例えば、シリコン基板)やガラス基板などが一般的であるが、特にこれらに限定されるものではない。
 また、アノード12は、ステンレス鋼、アルミニウム合金、カーボンなどの、導電性および耐熱性を備えた材料で製作されている。
 アノード12の寸法は、薄膜を形成するための基板S1の寸法に合わせて適当な値に決定されている。例えば、基板S1の寸法900~1200mm×400~900mmに対して、アノード12の寸法を1000~1500mm×600~1000mmにして設計される。
 または、一つのアノード12上に複数の基板S1を並べて設置してもよい。例えば、アノード12の寸法が1500mm×1000mmの場合、寸法が700mm×1000mmの基板S1を2枚並べて設置してもよいし、あるいは、寸法が700mm×400mmの基板S1を4枚を2列に並べて設置してもよい。
 アノード12に内蔵されたヒータ14は、アノード12を室温~300℃に加熱制御するものであり、例えば、アルミニウム合金中にシースヒータといった密閉型加熱装置と熱電対といった密閉型温度センサとを内蔵したものを用いることができる。
 また、本発明の実施形態ではヒータ14はアノード12に内蔵されているが、ヒータ14とアノード12が分離されて設置されている構成でもよい。その場合、ヒータ14は基板S1を面内均一に加熱できるように構成されていることが好ましい。例えば、アノード12の基板S1を設置した面の裏面側に、プレート状のヒータを設置して用いることができる。
 第1ケースK11内に収容された一方の導電体(以下、「第1導電体」という)C11は、第1マッチングボックスM1と電気的に接続された下端を有し垂直方向に配置された伝送配線C11aと、伝送配線C11aの上端と締結部品aを介して電気的に接続された一端を有し水平方向に配置された接続配線C11bと、接続配線C11bの他端と締結部品bを介して電気的に接続された分岐配線C11cとを備える。
 伝送配線C11aは、金属製の管状導電体からなり、第1部分K11a内に収容されている。
 接続配線C11bは、金属製の板状導電体からなり、第1部分K11aから第3部分K11cに亘って収容されている。
 分岐配線C11cは、通常の導線(例えば銅線)からなる第1線C11c1と、第1線C11c1の両端に締結部材cを介して電気的に接続された金属製の棒状導電体からなる第2線C11c2とから構成されている。
 第1線C11c1は第3部分K11c内に収容され、第2線C11c2は第3部分K11cからチャンバー1の側壁を貫通して反応室内のカソード11と電気的に接続されている。
 また、分岐配線C11cの両端から等距離の点(第1線C11c1の両端から等距離の中点)は、接続配線C11bと電気的に接続されている。
 さらに、分岐配線C11cは、接続配線C11bとの接続部から等距離の箇所で線対称的に屈曲して上から1番目と3番目のカソード11の一端面(右端面)の同じ位置に電気的に接続されている。
 なお、全てのアノード12は接地されている。
 他方の導電体(以下、「第2導電体」という)C12は、第1導電体C11と同一であり、第2マッチングボックスM2と電気的に接続された伝送配線C12aと、伝送配線C12aと締結部品を介して電気的に接続された接続配線C12bと、接続配線C11bと締結部品を介して電気的に接続された分岐配線C11cとを備え、第2ケースK12内に収容されている。
 すなわち、第1導電体C11の伝送配線C11aの下端(第1マッチングボックスM1との接続部)から分岐配線C11cの先端(カソード11との接続部)までの長さと、第2導電体C12の伝送配線C12aの下端(第2マッチングボックスM2との接続部)から分岐配線C12cの先端(カソード11との接続部)までの長さとは等しい。さらに、第1導電体C11における屈曲部の位置および数と、第2導電体C12における屈曲部の位置および数とは等しい。ここで、屈曲部とは、第1導電体C11の場合、伝送配線C11aと接続配線C11bとの接続部、接続配線C11bと分岐配線C11cとの接続部、および分岐配線C11cの折曲り部分のように、導電体における屈曲した部分を意味する。第2導電体C12も同様である。
 但し、第2導電体C12の分岐配線C12cの両端は、上から2番目と4番目のカソード11の他端面(左端面)の長手方向中間位置に電気的に接続されている。
 これにより、第2導電体C12と各カソード11とは、第1導電体C11cと干渉することなく、かつ第1導電体C11cと同様の位置で、相互に電気的に接続する。
 なお、実施形態1およびこれ以降の実施形態において、伝送配線および分岐配線は、板状導電体または角棒状導電体であってもよい。
 排気部15は、真空ポンプ15a、真空ポンプ15aとチャンバー1の内部(反応室)とを接続する排気管15bおよび排気管15bにおけるチャンバー1と真空ポンプ15aとの間に配置された圧力制御器15cとを備えてなる。
 本実施形態の場合、排気部15はチャンバー1の底面に1箇所接続されているが、排気部15の接続面は底面に限られず、また、複数の排気部15を備えていてもよい。例えば、チャンバー1の天井面と底面の上下2箇所に排気部15を設けることができる。上下2箇所に排気部15を設けることで、チャンバー1内部の上部および下部の雰囲気をそれぞれ効率よく排気することが可能となる。
 第1マッチングボックスM1は、電源部E1と1番目のカソード11との間および電源部E1と3番目のカソード11との間のインピーダンスを整合する。第2マッチングボックスM2は、電源部E2と2番目のカソード11との間および電源部E2と4番目のカソード11との間のインピーダンスを整合する。第1マッチングボックスM1と第2マッチングボックスM2とは同じものであり、これらの高さは同じである。
 電源部E1、E2は、高周波発生器と、高周波発生器からの高周波電力を増幅してカソード11に供給する増幅器とを備えてなるプラズマ励起電源であり、例えば、AC1.00MHz~60MHzの周波数で10W~100kWの電力、具体的には、13.56MHz~60MHzで10W~10kWの電力を各カソード1に供給する。
 実施形態1では、互いに同期した個別の電源部E1、E2を用いた場合を例示しているが、一つの電源部から電力供給経路を分岐して第1および第2マッチングボックスM1、M2にそれぞれ接続してもよい。
 第1マッチングボックスM1を支持する支持部(以下、「第1支持部」という)A11は、プラズマ処理装置P1が設置される床面上に固定された固定台であり、所定の高さH11を有している。
 第2マッチングボックスM2を支持する支持部(以下、「第2支持部」という)A12は、前記床面上に固定された固定台であり、所定の高さH12を有している。
 前記のように第1導電体C11と第2導電体C12は同一であるが、第1導電体C11の分岐配線C11cと接続配線C11bとの接続部分の高さと、第2導電体C12の分岐配線C12cと接続配線C12bとの接続部分の高さは、隣接する2つのカソード11の間隔D分ずれている。
 よって、第1支持部A11の高さH11は、第2支持部A12の高さH12よりも前記間隔D分高く設定されている。つまり、H11-H12=Dである。
 なお、第1および第2支持部A11、A12として、固定台の替わりに昇降台を用いてもよい。
 このように構成されたプラズマ処理装置P1によれば、第1マッチングボックスM1から1番目と3番目のカソード11までの電力供給経路と、第2マッチングボックスM2から2番目と4番目のカソード11までの電力供給経路とが等しいため、電源E1から1番目と3番目のカソード11に供給する高周波電力と、電源E2から2番目と4番目のカソード11に供給する高周波電力とのばらつきを低減することができる。
 この結果、反応ガス雰囲気下での各放電部13のプラズマ放電のばらつきを低減させることができるため、各アノード12上に設置した各成膜用基板(例えば、半導体基板)上に形成される膜(例えば半導体膜)の品質の均一性を向上させることができる。
 なお、実施形態1およびこれ以降の実施形態において、隣接する放電部のカソード同士を同じ導電体にて接続してもよい。
(実施形態2)
 図3は本発明のプラズマ処理装置の実施形態2を示す概略構成図である。なお、図3において、図1中の要素と同様の要素には同一の符号を付している。
 実施形態2のプラズマ処理装置P2は、エッチング用プラズマ処理装置である。このプラズマ処理装置P2において、放電部23は、上に配置されたアノード22と下に配置されたカソード21とから構成されている。各放電部23のカソード21は第1および第2導電体C21、C22と接続され、各放電部23のアノード22は接地されている。
 この場合、カソード21は構造的に図1で説明したアノード12と実質的に同一であり、アノード22は構造的に図1で説明したカソード11と実質的に同一であり、反応ガスが、アノード22より供給される。
 この場合のエッチング用の反応ガスとして、エッチングされる膜の材質に応じた反応ガスが用いられる。例えば、シリコン系半導体膜をエッチングする場合は、Arなどの不活性ガスで希釈されたCF4、C48などのフッ素系ガスが主に用いられる。
 このプラズマ処理装置P2において、第1および第2導電体C21、C22の構成と、第1および第2ケースK21、K22の構成とは、実施形態1と基本的に同じであり、その他の構成も実施形態1と同じである。
 すなわち、第1および第2マッチングボックスM1、M2から各カソード21までの距離が等しい。さらに、第1マッチングボックスM1から第1導電体C21の各屈曲部までの距離と、第2マッチングボックスM2から第2導電体C22の各屈曲部までの距離が等しい。
 このように第1および第2導電体C21、C22が構成されると共に、第1および第2マッチングボックスM1、M2の高さ位置が第1および第2支持部A21、A22によって調整される(H21-H22=D)。
 なお、第1支持部A21の高さH21が、カソード間隔Dと等しければ、第2支持部A22を省略して第2マッチングボックスM2を床面に直接設置することができる。
 このプラズマ処理装置P2によれば、反応ガス雰囲気下の各放電部23のプラズマ放電のばらつきを低減させることができ、各カソード上21に設置した各エッチング用基板(例えば、半導体基板)S2のエッチングの均一性を向上させることができる。
 なお、以降の実施形態においても、実施形態2と同様に、基板設置側をカソードとしてもよい。
(実施形態3)
 図4は本発明のプラズマ処理装置の実施形態3を示す概略構成図である。なお、図4において、図1中の要素と同様の要素には同一の符号を付している。
 実施形態3のプラズマ処理装置P3が実施形態1と異なる点は、主として、第1および第2導電体C31、C32から伝送配線が省略され、分岐配線C31c、C32cと接続された接続配線C31b、C32bが直接第1および第2マッチングボックスM1、M2と接続されたこと、および第1および第2ケースK31、K32の構成である。
 実施形態3におけるその他の構成は、概ね実施形態1と同様である。
 この場合、第1ケースK31は、図1で示した第1および第2部分K11a、K11bに相当する部分が省略され第3部分K11cに相当する部分のみから構成され、これと同様に、第2ケースK32も第3部分K12cに相当する部分のみから構成されている。
 第1マッチングボックスM1は接続配線C31bと直接されるために第1支持部A31によって高さH31の位置に支持され、第2マッチングボックスM2は接続配線C32bと直接されるために第2支持部A32によって高さH32の位置に支持されている。
 実施形態3の場合も、第1および第2マッチングボックスM1、M2から各カソード11までの距離が等しい。さらに、第1マッチングボックスM1から第1導電体C31の各屈曲部までの距離と、第2マッチングボックスM2から第2導電体C32の各屈曲部までの距離が等しい。
 このように第1および第2導電体C31、C32が構成されると共に、第1および第2マッチングボックスM1、M2の高さ位置が第1および第2支持部A31、A32によって調整される(H31-H32=D)。
 このプラズマ処理装置P3によれば、第1および第2マッチングボックスM1、M2から各カソード11までの電力供給経路を短くすることができるため、電力供給経路の配線抵抗に起因する電力消費を低減できる。さらに、異なる配線同士の接続箇所の数を低減することができるため、接触抵抗に起因する電力消費を低減できると共に、第1および第2ケースK31、K32を簡素化できる。
(実施形態4)
 図5は本発明のプラズマ処理装置の実施形態4を示す概略構成図である。なお、図5において、図1中の要素と同様の要素には同一の符号を付している。
 以下、実施形態4における実施形態1とは異なる点を主に説明する。
 実施形態4のプラズマ処理装置P4は、脚部を有し、かつ正面側に開閉扉(図示省略)を有する横に長いチャンバー10内に、4組の放電部13のカソード11およびアノード12が垂直方向に配置された成膜用の縦型プラズマ処理装置であり、各カソード11および各アノード12は、チャンバー10の内壁に設けられた図示しない支持部材によって支持されている。
 なお、各放電部13のカソード11とアノード12との間隔および隣接する2組の放電部13の間隔は実施形態1と同様に構成されている。
 このプラズマ処理装置P4の場合、第1導電体C41の2つの分岐配線C41cは左から1番目と3番目のカソード11の上端に接続され、かつ第2導電体C42の2つの分岐配線C42cは左から2番目と4番目のカソード11の下端に接続される。
 そのため、第1導電体C41において、接続配線C41bは垂直方向に配置され、伝送配線C41aは水平方向に配置され、伝送配線C41aに第1マッチングボックスM1が接続され、第1マッチングボックスM1は支持部A41によってチャンバー10よりも高い位置に支持されている。
 第2導電体C42において、接続配線C42bおよび伝送配線C42aも第1導電体C41と同様であり、伝送配線C42aに第2マッチングボックスM2が接続され、第2マッチングボックスM2は床面上に設置されている。
 また、第1および第2導電体C41、C42は、実施形態1と同様の構成の第1および第2ケースK41、K42内に収納されている。
 実施形態4の場合も、第1および第2マッチングボックスM1、M2から各カソード11までの距離が等しい。さらに、第1マッチングボックスM1から第1導電体C41の各屈曲部までの距離と、第2マッチングボックスM2から第2導電体C42の各屈曲部までの距離が等しい。
 なお、第1ケースK41はチャンバー10の上壁に載置されているが、第1ケースK41は第1マッチングボックスM1のような重量物ではないためチャンバー10に大きな負荷をかけることはない。
(実施形態5)
 図6は実施形態5のプラズマ処理装置の第1導電体および第1ケースを示す構成図である。なお、図6において、図1中の要素と同様の要素には同一の符号を付している。
 実施形態5のプラズマ処理装置P5が実施形態1と異なる点は、放電部の数、第1導電体C51の分岐配線C51cの分岐数および図示しない第2導電体の分岐配線の分岐数がそれぞれ2倍に増加した点であり、実施形態5におけるその他の構成は実施形態1と同様である。
 以下、実施形態5について実施形態1とは異なる点を主に説明する。
 このプラズマ処理装置P5において、カソード11は垂直方向に8段で配置されている(アノードは図示省略)。
 第1導電体C51は、伝送配線C11aと、接続配線C11bと、3本の分岐線C51c1、C51c2、C51c2からなる分岐配線C51cとを備える。
 分岐配線C51cは、接続配線C21b側に1段目の1本の分岐線C51c1が配置され、カソード11側に2段目の2本の分岐線C51c2、C51c2が配置されている。
 なお、2段目の各分岐線C51c2は、両端部と中間部とが異なるまたは同じ部材からなり、それらが締結部品dにて電気的に接続されて構成されている。図6では、端部部品C51c2が分岐線C51c2の一部として図示されている。
 2段目の一方の分岐線C51c2において、両端はそれぞれ異なるカソード11と締結部品dを介して電気的に接続され、両端から等距離の点は締結部品cを介して1段目の前記分岐線C51c1の一端と電気的に接続されている。2段目の他方の分岐線C51c2も同様である。
 1段目の分岐線C51c1において、両端から等距離の点は締結部品bを介して接続配線C21bと電気的に接続されている。
 第1導電体C51の2段目の各分岐線C51c2の両端は、上から1、3、5、7番目のカソード11の一端面(右端面)の長手方向中間位置に電気的に接続されている。
 第1ケースK51は、伝送配線C11aを収納する第1部分K51aと、接続配線C11bを収納する第2部分K51bと、1段目の前記分岐線C51c1を収納する第3部分K51cと、2段目の各分岐線C51c2を収納する第4部分K51dとからなる。
 図示しない第2導電体は第1導電体C51と同一である。但し、第2導電体の2段目の各分岐線の両端は、上から2、4、6、8番目のカソード11の他端面(左端面)の長手方向中間位置に電気的に接続されている。
 図示しない第2ケースは第1ケースK51と同一である。
 実施形態5の場合も、図示しない第1および第2マッチングボックスから各カソード11までの距離が等しい。さらに、第1マッチングボックスから第1導電体C51の各屈曲部までの距離と、第2マッチングボックスから第2導電体の各屈曲部までの距離が等しい。この場合、導電体における各締結部品の位置および各分岐線の折曲り部分が屈曲部である。
 実施形態5において、カソード11および図示しないアノードの対からなる放電部の数は8つであるが、分岐線の段数を3段以上に増やすことで放電部の数をさらに増やすことが可能である。
 つまり、本発明のプラズマ処理装置は、n個(nは2以上の自然数)のマッチングボックスを有すると共に、チャンバー内にn×2m個(mは自然数)のカソードを有し、n個のマッチングボックスのそれぞれが導電体を介して2m個のカソードと接続されるように構成することができる。
 実施形態5の場合、マッチングボックスの数は2個であるためn=2であり、カソードの数は8個であるためm=2である。
 また、前記実施形態1~4の場合、マッチングボックスの数は2個であるためn=2であり、カソードの数は4個であるためm=1である。
 本発明はこれら以外にも、例えば、マッチングボックスの数が2個のとき、カソードの数を16個、32個等のn×2m個にすることが可能である。
(実施形態6)
 図7は本発明のプラズマ処理装置の実施形態6を示す概略構成図である。なお、図6において、図1中の要素と同様の要素には同一の符号を付している。
 実施形態6のプラズマ処理装置P6は、実施形態1と同様に、上下4段のカソード31を備えた成膜用の横型プラズマ処理装置であるが、カソード31とアノード32の構成およびアノード32の数が実施形態1とは異なり、その他の構成は概ね実施形態1と同様である。
 以下、実施形態6における実施形態1とは異なる点を主に説明する。
 実施形態6において、カソード31は、上下両面に多数の貫通穴が形成されており、上下両面から反応性ガスをチャンバー1内に噴出するよう構成されている。
 また、アノード32は、片面または上下両面で基板S1を支持できるように構成されている。アノード32の下面には、基板S1の処理されない面をアノード32の下面と密着させた状態で基板S1の外周を支持できる、例えば、倒立L字形の支持片(図示省略)が設けられている。
 さらに、実施形態6の場合、最上段のカソード31の上方にもアノード32が配置されている。
 このように構成された実施形態6のプラズマ処理装置P6では、全てのカソード31がアノード32で挟まれた構造であり、全てのカソード31とアノード32の間でプラズマ放電が発生する。なお、図7において、符号33は放電部を示している。
 したがって、成膜処理の際は、最上段のアノード32の下面、最下段のアノード32の上面、およびその他のアノード32の上下両面に基板S1を設置し、各カソード31の上下両面から各基板S1に向けて反応性ガスを噴出し、それぞれのカソード31とアノード32の間でプラズマを発生させる。
 実施形態6も、実施形態1と同様に、電源E1、E2から各カソード31に供給する高周波電力のばらつきを低減することができる。
 さらに、実施形態6によれば、一度のプラズマ処理でより多くの基板S1を処理することができ、処理効率が向上する。
(実施形態7)
 図8は本発明のプラズマ処理装置の実施形態7を示す概略構成図である。なお、図7において、図1および図7中の要素と同様の要素には同一の符号を付している。
 実施形態7のプラズマ処理装置P7は、前記実施形態6のプラズマ処理装置P6(図7参照)に類似しているが、隣接する2つのカソード31間に2つのアノード42を配置した点が異なっている。この場合、隣接する2つのカソード31間において、上のアノード42にはその上面に基板S1を設置し、下のアノード42にはその下面に基板S1を設置する。
 実施形態7において、その他の構成は概ね実施形態1および6と同様である。
 以下、実施形態7における実施形態1および6とは異なる点を主に説明する。
 実施形態7の場合、カソード31間の下のアノード42の下面には、実施形態6と同様に、基板S1の処理されない面をアノード42の下面と密着させた状態で基板S1の外周を支持できる倒立L字形の支持片(図示省略)が設けられている。
 また、実施形態7の場合、カソード31間の間隔D1は、実施形態1(図1参照)におけるカソード11間の間隔Dよりも広くなる。したがって、実施形態7における第1導電体C11と第2導電体C12は同一であるが、第1導電体C11の分岐配線C11cと接続配線C11bとの接続部分の高さと、第2導電体C12の分岐配線C12cと接続配線C12bとの接続部分の高さは、隣接する2つのカソード31の間隔D1分ずれている。
 よって、第1支持部A71の高さH21は、第2支持部A72の高さH12よりも前記間隔D1分高く設定されている。つまり、H21-H22=D1である。
 このように構成された実施形態7のプラズマ処理装置P7も、全てのカソード31がアノード42で挟まれた構造であり、各カソード31の両面から反応ガスが噴出し、かつ全てのカソード31とアノード42の間でプラズマ放電が発生する。なお、図8において、符号43は放電部を示している。
 実施形態7も、電源E1、E2から各カソード31に供給する高周波電力のばらつきを低減することができ、かつ一度のプラズマ処理でより多くの基板S1を効率よく処理することができる。
(実施形態8)
 図9は本発明のプラズマ処理装置の実施形態8を示す概略構成図である。なお、図9において、図5中の要素と同様の要素には同一の符号を付している。
 実施形態8のプラズマ処理装置P8は、実施形態4のプラズマ処理装置P4(図5参照)と同様に、垂直方向にカソード51を4段で配置した成膜用の縦型プラズマ処理装置であるが、カソード51とアノード52の構成、アノード52の数、隣接する2つのカソード51に同一の分岐配線が接続される点が実施形態4とは異なり、その他の構成は概ね実施形態4と同様である。
 以下、実施形態8における実施形態4とは異なる点を主に説明する。
 実施形態8において、カソード51は、左右両面に多数の貫通穴が形成されており、左右両面から反応性ガスをチャンバー10内に噴出するよう構成されている。
 また、アノード52は、片面または左右両面で基板S1を支持できるように構成されている。
 アノード52の片面または左右両面には、基板S1の処理されない面を密着させた状態で基板S1の外周を支持できる、例えば、倒立L字形の支持片(図示省略)が設けられている。
 また、実施形態8の場合、全てのカソード51がアノード52で挟まれた構造であり、各カソード51の左右両面から反応ガスが噴出し、全てのカソード51とアノード52の間でプラズマ放電が発生する。なお、図9において、符号53は放電部を示している。
 また、実施形態8の場合、第1および第2導電体C51、C52と、これらを収納する第1および第2ケースK51、K52とはチャンバー10の上方に配置され、第1および第2マッチングボックスM1、M2と、これらを支持する第1および第2支持部A51、A52とはチャンバー10の両側に配置されている。さらに、第1導電体C51の分岐配線C51cの両端は左側の隣接する2つのカソード51の上端と電気的に接続し、第2導電体C52の分岐配線C52cの両端は右側の隣接する2つのカソード51の上端と電気的に接続している。
 実施形態8も、電源E1、E2から各カソード51に供給する高周波電力のばらつきを低減することができ、かつ一度のプラズマ処理でより多くの基板S1を効率よく処理することができる。
 なお、図9で示した実施形態8は、支持部A51、A52をチャンバー10の左右両側に配置したプラズマ処理装置を例示したが、支持部A51、A52をチャンバー10の後方に並べて配置するようにプラズマ処理装置を構成してもよい。このようにすれば、n個(nは3以上の自然数)のマッチングボックスを有すると共に、チャンバー内にn×2m個(mは自然数)のカソードを有するプラズマ処理装置を作製することができる。この点は、次の実施形態9も同様である。
(実施形態9)
 図10は本発明のプラズマ処理装置の実施形態9を示す概略構成図である。なお、図10において、図1および図9中の要素と同様の要素には同一の符号を付している。
 実施形態9のプラズマ処理装置P9は、前記実施形態8のプラズマ処理装置P8(図9参照)に類似しているが、異なる点は、隣接する左右のカソード51間に2つのアノード62を配置し、各アノード62のカソード51との対向面に基板S1を設置する点である。 実施形態9において、その他の構成は概ね実施形態8と同様である。
 このように構成された実施形態9のプラズマ処理装置P9も、全てのカソード51がアノード62で挟まれた構造であり、各カソード51の両面から反応ガスが噴出し、かつ全てのカソード51とアノード62の間でプラズマ放電が発生する。なお、図10において、符号53は放電部を示している。
 実施形態9も、電源E1、E2から各カソード51に供給する高周波電力のばらつきを低減することができ、かつ一度のプラズマ処理でより多くの基板S1を効率よく処理することができる。
(実施形態10)
 図11は本発明のプラズマ処理装置の実施形態10を示す概略構成図である。なお、図10において、アノードおよび排気配管は図示省略されている。
 実施形態10のプラズマ処理装置P10は、実施形態8および9のプラズマ処理装置P8、P9と同様に、垂直方向にカソード61を4段で配置した成膜用の縦型プラズマ処理装置であるが、電力供給構造が実施形態8、9とは異なり、その他の構成は概ね実施形態8、9と同様である。
 以下、実施形態10における実施形態8、9とは異なる点を主に説明する。
 実施形態10のプラズマ処理装置P10は、1個の電源部Eと、電源部Eから分岐した電力供給経路を介して電気的に接続された4個のマッチングボックスMと、各マッチングボックスMと各カソード61とを1対1で電気的に接続する導電体Cと、全てのマッチングボックスMを同一高さに支持する共通の支持部Aとを備えている。
 導電体Cは、伝送配線Caと接続配線Cbとからなり、ケースK内に収納されている。
 各導電体Cは同一であり、同一のケースK内に収納されている。
 なお、カソード61およびアノードの構成および配置は、実施形態4(図5)、実施形態8(図9)または実施形態9(図10)と同様である。
 実施形態10のプラズマ処理装置P10によれば、カソード61とマッチングボックスMとを1対1で接続することができるため、例えば、不具合が発生した放電部のカソードまたはアノードのみをチャンバー内から取り出した状態であっても、他の放電部による基板のプラズマ処理を行うことができる。
 なお、図11では、支持部Aとして、全てのマッチングボックスMを同一高さに支持する共通の支持部を例示したが、全てのマッチングボックスMが同一高さに支持されていればよいため、各マッチングボックスMを個別の支持部にて支持してもよく、あるいはマッチングボックスMを複数個ずつ共通の支持部にて支持してもよい。
 今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明のプラズマ処理装置およびそれを用いたプラズマ処理方法によれば、半導体薄膜または光学的薄膜を用いた薄膜太陽電池、TFT、感光体などの所望の素子特性を有する半導体素子を、ばらつきを抑制して安定的に生産することができる、半導体素子の製造方法を提供することができる。
 1、10 チャンバー
 11、21、31、51 カソード
 12、22、32、42、52、62 アノード
 13、23、33、43、53、63 放電部
 A 支持部
 A11、A21、A31、A41、A51、A71 第1支持部
 A12、A22、A32、A52、A72 第2支持部
 C 導電体
 C11、C21、C31、C41、C51 第1導電体
 C11a、C12a、C41a、C42a 伝送配線
 C11c、C12c、C31c、C32c、C41c、C42c 分岐配線
 C11b、C12b、C31b、C32b、C41b、C42b 接続配線
 C12、C22、C32、C42、C52 第2導電体
 C51c、C52c 分岐配線
 C51c1、C51c2 分岐線
 E1、E2 電源部
 K ケース
 K11、K21、K31、K41、K51 第1ケース
 K12、K22、K32、K42、K52 第2ケース
 M1 第1マッチングボックス
 M2 第2マッチングボックス
 P1、P2、P3、P4、P5、P6、P7、P8、P9、P10 プラズマ処理装置
 S1、S2 基板

Claims (14)

  1.  反応性原料ガスが導入される密封可能なチャンバーと、
     前記チャンバー内に対向状に配置されてプラズマ放電を発生するカソードとアノードの組からなる複数組の放電部と、
     前記チャンバー外に配置されて前記複数組の放電部にプラズマ放電を発生させる電力を供給する電源部と、
     前記チャンバー外で前記電源部に電気的に接続された複数のマッチングボックスと、
     前記チャンバー外に配置されて前記複数のマッチングボックスを支持する少なくとも1つの支持部と、
     前記複数のマッチングボックスと前記複数組の放電部のカソードとを電気的に接続する複数の導電体とを備え、
     前記支持部は、前記複数の導電体の長さを等しくできる位置に1つ以上の前記マッチングボックスを支持するよう構成されたことを特徴とするプラズマ処理装置。
  2.  前記支持部が、プラズマ処理装置設置場所の床面に設置され、前記マッチングボックスを前記複数の導電体の長さを等しくできる高さに支持できる、固定台または高さ調整可能な昇降台を有してなる請求項1に記載のプラズマ処理装置。
  3.  前記プラズマ処理装置が、n個(nは2以上の自然数)の前記マッチングボックスを有すると共に、前記チャンバー内にn×2m個(mは自然数)の前記カソードを有し、
     前記n個のマッチングボックスのそれぞれが前記導電体を介して2m個の前記カソード電極と接続される請求項1または2に記載のプラズマ処理装置。
  4.  前記導電体が、伝送配線、接続配線および分岐配線からなり、
     前記分岐配線の両端がそれぞれ異なる前記カソードと電気的に接続され、
     前記伝送配線の一端が前記マッチングボックスと電気的に接続され、
     前記接続配線の一端が前記伝送配線の他端と電気的に接続され、前記接続配線の他端が前記分岐配線の前記両端から等距離の点と電気的に接続されている請求項1~3のいずれか1つに記載のプラズマ処理装置。
  5.  前記導電体が、接続配線および分岐配線からなり、
     前記分岐配線の両端がそれぞれ異なる前記カソードと電気的に接続され、
     前記接続配線の一端が前記マッチングボックスと電気的に一端で接続され、前記接続配線の他端が前記分岐配線の前記両端から等距離の点と電気的に接続されている請求項1~3のいずれか1つに記載のプラズマ処理装置。
  6.  前記分岐配線が、2m-1本(mは自然数)の分岐線によって、前記接続配線側から前記カソード側に向かってm段で構成されており、
     m段目以外の前記各分岐線の両端が、それぞれ異なる次段の分岐線の両端から等距離にある点と電気的に接続され、
     m段目の分岐線の両端が、それぞれ異なるカソードと電気的に接続されている請求項4または5に記載のプラズマ処理装置。
  7.  前記導電体が、接続配線および伝送配線からなり、
     前記伝送配線の一端が前記マッチングボックスと電気的に接続され、
     前記接続配線の一端が前記伝送配線の他端と電気的に接続され、前記接続配線の他端が前記カソードと電気的に接続されている請求項1または2に記載のプラズマ処理装置。
  8.  前記異なる複数の導電体が、全体として互いに同じ材質および同じ構造で構成されている請求項1~7のいずれか1つに記載のプラズマ処理装置。
  9.  前記複数の導電体の一部または全体が、管状導電体、板状導電体または角棒状導電体で構成されている請求項1~8のいずれか1つに記載のプラズマ処理装置。
  10.  前記導電体が、銅、アルミニウム、ニッケル、銀、金および錫のうちの少なくとも一つを含有する金属材料からなる請求項1~9のいずれか1つに記載のプラズマ処理装置。
  11.  前記導電体の一部または全体を収納するケースをさらに備えた請求項1~10のいずれか1つに記載のプラズマ処理装置。
  12.  請求項1~11のいずれか1つに記載のプラズマ処理装置における前記放電部に基板を設置して前記基板の表面に半導体膜を積層するプラズマ処理方法。
  13.  請求項1~11のいずれか1つに記載のプラズマ処理装置における前記放電部に、表面に半導体膜を有する基板を設置して、前記基板上の前記半導体膜をエッチングするプラズマ処理方法。
  14.  請求項12または13に記載のプラズマ処理方法を用いて前記基板上に半導体素子を形成する半導体素子の製造方法。
PCT/JP2011/053714 2010-03-15 2011-02-21 プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法 WO2011114840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800142651A CN102804932A (zh) 2010-03-15 2011-02-21 等离子处理装置、等离子处理方法和半导体装置制造方法
EP11756029A EP2549840A1 (en) 2010-03-15 2011-02-21 Plasma processing device, plasma processing method, and method for manufacturing a semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-057706 2010-03-15
JP2010057706A JP4852653B2 (ja) 2010-03-15 2010-03-15 プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法

Publications (1)

Publication Number Publication Date
WO2011114840A1 true WO2011114840A1 (ja) 2011-09-22

Family

ID=44648947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053714 WO2011114840A1 (ja) 2010-03-15 2011-02-21 プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法

Country Status (4)

Country Link
EP (1) EP2549840A1 (ja)
JP (1) JP4852653B2 (ja)
CN (1) CN102804932A (ja)
WO (1) WO2011114840A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293300B2 (en) 2011-10-20 2016-03-22 Hitachi, Ltd. Plasma processing apparatus
WO2022011581A1 (en) * 2020-07-15 2022-01-20 Nordson Corporation Plasma treatment with isolated cooling paths

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159614A (ja) * 2013-02-19 2014-09-04 Ulvac Japan Ltd スパッタリング装置及びスパッタリング方法
BE1023805B1 (fr) 2016-06-30 2017-07-26 Green Frix Dispositif pour le traitement electrique d'un corps gras d'origine vegetale
DE102017223592B4 (de) * 2017-12-21 2023-11-09 Meyer Burger (Germany) Gmbh System zur elektrisch entkoppelten, homogenen Temperierung einer Elektrode mittels Wärmeleitrohren sowie Bearbeitungsanlage mit einem solchen System
FR3089522B1 (fr) * 2018-12-07 2020-12-25 Semco Tech Sas Dispositif de traitement assiste par plasma
DE102019002647A1 (de) * 2019-04-10 2020-10-15 Plasmetrex Gmbh Waferboot und Behandlungsvorrichtung für Wafer
CN111020534B (zh) * 2019-12-04 2023-03-10 江苏菲沃泰纳米科技股份有限公司 镀膜设备
CN110983296A (zh) * 2019-12-04 2020-04-10 江苏菲沃泰纳米科技有限公司 支撑结构、支架、镀膜设备和应用
CN110965040B (zh) * 2019-12-04 2021-04-16 江苏菲沃泰纳米科技股份有限公司 用于制备dlc的镀膜设备及其应用
WO2021109424A1 (zh) * 2019-12-04 2021-06-10 江苏菲沃泰纳米科技有限公司 电极支架、支撑结构、支架、镀膜设备及应用
EP4071269A4 (en) * 2019-12-04 2024-04-03 Jiangsu Favored Nanotechnology Co., Ltd. COATING SYSTEM
WO2021109814A1 (zh) * 2019-12-04 2021-06-10 江苏菲沃泰纳米科技有限公司 镀膜设备及其电极装置和应用
CN111446844B (zh) * 2020-05-06 2021-06-22 深圳市美泽电源技术有限公司 一种交流大功率mw级恒温调压自动化控制等离子电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184761A (ja) * 2000-12-15 2002-06-28 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理装置の組付け解体方法及びその専用治具
JP2006196681A (ja) * 2005-01-13 2006-07-27 Sharp Corp プラズマ処理装置および同装置により製造された半導体素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739137B2 (ja) * 1996-06-18 2006-01-25 日本電気株式会社 プラズマ発生装置及びこのプラズマ発生装置を使用した表面処理装置
JP4185483B2 (ja) * 2004-10-22 2008-11-26 シャープ株式会社 プラズマ処理装置
JP4558067B2 (ja) * 2008-05-21 2010-10-06 シャープ株式会社 プラズマ処理装置
KR101012345B1 (ko) * 2008-08-26 2011-02-09 포항공과대학교 산학협력단 저 전력 휴대용 마이크로파 플라즈마 발생기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184761A (ja) * 2000-12-15 2002-06-28 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理装置の組付け解体方法及びその専用治具
JP2006196681A (ja) * 2005-01-13 2006-07-27 Sharp Corp プラズマ処理装置および同装置により製造された半導体素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293300B2 (en) 2011-10-20 2016-03-22 Hitachi, Ltd. Plasma processing apparatus
WO2022011581A1 (en) * 2020-07-15 2022-01-20 Nordson Corporation Plasma treatment with isolated cooling paths

Also Published As

Publication number Publication date
JP4852653B2 (ja) 2012-01-11
EP2549840A1 (en) 2013-01-23
CN102804932A (zh) 2012-11-28
JP2011192532A (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2011114840A1 (ja) プラズマ処理装置、プラズマ処理方法および半導体素子の製造方法
US7540257B2 (en) Plasma processing apparatus and semiconductor device manufactured by the same apparatus
WO2009142138A1 (ja) プラズマ処理装置
JP5443127B2 (ja) プラズマ処理装置
CN102598876B (zh) 具有电极处rf匹配的大面积等离子体处理腔室
WO2010039883A3 (en) Multi-electrode pecvd source
KR101333465B1 (ko) 고주파 전력 분배 장치 및 그것을 이용한 기판 처리 장치
WO2011006018A3 (en) Apparatus and method for plasma processing
KR20130051896A (ko) 기판 처리 장치
JP4185483B2 (ja) プラズマ処理装置
KR20160092504A (ko) 플라즈마 처리 장치
US7722738B2 (en) Semiconductor device manufacturing unit and semiconductor device manufacturing method
JP4728345B2 (ja) プラズマ処理装置およびプラズマ処理方法
WO2009131048A1 (ja) プラズマ処理装置およびそれを用いたプラズマ処理方法
JP5713354B2 (ja) プラズマ発生装置
US8872428B2 (en) Plasma source with vertical gradient
JP2013131475A (ja) プラズマ処理装置及び半導体装置
JP2013143287A (ja) プラズマ処理装置およびプラズマ処理方法
JP2010171187A (ja) プラズマ処理装置およびこれを用いた半導体素子の製造方法
WO2009147993A1 (ja) プラズマ処理装置、それを用いた成膜方法およびエッチング方法
KR100635228B1 (ko) 플라즈마 처리장치
JP2006080192A (ja) プラズマプロセス装置
KR20130018360A (ko) 플라즈마 처리 장치 및 처리 시스템
JP5690299B2 (ja) プラズマ形成装置
JP2010135835A (ja) プラズマ処理装置および同装置により製造された半導体素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014265.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011756029

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE