WO2011114832A1 - Electron generation method - Google Patents

Electron generation method Download PDF

Info

Publication number
WO2011114832A1
WO2011114832A1 PCT/JP2011/053422 JP2011053422W WO2011114832A1 WO 2011114832 A1 WO2011114832 A1 WO 2011114832A1 JP 2011053422 W JP2011053422 W JP 2011053422W WO 2011114832 A1 WO2011114832 A1 WO 2011114832A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
argon
housing
chamber
lithium
Prior art date
Application number
PCT/JP2011/053422
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 畑
綾介 藪下
知幸 岡田
Original Assignee
国立大学法人三重大学
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人三重大学, 浜松ホトニクス株式会社 filed Critical 国立大学法人三重大学
Priority to JP2012505574A priority Critical patent/JP5742059B2/en
Publication of WO2011114832A1 publication Critical patent/WO2011114832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2602Details
    • H01J2237/2605Details operating at elevated pressures, e.g. atmosphere

Definitions

  • the present invention relates to an electron generation method.
  • Patent Document 1 describes a charged particle beam generator.
  • the charged particle beam generator includes a divided extraction electrode and an electrode tip that faces the gap in the center of the extraction electrode. A high voltage is applied between each of the extraction electrodes and the tip, thereby controlling the emission direction of the charged particle beam.
  • Liquid metal (lithium) is disposed on the surface of the electrode tip.
  • the periphery of the electron emission electrode is evacuated to a vacuum state.
  • atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remain around the electron emission electrode.
  • liquid lithium may be used as the electron emission source.
  • liquid lithium easily reacts with residual nitrogen even in a vacuum state.
  • nitrogen When liquid lithium reacts with nitrogen, lithium changes from a liquid phase to a solid phase. As the solidification of lithium progresses, it becomes affected by sputtering due to residual gas molecules, which causes a problem that the amount of current released is not stable.
  • the present invention has been made in view of such problems, and an object of the present invention is to stabilize the amount of emission current in an electron generation method using liquid lithium as an electron emission source.
  • An electron generation method includes a first introduction step for introducing argon into a housing, an exhaust step for exhausting the interior of the housing, and an argon-containing atmosphere after being exhausted by the exhaust step. And an electron emission step of emitting electrons from liquid lithium covering the surface of the electrode disposed inside the housing.
  • the amount of emission current can be remarkably stabilized as compared with the case of emitting electrons in an argon-free atmosphere. found.
  • argon is introduced into the housing (first introduction step), and then the interior of the housing is exhausted (exhaust step). Thereby, it is possible to suitably realize an atmosphere containing argon in a substantially vacuum state or a state close thereto. In such an atmosphere, the amount of emission current can be remarkably stabilized by emitting electrons from the liquid lithium covering the surface of the electrode.
  • the electron generation method further includes a second introduction step for introducing argon into the housing so that the inside of the housing approaches a predetermined pressure, between the exhaust step and the electron emission step. Also good. Thereby, the argon partial pressure inside a housing
  • the predetermined pressure is preferably 1 ⁇ 10 ⁇ 4 Pa or less.
  • the electron generation method may be characterized in that the first introduction step and the exhaust step are repeated a plurality of times. Thereby, by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining in the housing, the argon partial pressure can be increased, and the amount of current released from the liquid lithium can be further stabilized. .
  • the housing includes an electron gun chamber that accommodates an electrode, and a second chamber that is partitioned so that electrons pass between the electron gun chamber and the electron gun chamber.
  • argon may be introduced into the housing from a first argon introduction port provided in the electron gun chamber. Thereby, the argon partial pressure around the electron emission electrode can be increased.
  • the electron generation method may be characterized in that lithium is disposed on an extension of the central axis of the first argon inlet. Thereby, the argon partial pressure around the electron emission electrode (especially lithium) can be further increased.
  • the electron generation method is configured such that the first argon introduction port and the second argon introduction port provided at a position different from the first argon introduction port are filled with argon inside the casing. It is good also as introduce
  • the electron generation method it is preferable to provide the second argon inlet in the second chamber. Thereby, the argon partial pressure can be increased by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining in the entire interior of the housing.
  • the nitrogen partial pressure and the water pressure in the argon-containing atmosphere in the electron emission step are each 1 ⁇ 10 ⁇ 7 Pa or less, more preferably 5 ⁇ 10 ⁇ 8 Pa or less. Thereby, the amount of current released from the liquid lithium can be further stabilized.
  • the amount of emission current can be stabilized in an electron generation method using liquid lithium as an electron emission source.
  • FIG. 1 is a diagram showing a configuration of an X-ray inspection apparatus used in an electron generation method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a lithium coating method for a liquid metal cathode.
  • FIG. 3A is a longitudinal sectional view of a liquid metal cathode.
  • FIG. 3B shows a state in which an electric field is applied to liquid lithium.
  • FIG. 4 is a flowchart showing a first method among the electron generation methods.
  • FIG. 5 is a flowchart showing a second method among the electron generation methods.
  • FIG. 6 is a flowchart showing a third method among the electron generation methods.
  • FIG. 7 is a flowchart showing a fourth method among the electron generation methods.
  • FIG. 1 is a diagram showing a configuration of an X-ray inspection apparatus used in an electron generation method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a lithium coating method for a liquid metal ca
  • FIG. 8A shows the case where the inside of the housing is exhausted to an ultra high vacuum of 10 ⁇ 8 Pa and then nitrogen gas and argon gas are continuously introduced so that the pressure in the housing becomes 10 ⁇ 5 Pa. It is a graph which shows the emitted current change of a liquid metal cathode.
  • FIG. 8B shows the liquid metal cathode when the inside of the housing is evacuated to an ultra high vacuum of 10 ⁇ 8 Pa and then argon gas is continuously introduced so that the pressure in the housing becomes 10 ⁇ 4 Pa. It is a graph which shows emission current change.
  • FIG. 9 is obtained by adding graphs G32 and G33 to FIG.
  • Graphs G32 and G33 are graphs showing the results of measuring the time variation of the emission current when electrons are emitted from the liquid metal cathode while the inside of the housing is evacuated to an ultrahigh vacuum (10 ⁇ 8 Pa). is there.
  • FIG. 10 is a diagram showing the analysis results of the residual gas components in the case after the case where the evacuation is performed after purging the inside of the case with argon and the case where the evacuation is performed without purging with the argon. is there.
  • FIG. 11 shows that after the inside of the housing is evacuated to an ultra-high vacuum (10 ⁇ 8 Pa), the internal pressure of the housing is 1 ⁇ 10 ⁇ 5 Pa, 1 ⁇ 10 ⁇ 6 Pa, and 1 in the second introduction step.
  • FIG. 7 is a graph showing the results of measuring the time change of the amount of current emitted from a liquid metal cathode when argon is continuously introduced so as to approach each of ⁇ 10 ⁇ 7 Pa.
  • FIG. 12 shows the release in the case where the inside of the housing is evacuated to an ultra-high vacuum (10 ⁇ 8 Pa) and the case where argon gas is introduced so that the pressure inside the housing becomes 10 ⁇ 4 Pa. It is a graph which shows the result of having measured the time change of the amount of electric current.
  • FIG. 13 shows that after evacuating the inside of the housing to ultra-high vacuum (10 ⁇ 8 Pa), argon gas is introduced so that the pressure in the housing becomes 10 ⁇ 4 Pa or 10 ⁇ 3 Pa in the second introduction step.
  • FIG. 14 is a chart showing the measurement results of nitrogen partial pressure and moisture pressure when the total pressure in the housing is changed in the second introduction step.
  • FIG. 15 is a diagram showing a configuration of an electron microscope that is preferably used in the electron generation method.
  • FIG. 1 is a diagram illustrating a configuration of an X-ray inspection apparatus 1 including an X-ray generation apparatus 1A that is preferably used in an electron generation method according to an embodiment.
  • An X-ray inspection apparatus 1 shown in FIG. 1 includes a housing 10, a liquid metal cathode 11, an extraction electrode 12, a condenser lens 13, a condenser diaphragm 14, a gate valve 15, a beam alignment coil 16, an objective diaphragm 17, an objective lens 18,
  • the X-ray generator 1A including the target 19 and the window material 20 and the X-ray camera 22 that detects the X-ray image of the sample 21 to be inspected are configured.
  • the housing 10 accommodates each component of the X-ray generator 1A described above.
  • the housing 10 includes an electron gun chamber (first chamber) 10a, an intermediate chamber 10b, and an electron optical system chamber (second chamber) 10c.
  • the electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c are partitioned by boundary walls except for an opening serving as a passage path for the electron beam E.
  • the electron gun chamber 10a accommodates a liquid metal cathode 11, an extraction electrode 12, and a condenser lens 13 of the electron gun.
  • the intermediate chamber 10b is disposed between the electron gun chamber 10a and the electron optical system chamber 10c.
  • An opening is formed in the boundary wall between the electron gun chamber 10a and the intermediate chamber 10b, and a capacitor diaphragm 14 is disposed in the opening.
  • An opening is formed in the boundary wall between the intermediate chamber 10b and the electron optical system chamber 10c, and a gate valve 15 is disposed in the opening. That is, the electron optical system chamber 10c is partitioned from the electron gun chamber 10a by the boundary wall so that the electron beam E passes through the condenser aperture 14, the intermediate chamber 10b, and the gate valve 15. This gate valve 15 is opened when electrons are generated, and is closed during maintenance such as member replacement, so that the atmosphere of the room where maintenance or the like is not performed can be maintained.
  • the electron optical system chamber 10c accommodates a beam alignment coil 16, an objective diaphragm 17, and an objective lens 18.
  • An opening is formed in a boundary wall between the inspection chamber 10d (a surface facing the inspection chamber 10d in the housing 10), and a window member 20 that holds the target 19 is disposed so as to close the opening.
  • the target 19 is made of tungsten
  • the window member 20 is made of beryllium.
  • the X-ray camera 22 is disposed so as to face the X-ray emission part (window member 20) of the X-ray generator 1A.
  • the sample 21 to be inspected is disposed between the window member 20 and the X-ray camera 22.
  • the housing 10 including the electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c constitutes a vacuum container with improved airtightness.
  • the side wall of the electron gun chamber 10a is provided with an exhaust port 10f for evacuation and an argon inlet (first argon inlet) 10g for supplying argon gas to the electron gun chamber 10a.
  • An exhaust pipe 23 is attached to the exhaust port 10f, and an introduction pipe 24 is attached to the argon inlet 10g.
  • the position of the argon inlet 10g in the electron emission direction (that is, the central axis direction of the electron beam E) in the electron gun chamber 10a is the position of the liquid metal cathode 11 (especially lithium described later) in the electron emission direction.
  • the introduction tube 24 and the liquid metal cathode 11 are arranged so that the liquid metal cathode 11 is positioned on an extension of the center line of the argon inlet 10g.
  • the side wall of the electron optical system chamber 10c is provided with an exhaust port 10h for vacuum exhaust and an argon inlet (second argon inlet) 10i for supplying argon gas to the electron optical system chamber 10c. It has been.
  • the electron optical system chamber 10c of this embodiment has the argon inlet 10i provided in a position different from the argon inlet 10g.
  • An exhaust pipe 25 is attached to the exhaust port 10h, and an introduction pipe 26 is attached to the argon inlet 10i.
  • An exhaust pump is connected to the ends of the exhaust pipes 23 and 25.
  • the introduction pipe 24 is connected to an argon gas supply source 27 via a valve 28, and the introduction pipe 26 is connected to the argon gas supply source 27 via a valve 29.
  • the liquid metal cathode 11 is formed by depositing lithium on the surface of the tip of a solid electrode (a needle-like member made of tungsten). A high voltage is applied to the solid electrode from the outside of the housing 10. In addition, lithium is melted into a liquid state due to overheating of the solid electrode when electrons are generated.
  • the liquid metal cathode 11 emits an electron beam E from liquid lithium in a predetermined direction. This predetermined direction coincides with the arrangement direction of the electron gun chamber 10a, the intermediate chamber 10b, the electron optical system chamber 10c, and the inspection chamber 10d.
  • the extraction electrode 12 and the condenser lens 13 are arranged side by side in the emission direction of the electron beam E with respect to the liquid metal cathode 11.
  • the extraction electrode 12 is set to a predetermined potential, and the electron beam E is extracted from the liquid metal cathode 11 by the potential difference between the extraction electrode 12 and the liquid metal cathode 11.
  • the spread of the electron beam E is focused by the condenser lens 13, and then the electron beam E passes through the condenser aperture 14 and the gate valve 15.
  • the beam alignment coil 16, the objective diaphragm 17, and the objective lens 18 are arranged in this order along the emission direction of the electron beam E inside the electron optical system chamber 10c.
  • the beam alignment coil 16 is a deflection coil for performing axial alignment of the electron beam E.
  • the objective diaphragm 17 blocks the electron beam E that is not necessary for image formation.
  • the objective lens 18 focuses the electron beam E toward the target 19.
  • the window member 20 is made of plate-like beryllium having excellent X-ray transmittance, and hermetically seals the opening of the boundary wall between the electron optical system chamber 10c and the inspection chamber 10d.
  • a target 19 made of tungsten for converting electrons into X-rays is formed in a film shape on the surface of the window material 20 facing the liquid metal cathode 11. The target 19 receives the electron beam E and generates an X-ray Xr. The X-ray Xr is taken out into the atmosphere through the window member 20, and is emitted toward the examination room 10d.
  • the X-ray camera 22 is arranged so that its imaging surface faces the back surface of the window material 20 (the surface opposite to the surface facing the liquid metal cathode 11).
  • the sample 21 to be inspected is disposed between the window member 20 and the X-ray camera 22.
  • the X-ray Xr emitted from the target 19 passes through the inspection sample 21 to become an X-ray image and enters the X-ray camera 22.
  • FIG. 2 is a diagram showing an example of a lithium coating method (supply method) for the liquid metal cathode 11.
  • a solid electrode (a needle-like member made of tungsten) 11 a of the liquid metal cathode 11 is fixed to a bent portion of a bent metal wire, and both ends of the metal wire and an insulating member 35 are interposed.
  • the cathode assembly 33 is formed by electrically connecting the two electrode rods 30a and 30b that are separated from each other.
  • the electrode rods 30a and 30b are electrically connected to the negative electrode of the high-voltage power supply 31 through a direct current source.
  • a vapor deposition boat 32 is disposed in the vicinity of the solid electrode 11a. Lithium is disposed inside the vapor deposition boat 32. Lithium vaporized from the vapor deposition boat is deposited on the surface of the solid electrode 11a, and the surface of the liquid metal cathode 11 is covered with lithium.
  • FIG. 3A is a longitudinal sectional view of the liquid metal cathode 11.
  • the liquid metal cathode 11 includes a solid electrode 11a and lithium 11b.
  • the lithium 11b is deposited in a film shape on the surface of the solid electrode 11a and covers the solid electrode 11a.
  • the liquid metal cathode 11 is heated by energization to a melting point of lithium of 180.5 ° C. or higher to melt the lithium 11b.
  • a potential difference is generated between the molten lithium 11b and the extraction electrode 12 (FIG. 1) by applying a negative voltage to the molten lithium 11b, the shape of the liquid lithium 11b is expressed by the following surface tension (1).
  • FIG. 3B shows the direction of the surface tension S and the electric field stress F, and the tailor cone 11c generated thereby.
  • the supply method of the lithium 11b to the solid electrode 11a is not limited to the method described above.
  • FIG. 4 is a flowchart showing a first method among the electron generation methods according to the present embodiment.
  • argon gas is first introduced into the housing 10 (first introduction step S11).
  • the valves 28 and 29 shown in FIG. 1 are opened, and the electron gun chamber 10a and the electron optical system chamber 10c from the argon gas supply source 27 through the argon introduction ports 10g and 10i.
  • Argon gas is introduced into the.
  • the inside of the housing 10 (the electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c) is purged with argon gas.
  • step S12 the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h.
  • the valve 28 is opened, and argon gas is again introduced into the housing 10 from the argon inlet 10g (first introduction step S13).
  • first introduction step S13 it is preferable to introduce argon gas so that the pressure value inside the housing 10 approaches 0.09 MPa near atmospheric pressure.
  • the exhaust step S12 and the first introduction step S13 are performed until the partial pressure of water and nitrogen inside the housing 10 does not decrease, that is, as much as possible, to reduce the partial pressure of water and nitrogen inside the housing 10 as much as possible. Repeat a plurality of times (step S14).
  • the housing 10 is evacuated (evacuation step S15). Then, the argon gas is continuously introduced into the housing 10 so that the inside of the housing 10 approaches a predetermined pressure (second introduction step S16). At that time, by performing evacuation at the same time, a more appropriate argon partial pressure can be maintained.
  • the valve 28 is opened while evacuating from the exhaust pipe 23 via the exhaust port 10f shown in FIG. Then, argon gas is continuously introduced into the electron gun chamber 10a.
  • the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere in the second introduction step S16 (covering step S17).
  • the covering method at this time for example, the method described with reference to FIG. 2 is suitable.
  • a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S18).
  • an appropriate atmosphere is maintained by continuously performing the second introduction step S16, but in addition, a covering step S17 for supplementing consumed lithium is appropriately performed, Continuous electron emission in a more preferable state is possible.
  • FIG. 5 is a flowchart showing a second method of the electron generation method according to the present embodiment.
  • argon gas is introduced into the housing 10 (first introduction step S21).
  • first introduction step S21 the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do. Thereby, the inside of the housing
  • the valves 28 and 29 are closed, and the casing 10 is evacuated (evacuation step S22).
  • this exhaust step S22 the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h.
  • the argon gas is continuously introduced into the housing 10 so that the inside of the housing 10 approaches a predetermined pressure (second introduction step S23).
  • second introduction step S23 the valve 28 is opened while evacuating from the exhaust pipe 23 through the exhaust port 10f shown in FIG. 1, and the electron gun chamber is opened from the argon gas supply source 27 through the argon introduction port 10g. Continue to introduce argon gas into 10a.
  • the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere in the second introduction step S23 (covering step S24).
  • the covering method at this time for example, the method described with reference to FIG. 2 is suitable.
  • a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S25).
  • an appropriate atmosphere is maintained by continuously performing the second introduction step S23, but in addition to that, by appropriately performing the covering step S24 for supplementing the consumed lithium, Continuous electron emission in a more preferable state is possible.
  • FIG. 6 is a flowchart showing a third method of the electron generation method according to the present embodiment.
  • argon gas is introduced into the housing 10 (first introduction step S31).
  • the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do.
  • casing 10 is purged with argon gas.
  • step S32 the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h.
  • the valve 28 is opened, and argon gas is again introduced into the housing 10 from the argon inlet 10g (first introduction step S33).
  • first introduction step S33 it is preferable to introduce argon gas so that the pressure value inside the housing 10 approaches 0.09 MPa near atmospheric pressure.
  • the exhaust step S32 and the first introduction step S33 are performed until the partial pressure of water and nitrogen inside the housing 10 does not decrease, that is, as much as possible, to reduce the partial pressure of water and nitrogen inside the housing 10 as much as possible. Repeat a plurality of times (step S34).
  • the housing 10 is evacuated (evacuation step S35). Then, the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere after being evacuated in the evacuation step S35 (covering step S36).
  • the covering method at this time for example, the method described with reference to FIG. 2 is suitable. Thereafter, a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S37).
  • FIG. 7 is a flowchart showing a fourth method of the electron generation method according to the present embodiment.
  • argon gas is introduced into the housing 10 (first introduction step S41).
  • the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do.
  • casing 10 is purged with argon gas.
  • the valves 28 and 29 are closed and the housing 10 is evacuated (evacuation step S42).
  • this exhaust step S42 the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h.
  • the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere after being evacuated in the evacuation step S42 (covering step S43).
  • the covering method at this time for example, the method described with reference to FIG. 2 is suitable.
  • a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S44).
  • FIG. 8A shows a case where argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 ⁇ 5 Pa after the inside of the housing 10 is evacuated to an ultra-high vacuum (10 ⁇ 8 Pa).
  • Graph G11 shows time of the amount of current released from the liquid metal cathode 11 in each case where nitrogen gas is continuously introduced so that the pressure in the housing 10 becomes 10 ⁇ 5 Pa
  • graph G12 It is a graph which shows the result of having measured change.
  • FIG. 8B shows that after the inside of the housing 10 is evacuated to an ultra-high vacuum (10 ⁇ 8 Pa), the argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 ⁇ 4 Pa.
  • 6 is a graph showing a temporal change in the amount of current emitted from the liquid metal cathode 11 in the case of
  • the vertical axis indicates the amount of emission current ( ⁇ A)
  • the horizontal axis indicates time (seconds).
  • the amount of emission current is maintained at a constant value over a longer period of time than when the nitrogen gas is introduced (graph G12). It can be seen that it is stable. Further, even though the liquid metal cathode 11 is a field emission cathode, the liquid metal cathode 11 operates properly even under a relatively high pressure such as 10 ⁇ 5 Pa. Further, in the case of a conventional field emission cathode, the operation becomes unstable under a high pressure of 10 ⁇ 4 Pa, and the possibility of causing discharge by gas adsorption or sputtering is very high.
  • FIG. 9 is obtained by adding graphs G32 and G33 to the graphs G11 and G12 shown in FIG.
  • Graphs G32 and G33 show the results of measuring the time variation of the emission current amount when electrons are emitted from the liquid metal cathode 11 while the inside of the housing 10 is exhausted to an ultrahigh vacuum (10 ⁇ 8 Pa). It is a graph.
  • graph G11 when argon gas is introduced (graph G11), even when the inside of the housing 10 is at a relatively high pressure such as 10 ⁇ 5 Pa, the emission current amount is equivalent to that under an ultra-high vacuum. It can be seen that it can be stabilized.
  • FIG. 10 shows a case where vacuum evacuation is performed without purging with argon (graph G21, solid line), and a case where vacuum evacuation is performed after the inside of the casing 10 is purged with argon (graph G22, broken line). It is a figure which shows the analysis result of the residual gas component in the housing
  • the vertical axis represents ion current (nA), and the horizontal axis represents mass number (amu: atomic mass unit).
  • the amount of emission current was significantly stabilized.
  • argon is introduced into the housing 10 and then the interior of the housing 10 is exhausted. Thereby, it is possible to suitably realize an atmosphere containing argon in a substantially vacuum state or a state close thereto. Then, by emitting the electron beam E from the liquid lithium 11b covering the solid electrode 11a in such an atmosphere, the amount of emission current can be remarkably stabilized.
  • the solid electrode 11a is coated with lithium immediately before electron emission, and is most preferable. However, it is performed at another stage as long as it is evacuated or replaced with argon. May be.
  • the electron generation method is a second method in which argon is introduced so that the inside of the housing 10 approaches a predetermined pressure after the inside of the housing 10 is evacuated. It is preferable to provide an introduction step.
  • FIG. 11 after evacuating the inside of the housing 10 to the super-high vacuum (10 -8 Pa), the internal pressure of the housing 10 in the second introduction step is 1 ⁇ 10 -5 Pa, 1 ⁇ 10 - It is a graph which shows the result of having measured the time change of the amount of electric current discharge
  • the argon partial pressure inside the housing 10 can be maintained. Therefore, as shown in FIG. 11 and FIGS. 8 (a) and 8 (b), from the lithium 11b. The amount of current discharged can be further stabilized. In FIG. 11, the graphs change vertically with a certain period because the consumed lithium 11 b is periodically supplemented.
  • a graph G41 shown in FIG. 12 shows a current discharged from the liquid metal cathode 11 when the X-ray generator 1A is operated after the inside of the housing 10 is evacuated to an ultrahigh vacuum (10 ⁇ 8 Pa). It is a graph which shows the result of having measured the time change of quantity.
  • the vertical axis indicates the amount of emission current ( ⁇ A)
  • the horizontal axis indicates time (seconds).
  • the electron generation method of the present embodiment can further stabilize the amount of current released from the lithium 11b by including the second introduction step.
  • a preferable range of the argon partial pressure inside the housing 10 is 1 ⁇ 10 ⁇ 7 Pa or more and 1 ⁇ 10 ⁇ 4 Pa or less.
  • the partial pressure of water and nitrogen gas contained in the introduced argon gas is 1 ⁇ 10 ⁇ 8 Pa or less, the argon partial pressure may be 1 ⁇ 10 ⁇ 3 Pa or less.
  • FIG. 13 shows that after the inside of the housing 10 is evacuated to ultra-high vacuum (10 ⁇ 8 Pa), argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 ⁇ 4 Pa in the second introduction step.
  • Current (graph G51) and the amount of current released from the liquid metal cathode 11 in each case of continuing to introduce argon gas so that the pressure in the housing 10 becomes 10 ⁇ 3 Pa (graph G52) It is a graph which shows the result of having measured the time change of.
  • the vertical axis represents the amount of emission current ( ⁇ A)
  • the horizontal axis represents time (seconds).
  • the inventor continued to introduce argon gas so that the inside of the casing 10 has a predetermined total pressure in order to investigate the influence of water and nitrogen gas contained in the casing 10.
  • the total pressure in the case 10 is 1 ⁇ 10 ⁇ 7 Pa, 1 ⁇ 10 ⁇ 6 Pa, 1 ⁇ 10 ⁇ 5 Pa, 1 ⁇ 10 ⁇ 4 Pa, and 1 ⁇ 10 ⁇ 3 Pa, respectively. Nitrogen partial pressure and water pressure were measured.
  • FIG. 14 is a chart showing the results.
  • each partial pressure of water and nitrogen gas is less than that in the case of 10 ⁇ 6 Pa or less. It can be seen that it has increased. This is because when argon gas is introduced into the housing 10, nitrogen gas and moisture that are active against liquid lithium are also introduced at the same time. As shown in FIG. 14, when argon gas is introduced so that the pressure in the housing 10 becomes 10 ⁇ 5 Pa, each partial pressure of water and nitrogen gas is less than that in the case of 10 ⁇ 6 Pa or less. It can be seen that it has increased. This is because when argon gas is introduced into the housing 10, nitrogen gas and moisture that are active against liquid lithium are also introduced at the same time. As shown in FIG.
  • the electron generation method includes a first introduction step for introducing argon into the housing 10 and an exhaust step for exhausting the inside of the housing 10 a plurality of times. It is preferable to repeat. As a result, by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining inside the housing 10, the argon partial pressure can be increased, and the solidification of the lithium 11b can be effectively suppressed. it can.
  • the housing 10 includes an electron gun chamber 10a that houses the liquid metal cathode 11, and an electron optical system chamber 10c that is partitioned so that electrons pass between the electron gun chamber 10a.
  • the second introduction step of the first and second methods it is preferable to introduce argon into the housing 10 from the argon introduction port 10g provided in the electron gun chamber 10a.
  • the center line of the argon inlet 10g is also the center line of the inlet tube 24, so that the argon gas flow to the argon inlet 10g is not disturbed, and the argon gas can be liquefied more smoothly. It can be led around the metal cathode 11.
  • the same effect as described above can be obtained by introducing argon into the housing 10 from the argon introduction port 10g.
  • lithium 11b is used for the liquid metal cathode 11, but lithium is extremely useful as an electron emission source as compared with other metals such as gallium.
  • the reason is as follows. Lithium has better wettability with tungsten constituting the base (solid electrode) and lower surface tension than gallium or the like, and thus can be formed into a thinner film. Accordingly, the amount of liquid lithium required to form the tailor cone 11c shown in FIG. 3B can be reduced, and the geometric dimension of the tailor cone 11c can be reduced, so that DC operation is possible. . In contrast, gallium has poor wettability with tungsten and has a high surface tension. Therefore, the size of the tailor cone 11c becomes large, causing electric discharge to become inoperable, or even if it operates, it can operate only in a large current pulse mode.
  • the work function of the electron emission cathode is preferably low.
  • the work function of gallium is 4.1 eV, whereas the work function of lithium is as low as 2.4 eV. Therefore, by using lithium 11b for the liquid metal cathode 11, a large emission current (for example, a large current in DC operation) can be realized.
  • argon gas is used as the gas introduced into the housing 10.
  • argon has a larger atomic radius and mass than, for example, helium and neon, the collision cross section and momentum are large. The ability to exhaust nitrogen is excellent.
  • the dielectric strength of argon is higher than other rare gases. Therefore, in an electron source using lithium, in which it is important to lower the partial pressure of nitrogen, argon gas is suitable for obtaining a high output more stably.
  • FIG. 15 is a diagram showing a configuration of the electron microscope 2 that is preferably used in the electron generation method described above.
  • the electron gun chamber 40a accommodates the liquid metal cathode 11, the extraction electrode 12, and the condenser lens 13 of the electron gun.
  • the intermediate chamber 40b is disposed between the electron gun chamber 40a and the sample chamber 40c.
  • An opening is formed in the boundary wall between the electron gun chamber 40a and the intermediate chamber 40b, and the capacitor diaphragm 14 is disposed in the opening.
  • An opening is formed in the boundary wall between the intermediate chamber 40b and the sample chamber 40c, and a gate valve 15 is disposed in the opening. That is, the sample chamber 40c is partitioned from the electron gun chamber 40a by the boundary wall so that the electron beam E passes through the condenser aperture 14, the intermediate chamber 40b, and the gate valve 15. Similar to the electron optical system chamber 10c shown in FIG. 1, the sample chamber 40c accommodates the beam alignment coil 16, the objective diaphragm 17, and the objective lens 18.
  • a sample stage 41, a secondary electron detector 42, and an X-ray detector 43 are installed in the sample chamber 40c.
  • the sample table 41 is installed on the central axis of the electron beam E, and the secondary electron detector 42 and the X-ray detector 43 are installed toward the sample table 41.
  • the objective lens 18 focuses the electron beam E toward the sample stage 41.
  • the electron gun chamber 40a, the intermediate chamber 40b, and the sample chamber 40c constitute a vacuum container 40d with improved airtightness.
  • the side wall of the electron gun chamber 40a is provided with an exhaust port 40f for evacuating and an argon inlet (first argon inlet) 40g for supplying argon gas to the electron gun chamber 40a.
  • An exhaust pipe 23 is attached to the exhaust port 40f, and an introduction pipe 24 is attached to the argon inlet 40g.
  • the position of the argon inlet 40g in the electron emission direction in the electron gun chamber 40a is preferably substantially coincident with the position of the liquid metal cathode 11 in the electron emission direction. That is, it is preferable that the introduction tube 24 and the liquid metal cathode 11 are arranged so that the liquid metal cathode 11 is positioned on an extension of the central axis of the argon introduction port 40g (introduction tube 24).
  • an exhaust port 40h for vacuum exhaust and an argon inlet (second argon inlet) 40i for supplying argon gas to the sample chamber 40c are provided on the side wall of the sample chamber 40c.
  • the sample chamber 40c has an argon inlet 40i provided at a position different from the argon inlet 40g.
  • An exhaust pipe 25 is attached to the exhaust port 40h, and an introduction pipe 26 is attached to the argon introduction port 40i.
  • An exhaust pump is connected to the ends of the exhaust pipes 23 and 25.
  • the introduction pipe 24 is connected to an argon gas supply source 27 via a valve 28, and the introduction pipe 26 is connected to the argon gas supply source 27 via a valve 29.
  • the electron generation method described above can be suitably used in the electron microscope 2 having such a configuration. That is, an argon-containing atmosphere can be suitably realized by introducing argon into the housing 40 (vacuum container 40d) and then exhausting the interior of the vacuum container 40d. Then, by emitting the electron beam E from the lithium of the liquid metal cathode 11 in such an atmosphere, the amount of emission current can be remarkably stabilized.
  • the electron generation method of the present invention can be used for non-destructive inspection by X-rays, for example.
  • circuit patterns having a line width of several tens of nanometers are mass-produced.
  • the resolution of the test reaches several nanometers to several tens of nanometers, the characteristic structures and chemical bonding states of various advanced materials used in nanotechnology, or protein distribution inside biological cells can be directly observed. it can.
  • An X-ray source with nano-order resolution requires an electron source capable of realizing a high radiation angle current density and a minute source size.
  • an electron source using a tailor cone made of liquid lithium it is possible to realize a radiation angle current density two orders of magnitude higher than that of a ZrO / W cathode known as a high-brightness cathode.
  • a current value of several hundred microamperes necessary for taking a bright X-ray image with a nano-order electron source size is useful for improving the resolution of the X-ray source to the nanometer size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The disclosed electron generation method is provided with: a first introduction step for introducing argon to the inside of a housing (10); an evacuation step for evacuating the inside of the housing (10); and an electron discharge step for causing the discharge of an electron beam (E) from liquid lithium (liquid metal cathode (11)) covering the surface of a solid electrode disposed within the housing (10). As a result, the electron generation method that uses liquid lithium as an electron discharge source can stabilize discharge amperage.

Description

電子発生方法Electron generation method
 本発明は、電子発生方法に関するものである。 The present invention relates to an electron generation method.
 特許文献1には、荷電粒子ビーム発生装置が記載されている。この荷電粒子ビーム発生装置は、分割された引出電極と、この引出電極の中央部の空隙に対向する電極チップとを備える。引出電極の各々とチップとの間には高電圧が印加され、これにより荷電粒子ビームの射出方向が制御される。電極チップの表面には液体金属(リチウム)が配置されている。 Patent Document 1 describes a charged particle beam generator. The charged particle beam generator includes a divided extraction electrode and an electrode tip that faces the gap in the center of the extraction electrode. A high voltage is applied between each of the extraction electrodes and the tip, thereby controlling the emission direction of the charged particle beam. Liquid metal (lithium) is disposed on the surface of the electrode tip.
特開平1-289057号公報Japanese Patent Laid-Open No. 1-289057
 一般的に、電子ビームを発生させる際には、電子放出電極の周囲を排気して真空状態とする。しかし、完全な真空状態にすることは困難であり、通常は、窒素、水、二酸化炭素、及び酸素といった大気中の成分が電子放出電極の周囲に残留する。 Generally, when generating an electron beam, the periphery of the electron emission electrode is evacuated to a vacuum state. However, it is difficult to achieve a complete vacuum, and normally atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remain around the electron emission electrode.
 一方、上述した特許文献1に記載された装置のように、電子放出源として液体金属電子源、例えば液体リチウムを用いる場合がある。しかし、液体リチウムはほぼ真空の状態にあっても残留窒素と反応し易い。液体リチウムが窒素と反応すると、リチウムが液相から固相に変化する。リチウムの固相化が進むと、残留気体の分子によるスパッタリングの影響を受けるようになり、放出される電流量が安定しないという問題が生じる。 On the other hand, as in the apparatus described in Patent Document 1 described above, a liquid metal electron source, for example, liquid lithium may be used as the electron emission source. However, liquid lithium easily reacts with residual nitrogen even in a vacuum state. When liquid lithium reacts with nitrogen, lithium changes from a liquid phase to a solid phase. As the solidification of lithium progresses, it becomes affected by sputtering due to residual gas molecules, which causes a problem that the amount of current released is not stable.
 本発明は、このような問題点に鑑みてなされたものであり、電子放出源として液体リチウムを用いる電子発生方法において、放出電流量を安定させることを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to stabilize the amount of emission current in an electron generation method using liquid lithium as an electron emission source.
 本発明の一実施形態に係る電子発生方法は、筐体の内部にアルゴンを導入する第1導入ステップと、筐体の内部を排気する排気ステップと、排気ステップにより排気された後のアルゴン含有雰囲気下で、筐体の内部に配置された電極の表面を覆う液状のリチウムから電子を放出させる電子放出ステップとを備えることを特徴とする。 An electron generation method according to an embodiment of the present invention includes a first introduction step for introducing argon into a housing, an exhaust step for exhausting the interior of the housing, and an argon-containing atmosphere after being exhausted by the exhaust step. And an electron emission step of emitting electrons from liquid lithium covering the surface of the electrode disposed inside the housing.
 本発明者らの研究において、アルゴン含有雰囲気下で液体リチウムから電子を放出させることにより、アルゴンを含まない雰囲気下で電子を放出させる場合と比較して、放出電流量が格段に安定することが判明した。上記電子発生方法では、筐体の内部にアルゴンを導入し(第1導入ステップ)、その後、筐体内部を排気している(排気ステップ)。これにより、ほぼ真空状態か又はそれに近い状態で、且つアルゴンを含有する雰囲気を好適に実現できる。そして、このような雰囲気下で、電極の表面を覆う液体リチウムから電子を放出させることにより、放出電流量を格段に安定させることができる。 In the present inventors' research, by emitting electrons from liquid lithium in an argon-containing atmosphere, the amount of emission current can be remarkably stabilized as compared with the case of emitting electrons in an argon-free atmosphere. found. In the electron generation method, argon is introduced into the housing (first introduction step), and then the interior of the housing is exhausted (exhaust step). Thereby, it is possible to suitably realize an atmosphere containing argon in a substantially vacuum state or a state close thereto. In such an atmosphere, the amount of emission current can be remarkably stabilized by emitting electrons from the liquid lithium covering the surface of the electrode.
 また、電子発生方法は、筐体の内部が所定の圧力に近づくように筐体の内部にアルゴンを導入する第2導入ステップを、排気ステップと電子放出ステップとの間に更に備えることを特徴としてもよい。これにより、筐体内部のアルゴン分圧を保持し、液体リチウムから放出される電流量を更に安定させることができる。この場合、所定の圧力は1×10-4Pa以下であることが好ましい。 The electron generation method further includes a second introduction step for introducing argon into the housing so that the inside of the housing approaches a predetermined pressure, between the exhaust step and the electron emission step. Also good. Thereby, the argon partial pressure inside a housing | casing can be hold | maintained and the amount of electric current discharge | released from liquid lithium can be stabilized further. In this case, the predetermined pressure is preferably 1 × 10 −4 Pa or less.
 また、電子発生方法は、第1導入ステップと排気ステップとを複数回繰り返し行うことを特徴としてもよい。これにより、筐体内部に残留する窒素、水、二酸化炭素、及び酸素といった大気中の成分をより少なくすることでアルゴン分圧を高め、液体リチウムから放出される電流量を更に安定させることができる。 Further, the electron generation method may be characterized in that the first introduction step and the exhaust step are repeated a plurality of times. Thereby, by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining in the housing, the argon partial pressure can be increased, and the amount of current released from the liquid lithium can be further stabilized. .
 また、電子発生方法は、筐体が、電極を収容している電子銃室と、該電子銃室との間を電子が通過するように仕切られた第二室とを有しており、第1導入ステップ及び第2導入ステップのうち少なくとも一方において、電子銃室に設けられた第1のアルゴン導入口から筐体の内部にアルゴンを導入することを特徴としてもよい。これにより、電子放出電極の周囲のアルゴン分圧を高くすることができる。 In the electron generation method, the housing includes an electron gun chamber that accommodates an electrode, and a second chamber that is partitioned so that electrons pass between the electron gun chamber and the electron gun chamber. In at least one of the first introduction step and the second introduction step, argon may be introduced into the housing from a first argon introduction port provided in the electron gun chamber. Thereby, the argon partial pressure around the electron emission electrode can be increased.
 また、電子発生方法は、第1のアルゴン導入口の中心軸線の延長上にリチウムを配置することを特徴としてもよい。これにより、さらに電子放出電極(特にリチウム)の周囲のアルゴン分圧を高くすることができる。 Further, the electron generation method may be characterized in that lithium is disposed on an extension of the central axis of the first argon inlet. Thereby, the argon partial pressure around the electron emission electrode (especially lithium) can be further increased.
 また、電子発生方法は、第1導入ステップにおいて、第1のアルゴン導入口、及び該第1のアルゴン導入口とは別の位置に設けられた第2のアルゴン導入口から筐体の内部にアルゴンを導入することを特徴としてもよい。この場合、電子発生方法は、第2のアルゴン導入口を第二室に設けることが好ましい。これにより、筐体内部全体に残留する窒素、水、二酸化炭素、及び酸素といった大気中の成分をより少なくすることでアルゴン分圧を高めることができる。 Further, in the first introduction step, the electron generation method is configured such that the first argon introduction port and the second argon introduction port provided at a position different from the first argon introduction port are filled with argon inside the casing. It is good also as introduce | transducing. In this case, in the electron generation method, it is preferable to provide the second argon inlet in the second chamber. Thereby, the argon partial pressure can be increased by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining in the entire interior of the housing.
 また、電子発生方法では、電子放出ステップのアルゴン含有雰囲気における窒素分圧及び水分圧それぞれが1×10-7Pa以下、より好ましくは5×10-8Pa以下であるとよい。これにより、液体リチウムから放出される電流量を更に安定させることができる。 In the electron generation method, the nitrogen partial pressure and the water pressure in the argon-containing atmosphere in the electron emission step are each 1 × 10 −7 Pa or less, more preferably 5 × 10 −8 Pa or less. Thereby, the amount of current released from the liquid lithium can be further stabilized.
 本発明によれば、電子放出源として液体リチウムを用いる電子発生方法において、放出電流量を安定させることができる。 According to the present invention, the amount of emission current can be stabilized in an electron generation method using liquid lithium as an electron emission source.
図1は、本発明の一実施形態に係る電子発生方法に使用されるX線検査装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an X-ray inspection apparatus used in an electron generation method according to an embodiment of the present invention. 図2は、液体金属陰極のリチウム被覆方法の一例を示す図である。FIG. 2 is a diagram showing an example of a lithium coating method for a liquid metal cathode. 図3(a)は、液体金属陰極の縦断面図である。図3(b)は、液状のリチウムに電界が印加された状態を示している。FIG. 3A is a longitudinal sectional view of a liquid metal cathode. FIG. 3B shows a state in which an electric field is applied to liquid lithium. 図4は、電子発生方法のうち第1の方法を示すフローチャートである。FIG. 4 is a flowchart showing a first method among the electron generation methods. 図5は、電子発生方法のうち第2の方法を示すフローチャートである。FIG. 5 is a flowchart showing a second method among the electron generation methods. 図6は、電子発生方法のうち第3の方法を示すフローチャートである。FIG. 6 is a flowchart showing a third method among the electron generation methods. 図7は、電子発生方法のうち第4の方法を示すフローチャートである。FIG. 7 is a flowchart showing a fourth method among the electron generation methods. 図8(a)は、筐体内を10-8Paの超高真空まで排気した後、窒素ガス及びアルゴンガスを、それぞれ筐体内の圧力が10-5Paになるように導入し続けたときの、液体金属陰極の放出電流変化を示すグラフである。図8(b)は、筐体内を10-8Paの超高真空まで排気した後、アルゴンガスを、筐体内の圧力が10-4Paになるように導入し続けたときの液体金属陰極の放出電流変化を示すグラフである。FIG. 8A shows the case where the inside of the housing is exhausted to an ultra high vacuum of 10 −8 Pa and then nitrogen gas and argon gas are continuously introduced so that the pressure in the housing becomes 10 −5 Pa. It is a graph which shows the emitted current change of a liquid metal cathode. FIG. 8B shows the liquid metal cathode when the inside of the housing is evacuated to an ultra high vacuum of 10 −8 Pa and then argon gas is continuously introduced so that the pressure in the housing becomes 10 −4 Pa. It is a graph which shows emission current change. 図9は、図8(a)に、グラフG32及びG33を追加したものである。グラフG32及びG33は、筐体の内部を超高真空(10-8Pa)まで排気した状態で液体金属陰極から電子を放出した場合における、放出電流量の時間変化を測定した結果を示すグラフである。FIG. 9 is obtained by adding graphs G32 and G33 to FIG. Graphs G32 and G33 are graphs showing the results of measuring the time variation of the emission current when electrons are emitted from the liquid metal cathode while the inside of the housing is evacuated to an ultrahigh vacuum (10 −8 Pa). is there. 図10は、アルゴンによって筐体内をパージした後に真空排気を行った場合と、アルゴンによるパージをしないで真空排気を行った場合とにおける、その後の筐体内の残留ガス成分の分析結果を示す図である。FIG. 10 is a diagram showing the analysis results of the residual gas components in the case after the case where the evacuation is performed after purging the inside of the case with argon and the case where the evacuation is performed without purging with the argon. is there. 図11は、筐体の内部を超高真空(10-8Pa)まで排気した後、第2導入ステップにおいて筐体の内部圧力が1×10-5Pa、1×10-6Pa、及び1×10-7Paのそれぞれに近づくようにアルゴンを導入し続けた場合における、液体金属陰極から放出される電流量の時間変化を測定した結果を示すグラフである。FIG. 11 shows that after the inside of the housing is evacuated to an ultra-high vacuum (10 −8 Pa), the internal pressure of the housing is 1 × 10 −5 Pa, 1 × 10 −6 Pa, and 1 in the second introduction step. 7 is a graph showing the results of measuring the time change of the amount of current emitted from a liquid metal cathode when argon is continuously introduced so as to approach each of × 10 −7 Pa. 図12は、筐体の内部を超高真空(10-8Pa)まで排気した場合と、その後に筐体内部の圧力が10-4Paとなるようにアルゴンガスを導入した場合とにおける、放出電流量の時間変化を測定した結果を示すグラフである。FIG. 12 shows the release in the case where the inside of the housing is evacuated to an ultra-high vacuum (10 −8 Pa) and the case where argon gas is introduced so that the pressure inside the housing becomes 10 −4 Pa. It is a graph which shows the result of having measured the time change of the amount of electric current. 図13は、筐体の内部を超高真空(10-8Pa)まで排気した後、第2導入ステップにおいて筐体内の圧力が10-4Pa又は10-3Paになるようにアルゴンガスを導入し続けた場合における、放出電流量の時間変化を測定した結果を示すグラフである。FIG. 13 shows that after evacuating the inside of the housing to ultra-high vacuum (10 −8 Pa), argon gas is introduced so that the pressure in the housing becomes 10 −4 Pa or 10 −3 Pa in the second introduction step. It is a graph which shows the result of having measured the time change of the amount of emitted current when continuing. 図14は、第2導入ステップにおける筐体内の全圧力を変化させた場合における、窒素分圧及び水分圧の計測結果を示す図表である。FIG. 14 is a chart showing the measurement results of nitrogen partial pressure and moisture pressure when the total pressure in the housing is changed in the second introduction step. 図15は、電子発生方法に好適に使用される電子顕微鏡の構成を示す図である。FIG. 15 is a diagram showing a configuration of an electron microscope that is preferably used in the electron generation method.
 以下、添付図面を参照しながら本発明による電子発生方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of an electron generation method according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、一実施形態に係る電子発生方法に好適に使用されるX線発生装置1Aを備えたX線検査装置1の構成を示す図である。図1に示されるX線検査装置1は、筐体10、液体金属陰極11、引出電極12、コンデンサレンズ13、コンデンサ絞り14、仕切り弁15、ビームアライメントコイル16、対物絞り17、対物レンズ18、ターゲット19、及び窓材20を備えるX線発生装置1Aと、被検査試料21のX線像を検出するX線カメラ22とによって構成されている。 FIG. 1 is a diagram illustrating a configuration of an X-ray inspection apparatus 1 including an X-ray generation apparatus 1A that is preferably used in an electron generation method according to an embodiment. An X-ray inspection apparatus 1 shown in FIG. 1 includes a housing 10, a liquid metal cathode 11, an extraction electrode 12, a condenser lens 13, a condenser diaphragm 14, a gate valve 15, a beam alignment coil 16, an objective diaphragm 17, an objective lens 18, The X-ray generator 1A including the target 19 and the window material 20 and the X-ray camera 22 that detects the X-ray image of the sample 21 to be inspected are configured.
 筐体10は、上述したX線発生装置1Aの各部品を収容している。筐体10は、電子銃室(第一室)10a、中間室10b、及び電子光学系室(第二室)10cを有する。電子銃室10a、中間室10b、及び電子光学系室10cは、それぞれ電子ビームEの通過経路となる開口を除いて境界壁で仕切られている。電子銃室10aは、電子銃の液体金属陰極11、引出電極12、及びコンデンサレンズ13を収容している。中間室10bは、電子銃室10aと電子光学系室10cとの間に配置されている。電子銃室10aと中間室10bとの間の境界壁には開口が形成されており、該開口にはコンデンサ絞り14が配置されている。中間室10bと電子光学系室10cとの間の境界壁には開口が形成されており、該開口には仕切り弁15が配置されている。すなわち、電子光学系室10cは、コンデンサ絞り14、中間室10b及び仕切り弁15を介して電子ビームEが通過するように、境界壁によって電子銃室10aと仕切られている。この仕切り弁15を、電子発生時には開放し、部材交換等のメンテナンス等の際には閉鎖することで、メンテナンス等を行わない方の室の雰囲気を保持することができる。電子光学系室10cは、ビームアライメントコイル16、対物絞り17、及び対物レンズ18を収容している。そして、検査室10dとの間の境界壁(筐体10における検査室10dとの対向面)には開口が形成されており、該開口を塞ぐように、ターゲット19を保持する窓材20が配置されている。ターゲット19はタングステンからなり、窓材20はベリリウムからなる。 The housing 10 accommodates each component of the X-ray generator 1A described above. The housing 10 includes an electron gun chamber (first chamber) 10a, an intermediate chamber 10b, and an electron optical system chamber (second chamber) 10c. The electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c are partitioned by boundary walls except for an opening serving as a passage path for the electron beam E. The electron gun chamber 10a accommodates a liquid metal cathode 11, an extraction electrode 12, and a condenser lens 13 of the electron gun. The intermediate chamber 10b is disposed between the electron gun chamber 10a and the electron optical system chamber 10c. An opening is formed in the boundary wall between the electron gun chamber 10a and the intermediate chamber 10b, and a capacitor diaphragm 14 is disposed in the opening. An opening is formed in the boundary wall between the intermediate chamber 10b and the electron optical system chamber 10c, and a gate valve 15 is disposed in the opening. That is, the electron optical system chamber 10c is partitioned from the electron gun chamber 10a by the boundary wall so that the electron beam E passes through the condenser aperture 14, the intermediate chamber 10b, and the gate valve 15. This gate valve 15 is opened when electrons are generated, and is closed during maintenance such as member replacement, so that the atmosphere of the room where maintenance or the like is not performed can be maintained. The electron optical system chamber 10c accommodates a beam alignment coil 16, an objective diaphragm 17, and an objective lens 18. An opening is formed in a boundary wall between the inspection chamber 10d (a surface facing the inspection chamber 10d in the housing 10), and a window member 20 that holds the target 19 is disposed so as to close the opening. Has been. The target 19 is made of tungsten, and the window member 20 is made of beryllium.
 X線カメラ22は、X線発生装置1AのX線出射部(窓材20)と対向するように配置されている。被検査試料21は、窓材20とX線カメラ22との間に配置される。 The X-ray camera 22 is disposed so as to face the X-ray emission part (window member 20) of the X-ray generator 1A. The sample 21 to be inspected is disposed between the window member 20 and the X-ray camera 22.
 電子銃室10a、中間室10b、及び電子光学系室10cを備えた筐体10は、気密性が高められた真空容器を構成する。電子銃室10aの側壁には、真空排気のための排気口10fと、アルゴンガスを電子銃室10aに供給するためのアルゴン導入口(第1のアルゴン導入口)10gとが設けられている。排気口10fには排気管23が取り付けられており、アルゴン導入口10gには導入管24が取り付けられている。ここで、電子銃室10a内における電子放出方向(すなわち、電子ビームEの中心軸方向)におけるアルゴン導入口10gの位置は、該電子放出方向における液体金属陰極11(特に、後述するリチウム)の位置と略一致していることが好ましい。つまり、アルゴン導入口10gの中心線の延長線上に液体金属陰極11が位置するように、導入管24及び液体金属陰極11が配置されることが好ましい。 The housing 10 including the electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c constitutes a vacuum container with improved airtightness. The side wall of the electron gun chamber 10a is provided with an exhaust port 10f for evacuation and an argon inlet (first argon inlet) 10g for supplying argon gas to the electron gun chamber 10a. An exhaust pipe 23 is attached to the exhaust port 10f, and an introduction pipe 24 is attached to the argon inlet 10g. Here, the position of the argon inlet 10g in the electron emission direction (that is, the central axis direction of the electron beam E) in the electron gun chamber 10a is the position of the liquid metal cathode 11 (especially lithium described later) in the electron emission direction. It is preferable that they substantially coincide with each other. That is, it is preferable that the introduction tube 24 and the liquid metal cathode 11 are arranged so that the liquid metal cathode 11 is positioned on an extension of the center line of the argon inlet 10g.
 また、電子光学系室10cの側壁には、真空排気のための排気口10hと、アルゴンガスを電子光学系室10cに供給するためのアルゴン導入口(第2のアルゴン導入口)10iとが設けられている。このように、本実施形態の電子光学系室10cは、アルゴン導入口10gとは別の位置に設けられたアルゴン導入口10iを有する。排気口10hには排気管25が取り付けられており、アルゴン導入口10iには導入管26が取り付けられている。排気管23,25の先には排気ポンプが接続されている。導入管24はバルブ28を介してアルゴンガス供給源27に接続されており、導入管26はバルブ29を介してアルゴンガス供給源27に接続されている。 The side wall of the electron optical system chamber 10c is provided with an exhaust port 10h for vacuum exhaust and an argon inlet (second argon inlet) 10i for supplying argon gas to the electron optical system chamber 10c. It has been. Thus, the electron optical system chamber 10c of this embodiment has the argon inlet 10i provided in a position different from the argon inlet 10g. An exhaust pipe 25 is attached to the exhaust port 10h, and an introduction pipe 26 is attached to the argon inlet 10i. An exhaust pump is connected to the ends of the exhaust pipes 23 and 25. The introduction pipe 24 is connected to an argon gas supply source 27 via a valve 28, and the introduction pipe 26 is connected to the argon gas supply source 27 via a valve 29.
 液体金属陰極11は、固体電極(タングステンからなる針状部材)の先端部分の表面に、リチウムが蒸着されて成る。固体電極には、筐体10の外部から高電圧が印加される。また、リチウムは、電子発生時には固体電極への通電過熱によって液状に融解される。液体金属陰極11は、液状のリチウムから所定の方向に電子ビームEを放出する。この所定の方向は、電子銃室10a、中間室10b、電子光学系室10c、及び検査室10dの並び方向と一致している。 The liquid metal cathode 11 is formed by depositing lithium on the surface of the tip of a solid electrode (a needle-like member made of tungsten). A high voltage is applied to the solid electrode from the outside of the housing 10. In addition, lithium is melted into a liquid state due to overheating of the solid electrode when electrons are generated. The liquid metal cathode 11 emits an electron beam E from liquid lithium in a predetermined direction. This predetermined direction coincides with the arrangement direction of the electron gun chamber 10a, the intermediate chamber 10b, the electron optical system chamber 10c, and the inspection chamber 10d.
 引出電極12及びコンデンサレンズ13は、液体金属陰極11に対して電子ビームEの放出方向に並んで配置されている。引出電極12は所定の電位に設定され、この引出電極12と液体金属陰極11との間の電位差によって、液体金属陰極11から電子ビームEが引き出される。電子ビームEの拡がりはコンデンサレンズ13によって集束され、その後、電子ビームEはコンデンサ絞り14及び仕切弁15を通過する。 The extraction electrode 12 and the condenser lens 13 are arranged side by side in the emission direction of the electron beam E with respect to the liquid metal cathode 11. The extraction electrode 12 is set to a predetermined potential, and the electron beam E is extracted from the liquid metal cathode 11 by the potential difference between the extraction electrode 12 and the liquid metal cathode 11. The spread of the electron beam E is focused by the condenser lens 13, and then the electron beam E passes through the condenser aperture 14 and the gate valve 15.
 ビームアライメントコイル16、対物絞り17、及び対物レンズ18は、電子光学系室10cの内部において、電子ビームEの放出方向に沿ってこの順に並んで配置されている。ビームアライメントコイル16は、電子ビームEの軸合わせを行うための偏向コイルである。対物絞り17は、画像形成に必要のない電子ビームEを遮蔽する。対物レンズ18は、ターゲット19へ向けて電子ビームEを集束する。 The beam alignment coil 16, the objective diaphragm 17, and the objective lens 18 are arranged in this order along the emission direction of the electron beam E inside the electron optical system chamber 10c. The beam alignment coil 16 is a deflection coil for performing axial alignment of the electron beam E. The objective diaphragm 17 blocks the electron beam E that is not necessary for image formation. The objective lens 18 focuses the electron beam E toward the target 19.
 窓材20は、X線の透過率に優れた板状のベリリウムからなり、電子光学系室10cと検査室10dとの間の境界壁の開口を気密に封止する。窓材20の液体金属陰極11と対向する表面には電子をX線に変換するための、タングステンからなるターゲット19が膜状に形成されている。ターゲット19は、電子ビームEを受けてX線Xrを生成する。X線Xrは、窓材20を通して大気中に取り出され、検査室10dへ向けて放射される。 The window member 20 is made of plate-like beryllium having excellent X-ray transmittance, and hermetically seals the opening of the boundary wall between the electron optical system chamber 10c and the inspection chamber 10d. A target 19 made of tungsten for converting electrons into X-rays is formed in a film shape on the surface of the window material 20 facing the liquid metal cathode 11. The target 19 receives the electron beam E and generates an X-ray Xr. The X-ray Xr is taken out into the atmosphere through the window member 20, and is emitted toward the examination room 10d.
 検査室10dにおいて、X線カメラ22は、その撮像面が窓材20の裏面(液体金属陰極11と対向する表面とは反対側の面)と対向するように配置されている。被検査試料21は、窓材20とX線カメラ22との間に配置される。ターゲット19から出射されたX線Xrは、被検査試料21を透過してX線像となり、X線カメラ22に入射する。 In the examination room 10d, the X-ray camera 22 is arranged so that its imaging surface faces the back surface of the window material 20 (the surface opposite to the surface facing the liquid metal cathode 11). The sample 21 to be inspected is disposed between the window member 20 and the X-ray camera 22. The X-ray Xr emitted from the target 19 passes through the inspection sample 21 to become an X-ray image and enters the X-ray camera 22.
 ここで、液体金属陰極11の構成について詳細に説明する。図2は、液体金属陰極11のリチウム被覆方法(供給方法)の一例を示す図である。図2に示すように、液体金属陰極11の固体電極(タングステンからなる針状部材)11aは、屈曲された金属線の屈曲部に固定され、金属線の両端部と、絶縁部材35を介して離間した二本の電極棒30a,30bとが電気的に接続されることで、陰極アセンブリ33が形成されている。電極棒30a,30bは、直流電流源を介して高圧電源31の負電極と電気的に接続される。一方、固体電極11aの近傍には蒸着ボート32が配置される。蒸着ボート32の内部にはリチウムが配置される。蒸着ボートから気化したリチウムが、固体電極11aの表面に蒸着され、液体金属陰極11の表面がリチウムで被覆される。 Here, the configuration of the liquid metal cathode 11 will be described in detail. FIG. 2 is a diagram showing an example of a lithium coating method (supply method) for the liquid metal cathode 11. As shown in FIG. 2, a solid electrode (a needle-like member made of tungsten) 11 a of the liquid metal cathode 11 is fixed to a bent portion of a bent metal wire, and both ends of the metal wire and an insulating member 35 are interposed. The cathode assembly 33 is formed by electrically connecting the two electrode rods 30a and 30b that are separated from each other. The electrode rods 30a and 30b are electrically connected to the negative electrode of the high-voltage power supply 31 through a direct current source. On the other hand, a vapor deposition boat 32 is disposed in the vicinity of the solid electrode 11a. Lithium is disposed inside the vapor deposition boat 32. Lithium vaporized from the vapor deposition boat is deposited on the surface of the solid electrode 11a, and the surface of the liquid metal cathode 11 is covered with lithium.
 図3(a)は、液体金属陰極11の縦断面図である。図3(a)に示されるように、液体金属陰極11は、固体電極11a及びリチウム11bを有する。リチウム11bは、固体電極11aの表面に膜状に蒸着され、固体電極11aを被覆している。X線発生装置1Aを使用する際には、リチウムの融点である180.5℃以上に液体金属陰極11を通電加熱してリチウム11bを融解させる。そして、融解したリチウム11bに負電圧を印加することによって引出電極12(図1)との間に電位差が発生すると、液状のリチウム11bの形状は、次の数式(1)で表される表面張力Sと、数式(2)で表される電界応力Fとが釣り合う電圧条件(閾値電圧)の時に、テーラーコーンと呼ばれる頂角98.6°の円錐形状へと変化する。図3(b)は、表面張力S及び電界応力Fの向きと、これらによって生じるテーラーコーン11cとを示している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
FIG. 3A is a longitudinal sectional view of the liquid metal cathode 11. As shown in FIG. 3A, the liquid metal cathode 11 includes a solid electrode 11a and lithium 11b. The lithium 11b is deposited in a film shape on the surface of the solid electrode 11a and covers the solid electrode 11a. When the X-ray generator 1A is used, the liquid metal cathode 11 is heated by energization to a melting point of lithium of 180.5 ° C. or higher to melt the lithium 11b. When a potential difference is generated between the molten lithium 11b and the extraction electrode 12 (FIG. 1) by applying a negative voltage to the molten lithium 11b, the shape of the liquid lithium 11b is expressed by the following surface tension (1). When the voltage condition (threshold voltage) in which S and the electric field stress F expressed by Equation (2) are balanced, the shape changes to a conical shape called a tailor cone with an apex angle of 98.6 °. FIG. 3B shows the direction of the surface tension S and the electric field stress F, and the tailor cone 11c generated thereby.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、固体電極11aへのリチウム11bの供給方法は上述した方法に限られない。例えば、リチウム含浸材を電子銃室10aの内部に設けたり、或いはリチウム及びリチウム化合物リザーバを電子銃室10aの内部に設けるといった方法でもよい。 In addition, the supply method of the lithium 11b to the solid electrode 11a is not limited to the method described above. For example, a method in which a lithium-impregnated material is provided in the electron gun chamber 10a, or a lithium and lithium compound reservoir is provided in the electron gun chamber 10a.
 以上に説明したX線発生装置1Aを用いた電子発生方法について説明する。この電子発生方法には4つのバリエーションがあり、そのそれぞれについて順に説明する。 An electron generation method using the X-ray generator 1A described above will be described. There are four variations in this electron generation method, each of which will be described in turn.
 (第1の方法)
図4は、本実施形態に係る電子発生方法のうち第1の方法を示すフローチャートである。図4に示すように、この方法では、まず筐体10の内部にアルゴンガスを導入する(第1導入ステップS11)。本実施形態では、この第1導入ステップS11において、図1に示したバルブ28及び29を開き、アルゴンガス供給源27からアルゴン導入口10g及び10iを介して電子銃室10a及び電子光学系室10cにアルゴンガスを導入する。これにより、筐体10(電子銃室10a、中間室10b、及び電子光学系室10c)の内部をアルゴンガスによってパージする。
(First method)
FIG. 4 is a flowchart showing a first method among the electron generation methods according to the present embodiment. As shown in FIG. 4, in this method, argon gas is first introduced into the housing 10 (first introduction step S11). In the present embodiment, in the first introduction step S11, the valves 28 and 29 shown in FIG. 1 are opened, and the electron gun chamber 10a and the electron optical system chamber 10c from the argon gas supply source 27 through the argon introduction ports 10g and 10i. Argon gas is introduced into the. Thereby, the inside of the housing 10 (the electron gun chamber 10a, the intermediate chamber 10b, and the electron optical system chamber 10c) is purged with argon gas.
 続いて、バルブ28及び29を閉じて筐体10内部の真空排気を行う(排気ステップS12)。本実施形態では、この排気ステップS12において、二つの排気口10f,10hから筐体10の内部を排気する。そして、バルブ28を開き、アルゴン導入口10gから筐体10の内部にアルゴンガスを再び導入する(第1導入ステップS13)。このステップS13では、筐体10内部の圧力値が、大気圧近くの0.09MPaに近づくようにアルゴンガスを導入することが好ましい。以後、排気ステップS12及び第1導入ステップS13を、筐体10内部の水および窒素の分圧が下がらなくなるまで、つまり可能な限り筐体10内部の水および窒素の分圧を低下させるように、複数回繰り返す(ステップS14)。 Subsequently, the valves 28 and 29 are closed and the housing 10 is evacuated (evacuation step S12). In the present embodiment, in the exhaust step S12, the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h. Then, the valve 28 is opened, and argon gas is again introduced into the housing 10 from the argon inlet 10g (first introduction step S13). In this step S13, it is preferable to introduce argon gas so that the pressure value inside the housing 10 approaches 0.09 MPa near atmospheric pressure. Thereafter, the exhaust step S12 and the first introduction step S13 are performed until the partial pressure of water and nitrogen inside the housing 10 does not decrease, that is, as much as possible, to reduce the partial pressure of water and nitrogen inside the housing 10 as much as possible. Repeat a plurality of times (step S14).
 筐体10内部の水および窒素の分圧が殆ど下がらなくなったら、筐体10内部の真空排気を行う(排気ステップS15)。そして、筐体10の内部が所定の圧力に近づくように、筐体10の内部にアルゴンガスを導入し続ける(第2導入ステップS16)。その際、真空排気も同時に行うことで、より適切なアルゴン分圧を保つことができる。本実施形態では、この第2導入ステップS16において、図1に示した排気口10fを介して排気管23から真空排気を行いつつ、バルブ28を開き、アルゴンガス供給源27からアルゴン導入口10gを介して電子銃室10aにアルゴンガスを導入し続ける。 When the partial pressures of water and nitrogen inside the housing 10 are hardly lowered, the housing 10 is evacuated (evacuation step S15). Then, the argon gas is continuously introduced into the housing 10 so that the inside of the housing 10 approaches a predetermined pressure (second introduction step S16). At that time, by performing evacuation at the same time, a more appropriate argon partial pressure can be maintained. In the present embodiment, in the second introduction step S16, the valve 28 is opened while evacuating from the exhaust pipe 23 via the exhaust port 10f shown in FIG. Then, argon gas is continuously introduced into the electron gun chamber 10a.
 そして、第2導入ステップS16によるアルゴン含有雰囲気のもと、固体電極11aの表面をリチウム11bで覆う(被覆ステップS17)。このときの被覆方法としては、例えば図2を参照して説明した方法が好適である。その後、液体金属陰極11および引出電極12に所定の電圧を印加して、液状のリチウム11bから電子ビームEを放出させる(電子放出ステップS18)。なお、電子放出ステップS18の際も第2導入ステップS16を継続的に行うことで適切な雰囲気を保持しているが、それに加え、消耗したリチウムを補うための被覆ステップS17を適宜行うことで、より好ましい状態での連続した電子放出が可能となる。 Then, the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere in the second introduction step S16 (covering step S17). As the covering method at this time, for example, the method described with reference to FIG. 2 is suitable. Thereafter, a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S18). In addition, in the electron emission step S18, an appropriate atmosphere is maintained by continuously performing the second introduction step S16, but in addition, a covering step S17 for supplementing consumed lithium is appropriately performed, Continuous electron emission in a more preferable state is possible.
 (第2の方法)
図5は、本実施形態に係る電子発生方法のうち第2の方法を示すフローチャートである。図5に示すように、まず筐体10の内部にアルゴンガスを導入する(第1導入ステップS21)。この第1導入ステップS21では、図1に示したバルブ28及び29を開き、アルゴンガス供給源27からアルゴン導入口10g及び10iを介して電子銃室10a及び電子光学系室10cにアルゴンガスを導入する。これにより、筐体10の内部をアルゴンガスによってパージする。
(Second method)
FIG. 5 is a flowchart showing a second method of the electron generation method according to the present embodiment. As shown in FIG. 5, first, argon gas is introduced into the housing 10 (first introduction step S21). In this first introduction step S21, the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do. Thereby, the inside of the housing | casing 10 is purged with argon gas.
 続いて、バルブ28及び29を閉じて筐体10内部の真空排気を行う(排気ステップS22)。この排気ステップS22では、二つの排気口10f,10hから筐体10の内部を排気する。そして、筐体10の内部が所定の圧力に近づくように、筐体10の内部にアルゴンガスを導入し続ける(第2導入ステップS23)。その際、真空排気も同時に行うことで、より適切なアルゴン分圧を保つことができる。この第2導入ステップS23では、図1に示した排気口10fを介して排気管23から真空排気を行いつつ、バルブ28を開き、アルゴンガス供給源27からアルゴン導入口10gを介して電子銃室10aにアルゴンガスを導入し続ける。 Subsequently, the valves 28 and 29 are closed, and the casing 10 is evacuated (evacuation step S22). In this exhaust step S22, the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h. Then, the argon gas is continuously introduced into the housing 10 so that the inside of the housing 10 approaches a predetermined pressure (second introduction step S23). At that time, by performing evacuation at the same time, a more appropriate argon partial pressure can be maintained. In the second introduction step S23, the valve 28 is opened while evacuating from the exhaust pipe 23 through the exhaust port 10f shown in FIG. 1, and the electron gun chamber is opened from the argon gas supply source 27 through the argon introduction port 10g. Continue to introduce argon gas into 10a.
 そして、第2導入ステップS23によるアルゴン含有雰囲気のもと、固体電極11aの表面をリチウム11bで覆う(被覆ステップS24)。このときの被覆方法としては、例えば図2を参照して説明した方法が好適である。その後、液体金属陰極11および引出電極12に所定の電圧を印加して、液状のリチウム11bから電子ビームEを放出させる(電子放出ステップS25)。なお、電子放出ステップS25の際も第2導入ステップS23を継続的に行うことで適切な雰囲気を保持しているが、それに加え、消耗したリチウムを補うための被覆ステップS24を適宜行うことで、より好ましい状態での連続した電子放出が可能となる。 Then, the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere in the second introduction step S23 (covering step S24). As the covering method at this time, for example, the method described with reference to FIG. 2 is suitable. Thereafter, a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S25). In addition, in the electron emission step S25, an appropriate atmosphere is maintained by continuously performing the second introduction step S23, but in addition to that, by appropriately performing the covering step S24 for supplementing the consumed lithium, Continuous electron emission in a more preferable state is possible.
 (第3の方法)
図6は、本実施形態に係る電子発生方法のうち第3の方法を示すフローチャートである。図6に示すように、まず筐体10の内部にアルゴンガスを導入する(第1導入ステップS31)。この第1導入ステップS31では、図1に示したバルブ28及び29を開き、アルゴンガス供給源27からアルゴン導入口10g及び10iを介して電子銃室10a及び電子光学系室10cにアルゴンガスを導入する。これにより、筐体10の内部をアルゴンガスによってパージする。
(Third method)
FIG. 6 is a flowchart showing a third method of the electron generation method according to the present embodiment. As shown in FIG. 6, first, argon gas is introduced into the housing 10 (first introduction step S31). In the first introduction step S31, the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do. Thereby, the inside of the housing | casing 10 is purged with argon gas.
 続いて、バルブ28及び29を閉じて筐体10内部の真空排気を行う(排気ステップS32)。この排気ステップS32では、二つの排気口10f,10hから筐体10の内部を排気する。そして、バルブ28を開き、アルゴン導入口10gから筐体10の内部にアルゴンガスを再び導入する(第1導入ステップS33)。このステップS33では、筐体10内部の圧力値が、大気圧近くの0.09MPaに近づくようにアルゴンガスを導入することが好ましい。以後、排気ステップS32及び第1導入ステップS33を、筐体10内部の水および窒素の分圧が下がらなくなるまで、つまり可能な限り筐体10内部の水および窒素の分圧を低下させるように、複数回繰り返す(ステップS34)。 Subsequently, the valves 28 and 29 are closed and the inside of the housing 10 is evacuated (exhaust step S32). In this exhaust step S32, the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h. Then, the valve 28 is opened, and argon gas is again introduced into the housing 10 from the argon inlet 10g (first introduction step S33). In this step S33, it is preferable to introduce argon gas so that the pressure value inside the housing 10 approaches 0.09 MPa near atmospheric pressure. Thereafter, the exhaust step S32 and the first introduction step S33 are performed until the partial pressure of water and nitrogen inside the housing 10 does not decrease, that is, as much as possible, to reduce the partial pressure of water and nitrogen inside the housing 10 as much as possible. Repeat a plurality of times (step S34).
 筐体10内部の水および窒素の分圧が殆ど下がらなくなったら、筐体10内部の真空排気を行う(排気ステップS35)。そして、排気ステップS35により真空排気された後のアルゴン含有雰囲気のもと、固体電極11aの表面をリチウム11bで覆う(被覆ステップS36)。このときの被覆方法としては、例えば図2を参照して説明した方法が好適である。その後、液体金属陰極11および引出電極12に所定の電圧を印加して、液状のリチウム11bから電子ビームEを放出させる(電子放出ステップS37)。 When the partial pressures of water and nitrogen inside the housing 10 are hardly lowered, the housing 10 is evacuated (evacuation step S35). Then, the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere after being evacuated in the evacuation step S35 (covering step S36). As the covering method at this time, for example, the method described with reference to FIG. 2 is suitable. Thereafter, a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S37).
 (第4の方法)
図7は、本実施形態に係る電子発生方法のうち第4の方法を示すフローチャートである。図7に示すように、まず筐体10の内部にアルゴンガスを導入する(第1導入ステップS41)。この第1導入ステップS41では、図1に示したバルブ28及び29を開き、アルゴンガス供給源27からアルゴン導入口10g及び10iを介して電子銃室10a及び電子光学系室10cにアルゴンガスを導入する。これにより、筐体10の内部をアルゴンガスによってパージする。
(Fourth method)
FIG. 7 is a flowchart showing a fourth method of the electron generation method according to the present embodiment. As shown in FIG. 7, first, argon gas is introduced into the housing 10 (first introduction step S41). In the first introduction step S41, the valves 28 and 29 shown in FIG. 1 are opened, and argon gas is introduced from the argon gas supply source 27 into the electron gun chamber 10a and the electron optical system chamber 10c through the argon introduction ports 10g and 10i. To do. Thereby, the inside of the housing | casing 10 is purged with argon gas.
 続いて、バルブ28及び29を閉じて筐体10内部の真空排気を行う(排気ステップS42)。この排気ステップS42では、二つの排気口10f,10hから筐体10の内部を排気する。そして、排気ステップS42により真空排気された後のアルゴン含有雰囲気のもと、固体電極11aの表面をリチウム11bで覆う(被覆ステップS43)。このときの被覆方法としては、例えば図2を参照して説明した方法が好適である。その後、液体金属陰極11および引出電極12に所定の電圧を印加して、液状のリチウム11bから電子ビームEを放出させる(電子放出ステップS44)。 Subsequently, the valves 28 and 29 are closed and the housing 10 is evacuated (evacuation step S42). In this exhaust step S42, the inside of the housing 10 is exhausted from the two exhaust ports 10f and 10h. Then, the surface of the solid electrode 11a is covered with lithium 11b under the argon-containing atmosphere after being evacuated in the evacuation step S42 (covering step S43). As the covering method at this time, for example, the method described with reference to FIG. 2 is suitable. Thereafter, a predetermined voltage is applied to the liquid metal cathode 11 and the extraction electrode 12, and the electron beam E is emitted from the liquid lithium 11b (electron emission step S44).
 以上に説明した本実施形態による電子発生方法の効果について説明する。図8(a)は、筐体10の内部を超高真空(10-8Pa)まで排気した後、筐体10内の圧力が10-5Paになるようにアルゴンガスを導入し続けた場合(グラフG11)、及び、筐体10内の圧力が10-5Paになるように窒素ガスを導入し続けた場合(グラフG12)のそれぞれにおける、液体金属陰極11から放出される電流量の時間変化を測定した結果を示すグラフである。また、図8(b)は、筐体10の内部を超高真空(10-8Pa)まで排気した後、筐体10内の圧力が10-4Paになるようにアルゴンガスを導入し続けた場合における、液体金属陰極11から放出される電流量の時間変化を示すグラフである。なお、図8において、縦軸は放出電流量(μA)を示し、横軸は時間(秒)を示している。 The effects of the electron generation method according to the present embodiment described above will be described. FIG. 8A shows a case where argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −5 Pa after the inside of the housing 10 is evacuated to an ultra-high vacuum (10 −8 Pa). (Graph G11), and time of the amount of current released from the liquid metal cathode 11 in each case where nitrogen gas is continuously introduced so that the pressure in the housing 10 becomes 10 −5 Pa (graph G12) It is a graph which shows the result of having measured change. FIG. 8B shows that after the inside of the housing 10 is evacuated to an ultra-high vacuum (10 −8 Pa), the argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −4 Pa. 6 is a graph showing a temporal change in the amount of current emitted from the liquid metal cathode 11 in the case of In FIG. 8, the vertical axis indicates the amount of emission current (μA), and the horizontal axis indicates time (seconds).
 図8(a)に示されるように、アルゴンガスを導入した場合(グラフG11)には、窒素ガスを導入した場合(グラフG12)と比較して、長時間にわたって放出電流量が一定値で推移し、安定していることがわかる。また、液体金属陰極11が電界放射陰極であるにもかかわらず、10-5Paといった比較的高い圧力の下でも好適に動作している。また、従来の電界放射陰極の場合、10-4Paといった高い圧力の下では動作が不安定になり、ガス吸着やスパッタリングにより放電を引き起こす可能性が非常に高い。これに対し、筐体10内を10-8Paといった超高真空まで排気した後、筐体10内の圧力が10-4Paという更に高い圧力になるようにアルゴンガスを導入し続けた場合であっても、図8(b)に示されるように、液体金属陰極11は極めて安定に動作する。 As shown in FIG. 8A, when the argon gas is introduced (graph G11), the amount of emission current is maintained at a constant value over a longer period of time than when the nitrogen gas is introduced (graph G12). It can be seen that it is stable. Further, even though the liquid metal cathode 11 is a field emission cathode, the liquid metal cathode 11 operates properly even under a relatively high pressure such as 10 −5 Pa. Further, in the case of a conventional field emission cathode, the operation becomes unstable under a high pressure of 10 −4 Pa, and the possibility of causing discharge by gas adsorption or sputtering is very high. In contrast, when the inside of the casing 10 is exhausted to an ultrahigh vacuum of 10 −8 Pa, and argon gas is continuously introduced so that the pressure in the casing 10 becomes a higher pressure of 10 −4 Pa. Even if it exists, as FIG.8 (b) shows, the liquid metal cathode 11 operate | moves very stably.
 図9は、図8(a)に示されたグラフG11及びG12に、グラフG32及びG33を追加したものである。グラフG32及びG33は、筐体10の内部を超高真空(10-8Pa)まで排気した状態で液体金属陰極11から電子を放出した場合における、放出電流量の時間変化を測定した結果を示すグラフである。図9に示されるように、アルゴンガスを導入した場合(グラフG11)、筐体10の内部が10-5Paといった比較的高い圧力であっても、超高真空下と同等に放出電流量を安定させ得ることがわかる。 FIG. 9 is obtained by adding graphs G32 and G33 to the graphs G11 and G12 shown in FIG. Graphs G32 and G33 show the results of measuring the time variation of the emission current amount when electrons are emitted from the liquid metal cathode 11 while the inside of the housing 10 is exhausted to an ultrahigh vacuum (10 −8 Pa). It is a graph. As shown in FIG. 9, when argon gas is introduced (graph G11), even when the inside of the housing 10 is at a relatively high pressure such as 10 −5 Pa, the emission current amount is equivalent to that under an ultra-high vacuum. It can be seen that it can be stabilized.
 図10は、アルゴンによるパージをしないで真空排気を行った場合(グラフG21、実線)と、アルゴンによって筐体10内をパージした後に真空排気を行った場合(グラフG22、破線)とにおける、その後の筐体10内の残留ガス成分の分析結果を示す図である。なお、図10において、縦軸はイオン電流(nA)を示し、横軸は質量数(amu:原子質量単位)を示している。 FIG. 10 shows a case where vacuum evacuation is performed without purging with argon (graph G21, solid line), and a case where vacuum evacuation is performed after the inside of the casing 10 is purged with argon (graph G22, broken line). It is a figure which shows the analysis result of the residual gas component in the housing | casing 10. In FIG. 10, the vertical axis represents ion current (nA), and the horizontal axis represents mass number (amu: atomic mass unit).
 筐体10の内部に一旦大気を導入した後に再度真空排気するような場合には、アルゴンガスで筐体10内をパージしたのちに真空排気を行うことにより(グラフG22)、そのまま真空排気を行う場合(グラフG21)と比較して、アルゴンガスを含有しているほか、水や窒素ガス等の残留ガス成分が減じていることが図10からわかる。このように、アルゴンガスを含有し、残留ガス成分が低減されることによって、液体金属陰極11の安定性を高め、且つ液体金属陰極11の寿命を延ばすことが可能となる。 In the case where the atmosphere is once introduced into the housing 10 and then evacuated again, the inside of the housing 10 is purged with argon gas and then evacuated (graph G22), and then evacuated as it is. Compared with the case (graph G21), it can be seen from FIG. 10 that argon gas is contained and residual gas components such as water and nitrogen gas are reduced. Thus, by containing the argon gas and reducing the residual gas component, the stability of the liquid metal cathode 11 can be improved and the life of the liquid metal cathode 11 can be extended.
 上述したように、本発明者らの研究において、アルゴン含有雰囲気下で液状のリチウム11bから電子ビームEを放出させることにより、アルゴンを含まない雰囲気下で電子ビームを放出させる場合と比較して、放出電流量が格段に安定することが判明した。上述した第1ないし第4の方法においては、筐体10の内部にアルゴンを導入し、その後、筐体10の内部を排気している。これにより、ほぼ真空状態か又はそれに近い状態で、且つアルゴンを含有する雰囲気を好適に実現できる。そして、このような雰囲気下で固体電極11aを覆う液状のリチウム11bから電子ビームEを放出させることにより、放出電流量を格段に安定させることができる。なお、いずれの方法においても、固体電極11aへのリチウムの被覆は電子放出の直前に行っており、それが最も好ましいが、真空排気またはアルゴンで置換された状態であれば、他の段階で行っても良い。 As described above, in the inventors' research, by emitting the electron beam E from the liquid lithium 11b under an argon-containing atmosphere, compared with the case where the electron beam is emitted under an argon-free atmosphere, It was found that the amount of emission current was significantly stabilized. In the first to fourth methods described above, argon is introduced into the housing 10 and then the interior of the housing 10 is exhausted. Thereby, it is possible to suitably realize an atmosphere containing argon in a substantially vacuum state or a state close thereto. Then, by emitting the electron beam E from the liquid lithium 11b covering the solid electrode 11a in such an atmosphere, the amount of emission current can be remarkably stabilized. In any method, the solid electrode 11a is coated with lithium immediately before electron emission, and is most preferable. However, it is performed at another stage as long as it is evacuated or replaced with argon. May be.
 また、上述した第1及び第2の方法のように、電子発生方法は、筐体10の内部を真空排気した後、筐体10の内部が所定の圧力に近づくようにアルゴンを導入する第2導入ステップを備えることが好ましい。ここで、図11は、筐体10の内部を超高真空(10-8Pa)まで排気した後、第2導入ステップにおいて筐体10の内部圧力が1×10-5Pa、1×10-6Pa、及び1×10-7Paのそれぞれに近づくようにアルゴンを導入し続けた場合における、液体金属陰極11から放出される電流量の時間変化を測定した結果を示すグラフである。第2導入ステップを設けることにより、筐体10内部のアルゴン分圧を保持することができるので、図11や先の図8(a),図8(b)に示されるように、リチウム11bから放出される電流量を更に安定させることができる。なお、図11において各グラフが或る周期をもって上下に変化しているのは、消費されたリチウム11bを周期的に補ったためである。 Further, like the first and second methods described above, the electron generation method is a second method in which argon is introduced so that the inside of the housing 10 approaches a predetermined pressure after the inside of the housing 10 is evacuated. It is preferable to provide an introduction step. Here, FIG. 11, after evacuating the inside of the housing 10 to the super-high vacuum (10 -8 Pa), the internal pressure of the housing 10 in the second introduction step is 1 × 10 -5 Pa, 1 × 10 - It is a graph which shows the result of having measured the time change of the amount of electric current discharge | released from the liquid metal cathode 11, when it introduce | transduces argon so that each may approach 6 Pa and 1x10 <-7> Pa. By providing the second introduction step, the argon partial pressure inside the housing 10 can be maintained. Therefore, as shown in FIG. 11 and FIGS. 8 (a) and 8 (b), from the lithium 11b. The amount of current discharged can be further stabilized. In FIG. 11, the graphs change vertically with a certain period because the consumed lithium 11 b is periodically supplemented.
 また、図12に示すグラフG41は、筐体10の内部を超高真空(10-8Pa)まで排気した後にX線発生装置1Aを動作させた場合に、液体金属陰極11から放出される電流量の時間変化を測定した結果を示すグラフである。なお、図12において、縦軸は放出電流量(μA)を示し、横軸は時間(秒)を示している。このように、筐体10の内部を超高真空(10-8Pa)まで排気した場合であっても、電子が衝突した電極などから窒素などのガスが多く放出され、グラフG41に示されるように放出電流量が不安定となる場合がある。しかし、このような状況下であっても、筐体10内部の圧力が10-4Paとなるようにアルゴンガスを導入すると、図12のグラフG42に示されるように、放出電流量が安定した。すなわち、本実施形態の電子発生方法は、第2導入ステップを備えることによって、リチウム11bから放出される電流量を更に安定させることができる。 Further, a graph G41 shown in FIG. 12 shows a current discharged from the liquid metal cathode 11 when the X-ray generator 1A is operated after the inside of the housing 10 is evacuated to an ultrahigh vacuum (10 −8 Pa). It is a graph which shows the result of having measured the time change of quantity. In FIG. 12, the vertical axis indicates the amount of emission current (μA), and the horizontal axis indicates time (seconds). As described above, even when the inside of the housing 10 is exhausted to an ultrahigh vacuum (10 −8 Pa), a large amount of gas such as nitrogen is released from the electrode or the like with which the electrons collide, as shown in the graph G41. In some cases, the amount of emission current becomes unstable. However, even under such a situation, when the argon gas was introduced so that the pressure inside the housing 10 was 10 −4 Pa, the amount of emission current was stabilized as shown in the graph G42 of FIG. . That is, the electron generation method of the present embodiment can further stabilize the amount of current released from the lithium 11b by including the second introduction step.
 なお、筐体10内部のアルゴン分圧の好適な範囲は、1×10-7Pa以上1×10-4Pa以下である。但し、導入するアルゴンガス中に含まれる水及び窒素ガスの分圧が1×10-8Pa以下であれば、アルゴン分圧は1×10-3Pa以下でもよい。 Note that a preferable range of the argon partial pressure inside the housing 10 is 1 × 10 −7 Pa or more and 1 × 10 −4 Pa or less. However, if the partial pressure of water and nitrogen gas contained in the introduced argon gas is 1 × 10 −8 Pa or less, the argon partial pressure may be 1 × 10 −3 Pa or less.
 図13は、筐体10の内部を超高真空(10-8Pa)まで排気した後、第2導入ステップにおいて筐体10内の圧力が10-4Paになるようにアルゴンガスを導入し続けた場合(グラフG51)、及び、筐体10内の圧力が10-3Paになるようにアルゴンガスを導入し続けた場合(グラフG52)のそれぞれにおける、液体金属陰極11から放出される電流量の時間変化を測定した結果を示すグラフである。なお、図13において、縦軸は放出電流量(μA)を示し、横軸は時間(秒)を示している。 FIG. 13 shows that after the inside of the housing 10 is evacuated to ultra-high vacuum (10 −8 Pa), argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −4 Pa in the second introduction step. Current (graph G51) and the amount of current released from the liquid metal cathode 11 in each case of continuing to introduce argon gas so that the pressure in the housing 10 becomes 10 −3 Pa (graph G52) It is a graph which shows the result of having measured the time change of. In FIG. 13, the vertical axis represents the amount of emission current (μA), and the horizontal axis represents time (seconds).
 図13に示されるように、筐体10内の圧力が10-4Paになるようにアルゴンガスを導入し続けた場合(グラフG51)には、筐体10内の圧力が10-3Paになるようにアルゴンガスを導入し続けた場合(グラフG52)と比較して、長時間にわたって放出電流量が一定値で推移し、安定していることがわかる。このことから、筐体10内の圧力が10-4Pa以下となるようにアルゴンガスを導入することにより、リチウム11bから放出される電流量を更に安定させ得ることが明らかとなった。 As shown in FIG. 13, when the argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −4 Pa (graph G51), the pressure in the housing 10 becomes 10 −3 Pa. It can be seen that, compared with the case where the argon gas is continuously introduced (graph G52), the amount of emission current is maintained at a constant value over a long period of time. From this, it became clear that the amount of current released from the lithium 11b can be further stabilized by introducing argon gas so that the pressure in the housing 10 becomes 10 −4 Pa or less.
 また、発明者は、筐体10内部に含まれる水及び窒素ガスによる影響を調べるために、第2導入ステップ、つまり筐体10内が所定の全圧力になるようにアルゴンガスを導入し続けた場合における筐体10内の全圧力を1×10-7Pa、1×10-6Pa、1×10-5Pa、1×10-4Pa、及び1×10-3Paとした場合のそれぞれにおける窒素分圧及び水分圧を計測した。図14は、その結果を示す図表である。 Further, the inventor continued to introduce argon gas so that the inside of the casing 10 has a predetermined total pressure in order to investigate the influence of water and nitrogen gas contained in the casing 10. When the total pressure in the case 10 is 1 × 10 −7 Pa, 1 × 10 −6 Pa, 1 × 10 −5 Pa, 1 × 10 −4 Pa, and 1 × 10 −3 Pa, respectively. Nitrogen partial pressure and water pressure were measured. FIG. 14 is a chart showing the results.
 図14に示されるように、筐体10内の圧力が10-5Paとなるようにアルゴンガスを導入した場合、10-6Pa以下の場合と比較して水及び窒素ガスの各分圧が増加していることがわかる。これは、筐体10内へアルゴンガスを導入すると、液体リチウムに対して活性である窒素ガスや水分も同時に導入されてしまうからである。そして、図13に示されたように、筐体10内の圧力が10-4Pa以下になるようにアルゴンガスを導入し続けた場合には放出電流量が安定しており、このときの水及び窒素ガスの各分圧がそれぞれ1×10-7Paより小さいことから、水及び窒素ガスの各分圧が1×10-7Pa以下であれば、リチウム11bから放出される電流量を安定させ得ると考えられる。また、図8(a)のグラフG11に示されたように、筐体10内の圧力が10-5Pa以下になるようにアルゴンガスを導入し続けた場合であれば放出電流量が更に安定し、このときの水及び窒素ガスの各分圧がそれぞれ5×10-8Paより小さいことから、水及び窒素ガスの各分圧が5×10-8Pa以下であれば、リチウム11bから放出される電流量を更に安定させ得ると考えられる。 As shown in FIG. 14, when argon gas is introduced so that the pressure in the housing 10 becomes 10 −5 Pa, each partial pressure of water and nitrogen gas is less than that in the case of 10 −6 Pa or less. It can be seen that it has increased. This is because when argon gas is introduced into the housing 10, nitrogen gas and moisture that are active against liquid lithium are also introduced at the same time. As shown in FIG. 13, when the argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −4 Pa or less, the amount of emission current is stable, and the water at this time and since the partial pressure of nitrogen gas is less than 1 × 10 -7 Pa, respectively, if the partial pressures of water and nitrogen gas 1 × 10 -7 Pa or less, a stable amount of current emitted from the lithium 11b It is thought that it can be made. Further, as shown in the graph G11 of FIG. 8A, if the argon gas is continuously introduced so that the pressure in the housing 10 becomes 10 −5 Pa or less, the emission current amount is further stabilized. and, since the partial pressures of water and nitrogen gas at this time is less than 5 × 10 -8 Pa, respectively, if the partial pressures of water and nitrogen gas 5 × 10 -8 Pa or less, emitted from lithium 11b It is believed that the amount of current that is generated can be further stabilized.
 なお、図13のグラフG52に示されたように、筐体10内の圧力を10-3Paとした場合に放出電流量が安定しなかったのも、水及び窒素ガスの各分圧が図14に示されるように大きな値となっていたことによるものであると考えられる。 Incidentally, as shown in the graph G52 of FIG. 13, when the pressure in the housing 10 is 10 −3 Pa, the discharge current amount is not stable. The partial pressures of water and nitrogen gas are shown in FIG. This is probably due to the large value as shown.
 また、上述した第1及び第3の方法のように、電子発生方法は、筐体10の内部にアルゴンを導入する第1導入ステップと、筐体10の内部を排気する排気ステップとを複数回繰り返し行うことが好ましい。これにより、筐体10の内部に残留する窒素、水、二酸化炭素、及び酸素といった大気中の成分をより少なくすることでアルゴン分圧を高め、リチウム11bの固相化を効果的に抑えることができる。 In addition, as in the first and third methods described above, the electron generation method includes a first introduction step for introducing argon into the housing 10 and an exhaust step for exhausting the inside of the housing 10 a plurality of times. It is preferable to repeat. As a result, by reducing the atmospheric components such as nitrogen, water, carbon dioxide, and oxygen remaining inside the housing 10, the argon partial pressure can be increased, and the solidification of the lithium 11b can be effectively suppressed. it can.
 また、本実施形態のように、筐体10は、液体金属陰極11を収容する電子銃室10aと、この電子銃室10aとの間を電子が通過するように仕切られた電子光学系室10cとを有することが好ましく、第1及び第2の方法の第2導入ステップにおいて、電子銃室10aに設けられたアルゴン導入口10gから筐体10の内部にアルゴンを導入することが好ましい。これにより、液体金属陰極11の周囲のアルゴン分圧を高めることができる。また、本実施形態においてはアルゴン導入口10gの中心線は導入管24の中心線でもあるので、アルゴン導入口10gに到るアルゴンガスの流れに乱れが生じることなく、よりスムーズにアルゴンガスを液体金属陰極11の周囲に導くことができる。なお、第1ないし第4の方法の第1導入ステップにおいて、アルゴン導入口10gから筐体10の内部にアルゴンを導入することにより、上記と同様の効果を得ることができる。 Further, as in the present embodiment, the housing 10 includes an electron gun chamber 10a that houses the liquid metal cathode 11, and an electron optical system chamber 10c that is partitioned so that electrons pass between the electron gun chamber 10a. In the second introduction step of the first and second methods, it is preferable to introduce argon into the housing 10 from the argon introduction port 10g provided in the electron gun chamber 10a. Thereby, the argon partial pressure around the liquid metal cathode 11 can be increased. Further, in the present embodiment, the center line of the argon inlet 10g is also the center line of the inlet tube 24, so that the argon gas flow to the argon inlet 10g is not disturbed, and the argon gas can be liquefied more smoothly. It can be led around the metal cathode 11. In the first introduction step of the first to fourth methods, the same effect as described above can be obtained by introducing argon into the housing 10 from the argon introduction port 10g.
 なお、本実施形態では液体金属陰極11にリチウム11bを使用しているが、リチウムは、例えばガリウムといった他の金属と比較して、電子放出源として極めて有用である。その理由は次の通りである。リチウムは、ガリウム等と比べて、下地(固体電極)を構成するタングステンとの濡れ性が良く、かつ表面張力が小さいので、より薄い膜状とすることができる。従って、図3(b)に示したテーラーコーン11cを形成するために必要な液体リチウムの量が少なくて済み、また、テーラーコーン11cの幾何学的寸法を小さくできるので、DC動作が可能となる。これに対し、ガリウムはタングステンとの濡れ性が悪く、表面張力が大きい。従って、テーラーコーン11cの寸法が大きくなり、放電を起こして動作不能となるか、或いは動作しても大電流のパルスモードでしか動作できない。 In the present embodiment, lithium 11b is used for the liquid metal cathode 11, but lithium is extremely useful as an electron emission source as compared with other metals such as gallium. The reason is as follows. Lithium has better wettability with tungsten constituting the base (solid electrode) and lower surface tension than gallium or the like, and thus can be formed into a thinner film. Accordingly, the amount of liquid lithium required to form the tailor cone 11c shown in FIG. 3B can be reduced, and the geometric dimension of the tailor cone 11c can be reduced, so that DC operation is possible. . In contrast, gallium has poor wettability with tungsten and has a high surface tension. Therefore, the size of the tailor cone 11c becomes large, causing electric discharge to become inoperable, or even if it operates, it can operate only in a large current pulse mode.
 また、電子発生方法がX線源に使用される場合、電子放出陰極として放出電流が大きいものが求められるので、電子放出陰極の仕事関数は低いことが好ましい。ガリウムの仕事関数が4.1eVであるのに対し、リチウムの仕事関数は2.4eVと低い。従って、液体金属陰極11にリチウム11bを使用することにより、大きな放出電流(例えば、DC動作での大電流)を実現することができる。 In addition, when the electron generation method is used for an X-ray source, since an electron emission cathode having a large emission current is required, the work function of the electron emission cathode is preferably low. The work function of gallium is 4.1 eV, whereas the work function of lithium is as low as 2.4 eV. Therefore, by using lithium 11b for the liquid metal cathode 11, a large emission current (for example, a large current in DC operation) can be realized.
 また、本実施形態では筐体10に導入するガスとしてアルゴンガスを使用しているが、アルゴンは、例えばヘリウムやネオンと比較して、原子半径や質量が大きいため、衝突断面積や運動量が大きく、窒素を排気する能力が優れている。また、他の希ガスと比較すると、アルゴンの絶縁耐力は高い。従って、窒素の分圧を下げることが重要な、リチウムを用いた電子源において、より安定して高い出力を得るためには、アルゴンガスが好適である。 Further, in this embodiment, argon gas is used as the gas introduced into the housing 10. However, since argon has a larger atomic radius and mass than, for example, helium and neon, the collision cross section and momentum are large. The ability to exhaust nitrogen is excellent. In addition, the dielectric strength of argon is higher than other rare gases. Therefore, in an electron source using lithium, in which it is important to lower the partial pressure of nitrogen, argon gas is suitable for obtaining a high output more stably.
 図15は、上述した電子発生方法に好適に使用される電子顕微鏡2の構成を示す図である。図15に示される電子顕微鏡2が備える電子線発生装置2Aと図1に示したX線発生装置1Aとは、筐体の構成が互いに異なる。すなわち、電子線発生装置2Aが備える筐体40は、電子銃室(第一室)40a、中間室40b、及び試料室(第二室)40cを有する。電子銃室40aは、電子銃の液体金属陰極11、引出電極12、及びコンデンサレンズ13を収容している。中間室40bは、電子銃室40aと試料室40cとの間に配置されている。電子銃室40aと中間室40bとの間の境界壁には開口が形成されており、該開口にはコンデンサ絞り14が配置されている。中間室40bと試料室40cとの間の境界壁には開口が形成されており、該開口には仕切り弁15が配置されている。すなわち、試料室40cは、コンデンサ絞り14、中間室40b及び仕切り弁15を介して電子ビームEが通過するように、境界壁によって電子銃室40aと仕切られている。試料室40cは、図1に示した電子光学系室10cと同様に、ビームアライメントコイル16、対物絞り17、及び対物レンズ18を収容している。また、試料室40cには、これらに加えて、試料台41、二次電子検出器42、及びX線検出器43が設置されている。試料台41は電子ビームEの中心軸上に設置されており、二次電子検出器42及びX線検出器43は、試料台41へ向けて設置されている。対物レンズ18は、試料台41へ向けて電子ビームEを集束する。 FIG. 15 is a diagram showing a configuration of the electron microscope 2 that is preferably used in the electron generation method described above. The electron beam generator 2A provided in the electron microscope 2 shown in FIG. 15 and the X-ray generator 1A shown in FIG. That is, the housing 40 included in the electron beam generator 2A includes an electron gun chamber (first chamber) 40a, an intermediate chamber 40b, and a sample chamber (second chamber) 40c. The electron gun chamber 40a accommodates the liquid metal cathode 11, the extraction electrode 12, and the condenser lens 13 of the electron gun. The intermediate chamber 40b is disposed between the electron gun chamber 40a and the sample chamber 40c. An opening is formed in the boundary wall between the electron gun chamber 40a and the intermediate chamber 40b, and the capacitor diaphragm 14 is disposed in the opening. An opening is formed in the boundary wall between the intermediate chamber 40b and the sample chamber 40c, and a gate valve 15 is disposed in the opening. That is, the sample chamber 40c is partitioned from the electron gun chamber 40a by the boundary wall so that the electron beam E passes through the condenser aperture 14, the intermediate chamber 40b, and the gate valve 15. Similar to the electron optical system chamber 10c shown in FIG. 1, the sample chamber 40c accommodates the beam alignment coil 16, the objective diaphragm 17, and the objective lens 18. In addition to these, a sample stage 41, a secondary electron detector 42, and an X-ray detector 43 are installed in the sample chamber 40c. The sample table 41 is installed on the central axis of the electron beam E, and the secondary electron detector 42 and the X-ray detector 43 are installed toward the sample table 41. The objective lens 18 focuses the electron beam E toward the sample stage 41.
 電子銃室40a、中間室40b、及び試料室40cは、気密性が高められた真空容器40dを構成する。電子銃室40aの側壁には、真空排気のための排気口40fと、アルゴンガスを電子銃室40aに供給するためのアルゴン導入口(第1のアルゴン導入口)40gとが設けられている。排気口40fには排気管23が取り付けられており、アルゴン導入口40gには導入管24が取り付けられている。電子銃室40a内の電子放出方向におけるアルゴン導入口40gの位置は、該電子放出方向における液体金属陰極11の位置と略一致していることが好ましい。つまり、アルゴン導入口40g(導入管24)の中心軸線の延長線上に液体金属陰極11が位置するように、導入管24及び液体金属陰極11が配置されることが好ましい。 The electron gun chamber 40a, the intermediate chamber 40b, and the sample chamber 40c constitute a vacuum container 40d with improved airtightness. The side wall of the electron gun chamber 40a is provided with an exhaust port 40f for evacuating and an argon inlet (first argon inlet) 40g for supplying argon gas to the electron gun chamber 40a. An exhaust pipe 23 is attached to the exhaust port 40f, and an introduction pipe 24 is attached to the argon inlet 40g. The position of the argon inlet 40g in the electron emission direction in the electron gun chamber 40a is preferably substantially coincident with the position of the liquid metal cathode 11 in the electron emission direction. That is, it is preferable that the introduction tube 24 and the liquid metal cathode 11 are arranged so that the liquid metal cathode 11 is positioned on an extension of the central axis of the argon introduction port 40g (introduction tube 24).
 また、試料室40cの側壁には、真空排気のための排気口40hと、アルゴンガスを試料室40cに供給するためのアルゴン導入口(第2のアルゴン導入口)40iとが設けられている。このように、試料室40cは、アルゴン導入口40gとは別の位置に設けられたアルゴン導入口40iを有する。排気口40hには排気管25が取り付けられており、アルゴン導入口40iには導入管26が取り付けられている。排気管23,25の先には排気ポンプが接続される。導入管24はバルブ28を介してアルゴンガス供給源27に接続されており、導入管26はバルブ29を介してアルゴンガス供給源27に接続されている。 Further, an exhaust port 40h for vacuum exhaust and an argon inlet (second argon inlet) 40i for supplying argon gas to the sample chamber 40c are provided on the side wall of the sample chamber 40c. Thus, the sample chamber 40c has an argon inlet 40i provided at a position different from the argon inlet 40g. An exhaust pipe 25 is attached to the exhaust port 40h, and an introduction pipe 26 is attached to the argon introduction port 40i. An exhaust pump is connected to the ends of the exhaust pipes 23 and 25. The introduction pipe 24 is connected to an argon gas supply source 27 via a valve 28, and the introduction pipe 26 is connected to the argon gas supply source 27 via a valve 29.
 上述した電子発生方法は、このような構成を備える電子顕微鏡2においても好適に使用できる。すなわち、筐体40(真空容器40d)の内部にアルゴンを導入し、その後、真空容器40dの内部を排気することによって、アルゴンを含有する雰囲気を好適に実現できる。そして、このような雰囲気下で液体金属陰極11のリチウムから電子ビームEを放出させることにより、放出電流量を格段に安定させることができる。 The electron generation method described above can be suitably used in the electron microscope 2 having such a configuration. That is, an argon-containing atmosphere can be suitably realized by introducing argon into the housing 40 (vacuum container 40d) and then exhausting the interior of the vacuum container 40d. Then, by emitting the electron beam E from the lithium of the liquid metal cathode 11 in such an atmosphere, the amount of emission current can be remarkably stabilized.
 本発明の電子発生方法は、例えば、X線による非破壊検査に使用できる。X線による非破壊検査が必要となる半導体デバイスの製造プロセスでは、線幅が数十ナノメートルの回路パターンの量産化が行われている。また、検査の分解能が数ナノメートル~数十ナノメートルに達すれば、ナノテクノロジーにおいて使用されている様々な先端材料の特徴的な構造や化学結合状態、或いは生物細胞内部のたんぱく質の分布を直接観察できる。 The electron generation method of the present invention can be used for non-destructive inspection by X-rays, for example. In a semiconductor device manufacturing process that requires non-destructive inspection by X-rays, circuit patterns having a line width of several tens of nanometers are mass-produced. In addition, if the resolution of the test reaches several nanometers to several tens of nanometers, the characteristic structures and chemical bonding states of various advanced materials used in nanotechnology, or protein distribution inside biological cells can be directly observed. it can.
 ナノオーダーの分解能をもつX線源には、高い放射角電流密度と微小なソースサイズとを実現できる電子源が必要となる。液体リチウムによるテーラーコーンを用いた電子源によれば、高輝度陰極として知られるZrO/W陰極より2桁高い放射角電流密度を実現できる。また、ナノオーダーの電子ソースサイズで、明るいX線画像を撮るために必要な数百マイクロアンペアの電流値を得ることができる。以上のことから、液体金属陰極に液体リチウムを用いた電子発生方法は、X線源の分解能をナノメートルサイズまで向上させるために有益である。 An X-ray source with nano-order resolution requires an electron source capable of realizing a high radiation angle current density and a minute source size. According to an electron source using a tailor cone made of liquid lithium, it is possible to realize a radiation angle current density two orders of magnitude higher than that of a ZrO / W cathode known as a high-brightness cathode. In addition, it is possible to obtain a current value of several hundred microamperes necessary for taking a bright X-ray image with a nano-order electron source size. From the above, the electron generation method using liquid lithium as the liquid metal cathode is useful for improving the resolution of the X-ray source to the nanometer size.
 1…X線検査装置、1A…X線発生装置、2…電子顕微鏡、2A…電子線発生装置、10…筐体、10a…電子銃室、10b…中間室、10c…電子光学系室、10d…検査室、10f,10h…排気口、10g…(第1の)アルゴン導入口、10i…(第2の)アルゴン導入口、11…液体金属陰極、11a…固体電極、11b…リチウム、11c…テーラーコーン、12…引出電極、13…コンデンサレンズ、14…コンデンサ絞り、15…仕切り弁、16…ビームアライメントコイル、17…対物絞り、18…対物レンズ、19…ターゲット、20…ベリリウム窓材、21…被検査試料、22…X線カメラ、23,25…排気管、24,26…導入管、27…アルゴンガス供給源、28,29…バルブ、41…試料台、42…二次電子検出器、43…X線検出器、E…電子ビーム、F…電界応力、S…表面張力。 DESCRIPTION OF SYMBOLS 1 ... X-ray inspection apparatus, 1A ... X-ray generator, 2 ... Electron microscope, 2A ... Electron beam generator, 10 ... Case, 10a ... Electron gun room, 10b ... Intermediate room, 10c ... Electron optical system room, 10d ... Examination room, 10f, 10h ... exhaust port, 10g ... (first) argon inlet, 10i ... (second) argon inlet, 11 ... liquid metal cathode, 11a ... solid electrode, 11b ... lithium, 11c ... Taylor cone, 12 ... extraction electrode, 13 ... condenser lens, 14 ... condenser aperture, 15 ... gate valve, 16 ... beam alignment coil, 17 ... objective diaphragm, 18 ... objective lens, 19 ... target, 20 ... beryllium window material, 21 ... inspection sample, 22 ... X-ray camera, 23,25 ... exhaust pipe, 24,26 ... introduction pipe, 27 ... argon gas supply source, 28,29 ... valve, 41 ... sample stage, 42 ... secondary battery Detector, 43 ... X-ray detector, E ... electron beam, F ... field stress, S ... surface tension.

Claims (10)

  1.  筐体の内部にアルゴンを導入する第1導入ステップと、
     前記筐体の内部を排気する排気ステップと、
     前記排気ステップにより排気された後のアルゴン含有雰囲気下で、前記筐体の内部に配置された電極の表面を覆う液状の前記リチウムから電子を放出させる電子放出ステップと
     を備えることを特徴とする、電子発生方法。
    A first introduction step of introducing argon into the housing;
    An exhaust step for exhausting the interior of the housing;
    An electron emission step for emitting electrons from the liquid lithium covering the surface of the electrode disposed inside the housing under an argon-containing atmosphere after being exhausted by the exhaust step, Electron generation method.
  2.  前記筐体の内部が所定の圧力に近づくように前記筐体の内部にアルゴンを導入する第2導入ステップを、前記排気ステップと前記電子放出ステップとの間に更に備えることを特徴とする、請求項1に記載の電子発生方法。 A second introduction step of introducing argon into the housing so that the inside of the housing approaches a predetermined pressure is further provided between the exhausting step and the electron emitting step. Item 2. The method for generating electrons according to Item 1.
  3.  前記所定の圧力が1×10-4Pa以下であることを特徴とする、請求項2に記載の電子発生方法。 3. The electron generating method according to claim 2, wherein the predetermined pressure is 1 × 10 −4 Pa or less.
  4.  前記第1導入ステップと前記排気ステップとを複数回繰り返し行うことを特徴とする、請求項1または2に記載の電子発生方法。 3. The electron generation method according to claim 1, wherein the first introduction step and the exhaust step are repeated a plurality of times.
  5.  前記筐体が、前記電極を収容している電子銃室と、該電子銃室との間を電子が通過するように仕切られた第二室とを有しており、
     前記第1導入ステップ及び前記第2導入ステップのうち少なくとも一方において、前記電子銃室に設けられた第1のアルゴン導入口から前記筐体の内部にアルゴンを導入することを特徴とする、請求項1~3のいずれか一項に記載の電子発生方法。
    The housing includes an electron gun chamber that houses the electrode, and a second chamber that is partitioned so that electrons pass between the electron gun chamber and the electron gun chamber.
    The argon is introduced into the housing from a first argon inlet provided in the electron gun chamber in at least one of the first introduction step and the second introduction step. 4. The electron generation method according to any one of 1 to 3.
  6.  前記第1のアルゴン導入口の中心軸線の延長上に前記リチウムを配置することを特徴とする、請求項4に記載の電子発生方法。 5. The electron generation method according to claim 4, wherein the lithium is disposed on an extension of a central axis of the first argon inlet.
  7.  前記第1導入ステップにおいて、前記第1のアルゴン導入口、及び該第1のアルゴン導入口とは別の位置に設けられた第2のアルゴン導入口から前記筐体の内部にアルゴンを導入することを特徴とする、請求項4または5に記載の電子発生方法。 In the first introduction step, argon is introduced into the housing from the first argon introduction port and a second argon introduction port provided at a position different from the first argon introduction port. The method for generating electrons according to claim 4 or 5, characterized in that:
  8.  前記第2のアルゴン導入口を前記第二室に設けることを特徴とする、請求項6に記載の電子発生方法。 The electron generating method according to claim 6, wherein the second argon inlet is provided in the second chamber.
  9.  前記電子放出ステップの前記アルゴン含有雰囲気における窒素分圧及び水分圧それぞれが1×10-7Pa以下であることを特徴とする、請求項1~8のいずれか一項に記載の電子発生方法。 9. The electron generating method according to claim 1, wherein each of a nitrogen partial pressure and a water pressure in the argon-containing atmosphere in the electron emission step is 1 × 10 −7 Pa or less.
  10.  前記電子放出ステップの前記アルゴン含有雰囲気における窒素分圧及び水分圧それぞれが5×10-8Pa以下であることを特徴とする、請求項9に記載の電子発生方法。 10. The electron generation method according to claim 9, wherein each of a nitrogen partial pressure and a water pressure in the argon-containing atmosphere in the electron emission step is 5 × 10 −8 Pa or less.
PCT/JP2011/053422 2010-03-15 2011-02-17 Electron generation method WO2011114832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505574A JP5742059B2 (en) 2010-03-15 2011-02-17 Electron generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-057657 2010-03-15
JP2010057657 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114832A1 true WO2011114832A1 (en) 2011-09-22

Family

ID=44648939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053422 WO2011114832A1 (en) 2010-03-15 2011-02-17 Electron generation method

Country Status (2)

Country Link
JP (1) JP5742059B2 (en)
WO (1) WO2011114832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712296B2 (en) 2016-12-23 2020-07-14 Orion Engineering Limited Handheld material analyser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289057A (en) * 1988-05-16 1989-11-21 Res Dev Corp Of Japan Charged particle beam generation device
JP2002150961A (en) * 2000-11-15 2002-05-24 Denki Kagaku Kogyo Kk Manufacturing method of liquid metal ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289057A (en) * 1988-05-16 1989-11-21 Res Dev Corp Of Japan Charged particle beam generation device
JP2002150961A (en) * 2000-11-15 2002-05-24 Denki Kagaku Kogyo Kk Manufacturing method of liquid metal ion source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. HATA ET AL.: "Control of emission current from a Li/W111 field emitter by sequential deposition of Li", APPLIED SURFACE SCIENCE, vol. 146, no. 1-4, March 1999 (1999-03-01), pages 387 - 390 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712296B2 (en) 2016-12-23 2020-07-14 Orion Engineering Limited Handheld material analyser

Also Published As

Publication number Publication date
JP5742059B2 (en) 2015-07-01
JPWO2011114832A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US8835884B2 (en) Charged particle beam apparatus with cleaning photo-irradiation apparatus
JP5178926B2 (en) Charged particle microscope and ion microscope
WO2011055521A1 (en) Charged particle microscope
JP2007172862A (en) Cleaning device for charged particle beam source, and charged particle beam device using same
US20080283745A1 (en) Emitter chamber, charged partical apparatus and method for operating same
JP5514472B2 (en) Charged particle beam equipment
US8878148B2 (en) Method and apparatus of pretreatment of an electron gun chamber
JP2011210492A (en) Focused ion beam device
US20080284332A1 (en) Gun chamber, charged particle beam apparatus and method of operating same
KR20200018520A (en) Ion beam apparatus
JP2008262886A (en) Scanning electron microscope device
TW202013410A (en) Metal protective layer for electron emitters with a diffusion barrier
WO2016056446A1 (en) Ion beam device
JP5742059B2 (en) Electron generation method
JP5432028B2 (en) Focused ion beam device, tip end structure inspection method, and tip end structure regeneration method
JP2011171008A (en) Focused ion beam device
WO2021001932A1 (en) Electron beam device and method for controlling electron beam device
US7301159B2 (en) Charged particle beam apparatus and method of forming electrodes having narrow gap therebetween by using the same
US9453278B2 (en) Deposition device and deposition method
US10971329B2 (en) Field ionization source, ion beam apparatus, and beam irradiation method
WO2017029754A1 (en) Ion beam device and method for analyzing sample elements
KR101897460B1 (en) Replaceable electron gun for electron microscope and electron microscope comprising the same
WO2023203755A1 (en) Charged particle beam device
KR102660692B1 (en) Electron beam device and control method of the electron beam device
JP6174054B2 (en) Orbitron pump and electron beam apparatus equipped with orbitron pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505574

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756022

Country of ref document: EP

Kind code of ref document: A1