WO2011114407A1 - Method for measuring wavefront aberration and device of same - Google Patents

Method for measuring wavefront aberration and device of same Download PDF

Info

Publication number
WO2011114407A1
WO2011114407A1 PCT/JP2010/007178 JP2010007178W WO2011114407A1 WO 2011114407 A1 WO2011114407 A1 WO 2011114407A1 JP 2010007178 W JP2010007178 W JP 2010007178W WO 2011114407 A1 WO2011114407 A1 WO 2011114407A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavefront aberration
stage
spot
lens
data
Prior art date
Application number
PCT/JP2010/007178
Other languages
French (fr)
Japanese (ja)
Inventor
達雄 針山
実 ▲吉▼田
康裕 吉武
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011114407A1 publication Critical patent/WO2011114407A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention relates to a method and apparatus for measuring wavefront aberration of a lens mounted on an optical apparatus such as a semiconductor optical inspection apparatus or a printed board laser processing apparatus.
  • the semiconductor wafer optical inspection device is a device for detecting foreign matter on the wafer, and manages the number of foreign matters. Since the size of foreign matter to be managed differs according to the semiconductor manufacturing process, the inspection apparatus has an optical magnification variable function. When the optical magnification is increased, a smaller foreign object can be detected. On the other hand, the field of view that can be detected by the sensor is also reduced, and thus the throughput is reduced. Therefore, in a semiconductor line, inspection is performed with a magnification increased only in a process that requires particularly fine foreign matter management.
  • the detection system of the inspection apparatus includes an objective lens and an imaging lens, and the magnification change is generally performed by changing the focal length of the imaging lens.
  • a plurality of optical inspection apparatuses are used.
  • an allowable value of the number of foreign matters is set in advance.
  • countermeasures such as cleaning of the manufacturing apparatus are taken.
  • an allowable value must be set for each inspection apparatus, which is a major obstacle to the operation of the inspection apparatus.
  • the sensitivity of the optical inspection device largely depends on the imaging performance of the detection system lens. Therefore, in order to reduce the sensitivity difference of the optical inspection apparatus, it is necessary to manage the imaging performance of the lens alone, particularly the wavefront aberration.
  • the Shack-Hartmann sensor is a sensor that divides and condenses the wavefront (phase distribution) of light incident on the sensor with an array lens, and picks it up with a two-dimensional sensor as an array image of multiple spots. An aberration coefficient is calculated.
  • FIG. 4A shows the relationship between the wavefront, the array lens, and the sensor surface. From the geometrical relationship, the wavefront can be obtained as shown in Equation 1.
  • FIG. 7B A spot array image displaced in accordance with Equation 1 is shown in FIG.
  • the coefficient for each wavefront aberration can be calculated by obtaining the center of gravity of the spot, calculating the amount of spot position deviation, and fitting to a polynomial expressing the wavefront aberration.
  • typical aberrations are shown in FIGS. (C) shows the defocus aberration expressed by Equation 2, (d) shows the third-order astigmatism expressed by Equation 3, and (e) shows the third-order astigmatism expressed by Equation 4.
  • FIG. 5 (f) shows the third-order spherical aberration expressed by Equation 5.
  • Wavefront aberration measurement by the Shack-Hartmann sensor is less susceptible to environmental changes such as air temperature changes and vibrations in the optical path, and can cope with local wavefront changes beyond the measurement wavelength generated by aspherical lenses, etc. This is advantageous compared to the conventional interferometer method.
  • the projection lens of the exposure apparatus is the measurement object.
  • the detection system lens of the optical inspection apparatus includes an objective lens and an imaging lens.
  • the focal length of the imaging lens changes because the magnification is variable. This is realized by replacing the imaging lens or using a zoom lens.
  • the wavefront aberration can be measured with one set of the objective lens and the imaging lens as in the case of the projection lens, but the obtained aberration is the positive aberration generated by the objective lens and the negative aberration of the imaging lens.
  • the lens is changed to an imaging lens having a different focal length, the aberration may change greatly. Therefore, it is desirable to measure the aberration of the objective lens alone.
  • the objective lens alone does not form an image (it is an infinite system), a measurement method with a configuration different from the above known example is required.
  • an infinite f ⁇ lens is used as in the objective lens of the above-described semiconductor optical inspection apparatus.
  • parallel light is deflected by a galvanometer mirror installed at the pupil position of an f ⁇ lens and incident on the f ⁇ lens, thereby scanning the printed circuit board with a condensed beam.
  • the f ⁇ lens is a lens that is intentionally distorted so that the beam position on the printed circuit board is determined by the product f ⁇ of the light deflection angle ⁇ by the galvano mirror and the focal length of the f ⁇ lens. Since the f ⁇ lens is not an imaging lens, a measurement method different from the conventional imaging type is required.
  • the aberration of the f ⁇ lens affects the processing shape for each scanning position of the focused beam. Therefore, in order to obtain a uniform processing shape in the scanning range, it is necessary to manage the aberration (wavefront aberration). .
  • the measurement target lens is subjected to single measurement by another means such as an interferometer, and the measurement optical system is subtracted from the data including measurement optical system aberrations.
  • a method for calculating the aberration is disclosed.
  • Patent Document 2 only the lens to be measured is measured twice by changing its orientation, such as rotation, and the difference between the measured values is obtained to cancel the aberration of the measuring optical system, and the aberration of only the lens to be measured. A method of calculating is disclosed.
  • the pupil diameter may exceed the detection field of view of the Shack-Hartmann sensor. There is a problem that it cannot be measured.
  • One of the objects of the present invention is to solve the above-mentioned problems, and a wavefront aberration measurement method and wavefront aberration measurement capable of measuring aberration even for a lens having a large pupil that exceeds the visual field range of a Shack-Hartmann sensor that could not be measured conventionally. To provide an apparatus. Other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
  • ⁇ Large field of view is detected by scanning the Shack-Hartmann sensor to measure the wavefront aberration of the entire pupil.
  • a scanning method of the Shack-Hartmann sensor there are a method of scanning a two-dimensional sensor two-dimensionally by step and repeat, and a method of scanning one-dimensionally by a one-dimensional sensor that covers the pupil diameter.
  • the stage yawing, pitching, and straightness affect the spot condensing position error during the entire pupil composition. Therefore, it is necessary to measure the yawing, pitching, and straightness of the stage with high accuracy and correct the acquired data.
  • a method using a laser length measuring device and a method using an autocollimator.
  • a stage movement command for scanning the stage is input.
  • the stage is moved to a predetermined position in accordance with the input stage movement command.
  • the pupil is imaged by the Shack-Hartmann sensor at the predetermined stage position moved in the second step.
  • the value of the laser length measuring device is recorded at the predetermined stage movement location moved in the second step.
  • the yaw amount, pitching amount, and straightness of the stage are calculated from the recorded laser length measurement value, and the stage error is corrected for the data imaged by the Shack-Hartmann sensor.
  • the corrected data are joined together to create imaging data in a large field of view and perform aberration analysis.
  • a wavefront aberration measuring method characterized in that aberration measurement is performed in a visual field that exceeds the visual field of the Shack-Hartmann sensor by moving the Shack-Hartmann sensor in a plane, imaging, and joining acquired data.
  • a wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens, the light irradiating means for irradiating the lens with light, the Shack-Hartmann sensor for scanning a pupil position of the lens and imaging a plurality of areas, and the shack A stage mounted with a Hartmann sensor for scanning, spot displacement data calculating means for calculating a plurality of spot displacement data from a plurality of spot luminance images obtained by imaging a plurality of regions by the Shack-Hartmann sensor, and a moving amount of the stage And a plurality of spot displacement data obtained by the laser side length measuring device for measuring the tilt amount and the spot displacement data calculating means are corrected by using the moving amount and the tilt amount of the stage measured by the laser side length measuring device.
  • the spot coordinate data creating means for creating the spot coordinate data, and the created The pot coordinate data is wavefront aberration measuring apparatus characterized by having a wavefront aberration measuring means for measuring a wavefront aberration of the lens by analyzing leaf surface.
  • the wavefront aberration measuring apparatus according to (3) further comprising display means for displaying the wavefront aberration measured by the wavefront aberration measuring means.
  • Wavefront aberration on the array lens by moving the one-dimensional line sensor on the array lens, imaging, arranging the acquired luminance data of each line, and calculating the spot displacement amount from the arranged luminance data It is a wavefront aberration measuring method characterized by performing measurement.
  • a wavefront aberration measuring method for measuring a wavefront aberration of a lens wherein a plurality of regions are obtained by scanning a stage equipped with an array lens and a one-dimensional line sensor at a pupil position of the lens while irradiating the lens with light. , Calculating a plurality of luminance data from the obtained plurality of spot luminance images, measuring a moving amount and a tilt amount of the stage by a laser side lengther, and the plurality of luminance data, A step of calculating luminance data at a plurality of ideal imaging positions by correcting using the measured movement amount and tilt amount of the stage, and calculating the luminance data at the plurality of ideal imaging positions.
  • a wavefront aberration measuring method characterized by comprising the steps of: measuring a wavefront aberration of the lens spot coordinate data created in the above with wavefront analysis.
  • a wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens, the light irradiating means for irradiating the lens with light, a one-dimensional line sensor that scans a pupil position of the lens and images a plurality of regions, An array lens disposed at a pupil position of the lens independently of the one-dimensional line sensor, a stage that mounts and scans the one-dimensional line sensor, and a plurality of images obtained by imaging a plurality of regions by the one-dimensional line sensor Luminance data calculating means for calculating a plurality of luminance data from a spot luminance image, a laser side length measuring means for measuring the amount of movement and inclination of the stage, and a plurality of luminance data obtained by the luminance data calculating means, Means for calculating brightness data at a plurality of ideal imaging positions by correcting using the moving amount and tilting amount of the stage measured by the laser side lengther; Using the luminance data at the plurality of ideal imaging positions, the spot displacement data at the plurality of
  • the present invention it is possible to provide a wavefront aberration measuring method and a wavefront aberration measuring apparatus capable of measuring aberration even for a lens having a large pupil that exceeds the visual field range of a Shack-Hartmann sensor, which could not be measured conventionally.
  • FIG. 3 is a diagram showing a schematic configuration of the apparatus when viewed from the zx plane of the wavefront aberration measuring apparatus in the first embodiment. It is a figure which shows the structure of the vicinity of a Shack-Hartmann sensor when it sees from xy plane of a wavefront aberration measuring apparatus.
  • FIG. 3 is a diagram showing a flowchart of large field of view measurement in the first embodiment.
  • FIG. 4 is a movement image diagram of a sensor when a pupil is divided into nine images by a Shack-Hartmann sensor in the first embodiment. The movement amount (x, y axis) of the sensor stage input to the apparatus interface and the schedule of the movement order are shown. It is an image figure of the spot luminance image imaged based on the input schedule.
  • FIG. 5 is a diagram illustrating a method of calculating a stage error (xy in-plane rotation amount, x, y direction offset amount) from a laser length measuring device value measured when the stage is moved in the first embodiment. It is the figure which showed the calculation method of the x direction offset amount which generate
  • xy in-plane stage rotation It is the figure which showed the calculation method of the y direction offset amount generated with xy in-plane stage rotation.
  • FIG. 6 is a diagram illustrating a method of calculating a stage error (zx in-plane rotation amount) from a laser length measuring device value measured during stage movement in the first embodiment. It is the figure which showed the calculation method of the x direction offset amount generated with zx in-plane stage rotation.
  • FIG. 5 is a diagram illustrating a method of calculating a stage error (in-plane rotation amount) from a laser length measuring value measured when the stage is moved in the first embodiment. It is the figure which showed the calculation method of the y direction offset amount generated with a yz in-plane stage rotation.
  • FIG. 6 is a list of offset amounts and rotation amounts of spot positions of Shack-Hartmann sensors calculated from stage movement errors in the first embodiment.
  • FIG. 3 is a diagram showing an apparatus GUI in the first embodiment.
  • FIG. 10 is a diagram showing a schematic configuration of the apparatus when viewed from the zx plane of the wavefront aberration measuring apparatus in the second embodiment. It is a figure which shows the structure of a line sensor vicinity when it sees from xy plane of a wavefront aberration measuring apparatus.
  • FIG. 10 is a diagram showing a flowchart of large-field measurement in the second embodiment.
  • FIG. 10 is a movement image diagram of a sensor when a line sensor performs one-dimensional scanning on the pupil and picks up an image in the second embodiment. It is a figure which shows the coordinate by which the sensor images ideally. It is an image figure of the spot luminance image imaged based on the input schedule. It is a figure which shows the luminance data of each pixel imaged with the sensor. The value of the laser length measuring device at each imaging position is shown.
  • FIG. 10 is a diagram showing a flowchart of large-field measurement in the second embodiment.
  • FIG. 10 is a movement image diagram of a sensor when a line sensor performs one-dimensional scanning on the pupil and picks up an image in the second embodiment. It is a figure which shows the coordinate by which the sensor images ideally. It is an image figure of the spot luminance image imaged based on the input schedule. It is a figure which shows the luminance data of each pixel image
  • FIG. 10 is a diagram illustrating a method of calculating a stage error (xy in-plane rotation amount, x, y direction offset amount) from a laser length measuring value measured during stage movement in the second embodiment. It is the figure which showed the calculation method of the x direction offset amount which generate
  • FIG. 10 is a diagram illustrating a method of calculating a stage error (zx in-plane rotation amount) from a laser length measuring device value measured during stage movement in the second embodiment. It is the figure which showed the calculation method of the x direction offset amount generated with zx in-plane stage rotation.
  • FIG. 10 is a list of offset amounts and rotation amounts of spot positions of Shack-Hartmann sensors calculated from stage movement errors in the second embodiment. It is a figure which shows the positional relationship of the spot coordinate actually imaged, and the ideal coordinate which should be imaged when there is no stage movement error. It is a figure which shows the spot displacement amount in the ideal coordinate derived
  • FIG. 10 is a diagram showing a method of calculating luminance at ideal coordinates by interpolation from the luminance of coordinates actually captured in the second embodiment. It is the figure which showed the method of determining in which triangle the point which should be interpolated is contained. It is the figure which showed the method of performing brightness
  • FIG. 10 is a diagram showing an apparatus GUI in the second embodiment.
  • the Shack-Hartmann sensor it is the figure which showed the relationship between an incident wave front, an array lens, and a sensor surface. It is a figure which shows the spot image of a lens. It is a figure which shows a defocus aberration. It is a figure which shows astigmatism. It is a figure which shows a coma aberration. It is a figure which shows spherical aberration.
  • a Shack-Hartmann type measuring apparatus that measures the wavefront aberration of an infinite objective lens using a point light source
  • the aberration is measured in a large field of view by scanning the Shack-Hartmann sensor at the pupil position of the objective lens.
  • the wavefront aberration analysis in a large field of view is performed by correcting the pitching and yawing of the sensor mounting stage during scanning, correcting the focused spot position, and connecting the correction data.
  • FIG. 1 is an overall configuration diagram of the present embodiment.
  • FIG. 4A shows a device configuration diagram viewed from the zx plane
  • FIG. 4B shows a device configuration diagram of the periphery of the sensor 200 viewed from the top surface of the xy plane.
  • the parallel light emitted from the light source 100 is adjusted in beam diameter by the beam expander 101, bent by the mirror 102, and incident on the condenser lens 103.
  • the light source 100, the beam expander 101, the mirror 102, and the condensing lens 103 are mounted on the xyz stage 104 and have a configuration that can move along the x-axis, the y-axis, and the z-axis.
  • the light emitted from the condensing lens 103 is condensed once, becomes divergent light, and then enters the non-detection lens 400.
  • the non-detecting lens 400 is fixed by a stage 209.
  • the wavefront of the light that has passed through the non-detecting lens 400 is measured by the Shack-Hartmann sensor 200.
  • the Shack-Hartmann sensor 200 is fixed to the xy stage 208 and can be scanned in the xy direction in order to measure the aberration of the entire pupil surface of the non-analyzing lens 400.
  • Laser length measuring devices 201 and 202 are mounted on the stage 209 to measure the amount of movement of the stage 208 in the x-axis direction, the straightness when moving in the y-axis direction, and the tilt in the zx plane.
  • a mirror 203 is mounted on the stage 208.
  • Laser length measuring instruments 204, 205, and 206 are mounted on the stage 209 to measure the amount of movement of the stage in the y-axis direction, straightness when moving in the x-axis direction, tilt in the xy plane, and tilt in the yz plane.
  • the length measuring reflection mirror 207 is mounted on the stage 208.
  • the device input interface 500 inputs a schedule such as a light source position, an imaging position of the Shack-Hartmann sensor, and a moving order from the outside.
  • a light source stage movement command 501 is transmitted to the light source stage controller 300, and the light source stage 104 moves.
  • a sensor stage movement command 502 is transmitted to the sensor stage control device 301, and the sensor stage 208 moves.
  • a sensor imaging command 503 is transmitted to the sensor control device 302, and the sensor 200 performs imaging.
  • a laser length measuring device value recording command 504 is transmitted to the laser length measuring device control device 303, and the values of the laser length measuring devices 201, 202, 204, 205, 206 are recorded. 502 to 504 are repeatedly executed according to the imaging schedule.
  • the stage movement error correction is performed on the imaging data using the values of each laser length measuring instrument recorded at each imaging position, and the data obtained by joining the large field of view. Is created.
  • Aberration analysis is performed on the large visual field data, and the result of the analysis is output to the apparatus output interface screen 506.
  • Fig. 2 shows the details of the flowchart for large-field image integration.
  • Reference numerals 500, 501, 502, 503, 504, and 506 are the same as those described in FIG.
  • the details of the coordinate integration calculation 505 will be described.
  • the center of gravity of the spot is calculated from the spot luminance image captured by the sensor, and the amount of displacement from the reference position of the spot is calculated.
  • the yawing amount, pitching amount, and straightness of the stage are calculated from the values of the laser length measuring device, and the offset amount and the rotation amount from the ideal imaging position of the sensor that accompany it are calculated.
  • the spot displacement at the ideal imaging position when no stage error occurs is calculated by interpolation using the spot displacement calculated in 5051.
  • the image pickup positions are connected using the spot displacement amount at the ideal image pickup position calculated by 5053.
  • FIG. 3 is a diagram showing an example of an input imaging schedule, acquired spot displacement data, and recorded laser length measuring device values.
  • FIG. 4A shows a moving image diagram of the sensor when the pupil is imaged by dividing it into nine. Numbers (1) to (9) in the figure indicate the imaging order.
  • FIG. 4B shows the movement coordinates (X, Y) of the sensor stage center input to the apparatus interface based on FIG.
  • FIG. 2C shows an image diagram of a spot luminance image captured based on an input schedule.
  • FIG. 4D shows the result of calculating the center of gravity of the spot from the captured spot luminance image, and calculating the reference coordinates of the spot and the amount of displacement from the spot.
  • the coordinate origin is taken as the sensor center.
  • FIG. 4 (e) shows the value of the laser length measuring device at each imaging position.
  • x1, x2, y1, y2, and y3 respectively correspond to the output values of the laser length measuring devices 201, 202, 203, 204, 205, and 206 shown in FIG.
  • FIG. 4 is a diagram for explaining a method for calculating an offset amount and a rotation amount generated in the xy plane using laser length measuring devices 202, 205, and 206 as an example.
  • x ′ and y ′ are the movement amounts of the stage actually moved in response to the stage movement command (X, Y) shown in FIG.
  • the enlarged view of the figure shows the relationship between the laser length measuring devices 205 and 206 and the rotation amount ⁇ .
  • the amount of rotation in the xy plane is expressed by Equation 6 using y2 and y3 and the mounting interval d between the laser length measuring devices.
  • the amount of movement of the laser length measuring device in the y direction is an average value of y2 and y3 as shown in Equation 7.
  • FIG. 5B shows the x-direction offset amount generated when the stage rotates
  • FIG. 6C shows the y-direction offset amount similarly generated when the stage rotates.
  • the x-direction offset amount ⁇ x and the y-direction offset amount ⁇ y are expressed by Equations 8 and 9, respectively.
  • Equations 8 and 9 the relationship between the laser length measuring device values x2 and y (average of y2 and y3) and the actual movement amounts x ′ and y ′ of the stage are Equations 10 and 11.
  • the actual movement amounts x ′ and y ′ of the stage can be obtained from Equations 12 and 13 from the values x2, y2, and y3 of the laser length measuring device. Become.
  • the offset amount generated at this time is expressed by Equations 14 and 15 based on the difference between the stage movement command (X, Y) in FIG. 3B and the actual movement amount (x ′, y ′) of the stage. It can be obtained.
  • FIG. 5 is a diagram for explaining a calculation method of an offset amount in the xy plane generated by rotation in the zx plane by calculating the rotation amount generated in the zx plane using the laser length measuring devices 201 and 202.
  • values measured by the laser length measuring devices 201 and 202 are assumed to be x1 and x2, respectively.
  • the enlarged view of the figure shows the relationship between the laser length measuring devices 201 and 202 and the rotation amount ⁇ 2 .
  • rotational amount in zx plane is x1, x2 and, using a mounting distance d 2 between the laser measurement device, shown as Formula 16.
  • FIG. 6 is a diagram for explaining a calculation method of an offset amount in the xy plane generated by the rotation in the yz plane by calculating the rotation amount generated in the yz plane using the laser length measuring devices 204 and 206.
  • values measured by the laser length measuring devices 204 and 206 are y1 and y3, respectively. Indicating the amount of rotation theta 3 the relationship between the laser length measuring machine 204 and 206 in FIG enlarged view. rotational amount in the yz plane y1, y3 and, using a mounting distance d 3 between the laser measurement device, shown as Formula 18.
  • Equation 6 the rotation amount of the imaging position resulting from the yawing, pitching, and straightness of the stage is expressed by Equation 6, and the offset amounts are expressed by Equation 20 and Equation 21.
  • FIG. 7 shows the amount of spot displacement at an ideal imaging position with no stage error based on the offset amount and rotation amount obtained above, using the spot displacement amount data shown in FIG. A method of obtaining by interpolation will be shown.
  • the ideal imaging position without any stage error is derived from the offset amount and the rotation amount at each imaging position shown in FIG.
  • x off and y off indicate the offset amount
  • indicates the rotation amount
  • X pos and y pos indicate spot coordinates actually captured
  • x and y indicate ideal coordinates when there is no stage error.
  • FIG. 4B shows the positional relationship between the captured spot coordinates and ideal coordinates.
  • the black circles in the figure indicate the spot positions actually captured, and the solid line arrows indicate the amount of spot displacement at those positions.
  • a white circle indicates a spot position in ideal coordinates, and a dotted arrow indicates a spot displacement amount at the position.
  • a method of calculating the spot displacement amount at the ideal coordinates by linear interpolation will be described below using the enlarged view of FIG. Assuming that the ideal coordinates of the spot are x and y, it is possible to calculate the x-direction spot displacement by Equation 23 and the y-direction spot displacement by Equation 24 using the spot displacement actually captured at the four surrounding points.
  • FIG. 8 shows a GUI display example of the device output interface 506.
  • the input is the coordinate setting parameter of the light source position and the sensor stage imaging schedule, and the output is the result of wavefront analysis performed in a large field of view.
  • the wavefront aberration as a result of the wavefront analysis may be a gradation of light and shade according to the amount of aberration, or may be displayed in different colors.
  • FIG. 9 is an overall configuration diagram of the second embodiment.
  • FIG. 4A shows a device configuration diagram viewed from the zx plane
  • FIG. 4B shows a device configuration diagram of the periphery of the sensor 212 viewed from the xy plane.
  • the apparatus configuration is similar to the configuration described with reference to FIG. 1, and the description of the same part is omitted, and different parts are mainly described.
  • the main differences are that the sensor is a one-dimensional line sensor 212 and that the array lens 213 is set on the non-detecting lens pupil independently of the sensor.
  • FIG. 4C shows the relationship between the array lens 213 and the line sensor 212 on the pupil plane.
  • the array lens 213 is sized to cover the entire pupil surface.
  • the line sensor 212 captures an image while moving in the y-axis direction with the array lens 213 kept at a constant height away from the focal length of the array lens. With this method, it is possible to measure aberrations in a large field of view. Since the line sensor has only one pixel in the y-axis direction and is not affected by the pitching of the stage in the y-axis direction, the laser length measuring device 204 used in FIG. 1 can be omitted in this configuration.
  • the device input / output interface and control are also similar to the configuration described in FIG. 1, and the description of the same part is omitted, and different parts will be mainly described below.
  • the coordinate integration calculation of 605 in FIG. 9A is different from 505 in FIG. 1A, the details will be described with reference to FIG.
  • Fig. 10 shows the details of the flowchart for large-field image integration.
  • 600, 601, 602, 603, 604, and 606 are the same as the contents of 500, 501, 502, 503, 504, and 506 in FIGS.
  • details of the coordinate integration calculation 605 will be described.
  • 6051 an offset amount and a rotation amount of the sensor at each imaging position are calculated from the values measured by the laser length measuring device.
  • 6052 based on the offset amount and the rotation amount calculated in 6051, luminance data at an ideal imaging position when no stage error occurs is calculated by interpolation from the luminance data obtained by imaging in 603.
  • the spot centroid is calculated from the luminance data at the ideal imaging position calculated by 6052, and the spot displacement is calculated.
  • 605 coordinate integration calculations can be performed.
  • FIG. 11 is a diagram showing an example of an imaging schedule to be input, acquired spot displacement data, and recorded laser length measuring device values.
  • FIG. 4A shows an image of movement of the sensor when performing stage scanning in the y direction. The center coordinate of the sensor is set to X_pos, data acquisition starts from the y-axis coordinate Ys_pos, images are taken at the movement interval Ds, and acquisition ends at Ye_pos.
  • FIG. 4B shows ideal imaging coordinates obtained based on the schedule of FIG. Here, a column of sensor center coordinates surrounded by a dotted line in the figure is referred to as (X 0 , Y 0 ).
  • FIG. 2C shows an image diagram of spot luminance images picked up based on the schedule of FIG.
  • FIG. 4D shows the captured luminance data.
  • FIG. 4 (e) shows the value of the laser length measuring device at each imaging position.
  • x1, x2, y2, and y3 respectively correspond to the laser length measuring devices 201, 202, 205,
  • FIG. 12 is a diagram for explaining a method for calculating an offset amount and a rotation amount generated in the xy plane using, for example, laser length measuring devices 202, 205, and 206.
  • values measured by the laser length measuring devices 202, 205, and 206 are x2, y2, and y3, respectively.
  • the movement amounts of the stage actually moved with respect to the sensor center movement (X 0 , Y 0 ) shown in FIG. 11B are x ′ and y ′, and the rotation amount is ⁇ .
  • the enlarged view of the figure shows the relationship between the laser length measuring devices 205 and 206 and the rotation amount ⁇ . It is possible to obtain the movement amounts x ′ and y ′ of the actual movement of the stage from the values x2, y2 and y3 of the laser length measuring device as in Expressions 25 and 26.
  • ⁇ and y are obtained by Expression 27 and Expression 28, respectively.
  • Equation 29 The offset amount generated at this time is given by Equations 29 and 30 based on the difference between the ideal imaging coordinates (X 0 , Y 0 ) at the sensor center in FIG. 11B and the actual stage movement amounts (x ′, y ′). It becomes possible to ask.
  • FIG. 13 is a diagram for explaining a method of calculating the amount of offset in the xy plane generated by the rotation in the zx plane by calculating the amount of rotation generated in the zx plane using the laser length measuring devices 201 and 202.
  • values measured by the laser length measuring devices 201 and 202 are assumed to be x1 and x2, respectively.
  • the enlarged view of the figure shows the relationship between the laser length measuring devices 201 and 202 and the rotation amount ⁇ 2 .
  • rotational amount in zx plane is x1, x2 and, using a mounting distance d 2 between the laser measurement device, shown as Formula 31.
  • Equation 32 the offset amount in the xy plane is expressed by Equation 32.
  • Equation 27 the rotation amount of the imaging position resulting from the yawing, pitching, and straightness of the stage is expressed by Equation 27, and the offset amounts are expressed by Equation 33 and Equation 34.
  • FIG. 14 shows a method of calculating an actually imaged position from an ideal imaged position in a state where there is no stage error based on the offset amount and the rotation amount obtained above. From the list of offset amount and rotation amount at each imaging position shown in FIG.
  • FIG. 2B is a diagram showing the relationship between the captured ideal coordinates and the actual captured coordinates.
  • FIG. 11C shows coordinate data actually captured by performing coordinate transformation of Expression 35 with respect to the ideal coordinates in FIG.
  • FIG. 15 shows an embodiment for calculating the luminance at the ideal coordinates by interpolation from the luminance of the actually captured coordinates.
  • Three-point interpolation is used for interpolation.
  • Fig. 3 (a) in selecting three points, one triangle corresponding to the value of the grid point of the ideal coordinate and four triangles formed by the four points above and below are candidates, and which triangle has the grid point. It is determined by determining whether it is included. The determination is made based on whether the line segment connecting the center of the triangle and the lattice point intersects the side of the triangle. For example, in the case of the triangles (1, 2), (2, 1), and (2, 2), the center of the triangle is obtained by Equations 36 and 37, respectively.
  • Equation 39 the equation representing the straight line is Equation 39,
  • Equation 41 a method for obtaining the luminance of a lattice point from each triangular point including the lattice point found by Equation 40 by linear interpolation will be described with reference to FIG. Linear interpolation is performed by Equation 41.
  • V represents the luminance vector from the points constituting the triangle to the grid point to be obtained
  • V1 represents the luminance vector from the points constituting the triangle to other component points
  • V2 is already from the points constituting the triangle.
  • the luminance vector to one constituent point is shown.
  • the coefficients ⁇ and ⁇ may be obtained.
  • a vector projected on the xy coordinates is considered so as to be obtained without including the value of the luminance value z (even if projected, ⁇ and ⁇ take the same value because they are linear).
  • Equation 52 Since the luminance value z is given by Equation 41, Equation 52 is obtained.
  • the luminance value of the lattice point included in the triangle is obtained by interpolation.
  • the center of gravity of the spot is calculated from the obtained luminance image, and the displacement amount of the spot shown in FIG.
  • Zernike polynomial fitting is performed on this data, and wavefront analysis such as spherical aberration, coma aberration, astigmatism, and spherical aberration is performed.
  • FIG. 16 shows a GUI display example of the device output interface 606.
  • the input is the light source position setting parameter and the line sensor stage movement schedule
  • the output is the result of wavefront analysis performed in a large field of view.
  • the wavefront aberration as a result of the wavefront analysis may be a gradation of light and shade according to the amount of aberration, or may be displayed in different colors.
  • the wavefront aberration of the lens can be managed, the foreign matter detection sensitivity and the processing shape of the semiconductor optical inspection apparatus and the printed circuit board laser processing apparatus are made uniform, and a plurality of optical components in the semiconductor line
  • the operational efficiency of the inspection apparatus is improved, and the effects of improving the quality of laser processing are obtained.
  • SYMBOLS 100 Light source, 101 ... Beam expander, 102 ... Mirror, 103 ... Condensing lens, 104 ... Light source xyz stage, 200 ... Shack-Hartmann sensor, 201, 202, 204 , 205, 206 ... laser length measuring device, 203, 207 ... laser length measuring device reflecting mirror, 208 ... xy stage for Shack-Hartmann sensor, 209 ... non-detecting lens fixed stage, 210 ... Array lens, 211 ... Shack-Hartmann sensor light receiving surface, 212 ... Line sensor, 213 ... Array lens, 300 ... xyz stage controller for light source, 301 ...
  • xy stage controller for sensor 302 ... Shack-Hartmann sensor control device, 303 ... Laser length measuring device control device, 400 ... Non-detection lens, 500 ... Device input interface, 501 ... Xyz stage movement command for light source, 502 ... ⁇ Xy stay for Shack-Hartmann sensor Move command, 503 ... Shack-Hartmann sensor imaging command, 504 ... Laser length measurement value reading command, 505 ... Coordinate integration calculation processing, 5051 ... Spot displacement calculation processing, 5052 ... Stage offset amount , Rotation amount calculation processing, 5053 ... spot displacement calculation processing by interpolation, 5054 ... coordinate integration processing, 506 ... device output interface, 600 ... device input interface, 601 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Since the pupil diameter of the objective lens used for a semiconductor inspection device or a laser machining device sometimes exceeds the field of view detected by a Shack-Hartmann sensor, the aberration of the whole pupil cannot be measured by a single image-pickup. In order to measure the aberration of the whole pupil, the large field of view is detected by scanning the Shack-Hartmann sensor.

Description

波面収差測定方法及びその装置Wavefront aberration measuring method and apparatus
 本発明は、半導体光学検査装置やプリント板レーザ加工装置等の光学装置に搭載されたレンズの波面収差測定方法及びその装置に関する。 The present invention relates to a method and apparatus for measuring wavefront aberration of a lens mounted on an optical apparatus such as a semiconductor optical inspection apparatus or a printed board laser processing apparatus.
 半導体ウエハの光学検査装置は、ウエハ上の異物を検出するための装置であり、異物個数を管理する。半導体の製造工程に応じて管理したい異物サイズが異なるため、検査装置には光学的倍率可変機能が備わっている。光学的倍率を拡大すると、より小さな異物が検出可能になるが、一方でセンサで検出できる視野も小さくなるため、スループットが小さくなる。従って、半導体ラインでは、特に微細な異物管理が必要な工程に限り、倍率を拡大して検査を行っている。検査装置の検出系は、対物レンズと結像レンズから構成されており、倍率変化は一般的に、結像レンズの焦点距離を変えることによって行っている。 The semiconductor wafer optical inspection device is a device for detecting foreign matter on the wafer, and manages the number of foreign matters. Since the size of foreign matter to be managed differs according to the semiconductor manufacturing process, the inspection apparatus has an optical magnification variable function. When the optical magnification is increased, a smaller foreign object can be detected. On the other hand, the field of view that can be detected by the sensor is also reduced, and thus the throughput is reduced. Therefore, in a semiconductor line, inspection is performed with a magnification increased only in a process that requires particularly fine foreign matter management. The detection system of the inspection apparatus includes an objective lens and an imaging lens, and the magnification change is generally performed by changing the focal length of the imaging lens.
 大量のウエハを製造するラインでは、複数の光学検査装置が使用されている。各製造工程で異物個数の許容値が予め設定されており、許容値を超えると製造装置のクリーニング等、対応策がとられる。ここで、光学検査装置A、Bの感度(検出可能な異物サイズ)が異なると、許容値を検査装置毎に設定しなければならず、検査装置運用の大きな障害となる。光学検査装置の感度は、検出系のレンズの結像性能に大きく依存する。従って、光学検査装置の感度差を低減するためには、レンズ単体の結像性能、特に波面収差の管理を行う必要がある。 In a line that manufactures a large number of wafers, a plurality of optical inspection apparatuses are used. In each manufacturing process, an allowable value of the number of foreign matters is set in advance. When the allowable value is exceeded, countermeasures such as cleaning of the manufacturing apparatus are taken. Here, if the optical inspection apparatuses A and B have different sensitivities (detectable foreign material sizes), an allowable value must be set for each inspection apparatus, which is a major obstacle to the operation of the inspection apparatus. The sensitivity of the optical inspection device largely depends on the imaging performance of the detection system lens. Therefore, in order to reduce the sensitivity difference of the optical inspection apparatus, it is necessary to manage the imaging performance of the lens alone, particularly the wavefront aberration.
 レンズの波面収差測定方法としては、特許文献1に記載のように、シャックハルトマンセンサを用いる方法が知られている。シャックハルトマンセンサの原理について図17を用いて説明する。シャックハルトマンセンサとは、センサに入射する光の波面(位相分布)をアレイレンズで分割、集光し、複数スポットの配列像として2次元センサで撮像するセンサであり、スポット配列の位置ずれから波面収差係数を算出する。同図(a)は波面とアレイレンズ、センサ面との関係を示している。幾何学的な関係から波面は数式1のように求めることが可能となる。 As a method for measuring the wavefront aberration of a lens, a method using a Shack-Hartmann sensor is known as described in Patent Document 1. The principle of the Shack-Hartmann sensor will be described with reference to FIG. The Shack-Hartmann sensor is a sensor that divides and condenses the wavefront (phase distribution) of light incident on the sensor with an array lens, and picks it up with a two-dimensional sensor as an array image of multiple spots. An aberration coefficient is calculated. FIG. 4A shows the relationship between the wavefront, the array lens, and the sensor surface. From the geometrical relationship, the wavefront can be obtained as shown in Equation 1.
Figure JPOXMLDOC01-appb-M000001

数式1に従い位置ずれしたスポット配列像を同図(b)に示す。同図(b)に対して、スポット重心を求め、スポット位置ずれ量を算出し、波面収差を表現する多項式にフィッティングさせることによって、各波面収差に対する係数を算出することが可能となる。
  ここで、代表的な収差を同図(c)~(f)に示す。同図(c)は数式2で表されるデフォーカス収差を示し、同図(d)は数式3で示される3次非点収差を示し、同図(e)は数式4で示される3次コマ収差を示し、同図(f)は数式5で示される3次球面収差を示す。
Figure JPOXMLDOC01-appb-M000001

A spot array image displaced in accordance with Equation 1 is shown in FIG. With respect to FIG. 7B, the coefficient for each wavefront aberration can be calculated by obtaining the center of gravity of the spot, calculating the amount of spot position deviation, and fitting to a polynomial expressing the wavefront aberration.
Here, typical aberrations are shown in FIGS. (C) shows the defocus aberration expressed by Equation 2, (d) shows the third-order astigmatism expressed by Equation 3, and (e) shows the third-order astigmatism expressed by Equation 4. FIG. 5 (f) shows the third-order spherical aberration expressed by Equation 5.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005

 シャックハルトマンセンサによる波面収差測定は、光路の空気の温度変化や振動等の環境変化に影響されにくい点と、非球面レンズ等で生じる測定波長以上の局所的な波面変化にも対応できる点で、従来、主流であった干渉計による方式と比べ、有利である。この公知例では、露光装置の投影レンズが測定対象となっている。一方、光学検査装置の検出系のレンズは、対物レンズと結像レンズより成る。
Figure JPOXMLDOC01-appb-M000005

Wavefront aberration measurement by the Shack-Hartmann sensor is less susceptible to environmental changes such as air temperature changes and vibrations in the optical path, and can cope with local wavefront changes beyond the measurement wavelength generated by aspherical lenses, etc. This is advantageous compared to the conventional interferometer method. In this known example, the projection lens of the exposure apparatus is the measurement object. On the other hand, the detection system lens of the optical inspection apparatus includes an objective lens and an imaging lens.
 上述のように、倍率可変のため、結像レンズの焦点距離が変化する。これは結像レンズを交換するか、ズームレンズにすることによって実現される。波面収差は、投影レンズのように、対物レンズと結像レンズを1セットで測定することもできるが、得られた収差は、対物レンズで発生したプラスの収差を、結像レンズのマイナスの収差でキャンセルされた結果の可能性もあり、この場合、異なる焦点距離の結像レンズに変えると、収差が大きく変化する可能性がある。従って、対物レンズ単体の収差測定が望ましい。ただし、対物レンズ単体では結像しない(無限系である)ので、上記公知例とは異なる構成での測定方法が必要となる。 As mentioned above, the focal length of the imaging lens changes because the magnification is variable. This is realized by replacing the imaging lens or using a zoom lens. The wavefront aberration can be measured with one set of the objective lens and the imaging lens as in the case of the projection lens, but the obtained aberration is the positive aberration generated by the objective lens and the negative aberration of the imaging lens. In this case, if the lens is changed to an imaging lens having a different focal length, the aberration may change greatly. Therefore, it is desirable to measure the aberration of the objective lens alone. However, since the objective lens alone does not form an image (it is an infinite system), a measurement method with a configuration different from the above known example is required.
 プリント板用のレーザ加工装置においても、上記の半導体用光学検査装置の対物レンズと同様、無限系のfθレンズが使われている。この装置は、fθレンズの瞳位置に設置されたガルバノミラーで平行光を偏向し、fθレンズに入射させることで、プリント基板上を集光ビームで走査する。fθレンズは、ガルバノミラーによる光の偏向角θとfθレンズの焦点距離の積fθでプリント基板上のビーム位置が決まるよう、意図的な歪みを与えられたレンズである。fθレンズも結像レンズではないので、従来の結像型と異なる測定法が必要となる。レーザ加工装置において、fθレンズの収差は、集光ビームの走査位置毎の加工形状に影響を及ぼすので、走査範囲で均一な加工形状を得るには、収差(波面収差)を管理する必要がある。 In the laser processing apparatus for printed boards, an infinite fθ lens is used as in the objective lens of the above-described semiconductor optical inspection apparatus. In this apparatus, parallel light is deflected by a galvanometer mirror installed at the pupil position of an fθ lens and incident on the fθ lens, thereby scanning the printed circuit board with a condensed beam. The fθ lens is a lens that is intentionally distorted so that the beam position on the printed circuit board is determined by the product fθ of the light deflection angle θ by the galvano mirror and the focal length of the fθ lens. Since the fθ lens is not an imaging lens, a measurement method different from the conventional imaging type is required. In the laser processing apparatus, the aberration of the fθ lens affects the processing shape for each scanning position of the focused beam. Therefore, in order to obtain a uniform processing shape in the scanning range, it is necessary to manage the aberration (wavefront aberration). .
 上記のシャックハルトマンセンサを用いた波面収差測定では、測定対象レンズの収差の他に、測定光学系のレンズアレイやリレーレンズの収差を含んだ収差が測定される。そこで、特許文献1では、測定対象レンズを干渉計他、別手段で単体計測を行っておき、測定光学系収差を含んだデータから、単体での対象レンズのデータを差し引くことによって、測定光学系収差を算出する手法が開示されている。 In the wavefront aberration measurement using the above Shack-Hartmann sensor, in addition to the aberration of the measurement target lens, the aberration including the aberration of the lens array of the measurement optical system and the relay lens is measured. Therefore, in Patent Document 1, the measurement target lens is subjected to single measurement by another means such as an interferometer, and the measurement optical system is subtracted from the data including measurement optical system aberrations. A method for calculating the aberration is disclosed.
 一方、特許文献2では、測定対象レンズのみを、回転等、姿勢変化させて2回測定し、各測定値の差分を求めることにより、測定光学系の収差をキャンセルし、測定対象レンズのみの収差を算出する方法が開示されている。 On the other hand, in Patent Document 2, only the lens to be measured is measured twice by changing its orientation, such as rotation, and the difference between the measured values is obtained to cancel the aberration of the measuring optical system, and the aberration of only the lens to be measured. A method of calculating is disclosed.
特開2004-14764号公報JP 2004-14764 A 特開2006-30016号公報JP 2006-30016 A
 しかし、半導体検査装置やレーザ加工装置に用いられる対物レンズの場合は、その瞳径がシャックハルトマンセンサの検出視野を超える場合があるので、1回の撮像では非検レンズの瞳全体の波面収差を測定することはできないという問題がある。 However, in the case of an objective lens used in a semiconductor inspection apparatus or a laser processing apparatus, the pupil diameter may exceed the detection field of view of the Shack-Hartmann sensor. There is a problem that it cannot be measured.
 本発明の目的の一つは、上記課題を解決し、従来測定できなかったシャックハルトマンセンサの視野範囲を超える大きな瞳を持つレンズに対しても収差測定が可能な波面収差測定方法及び波面収差測定装置を提供することにある。
  また、本発明の他の目的及び新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
One of the objects of the present invention is to solve the above-mentioned problems, and a wavefront aberration measurement method and wavefront aberration measurement capable of measuring aberration even for a lens having a large pupil that exceeds the visual field range of a Shack-Hartmann sensor that could not be measured conventionally. To provide an apparatus.
Other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
 瞳全体の波面収差を測定するために、シャックハルトマンセンサを走査することによって、大視野検出を行う。シャックハルトマンセンサの走査方法としては、2次元センサをステップ&リピートで2次元的に走査する方法と、瞳径をカバーする1次元センサにより、1次元的に走査する方法がある。 大 Large field of view is detected by scanning the Shack-Hartmann sensor to measure the wavefront aberration of the entire pupil. As a scanning method of the Shack-Hartmann sensor, there are a method of scanning a two-dimensional sensor two-dimensionally by step and repeat, and a method of scanning one-dimensionally by a one-dimensional sensor that covers the pupil diameter.
 シャックハルトマンセンサが搭載されたステージ走査を行う場合、ステージのヨーイング、ピッチング、真直度が瞳全域合成時のスポット集光位置の誤差に影響を与える。そこで、ステージのヨーイング、ピッチング、真直度を高精度に測定し、取得データに補正を行う必要がある。ヨーイング、ピッチング、真直度の測定には、レーザ測長器を用いる方法や、オートコリメータを用いる方法がある。 When performing stage scanning with a Shack-Hartmann sensor, the stage yawing, pitching, and straightness affect the spot condensing position error during the entire pupil composition. Therefore, it is necessary to measure the yawing, pitching, and straightness of the stage with high accuracy and correct the acquired data. For measuring yawing, pitching, and straightness, there are a method using a laser length measuring device and a method using an autocollimator.
 以下、シャックハルトマンセンサの視野範囲を超えた大視野の収差測定するための手順
を述べる。第1のステップとして、ステージを走査するためのステージ移動命令を入力する。第2のステップとして、入力されたステージ移動命令に従い、ステージを所定の位置に移動させる。第3のステップとして、第2のステップで移動した所定のステージ位置にてシャックハルトマンセンサにより瞳の撮像を行う。第4のステップとして、第2のステップで移動した所定のステージ移動箇所にてレーザ測長器の値を記録する。第5のステップとして、記録されたレーザ測長器の値からステージのヨーイング量、ピッチング量、真直度を算出し、シャックハルトマンセンサによって撮像されたデータに対してステージ誤差の補正を行う。第6のステップとして、補正されたデータのつなぎ合わせを行い、大視野での撮像データを作成し、収差解析を行う。
Hereinafter, a procedure for measuring aberrations in a large visual field that exceeds the visual field range of the Shack-Hartmann sensor will be described. As a first step, a stage movement command for scanning the stage is input. As a second step, the stage is moved to a predetermined position in accordance with the input stage movement command. As a third step, the pupil is imaged by the Shack-Hartmann sensor at the predetermined stage position moved in the second step. As a fourth step, the value of the laser length measuring device is recorded at the predetermined stage movement location moved in the second step. As a fifth step, the yaw amount, pitching amount, and straightness of the stage are calculated from the recorded laser length measurement value, and the stage error is corrected for the data imaged by the Shack-Hartmann sensor. As a sixth step, the corrected data are joined together to create imaging data in a large field of view and perform aberration analysis.
 さらに、本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次の通りである。
(1)シャックハルトマンセンサを平面内で移動し、撮像を行い、取得データをつなぎ合わせることによって、シャックハルトマンセンサの視野以上の視野での収差測定を行うことを特徴とする波面収差測定方法である。
(2)シャックハルトマンセンサの視野以上の瞳径を有するレンズの波面収差を測定する波面収差測定方法であって、前記レンズに光を照射させながら、前記シャックハルトマンセンサを搭載したステージを前記レンズの瞳位置で走査させて複数領域を撮像し、得られた複数のスポット輝度画像から複数のスポット変位データを算出するステップと、レーザ側長器により前記ステージの移動量及び傾き量を測定するステップと、前記複数のスポット変位データを、前記測定されたステージの移動量及び傾き量を用いて補正してつなぎ合わせ、スポット座標データを作成するステップと、前記作成されたスポット座標データを波面解析して前記レンズの波面収差を測定するステップと、を有することを特徴とする波面収差測定方法である。
(3)レンズの波面収差を測定する波面収差測定装置であって、前記レンズに光を照射する光照射手段と、前記レンズの瞳位置で走査され複数領域を撮像するシャックハルトマンセンサと、前記シャックハルトマンセンサを搭載して走査するステージと、前記シャックハルトマンセンサによる複数領域の撮像により得られた複数のスポット輝度画像から複数のスポット変位データを算出するスポット変位データ算出手段と、前記ステージの移動量及び傾き量を測定するレーザ側長器と、前記スポット変位データ算出手段により得られた複数のスポット変位データを、前記レーザ側長器にて測定されたステージの移動量及び傾き量を用いて補正してつなぎ合わせ、スポット座標データを作成するスポット座標データ作成手段と、前記作成されたスポット座標データを葉面解析して前記レンズの波面収差を測定する波面収差測定手段と、を有することを特徴とする波面収差測定装置である。
(4)(3)記載の波面収差測定装置であって、さらに、前記波面収差測定手段により測定された波面収差を表示する表示手段とを有することを特徴とする波面収差測定装置である。
(5)アレイレンズ上を1次元ラインセンサが移動し、撮像を行い、各ラインの取得輝度データを配列し、配列された輝度データからスポット変位量を算出することによって、アレイレンズ上の波面収差測定を行うことを特徴とする波面収差測定方法である。
(6)レンズの波面収差を測定する波面収差測定方法であって、前記レンズに光を照射させながら、アレイレンズと1次元ラインセンサを搭載したステージを前記レンズの瞳位置で走査させて複数領域を撮像し、得られた複数のスポット輝度画像から複数の輝度データを算出するステップと、レーザ側長器により前記ステージの移動量及び傾き量を測定するステップと、前記複数の輝度データを、前記測定されたステージの移動量及び傾き量を用いて補正して、複数の理想的な撮像位置での輝度データを算出するステップと、前記算出された複数の理想的な撮像位置での輝度データを用いて、複数の理想的な撮像位置でのスポット変位データを算出し、当該複数の理想的な撮像位置でのスポット変位データをつなぎ合わせ、スポット座標データを作成するステップと、前記作成されたスポット座標データを波面解析して前記レンズの波面収差を測定するステップと、を有することを特徴とする波面収差測定方法である。
(7)レンズの波面収差を測定する波面収差測定装置であって、前記レンズに光を照射する光照射手段と、前記レンズの瞳位置で走査され複数領域を撮像する1次元ラインセンサと、前記1次元ラインセンサとは独立にレンズの瞳位置に配置されたアレイレンズと、前記1次元ラインセンサを搭載して走査するステージと、前記1次元ラインセンサによる複数領域の撮像により得られた複数のスポット輝度画像から複数の輝度データを算出する輝度データ算出手段と、前記ステージの移動量及び傾き量を測定するレーザ側長器と、前記輝度データ算出手段により得られた複数の輝度データを、前記レーザ側長器にて測定されたステージの移動量及び傾き量を用いて補正して、複数の理想的な撮像位置での輝度データを算出する手段と、前記算出された複数の理想的な撮像位置での輝度データを用いて、複数の理想的な撮像位置でのスポット変位データを算出し、前記複数の理想的な撮像位置でのスポット変位データをつなぎ合わせ、スポット座標データを作成するスポット座標データ作成手段と、前記作成されたスポット座標データを葉面解析して前記レンズの波面収差を測定する波面収差測定手段と、を有することを特徴とする波面収差測定装置である。(8)(7)記載の波面収差測定装置であって、さらに、前記波面収差測定手段により測定された波面収差を表示する表示手段とを有することを特徴とする波面収差測定装置である。
Further, a summary of typical ones of the inventions disclosed in the present application will be briefly described as follows.
(1) A wavefront aberration measuring method characterized in that aberration measurement is performed in a visual field that exceeds the visual field of the Shack-Hartmann sensor by moving the Shack-Hartmann sensor in a plane, imaging, and joining acquired data. .
(2) A wavefront aberration measuring method for measuring the wavefront aberration of a lens having a pupil diameter larger than the visual field of the Shack-Hartmann sensor, wherein the stage on which the Shack-Hartmann sensor is mounted is irradiated with light while the lens is irradiated with light. Scanning at the pupil position to image a plurality of regions, calculating a plurality of spot displacement data from the obtained plurality of spot luminance images, and measuring a moving amount and an inclination amount of the stage by a laser side lengther; Correcting and joining the plurality of spot displacement data using the measured stage movement amount and tilt amount, creating spot coordinate data, and performing wavefront analysis on the created spot coordinate data And measuring the wavefront aberration of the lens.
(3) A wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens, the light irradiating means for irradiating the lens with light, the Shack-Hartmann sensor for scanning a pupil position of the lens and imaging a plurality of areas, and the shack A stage mounted with a Hartmann sensor for scanning, spot displacement data calculating means for calculating a plurality of spot displacement data from a plurality of spot luminance images obtained by imaging a plurality of regions by the Shack-Hartmann sensor, and a moving amount of the stage And a plurality of spot displacement data obtained by the laser side length measuring device for measuring the tilt amount and the spot displacement data calculating means are corrected by using the moving amount and the tilt amount of the stage measured by the laser side length measuring device. The spot coordinate data creating means for creating the spot coordinate data, and the created The pot coordinate data is wavefront aberration measuring apparatus characterized by having a wavefront aberration measuring means for measuring a wavefront aberration of the lens by analyzing leaf surface.
(4) The wavefront aberration measuring apparatus according to (3), further comprising display means for displaying the wavefront aberration measured by the wavefront aberration measuring means.
(5) Wavefront aberration on the array lens by moving the one-dimensional line sensor on the array lens, imaging, arranging the acquired luminance data of each line, and calculating the spot displacement amount from the arranged luminance data It is a wavefront aberration measuring method characterized by performing measurement.
(6) A wavefront aberration measuring method for measuring a wavefront aberration of a lens, wherein a plurality of regions are obtained by scanning a stage equipped with an array lens and a one-dimensional line sensor at a pupil position of the lens while irradiating the lens with light. , Calculating a plurality of luminance data from the obtained plurality of spot luminance images, measuring a moving amount and a tilt amount of the stage by a laser side lengther, and the plurality of luminance data, A step of calculating luminance data at a plurality of ideal imaging positions by correcting using the measured movement amount and tilt amount of the stage, and calculating the luminance data at the plurality of ideal imaging positions. To calculate spot displacement data at a plurality of ideal imaging positions, and connect the spot displacement data at the plurality of ideal imaging positions. And creating a a wavefront aberration measuring method characterized by comprising the steps of: measuring a wavefront aberration of the lens spot coordinate data created in the above with wavefront analysis.
(7) A wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens, the light irradiating means for irradiating the lens with light, a one-dimensional line sensor that scans a pupil position of the lens and images a plurality of regions, An array lens disposed at a pupil position of the lens independently of the one-dimensional line sensor, a stage that mounts and scans the one-dimensional line sensor, and a plurality of images obtained by imaging a plurality of regions by the one-dimensional line sensor Luminance data calculating means for calculating a plurality of luminance data from a spot luminance image, a laser side length measuring means for measuring the amount of movement and inclination of the stage, and a plurality of luminance data obtained by the luminance data calculating means, Means for calculating brightness data at a plurality of ideal imaging positions by correcting using the moving amount and tilting amount of the stage measured by the laser side lengther; Using the luminance data at the plurality of ideal imaging positions, the spot displacement data at the plurality of ideal imaging positions is calculated, and the spot displacement data at the plurality of ideal imaging positions is connected, Wavefront aberration measurement, comprising: spot coordinate data creating means for creating spot coordinate data; and wavefront aberration measuring means for measuring the wavefront aberration of the lens by analyzing a leaf surface of the created spot coordinate data. Device. (8) The wavefront aberration measuring apparatus according to (7), further comprising display means for displaying the wavefront aberration measured by the wavefront aberration measuring means.
 本発明によれば、従来測定できなかったシャックハルトマンセンサの視野範囲を超える大きな瞳を持つレンズに対しても収差測定が可能な波面収差測定方法及び波面収差測定装置を提供することができる。 According to the present invention, it is possible to provide a wavefront aberration measuring method and a wavefront aberration measuring apparatus capable of measuring aberration even for a lens having a large pupil that exceeds the visual field range of a Shack-Hartmann sensor, which could not be measured conventionally.
第1の実施例における、波面収差測定装置のzx面から見たときの装置概略の構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of the apparatus when viewed from the zx plane of the wavefront aberration measuring apparatus in the first embodiment. 波面収差測定装置のxy面から見たときのシャックハルトマンセンサ付近の構成を示す図である。It is a figure which shows the structure of the vicinity of a Shack-Hartmann sensor when it sees from xy plane of a wavefront aberration measuring apparatus. 第1の実施例における、大視野測定のフローチャートを示した図である。FIG. 3 is a diagram showing a flowchart of large field of view measurement in the first embodiment. 第1の実施例における、シャックハルトマンセンサにて瞳を9分割して撮像する場合のセンサの移動イメージ図である。FIG. 4 is a movement image diagram of a sensor when a pupil is divided into nine images by a Shack-Hartmann sensor in the first embodiment. 装置インターフェースに入力するセンサステージの移動量(x、y軸)およびその移動順序のスケジュールを示す。The movement amount (x, y axis) of the sensor stage input to the apparatus interface and the schedule of the movement order are shown. 入力されるスケジュールに基づき撮像されたスポット輝度画像のイメージ図である。It is an image figure of the spot luminance image imaged based on the input schedule. 撮像されたスポット輝度画像からスポット重心を算出し、スポットの基準座標およびその箇所からの変位量を算出した結果を示す。The result of calculating the spot center of gravity from the captured spot luminance image and calculating the reference coordinates of the spot and the displacement amount from the spot is shown. 各撮像位置でのレーザ測長器の値を示す。The value of the laser length measuring device at each imaging position is shown. 第1の実施例における、ステージ移動時に測定したレーザ測長器の値からステージ誤差(xy面内回転量、x、y方向オフセット量)の算出方法を示した図である。FIG. 5 is a diagram illustrating a method of calculating a stage error (xy in-plane rotation amount, x, y direction offset amount) from a laser length measuring device value measured when the stage is moved in the first embodiment. xy面内ステージ回転に伴い発生するx方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the x direction offset amount which generate | occur | produces with xy in-plane stage rotation. xy面内ステージ回転に伴い発生するy方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the y direction offset amount generated with xy in-plane stage rotation. 第1の実施例における、ステージ移動時に測定したレーザ測長器の値からステージ誤差(zx面内回転量)の算出方法を示した図である。FIG. 6 is a diagram illustrating a method of calculating a stage error (zx in-plane rotation amount) from a laser length measuring device value measured during stage movement in the first embodiment. zx面内ステージ回転に伴い発生するx方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the x direction offset amount generated with zx in-plane stage rotation. 第1の実施例における、ステージ移動時に測定したレーザ測長器の値からステージ誤差(yz面内回転量)の算出方法を示した図である。FIG. 5 is a diagram illustrating a method of calculating a stage error (in-plane rotation amount) from a laser length measuring value measured when the stage is moved in the first embodiment. yz面内ステージ回転に伴い発生するy方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the y direction offset amount generated with a yz in-plane stage rotation. 第1の実施例における、ステージ移動誤差から算出されたシャックハルトマンセンサのスポット位置のオフセット量、回転量のリスト図である。FIG. 6 is a list of offset amounts and rotation amounts of spot positions of Shack-Hartmann sensors calculated from stage movement errors in the first embodiment. 実際に撮像されたスポット座標とステージ移動誤差がない場合に撮像されるべき理想座標との位置関係を示す図である。It is a figure which shows the positional relationship of the spot coordinate actually imaged, and the ideal coordinate which should be imaged when there is no stage movement error. 撮像されたスポット座標から補間によって導出された理想座標でのスポット変位量を示す図である。It is a figure which shows the spot displacement amount in the ideal coordinate derived | led-out by interpolation from the imaged spot coordinate. 視野分割して撮像された全データを座標統合したデータを示す。The data which coordinate-integrated all the data imaged by dividing the visual field is shown. 第1の実施例における、装置GUIを示す図である。FIG. 3 is a diagram showing an apparatus GUI in the first embodiment. 第2の実施例における、波面収差測定装置のzx面から見たときの装置概略の構成を示す図である。FIG. 10 is a diagram showing a schematic configuration of the apparatus when viewed from the zx plane of the wavefront aberration measuring apparatus in the second embodiment. 波面収差測定装置のxy面から見たときのラインセンサ付近の構成を示す図である。It is a figure which shows the structure of a line sensor vicinity when it sees from xy plane of a wavefront aberration measuring apparatus. 波面収差測定装置のxy面から見たときのラインセンサとアレイレンズの位置関係を示す図である。It is a figure which shows the positional relationship of a line sensor and an array lens when it sees from xy plane of a wavefront aberration measuring apparatus. 第2の実施例における、大視野測定のフローチャートを示した図である。FIG. 10 is a diagram showing a flowchart of large-field measurement in the second embodiment. 第2の実施例における、ラインセンサにて瞳上を1次元走査して撮像する場合のセンサの移動イメージ図である。FIG. 10 is a movement image diagram of a sensor when a line sensor performs one-dimensional scanning on the pupil and picks up an image in the second embodiment. センサの理想的に撮像される座標を示す図である。It is a figure which shows the coordinate by which the sensor images ideally. 入力されるスケジュールに基づき撮像されたスポット輝度画像のイメージ図である。It is an image figure of the spot luminance image imaged based on the input schedule. センサによって撮像された各画素の輝度データを示す図である。It is a figure which shows the luminance data of each pixel imaged with the sensor. 各撮像位置でのレーザ測長器の値を示す。The value of the laser length measuring device at each imaging position is shown. 第2の実施例における、ステージ移動時に測定したレーザ測長器の値からステージ誤差(xy面内回転量、x、y方向オフセット量)の算出方法を示した図である。FIG. 10 is a diagram illustrating a method of calculating a stage error (xy in-plane rotation amount, x, y direction offset amount) from a laser length measuring value measured during stage movement in the second embodiment. xy面内ステージ回転に伴い発生するx方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the x direction offset amount which generate | occur | produces with xy in-plane stage rotation. xy面内ステージ回転に伴い発生するy方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the y direction offset amount generated with xy in-plane stage rotation. 第2の実施例における、ステージ移動時に測定したレーザ測長器の値からステージ誤差(zx面内回転量)の算出方法を示した図である。FIG. 10 is a diagram illustrating a method of calculating a stage error (zx in-plane rotation amount) from a laser length measuring device value measured during stage movement in the second embodiment. zx面内ステージ回転に伴い発生するx方向オフセット量の算出方法を示した図である。It is the figure which showed the calculation method of the x direction offset amount generated with zx in-plane stage rotation. 第2の実施例における、ステージ移動誤差から算出されたシャックハルトマンセンサのスポット位置のオフセット量、回転量のリスト図である。FIG. 10 is a list of offset amounts and rotation amounts of spot positions of Shack-Hartmann sensors calculated from stage movement errors in the second embodiment. 実際に撮像されたスポット座標とステージ移動誤差がない場合に撮像されるべき理想座標との位置関係を示す図である。It is a figure which shows the positional relationship of the spot coordinate actually imaged, and the ideal coordinate which should be imaged when there is no stage movement error. 撮像されたスポット座標から補間によって導出された理想座標でのスポット変位量を示す図である。It is a figure which shows the spot displacement amount in the ideal coordinate derived | led-out by interpolation from the imaged spot coordinate. 第2の実施例における、実際に撮像された座標の輝度から理想座標での輝度を補間により算出する方法を示した図である。FIG. 10 is a diagram showing a method of calculating luminance at ideal coordinates by interpolation from the luminance of coordinates actually captured in the second embodiment. 補間すべき点がどの三角形に含まれるか判定する方法を示した図である。It is the figure which showed the method of determining in which triangle the point which should be interpolated is contained. 座標関係から輝度補間を行う方法を示した図である。It is the figure which showed the method of performing brightness | luminance interpolation from coordinate relationship. 撮像されたスポット座標から補間によって導出された理想座標でのスポット変位量を示す図である。It is a figure which shows the spot displacement amount in the ideal coordinate derived | led-out by interpolation from the imaged spot coordinate. 第2の実施例における、装置GUIを示す図である。FIG. 10 is a diagram showing an apparatus GUI in the second embodiment. シャックハルトマンセンサにおいて、入射波面とアレイレンズ、センサ面の関係を示した図である。In the Shack-Hartmann sensor, it is the figure which showed the relationship between an incident wave front, an array lens, and a sensor surface. レンズのスポット像を示す図である。It is a figure which shows the spot image of a lens. デフォーカス収差を示す図である。It is a figure which shows a defocus aberration. 非点収差を示す図である。It is a figure which shows astigmatism. コマ収差を示す図である。It is a figure which shows a coma aberration. 球面収差を示す図である。It is a figure which shows spherical aberration.
 点光源を用いて無限系の対物レンズの波面収差を測定するシャックハルトマン型測定装置において、対物レンズの瞳位置で、シャックハルトマンセンサを走査することにより大視野での収差測定を行う。走査時のセンサ搭載ステージのピッチング、ヨーイングを補正し、集光スポット位置の補正を行い、補正データをつなぎ合わせることによって大視野での波面収差解析を行う。本発明の実施の形態を、以下、図を用いて説明する。 In a Shack-Hartmann type measuring apparatus that measures the wavefront aberration of an infinite objective lens using a point light source, the aberration is measured in a large field of view by scanning the Shack-Hartmann sensor at the pupil position of the objective lens. The wavefront aberration analysis in a large field of view is performed by correcting the pitching and yawing of the sensor mounting stage during scanning, correcting the focused spot position, and connecting the correction data. Embodiments of the present invention will be described below with reference to the drawings.
 本発明の第1の実施例を、図1~図8に基づいて説明する。図1は本実施例の全体構成図である。同図(a)はzx面から見た装置構成図を示し、同図(b)はxy面上面から見たセンサ200周辺部の装置構成図を示す。光源100から照射される平行光は、ビームエキスパンダ101によってビーム径の調整がなされた後、ミラー102によって折り曲げられ、集光レンズ103に入射される。光源100、ビームエキスパンダ101、ミラー102、集光レンズ103はxyzステージ104に搭載されており、x軸、y軸、z軸に移動可能な構成を有している。集光レンズ103から射出する光は一度、集光し、発散光となった後、非検レンズ400に入射する。非検レンズ400はステージ209によって固定されている。非検レンズ400を通過した光の波面をシャックハルトマンセンサ200によって測定する。シャックハルトマンセンサ200はxyステージ208に固定されており、非検レンズ400の瞳全面の収差を測定するためにxy方向に走査可能である。ステージ208のx軸方向の移動量、y軸方向移動時の真直度及びzx面内の傾きを測定するためにレーザ測長器201、202がステージ209に搭載されており、測長用の反射ミラー203がステージ208に搭載されている。またステージのy軸方向の移動量、x軸方向移動時の真直度、xy面内の傾き及びyz面内の傾きを測定するためにレーザ測長器204、205、206がステージ209に搭載されており、測長用の反射ミラー207がステージ208に搭載されている。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of the present embodiment. FIG. 4A shows a device configuration diagram viewed from the zx plane, and FIG. 4B shows a device configuration diagram of the periphery of the sensor 200 viewed from the top surface of the xy plane. The parallel light emitted from the light source 100 is adjusted in beam diameter by the beam expander 101, bent by the mirror 102, and incident on the condenser lens 103. The light source 100, the beam expander 101, the mirror 102, and the condensing lens 103 are mounted on the xyz stage 104 and have a configuration that can move along the x-axis, the y-axis, and the z-axis. The light emitted from the condensing lens 103 is condensed once, becomes divergent light, and then enters the non-detection lens 400. The non-detecting lens 400 is fixed by a stage 209. The wavefront of the light that has passed through the non-detecting lens 400 is measured by the Shack-Hartmann sensor 200. The Shack-Hartmann sensor 200 is fixed to the xy stage 208 and can be scanned in the xy direction in order to measure the aberration of the entire pupil surface of the non-analyzing lens 400. Laser length measuring devices 201 and 202 are mounted on the stage 209 to measure the amount of movement of the stage 208 in the x-axis direction, the straightness when moving in the y-axis direction, and the tilt in the zx plane. A mirror 203 is mounted on the stage 208. Laser length measuring instruments 204, 205, and 206 are mounted on the stage 209 to measure the amount of movement of the stage in the y-axis direction, straightness when moving in the x-axis direction, tilt in the xy plane, and tilt in the yz plane. The length measuring reflection mirror 207 is mounted on the stage 208.
 装置入力インターフェース500により外部から光源位置およびシャックハルトマンセンサの撮像位置および移動順序等のスケジュールが入力される。光源ステージ移動命令501が光源ステージ制御装置300に送信され、光源ステージ104が移動する。次に、センサステージ移動命令502がセンサステージ制御装置301に送信され、センサステージ208が移動する。次に、センサ撮像命令503がセンサ制御装置302に送信され、センサ200が撮像を行う。次に、レーザ測長器値記録命令504がレーザ測長器制御装置303に送信され、レーザ測長器201、202、204、205、206の値を記録する。502~504は撮像スケジュールに従い繰り返し、実行される。次に、座標統合演算505では各撮像位置にて記録された各レーザ測長器の値を用いて、撮像データに対して、ステージ移動誤差の補正を行い、大視野につなぎ合わせを行ったデータが作成される。大視野データに対して収差解析を行い、解析の結果が装置出力インターフェース画面506に出力される。 The device input interface 500 inputs a schedule such as a light source position, an imaging position of the Shack-Hartmann sensor, and a moving order from the outside. A light source stage movement command 501 is transmitted to the light source stage controller 300, and the light source stage 104 moves. Next, a sensor stage movement command 502 is transmitted to the sensor stage control device 301, and the sensor stage 208 moves. Next, a sensor imaging command 503 is transmitted to the sensor control device 302, and the sensor 200 performs imaging. Next, a laser length measuring device value recording command 504 is transmitted to the laser length measuring device control device 303, and the values of the laser length measuring devices 201, 202, 204, 205, 206 are recorded. 502 to 504 are repeatedly executed according to the imaging schedule. Next, in coordinate integration calculation 505, the stage movement error correction is performed on the imaging data using the values of each laser length measuring instrument recorded at each imaging position, and the data obtained by joining the large field of view. Is created. Aberration analysis is performed on the large visual field data, and the result of the analysis is output to the apparatus output interface screen 506.
 図2は大視野画像統合のフローチャートの詳細を示す。500、501、502、503、504、506は図1にて説明した内容と同様である。ここでは505の座標統合演算について詳細を説明する。5051ではセンサによって撮像されたスポット輝度画像からスポット重心を算出し、スポットの基準位置からの変位量を算出する。5052ではレーザ測長器の値からステージのヨーイング量、ピッチング量、真直度を算出し、それに伴って生じるセンサの理想的な撮像位置からのオフセット量および回転量の算出を行う。5053では5052によって算出されたオフセット量および回転量に基づき、ステージ誤差が生じないときの理想的な撮像位置でのスポット変位量を、5051にて算出されたスポット変位量を用いて補間法によって算出する。5054では5053によって算出された理想的な撮像位置でのスポット変位量を用いて各撮像位置間でのつなぎ合わせを行う。以上により505の座標統合演算が可能となる。 Fig. 2 shows the details of the flowchart for large-field image integration. Reference numerals 500, 501, 502, 503, 504, and 506 are the same as those described in FIG. Here, the details of the coordinate integration calculation 505 will be described. In 5051, the center of gravity of the spot is calculated from the spot luminance image captured by the sensor, and the amount of displacement from the reference position of the spot is calculated. In 5052, the yawing amount, pitching amount, and straightness of the stage are calculated from the values of the laser length measuring device, and the offset amount and the rotation amount from the ideal imaging position of the sensor that accompany it are calculated. In 5053, based on the offset and rotation calculated by 5052, the spot displacement at the ideal imaging position when no stage error occurs is calculated by interpolation using the spot displacement calculated in 5051. To do. In 5054, the image pickup positions are connected using the spot displacement amount at the ideal image pickup position calculated by 5053. Thus, 505 coordinate integration calculations are possible.
 図3は入力する撮像スケジュールと取得されるスポット変位量データおよび、記録されるレーザ測長器値の一例を示した図である。同図(a)は瞳を9分割して撮像する場合のセンサの移動イメージ図を示す。図中番号(1)から(9)は撮像順番を示す。同図(b)は同図(a)に基づき装置インターフェースに入力するセンサステージ中心の移動座標(X、Y)およびその移動順序のスケジュールを示す。同図(c)は入力されるスケジュールに基づき撮像されたスポット輝度画像のイメージ図を示す。同図(d)は撮像されたスポット輝度画像からスポット重心を算出し、スポットの基準座標およびその箇所からの変位量を算出した結果である。ここで座標原点をセンサ中心にとる。また各シートは各撮像位置でのデータを示し、9セットのデータが作成される。同図(e)は各撮像位置でのレーザ測長器の値を示す。図中x1、x2、y1、y2、y3はそれぞれ、図1に示すレーザ測長器201、202、203、204、205、206の出力値に対応する。なお、ここでは9分割して撮像する例を示したが、これに限られず、任意の数に分割して撮像しても構わない。 FIG. 3 is a diagram showing an example of an input imaging schedule, acquired spot displacement data, and recorded laser length measuring device values. FIG. 4A shows a moving image diagram of the sensor when the pupil is imaged by dividing it into nine. Numbers (1) to (9) in the figure indicate the imaging order. FIG. 4B shows the movement coordinates (X, Y) of the sensor stage center input to the apparatus interface based on FIG. FIG. 2C shows an image diagram of a spot luminance image captured based on an input schedule. FIG. 4D shows the result of calculating the center of gravity of the spot from the captured spot luminance image, and calculating the reference coordinates of the spot and the amount of displacement from the spot. Here, the coordinate origin is taken as the sensor center. Each sheet shows data at each imaging position, and nine sets of data are created. FIG. 4 (e) shows the value of the laser length measuring device at each imaging position. In the figure, x1, x2, y1, y2, and y3 respectively correspond to the output values of the laser length measuring devices 201, 202, 203, 204, 205, and 206 shown in FIG. In addition, although the example which imaged by dividing into 9 was shown here, it is not restricted to this, You may divide | segment and image in arbitrary numbers.
 図4は一例としてレーザ測長器202、205、206を用いてxy面内に生じるオフセット量、回転量の算出方法を説明する図である。同図(a)においてレーザ測長器によって測定される値をそれぞれ、202=x2、205=y2、206=y3とする。図3(b)に示したステージ移動命令(X、Y)に対して実際にステージが移動した移動量をx’、y’、回転量をθとする。同図拡大図にはレーザ測長器205、206と回転量θの関係を示す。xy面内での回転量はy2、y3および、レーザ測長器間の取り付け間隔dを用いて、数式6のように示される。またレーザ測長器のy方向移動量は数式7のようにy2とy3の平均値とする。 FIG. 4 is a diagram for explaining a method for calculating an offset amount and a rotation amount generated in the xy plane using laser length measuring devices 202, 205, and 206 as an example. In FIG. 6A, values measured by the laser length measuring device are 202 = x2, 205 = y2, and 206 = y3, respectively. Assume that x ′ and y ′ are the movement amounts of the stage actually moved in response to the stage movement command (X, Y) shown in FIG. The enlarged view of the figure shows the relationship between the laser length measuring devices 205 and 206 and the rotation amount θ. The amount of rotation in the xy plane is expressed by Equation 6 using y2 and y3 and the mounting interval d between the laser length measuring devices. Further, the amount of movement of the laser length measuring device in the y direction is an average value of y2 and y3 as shown in Equation 7.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007

同図(b)はステージが回転したときに生じるx方向オフセット量を示し、同図(c)は同様にステージが回転したときに生じるy方向オフセット量を示す。x方向オフセット量Δx、y方向オフセット量Δyはそれぞれ、数式8、数式9で示される。
Figure JPOXMLDOC01-appb-M000007

FIG. 5B shows the x-direction offset amount generated when the stage rotates, and FIG. 6C shows the y-direction offset amount similarly generated when the stage rotates. The x-direction offset amount Δx and the y-direction offset amount Δy are expressed by Equations 8 and 9, respectively.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009

数式8、数式9より、レーザ測長器の値x2、y(y2とy3の平均)とステージの実際の移動量x’、y’との関係は数式10、数式11になる。
Figure JPOXMLDOC01-appb-M000009

From Equations 8 and 9, the relationship between the laser length measuring device values x2 and y (average of y2 and y3) and the actual movement amounts x ′ and y ′ of the stage are Equations 10 and 11.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011

数式10と数式11の連立方程式を解くことにより、レーザ測長器の値x2、y2、y3からステージの実際の移動量x’、y’を数式12、数式13のように求めることが可能となる。 
Figure JPOXMLDOC01-appb-M000011

By solving the simultaneous equations of Equations 10 and 11, the actual movement amounts x ′ and y ′ of the stage can be obtained from Equations 12 and 13 from the values x2, y2, and y3 of the laser length measuring device. Become.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013

このとき発生するオフセット量は図3(b)のステージ移動命令(X、Y)と実際にステージが移動した移動量(x’、y’)との差から、数式14、数式15のように求めることが可能となる。
Figure JPOXMLDOC01-appb-M000013

The offset amount generated at this time is expressed by Equations 14 and 15 based on the difference between the stage movement command (X, Y) in FIG. 3B and the actual movement amount (x ′, y ′) of the stage. It can be obtained.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015

 図5はレーザ測長器201、202を用いてzx面内に生じる回転量を算出し、zx面内の回転によって生じるxy面内のオフセット量の算出方法を説明する図である。同図(a)においてレーザ測長器201、202によって測定される値をそれぞれx1、x2とする。同図拡大図にレーザ測長器201、202と回転量θ2の関係を示す。zx面内での回転量はx1、x2および、レーザ測長器間の取り付け間隔d2を用いて、数式16のように示される。
Figure JPOXMLDOC01-appb-M000015

FIG. 5 is a diagram for explaining a calculation method of an offset amount in the xy plane generated by rotation in the zx plane by calculating the rotation amount generated in the zx plane using the laser length measuring devices 201 and 202. In FIG. 2A, values measured by the laser length measuring devices 201 and 202 are assumed to be x1 and x2, respectively. The enlarged view of the figure shows the relationship between the laser length measuring devices 201 and 202 and the rotation amount θ 2 . rotational amount in zx plane is x1, x2 and, using a mounting distance d 2 between the laser measurement device, shown as Formula 16.
Figure JPOXMLDOC01-appb-M000016

同図(b)に示すように、アレイレンズ210とCCD受光面211の間隔をfとすると、xy面内でのオフセット量は数式17となる。
Figure JPOXMLDOC01-appb-M000016

As shown in FIG. 5B, when the distance between the array lens 210 and the CCD light receiving surface 211 is f, the offset amount in the xy plane is expressed by Equation 17.
Figure JPOXMLDOC01-appb-M000017

 図6はレーザ測長器204、206を用いてyz面内に生じる回転量を算出し、yz面内の回転によって生じるxy面内のオフセット量の算出方法を説明する図である。同図(a)においてレーザ測長器204、206によって測定される値をそれぞれy1、y3とする。同図拡大図にレーザ測長器204、206と回転量θの関係を示す。yz面内での回転量はy1、y3および、レーザ測長器間の取り付け間隔d3を用いて、数式18のように示される。
Figure JPOXMLDOC01-appb-M000017

FIG. 6 is a diagram for explaining a calculation method of an offset amount in the xy plane generated by the rotation in the yz plane by calculating the rotation amount generated in the yz plane using the laser length measuring devices 204 and 206. In FIG. 4A, values measured by the laser length measuring devices 204 and 206 are y1 and y3, respectively. Indicating the amount of rotation theta 3 the relationship between the laser length measuring machine 204 and 206 in FIG enlarged view. rotational amount in the yz plane y1, y3 and, using a mounting distance d 3 between the laser measurement device, shown as Formula 18.
Figure JPOXMLDOC01-appb-M000018

同図(b)に示すように、アレイレンズ210とCCD受光面211の間隔をfとすると、xy面内でのオフセット量は数式19となる。
Figure JPOXMLDOC01-appb-M000018

As shown in FIG. 5B, when the distance between the array lens 210 and the CCD light receiving surface 211 is f, the offset amount in the xy plane is expressed by Equation 19.
Figure JPOXMLDOC01-appb-M000019

図4、5、6よりステージのヨーイング、ピッチング、真直度から生じる撮像位置の回転量は数式6となり、オフセット量は数式20、数式21となる。
Figure JPOXMLDOC01-appb-M000019

4, 5, and 6, the rotation amount of the imaging position resulting from the yawing, pitching, and straightness of the stage is expressed by Equation 6, and the offset amounts are expressed by Equation 20 and Equation 21.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021

 図7は上記で求めたオフセット量および回転量に基づき、ステージ誤差がない状態での理想的な撮像位置でのスポット変位量を、図3(d)に示したスポット変位量データを用いて、補間によって求める方法を示す。図7(a)に示す各撮像位置でのオフセット量、回転量から、ステージ誤差がない状態での理想的な撮像位置の導出を数式22を用いて行う。 
Figure JPOXMLDOC01-appb-M000021

FIG. 7 shows the amount of spot displacement at an ideal imaging position with no stage error based on the offset amount and rotation amount obtained above, using the spot displacement amount data shown in FIG. A method of obtaining by interpolation will be shown. The ideal imaging position without any stage error is derived from the offset amount and the rotation amount at each imaging position shown in FIG.
Figure JPOXMLDOC01-appb-M000022

ここでxoff、yoffはオフセット量を示し、θは回転量を示す。またxpos、yposは実際に撮像されたスポット座標を示し、x、yはステージ誤差がないときの理想座標を示す。同図(b)は撮像されたスポット座標と理想座標との位置関係を示す。図中の黒丸は実際に撮像されたスポット位置を示し、実線矢印はその位置でのスポット変位量を示す。また白丸は理想座標でのスポット位置を示し、点線矢印はその位置でのスポット変位量を示す。同図拡大図を用いて線形補間による理想座標でのスポット変位量の算出方法を以下に説明する。スポットの理想座標をx、yとすると、周囲4点の実際に撮像されたスポット変位を用いて、数式23によりx方向スポット変位を、数式24によりy方向スポット変位をそれぞれ算出することができる。
Figure JPOXMLDOC01-appb-M000022

Here, x off and y off indicate the offset amount, and θ indicates the rotation amount. X pos and y pos indicate spot coordinates actually captured , and x and y indicate ideal coordinates when there is no stage error. FIG. 4B shows the positional relationship between the captured spot coordinates and ideal coordinates. The black circles in the figure indicate the spot positions actually captured, and the solid line arrows indicate the amount of spot displacement at those positions. A white circle indicates a spot position in ideal coordinates, and a dotted arrow indicates a spot displacement amount at the position. A method of calculating the spot displacement amount at the ideal coordinates by linear interpolation will be described below using the enlarged view of FIG. Assuming that the ideal coordinates of the spot are x and y, it is possible to calculate the x-direction spot displacement by Equation 23 and the y-direction spot displacement by Equation 24 using the spot displacement actually captured at the four surrounding points.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024

上記の線形補間によって理想座標におけるスポット変位データが同図(c)に示すように新たに9セット作成される。本データに対して、図3(b)のステージ移動命令(X、Y)のオフセットを足し合わせ(各位置での撮像データの原点はセンサ中心にとってあるため)、座標統合することによって、図7(d)に示す大視野でのスポット座標データを作成することが可能となる。本データに対して例えば、ゼルニケの多項式フィッティング等を行うことにより、球面収差、コマ収差、非点収差、球面収差等の波面解析を行うことが可能となる。
Figure JPOXMLDOC01-appb-M000024

Nine sets of spot displacement data at ideal coordinates are created by the linear interpolation as shown in FIG. By adding the offset of the stage movement command (X, Y) in Fig. 3 (b) to this data (because the origin of the imaging data at each position is at the sensor center) and integrating the coordinates, Fig. 7 It becomes possible to create spot coordinate data in a large visual field shown in (d). For example, by performing Zernike polynomial fitting or the like on this data, it becomes possible to perform wavefront analysis of spherical aberration, coma aberration, astigmatism, spherical aberration, and the like.
 図8は装置出力インターフェース506のGUI表示例を示す。入力としては、光源位置の座標設定パラメータ、およびセンサステージ撮像スケジュールとし、出力は大視野にて波面解析を行った結果を示す。波面解析を行った結果の波面収差は収差量の大小に応じて濃淡のグラデーションとしてもよいし、異なる色で表示しても構わない。 FIG. 8 shows a GUI display example of the device output interface 506. The input is the coordinate setting parameter of the light source position and the sensor stage imaging schedule, and the output is the result of wavefront analysis performed in a large field of view. The wavefront aberration as a result of the wavefront analysis may be a gradation of light and shade according to the amount of aberration, or may be displayed in different colors.
 次に、本発明の第2の実施例を、図9~図14に基づいて説明する。
  図9は第2の実施例の全体構成図である。同図(a)はzx面から見た装置構成図を示し、同図(b)はxy面から見たセンサ212周辺部の装置構成図を示す。装置構成は図1で説明した構成と類似しており、同一箇所の説明は省略し、異なる箇所を主として説明する。主な異なる箇所はセンサが1次元のラインセンサ212であることと、センサとは独立にアレイレンズ213が非検レンズ瞳上にセッティングされていることである。同図(c)は瞳面上でのアレイレンズ213とラインセンサ212の関係を示す。アレイレンズ213は瞳面全体を覆うサイズである。ラインセンサ212はアレイレンズ213に対し、アレイレンズの焦点距離離れた高さを一定に保ち、y軸方向に移動しながら、撮像を行う。本方式により、大視野の収差測定が可能となる。またラインセンサはy軸方向に1画素しかないため、ステージのy軸方向のピッチングの影響を受けないことから、図1にて用いたレーザ測長器204は本構成においては省略可能である。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 9 is an overall configuration diagram of the second embodiment. FIG. 4A shows a device configuration diagram viewed from the zx plane, and FIG. 4B shows a device configuration diagram of the periphery of the sensor 212 viewed from the xy plane. The apparatus configuration is similar to the configuration described with reference to FIG. 1, and the description of the same part is omitted, and different parts are mainly described. The main differences are that the sensor is a one-dimensional line sensor 212 and that the array lens 213 is set on the non-detecting lens pupil independently of the sensor. FIG. 4C shows the relationship between the array lens 213 and the line sensor 212 on the pupil plane. The array lens 213 is sized to cover the entire pupil surface. The line sensor 212 captures an image while moving in the y-axis direction with the array lens 213 kept at a constant height away from the focal length of the array lens. With this method, it is possible to measure aberrations in a large field of view. Since the line sensor has only one pixel in the y-axis direction and is not affected by the pitching of the stage in the y-axis direction, the laser length measuring device 204 used in FIG. 1 can be omitted in this configuration.
 本装置入出力インターフェースおよび制御に関しても図1にて説明した構成と類似しており、同一箇所の説明は省略し、以下異なる部分を主として説明する。特に、図9(a)の605の座標統合演算が図1(a)の505とは異なるため、図10を用いて詳細を説明する。 The device input / output interface and control are also similar to the configuration described in FIG. 1, and the description of the same part is omitted, and different parts will be mainly described below. In particular, since the coordinate integration calculation of 605 in FIG. 9A is different from 505 in FIG. 1A, the details will be described with reference to FIG.
 図10は大視野画像統合のフローチャートの詳細を示す。600、601、602、603、604、606は図1及び図2中の500、501、502、503、504、506の内容と同様である。ここでは605の座標統合演算の詳細について説明する。6051ではレーザ測長器によって測定された値から、各撮像位置でのセンサのオフセット量、回転量の算出を行う。6052では6051によって算出されたオフセット量および回転量に基づき、ステージ誤差が生じないときの理想的な撮像位置での輝度データを、603にて撮像して得た輝度データから補間によって算出する。6053では6052によって算出された理想的な撮像位置での輝度データからスポット重心を算出し、スポット変位の算出を行う。以上により605の座標統合演算が可能となる。 Fig. 10 shows the details of the flowchart for large-field image integration. 600, 601, 602, 603, 604, and 606 are the same as the contents of 500, 501, 502, 503, 504, and 506 in FIGS. Here, details of the coordinate integration calculation 605 will be described. In 6051, an offset amount and a rotation amount of the sensor at each imaging position are calculated from the values measured by the laser length measuring device. In 6052, based on the offset amount and the rotation amount calculated in 6051, luminance data at an ideal imaging position when no stage error occurs is calculated by interpolation from the luminance data obtained by imaging in 603. In 6053, the spot centroid is calculated from the luminance data at the ideal imaging position calculated by 6052, and the spot displacement is calculated. As described above, 605 coordinate integration calculations can be performed.
 図11は入力する撮像スケジュールと取得されるスポット変位データおよび、記録されたレーザ測長器の値の一例を示した図である。同図(a)はy方向にステージ走査する場合のセンサの移動イメージ図を示す。センサの中心座標はX_posに設定され、y軸座標Ys_posからデータ取得開始し、移動間隔Dsにて撮像され、Ye_posにて取得終了する。同図(b)は同図(a)のスケジュールに基づき得られる理想撮像座標を示す。ここで、図中点線で囲まれたセンサ中心座標の列を(X0、Y0)と呼ぶことにする。同図(c)は同図(a)のスケジュールに基づき撮像されたスポット輝度画像のイメージ図を示す。同図(d)は撮像された輝度データを示す。同図(e)は各撮像位置でのレーザ測長器の値を示す。図中x1、x2、y2、y3はそれぞれ、図9に示すレーザ測長器201、202、205、206に対応する。 FIG. 11 is a diagram showing an example of an imaging schedule to be input, acquired spot displacement data, and recorded laser length measuring device values. FIG. 4A shows an image of movement of the sensor when performing stage scanning in the y direction. The center coordinate of the sensor is set to X_pos, data acquisition starts from the y-axis coordinate Ys_pos, images are taken at the movement interval Ds, and acquisition ends at Ye_pos. FIG. 4B shows ideal imaging coordinates obtained based on the schedule of FIG. Here, a column of sensor center coordinates surrounded by a dotted line in the figure is referred to as (X 0 , Y 0 ). FIG. 2C shows an image diagram of spot luminance images picked up based on the schedule of FIG. FIG. 4D shows the captured luminance data. FIG. 4 (e) shows the value of the laser length measuring device at each imaging position. In the figure, x1, x2, y2, and y3 respectively correspond to the laser length measuring devices 201, 202, 205, and 206 shown in FIG.
 図12は例えばレーザ測長器202、205、206を用いてxy面内に生じるオフセット量、回転量の算出方法を説明する図である。本算出方法は図4にて説明した内容と同様の算出方法が適用できる。図12(a)においてレーザ測長器202、205、206によって測定される値をそれぞれx2、y2、y3とする。図11(b)に示したセンサ中心移動(X0、Y0)に対して実際にステージが移動した移動量をx’、y’、回転量をθとする。同図拡大図にはレーザ測長器205、206と回転量θの関係を示す。レーザ測長器の値x2、y2、y3からステージが実際に移動した移動量x’、y’を数式25、数式26のように求めることが可能となる。 FIG. 12 is a diagram for explaining a method for calculating an offset amount and a rotation amount generated in the xy plane using, for example, laser length measuring devices 202, 205, and 206. The same calculation method as that described in FIG. 4 can be applied to this calculation method. In FIG. 12 (a), values measured by the laser length measuring devices 202, 205, and 206 are x2, y2, and y3, respectively. Assume that the movement amounts of the stage actually moved with respect to the sensor center movement (X 0 , Y 0 ) shown in FIG. 11B are x ′ and y ′, and the rotation amount is θ. The enlarged view of the figure shows the relationship between the laser length measuring devices 205 and 206 and the rotation amount θ. It is possible to obtain the movement amounts x ′ and y ′ of the actual movement of the stage from the values x2, y2 and y3 of the laser length measuring device as in Expressions 25 and 26.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026

  ここで、θ、yはそれぞれ数式27、数式28によって求められる。
Figure JPOXMLDOC01-appb-M000026

Here, θ and y are obtained by Expression 27 and Expression 28, respectively.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028

このとき発生するオフセット量は図11(b)のセンサ中心の理想撮像座標(X0、Y0)と実際のステージ移動量(x’、y’)との差から、数式29、数式30のように求めることが可能となる。
Figure JPOXMLDOC01-appb-M000028

The offset amount generated at this time is given by Equations 29 and 30 based on the difference between the ideal imaging coordinates (X 0 , Y 0 ) at the sensor center in FIG. 11B and the actual stage movement amounts (x ′, y ′). It becomes possible to ask.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030

 図13はレーザ測長器201、202を用いてzx面内に生じる回転量を算出し、zx面内の回転によって生じるxy面内のオフセット量の算出方法を説明する図である。同図(a)においてレーザ測長器201、202によって測定される値をそれぞれx1、x2とする。同図拡大図にレーザ測長器201、202と回転量θ2の関係を示す。zx面内での回転量はx1、x2および、レーザ測長器間の取り付け間隔d2を用いて、数式31のように示される。
Figure JPOXMLDOC01-appb-M000030

FIG. 13 is a diagram for explaining a method of calculating the amount of offset in the xy plane generated by the rotation in the zx plane by calculating the amount of rotation generated in the zx plane using the laser length measuring devices 201 and 202. In FIG. 2A, values measured by the laser length measuring devices 201 and 202 are assumed to be x1 and x2, respectively. The enlarged view of the figure shows the relationship between the laser length measuring devices 201 and 202 and the rotation amount θ 2 . rotational amount in zx plane is x1, x2 and, using a mounting distance d 2 between the laser measurement device, shown as Formula 31.
Figure JPOXMLDOC01-appb-M000031

同図(b)に示すように、アレイレンズ213とCCD面212の間隔をfとすると、xy面内でのオフセット量は数式32となる。
Figure JPOXMLDOC01-appb-M000031

As shown in FIG. 5B, when the distance between the array lens 213 and the CCD surface 212 is f, the offset amount in the xy plane is expressed by Equation 32.
Figure JPOXMLDOC01-appb-M000032

 図12、13よりステージのヨーイング、ピッチング、真直度から生じる撮像位置の回転量は数式27となり、オフセット量は数式33、数式34となる。
Figure JPOXMLDOC01-appb-M000032

12 and 13, the rotation amount of the imaging position resulting from the yawing, pitching, and straightness of the stage is expressed by Equation 27, and the offset amounts are expressed by Equation 33 and Equation 34.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034

 図14は上記で求めたオフセット量および回転量に基づき、ステージ誤差がない状態での理想的な撮像位置から、実際に撮像した位置を算出する方法を示す。同図(a)に示す各撮像位置でのオフセット量、回転量のリストから、実際に撮像した座標の算出を数式35を用いて行う。 
Figure JPOXMLDOC01-appb-M000034

FIG. 14 shows a method of calculating an actually imaged position from an ideal imaged position in a state where there is no stage error based on the offset amount and the rotation amount obtained above. From the list of offset amount and rotation amount at each imaging position shown in FIG.
Figure JPOXMLDOC01-appb-M000035

  ここでxoff、yoffはオフセット量を示し、θは回転量を示す。またx、yは理想座標を示し、x、yは実際に撮像した座標を示す。同図(b)は撮像された理想座標と実際に撮像された座標の関係を示す図である。また同図(c)は図11(b)の理想座標に対して、数式35の座標変換を行い、実際に撮像した座標データを示す。
Figure JPOXMLDOC01-appb-M000035

Here, x off and y off indicate the offset amount, and θ indicates the rotation amount. Also, x 0 and y 0 indicate ideal coordinates, and x and y indicate coordinates actually captured. FIG. 2B is a diagram showing the relationship between the captured ideal coordinates and the actual captured coordinates. FIG. 11C shows coordinate data actually captured by performing coordinate transformation of Expression 35 with respect to the ideal coordinates in FIG.
 図15は実際に撮像された座標の輝度から理想座標での輝度を補間により算出するための一実施例を示す。補間には3点補間を用いる。同図(a)に示すように3点の選出には、理想座標の格子点の値に対応する1点と、その上下4点で形成する4つの三角形を候補として、どの三角形に格子点が含まれるかを判定することによって求める。判定は、三角形の中心と格子点を結ぶ線分が三角形の辺と交差するかで判断する。三角形の中心は、例えば、(1、2)、(2、1)、(2、2)の三角形の場合、x、y座標はそれぞれ数式36、数式37で求める。 FIG. 15 shows an embodiment for calculating the luminance at the ideal coordinates by interpolation from the luminance of the actually captured coordinates. Three-point interpolation is used for interpolation. As shown in Fig. 3 (a), in selecting three points, one triangle corresponding to the value of the grid point of the ideal coordinate and four triangles formed by the four points above and below are candidates, and which triangle has the grid point. It is determined by determining whether it is included. The determination is made based on whether the line segment connecting the center of the triangle and the lattice point intersects the side of the triangle. For example, in the case of the triangles (1, 2), (2, 1), and (2, 2), the center of the triangle is obtained by Equations 36 and 37, respectively.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037

 次に線分交差の判定法について同図(b)を用いて説明する。網掛け部は、y > ax+bを満たす。左に寄せるとy-ax-b>0となる。一方、網掛け外は、y-ax-b<0となる。(x3、y3)と(x4、y4)を結ぶ線分が直線と交差する条件は、数式38となる。
Figure JPOXMLDOC01-appb-M000037

Next, a method for determining the intersection of line segments will be described with reference to FIG. The shaded portion satisfies y> ax + b. If you move it to the left, y-ax-b> 0. On the other hand, y-ax-b <0 in the case of non-shaded area. The condition that the line segment connecting (x3, y3) and (x4, y4) intersects with the straight line is expressed by Equation 38.
Figure JPOXMLDOC01-appb-M000038

実際には、直線を表す式は数式39であり、
Figure JPOXMLDOC01-appb-M000038

Actually, the equation representing the straight line is Equation 39,
Figure JPOXMLDOC01-appb-M000039

従って、数式38に対応させると、
Figure JPOXMLDOC01-appb-M000039

Therefore, when corresponding to Equation 38,
Figure JPOXMLDOC01-appb-M000040

 次に数式40にて見つかった格子点を内包する三角形各点から格子点の輝度を線形補間で求める方法について同図(c)を用いて説明する。線形補間は数式41にて行う。
Figure JPOXMLDOC01-appb-M000040

Next, a method for obtaining the luminance of a lattice point from each triangular point including the lattice point found by Equation 40 by linear interpolation will be described with reference to FIG. Linear interpolation is performed by Equation 41.
Figure JPOXMLDOC01-appb-M000041

ここで、Vは三角形を構成する点から求めたい格子点への輝度ベクトルを示し、V1は三角形を構成する点から他の構成点への輝度ベクトルを示し、V2 は三角形を構成する点からもう一方の構成点への輝度ベクトルを示す。補間のためには、係数α、βが求まれば良い。
α、βの計算は、輝度値zの値を含めないで求められるように、xy座標に射影したベクトルを考える(射影しても、線形のためα、βは同じ値を取る)。
Figure JPOXMLDOC01-appb-M000041

Here, V represents the luminance vector from the points constituting the triangle to the grid point to be obtained, V1 represents the luminance vector from the points constituting the triangle to other component points, and V2 is already from the points constituting the triangle. The luminance vector to one constituent point is shown. For interpolation, the coefficients α and β may be obtained.
As for the calculation of α and β, a vector projected on the xy coordinates is considered so as to be obtained without including the value of the luminance value z (even if projected, α and β take the same value because they are linear).
Figure JPOXMLDOC01-appb-M000042

左からW1を掛けると、数式43となり、左からW2を掛けると、数式44となる。
Figure JPOXMLDOC01-appb-M000042

Multiplying by W1 from the left gives Formula 43, and multiplying by W2 from the left gives Formula 44.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044

数式43、44より、α、βはそれぞれ数式45、数式46のように求まる。
Figure JPOXMLDOC01-appb-M000044

From equations 43 and 44, α and β are obtained as equations 45 and 46, respectively.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046

ここで、数式47、数式48、数式49、数式50、数式51のようになり、
Figure JPOXMLDOC01-appb-M000046

Here, it becomes like Formula 47, Formula 48, Formula 49, Formula 50, Formula 51,
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051

輝度値zは、数式41より与えられるため、数式52となる。
Figure JPOXMLDOC01-appb-M000051

Since the luminance value z is given by Equation 41, Equation 52 is obtained.
Figure JPOXMLDOC01-appb-M000052

以上により、三角形に内包された格子点の輝度値が補間で求められる。
得られた輝度画像からスポットの重心を算出し、同図(d)に示すスポットの変位量を算出する。本データに対して例えば、ゼルニケの多項式フィッティングを行い、球面収差、コマ収差、非点収差、球面収差等の波面解析を行う。
Figure JPOXMLDOC01-appb-M000052

As described above, the luminance value of the lattice point included in the triangle is obtained by interpolation.
The center of gravity of the spot is calculated from the obtained luminance image, and the displacement amount of the spot shown in FIG. For example, Zernike polynomial fitting is performed on this data, and wavefront analysis such as spherical aberration, coma aberration, astigmatism, and spherical aberration is performed.
 図16は装置出力インターフェース606のGUI表示例を示す。入力としては、光源位置の設定パラメータ、およびラインセンサステージ移動スケジュールとし、出力は大視野にて波面解析を行った結果を示す。波面解析を行った結果の波面収差は収差量の大小に応じて濃淡のグラデーションとしてもよいし、異なる色で表示しても構わない。 FIG. 16 shows a GUI display example of the device output interface 606. The input is the light source position setting parameter and the line sensor stage movement schedule, and the output is the result of wavefront analysis performed in a large field of view. The wavefront aberration as a result of the wavefront analysis may be a gradation of light and shade according to the amount of aberration, or may be displayed in different colors.
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、本願において開示された発明のうち代表的なものによって得られる効果を簡単に纏めると、下記の通りである。
(1)本発明によれば、従来測定できなかったシャックハルトマンセンサの視野範囲を超える大きな瞳を持つレンズの収差測定が可能となる。
(2)本発明によれば、レンズの波面収差を管理することが可能となり、半導体光学検査装置やプリント基板レーザ加工装置の異物検出感度や加工形状が均一化され、半導体ラインでの複数の光学検査装置の運用効率が向上し、レーザ加工の品質が向上するといった効果が得られる。
As mentioned above, although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say. Further, the effects obtained by the representative ones of the inventions disclosed in the present application are summarized as follows.
(1) According to the present invention, it is possible to measure the aberration of a lens having a large pupil that exceeds the visual field range of the Shack-Hartmann sensor, which could not be measured conventionally.
(2) According to the present invention, the wavefront aberration of the lens can be managed, the foreign matter detection sensitivity and the processing shape of the semiconductor optical inspection apparatus and the printed circuit board laser processing apparatus are made uniform, and a plurality of optical components in the semiconductor line The operational efficiency of the inspection apparatus is improved, and the effects of improving the quality of laser processing are obtained.
100・・・光源、101・・・ビームエキスパンダ、102・・・ミラー、103・・・集光レンズ、104・・・光源用xyzステージ、200・・・シャックハルトマンセンサ、201、202、204、205、206・・・レーザ測長器、203、207・・・レーザ測長器反射ミラー、208・・・シャックハルトマンセンサ用xyステージ、209・・・非検レンズ固定ステージ、210・・・アレイレンズ、211・・・シャックハルトマンセンサ受光面、212・・・ラインセンサ、213・・・アレイレンズ、300・・・光源用xyzステージ制御装置、301・・・センサ用xyステージ制御装置、302・・・シャックハルトマンセンサ制御装置、303・・・レーザ測長器制御装置、400・・・非検レンズ、500・・・装置入力インターフェース、501・・・光源用xyzステージ移動命令、502・・・シャックハルトマンセンサ用xyステージ移動命令、503・・・シャックハルトマンセンサ撮像命令、504・・・レーザ測長器値読み取り命令、505・・・座標統合演算処理、5051・・・スポット変位算出処理、5052・・・ステージオフセット量、回転量算出処理、5053・・・補間によるスポット変位算出処理、5054・・・座標統合処理、506・・・装置出力インターフェース、600・・・装置入力インターフェース、601・・・光源用xyzステージ移動命令、602・・・ラインセンサ用xyステージ移動命令、603・・・ラインセンサ撮像命令、604・・・レーザ測長器値読み取り命令、605・・・座標統合演算処理、6051・・・ステージオフセット量、回転量算出処理、6052・・・補間による輝度算出処理、6053・・・輝度からスポット座標算出処理、 606・・・装置出力インターフェース、 DESCRIPTION OF SYMBOLS 100 ... Light source, 101 ... Beam expander, 102 ... Mirror, 103 ... Condensing lens, 104 ... Light source xyz stage, 200 ... Shack-Hartmann sensor, 201, 202, 204 , 205, 206 ... laser length measuring device, 203, 207 ... laser length measuring device reflecting mirror, 208 ... xy stage for Shack-Hartmann sensor, 209 ... non-detecting lens fixed stage, 210 ... Array lens, 211 ... Shack-Hartmann sensor light receiving surface, 212 ... Line sensor, 213 ... Array lens, 300 ... xyz stage controller for light source, 301 ... xy stage controller for sensor, 302 ... Shack-Hartmann sensor control device, 303 ... Laser length measuring device control device, 400 ... Non-detection lens, 500 ... Device input interface, 501 ... Xyz stage movement command for light source, 502 ...・ Xy stay for Shack-Hartmann sensor Move command, 503 ... Shack-Hartmann sensor imaging command, 504 ... Laser length measurement value reading command, 505 ... Coordinate integration calculation processing, 5051 ... Spot displacement calculation processing, 5052 ... Stage offset amount , Rotation amount calculation processing, 5053 ... spot displacement calculation processing by interpolation, 5054 ... coordinate integration processing, 506 ... device output interface, 600 ... device input interface, 601 ... xyz stage movement for light source 602 ... Line sensor xy stage move command, 603 ... Line sensor imaging command, 604 ... Laser length measuring device value read command, 605 ... Coordinate integration calculation processing, 6051 ... Stage offset Amount, rotation amount calculation processing, 6052 ... luminance calculation processing by interpolation, 6053 ... spot coordinate calculation processing from luminance, 606 ... device output interface,

Claims (18)

  1. シャックハルトマンセンサを平面内で移動し、撮像を行い、取得データをつなぎ合わせることによって、シャックハルトマンセンサの視野以上の視野での収差測定を行うことを特徴とする波面収差測定方法。 A wavefront aberration measuring method, comprising: moving a Shack-Hartmann sensor in a plane, taking an image, and connecting acquired data to measure aberrations in a field of view greater than that of the Shack-Hartmann sensor.
  2. 前記シャックハルトマンセンサが搭載されているステージの移動量及び傾き量を測定し、前記つなぎ合わせの際に、前記測定により得た測定データを用いて補正を行うことを特徴とする請求項1の波面収差測定方法。 2. The wavefront according to claim 1, wherein a movement amount and an inclination amount of a stage on which the Shack-Hartmann sensor is mounted are measured, and correction is performed using measurement data obtained by the measurement at the time of joining. Aberration measurement method.
  3. 前記つなぎ合わせは、ステージの移動誤差、傾き誤差を含む状態でシャックハルトマンセンサによって撮像された座標でのスポット変位データから、前記測定されたステージの移動量及び傾き量を用いて、ステージの移動誤差、傾き誤差がない場合にシャックハルトマンセンサによって撮像される理想的な座標でのスポット変位データを補間によって算出することを特徴とする請求項2の波面収差測定方法。 The stitching is performed by using the measured stage movement amount and inclination amount from the spot displacement data at the coordinates imaged by the Shack-Hartmann sensor in a state including stage movement error and inclination error. 3. The wavefront aberration measuring method according to claim 2, wherein spot displacement data at ideal coordinates imaged by the Shack-Hartmann sensor when there is no tilt error is calculated by interpolation.
  4. シャックハルトマンセンサの視野以上の瞳径を有するレンズの波面収差を測定する波面収差測定方法であって、
    前記レンズに光を照射させながら、前記シャックハルトマンセンサを搭載したステージを前記レンズの瞳位置で走査させて複数領域を撮像し、得られた複数のスポット輝度画像から複数のスポット変位データを算出するステップと、
    レーザ側長器により前記ステージの移動量及び傾き量を測定するステップと、
    前記複数のスポット変位データを、前記測定されたステージの移動量及び傾き量を用いて補正してつなぎ合わせ、スポット座標データを作成するステップと、
    前記作成されたスポット座標データを波面解析して前記レンズの波面収差を測定するステップと、
    を有することを特徴とする波面収差測定方法。
    A wavefront aberration measuring method for measuring the wavefront aberration of a lens having a pupil diameter larger than the visual field of a Shack-Hartmann sensor,
    While irradiating the lens with light, the stage equipped with the Shack-Hartmann sensor is scanned at the pupil position of the lens to image a plurality of areas, and a plurality of spot displacement data is calculated from the obtained plurality of spot luminance images. Steps,
    Measuring the amount of movement and tilt of the stage by a laser side lengther;
    Correcting and connecting the plurality of spot displacement data using the measured movement amount and inclination amount of the stage, and creating spot coordinate data;
    Wavefront analysis of the created spot coordinate data to measure the wavefront aberration of the lens;
    A wavefront aberration measuring method comprising:
  5. 請求項4記載の波面収差測定方法であって、
    前記スポット座標データを作成するステップでは、前記測定されたステージの移動量及び傾き量に基づいて、前記複数のスポット変位データを用いて補間法により理想的な撮像位置でのスポット変位データを算出し、前記算出された理想的な撮像位置でのスポット変位データを用いて前記スポット座標データを作成することを特徴とする波面収差測定方法。
    The wavefront aberration measuring method according to claim 4,
    In the step of creating the spot coordinate data, spot displacement data at an ideal imaging position is calculated by an interpolation method using the plurality of spot displacement data based on the measured movement amount and tilt amount of the stage. The wavefront aberration measuring method, wherein the spot coordinate data is created using spot displacement data at the calculated ideal imaging position.
  6. 請求項4又は5記載の波面収差測定方法であって、
    前記ステージの移動量及び傾き量を測定するステップでは、異なる位置に配置された複数のレーザ側長器を用いて測定することを特徴とする波面収差測定方法。
    The wavefront aberration measuring method according to claim 4 or 5,
    In the step of measuring the moving amount and the tilt amount of the stage, the wavefront aberration measuring method is characterized in that the measuring is performed using a plurality of laser side lengthers arranged at different positions.
  7. レンズの波面収差を測定する波面収差測定装置であって、
    前記レンズに光を照射する光照射手段と、
    前記レンズの瞳位置で走査され複数領域を撮像するシャックハルトマンセンサと、
    前記シャックハルトマンセンサを搭載して走査するステージと、
    前記シャックハルトマンセンサによる複数領域の撮像により得られた複数のスポット輝度画像から複数のスポット変位データを算出するスポット変位データ算出手段と、
    前記ステージの移動量及び傾き量を測定するレーザ測長器と、
    前記スポット変位データ算出手段により得られた複数のスポット変位データを、前記レーザ側長器にて測定されたステージの移動量及び傾き量を用いて補正してつなぎ合わせ、スポット座標データを作成するスポット座標データ作成手段と、
    前記作成されたスポット座標データを葉面解析して前記レンズの波面収差を測定する波面収差測定手段と、
    を有することを特徴とする波面収差測定装置。
    A wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens,
    A light irradiation means for irradiating the lens with light;
    A Shack-Hartmann sensor that scans at the pupil position of the lens and images a plurality of areas;
    A stage mounted with the Shack-Hartmann sensor for scanning;
    Spot displacement data calculating means for calculating a plurality of spot displacement data from a plurality of spot luminance images obtained by imaging a plurality of regions by the Shack-Hartmann sensor;
    A laser length measuring device for measuring the amount of movement and tilt of the stage;
    A spot for creating spot coordinate data by correcting and joining a plurality of spot displacement data obtained by the spot displacement data calculating means using the moving amount and tilt amount of the stage measured by the laser side length device Coordinate data creation means;
    Wavefront aberration measuring means for measuring the wavefront aberration of the lens by performing leaf surface analysis on the created spot coordinate data;
    A wavefront aberration measuring apparatus comprising:
  8. 請求項7記載の波面収差測定装置であって、
    前記レーザ測長器は、異なる位置に複数個配置されていることを特徴とする波面収差測定装置。
    The wavefront aberration measuring apparatus according to claim 7,
    2. A wavefront aberration measuring apparatus, wherein a plurality of the laser length measuring devices are arranged at different positions.
  9. 請求項7又は8記載の波面収差測定装置であって、
    さらに、前記波面収差測定手段により測定された波面収差を表示する表示手段と、
    を有することを特徴とする波面収差測定装置。
    The wavefront aberration measuring apparatus according to claim 7 or 8,
    And display means for displaying the wavefront aberration measured by the wavefront aberration measuring means;
    A wavefront aberration measuring apparatus comprising:
  10. 請求項9記載の波面収差測定装置であって、
    前記表示手段は、前記シャックハルトマンセンサが複数領域撮像する撮像スケジュールも併せて表示することを特徴とする波面収差測定装置。
    The wavefront aberration measuring apparatus according to claim 9, wherein
    The wavefront aberration measuring apparatus, wherein the display means also displays an imaging schedule in which the Shack-Hartmann sensor images a plurality of regions.
  11. アレイレンズ上を1次元ラインセンサが移動し、撮像を行い、各ラインの取得輝度データを配列し、配列された輝度データからスポット変位量を算出することによって、アレイレンズ上の波面収差測定を行うことを特徴とする波面収差測定方法。 A one-dimensional line sensor moves on the array lens, picks up an image, arranges acquired luminance data of each line, calculates a spot displacement amount from the arranged luminance data, and measures wavefront aberration on the array lens. And a wavefront aberration measuring method.
  12. 前記ラインセンサが搭載されているステージの移動量、傾き量を測定し、前記各ラインの取得輝度データを配列する際に、前期測定により得た測定データを用いて補正を行うことを特徴とする請求項11の波面収差測定方法。 The amount of movement and inclination of the stage on which the line sensor is mounted is measured, and correction is performed using measurement data obtained by the previous measurement when arranging the acquired luminance data of each line. The wavefront aberration measuring method according to claim 11.
  13. 前記各ラインの取得輝度データの配列には、ステージの移動誤差、傾き誤差を含む状態でラインセンサによって撮像された各ラインの輝度データから、前記測定されたステージの移動量、傾き量を用いて、ステージの移動誤差、傾き誤差がない場合にラインセンサによって撮像される理想的な座標で各ラインの輝度データを補間によって算出することを特徴とする請求項12の波面収差測定方法。 The acquired luminance data of each line is arranged using the measured stage movement amount and inclination amount from the luminance data of each line imaged by the line sensor in a state including stage movement error and inclination error. 13. The wavefront aberration measuring method according to claim 12, wherein luminance data of each line is calculated by interpolation using ideal coordinates imaged by the line sensor when there is no stage movement error and tilt error.
  14. レンズの波面収差を測定する波面収差測定方法であって、
    前記レンズに光を照射させながら、アレイレンズと1次元ラインセンサを搭載したステージを前記レンズの瞳位置で走査させて複数領域を撮像し、得られた複数のスポット輝度画像から複数の輝度データを算出するステップと、
    レーザ側長器により前記ステージの移動量及び傾き量を測定するステップと、
    前記複数の輝度データを、前記測定されたステージの移動量及び傾き量を用いて補正して、複数の理想的な撮像位置での輝度データを算出するステップと、
    前記算出された複数の理想的な撮像位置での輝度データを用いて、複数の理想的な撮像位置でのスポット変位データを算出し、当該複数の理想的な撮像位置でのスポット変位データをつなぎ合わせ、スポット座標データを作成するステップと、
    前記作成されたスポット座標データを波面解析して前記レンズの波面収差を測定するステップと、
    を有することを特徴とする波面収差測定方法。
    A wavefront aberration measuring method for measuring the wavefront aberration of a lens,
    While irradiating the lens with light, a stage equipped with an array lens and a one-dimensional line sensor is scanned at the pupil position of the lens to capture a plurality of areas, and a plurality of luminance data are obtained from the obtained plurality of spot luminance images. A calculating step;
    Measuring the amount of movement and tilt of the stage by a laser side lengther;
    Correcting the plurality of luminance data using the measured movement amount and inclination amount of the stage, and calculating luminance data at a plurality of ideal imaging positions;
    Using the calculated luminance data at the plurality of ideal imaging positions, spot displacement data at the plurality of ideal imaging positions is calculated, and the spot displacement data at the plurality of ideal imaging positions is connected. To create spot coordinate data,
    Wavefront analysis of the created spot coordinate data to measure the wavefront aberration of the lens;
    A wavefront aberration measuring method comprising:
  15. レンズの波面収差を測定する波面収差測定装置であって、
    前記レンズに光を照射する光照射手段と、
    前記レンズの瞳位置で走査され複数領域を撮像する1次元ラインセンサと、
    前記1次元ラインセンサとは独立にレンズの瞳位置に配置されたアレイレンズと、
    前記1次元ラインセンサを搭載して走査するステージと、
    前記1次元ラインセンサによる複数領域の撮像により得られた複数のスポット輝度画像から複数の輝度データを算出する輝度データ算出手段と、
    前記ステージの移動量及び傾き量を測定するレーザ測長器と、
    前記輝度データ算出手段により得られた複数の輝度データを、前記レーザ測長器にて測定されたステージの移動量及び傾き量を用いて補正して、複数の理想的な撮像位置での輝度データを算出する手段と、
    前記算出された複数の理想的な撮像位置での輝度データを用いて、複数の理想的な撮像位置でのスポット変位データを算出し、前記複数の理想的な撮像位置でのスポット変位データをつなぎ合わせ、スポット座標データを作成するスポット座標データ作成手段と、
    前記作成されたスポット座標データを葉面解析して前記レンズの波面収差を測定する波面収差測定手段と、
    を有することを特徴とする波面収差測定装置。
    A wavefront aberration measuring apparatus for measuring a wavefront aberration of a lens,
    A light irradiation means for irradiating the lens with light;
    A one-dimensional line sensor that scans at a pupil position of the lens and images a plurality of areas;
    An array lens arranged at a pupil position of the lens independently of the one-dimensional line sensor;
    A stage for mounting and scanning the one-dimensional line sensor;
    Luminance data calculating means for calculating a plurality of luminance data from a plurality of spot luminance images obtained by imaging a plurality of areas by the one-dimensional line sensor;
    A laser length measuring device for measuring the amount of movement and tilt of the stage;
    The plurality of luminance data obtained by the luminance data calculating means is corrected using the moving amount and the tilt amount of the stage measured by the laser length measuring device, and the luminance data at a plurality of ideal imaging positions is corrected. Means for calculating
    Using the calculated luminance data at the plurality of ideal imaging positions, spot displacement data at the plurality of ideal imaging positions is calculated, and the spot displacement data at the plurality of ideal imaging positions is connected. In addition, spot coordinate data creating means for creating spot coordinate data,
    Wavefront aberration measuring means for measuring the wavefront aberration of the lens by performing leaf surface analysis on the created spot coordinate data;
    A wavefront aberration measuring apparatus comprising:
  16. 請求項15記載の波面収差測定装置であって、
    前記レーザ側長器は、異なる位置に複数個配置されていることを特徴とする波面収差測定装置。
    The wavefront aberration measuring apparatus according to claim 15,
    2. The wavefront aberration measuring apparatus according to claim 1, wherein a plurality of the laser side lengthening devices are arranged at different positions.
  17. 請求項15又は16記載の波面収差測定装置であって、
    さらに、前記波面収差測定手段により測定された波面収差を表示する表示手段と、
    を有することを特徴とする波面収差測定装置。
    The wavefront aberration measuring device according to claim 15 or 16,
    And display means for displaying the wavefront aberration measured by the wavefront aberration measuring means;
    A wavefront aberration measuring apparatus comprising:
  18. 請求項17記載の波面収差測定装置であって、
    前記表示手段は、前記1次元ラインセンサが複数領域撮像する撮像スケジュールも併せて表示することを特徴とする波面収差測定装置。
    The wavefront aberration measuring apparatus according to claim 17,
    The wavefront aberration measuring apparatus, wherein the display unit also displays an imaging schedule for imaging a plurality of regions by the one-dimensional line sensor.
PCT/JP2010/007178 2010-03-18 2010-12-10 Method for measuring wavefront aberration and device of same WO2011114407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010061778A JP2011196732A (en) 2010-03-18 2010-03-18 Method for measuring wavefront aberration and device of the same
JP2010-061778 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114407A1 true WO2011114407A1 (en) 2011-09-22

Family

ID=44648540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007178 WO2011114407A1 (en) 2010-03-18 2010-12-10 Method for measuring wavefront aberration and device of same

Country Status (2)

Country Link
JP (1) JP2011196732A (en)
WO (1) WO2011114407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744270A (en) * 2014-01-26 2014-04-23 中国科学院上海光学精密机械研究所 In-situ detection method of odd aberration of photoetching objective
JP2014102120A (en) * 2012-11-19 2014-06-05 Canon Inc Wavefront aberration measurement method, wavefront aberration measurement apparatus and optical system manufacturing method
CN104535300A (en) * 2014-12-20 2015-04-22 中国科学院西安光学精密机械研究所 Large-diameter collimator wavefront and image surface position calibration device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066239A (en) * 2016-05-25 2016-11-02 中国科学院长春光学精密机械与物理研究所 Detection device and method is debug at large telescope scene based on guiding
CN107144419B (en) * 2017-04-17 2019-03-19 中国科学院光电研究院 A kind of optical system wavefront aberration measuring device and method based on Shack-Hartmann wavefront sensor
CN107543683A (en) * 2017-07-31 2018-01-05 中国计量大学 The high-precision wide-dynamic-range measuring system and measuring method of a kind of transmissive element aberration
JP7199835B2 (en) * 2018-05-25 2023-01-06 キヤノン株式会社 Wavefront sensor, wavefront measuring device, optical element manufacturing method, optical system manufacturing method
JP7248296B2 (en) * 2019-11-12 2023-03-29 株式会社カツラ・オプト・システムズ LENS ON-AXIS OFF-AXIS POINT IMAGE OBSERVATION METHOD, APPARATUS AND PROGRAM USING THE SAME METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100606A (en) * 2001-09-25 2003-04-04 Nikon Corp Wave front aberration measurement apparatus, exposure system, and device manufacturing system
WO2003081168A2 (en) * 2002-03-26 2003-10-02 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining and correcting guiding errors in a coordinate measuring device
JP2004014764A (en) * 2002-06-06 2004-01-15 Hitachi Ltd Wavefront aberration measurement device, aligner, and semiconductor device manufacturing system and method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
JP2006261151A (en) * 2005-03-15 2006-09-28 Nikon Corp Instrument and method for optical characteristic measurement, exposure apparatus and exposure method
WO2010092750A1 (en) * 2009-02-13 2010-08-19 株式会社日立製作所 Wavefront aberration measuring method and device therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100606A (en) * 2001-09-25 2003-04-04 Nikon Corp Wave front aberration measurement apparatus, exposure system, and device manufacturing system
WO2003081168A2 (en) * 2002-03-26 2003-10-02 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining and correcting guiding errors in a coordinate measuring device
JP2004014764A (en) * 2002-06-06 2004-01-15 Hitachi Ltd Wavefront aberration measurement device, aligner, and semiconductor device manufacturing system and method
JP2006030016A (en) * 2004-07-16 2006-02-02 Nikon Corp Calibration method for wavefront aberration measurement apparatus, wavefront aberration measurement method and apparatus, projection optical system, manufacturing method of same, projection exposure apparatus, manufacturing method of same, microdevice, manufacturing method of same
JP2006261151A (en) * 2005-03-15 2006-09-28 Nikon Corp Instrument and method for optical characteristic measurement, exposure apparatus and exposure method
WO2010092750A1 (en) * 2009-02-13 2010-08-19 株式会社日立製作所 Wavefront aberration measuring method and device therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102120A (en) * 2012-11-19 2014-06-05 Canon Inc Wavefront aberration measurement method, wavefront aberration measurement apparatus and optical system manufacturing method
CN103744270A (en) * 2014-01-26 2014-04-23 中国科学院上海光学精密机械研究所 In-situ detection method of odd aberration of photoetching objective
CN104535300A (en) * 2014-12-20 2015-04-22 中国科学院西安光学精密机械研究所 Large-diameter collimator wavefront and image surface position calibration device and method

Also Published As

Publication number Publication date
JP2011196732A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
WO2011114407A1 (en) Method for measuring wavefront aberration and device of same
JP5452032B2 (en) Wavefront aberration measuring method and apparatus
JP6299111B2 (en) Laser processing equipment
JP5793093B2 (en) Inspection apparatus and inspection method
TWI484283B (en) Image measurement method, image measurement apparatus and image inspection apparatus
JP2001332595A (en) Focus control mechanism and inspection apparatus using the same
US20160088213A1 (en) Inspection apparatus, coordinate detection apparatus, coordinate detection method, and wavefront aberration correction method
CN106233125A (en) Copolymerization focal line detection optical system
JP2016033620A (en) Image acquisition device
JP2012058139A (en) Lens inspection apparatus and method
CN110235057B (en) Method for determining mechanical deviation, method for correcting mechanical deviation and image capturing device
KR101826127B1 (en) optical apparatus for inspecting pattern image of semiconductor wafer
JP2015108582A (en) Three-dimensional measurement method and device
US7551296B2 (en) Method for determining the focal position of at least two edges of structures on a substrate
JP2009264894A (en) Inspection device
JP6732680B2 (en) Map making method, mask inspection method and mask inspection apparatus
JP4549931B2 (en) Mixing vane inspection method and inspection device
KR101833245B1 (en) METHOD AND SYSTEM FOR CALIBRATION OF SURFACE MEASUREMENT DEVICE USING Phase measuring deflectometry
JP2008180530A (en) Shape-measuring device and shape-measuring method
JP2006343143A (en) Inspection system for imaging device
JP2007187623A (en) Method and apparatus for measuring three-dimensional shape
JP2022152480A (en) Three-dimensional measuring device, three-dimensional measuring method, program, system, and method for manufacturing article
JP2008154195A (en) Method of creating pattern for calibration of lens, pattern for calibration of lens, method and device for calibrating lens utilizing pattern for calibration, and method and device for calibrating imaging apparatus
JP4930834B2 (en) Shape measurement method
JP2003057553A (en) Confocal scanning type microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847825

Country of ref document: EP

Kind code of ref document: A1