JP2004014764A - Wavefront aberration measuring apparatus, exposure apparatus, semiconductor device manufacturing system and manufacturing method thereof - Google Patents
Wavefront aberration measuring apparatus, exposure apparatus, semiconductor device manufacturing system and manufacturing method thereof Download PDFInfo
- Publication number
- JP2004014764A JP2004014764A JP2002165481A JP2002165481A JP2004014764A JP 2004014764 A JP2004014764 A JP 2004014764A JP 2002165481 A JP2002165481 A JP 2002165481A JP 2002165481 A JP2002165481 A JP 2002165481A JP 2004014764 A JP2004014764 A JP 2004014764A
- Authority
- JP
- Japan
- Prior art keywords
- wavefront aberration
- optical system
- circuit pattern
- pattern
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70591—Testing optical components
- G03F7/706—Aberration measurement
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
【課題】半導体装置の超微細化に伴って狭マージン化したとしても、露光レンズ(投影光学系)の僅かな波面収差の経時変化も考慮して高精度の露光を実現して超微細の半導体装置を高歩留りで製造できるようにした波面収差測定装置、露光装置並びに半導体装置製造システム及びその方法を提供することにある。
【解決手段】露光装置において、レチクルステージ上に、投影光学系の瞳上にほぼ均一に拡がる光を発生させるパターンを設け、投影光学系の瞳面と共役位置を作るリレーレンズと、該リレーレンズで作られた投影光学系の瞳面と共役位置に主平面を配置し、投影光学系の像面に形成された前記パターンの一次像からの光を波面分割して前記パターンの二次像を多数形成するレンズアレイと、該レンズアレイにより多数形成されたパターンの二次像を撮像して多数のパターン信号を出力する撮像素子と、該撮像素子から得られる多数のパターン信号を基に前記投影光学系の波面収差を算出する処理手段とを備えて構成した波面収差測定装置を設けたことを特徴とする。
【選択図】 図2[PROBLEMS] To achieve high-precision exposure in consideration of a slight temporal change in wavefront aberration of an exposure lens (projection optical system) even if a margin is narrowed due to ultra-miniaturization of a semiconductor device. An object of the present invention is to provide a wavefront aberration measuring apparatus, an exposure apparatus, a semiconductor device manufacturing system, and a method therefor, which can manufacture the apparatus at a high yield.
In an exposure apparatus, a pattern is provided on a reticle stage for generating light that spreads substantially uniformly on a pupil of a projection optical system, and a relay lens forms a conjugate position with a pupil plane of the projection optical system, and the relay lens. A main plane is arranged at a conjugate position with the pupil plane of the projection optical system made by the above, and a light from the primary image of the pattern formed on the image plane of the projection optical system is subjected to wavefront division to form a secondary image of the pattern. A lens array for forming a large number, an image sensor for imaging a secondary image of a pattern formed by the lens array to output a large number of pattern signals, and the projection based on a large number of pattern signals obtained from the image sensor A wavefront aberration measuring device including a processing unit for calculating a wavefront aberration of the optical system is provided.
[Selection] Fig. 2
Description
【0001】
【発明の属する技術分野】
本発明は、波面収差測定装置と半導体露光装置と半導体デバイスの製造方法に関し、特に、露光レンズの波面収差を露光装置上で計測する技術と、計測した波面収差を活用した波面収差測定装置、露光装置並びに半導体装置(半導体デバイス)の製造システムおよびその製造方法に関する。
【0002】
【従来の技術】
半導体デバイスの回路パターンは、基板であるウエハ上に成膜し、この上に感光剤であるレジストを塗布、レチクル上の回路パターンをレジストに露光し、現像後、膜をエッチングすることによって生成される。この一連の工程を各層で繰り返すことによって多層の回路パターンで構成される半導体デバイスが製造される。この時、下地層パターンに対し、露光時の回路パターンの位置ずれがあると回路は断線またはショートし、半導体デバイスの不良となる。このため、露光、現像後にレジストで形成された合わせマークと下地層の合わせマークの相対的位置ずれを光学顕微鏡で自動測定し、ずれ量を次回露光時、露光装置にフィードバックして補正する方法がとられている。通常この合わせマークは露光エリア端の回路パターンの無い領域に設けられている。また、合わせマークは光学的検出法で解像可能なように、回路線幅と比べて大きく、2〜4μmの線幅で形成されている。
【0003】
ところで、露光装置のレンズに波面収差があると回路パターンと合わせマークの位置ずれに差が生じる。波面収差は図27に示すようにレンズ瞳(絞り)上での露光光の位相変化分布を示す。像を形成する回折光の角度θは、微細で空間周波数が高い回路パターンでは図27(b)に示すように大きくなり、回折光はレンズ瞳上の端を通るため、レンズ外周近くの波面収差の影響を受ける。
【0004】
一方、合わせマークは空間周波数が低いため、図27(a)のようにレンズ中心付近の波面収差の影響を受ける。レンズ瞳を通る光線は波面収差の傾きに比例した量だけ曲げられるので、特にコマ収差のような非対称な波面収差が存在する場合の位置ずれは、回路パターンと合わせマークで異なる。このため、回路パターン空間周波数とレンズの波面収差に応じて、合わせマークで測定した位置ずれを回路パターンの位置ずれに変換して補正する必要がある。なお、波面収差によって変化するものとして、位置ずれの他に、ベストフォーカス位置や転写倍率等もあり、これらも波面収差に応じて補正する必要がある。
【0005】
ところで、波面収差は経時変化する。これは、レンズ内の温度、圧力によってレンズの屈折率が変化すること、レンズ筐体の熱応力によりレンズが歪むこと、および光源の波長がドリフトすることなどによって変化するためである。従って、波面収差は定期的に測定する必要がある。また、波面収差を定期的に測定できれば、露光レンズを構成する要素レンズの一部移動やレンズ内圧力、露光光源の波長を制御することにより、波面収差を一定の許容範囲に収めることも可能である。
【0006】
定期的に波面収差を測定するためには、露光装置上で測定できることが望ましいが、そのための技術としては、位相回復法、パターン空間像位置を測定する方法、および干渉計を搭載する方法がある。
【0007】
位相回復法は、例えば、2000−195782(従来技術1)に公開されているように、ベストフォーカス位置とデフォーカス位置で特定パターンの像強度分布から波面収差を繰り返し計算により算出する方法である。パターン空間像位置を測定する方法は、例えば、特開平11−297614(従来技術2)に開示されているように、特定パターンの像強度分布の位置ずれ量からコマ収差等の非対称な波面収差を算出する方法である。また、干渉計を搭載する方法は、例えば、特開平2000−277411(従来技術3)にあるように、レンズを介してウエハ面で反射した光と参照光の干渉縞から波面収差を算出する方法である。
【0008】
また、他の従来技術としては、特開2002−71514(従来技術4)において、露光レンズ(投影光学系)の波面収差を測定するための検査装置を備えた露光装置が知られている。該検査装置としては、上記露光レンズの物体側開口数以上の開口数で上記露光レンズの物体面に位置決めされた開口部を照明するための照明ユニットと、上記露光レンズの像面に形成された上記開口部の一次像からの光を波面分割して上記開口部の二次像を多数形成するための波面分割素子(マイクロフライアイ)と、該波面分割素子により形成された多数の二次像を光電検出するための光電検出部とを備えることが記載されている。
【0009】
【発明が解決しようとする課題】
ところが、上記装置上での波面収差測定方法には次のような問題点がある。
【0010】
まず、従来技術1の位相回復法では、ベストフォーカス位置とデフォーカス位置の2カ所で像強度分布の検出を行う必要があるため時間がかかる。また、繰り返し計算によって位相分布を求めるにあたり、条件によっては収束しない場合もあり得る。
【0011】
また、従来技術2のパターン空間像位置を測定する方法は、異なる空間周波数のパターン空間像の位置ずれをコマ収差係数に換算するものであるが、ベストフォーカス位置に影響する球面収差や非点収差等、コマ収差以外の収差項目が測定できない。
【0012】
また、従来技術3の干渉計を搭載する方法は、まず精度確保のための剛性向上や装置複雑化に伴うコスト増大のため、実際に適用することは難しい。
【0013】
また、従来技術4には、光電検出部で検出される測定用の各原点位置から開口部の各像の光量重心位置までの位置ずれ情報に基いて露光レンズの波面収差を高精度に測定する点について十分考慮されていない。
【0014】
本発明の目的は、上記課題を解決すべく、半導体露光装置上で、露光レンズの波面収差の経時変化を、高精度に測定することができるようにした波面収差測定装置、露光装置並びに半導体装置製造システム及びその方法を提供することにある。
【0015】
また、本発明の他の目的は、半導体装置の超微細化に伴って狭マージン化したとしても、露光レンズ(投影光学系)の僅かな波面収差の経時変化も考慮して高精度の露光を実現して超微細の半導体装置を高歩留りで製造できるようにした半導体装置製造システム及びその方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明のうち、代表的なものの概要を説明すれば、以下のとおりである。
【0017】
本発明は、被測定光学系の波面収差を測定する波面収差測定装置において、前記被測定光学系の物体面に位置決めされ、前記被検査光学系の瞳上にほぼ均一に拡がる光を発生させるパターンと、該パターンに対して照明する照明光学系と、前記被測定光学系の瞳面と共役位置を作るリレーレンズと、該リレーレンズで作られた前記被測定光学系の瞳面と共役位置に主平面を配置し、前記被測定光学系の像面に形成された前記パターンの一次像からの光を波面分割して前記パターンの二次像を多数形成するレンズアレイと、該レンズアレイにより多数形成されたパターンの二次像を撮像する撮像素子とを備えたことを特徴とし、これにより、レンズアレイによる波面分割が瞳面と1対1に対応させることができ、波面収差測定を正確に行うことが可能となる。
【0018】
また、本発明は、レチクルステージ上に載置されたレチクルの回路パターンを照明する照明光学系と、該照明光学系で照明されたレチクルの回路パターンを基板ステージ上に載置された被露光基板上に投影露光する投影光学系とを備えた露光装置において、前記レチクルステージ上に、前記投影光学系の瞳上にほぼ均一に拡がる光を発生させるパターンを設け、前記投影光学系の瞳面と共役位置を作るリレーレンズと、該リレーレンズで作られた前記投影光学系の瞳面と共役位置に主平面を配置し、前記投影光学系の像面に形成された前記パターンの一次像からの光を波面分割して前記パターンの二次像を多数形成するレンズアレイと、該レンズアレイにより多数形成されたパターンの二次像を撮像して多数のパターン信号を出力する撮像素子と、該撮像素子から得られる多数のパターン信号を基に前記投影光学系の波面収差を算出する処理手段とを備えて構成した波面収差測定装置を設けたことを特徴とする。
【0019】
また、本発明は、前記波面収差測定装置において、前記被測定光学系において波面収差がない場合に得られる光線と波面収差がある場合に得られる光線とが、前記レンズアレイの各レンズ要素の中心を通るように構成したことを特徴とする。
【0020】
また、本発明は、前記波面収差測定装置において、前記撮像素子は、前記レンズアレイの焦点位置に配置することを特徴とする。これにより、前記撮像素子上で撮像される集光スポットのコントラストが向上するため、高精度なスポット位置計測が行えるため、高精度に波面収差を求めることができる。
【0021】
また、本発明は、前記波面収差測定装置において、前記投影光学系の像面と前記リレーレンズの主平面との間の距離は前記リレーレンズの焦点距離であることを特徴とする。これにより、波面収差がない場合、前記リレーレンズ出射後の光が平行光となり、前記レンズアレイに垂直に入射、撮像素子上の集光スポット位置が等間隔となる。この結果、スポット位置ずれの基準位置を等間隔と仮定することができるので、波面収差算出の演算を簡略化することができる。
【0022】
また、本発明は、前記波面収差測定装置において、前記リレーレンズの入射側に制限フィルタ(例えばアパーチャ)を備えたことを特徴とする。また、本発明は、前記照明光学系において、少なくとも波面収差測定時に前記パターンに照明光を集光する集光光学系を備えたことを特徴とする。
【0023】
また、本発明は、前記波面収差測定装置の処理手段は、予め第1の状態において前記撮像素子から得られる多数のパターン信号を基に計測される第1のパターン位置群(X0,Y0)に応じて前記リレーレンズ及び前記レンズアレイに起因する誤差成分群(ax,ay)を算出し、第2の状態において前記撮像素子から得られる多数のパターン信号を基に計測される第2のパターン位置群(X,Y)から前記算出した誤差成分群(ax,ay)を除去して第2のパターンのずれ量群(ΔX,ΔY)を算出し、該算出した第2のパターンのずれ量群(ΔX,ΔY)を基に第2の状態における前記投影光学系の波面収差Wを算出するよう構成したことを特徴とする。
【0024】
また、本発明は、前記処理手段において、前記リレーレンズ及び前記レンズアレイに起因する誤差成分群(ax,ay)を算出する際、別な手段によって第1の状態における前記投影光学系の波面収差W0を計測し、該計測された波面収差W0を基に第1のパターンのずれ量群(ΔX0,ΔY0)を算出し、前記計測された第1のパターン位置群(X0,Y0)から前記算出された第1のパターンのずれ量群(ΔX0,ΔY0)を減算することによって前記誤差成分群(ax,ay)を算出するように構成したことを特徴とする。
【0025】
また、本発明は、前記露光装置と、該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、第2の状態で第1の回路パターンおよび第1の合わせマークの上に第2の回路パターンおよび第2の合わせマークを露光する際の第1の回路パターン対する第2の回路パターン転写像の位置ずれ量と第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量との関係を算出し、合わせ検査装置で実測される第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量に応じて前記算出された回路パターン転写像の位置ずれと合わせマーク転写像の位置ずれとの関係を補正して実際の回路パターンの転写像の位置ずれ補正値を予測し、該予測された実際の回路パターンの転写像の位置補正値を前記露光装置にフィードバックする計算手段とを備えたことを特徴とする半導体装置の製造システムおよびその方法である。
【0026】
また、本発明は、前記露光装置と、該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、フォーカス値と露光量を変化させて製品回路パターンの転写像の光強度分布を算出し、該算出された製品回路パターンの転写像の光強度分布を基に製品回路パターン寸法を算出し、これらフォーカス値、露光量および製品回路パターン寸法の関係から最適露光量および最適フォーカス値を算出する計算手段とを備えたことを特徴とする半導体装置の製造システムおよびその方法である。
【0027】
また、本発明は、前記露光装置と、該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、第2の状態における投影光学系で露光される回路パターンの転写像を算出し、該算出された回路パターンの転写像に基いてレチクル上の回路パターンの光学特性を設計する計算手段とを備えたことを特徴とする半導体装置の製造システムおよびその方法である。
【0028】
以上、本発明の新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【0029】
【発明の実施の形態】
本発明に係る露光装置並びに半導体装置設計製造システム及びその方法の実施の形態について図面を用いて説明する。
【0030】
近年、半導体デバイスは、例えば、0.1μm以下の超微細なパターンになってきており、それに伴って露光において狭マージン化するため、僅かな露光レンズ(縮小投影光学系)の波面収差の経時変化も問題となり、それを頻繁に日単位とか、週単位で算出することが要求されてきている。そして、算出された露光レンズの波面収差に基づいて、露光量とフォーカスとの関係からなる露光条件の最適化、レチクルに形成された回路パターン(OPC)の最適化、収差起因歪みによるMix & Match補正、および回路パターンと合わせマークとの間の位置ずれ補正をすることにより、狭マージン化、即ち高精度化に対応することが可能となる。
【0031】
そこで、まず、本発明に係る露光装置の一実施例について、図1を用いて説明する。
【0032】
本発明に係る露光装置は、例えば、エキシマレーザ光等の露光光を出射する光源と、該光源から出射されたほぼ平行光の光束を整形する整形光学系と、該整形光学系で整形された光束の可干渉性を低減する可干渉性低減光学系と、該可干渉性低減光学系からの光束から多数の光源を形成する第1のフライアイレンズと、該第1のフライアイレンズからの多数の光源を偏向させる偏向器と、該偏向器で偏向された多数の光源を重畳的に照明するリレー光学系と、該リレー光学系で重畳的に照明された多数の光源を後側焦点面に多数の二次光源を形成する第2のフライアイレンズ(図示せず)と、該第2のフライアイレンズで形成された多数の二次光源を制限する開口絞りと、該開口絞りを通して得られる多数の二次光源を下側面に所定の回路パターンが形成されたレチクル上に重畳的に均一に照明するコンデンサー光学系とを有する照明光学系(図示せず)を設け、ウエハ3を載置するウエハホルダ34を設けた基板ステージ(Xステージ31、Yステージ32およびZステージ33等から構成される。)を設け、レチクルを載置するレチクルステージを設け、レチクルのパターン(回路パターン)を被露光基板であるウエハ3上に縮小投影露光する露光レンズ(縮小投影光学系)2を設け、更にウエハ3の表面を露光レンズ2の結像面に自動合焦点制御する合焦点制御系を設けて構成される。なお、本発明において、照明光学系は、上記構成に限定されるものではない。また、本発明に係る露光レンズ2は、基本構成として、第1エレメントレンズ21、瞳23および第2エレメントレンズ22を有して構成される。
【0033】
ところで、例えば、可干渉低減光学系からの光束は、第1のフライアイレンズを介してその後側焦点面に多数の光源を形成する。これら多数の光源からの光は、偏向器で偏向された後、リレー光学系を介して第2のフライアイレンズを重畳的に照明し、該第2のフライアイレンズの後側焦点面に、多数の二次光源が形成される。この二次光源からの光束は、その近傍に配置された開口絞りにより制限された後、コンデンサー光学系を介してレチクル(マスク)を重畳的に均一に照明する。
【0034】
レチクルのパターン(回路パターン)を透過した光束は、露光レンズ(縮小投影光学系)(被測定光学系)2を通して被露光基板であるウエハ3上にパターン(回路パターン)の像を形成して縮小投影露光される。レチクル(マスク)は、レチクルホルダを介して、レチクルステージに載置される。なお、レチクルステージは、主制御系からの指令に基き、レチクルステージ制御部によって駆動される。
【0035】
一方、ウエハ3は、基板ステージ(Xステージ31、Yステージ32およびZステージ33等から構成される。)上のウエハホルダ34に載置されている。基板ステージ(ウエハステージ)31〜33は、主制御部からの指令に基づき、ウエハステージ制御部によって駆動される。このとき、ウエハステージの移動は、例えばレーザ測長器によって測定される。このように、ウエハステージ31〜33は、X−Y−Z方向の移動機能、Z軸、X軸及びY軸周りの回転若しくはチルト機能を有し、ウエハステージ制御部によりナノオーダで位置制御される。更に、ウエハ3の表面は、合焦点制御系によって露光レンズ2の結像面300に自動合焦点制御される。
【0036】
本発明に係る波面収差測定装置4は、例えば、ウエハステージ31〜33上に設けられことになる。上記波面収差測定装置4は、光線903をコリメートするリレーレンズ41と、該リレーレンズ41でコリメートされた光線904を撮像素子43上に集光するレンズアレイ42と、レンズアレイの各々で集光された光線9041及び9042の位置を撮像して信号に変換する撮像素子43とを備え、露光レンズ2の瞳面23と上記レンズアレイ42の主平面とがリレーレンズ41を介して共役になるように構成される。このように、露光レンズ(縮小投影光学系)2の瞳面23と上記レンズアレイ42の主平面とがリレーレンズ41を介して共役になるように構成すると、撮像素子43上における無収差時からのスポット位置のずれ(ΔX,ΔY)は、収差量(レンズアレイに対応する瞳23上の波面収差の一次微分)(∂W(ξ、η)/∂ξ,∂W(ξ、η)/∂η)に比例することになり、収差量を簡単に算出することが可能となる。
【0037】
即ち、計測用レチクル(評価用レチクル)1をレチクルステージに搭載し、上記照明光学系で計測用レチクル1を照明すると、計測用レチクル1上のピンホール110を通過した光901は、露光レンズ2の第1エレメントレンズ21で平行光902となり、第2エレメントレンズ22を介して、ウエハ3上面と同一高さの結像点Aで、集光される。この後、光線903は波面収差測定器4に入射し、リレーレンズ41でコリメートされた光線904はレンズアレイ42によって、撮像素子43上で集光される。
【0038】
ここで、露光レンズ(縮小投影光学系)(被測定光学系)2に波面収差201が存在する場合を考える。波面収差201は露光レンズ2の瞳23上の位相分布を表し、傾きの大きさに比例した量だけ入射した光線が曲げられる。例えば、露光レンズ2において、波面収差201が無い場合には、第1エレメントレンズ21を出射した光線9020は光線9021のように直進するが、波面収差201がある場合には、第1エレメントレンズ21を出射した光線9020は上記波面収差201の局所的傾きに比例して光線9022のように曲げられる。この結果、波面収差201が無い場合には、第2エレメントレンズ22を出射した光線は光線9031のように進み、リレーレンズ41とレンズアレイ42により、光線9041の位置で撮像素子43上で検出されるが、波面収差201がある場合には、第2エレメントレンズ22を出射した光線は光線9032のように進み、撮像素子41上において光線9042の位置で検出される。
【0039】
次に、計測用レチクル1、露光レンズ2および波面収差測定器4等の光学的な配置を図2を用いて説明する。一般的な露光装置の場合、計測用レチクル1上のピンホール110と第1エレメントレンズ21の距離を第1エレメントレンズ21の焦点距離f1、第1エレメントレンズ21と瞳23の距離をf1、瞳23と第2エレメントレンズ22の距離を第2エレメントレンズ22の焦点距離f2、第2エレメントレンズ22とウエハ3上面である結像面300の距離をf2として配置されている。この結果、ピンホール110と結像面300は共役の関係となり、倍率はf2/f1で表される。この時、波面収差201が無い場合には、瞳23の中心を通る光線9010は、計測用レチクル1にも結像面300にも垂直になるので、物体側、像側の両側でテレセントリックとなる。この配置の長所は、計測用レチクル1やウエハ3が上下方向にずれても、像位置がずれない、すなわち結像倍率が変わらないという点である。但し、波面収差201が存在する場合には、光線9010が結像面300に対して垂直でなくなるため、結像倍率も変化する。
【0040】
次に、本発明に係る波面収差測定器4の光学的配置について説明する。リレーレンズ41は結像面300とリレーレンズ41の焦点距離f3だけ離れた位置にあり、レンズアレイ42も、リレーレンズ41からf3の位置に置かれる。撮像素子43はレンズアレイ42からレンズアレイ42の焦点距離f4の位置に配置される。この結果、瞳23とレンズアレイ42は共役関係となり、倍率はf3/f2となる。これにより(瞳23とレンズアレイ42とをリレーレンズ41を介して共役関係となるように配置することにより)、波面収差201が無い場合の光線9021と、ある場合の光線9022が、レンズアレイ42の各レンズ要素の中心を通るため、それぞれの光線がレンズアレイ42で光路を曲げられることなく撮像素子43に入射する。従って、撮像素子43上での位置の差(ΔX,ΔY)は、波面収差201の局所的な傾きを表すことになる。波面収差201によって、瞳23上で生じる角度αとレンズアレイ42上で生じる角度βの関係は、次の(1)式で示すようになる。
【0041】
β=(f2/f3)α ・・・(1)
更に、露光レンズ2の波面収差W(ξ,η)は上記角度αに比例することから、波面収差W(ξ,η)と位置の差(ΔX,ΔY)の関係は、例えば、‘Laser Ray−Tracing versus Hartmann−Shack Sensor for Measuring Optical Aberrations in the Human Eye、 Journal of Optical Society of America A, Vol.17, 2000’記載より、次に示す(2)式および(3)式となる。
【0042】
ΔX=((λ/2π)・(f4/R)・(f2/f3))(∂W(ξ,η)/∂ξ) ・・・(2)
ΔY=((λ/2π)・(f4/R)・(f2/f3))(∂W(ξ,η)/∂η) ・・・(3)
ここに、λは露光波長、Rは瞳23の半径、(ξ,η)は瞳上の座標であり、Rによってノーマライズされている。従って、(2)式、(3)式より偏微分の項を積分または級数展開することにより波面収差W(ξ,η)を求めることができる。
【0043】
即ち、上記係数((λ/2π)・(f4/R)・(f2/f3))が定数であるため、波面収差W(ξ,η)は、撮像素子43上でのスポット位置のずれ量(ΔX,ΔY)から容易に算出することが可能となる。また、逆に、リレーレンズ41およびレンズアレイ42に起因するスポット位置ずれ量(ax(i,j),ay(i,j))を算出する際において、干渉計等(別手段)を用いて計測される露光レンズ2の初期状態の波面収差W0(ξ,η)を基に、撮像素子43上でのスポット位置のずれ量(ΔX,ΔY)を算出する際も容易となる。
【0044】
次に、撮像素子43の画像431を図3により説明する。撮像素子43はレンズアレイ42の焦点上にあるので、各光線は撮像素子43上で集光されスポット状になる。ここで、スポットサイズと画素サイズに関して検討する。まず、露光レンズ2内のエレメントレンズ21、22の焦点距離をそれぞれf1=400mm、f2=100mm、露光レンズ2のウエハ3側の開口数をNA=0.8、リレーレンズ41の焦点距離をf3=5mmとする。リレーレンズ41は露光レンズ2より大きな開口数をもつ必要があるため、実際には図1のような単レンズではなく、顕微鏡の対物レンズのような複数レンズからなるレンズである。露光レンズ2の瞳23の半径Rは、次に示す(4)式により、R=100*0.8=80mmとなる。
【0045】
R=f2・NA ・・・(4)
スポットの数はレンズアレイ42のエレメントレンズの数となるので、瞳21の像を40分割するとレンズアレイ42のピッチは8/40=0.2mm。この結果、レンズアレイ42のエレメントレンズ420の半径を0.1mm、焦点距離f4=10mmとすると、エレメントレンズ420の開口数はNAe=0.1/10=0.01となる。スポットサイズdは、次に示す解像力の(5)式より、d=1.22*0.248/0.01=30μmとなる。ここにおいて、露光波長λ=0.248μmとした。
【0046】
d=1.22・(λ/NAe) ・・・(5)
一方、撮像素子43を対角で1/3インチ、水平および垂直方向とも1000画素とすると、1画素の大きさpは1/3/√2/1000=6μmとなる。この結果、1つのスポットに対する画素数は、30/6=5画素となり、スポット位置計測には十分である。スポット位置は、一般的な画像処理を用いてスポットの重心位置(X(i,j),Y(i,j))を求めることができる。この処理は図1において、制御・処理系8が撮像素子43で取得した画像431に対して行う。
【0047】
ここで、制御・処理系8の処理フローについて図4および図5を用いて説明する。まず、波面収差測定器4の撮像素子43で取得した画像431を基に測定されるスポットの位置ずれ量には、計測系のリレーレンズ41およびレンズアレイ42に起因するスポットシフト量(ax(i,j),ay(i,j))が含まれることになる。そのため、予め、計測系のリレーレンズ41およびレンズアレイ42に起因するスポットシフト量(ax(i,j),ay(i,j))を求めておく必要がある。
【0048】
そこで、予め(第1の状態で)、スポットシフト量(ax(i,j),ay(i,j))を求める方法について図4を用いて説明する。まず、制御・処理系8は、ステップ801において、初期状態(第1の状態)における露光レンズ2のスポット位置(X0(i,j),Y0(i,j))の計測を、初期状態で撮像素子43で取得した画像431を基に上述した画像処理により行う。ステップ802では、装置上での計測ではない、本実施例とは別の手段、例えば、USPNo.5,828,455に開示されているような手段(干渉計など)により、初期状態(第1の状態)における露光レンズ2の波面収差W(ξ、η)を計測する。次に、ステップ803において、入力された初期状態における露光レンズ2の波面収差W0(ξ、η)の計測値と上記比例係数((λ/2π)・(f4/R)・(f2/f3))とに基づいて、上記(2)式、(3)式により、初期状態(第1の状態)におけるスポットシフト(ΔX0(i,j),ΔY0(i,j))を算出する。最後に、ステップ801およびステップ803の結果を用いて、ステップ804により、リレーレンズ41およびレンズアレイ42に起因するスポットシフト位置(ax(i,j),ay(i,j))を、次に示す(6)式、(7)式から算出する。
【0049】
ax(i,j)=X0(i,j)−ΔX0(i,j) ・・・(6)
ay(i,j)=Y0(i,j)−ΔY0(i,j) ・・・(7)
上記算出されたスポットシフト位置(ax(i,j),ay(i,j))は、露光レンズ2が無収差である場合における波面収差測定器4で測定されるスポット位置を示し、この処理により露光レンズ2の波面収差2を測定する準備が完了することになる。
【0050】
ところで、当然、制御・処理系8は、初期状態における露光レンズ2の波面収差W(ξ、η)の計測値を入力し、上記比例係数((λ/2π)・(f4/R)・(f2/f3))を入力して記憶しておけば、初期状態におけるスポットシフト(ΔX0(i,j),ΔY0(i,j))を算出することが可能となる。その結果、制御・処理系8は、上記スポットシフト位置(ax(i,j),ay(i,j))も、上記(6)式および(7)式に基づいて算出することが可能となる。なお、初期状態におけるスポットシフト(ΔX0(i,j),ΔY0(i,j))の算出は、別の処理系で算出して制御・処理系8に入力してもよい。また、スポットシフト位置(ax(i,j),ay(i,j))の算出も、別の処理系で算出して制御・処理系8に入力してもよい。
【0051】
次に、露光レンズ2の波面収差の経時変化を算出する方法について図5を用いて説明する。例えば、0.1μm以下の超微細なパターンに伴って狭マージン化するため、僅かな露光レンズ2の波面収差の経時変化も問題となり、それを頻繁に(例えば日単位とか、週単位で)算出する必要がある。そこで、制御・処理系8が、予め求めて記憶しておいたリレーレンズ41およびレンズアレイ42に起因するスポットシフト位置(ax(i,j),ay(i,j))を用いて、露光レンズ2の波面収差を算出するフローについて、図5を用いて説明する。露光レンズ2の波面収差を算出する必要が生じた際、まず、ステップ805において、計測用レチクル1をレチクルステージに設置し、ウエハステージを移動させて波面収差測定器4を所定の位置に位置付け、制御・処理系8は、波面収差測定器4の撮像素子43で取得した画像431を基にスポット位置(X(i,j),Y(i,j))を計測する。次に、制御・処理系8は、ステップ806において、次の(8)式および(9)式によりリレーレンズ41およびレンズアレイ42起因のシフトを補正した、露光レンズ2のみに起因するシフト量(ΔX(i,j),ΔY(i,j))を算出する。
【0052】
ΔX(i,j)=X(i,j)−ax(i,j) ・・・(8)
ΔY(i,j)=Y(i,j)−ay(i,j) ・・・(9)
次に、制御・処理系8は、上記比例係数((λ/2π)・(f4/R)・(f2/f3))が入力されて記憶されているので、ステップ807において、算出されたシフト量(ΔX(i,j),ΔY(i,j))を用いて、上記(2)式および(3)式より露光レンズ2の波面収差W(ξ、η)を算出する。以上の処理によって、計測系の収差を含まない、露光レンズ2のみの波面収差を正確に算出することが可能となる。
【0053】
ところで、露光レンズ2の波面収差201は、計測用レチクル1上のピンホール110の位置によって、変化する。従って、露光レンズ2の波面収差は複数のピンホール111、112でも測定する必要がある。この時、隣接するピンホールの光が波面収差測定器4に入射すると、スポット位置算出時に誤差が発生し得る。そこで、波面収差測定器4の入射口にもアパーチャ40を設ける。図6にアパーチャ40を示す。制限フィルタ(例えばアパーチャ)40の半径rpは、デフォーカス許容量Δzを1μmとすると、rp=Δz*NA=1*0.8=0.8μmとなる。制御・処理系8は、計測用レチクル1上のピンホール110、111、112他の結像位置に波面収差測定器4が来るよう、Xステージ32およびYステージ33を制御し、露光レンズ2と波面収差測定器4の距離が一定となるようZステージ31を制御する。
【0054】
一方、計測用レチクル1上のピンホール110を通過した光を用いて計測するため、撮像素子43が十分なSNで検出できるだけの時間をかけ、光量を稼ぐ必要がある。これは波面収差測定のスループットに繋がる。これを解決するため、計測用レチクル1のピンホール110の上方に集光レンズ120を設ける。これを図7に示す。集光レンズ120の半径rcは、集光レンズ120の焦点距離fcと露光レンズ2の開口率NAおよび、縮小率M=f2/f1=0.25を用いると、次の(10)式となる。
【0055】
rc=fc・NA・M ・・・(10)
fc=5mmとすると、rc=5*0.8*0.25=1mmとなる。集光レンズ120は計測用レチクル1の各ピンホール上に焦点距離fcだけ離れた位置に設置される。しかし、実際露光するときには、集光レンズ12が計測用レチクル1と一緒に退避されることになる。勿論、集光レンズ12は、計測用レチクル1と別に退避されてもよい。
【0056】
次に、本発明に係る波面収差測定装置を用いて、回路パターンと合わせパターンの位置ずれを補正する方法について、図8を参照して説明する。この波面収差測定装置は、例えば、図1、図6又は図7に示す露光装置の制御・処理系8に接続される上位コンピュータ(制御部)71又は72(勿論ホストコンピュータ6でもよい。)によって構成される。まず、第1の露光工程で露光装置を用いて露光・現像して形成された第1の回路パターン(下層回路パターン)の上に第2の露光工程によって露光装置を用いて第2の回路パターン(上層回路パターン)を重ね合わせて露光しようとする場合である。
【0057】
まず、上位コンピュータ71又は72は、ステップ8101において、第1の露光工程における製品レチクル上の第1の回路パターンの寸法データを製造ライン管理システム(図示せず)から例えばネットワークを介して読み込む。次に、上位コンピュータは、ステップ8102において、第1の工程(露光工程)における製品レチクルの合わせマーク寸法を製造ライン管理システム(ホストコンピュータ)6から例えばネットワークを介して読み込む。上記寸法には回路パターンおよび合わせマークの幅とピッチを含む。さらに、上位コンピュータ71又は72は、ステップ8103において、第1の工程における露光装置の照明条件を製造ライン管理システムまたは第1の工程の露光装置の制御・処理系8から例えばバス若しくはネットワークを介して読み込む。照明条件の例および定義方法については後述する。また、上位コンピュータは、ステップ8104において、第1の工程の露光装置における上記第1の回路パターン部像高の波面収差データを第1の工程の露光装置の制御・処理系8から例えばバス若しくはネットワークを介して読み込む。波面収差データの測定方法は後述する。次に、上位コンピュータは、ステップ8105において、第1の工程の露光装置における上記合わせマーク部像高の波面収差データを第1の工程の露光装置の制御・処理系8から例えばバス若しくはネットワークを介して読み込む。当然、第1の工程の露光装置の制御・処理系8からは、第1の工程における第1の回路パターン部像高の波面収差データと合わせマーク部像高の波面収差データとが波面収差測定器4で測定されて得られるものとする。次に、上位コンピュータ71又は72は、ステップ8106において、読み込まれた第1の工程における回路パターン寸法、合わせマーク寸法、照明条件(瞳上照度分布も含む)、回路パターン部像高の波面収差および合わせマーク部像高の波面収差に基づいて、回路パターンと合わせマークの転写像の算出を行う。転写像の算出方法は後述する。
【0058】
また、上位コンピュータ71又は72は、ステップ8201から8205で、第1の工程に対するステップ8101から8105と同様に、第2の工程における第2の回路パターン寸法、合わせマーク寸法、照明条件(瞳上照度分布も含む)、回路パターン部像高の波面収差および合わせマーク部像高の波面収差を製造ライン管理システムまたは第2の工程の露光装置の制御・処理系8から例えばバス若しくはネットワークを介して読み込む。当然、第2の工程の露光装置の制御・処理系8からは、第2の工程における第2の回路パターン部像高の波面収差データと合わせマーク部像高の波面収差データとが波面収差測定器4で測定されて得られるものとする。次に、上位コンピュータ71又は72は、ステップ8206において、読み込まれた第2の工程における回路パターン寸法、合わせマーク寸法、照明条件、回路パターン部像高の波面収差および合わせマーク部像高の波面収差に基づいて、回路パターンと合わせマークの転写像の算出を行う。
【0059】
次に、上位コンピュータ71は、ステップ8301において、算出された第1の工程と第2の工程との間の回路パターン転写像の位置ずれと、第1の工程と第2の工程との間の合わせマークの位置ずれを算出する。位置ずれ算出方法については後述する。さらに、上位コンピュータ71は、ステップ8302で、回路パターン転写像位置ずれと合わせマーク転写像位置ずれの関係を求める。次に、上位コンピュータ71は、ステップ8303で、第2の工程における試し露光または前回の露光によって、図16(b)に示す如く、第1の合わせマークの上に第2の合わせマークが重ねて形成されたウエハに対して合わせ検査装置20で実測された第1の合わせマークと第2の合わせマークとの位置ずれ(Δξ,Δη)が入力され、該入力された合わせマークの位置ずれ量(Δξ,Δη)から、上記回路パターン転写像位置ずれと合わせマーク転写像位置ずれの関係によって、図16(a)に示す如く、実際の回路パターンの位置ずれ量(ΔEx,ΔEy)を予測し、該予測される実際の回路パターンの位置ずれ量を例えばネットワークを介して第2の工程の露光装置に送信し(フィードバックし)、第2の工程の露光装置は、ステップ8304で、フィードバックされた予測される実際の回路パターンの位置ずれ量に応じた補正量(オフセット量)(Cx,Cy)で補正して正式の露光または次回の露光が行われることになる。
なお、図8に示す読み込み、算出、予測については、上位コンピュータ71ではなく、第2の工程の露光装置の制御・処理系8で行ってもよい。
【0060】
ここで、図9により転写像の計算方法について説明する。まず、対象となる回路パターンのウエハ3への転写像の計算を行うためには、照明条件(瞳上照度分布も含む)2000、製品レチクル10上の回路パターン101および露光レンズ2の波面収差201のデータが必要となる。波面収差201は、上述の波面収差測定器4によって測定される。これらのデータを用いた像計算の方法については、例えば、‘Y.Yoshitake et al, SPIE Vol.1463, 1991, pp678−679’に開示されている。
【0061】
ここで、図10を用いて、照明条件2000の具体例について説明する。図10(a)は一般的な照明であり、パラメータとしては照明光源像2010の直径D1および露光レンズ2の絞り23の像23’の直径Depで表すことができる。図10(b)は、回路パターン101として白黒情報以外に位相情報をもつ場合、いわゆる位相シフトレチクルを用いる場合に使われる照明条件であり、Depに対する照明光源像の直径D2の比が図10(a)に比べて小さい。図10(c)は輪帯照明と呼ばれるもので、照明光源像2030の外径D4および内径D3とDepで表すことができる。なお、図10の照明光源像は、理想状態を示すものであるが、実際の光源像には光量の不均一な分布がある。実際の光源像を、例えば、‘J.P.Kirk and C.J.Progler, SPIE Vol.3334, 1998, pp281−288’に開示されている方法で実測し、これを実際の照明光源像のデータとして用いれば、転写像の計算精度はさらに向上する。
【0062】
次に、図9の回路パターン101の具体例を図11により説明する。まず、図11(a)は第1の工程のライン&スペースパターンであり、透明部1011と遮光部1012で構成される。ライン&スペースパターンのパラメータとしては、遮光部1012であるラインの幅L1とライン&スペースのピッチP1で表すことができる。また、図11(b)は第2の工程におけるホールパターンの例であり、遮光部1014と開口部1013で構成される。x方向の開口幅Sx、ピッチPx、y方向の開口幅Sy、ピッチPyとして表すことができる。
【0063】
ここで、パターンの座標で波面収差201が異なる理由を図12を用いて説明する。図12(a)のレチクル11の点191aから出た光9001aは露光レンズ2を介してウエハ3に結像される。点191aはレンズ中心2001からh1の座標位置にある。図12(b)のレチクル11の点191bから出た光9001bは露光レンズ2を介してウエハ3に結像される。点191bはレンズ中心2001からh2の座標位置にある。光線9001aと光線9001bでは露光レンズ2内のエレメントレンズ21への入射角が異なるため、発生する波面収差201a、201bは異なったものになる。
【0064】
次に、図13に波面収差201の例を示す。波面収差W(x,y)201はx方向に非対称なコマ収差の例であり、3次元的なデータである。波面収差201は、本発明である、上述の波面収差測定器4によって測定される。
【0065】
次に、図14および図15により、製品レチクル10上での回路パターンと合わせマークの配置について説明する。図14は第1の工程における製品レチクルの例である。図15は第2の工程における製品レチクル上の回路パターン1002と合わせマーク1012を示し、それぞれの中心座標は回路パターン1001および合わせマーク1011と同じである。
【0066】
ここで、図16に、第1の工程と第2の工程における回路パターン1001、1002の位置ずれ(ΔEx,ΔEy)と、合わせマーク1011、1012の位置ずれ(Δξ,Δη)を示す。位置ずれ((ΔEx,ΔEy)、(Δξ,Δη))は、上述の転写像シフト量を第1および第2の工程の回路パターンと合わせマークについて算出し、第1の工程と第2の工程の差分を取ることによって得られる。
【0067】
次に、合わせマークと回路パターンの位置ずれの関係の求め方について説明する。X方向およびY方向について、次の(11)式および(12)式によってオフセット(εx,εy)を求める。
【0068】
εx=ΔEx−Δξ ・・・(11)
εy=ΔEy−Δη ・・・(12)
図17にΔExとΔξの関係を示す。第1の工程と第2の工程の合わせずれであるΔExとΔξは、通常0.2μm以下と微小範囲なので波面収差は変化せず、位置ずれ関係はオフセットεxだけで決まる。Y方向に関してもX方向と同様である。
【0069】
合わせ検査の結果を露光装置にフィードバックする場合の補正量算出法について図18を用いて説明する。まず、過去の合わせ検査データ(Δξ,Δη)の平均値(Ax,Ay)を算出する。次の(13)式および(14)式により回路パターン位置ずれの補正量(Cx,Cy)を求める。
【0070】
Cx=Ax+εx ・・・(13)
Cy=Ay+εy ・・・(14)
次回、第2の工程露光時の補正量としては(Cx,Cy)を露光装置にフィードバックする。
【0071】
次に、本発明に係る露光レンズ2の波面収差201の別の利用法(露光量とフォーカスとの関係からなる露光条件の最適化)について述べる。新しい製品の着工時、または既に着工している製品を別の露光装置に展開する場合、回路パターンを規格内に抑えるための、露光量、フォーカス位置の条件出しを行う。これは、これらの最適条件が製品、露光装置によって異なるためである。通常は、露光量とフォーカスを変えながら回路パターンの転写を行い、これを電子線顕微鏡等で線幅測定することにより、最適な露光量とフォーカスを判断する。しかし、この作業は1工程行うのに約5時間要するため、生産性の隘路となっている。
【0072】
上述の製品と露光装置の最適条件に対する影響は、製品レチクル上の回路パターンと露光装置の波面収差によっている。そこで、本発明に係る波面収差測定装置のデータと回路パターンの情報から、シミュレーションによる露光の最適条件の予測がこの課題の解決に有効となる。
【0073】
ここで、図19から図22を参照して、露光装置等を接続する上位コンピュータ72または露光装置の制御・処理系8が行う露光の最適条件の予測方法について述べる。まず、図19および図25に示すように、露光装置等を接続する上位コンピュータ72または露光装置の制御・処理系8は、ステップ8801で照明条件を読み込んで照明条件記憶手段7102に記憶し、ステップ8802で製品回路パターン寸法を読み込んでレチクルデータ記憶手段7101に記憶し、ステップ8803で、製品回路パターンの座標に相当する波面収差を読み込んで波面収差データ記憶手段7104に記憶する。
【0074】
次に、ステップ8804でフォーカス値Fを設定し、ステップ8805で、前述した方法により製品回路パターンの転写像の算出を行う。即ち、フォーカス値Fを変化させた際の製品回路パターンの転写像の光強度分布9900の算出を行って瞳上照度分布記憶手段7103に記憶する。
【0075】
次に、上位コンピュータ72である最適露光量・フォーカス値算出手段7221は、次に説明することを実行する。即ち、ステップ8806により露光量Jを設定し、ステップ8807により製品回路パターンの寸法であるCDの算出を行う。即ち、露光量Jを変化させた際の製品回路パターンの寸法であるCDの算出を行う。ここで、CDの算出方法を図20を用いて説明する。ステップ8805で算出した転写像の光強度分布9900に対し、設定された露光量Jに応じたしきい値Jthを与えることにより、現像後の寸法、CDを求める。
【0076】
なお、転写像の光強度分布9900から、例えば「Inside PROLITH,クリス A.マック著,1997 124−135頁」に記載のような現像シミュレーションを行い、現像後の断面プロファイルから現像後の寸法、CDを求めても良い。
【0077】
次に、ステップ8808により、所定の露光量変化、フォーカス変化の条件が終了したかをチェックし、露光量変化が終了してない場合は、ステップ8806へ、フォーカス変化が終了してない場合は、ステップ8804へ戻る。全ての条件が終了した場合は、ステップ8809により、CD、フォーカスF、露光量Eの関係をマッピングする。
【0078】
マッピングの実施例を図21に示す。ここに、横軸はフォーカスF、縦軸は寸法CDであり、FとCDの関係を各露光量Eに関してプロットしている。ここに、CLはCDの規格中心、CL+10%はCLに対して+10%のCD、CL−10%はCLに対して−10%のCDを示す。CL+10%、およびCL−10%をよぎる線から、それぞれのCDを与える露光量EおよびフォーカスFの関係がプロットできる。この様子を図21に示す。図22において、CL+10%およびCL−10%の線に囲まれた領域が、いわゆるプロセスウインドウである。
【0079】
上位コンピュータ72または露光装置の制御・処理系8は、ステップ8810において、図22に示したプロセスウインドウを求め、ステップ8811でプロセスウインドウに内接する四角301を算出し、ステップ8812で四角101の中心102を求める。ステップ8813では、四角101の中心302を求め、最適露光量Joptおよび最適フォーカス値Foptを最適条件として算出して、最適露光量・フォーカス値記憶手段7105に記憶する。そして、露光装置2は、最適条件として算出された最適露光量Joptおよび最適フォーカス値Foptに基いて露光されることになる。
【0080】
次に、本発明に係る露光レンズ2の波面収差201のさらに別の利用法(収差起因歪みによるMix & Match補正)について述べる。図13のような非対称なコマ収差が存在する場合、連続するライン&スペースの左端と右端のラインに線幅差(L1−L2)が生じる場合がある。この様子を図23に示す。本発明の波面収差測定装置4で露光装置の波面収差データを蓄積しておくことにより、過去数回測定値の平均、または最新のデータを用いて、上述の方法によりパターン線幅を算出することができる。これにより、左端と右端の線幅差を予測することが可能で、この結果から製品レチクルの回路パターン描画時に、線幅差が無くなるようパターン幅を補正することができる。
【0081】
次に、本発明に係る露光レンズ2の波面収差201のさらに別の利用法(レチクルに形成された回路パターン(OPC)の最適化)について述べる。微細パターンの場合、転写像の設計寸法からのずれを修正するために、製品レチクル上のパターンに対してOPC(Optical Proximity Correction)が施されている。これはパターンのコーナーに微少な四角パターンを付加してコーナーの丸まりや、パターン長さの短小化を防ぐものである。OPCも波面収差の影響を受けるため、同様な方法で転写像を予測し、OPCパターンの大きさ、位置の補正をすることにより、露光装置に最適、かつ高精度なパターン補正が可能になる。
【0082】
次に、本発明の実施例である図8に示す処理を実行する合わせずれ補正システムに関して、図24を参照して説明する。
即ち、半導体装置は成膜装置51によってウエハ3が成膜され、CMP(Chemical Mechanical Polishing)装置52によって膜が平坦化された後、塗布現像装置53により感光剤であるレジストが塗布される。次に露光装置2によって回路パターンがウエハ3上の感光剤に転写され、再び塗布現像装置53によって感光剤の現像が行われた後、合わせ検査装置20によって合わせ検査が行われる。次にエッチング装置54によってエッチングが施された後、レジスト除去装置55によってレジストが除去され、再び次の層の膜が成膜装置51によって生成される。このようなプロセスを繰り返すことによって半導体装置(半導体デバイス)は製造される。
【0083】
ホストコンピュータ(製造ライン管理システム)6には、ネットワーク61を介して上述の製造装置2、20、51〜55から被露光基板3の処理の来歴データが送られている。例えば、露光装置2からはウエハ3の品種、工程、ロット番号と処理に使われた号機、照明条件等のレシピデータ、製品レチクル名等が送信され、ホストコンピュータ6の来歴記憶部601に保存される。
【0084】
本発明に係る合わせずれ補正システム(上位コンピュータ)71では、まず、回路パターン、合わせマークの幅やピッチといった寸法や座標のデータは製品レチクル名と共に製品レチクルデータ記憶手段7101に登録される。手動かまたは図示しない別なコンピュータからデータを入力することができる。登録する回路パターンは、同一製品レチクル内で一番合わせ裕度の厳しい部分を選択することにより、歩留まりの維持、向上に結びつく補正量を設定することができる。また、露光時の照明条件はホストコンピュータ6の来歴記憶部601からデータを得、照明条件記憶手段7102に記憶する。また、露光装置2の露光レンズ瞳上照度分布の測定値は、手動かまたは図示しない別なコンピュータからデータを入力し、瞳上照度分布記憶手段7103に保存される。照明条件と瞳上照度分布が、回路パターンと合わせマークの転写像算出に必要な照明に関する入力データとなる。一方、波面収差データ記憶手段7104には、上述の波面収差測定装置により測定されて算出された波面収差データが、複数ある露光装置毎に、製品レチクル上の座標(i,j)毎に登録しおく。これらのデータが新規に登録されたタイミングで制御手段710は、位置ずれ量算出指示を位置ずれ量算出手段7121に対して行う。特に、波面収差データ記憶手段7104には、露光レンズ2の波面収差の経時変化が波面収差測定装置により測定されて記憶されることになるため、上位コンピュータ71である位置ずれ量算出手段7121は、波面収差が測定する度に、回路パターン転写像位置ずれと合わせマーク転写像位置ずれの関係を求めて位置ずれ関係記憶手段7105などに記憶できることになる。
【0085】
上位コンピュータ71である位置ずれ量算出手段7121は、製品レチクルデータ記憶手段7101から回路パターンと合わせマークの寸法、座標データを、照明条件記憶手段7102と瞳上照度分布記憶手段7103から照明に関する入力データを、波面収差データ記憶手段7104から対象となる回路パターン、合わせマークの座標に相当する波面収差データを入手し、上述した方法により、露光レンズ2の波面収差の経時変化に伴って算出されて記憶された回路パターン転写像位置ずれと合わせマーク転写像位置ずれの関係を基に、第1の工程(下層を露光した工程)と第2の工程(今度露光しようとする工程)との間の回路パターンの位置ずれ量(ΔEx,ΔEy)と合わせマークの位置ずれ量(Δξ,Δη)を算出して位置ずれ関係記憶手段7105などに記憶する。次に、上位コンピュータ71である位置ずれ関係算出手段7122は、算出した位置ずれ量から回路パターンと合わせマークの位置ずれ関係(例えば上記(11)式および(12)式で示すオフセット(εx,εy)の関係)を算出して、位置ずれ関係記憶手段7105等に登録する。ここまでの処理は、ウエハ3を着工する前に予め行われる。
【0086】
次に、第1の工程で露光されたウエハ3の下層パターンの上に第2の工程において上層パターンが露光され、図16(b)に示すように合わせマークについて検査する合わせ検査装置20から合わせ検査データ(Δξ,Δη)が制御手段710に送信された時の処理について説明する。まず、制御手段710は、ホストコンピュータ6に問い合わせを行い、来歴記憶部601に登録されている第1の工程および第2の工程における露光装置、製品レチクル、照明条件を得る。第1の工程と第2の工程の露光装置、照明条件、製品レチクルの来歴情報から、該当する位置ずれ関係を位置ずれ関係記憶手段7105から読み出す。尚、制御手段710は、合わせ検査装置20で検査された合わせ検査データ(合わせ検査装置20で実測された第1の合わせマークと第2の合わせマークとの位置ずれ(Δξ,Δη))を合わせ検査データ記憶手段716に登録する。補正量算出手段7123は、上述の位置ずれ関係((ΔEx,ΔEy)と(Δξ,Δη)との間のオフセット(εx,εy)の関係)を用いて、例えば上記(13)式および(14)式に基いて補正量(Cx,Cy)を算出し、このデータを制御手段710がホストコンピュータ8に送信し、ホストコンピュータ6は次回露光時に露光装置2に、この補正量(Cx,Cy)を送信する。その結果、該露光装置2において、送信を受けた補正量に基いて補正されて次回の露光がなされることになる。ここで、補正量算出手段7123は、合わせ検査データ記憶手段7106に照会し、該当する過去のデータに対して、図18に示したように、例えば平均値算出のような処理を施して求めても良い。このような処理によって、合わせ検査データのノイズ成分に影響されない高精度な補正量を算出することができる。
【0087】
次に、本発明の別の実施例である、図19に示す処理を実行する波面収差測定装置を用いた露光条件予測システム72について、図25を参照して説明する。
【0088】
大部分は図24の合わせずれ補正システム71と同様であるが、露光条件予測システム72である最露光量・フォーカス値算出手段7221は、ステップ8801〜8808において、レチクルデータ、照明条件、瞳上照度分布、波面収差を用いた転写像の線幅(CD)をフォーカスおよび露光量を変えながら求め、ステップ8809〜8813において、上記求められたCDとその時のフォーカスおよび露光量を基に図22に示すプロセスウインドウを算出するなどして最適条件(製品回路パターンの露光量Jopt、フォーカス最適値Fopt)302を算出し、この算出された最適条件値を製品、工程、露光装置毎に保存する最適露光量・フォーカス値記憶手段7201を有する点が異なる。この値(最適露光量・フォーカス値)を、新製品の着工や露光装置の複数展開時の初期条件データとして制御手段720からホストコンピュータ6を経由して露光装置2へ送られる。その結果、該露光装置2において、送信を受けた最適露光量・フォーカス値に基いて次回の露光がなされることになる。
【0089】
次に本発明の別の実施例である回路パターン設計システムを図26により説明する。制御手段730が露光装置2で測定された瞳上照度分布および波面収差をそれぞれ瞳上照度分布記憶手段7103と波面収差データ記憶手段7104に保存しておき、CAD端末731からの要求に伴い、瞳上照度分布と波面収差を読み出し、CAD端末731で設定された回路パターンと照明条件を用いて、前述の方法により転写像の算出を行う。その結果をCAT端末731上に、回路パターンとともに表示する。このシステムによれば、露光装置2の特性に応じた最適なパターン修正が可能になるので、転写時に所望の回路パターンを得ることが可能になる。
【0090】
以上、前述した実施の形態によれば、波面収差測定装置として、評価用レチクル1上のピンホール110とリレーレンズ41とレンズアレイ(露光レンズの瞳と共役な位置に設置)42、および撮像素子43を組み合わせることにより、露光装置上で露光レンズの波面収差を、低コストで、全ての収差項目の測定が可能となる。
【0091】
また、波面収差測定装置として、入射口にアパーチャ40を、評価用レチクル1上に集光レンズ120を設けることにより、隣接ピンホールの影響を受けることなく、十分な光量で測定できるので、露光レンズの波面収差を高精度に測定することが可能となる。
【0092】
また、前述した実施の形態によれば、波面収差測定装置で測定した波面収差データにより、回路パターンと合わせマーク位置ずれの差を考慮した、高精度な露光装置合わせずれ補正システムや、露光条件予測システム、さらには露光装置に応じた回路パターン設計システムを構築することができ、超微細な半導体装置を高歩留りで製造することができる。
【0093】
【発明の効果】
本発明によれば、半導体露光装置上で、露光レンズの波面収差の経時変化を、高精度に測定することができる効果を奏する。
また、本発明によれば、半導体装置の超微細化に伴って狭マージン化したとしても、露光レンズ(縮小投影光学系)の僅かな波面収差の経時変化も考慮して高精度の露光を実現して超微細の半導体装置を高歩留りで製造できる効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る波面収差測定装置を備えた露光装置の一実施の形態を示す図。
【図2】本発明に係る波面収差測定装置の光学系の配置を説明するための図。
【図3】本発明に係る撮像素子上のスポットを説明するための図。
【図4】本発明に係る計測系起因のスポットシフト位置を求めるフローを説明するための図。
【図5】本発明に係る波面収差の求め方を説明するための図。
【図6】本発明に係る制限フィルタ(アパーチャ)を具備した波面収差測定装置を説明するための図。
【図7】本発明に係る集光レンズを具備した計測用レチクル(評価用レチクル)を説明するための図。
【図8】本発明に係る露光装置補正のフローを説明するための図。
【図9】本発明に係る転写像算出に必要なパラメータを説明するための図。
【図10】本発明に係る照明条件を説明するための図。
【図11】本発明に係る第1の工程と第2の工程の回路パターンを説明するための図。
【図12】本発明に係るパターン位置による波面収差の違いを説明するための図。
【図13】本発明に係る波面収差の例を示す図。
【図14】本発明に係る第1の工程の回路パターンと合わせマークの配置を示す図。
【図15】本発明に係る第2の工程の回路パターンと合わせマークの配置を示す図。
【図16】本発明に係る第1と第2の工程の重ね合わせ後の回路パターンと合わせマークを示す図。
【図17】本発明に係る合わせマークの位置ずれΔξと回路パターンの位置ずれΔExの関係を示す図。
【図18】本発明に係る合わせ検査データΔξの経時変化を示す図。
【図19】本発明に係る最適露光量およびフォーカス値の算出フローを示す図。
【図20】本発明に係る転写像の光強度分布を示す図。
【図21】本発明に係るフォーカス値Fと線幅CDおよび露光量Eの関係を示す図。
【図22】本発明に係るプロセスウインドウを説明する図。
【図23】本発明に係るライン&スペース両端の寸法差を説明するための図。
【図24】本発明に係る波面収差を用いた合わせずれ補正システムを説明するための図。
【図25】本発明に係る波面収差を用いた露光条件予測システムを説明するための図。
【図26】本発明に係る波面収差を用いた回路パターン設計システムを説明するための図。
【図27】本発明に係るパターンの空間周波数による光路の違いと波面収差の関係を説明するための図。
【符号の説明】
1…計測用レチクル(評価用レチクル)、110、111、112…ピンホール(パターン)、120…集光レンズ、2…露光レンズ(投影光学系:被測定光学系)、20…合わせ検査装置、21…第1のエレメントレンズ、2…第2のエレメントレンズ、23…瞳、201…波面収差、3…ウエハ(被露光基板)、31…Zステージ、32…Xステージ、33…Yステージ、4…波面収差測定器、40…制限フィルタ(アパーチャ)、41…リレーレンズ、42…レンズアレイ、43…撮像素子、431…撮像した画像、51…成膜装置、52…CMP装置、53…塗布現像装置、54…エッチング装置、55…レジスト除去装置、6…ホストコンピュータ、71…合わせずれ補正システム(上位コンピュータ)、72…露光条件予測システム(上位コンピュータ)、73…回路パターン設計システム、。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wavefront aberration measuring apparatus, a semiconductor exposure apparatus, and a method for manufacturing a semiconductor device, and more particularly to a technique for measuring a wavefront aberration of an exposure lens on an exposure apparatus, a wavefront aberration measuring apparatus using the measured wavefront aberration, and an exposure method. The present invention relates to a device, a semiconductor device (semiconductor device) manufacturing system, and a manufacturing method thereof.
[0002]
[Prior art]
The circuit pattern of a semiconductor device is generated by forming a film on a wafer, which is a substrate, applying a resist, which is a photosensitive agent, exposing the circuit pattern on the reticle to the resist, developing, and etching the film. You. By repeating this series of steps for each layer, a semiconductor device having a multilayer circuit pattern is manufactured. At this time, if there is a displacement of the circuit pattern at the time of exposure with respect to the underlying layer pattern, the circuit is disconnected or short-circuited, resulting in a semiconductor device failure. For this reason, a method of automatically measuring the relative positional deviation between the alignment mark formed of the resist and the alignment mark of the base layer after exposure and development with an optical microscope and feeding back the amount of the deviation to the exposure apparatus at the next exposure to correct it. Has been taken. Usually, the alignment mark is provided in an area of the end of the exposure area where there is no circuit pattern. The alignment mark is formed with a line width of 2 to 4 μm, which is larger than the circuit line width so that the alignment mark can be resolved by an optical detection method.
[0003]
By the way, if the lens of the exposure apparatus has a wavefront aberration, a difference occurs between the circuit pattern and the alignment mark. The wavefront aberration indicates a phase change distribution of exposure light on a lens pupil (aperture) as shown in FIG. The angle θ of the diffracted light forming an image becomes large as shown in FIG. 27B in a fine circuit pattern having a high spatial frequency, and the diffracted light passes through the end on the lens pupil, so that the wavefront aberration near the outer periphery of the lens is obtained. Affected by
[0004]
On the other hand, since the alignment mark has a low spatial frequency, it is affected by the wavefront aberration near the lens center as shown in FIG. Since the light beam passing through the lens pupil is bent by an amount proportional to the inclination of the wavefront aberration, the position shift particularly when there is an asymmetric wavefront aberration such as coma aberration differs between the circuit pattern and the alignment mark. For this reason, it is necessary to convert the position shift measured by the alignment mark into the position shift of the circuit pattern and correct it according to the circuit pattern spatial frequency and the wavefront aberration of the lens. In addition to the positional shift, the best focus position, the transfer magnification, and the like, which change due to the wavefront aberration, need to be corrected according to the wavefront aberration.
[0005]
By the way, the wavefront aberration changes with time. This is because the refractive index of the lens changes due to the temperature and pressure inside the lens, the lens is distorted due to the thermal stress of the lens housing, and the wavelength of the light source drifts. Therefore, the wavefront aberration needs to be measured periodically. Also, if the wavefront aberration can be measured regularly, it is possible to keep the wavefront aberration within a certain allowable range by controlling the partial movement of the element lens that constitutes the exposure lens, the pressure inside the lens, and the wavelength of the exposure light source. is there.
[0006]
In order to periodically measure the wavefront aberration, it is desirable that the measurement can be performed on an exposure apparatus. Techniques for that purpose include a phase recovery method, a method of measuring a pattern space image position, and a method of mounting an interferometer. .
[0007]
The phase recovery method is a method of repeatedly calculating a wavefront aberration from an image intensity distribution of a specific pattern at a best focus position and a defocus position, as disclosed in, for example, 2000-195782 (prior art 1). For example, as disclosed in Japanese Patent Application Laid-Open No. H11-297614 (Prior Art 2), a method of measuring an image position of a pattern space is based on an asymmetric wavefront aberration such as a coma aberration based on a positional shift amount of an image intensity distribution of a specific pattern. This is the calculation method. A method of mounting an interferometer is, for example, a method of calculating a wavefront aberration from interference fringes of light reflected on a wafer surface via a lens and reference light as disclosed in Japanese Patent Application Laid-Open No. 2000-277411 (prior art 3). It is.
[0008]
As another conventional technique, Japanese Patent Application Laid-Open No. 2002-71514 (Prior Art 4) discloses an exposure apparatus including an inspection device for measuring a wavefront aberration of an exposure lens (projection optical system). As the inspection device, an illumination unit for illuminating an opening positioned on the object surface of the exposure lens with a numerical aperture equal to or larger than the object-side numerical aperture of the exposure lens, and an illumination unit formed on the image surface of the exposure lens A wavefront splitting element (micro fly's eye) for splitting light from the primary image of the opening into a wavefront to form a large number of secondary images of the opening, and a number of secondary images formed by the wavefront splitting element And a photoelectric detection unit for photoelectrically detecting the image.
[0009]
[Problems to be solved by the invention]
However, the wavefront aberration measuring method on the above-mentioned apparatus has the following problems.
[0010]
First, in the phase recovery method of the
[0011]
Further, the method of measuring the pattern space image position according to the
[0012]
In addition, the method of mounting the interferometer according to the
[0013]
Further, in the
[0014]
An object of the present invention is to provide a wavefront aberration measuring apparatus, an exposure apparatus, and a semiconductor device capable of measuring a change with time of a wavefront aberration of an exposure lens with high accuracy on a semiconductor exposure apparatus. It is to provide a manufacturing system and a method thereof.
[0015]
Another object of the present invention is to provide high-precision exposure in consideration of slight temporal changes in wavefront aberration of an exposure lens (projection optical system) even if a margin is narrowed due to ultra-miniaturization of a semiconductor device. It is an object of the present invention to provide a semiconductor device manufacturing system and a method thereof that can be realized to manufacture an ultra-fine semiconductor device at a high yield.
[0016]
[Means for Solving the Problems]
The outline of a typical one of the present invention is as follows.
[0017]
The present invention relates to a wavefront aberration measuring apparatus for measuring a wavefront aberration of an optical system to be measured, a pattern for generating light which is positioned on an object plane of the optical system to be measured and spreads almost uniformly on a pupil of the optical system to be inspected. An illumination optical system that illuminates the pattern, a relay lens that forms a conjugate position with the pupil plane of the measured optical system, and a conjugate position with the pupil plane of the measured optical system that is formed by the relay lens. A lens array that arranges a main plane, splits light from a primary image of the pattern formed on an image plane of the optical system to be measured into a wavefront, and forms a large number of secondary images of the pattern; An image pickup element for picking up a secondary image of the formed pattern, whereby the wavefront division by the lens array can be made to correspond one-to-one with the pupil plane, and the wavefront aberration measurement can be accurately performed. What to do It can become.
[0018]
Further, the present invention provides an illumination optical system for illuminating a circuit pattern of a reticle mounted on a reticle stage, and a substrate to be exposed on which a circuit pattern of the reticle illuminated by the illumination optical system is mounted on a substrate stage. In an exposure apparatus having a projection optical system for projecting and exposing on the reticle stage, a pattern for generating light that spreads almost uniformly on a pupil of the projection optical system is provided, and a pupil plane of the projection optical system is provided. A relay lens that forms a conjugate position, and a principal plane is arranged at a conjugate position with a pupil plane of the projection optical system made by the relay lens, and a primary image of the pattern formed on an image plane of the projection optical system is formed. A lens array that forms a large number of secondary images of the pattern by dividing light into a wavefront, and an imaging element that captures secondary images of a large number of patterns formed by the lens array and outputs a large number of pattern signals When, characterized in that a wavefront aberration measuring apparatus constructed and a processing means for calculating a wavefront aberration of the projection optical system based on the number of pattern signals obtained from the image sensor.
[0019]
Further, in the wavefront aberration measuring apparatus, the light beam obtained when there is no wavefront aberration and the light beam obtained when there is wavefront aberration in the optical system to be measured are centered on each lens element of the lens array. Characterized in that it is configured to pass through.
[0020]
Further, according to the present invention, in the wavefront aberration measuring device, the imaging element is arranged at a focal position of the lens array. Thereby, the contrast of the condensed spot imaged on the image pickup device is improved, and highly accurate spot position measurement can be performed, so that the wavefront aberration can be obtained with high accuracy.
[0021]
Further, in the wavefront aberration measuring apparatus according to the present invention, a distance between an image plane of the projection optical system and a main plane of the relay lens is a focal length of the relay lens. Accordingly, when there is no wavefront aberration, the light emitted from the relay lens becomes parallel light, is incident perpendicularly on the lens array, and the condensed spot positions on the image sensor are equally spaced. As a result, the reference position of the spot position deviation can be assumed to be at equal intervals, so that the calculation of the wavefront aberration calculation can be simplified.
[0022]
Further, the present invention is characterized in that in the wavefront aberration measuring device, a limiting filter (for example, an aperture) is provided on an incident side of the relay lens. Further, the present invention is characterized in that the illumination optical system includes a condensing optical system that condenses the illumination light on the pattern at least when measuring the wavefront aberration.
[0023]
Further, according to the present invention, the processing means of the wavefront aberration measuring apparatus includes a first pattern position group (X0, Y0) measured in advance in the first state based on a large number of pattern signals obtained from the image sensor. The error component group (ax, ay) caused by the relay lens and the lens array is calculated accordingly, and a second pattern position measured based on a large number of pattern signals obtained from the image sensor in the second state. The calculated error component group (ax, ay) is removed from the group (X, Y) to calculate a second pattern shift amount group (ΔX, ΔY), and the calculated second pattern shift amount group is calculated. The wavefront aberration W of the projection optical system in the second state is calculated based on (ΔX, ΔY).
[0024]
Further, according to the present invention, when the processing means calculates the error component group (ax, ay) caused by the relay lens and the lens array, the wavefront aberration of the projection optical system in the first state by another means is calculated. W0 is measured, a first pattern shift amount group (ΔX0, ΔY0) is calculated based on the measured wavefront aberration W0, and the calculation is performed from the measured first pattern position group (X0, Y0). The error component group (ax, ay) is calculated by subtracting the deviation amount group (ΔX0, ΔY0) of the first pattern.
[0025]
Further, according to the present invention, in accordance with the wavefront aberration W of the projection optical system in the second state obtained from the exposure apparatus and the processing means of the wavefront aberration measuring apparatus in the exposure apparatus, the first circuit in the second state When exposing the second circuit pattern and the second alignment mark on the pattern and the first alignment mark, the amount of positional deviation of the second circuit pattern transfer image with respect to the first circuit pattern and the first alignment mark The relationship between the second alignment mark transfer image and the positional shift amount of the second alignment mark transfer image is calculated, and the calculated circuit is calculated according to the amount of positional shift of the second alignment mark transfer image with respect to the first alignment mark actually measured by the alignment inspection device. By correcting the relationship between the position shift of the pattern transfer image and the position shift of the alignment mark transfer image, a position shift correction value of the transfer image of the actual circuit pattern is predicted, and the predicted actual pattern of the circuit pattern is corrected. The position correction value of the mapping and a calculating means for feedback to the exposure apparatus is a manufacturing system and method wherein a.
[0026]
Further, according to the present invention, the focus value and the exposure amount are changed according to the wavefront aberration W of the projection optical system in the second state obtained from the exposure apparatus and the processing unit of the wavefront aberration measurement apparatus in the exposure apparatus. The light intensity distribution of the transferred image of the product circuit pattern is calculated, and the product circuit pattern dimensions are calculated based on the calculated light intensity distribution of the transferred image of the product circuit pattern. And a calculation means for calculating an optimum exposure amount and an optimum focus value from the relationship described above.
[0027]
Further, according to the present invention, there is provided an exposure apparatus and a projection optical system in a second state according to a wavefront aberration W of a projection optical system in a second state obtained from processing means of a wavefront aberration measuring apparatus in the exposure apparatus. Calculating a transfer image of the circuit pattern to be exposed, and calculating the optical characteristics of the circuit pattern on the reticle based on the calculated transfer image of the circuit pattern. System and method.
[0028]
The novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an exposure apparatus, a semiconductor device design / manufacturing system and a method thereof according to the present invention will be described with reference to the drawings.
[0030]
In recent years, semiconductor devices have become ultra-fine patterns of, for example, 0.1 μm or less. Accordingly, margins in exposure are narrowed. Therefore, a slight change in the wavefront aberration of an exposure lens (reduction projection optical system) with time. Is also a problem, and it is often required to calculate it on a daily or weekly basis. Then, based on the calculated wavefront aberration of the exposure lens, optimization of exposure conditions including a relationship between an exposure amount and focus, optimization of a circuit pattern (OPC) formed on a reticle, and Mix & Match due to aberration-induced distortion By performing the correction and the positional deviation between the circuit pattern and the alignment mark, it is possible to cope with a narrow margin, that is, a high precision.
[0031]
Therefore, first, an embodiment of the exposure apparatus according to the present invention will be described with reference to FIG.
[0032]
An exposure apparatus according to the present invention includes, for example, a light source that emits exposure light such as excimer laser light, a shaping optical system that shapes a light beam of substantially parallel light emitted from the light source, and a light beam that is shaped by the shaping optical system. A coherence reducing optical system that reduces coherence of a light beam, a first fly-eye lens that forms a large number of light sources from light beams from the coherence reducing optical system, A deflector for deflecting a large number of light sources, a relay optical system for illuminating the multiple light sources deflected by the deflector in a superimposed manner, and a rear focal plane for a large number of light sources superimposedly illuminated by the relay optical system. A second fly-eye lens (not shown) for forming a number of secondary light sources, an aperture stop for limiting the number of secondary light sources formed by the second fly-eye lens, and an aperture stop formed through the aperture stop. A large number of secondary light sources Optical system (not shown) having a condenser optical system for uniformly illuminating the reticle on which the
[0033]
By the way, for example, the light beam from the coherence reduction optical system forms a large number of light sources on the rear focal plane via the first fly-eye lens. After being deflected by the deflector, the lights from these many light sources illuminate the second fly-eye lens in a superimposed manner via the relay optical system, and on the rear focal plane of the second fly-eye lens, A number of secondary light sources are formed. The light beam from the secondary light source is limited by an aperture stop arranged near the light source, and then uniformly illuminates the reticle (mask) through a condenser optical system.
[0034]
The light beam transmitted through the reticle pattern (circuit pattern) is reduced by forming an image of the pattern (circuit pattern) on a
[0035]
On the other hand, the
[0036]
The wavefront
[0037]
That is, when the measurement reticle (evaluation reticle) 1 is mounted on a reticle stage and the
[0038]
Here, the case where the exposure lens (reduction projection optical system) (measured optical system) 2 has the
[0039]
Next, the optical arrangement of the
[0040]
Next, the optical arrangement of the wavefront
[0041]
β = (f2 / f3) α (1)
Further, since the wavefront aberration W (ξ, η) of the
[0042]
ΔX = ((λ / 2π) · (f4 / R) · (f2 / f3)) (∂W (ξ, η) / ∂ξ) (2)
ΔY = ((λ / 2π) · (f4 / R) · (f2 / f3)) (∂W (ξ, η) / ∂η) (3)
Here, λ is the exposure wavelength, R is the radius of the
[0043]
That is, since the coefficient ((λ / 2π) · (f4 / R) · (f2 / f3)) is a constant, the wavefront aberration W (ξ, η) is the amount of deviation of the spot position on the
[0044]
Next, an
[0045]
R = f2 · NA (4)
Since the number of spots is equal to the number of element lenses of the
[0046]
d = 1.22 · (λ / NAe) (5)
On the other hand, if the
[0047]
Here, the processing flow of the control /
[0048]
Therefore, a method of obtaining the spot shift amount (ax (i, j), ay (i, j)) in advance (in the first state) will be described with reference to FIG. First, in
[0049]
ax (i, j) = X0 (i, j) −ΔX0 (i, j) (6)
ay (i, j) = Y0 (i, j) -ΔY0 (i, j) (7)
The calculated spot shift position (ax (i, j), ay (i, j)) indicates a spot position measured by the wavefront
[0050]
By the way, the control /
[0051]
Next, a method of calculating the change over time of the wavefront aberration of the
[0052]
ΔX (i, j) = X (i, j) −ax (i, j) (8)
ΔY (i, j) = Y (i, j) −ay (i, j) (9)
Next, the control /
[0053]
The
[0054]
On the other hand, since measurement is performed using light that has passed through the
[0055]
rc = fc · NA · M (10)
If fc = 5 mm, rc = 5 * 0.8 * 0.25 = 1 mm. The
[0056]
Next, a method of correcting a positional shift between a circuit pattern and a matching pattern using the wavefront aberration measuring apparatus according to the present invention will be described with reference to FIG. This wavefront aberration measuring apparatus is, for example, a host computer (control section) 71 or 72 (of course, the
[0057]
First, in
[0058]
Also, in steps 8201 to 8205, the
[0059]
Next, in
Note that the reading, calculation, and prediction shown in FIG. 8 may be performed by the control /
[0060]
Here, a method of calculating a transferred image will be described with reference to FIG. First, in order to calculate the transfer image of the target circuit pattern onto the
[0061]
Here, a specific example of the
[0062]
Next, a specific example of the
[0063]
Here, the reason why the
[0064]
Next, FIG. 13 shows an example of the
[0065]
Next, the arrangement of the circuit pattern and the alignment mark on the
[0066]
Here, FIG. 16 shows the positional deviations (ΔEx, ΔEy) of the
[0067]
Next, a method for obtaining the relationship between the alignment mark and the positional deviation between the circuit patterns will be described. In the X direction and the Y direction, the offsets (εx, εy) are obtained by the following equations (11) and (12).
[0068]
εx = ΔEx−Δξ (11)
εy = ΔEy−Δη (12)
FIG. 17 shows the relationship between ΔEx and Δξ. Since ΔEx and Δξ, which are misalignments between the first step and the second step, are usually within a small range of 0.2 μm or less, the wavefront aberration does not change, and the positional shift relationship is determined only by the offset εx. The same applies to the Y direction as to the X direction.
[0069]
A method of calculating a correction amount when the result of the alignment inspection is fed back to the exposure apparatus will be described with reference to FIG. First, the average value (Ax, Ay) of the past matching inspection data (Δξ, Δη) is calculated. The correction amount (Cx, Cy) of the circuit pattern position shift is obtained by the following equations (13) and (14).
[0070]
Cx = Ax + εx (13)
Cy = Ay + εy (14)
Next, (Cx, Cy) is fed back to the exposure apparatus as a correction amount at the time of the second step exposure.
[0071]
Next, another method of using the
[0072]
The influence on the optimum conditions of the product and the exposure apparatus described above depends on the circuit pattern on the product reticle and the wavefront aberration of the exposure apparatus. Therefore, the prediction of the optimal exposure condition by simulation from the data of the wavefront aberration measuring apparatus according to the present invention and the information of the circuit pattern is effective for solving this problem.
[0073]
Here, with reference to FIGS. 19 to 22, a description will be given of a method of estimating the optimum conditions of exposure performed by the
[0074]
Next, in
[0075]
Next, the optimum exposure amount / focus value calculation means 7221, which is the
[0076]
A development simulation as described in, for example, “Inside PROLITH, Chris A. Mack, 1997, pp. 124-135” was performed from the light intensity distribution 9900 of the transferred image, and the cross-sectional profile after development and the dimensions after development, CD You may ask.
[0077]
Next, in
[0078]
FIG. 21 shows an example of the mapping. Here, the horizontal axis is the focus F and the vertical axis is the dimension CD, and the relationship between F and CD is plotted for each exposure amount E. Here, CL is the standard center of CD, CL + 10% indicates CD of + 10% with respect to CL, and CL-10% indicates CD of -10% with respect to CL. From the lines crossing CL + 10% and CL−10%, the relationship between the exposure amount E and the focus F giving each CD can be plotted. This is shown in FIG. In FIG. 22, a region surrounded by lines of CL + 10% and CL−10% is a so-called process window.
[0079]
The
[0080]
Next, another method of using the
[0081]
Next, another use of the
[0082]
Next, a misalignment correction system that executes the processing shown in FIG. 8 according to an embodiment of the present invention will be described with reference to FIG.
That is, in the semiconductor device, the
[0083]
To the host computer (manufacturing line management system) 6, the history data of the processing of the
[0084]
In the misalignment correction system (upper computer) 71 according to the present invention, first, the data of the dimensions and coordinates such as the circuit pattern and the width and pitch of the alignment mark are registered in the product reticle data storage means 7101 together with the product reticle name. The data can be input manually or from another computer not shown. As a circuit pattern to be registered, a correction amount that leads to maintenance and improvement of the yield can be set by selecting a portion having the tightest matching tolerance in the same product reticle. The illumination conditions at the time of exposure are obtained from the
[0085]
The position shift amount calculating means 7121 which is the
[0086]
Next, the upper layer pattern is exposed in the second step on the lower layer pattern of the
[0087]
Next, another embodiment of the present invention, that is, an exposure
[0088]
Most of the steps are the same as the
[0089]
Next, a circuit pattern design system according to another embodiment of the present invention will be described with reference to FIG. The
[0090]
According to the above-described embodiment, as the wavefront aberration measuring device, the
[0091]
Further, by providing an
[0092]
Further, according to the above-described embodiment, a high-accuracy exposure apparatus misalignment correction system that considers a difference between a circuit pattern and an alignment mark position shift based on the wavefront aberration data measured by the wavefront aberration measurement apparatus, and an exposure condition prediction method A system and a circuit pattern design system according to an exposure apparatus can be constructed, and an ultrafine semiconductor device can be manufactured at a high yield.
[0093]
【The invention's effect】
According to the present invention, there is an effect that a change with time of the wavefront aberration of an exposure lens can be measured with high accuracy on a semiconductor exposure apparatus.
Further, according to the present invention, even if the margin is narrowed due to the ultra-miniaturization of the semiconductor device, high-precision exposure is realized in consideration of a slight temporal change of the wavefront aberration of the exposure lens (reduction projection optical system). As a result, there is an effect that an ultrafine semiconductor device can be manufactured with a high yield.
[Brief description of the drawings]
FIG. 1 is a view showing an embodiment of an exposure apparatus provided with a wavefront aberration measuring apparatus according to the present invention.
FIG. 2 is a diagram for explaining an arrangement of an optical system of the wavefront aberration measuring apparatus according to the present invention.
FIG. 3 is a diagram for explaining spots on an image sensor according to the present invention.
FIG. 4 is a view for explaining a flow for obtaining a spot shift position caused by a measurement system according to the present invention.
FIG. 5 is a diagram for explaining a method of obtaining wavefront aberration according to the present invention.
FIG. 6 is a view for explaining a wavefront aberration measuring apparatus including a limiting filter (aperture) according to the present invention.
FIG. 7 is a view for explaining a measurement reticle (evaluation reticle) including the condenser lens according to the present invention.
FIG. 8 is a view for explaining a flow of exposure apparatus correction according to the present invention.
FIG. 9 is a view for explaining parameters necessary for calculating a transferred image according to the present invention.
FIG. 10 is a diagram for explaining lighting conditions according to the present invention.
FIG. 11 is a diagram for explaining a circuit pattern in a first step and a second step according to the present invention.
FIG. 12 is a diagram for explaining a difference in wavefront aberration depending on a pattern position according to the present invention.
FIG. 13 is a diagram illustrating an example of wavefront aberration according to the present invention.
FIG. 14 is a diagram showing an arrangement of circuit patterns and alignment marks in a first step according to the present invention.
FIG. 15 is a view showing the arrangement of circuit patterns and alignment marks in a second step according to the present invention.
FIG. 16 is a view showing a circuit pattern and a registration mark after the superposition in the first and second steps according to the present invention.
FIG. 17 is a diagram showing a relationship between a positional deviation Δξ of an alignment mark and a positional deviation ΔEx of a circuit pattern according to the present invention.
FIG. 18 is a diagram showing a temporal change of alignment inspection data Δξ according to the present invention.
FIG. 19 is a diagram showing a calculation flow of an optimum exposure amount and a focus value according to the present invention.
FIG. 20 is a diagram showing a light intensity distribution of a transferred image according to the present invention.
FIG. 21 is a diagram showing a relationship between a focus value F, a line width CD, and an exposure amount E according to the present invention.
FIG. 22 is a diagram illustrating a process window according to the present invention.
FIG. 23 is a view for explaining a dimensional difference between both ends of the line & space according to the present invention.
FIG. 24 is a view for explaining a misalignment correction system using wavefront aberration according to the present invention.
FIG. 25 is a diagram for explaining an exposure condition prediction system using wavefront aberration according to the present invention.
FIG. 26 is a diagram for explaining a circuit pattern design system using wavefront aberration according to the present invention.
FIG. 27 is a diagram for explaining a relationship between a difference in an optical path due to a spatial frequency of a pattern and a wavefront aberration according to the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (16)
前記被測定光学系の物体面に位置決めされ、前記被検査光学系の瞳上にほぼ均一に拡がる光を発生させるパターンと、
該パターンに対して照明する照明光学系と、
前記被測定光学系の瞳面と共役位置を作るリレーレンズと、
該リレーレンズで作られた前記被測定光学系の瞳面と共役位置に主平面を配置し、前記被測定光学系の像面に形成された前記パターンの一次像からの光を波面分割して前記パターンの二次像を多数形成するレンズアレイと、
該レンズアレイにより多数形成されたパターンの二次像を撮像する撮像素子とを備えたことを特徴とする波面収差測定装置。In a wavefront aberration measuring device for measuring a wavefront aberration of an optical system to be measured,
A pattern that is positioned on the object plane of the measured optical system and generates light that spreads almost uniformly on a pupil of the inspected optical system;
An illumination optical system for illuminating the pattern,
A relay lens that forms a conjugate position with a pupil plane of the measured optical system;
A main plane is arranged at a conjugate position with a pupil plane of the optical system to be measured formed by the relay lens, and light from a primary image of the pattern formed on an image plane of the optical system to be measured is divided into wavefronts. A lens array that forms a number of secondary images of the pattern;
An image pickup device for picking up secondary images of a large number of patterns formed by the lens array.
前記投影光学系の瞳面と共役位置を作るリレーレンズと、
該リレーレンズで作られた前記投影光学系の瞳面と共役位置に主平面を配置し、前記投影光学系の像面に形成された前記パターンの一次像からの光を波面分割して前記パターンの二次像を多数形成するレンズアレイと、
該レンズアレイにより多数形成されたパターンの二次像を撮像して多数のパターン信号を出力する撮像素子と、
該撮像素子から得られる多数のパターン信号を基に前記投影光学系の波面収差を算出する処理手段とを備えて構成した波面収差測定装置を設けたことを特徴とする露光装置。An illumination optical system for illuminating a circuit pattern of the reticle mounted on the reticle stage, and a projection for projecting and exposing the circuit pattern of the reticle illuminated by the illumination optical system onto a substrate to be exposed mounted on the substrate stage In an exposure apparatus including an optical system, on the reticle stage, provided a pattern that generates light that spreads substantially uniformly on a pupil of the projection optical system,
A relay lens that forms a conjugate position with a pupil plane of the projection optical system,
A main plane is arranged at a conjugate position with a pupil plane of the projection optical system formed by the relay lens, and light from a primary image of the pattern formed on an image plane of the projection optical system is wavefront-divided to form the pattern. A lens array that forms a large number of secondary images of
An image sensor that captures a secondary image of a pattern formed by the lens array and outputs a number of pattern signals;
An exposure apparatus provided with a wavefront aberration measuring device including: processing means for calculating a wavefront aberration of the projection optical system based on a large number of pattern signals obtained from the image sensor.
該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、第2の状態で第1の回路パターンおよび第1の合わせマークの上に第2の回路パターンおよび第2の合わせマークを露光する際の第1の回路パターン対する第2の回路パターン転写像の位置ずれ量と第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量との関係を算出し、合わせ検査装置で実測される第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量に応じて前記算出された回路パターン転写像の位置ずれと合わせマーク転写像の位置ずれとの関係を補正して実際の回路パターンの転写像の位置ずれ補正値を予測し、該予測された実際の回路パターンの転写像の位置補正値を前記露光装置にフィードバックする計算手段とを備えたことを特徴とする半導体装置の製造システム。An exposure apparatus according to claim 3 or 9,
According to the wavefront aberration W of the projection optical system in the second state obtained from the processing means of the wavefront aberration measuring device in the exposure apparatus, the second state is overlaid on the first circuit pattern and the first alignment mark in the second state. When exposing the second circuit pattern and the second alignment mark, the positional deviation amount of the second circuit pattern transfer image with respect to the first circuit pattern and the positional deviation amount of the second alignment mark transfer image with respect to the first alignment mark And the calculated positional deviation of the circuit pattern transfer image and the alignment mark transfer image in accordance with the amount of positional shift of the second alignment mark transfer image with respect to the first alignment mark actually measured by the alignment inspection device. The position of the transfer image of the actual circuit pattern is predicted by correcting the relationship between the position and the position of the transfer image of the actual circuit pattern. Manufacturing system for a semiconductor device characterized by comprising a calculating means for feedback.
該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、フォーカス値と露光量を変化させて製品回路パターンの転写像の光強度分布を算出し、該算出された製品回路パターンの転写像の光強度分布を基に製品回路パターン寸法を算出し、これらフォーカス値、露光量および製品回路パターン寸法の関係から最適露光量および最適フォーカス値を算出する計算手段とを備えたことを特徴とする半導体装置の製造システム。An exposure apparatus according to claim 3 or 9,
The focus value and the exposure amount are changed according to the wavefront aberration W of the projection optical system in the second state obtained from the processing means of the wavefront aberration measurement device in the exposure device to change the light intensity distribution of the transferred image of the product circuit pattern. The product circuit pattern dimensions are calculated based on the calculated light intensity distribution of the transferred image of the product circuit pattern, and the optimum exposure amount and the optimum focus value are calculated from the relationship between the focus value, the exposure amount and the product circuit pattern size. A manufacturing system for a semiconductor device, comprising: calculating means for calculating.
該露光装置における波面収差測定装置の処理手段から得られる第2の状態における投影光学系の波面収差Wに応じて、第2の状態における投影光学系で露光される回路パターンの転写像を算出し、該算出された回路パターンの転写像に基いてレチクル上の回路パターンの光学特性を設計する計算手段とを備えたことを特徴とする半導体装置の製造システム。An exposure apparatus according to claim 3 or 9,
A transfer image of a circuit pattern exposed by the projection optical system in the second state is calculated according to the wavefront aberration W of the projection optical system in the second state obtained from the processing means of the wavefront aberration measurement device in the exposure apparatus. A calculating means for designing optical characteristics of the circuit pattern on the reticle based on the calculated transfer image of the circuit pattern.
該波面収差算出ステップで算出された第2の状態における投影光学系の波面収差Wに応じて、第2の状態で第1の回路パターンおよび第1の合わせマークの上に第2の回路パターンおよび第2の合わせマークを露光する際の第1の回路パターン対する第2の回路パターン転写像の位置ずれ量と第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量との関係を算出する関係算出ステップと、
合わせ検査装置で実測される第1の合わせマークに対する第2の合わせマーク転写像の位置ずれ量に応じて、前記関係算出ステップで算出された回路パターン転写像の位置ずれと合わせマーク転写像の位置ずれとの関係を補正して実際の回路パターンの転写像の位置ずれ補正値を予測する予測ステップと、
該予測ステップで予測された実際の回路パターンの転写像の位置補正値を前記露光装置にフィードバックするステップとを有する露光システムを用いて半導体基板に対して露光して半導体装置を製造することを特徴とする半導体装置の製造方法。A wavefront aberration calculating step of calculating a wavefront aberration W of the projection optical system in the exposure apparatus;
According to the wavefront aberration W of the projection optical system in the second state calculated in the wavefront aberration calculation step, the second circuit pattern and the second circuit pattern are placed on the first circuit pattern and the first alignment mark in the second state. Calculating the relationship between the amount of misalignment of the second circuit pattern transfer image with respect to the first circuit pattern and the amount of misalignment of the second alignment mark transfer image with respect to the first alignment mark when exposing the second alignment mark Calculating a relationship,
The position shift of the circuit pattern transfer image and the position of the alignment mark transfer image calculated in the relation calculating step according to the amount of position shift of the second alignment mark transfer image with respect to the first alignment mark measured by the alignment inspection device. A prediction step of correcting the relationship with the deviation to predict a position deviation correction value of the actual transfer image of the circuit pattern;
Feeding back a semiconductor substrate using an exposure system having a step of feeding back a position correction value of a transfer image of an actual circuit pattern predicted in the prediction step to the exposure apparatus. Manufacturing method of a semiconductor device.
該波面収差算出ステップで算出された第2の状態における投影光学系の波面収差Wに応じて、フォーカス値と露光量を変化させて製品回路パターンの転写像の光強度分布を算出する転写像の光強度分布算出ステップと、
該転写像の光強度分布算出ステップで算出された製品回路パターンの転写像の光強度分布を基に製品回路パターン寸法を算出する製品回路パターン寸法ステップと、
これらフォーカス値、露光量および製品回路パターン寸法の関係から最適露光量および最適フォーカス値を算出するステップとを有する露光システムを用いて半導体基板に対して露光して半導体装置を製造することを特徴とする半導体装置の製造方法。A wavefront aberration calculating step of calculating a wavefront aberration W of the projection optical system in the exposure apparatus;
The focus value and the exposure amount are changed according to the wavefront aberration W of the projection optical system in the second state calculated in the wavefront aberration calculation step to calculate the light intensity distribution of the transfer image of the product circuit pattern. Light intensity distribution calculation step;
A product circuit pattern dimension step of calculating a product circuit pattern dimension based on the light intensity distribution of the transfer image of the product circuit pattern calculated in the light intensity distribution calculation step of the transferred image;
Calculating the optimum exposure amount and the optimum focus value from the relationship between the focus value, the exposure amount, and the dimensions of the product circuit pattern, and manufacturing a semiconductor device by exposing the semiconductor substrate using an exposure system. Semiconductor device manufacturing method.
該波面収差算出ステップで算出された第2の状態における投影光学系の波面収差Wに応じて、第2の状態における投影光学系で露光される回路パターンの転写像を算出するステップと、
該ステップで算出された回路パターンの転写像に基いてレチクル上の回路パターンの光学特性を設計するステップとを有する露光システムを用いて半導体基板に対して露光して半導体装置を製造することを特徴とする半導体装置の製造方法。A wavefront aberration calculating step of calculating a wavefront aberration W of the projection optical system in the exposure apparatus;
Calculating a transfer image of a circuit pattern exposed by the projection optical system in the second state according to the wavefront aberration W of the projection optical system in the second state calculated in the wavefront aberration calculation step;
Designing the optical characteristics of the circuit pattern on the reticle based on the transferred image of the circuit pattern calculated in the step; and manufacturing a semiconductor device by exposing the semiconductor substrate using an exposure system. Manufacturing method of a semiconductor device.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002165481A JP4327412B2 (en) | 2002-06-06 | 2002-06-06 | Wavefront aberration measuring apparatus and exposure apparatus |
| PCT/JP2003/007137 WO2003105202A1 (en) | 2002-06-06 | 2003-06-05 | Wave aberration measuring instrument, exposure apparatus, semiconductor device manufacturing system, and method for manufacturing same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002165481A JP4327412B2 (en) | 2002-06-06 | 2002-06-06 | Wavefront aberration measuring apparatus and exposure apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004014764A true JP2004014764A (en) | 2004-01-15 |
| JP4327412B2 JP4327412B2 (en) | 2009-09-09 |
Family
ID=29727598
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002165481A Expired - Fee Related JP4327412B2 (en) | 2002-06-06 | 2002-06-06 | Wavefront aberration measuring apparatus and exposure apparatus |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP4327412B2 (en) |
| WO (1) | WO2003105202A1 (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006267109A (en) * | 2005-03-23 | 2006-10-05 | Oculus Optikgeraete Gmbh | Measuring device for measuring refraction property of optical lens |
| JP2006332197A (en) * | 2005-05-24 | 2006-12-07 | Nikon Corp | Lens barrel, exposure apparatus, optical element detection method, and device manufacturing method |
| JP2007518256A (en) * | 2004-01-16 | 2007-07-05 | カール ツァイス エスエムテー アクチェンゲゼルシャフト | Optical imaging wavefront measuring apparatus and method, and microlithography projection exposure apparatus |
| JP2007194537A (en) * | 2006-01-23 | 2007-08-02 | Nikon Corp | Optical characteristic measuring method and apparatus, and exposure apparatus |
| US7685556B2 (en) | 2004-02-23 | 2010-03-23 | Kabushiki Kaisha Toshiba | Mask data correction method, photomask manufacturing method, computer program, optical image prediction method, resist pattern shape prediction method, and semiconductor device manufacturing method |
| JP2010517278A (en) * | 2007-01-23 | 2010-05-20 | カール・ツァイス・エスエムティー・アーゲー | Measuring device and measuring method of irradiation intensity distribution |
| WO2011114407A1 (en) * | 2010-03-18 | 2011-09-22 | 株式会社日立製作所 | Method for measuring wavefront aberration and device of same |
| US8705024B2 (en) | 2009-02-13 | 2014-04-22 | Hitachi, Ltd. | Wavefront aberration measuring method and device therefor |
| CN104535300A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Large-diameter collimator wavefront and image surface position calibration device and method |
| JP2018501508A (en) * | 2014-12-02 | 2018-01-18 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic method and apparatus |
| RU2753627C1 (en) * | 2020-11-10 | 2021-08-18 | АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП") | Method for determining wave aberrations of optical system |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103744269B (en) * | 2014-01-03 | 2015-07-29 | 中国科学院上海光学精密机械研究所 | The detection method of wave aberration of photoetching projection objective and imaging optimal focal plane |
| CN111110184B (en) * | 2020-01-07 | 2024-05-10 | 天津市眼科医院 | Peripheral retinal disparity optical measurement system based on Hartmann-Shack wavefront disparity measuring instrument |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU3193900A (en) * | 1999-03-18 | 2000-10-04 | Nikon Corporation | Exposure system and aberration measurement method for its projection optical system, and production method for device |
| JP2001068398A (en) * | 1999-08-27 | 2001-03-16 | Hitachi Ltd | Method of manufacturing semiconductor integrated circuit device and method of manufacturing mask |
| JP4692862B2 (en) * | 2000-08-28 | 2011-06-01 | 株式会社ニコン | Inspection apparatus, exposure apparatus provided with the inspection apparatus, and method for manufacturing microdevice |
| JP2003031477A (en) * | 2001-07-17 | 2003-01-31 | Hitachi Ltd | Semiconductor device manufacturing method and system |
| JP3839306B2 (en) * | 2001-11-08 | 2006-11-01 | 株式会社ルネサステクノロジ | Semiconductor device manufacturing method and manufacturing system |
-
2002
- 2002-06-06 JP JP2002165481A patent/JP4327412B2/en not_active Expired - Fee Related
-
2003
- 2003-06-05 WO PCT/JP2003/007137 patent/WO2003105202A1/en active Application Filing
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007518256A (en) * | 2004-01-16 | 2007-07-05 | カール ツァイス エスエムテー アクチェンゲゼルシャフト | Optical imaging wavefront measuring apparatus and method, and microlithography projection exposure apparatus |
| US7685556B2 (en) | 2004-02-23 | 2010-03-23 | Kabushiki Kaisha Toshiba | Mask data correction method, photomask manufacturing method, computer program, optical image prediction method, resist pattern shape prediction method, and semiconductor device manufacturing method |
| JP2006267109A (en) * | 2005-03-23 | 2006-10-05 | Oculus Optikgeraete Gmbh | Measuring device for measuring refraction property of optical lens |
| JP2006332197A (en) * | 2005-05-24 | 2006-12-07 | Nikon Corp | Lens barrel, exposure apparatus, optical element detection method, and device manufacturing method |
| JP2007194537A (en) * | 2006-01-23 | 2007-08-02 | Nikon Corp | Optical characteristic measuring method and apparatus, and exposure apparatus |
| JP2010517278A (en) * | 2007-01-23 | 2010-05-20 | カール・ツァイス・エスエムティー・アーゲー | Measuring device and measuring method of irradiation intensity distribution |
| US8537332B2 (en) | 2007-01-23 | 2013-09-17 | Carl Zeiss Smt Gmbh | Projection exposure tool for microlithography with a measuring apparatus and method for measuring an irradiation strength distribution |
| US8705024B2 (en) | 2009-02-13 | 2014-04-22 | Hitachi, Ltd. | Wavefront aberration measuring method and device therefor |
| WO2011114407A1 (en) * | 2010-03-18 | 2011-09-22 | 株式会社日立製作所 | Method for measuring wavefront aberration and device of same |
| JP2018501508A (en) * | 2014-12-02 | 2018-01-18 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic method and apparatus |
| CN104535300A (en) * | 2014-12-20 | 2015-04-22 | 中国科学院西安光学精密机械研究所 | Large-diameter collimator wavefront and image surface position calibration device and method |
| RU2753627C1 (en) * | 2020-11-10 | 2021-08-18 | АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП") | Method for determining wave aberrations of optical system |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4327412B2 (en) | 2009-09-09 |
| WO2003105202A1 (en) | 2003-12-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3927774B2 (en) | Measuring method and projection exposure apparatus using the same | |
| TWI692007B (en) | Lithographic process & apparatus and inspection process and apparatus | |
| JP6618551B2 (en) | Inspection apparatus, inspection method, lithographic apparatus, patterning device, and manufacturing method | |
| US6636311B1 (en) | Alignment method and exposure apparatus using the same | |
| US10571812B2 (en) | Method of calibrating focus measurements, measurement method and metrology apparatus, lithographic system and device manufacturing method | |
| JP7261903B2 (en) | dark field microscope | |
| CN101290479B (en) | Angle-resolved scatterometer and inspection method | |
| TWI808557B (en) | Method of metrology and associated apparatuses | |
| JPH08250391A (en) | Position detection mark and position detection method | |
| JP4327412B2 (en) | Wavefront aberration measuring apparatus and exposure apparatus | |
| KR102395062B1 (en) | Method for process metrology | |
| TW201807389A (en) | Measurement system for determining a wavefront aberration | |
| US8373866B2 (en) | Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and device manufacturing method | |
| TWI646404B (en) | Method for adjusting actuation of a lithographic apparatus | |
| JP2005030963A (en) | Position detection method | |
| US20240168388A1 (en) | Method for inferring a local uniformity metric | |
| JP3352298B2 (en) | Lens performance measuring method and lens performance measuring device using the same | |
| US20230176490A1 (en) | Method for optimizing a sampling scheme and associated apparatuses | |
| JP4143614B2 (en) | Measuring method | |
| WO2021249711A1 (en) | Metrology method, metrology apparatus and lithographic apparatus | |
| JP4416540B2 (en) | Aberration measurement method | |
| JP3427836B2 (en) | Alignment device and alignment method | |
| JPH11297614A (en) | Coma aberration measuring apparatus and projection exposure apparatus having the same | |
| JP2005123427A (en) | Optical performance measuring method, exposure method, exposure apparatus, and mask | |
| US20200011650A1 (en) | Metrology target |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040802 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071214 |
|
| RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071214 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081104 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090611 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130619 Year of fee payment: 4 |
|
| LAPS | Cancellation because of no payment of annual fees |