WO2011114380A1 - Process for production of aluminum electrode plate for electrolytic capacitor - Google Patents

Process for production of aluminum electrode plate for electrolytic capacitor Download PDF

Info

Publication number
WO2011114380A1
WO2011114380A1 PCT/JP2010/001967 JP2010001967W WO2011114380A1 WO 2011114380 A1 WO2011114380 A1 WO 2011114380A1 JP 2010001967 W JP2010001967 W JP 2010001967W WO 2011114380 A1 WO2011114380 A1 WO 2011114380A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
aluminum
etching solution
plate
electrode
Prior art date
Application number
PCT/JP2010/001967
Other languages
French (fr)
Japanese (ja)
Inventor
片野雅彦
小林達由樹
吉田祐也
矢久間一
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to PCT/JP2010/001967 priority Critical patent/WO2011114380A1/en
Priority to JP2012505312A priority patent/JP5532122B2/en
Publication of WO2011114380A1 publication Critical patent/WO2011114380A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium

Definitions

  • the present invention relates to a method for producing an aluminum electrode plate for electrolytic capacitors by AC etching of an aluminum plate.
  • an aluminum electrode used for an aluminum electrolytic capacitor is manufactured by alternating current etching, in principle, an aluminum foil or an aluminum plate is disposed between two electrodes disposed in an etching solution, and an alternating current is formed between the two electrodes. An electric current is applied to form an etching layer on the surface of the aluminum foil or aluminum plate.
  • An aluminum electrolytic capacitor is required to have a high capacitance per projected unit area as one of its required performances. In order to realize such required performance, the pits of the etching layer are deep and the CV product is high. There is a need for a large electrolytic capacitor electrode plate.
  • Patent Document 1 discloses a method for producing an aluminum electrode for an electrolytic capacitor, in which an aluminum plate is etched from below the aluminum plate provided between the electrodes while mixing and supplying air bubbles to the etching solution. According to this manufacturing method, it is possible to suppress the progress of the excessive etching during the formation of the etching layer and suppress the destruction of the fine porous structure. Therefore, the aluminum electrode for electrolytic capacitors with a high electrostatic capacity can be manufactured.
  • an object of the present invention is to obtain an electrode plate for an aluminum electrolytic capacitor having a high capacitance per projected unit area even when the etching layer is formed thick without much effort.
  • An object of the present invention is to provide a method for manufacturing an aluminum electrode plate for electrolytic capacitors.
  • one or more electrodes and at least one surface of the electrodes are contained in an etching solution stored in an etching tank having a bottom wall.
  • Q Supply an etching solution to the channel space at a unit time per unit time, and form an etching layer with a depth of 70 ⁇ m or more per side on the aluminum plate. It is characterized by.
  • an etching solution having a low aluminum ion concentration means that the aluminum ion concentration is zero.
  • the flow velocity v is as follows: 0.004 m / s ⁇ flow velocity v ⁇ 0.010 m / s It is more preferable to set to.
  • one or a plurality of electrodes and an aluminum plate facing at least one surface of the electrode are arranged in the etching solution, and one surface of the aluminum plate or an aluminum plate is passed through the alternating current between the facing electrode and the aluminum plate.
  • AC etching is performed on both sides.
  • the method of applying an alternating current between the electrode and the aluminum plate to be etched is not limited.
  • the inventors of the present application supplied the flow rate of the etching solution passing through the surface of the aluminum plate to be etched as a predetermined speed, and set the aluminum ion concentration of this etching solution. It has been found that an aluminum electrode plate for an aluminum electrolytic capacitor having a high CV product can be obtained when the aluminum ion concentration is set lower than the aluminum ion concentration in the etching tank, and the present invention has been completed.
  • the etching solution is caused to flow in the flow path space between the electrode and the aluminum plate at a flow rate of 0.002 to 0.015 m / s.
  • the flow rate of the etching solution is S
  • the cross-sectional area of the channel space is S
  • the amount of etching solution supplied to the channel space per unit time is Q
  • v (flow rate) Q ⁇ . It is defined as a value calculated by S. More preferably, this flow rate is 0.004 to 0.010 m / s.
  • the aluminum ions in the pits are stably moved out of the pits by the flow of the etching solution and easily removed, and as a result, the etching is performed deeply without destroying the preferable pit shape. It can be carried out. Further, a difference in aluminum ion concentration occurs inside and outside the pit, and the aluminum ion is easily diffused outside the pit. Thereby, aluminum ions can be efficiently removed from the pits. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.
  • the etching solution supplied to the flow path space is preferably a mixture of an etching solution overflowing from the etching tank and an etching solution having a lower aluminum ion concentration than the etching solution. According to such a configuration, the overflowed etchant can be reused as a regenerated etchant.
  • an etching solution supply port for supplying the etching solution toward the channel space sandwiched between the aluminum plate and the electrode is provided in the bottom wall portion of the etching tank. According to such a configuration, the flow of the etching solution is evenly formed in the entire channel space, and the etching solution flows smoothly from the lower end to the upper end of the channel space. Therefore, aluminum ions can be efficiently removed from the pits on the entire surface of the aluminum plate, and uniform etching can be performed.
  • an etchant supply port for supplying the etchant toward the flow path space on one side of the aluminum plate, and an etchant supply for supplying the etchant toward the flow path space on the other side It is good also as a structure which provided the opening
  • the aluminum electrode plate for electrolytic capacitors to which the present invention is applied is used, for example, as an anode of an aluminum electrolytic capacitor in which a functional polymer is used as an electrolyte. That is, the aluminum electrode plate for electrolytic capacitors to which the present invention is applied is used for an electrolytic capacitor in which a dielectric film is formed on the surface and a functional polymer layer is formed on the dielectric film.
  • the aluminum ions in the pits are stably moved out of the pits and easily removed by flowing the etching solution in the flow path space between the electrode and the aluminum plate at a flow rate of 0.002 to 0.015 m / s.
  • a difference in the concentration of aluminum ions occurs inside and outside the pit, and the aluminum ions are easily diffused outside the pit.
  • aluminum ions can be efficiently removed from the pits.
  • deep etching can be performed without destroying the preferred pit shape. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained.
  • this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device.
  • the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.
  • FIG. 4 is a graph showing a CV product of an etching plate manufactured under the etching conditions of Example 1.
  • FIG. 6 is a graph showing a CV product of an etching plate manufactured under the etching conditions of Example 2. It is a graph which shows the relationship between the thickness of the etching layer in Example 1, and the maximum increase rate of a CV product.
  • FIG. 1 is an explanatory view schematically showing an example of a production apparatus (etching apparatus) for an aluminum electrode plate for electrolytic capacitors to which the present invention is applied.
  • FIG. 1 shows an etching apparatus in which five electrodes are arranged in an etching apparatus and can etch a total of four aluminum plates. The number of electrodes can be three or more, but can be two.
  • a batch type manufacturing apparatus (hereinafter referred to as an etching apparatus 100) of an aluminum electrode plate for electrolytic capacitors to which the present invention is applied includes an etching tank 30 in which a hydrochloric acid-based etching solution 40 described later is stored,
  • the power supply device 80 includes three or more electrodes 20 arranged to face each other in the etching solution 40.
  • the electrode 20 is made of a conductor such as carbon or platinum that does not dissolve in electrolysis in an etching solution.
  • the etching tank 30 is made of an insulator such as resin.
  • the power supply apparatus 80 is connected to the electrodes 20a and 20e disposed at both ends of the three or more electrodes 20, and an alternating current is provided between the two electrodes 20a and 20e. Apply.
  • the aluminum plates 10 are disposed between the electrodes 20 facing each other in the three or more electrodes 20, and the electrodes 20 and the aluminum plates 10 are alternately disposed. That is, in the etching apparatus 100, the electrode 20 (electrode 20a), the aluminum plate 10 (aluminum plate 10a), the electrode 20 (electrode 20b), the aluminum plate 10 (aluminum plate 10b), the electrode 20 (electrode 20c), and the aluminum plate 10 ( The aluminum plate 10c), the electrode 20 (electrode 20d), the aluminum plate 10 (aluminum plate 10d), and the electrode 20 (electrode) are arranged in this order while facing each other.
  • the electrode 20 has a width dimension larger than that of the aluminum plate 10.
  • both surfaces of any aluminum plate 10 are AC etched.
  • the electrodes 20b, 20c, 20d other than the electrodes 20a, 20e arranged at both ends are not connected to the power supply device 80 and are in an electrically floating state.
  • the aluminum plates 10 are divided from each other, and the aluminum plate 10 is not connected to the power supply device 80 by wiring. For this reason, the aluminum plate 10 is in an electrically floating state.
  • the apparatus configuration is simple. Thus, no trouble is required in maintenance such as replacement of the electrode 20. Furthermore, since it is only necessary to connect the wiring to only some of the electrodes 20, a situation in which the balance of the wiring resistance to each electrode 20 is not lost does not occur. Therefore, the etching current density for the aluminum plate 10 is stable. The above describes the case where there are three or more electrodes 20 and the aluminum plate is in an electrically floating state with the power supply device 80. However, there are two electrodes 20 and one or more aluminum plates 10 between them.
  • One electrode 20 may be provided, and one aluminum plate 10 may be provided.
  • the electrode 20 and the aluminum plate 10 are one each and it is one to one, the electrode 20 (20a) and the aluminum plate 10 (10a) will be connected to AC power supply, and the aluminum plate 10 (10a) Etching only on one side.
  • the number of electrodes 20, the number of aluminum plates 10, and the electrical connection method with the power supply device 80 are not limited.
  • a plurality of plate portions 36 are formed in the etching tank 30 on both side walls 32 and 33 facing each other at a predetermined interval.
  • An electrode shielding portion 51 is formed to block between the inner wall and the electrode 20.
  • the electrode shielding portions 51 are formed on both sides of the electrode 20 in the width direction.
  • the electrode shielding part 51 is formed in a slit shape extending in the vertical direction while being opened inside, and the slit is an electrode holding slit into which both end portions in the width direction of the electrode 20 are inserted. .
  • the etching tank 30 is formed with an aluminum plate shielding part 52 that closes between the inner wall of the etching tank 30 and the aluminum plate 10 by the plate part 36.
  • the aluminum plate shielding portions 52 are formed on both sides of the aluminum plate 10 in the width direction.
  • the aluminum plate shielding portion 52 is formed in a slit shape extending in the vertical direction while being opened inside, and the slit is used for holding an aluminum plate into which both end portions in the width direction of the aluminum plate 10 are inserted. It is a slit.
  • the etching tank 30 when the electrode 20 is inserted into the electrode shielding portion 51 and the aluminum plate 10 is inserted into the aluminum plate shielding portion 52, the etching tank 30 includes the electrode 20 and the aluminum plate 10.
  • a plurality of etching chambers 35 are partitioned.
  • a plurality of etching solution supply ports 55 for supplying an etching solution for each etching chamber 35 are provided.
  • the plurality of etching solution supply ports 55 are opened at the bottom wall 34 among the wall surfaces of the etching tank 30.
  • an etching solution supply port 55 that opens toward each of the two etching chambers 35 (channel spaces) located on both sides of the aluminum plate 10 is provided at the bottom of the etching tank 30. It has been. More specifically, an etchant supply port 55 for supplying an etchant toward the etching chamber 35 (flow path space) on one side of the aluminum plate 10 and an etching chamber 35 (flow) on the other side of the aluminum plate 10. An etchant supply port 55 for supplying an etchant toward the (road space) is provided.
  • the etching solution supply ports 55 communicate with the plurality of etchant supply ports 55 on the side opposite to the side on which the electrode 20 is disposed with respect to the bottom wall 34 where the etchant supply ports 55 open.
  • An etching solution supply path 38 is defined.
  • the etchant supply path 38 is provided with a plurality of partition plates 53, and the etchant supply path 38 is partitioned into individual chambers 381 corresponding to the etch chamber 35 on a one-to-one basis by the partition plates 53. Adjacent private chambers 381 are formed independently. As described above, the individual chambers 381 are completely separated by the partition plate 53, so that electrical influences between the plurality of etching chambers 35 are more reliably prevented.
  • a plurality of overflow ports 61 (etching solution outlets) are formed near the upper end of the side wall 33 in the etching tank 30, and the overflow ports 61 allow the etching solution to overflow from each of the plurality of etching chambers 35. .
  • a recovery path 39 for recovering the overflowing etching solution at a position below the overflow port 61 is configured.
  • the etching apparatus 100 of this embodiment includes an etching liquid circulation device 62 for adjusting a component of a part of the overflowing etching liquid and re-supplying it to the etching tank.
  • the etching liquid circulation device 62 connects an overflow tank 63 provided below the recovery path 39, a circulation flow path 64 connected to the bottom of the overflow tank 63, a downstream portion of the circulation flow path 64, and each individual chamber 381.
  • a pipe 42 is provided.
  • the downstream portion of the circulation flow path 64 extends along the arrangement direction of the individual chambers 381 of the etching solution supply path 38, and each pipe 42 is connected to this portion.
  • Each pipe 42 is provided with a flow rate adjusting valve 65 (flow rate adjusting means) for controlling the amount of etching solution supplied from the circulation flow path 64 to each individual chamber 381.
  • the etching liquid circulation device 62 includes a pipe 66 (outflow means) for extracting a part of the etching liquid in the overflow tank 63, and a fixed amount extraction valve 67 (outflow means) for adjusting the amount of extraction from the pipe 66. It has. Further, a pipe 68 (inflow means) for joining the etching liquid for component adjustment supplied from the outside to the upstream portion of the circulation flow path 64 and a fixed amount for adjusting the supply amount of the etching liquid from the pipe 68. And a supply valve 69 (inflow means).
  • the etchant circulation device 62 is configured to be able to control the flow rate and opening / closing timing of the flow rate adjusting valve 65, the fixed amount removal valve 67 and the fixed amount supply valve 69. For example, the amount of liquid extracted from the pipe 66 and the amount supplied from the pipe 68 are controlled to be the same, and the amount of liquid in the etching tank 30 is kept constant. Further, it controls how much of the etching solution flowing into the overflow tank 63 in a certain time is extracted and replaced with the etching solution from the pipe 68.
  • the etching solution circulation device 62 In the etching solution circulation device 62, the entire amount of the etching solution that has flowed into the recovery passage 39 flows into the overflow tank 63, and then a part of the etching solution is withdrawn via the pipe 66. 64 is mixed with the etchant newly flowing from the pipe 68. Then, the mixed etching solution (hereinafter referred to as a regenerated etching solution) is supplied to each individual chamber 381 via each pipe 42.
  • the etching solution supply ports 55 provided in the individual chambers 381 are open near both sides sandwiching the lower end portion of the aluminum plate 10. Therefore, the etching solution supplied from the etching solution supply port 55 to the etching chamber 35 flows from the bottom to the top along the surface of the aluminum plate 10.
  • the aluminum plate 10 is used, for example, to constitute an anode (an aluminum electrode plate for an electrolytic capacitor) of an aluminum electrolytic capacitor in which a functional polymer such as polypyrrole, polythiophene, or polyaniline is used as an electrolyte. That is, after the aluminum plate 10 is etched, an anodic oxide film is formed on the surface thereof, and the aluminum plate 10 is used as an anode of an aluminum solid electrolytic capacitor.
  • a functional polymer such as polypyrrole, polythiophene, or polyaniline
  • the aluminum purity in the aluminum plate 10 is 99.98% by mass or more. If it does in this way, the toughness of the aluminum plate 10 will be high, and the handling at the time of manufacturing an electrolytic capacitor will be easy. On the other hand, if the aluminum purity is less than the lower limit, the hardness increases, the toughness decreases, and damage such as cracking may occur during handling, which is not preferable.
  • the aluminum plate 10 does not limit the content of elements other than Al (Fe, Si, Cu, Ga, V, Ni, Ti, Zr, etc.), but preferably, Fe 50 ppm or less, Cu 40 ppm or less, Si 60 ppm or less. It is good to do.
  • the aluminum plate 10 may have various thicknesses depending on the purpose. For example, a thickness of 150 ⁇ m to 1 mm, usually 300 to 400 ⁇ m is used.
  • the aluminum plate 10 is subjected to AC etching with a low concentration hydrochloric acid aqueous solution as a primary electrolytic treatment.
  • a pretreatment it is preferable to remove the surface oxide film by performing degreasing cleaning or slight etching on the aluminum plate 10.
  • the primary electrolytic treatment can be performed using the etching apparatus 100 described above.
  • an aqueous solution containing 1.5 to 2.4 mol / l hydrochloric acid and 0.05 to 0.5 mol / l sulfuric acid is used as the low concentration hydrochloric acid aqueous solution used as an etching solution (electrolytic solution) in the primary electrolytic treatment.
  • the liquid temperature is 40 to 55 ° C
  • the frequency is 10 to 25 Hz
  • the AC waveform is a sine waveform, rectangular waveform, AC / DC superimposed waveform, etc.
  • the current density is 40 to 50 A / dm 2
  • the processing time is 30 to 60 seconds. Etching is performed to form a large number of pits on the surface of the aluminum plate 10.
  • the main electrolytic treatment is performed to form a spongy pit aggregate on both surfaces of the aluminum plate 10.
  • this main electrolytic treatment is performed in the etching apparatus 100 while supplying the regenerated etching solution to each etching chamber 35 by the etching solution circulation device 62. That is, in this embodiment, the manufacturing method of the present invention is applied to the main electrolytic treatment.
  • an aqueous solution containing 4 to 6 mol / l hydrochloric acid and 0.05 to 0.5 mol / l sulfuric acid is used as the etching solution (electrolytic solution) used in the main electrolytic treatment.
  • the etching conditions are, for example, 20 to 35 ° C., where the liquid temperature is lower than the primary electrolytic treatment, the frequency is 30 to 60 Hz, the AC waveform is a sine waveform, rectangular waveform, AC / DC superimposed waveform, etc., and the current density is the primary electrolytic treatment predetermined etching layer thickness (e.g., one side at 70 ⁇ m or more, more 140 ⁇ m in total of both sides) is 20 ⁇ 30A / dm 2, treatment time less than set to a time that can be etched away.
  • the liquid temperature is lower than the primary electrolytic treatment
  • the frequency is 30 to 60 Hz
  • the AC waveform is a sine waveform, rectangular waveform, AC / DC superimposed waveform, etc.
  • the current density is the primary electrolytic treatment predetermined etching layer thickness (e.g., one side at 70 ⁇ m or more, more 140 ⁇ m in total of both sides) is 20 ⁇ 30A / dm 2, treatment time less than set to a time that can
  • the flow rate of the etching solution flowing from the bottom to the top along each surface of the aluminum plate 10 and the aluminum ion concentration of the regenerated etching solution supplied to each etching chamber 35 are set. .
  • the target of the aluminum ion concentration may be 12 grams / liter or less.
  • the etching solution supplied from the pipe 68 to the circulation channel 64 has a lower aluminum ion concentration than the etching solution in the etching tank 30, specifically, substantially contains aluminum ions. Or an etching solution whose aluminum ion concentration is increased by an etching process.
  • the aluminum ion concentration of the regenerated etching solution is lower than the etching solution in the etching tank 30.
  • the specific concentration is set, for example, by what percentage of the aluminum ion concentration in the etching bath 30 is the reference (100%).
  • the flow velocity is preferably set to a value within the range of 0.002 to 0.015 m / s, and more preferably 0.004 to 0.010 m / s.
  • the definition of the flow velocity in this embodiment is that each etching chamber 35 is a channel space having an equal cross-sectional shape provided between the aluminum plate 10 and the electrode 20 and extending in the vertical direction.
  • the value (v) calculated by the following equation (1) is assumed, where S is the channel area) and Q is the supply amount of the regenerated etching solution to each etching chamber 35 per unit time.
  • a flow rate per unit time flowing through each flow rate adjustment valve 65 can be used.
  • v (m / s) Q (m 3 / s) ⁇ S (m 2 )... (1)
  • the etching process is performed according to the above etching conditions, and the pits drilled by the primary electrolytic process are further drilled.
  • the main electrolytic treatment is performed by activating the pits drilled in the primary electrolytic treatment using the AC / DC superimposed waveform and then proceeding to the main electrolytic treatment. It is possible to proceed reliably.
  • the etching is performed for about 60 seconds under the condition that the duty ratio is about 0.07 to 0.09 and the current density is 12 to 17 A / dm 2 . Thereby, an etching layer having a thickness of 70 ⁇ m or more can be formed.
  • the aluminum electrode plate (etched plate) for an electrolytic capacitor manufactured according to the present invention is an electrode plate having a high etching magnification and a high capacitance.
  • AC etching which is an etching method in the manufacturing method of the present application, as follows. That is, in AC etching, Al on the aluminum plate 10 becomes Al 3+ during the anode and dissolves and diffuses into the etching solution. A part of the generated Al 3+ reacts with one (OH) group at the cathode to become Al (OH) 3 and precipitates on the pit surface, but a part of the remaining reaction product diffuses into the etching solution. Thus, it is removed outside the pit, and a part remains in the etching solution in the pit.
  • the etching progresses while the position of the starting point where Al is easily dissolved moves, and the aluminum plate 10 is deeply etched in a spongy manner.
  • the aluminum plate 10 becomes harder to be punched into pits, and the pit shape of the etched portion is destroyed due to an etching solution containing hydrochloric acid and other influences. Come. For this reason, if the etching process is further continued, the pit shape collapses at a shallow portion of the etching layer, and the electrostatic capacity is lowered.
  • the inventor of the present application sets supply conditions for the etching solution used in the main electrolytic treatment based on the following considerations. That is, if an etching solution having a lower aluminum ion concentration than the etching solution in the etching tank 30 is supplied to the surface of the aluminum plate 10, the aluminum ions in the pits are etched outside the pits due to the concentration difference of the aluminum ions inside and outside the pits. Aluminum ions are easily discharged to the liquid side, and aluminum ions that hinder the formation of pits and the progress of etching are reduced.
  • an etching solution that has a high aluminum ion concentration by etching treatment is obtained by extracting an overflowing etching solution by a certain amount and mixing it with an etching solution from which aluminum ions have been removed.
  • the etching solution is regenerated to a low etching solution, and is supplied again into the etching bath 30.
  • the flow rate of the etchant flowing along the surface of the etching layer affects the pit formation. That is, if the etching solution supplied from the bottom of the etching tank 30 is made to flow from the bottom to the top along the surface of the aluminum plate 10 and the flow velocity at this time is kept at 0.002 to 0.015 m / s, the aluminum in the pit It is considered that ions are likely to move stably outside the pit. In the vicinity of the surface of the aluminum plate 10, the etching solution has a low flow rate due to the velocity gradient, and the aluminum ions in the pits are difficult to diffuse.
  • the preferable flow velocity range is set to 0.002 to 0.015 m / s.
  • the etching apparatus 100 of this embodiment and the method for manufacturing an aluminum electrode plate for an electrolytic capacitor using the etching apparatus 100 aluminum ions in the pits are formed in the etching layer on the surface of the aluminum plate 10. Due to the flow of the etching solution, it is easily moved out of the pits and easily removed, and as a result, deep etching can be performed without destroying the preferred pit shape.
  • the reproduction etching solution having a low aluminum ion concentration causes a difference in aluminum ion concentration between the inside and outside of the pit, and the aluminum ion is easily diffused outside the pit. Thereby, aluminum ions can be efficiently removed from the pits, and effective etching by an etching solution and electrolysis can be promoted.
  • an electrode plate for an aluminum electrolytic capacitor having a large CV product and a high capacitance per projected unit area can be obtained.
  • this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device.
  • since the workability at the time of manufacture is good and the product can be manufactured easily, and the bubble removing operation and the defoaming operation are unnecessary, the manufacturing apparatus and incidental facilities are not complicated.
  • an electrode plate for an aluminum electrolytic capacitor can be manufactured with high productivity.
  • a part of the overflowed etching solution can be reused as a regenerated etching solution, and at this time, by controlling the ratio of the extraction amount to the total amount of the overflow solution and the mixing amount of the new etching solution.
  • the regenerated etching solution can have a desired aluminum ion concentration. Furthermore, by supplying a regenerated etching solution from the bottom of the etching bath 30 and flowing the etching solution from the bottom to the top along the aluminum plate, the flow of the etching solution is formed uniformly in the entire flow path space, Aluminum ions can be efficiently removed from the pits on the entire surface of the aluminum plate, and uniform etching can be performed.
  • 2 to 4 show CV product data of etched plates manufactured under various etching conditions.
  • 2 and 4 are data based on the etching conditions of Example 1
  • FIG. 3 is data based on the etching conditions of Example 2.
  • the aluminum plate 10 was etched by the etching method and the etching apparatus 100 described with reference to FIG.
  • Capacitance C and film withstand voltage V in an aqueous solution of ammonium adipate when an oxide film having a withstand voltage was formed were measured, and the value of the CV product was determined.
  • Example 1 the aluminum ion concentration ratio of the regenerated etching solution supplied to the etching chamber 35 is constant (60% of the aluminum ion concentration when the aluminum ion concentration in the etching tank 30 is 100). The change in the CV product when the flow rate v and the etching time were varied was verified.
  • the aluminum purity of the aluminum plate was 99.98% by mass or more
  • the total projected area of the aluminum plate was 500 cm 2
  • the amount of electrolyte was 50 liters
  • the initial aluminum ion concentration was 4 g / liter. It was.
  • the etching solution flow velocity v (supply amount Q / channel cross-sectional area S) was set to various values in the range of 0.001 to 0.020 m / s.
  • the etching time was a time for forming an etching layer having a thickness of 60 ⁇ m, 100 ⁇ m, 140 ⁇ m, and 220 ⁇ m in total on both surfaces. The results are shown in FIG. The horizontal axis in FIG.
  • the flow velocity (m / s) is the flow velocity (m / s)
  • the vertical axis is the rate of increase (%) in the CV product.
  • the rate of increase (%) of the CV product in Example 1 indicates the ratio to this value, assuming that the CV product is 100% when the flow velocity is 0.002 m / s.
  • the four graphs in FIG. 2 correspond to four stages of etching time (total thickness of both surfaces of the etching layer).
  • FIG. 4 shows the relationship between the thickness of the etching layer and the maximum rate of increase of the CV product based on the data of FIG. 2, where the horizontal axis is the thickness of the etching layer and the vertical axis is the maximum rate of increase of the CV product. It is.
  • the inflection point is observed in the vicinity of the total thickness of both sides of the etching layer being 120 ⁇ m (60 ⁇ m on one side) and the total thickness on both sides is 140 ⁇ m (70 ⁇ m on one side) or more, the CV product The rate of increase is increasing.
  • Example 2 In Example 2, the same apparatus, the same projected area, liquid amount, and initial aluminum ion concentration as in Example 1 were used.
  • the flow rate v (supply amount Q / channel cross-sectional area S) of the etching solution in the etching chamber 35 is constant at 0.005 m / s, and the aluminum ion concentration of the regenerated etching solution supplied to the etching chamber 35 and the etching time are varied.
  • the change in the CV product was verified. The results are shown in FIG. The horizontal axis of FIG.
  • Example 3 is the aluminum ion concentration of the regenerated etching solution (concentration ratio when the aluminum ion concentration in the etching tank 30 is 100%), and the vertical axis is the rate of increase (%) of the CV product.
  • the aluminum ion concentration of the etching solution is the same (100%) as in the etching tank 30, the CV product is 100%, and the ratio to this value is shown.
  • the aluminum ion concentration was varied by adjusting the amount of the etching solution to be extracted and the amount of the etching solution to be mixed with respect to the overflowing etching solution in the same manner as in Example 1.
  • the etching time was set to the time when the total thickness of both surfaces of the etching layer was 60 ⁇ m, 100 ⁇ m, 140 ⁇ m, and 220 ⁇ m, as in Example 1.
  • FIGS. 5 and 6 are explanatory diagrams showing image analysis photographs of the pits on the etching plate and the contour lines of the etching pits, and FIG. / s, etching plate etched at a thickness of 220 ⁇ m on both sides of the etching layer, FIG. 6 shows the etching conditions of the comparative example (reproduction etching solution aluminum ion concentration ratio 100%, flow rate 0.005 m / s, etching layer on both sides) This is an etching plate subjected to an etching treatment with a thickness of 220 ⁇ m.
  • FIG. 5A is an image analysis photograph of a surface where an unstable layer on the etching plate surface is deleted to a depth of 20 ⁇ m from the surface
  • FIG. 5B is an image analysis of a surface where the surface is deleted to a depth of 50 ⁇ m from the surface.
  • the photograph, FIG. 5C is an image analysis photograph of the surface removed from the surface to a depth of 100 ⁇ m.
  • FIGS. 6A to 6C are image analysis photographs of the surfaces deleted from the surface to respective depths of 20 ⁇ m, 50 ⁇ m, and 100 ⁇ m. In each photograph, a black dot-like portion represents an etching pit, and a gray portion represents an unetched portion.
  • FIGS. 5D to 5F show the image processing of FIGS. 5A to 5C to try to extract the contour lines of the etching pits.
  • FIGS. 6D to 6F are obtained by trying to extract the outline of the etching pit by performing image processing on FIGS. 6A to 6C.
  • the etching state is poor overall, and when the etching state at the position of 50 ⁇ m from the surface layer is compared with the etching state at the position of 100 ⁇ m from the surface layer, the etching state from the surface layer is 100 ⁇ m. There are few etched parts. That is, it can be seen that even if the etching time is long and the etching is randomly performed deeply, it does not progress to a good etching pit shape.
  • the present invention it is possible to perform deep etching on the surface of the aluminum plate 10 without breaking a preferable pit shape. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Disclosed is a process for producing an aluminum electrode plate for an electrolytic capacitor, which enables the production of such an electrode plate having a thick etching layer and high electrostatic capacitance per unit projected area in a simple manner. In the process, aluminum plates (10) are respectively placed between electrodes (20) that are placed in an etching solution to achieve the alternating current etching while flowing the etching solution into an etching chamber (35) that is partitioned by each of the electrodes (20) and each of the aluminum plates (10) at a flow rate of 0.002 to 0.015 m/s, thereby forming an etching layer having an etching depth of 70 μm or more on one surface. The flow rate is a value calculated by the following formula: v (flow rate) = Q/S (wherein S represents the cross section area of the etching chamber (35); and Q represents the amount of the etching solution supplied to the etching chamber (35) per unit of time).

Description

電解コンデンサ用アルミニウム電極板の製造方法Method for producing aluminum electrode plate for electrolytic capacitor
 本発明は、アルミニウム板を交流エッチングして電解コンデンサ用アルミニウム電極板を製造する方法に関するものである。 The present invention relates to a method for producing an aluminum electrode plate for electrolytic capacitors by AC etching of an aluminum plate.
 アルミニウム電解コンデンサに用いるアルミニウム電極を交流エッチングにより製造するにあたっては、原理的には、エッチング液中に配置した2つの電極の間にアルミニウム箔もしくはアルミニウム板を配置するとともに、2つの電極の間に交流電流を印加して、アルミニウム箔もしくはアルミニウム板の表面にエッチング層を形成する。アルミニウム電解コンデンサは、その要求性能の一つとして投影単位面積当たりの静電容量が高いことが求められており、このような要求性能を実現するために、エッチング層のピットが深く、CV積が大きい電解コンデンサ用電極板が求められている。 When an aluminum electrode used for an aluminum electrolytic capacitor is manufactured by alternating current etching, in principle, an aluminum foil or an aluminum plate is disposed between two electrodes disposed in an etching solution, and an alternating current is formed between the two electrodes. An electric current is applied to form an etching layer on the surface of the aluminum foil or aluminum plate. An aluminum electrolytic capacitor is required to have a high capacitance per projected unit area as one of its required performances. In order to realize such required performance, the pits of the etching layer are deep and the CV product is high. There is a need for a large electrolytic capacitor electrode plate.
 交流エッチングにおいては、主としてエッチング液中の塩酸と交流電流とによってアルミニウムが溶解し、アルミニウム板にピットが形成される。ピットは、処理時間と共に成長して緻密に集積し、海綿状のピット集合体を形成し、エッチング層の厚さが増していく。一方で、ピット内では溶解したアルミニウムイオンが高濃度化する。そのため、ピットの深さがある程度以上になると、高濃度化したアルミニウムイオンがエッチング液ならびに電解によるアルミニウムの不要な溶解を引き起こし、ピット集合体の成長を妨げてしまう。つまり、エッチング層の厚さを増大させると、ピット集合体の浅い部分が崩れてしまい、ピット集合体を好ましい形状に維持することができない。本発明者の実験によれば、エッチング層の厚さが70μm程度に到達すると、ピット集合体の成長が著しく妨げられる傾向にある。 In AC etching, aluminum is dissolved mainly by hydrochloric acid in the etching solution and AC current, and pits are formed on the aluminum plate. The pits grow with the processing time and accumulate densely to form a spongy pit aggregate, and the thickness of the etching layer increases. On the other hand, dissolved aluminum ions are highly concentrated in the pit. Therefore, when the depth of the pit exceeds a certain level, the highly concentrated aluminum ions cause unnecessary dissolution of the aluminum by the etching solution and electrolysis, thereby hindering the growth of the pit aggregate. That is, when the thickness of the etching layer is increased, the shallow portion of the pit aggregate is broken, and the pit aggregate cannot be maintained in a preferable shape. According to the experiments by the present inventors, when the thickness of the etching layer reaches about 70 μm, the growth of the pit aggregate tends to be significantly hindered.
 特許文献1には、電極間に設けられたアルミニウム板の下方から、エッチング液に気泡を混ぜて循環供給しながらアルミニウム板をエッチングする電解コンデンサ用アルミニウム電極の製造方法が開示されている。この製造方法によれば、エッチング層の形成時に過剰なエッチングの進行を抑制して微細なポーラス構造の破壊を抑制することができる。よって、静電容量の高い電解コンデンサ用アルミニウム電極を製造することができる。 Patent Document 1 discloses a method for producing an aluminum electrode for an electrolytic capacitor, in which an aluminum plate is etched from below the aluminum plate provided between the electrodes while mixing and supplying air bubbles to the etching solution. According to this manufacturing method, it is possible to suppress the progress of the excessive etching during the formation of the etching layer and suppress the destruction of the fine porous structure. Therefore, the aluminum electrode for electrolytic capacitors with a high electrostatic capacity can be manufactured.
特開2009-105191号公報JP 2009-105191 A
 しかしながら、特許文献1に記載の方法では、過剰なエッチングの進行を抑制できるものの、バッチ操業を行う場合にエッチング液に混合した気泡がアルミニウム板の上部に集まり、その除去作業や消泡作業に多大な手間がかかるという問題点がある。 However, in the method described in Patent Document 1, although the progress of excessive etching can be suppressed, bubbles mixed with the etching solution gather in the upper part of the aluminum plate when performing batch operation, and the removal work and the defoaming work are very large. There is a problem that it takes time and effort.
 以上の問題点に鑑みて、本発明の課題は、多大な手間をかけずに、エッチング層を厚く形成した場合においても投影単位面積当たりの静電容量の高いアルミニウム電解コンデンサ用電極板を得ることのできる電解コンデンサ用アルミニウム電極板の製造方法を提供することにある。 In view of the above problems, an object of the present invention is to obtain an electrode plate for an aluminum electrolytic capacitor having a high capacitance per projected unit area even when the etching layer is formed thick without much effort. An object of the present invention is to provide a method for manufacturing an aluminum electrode plate for electrolytic capacitors.
 上記課題を解決するために、本発明の電解コンデンサ用アルミニウム電極板の製造方法では、有底壁のエッチング槽内に貯留されたエッチング液中に1または複数の電極および当該電極の少なくとも1の面と対向する1または複数のアルミニウム板を配置して交流エッチングをバッチ式で行うにあたって、
 前記電極と前記アルミニウム板とに挟まれた流路空間に対して、当該流路空間の下方から上方に向けて前記エッチング液よりアルミニウムイオン濃度が低いエッチング液を、下式の条件
   0.002 m/s≦流速v≦0.015m/s
   v=Q÷S
    v:流速
    S:前記流路空間の断面積
    Q:前記流路空間への単位時間当たりのエッチング液供給量
で供給し、前記アルミニウム板に片面当たり70μm以上の深さのエッチング層を形成することを特徴とする。
In order to solve the above problems, in the method for producing an aluminum electrode plate for electrolytic capacitors according to the present invention, one or more electrodes and at least one surface of the electrodes are contained in an etching solution stored in an etching tank having a bottom wall. When performing AC etching in a batch manner by arranging one or more aluminum plates facing each other,
With respect to the channel space sandwiched between the electrode and the aluminum plate, an etchant having an aluminum ion concentration lower than the etchant from the lower side to the upper side of the channel space is expressed by the following condition 0.002 m / s ≤ Flow velocity v ≤ 0.015m / s
v = Q ÷ S
v: Flow velocity S: Cross-sectional area of the channel space Q: Supply an etching solution to the channel space at a unit time per unit time, and form an etching layer with a depth of 70 μm or more per side on the aluminum plate. It is characterized by.
 本発明における「アルミニウムイオン濃度が低いエッチング液」とはアルミニウムイオン濃度が0である場合を含む意味である。 In the present invention, “an etching solution having a low aluminum ion concentration” means that the aluminum ion concentration is zero.
 本発明において、前記流速vについては以下の条件
   0.004 m/s≦流速v≦0.010m/s
に設定することがより好ましい。
In the present invention, the flow velocity v is as follows: 0.004 m / s ≦ flow velocity v ≦ 0.010 m / s
It is more preferable to set to.
 本発明では、エッチング液中において1または複数の電極および当該電極の少なくとも1の面と対向するアルミニウム板を配置し、対向する電極とアルミニウム板との間に交流電流を通してアルミニウム板の一方の面または両面に交流エッチングを施す。本発明においては、電極とエッチングされるアルミニウム板間の交流電流の印加方法は限定しない。本願の発明者は、エッチング処理中のエッチング液の流動に関して種々検討した結果、エッチングされるアルミニウム板の表面を通過するエッチング液の流速を所定速度として供給すると共に、このエッチング液のアルミニウムイオン濃度をエッチング槽内のアルミニウムイオン濃度よりも低く設定して供給すると、CV積の高いアルミニウム電解コンデンサ用アルミニウム電極板が得られることを見出し、本発明を完成した。 In the present invention, one or a plurality of electrodes and an aluminum plate facing at least one surface of the electrode are arranged in the etching solution, and one surface of the aluminum plate or an aluminum plate is passed through the alternating current between the facing electrode and the aluminum plate. AC etching is performed on both sides. In the present invention, the method of applying an alternating current between the electrode and the aluminum plate to be etched is not limited. As a result of various studies on the flow of the etching solution during the etching process, the inventors of the present application supplied the flow rate of the etching solution passing through the surface of the aluminum plate to be etched as a predetermined speed, and set the aluminum ion concentration of this etching solution. It has been found that an aluminum electrode plate for an aluminum electrolytic capacitor having a high CV product can be obtained when the aluminum ion concentration is set lower than the aluminum ion concentration in the etching tank, and the present invention has been completed.
 すなわち、本発明では、電極とアルミニウム板との間の流路空間にエッチング液を0.002~0.015m/sの流速で流す。ここで、本発明では、エッチング液の流速を、流路空間の断面積をS、流路空間への単位時間当たりのエッチング液の供給量をQとしたときに、v(流速)=Q÷Sにより算出される値であると定義している。より好ましくは、この流速を0.004~0.010m/sとするのが良い。かかる構成によれば、推定ではあるが、ピット内のアルミニウムイオンがエッチング液の流動によってピット外に安定して移動して排除され易くなり、結果として、好ましいピット形状を崩すことなく、深くエッチングを行うことができる。また、ピットの内外にアルミニウムイオンの濃度差が生じ、アルミニウムイオンがピット外に拡散され易くなる。これにより、アルミニウムイオンをピット内から効率よく除去することができる。よって、エッチング層を厚く形成した場合においても、CV積が大きく、投影単位面積当たりの静電容量の高いアルミニウム電解コンデンサ用電極板が得られる。また、これにより、大容量のコンデンサを実現でき、装置の小型化を達成できる。加えて、製造時の作業性がよく簡易に製造でき、気泡の除去作業や消泡作業なども不要であるため、製造装置や付帯設備が複雑化しないという効果も得られる。 That is, in the present invention, the etching solution is caused to flow in the flow path space between the electrode and the aluminum plate at a flow rate of 0.002 to 0.015 m / s. Here, in the present invention, when the flow rate of the etching solution is S, the cross-sectional area of the channel space is S, and the amount of etching solution supplied to the channel space per unit time is Q, v (flow rate) = Q ÷. It is defined as a value calculated by S. More preferably, this flow rate is 0.004 to 0.010 m / s. According to such a configuration, although it is estimated, the aluminum ions in the pits are stably moved out of the pits by the flow of the etching solution and easily removed, and as a result, the etching is performed deeply without destroying the preferable pit shape. It can be carried out. Further, a difference in aluminum ion concentration occurs inside and outside the pit, and the aluminum ion is easily diffused outside the pit. Thereby, aluminum ions can be efficiently removed from the pits. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.
 本願の発明者の検討によれば、エッチング液の流速が0.002m/s未満では、アルミニウム板に接するエッチング液の流動が極端に低くなり、ピット内からのアルミニウムイオンの排出量が極めて少なくなる。その結果として、深いエッチング層を形成したときには浅い部分のピットの形状が崩れてしまい、静電容量が低下してしまう。一方、流速が0.015m/sを超えるとエッチング液に乱流が生じて流れが安定しなくなり、アルミニウムイオンの移動が安定しなくなる。その上、それまでに形成されたエッチング層の溶解も激しくなるため、結果としてピット形状が崩れてしまい、静電容量が低下してしまう。よって、上記のように流速を設定するのが好ましい。 According to the study of the inventors of the present application, when the flow rate of the etching solution is less than 0.002 m / s, the flow of the etching solution in contact with the aluminum plate becomes extremely low, and the discharge amount of aluminum ions from the pit is extremely small. As a result, when a deep etching layer is formed, the shape of the pit in the shallow portion is destroyed, and the electrostatic capacity is lowered. On the other hand, when the flow velocity exceeds 0.015 m / s, a turbulent flow is generated in the etching solution, the flow becomes unstable, and the movement of aluminum ions becomes unstable. In addition, since the etching layer formed so far also melts, the pit shape is destroyed as a result, and the electrostatic capacity is lowered. Therefore, it is preferable to set the flow velocity as described above.
 本発明において、前記流路空間に供給される前記エッチング液は、前記エッチング槽からオーバーフローしたエッチング液と、当該エッチング液よりもアルミニウムイオン濃度が低いエッチング液とを混合したものであることが好ましい。かかる構成によれば、オーバーフローしたエッチング液を再生エッチング液として再利用することができる。 In the present invention, the etching solution supplied to the flow path space is preferably a mixture of an etching solution overflowing from the etching tank and an etching solution having a lower aluminum ion concentration than the etching solution. According to such a configuration, the overflowed etchant can be reused as a regenerated etchant.
 本発明において、前記エッチング槽の底壁部には、前記アルミニウム板と前記電極に挟まれる前記流路空間に向けて前記エッチング液を供給するエッチング液供給口が設けられていることが好ましい。かかる構成によれば、エッチング液の流れが流路空間全体に均等に形成され、流路空間の下端から上端までスムーズにエッチング液が流れる。よって、アルミニウム板の表面全体においてアルミニウムイオンをピット内から効率よく除去することができ、均一なエッチングを行うことができる。このとき、前記アルミニウム板の一方面側の前記流路空間に向けて前記エッチング液を供給するエッチング液供給口と、他方面側の前記流路空間に向けて前記エッチング液を供給するエッチング液供給口を設けた構成としてもよい。かかる構成によれば、アルミニウム板を両面エッチングできる。 In the present invention, it is preferable that an etching solution supply port for supplying the etching solution toward the channel space sandwiched between the aluminum plate and the electrode is provided in the bottom wall portion of the etching tank. According to such a configuration, the flow of the etching solution is evenly formed in the entire channel space, and the etching solution flows smoothly from the lower end to the upper end of the channel space. Therefore, aluminum ions can be efficiently removed from the pits on the entire surface of the aluminum plate, and uniform etching can be performed. At this time, an etchant supply port for supplying the etchant toward the flow path space on one side of the aluminum plate, and an etchant supply for supplying the etchant toward the flow path space on the other side It is good also as a structure which provided the opening | mouth. According to this configuration, the aluminum plate can be etched on both sides.
 本発明を適用した電解コンデンサ用アルミニウム電極板は、例えば、電解質として機能性高分子が用いられるアルミニウム電解コンデンサの陽極として用いられる。すなわち、本発明を適用した電解コンデンサ用アルミニウム電極板は、表面に誘電体膜が形成され、当該誘電体膜上に機能性高分子層が形成されて、電解コンデンサに用いられる。 The aluminum electrode plate for electrolytic capacitors to which the present invention is applied is used, for example, as an anode of an aluminum electrolytic capacitor in which a functional polymer is used as an electrolyte. That is, the aluminum electrode plate for electrolytic capacitors to which the present invention is applied is used for an electrolytic capacitor in which a dielectric film is formed on the surface and a functional polymer layer is formed on the dielectric film.
 本発明では、電極とアルミニウム板との間の流路空間にエッチング液を0.002~0.015m/sの流速で流すことにより、ピット内のアルミニウムイオンがピット外に安定して移動して排除され易くなり、また、ピットの内外にアルミニウムイオンの濃度差が生じ、アルミニウムイオンがピット外に拡散され易くなる。これにより、アルミニウムイオンをピット内から効率よく除去することができる。結果として、好ましいピット形状を崩すことなく、深くエッチングを行うことができる。よって、エッチング層を厚く形成した場合においても、CV積が大きく、投影単位面積当たりの静電容量の高いアルミニウム電解コンデンサ用電極板が得られる。また、これにより、大容量のコンデンサを実現でき、装置の小型化を達成できる。加えて、製造時の作業性がよく簡易に製造でき、気泡の除去作業や消泡作業なども不要であるため、製造装置や付帯設備が複雑化しないという効果も得られる。 In the present invention, the aluminum ions in the pits are stably moved out of the pits and easily removed by flowing the etching solution in the flow path space between the electrode and the aluminum plate at a flow rate of 0.002 to 0.015 m / s. In addition, a difference in the concentration of aluminum ions occurs inside and outside the pit, and the aluminum ions are easily diffused outside the pit. Thereby, aluminum ions can be efficiently removed from the pits. As a result, deep etching can be performed without destroying the preferred pit shape. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.
本発明を適用した電解コンデンサ用アルミニウム電極板の製造方法および製造装置を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method and manufacturing apparatus of the aluminum electrode plate for electrolytic capacitors to which this invention is applied. 実施例1のエッチング条件により製造したエッチング板のCV積を示すグラフである。4 is a graph showing a CV product of an etching plate manufactured under the etching conditions of Example 1. FIG. 実施例2のエッチング条件により製造したエッチング板のCV積を示すグラフである。6 is a graph showing a CV product of an etching plate manufactured under the etching conditions of Example 2. 実施例1におけるエッチング層の厚さとCV積の最大上昇率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of the etching layer in Example 1, and the maximum increase rate of a CV product. 本発明を適用したエッチング条件により製造したエッチング板の画像解析写真およびエッチングピットの輪郭線の説明図である。It is explanatory drawing of the image analysis photograph of the etching board manufactured on the etching conditions to which this invention is applied, and the outline of an etching pit. 比較例のエッチング条件により製造したエッチング板の画像解析写真およびエッチングピットの輪郭線の説明図である。It is explanatory drawing of the image analysis photograph of the etching board manufactured on the etching conditions of the comparative example, and the outline of an etching pit.
 図面を参照して、本発明の実施の形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.
(電解コンデンサ用アルミニウム電極板の製造装置の構成)
 図1は、本発明を適用した電解コンデンサ用アルミニウム電極板の製造装置(エッチング装置)の一例を模式的に示す説明図である。図1には、エッチング装置に5枚の電極が配置され、計4枚のアルミニウム板をエッチング可能なエッチング装置を示してある。なお、電極の枚数については3枚以上とすることができるが、2枚とすることも可能である。
(Configuration of manufacturing equipment for aluminum electrode plates for electrolytic capacitors)
FIG. 1 is an explanatory view schematically showing an example of a production apparatus (etching apparatus) for an aluminum electrode plate for electrolytic capacitors to which the present invention is applied. FIG. 1 shows an etching apparatus in which five electrodes are arranged in an etching apparatus and can etch a total of four aluminum plates. The number of electrodes can be three or more, but can be two.
 図1に示すように、本発明を適用した電解コンデンサ用アルミニウム電極板のバッチ式製造装置(以下、エッチング装置100という)は、後述する塩酸系のエッチング液40が貯留されたエッチング槽30と、エッチング液40中で対向するように配置された3枚以上の電極20と、電源装置80とを有している。電極20は、カーボンや白金等、エッチング液中での電解に溶解しない導電体からなる。エッチング槽30は樹脂などの絶縁体からなる。 As shown in FIG. 1, a batch type manufacturing apparatus (hereinafter referred to as an etching apparatus 100) of an aluminum electrode plate for electrolytic capacitors to which the present invention is applied includes an etching tank 30 in which a hydrochloric acid-based etching solution 40 described later is stored, The power supply device 80 includes three or more electrodes 20 arranged to face each other in the etching solution 40. The electrode 20 is made of a conductor such as carbon or platinum that does not dissolve in electrolysis in an etching solution. The etching tank 30 is made of an insulator such as resin.
 本形態のエッチング装置100において、電源装置80は、3枚以上の電極20のうち、両端に配置された電極20a、20eに配線接続されており、かかる2つの電極20a、20eの間に交流電流を印加する。 In the etching apparatus 100 of the present embodiment, the power supply apparatus 80 is connected to the electrodes 20a and 20e disposed at both ends of the three or more electrodes 20, and an alternating current is provided between the two electrodes 20a and 20e. Apply.
 また、3枚以上の電極20において対向し合う電極20の各間には、アルミニウム板10が配置されており、電極20とアルミニウム板10とが交互に配置されている。すなわち、エッチング装置100では、電極20(電極20a)、アルミニウム板10(アルミニウム板10a)、電極20(電極20b)、アルミニウム板10(アルミニウム板10b)、電極20(電極20c)、アルミニウム板10(アルミニウム板10c)、電極20(電極20d)、アルミニウム板10(アルミニウム板10d)、電極20(電極20e)が互いに対向した状態でこの順に並んでいる。ここで、電極20はアルミニウム板10よりも幅寸法が大である。 In addition, the aluminum plates 10 are disposed between the electrodes 20 facing each other in the three or more electrodes 20, and the electrodes 20 and the aluminum plates 10 are alternately disposed. That is, in the etching apparatus 100, the electrode 20 (electrode 20a), the aluminum plate 10 (aluminum plate 10a), the electrode 20 (electrode 20b), the aluminum plate 10 (aluminum plate 10b), the electrode 20 (electrode 20c), and the aluminum plate 10 ( The aluminum plate 10c), the electrode 20 (electrode 20d), the aluminum plate 10 (aluminum plate 10d), and the electrode 20 (electrode 20e) are arranged in this order while facing each other. Here, the electrode 20 has a width dimension larger than that of the aluminum plate 10.
 このように構成したエッチング装置100において、両端に配置された電極20a、20eの間に交流電流を印加すると、いずれのアルミニウム板10においてもその両面が交流エッチングされる。その際、3枚以上の電極20のうち、両端に配置された電極20a、20e以外の電極20b、20c、20dは、電源装置80と配線接続されておらず、電気的にフローティング状態にある。また、アルミニウム板10同士は、互いに分割されており、アルミニウム板10は電源装置80と配線接続されていない。このため、アルミニウム板10は、電気的にフローティング状態にある。 In the etching apparatus 100 configured as described above, when an alternating current is applied between the electrodes 20a and 20e disposed at both ends, both surfaces of any aluminum plate 10 are AC etched. At that time, among the three or more electrodes 20, the electrodes 20b, 20c, 20d other than the electrodes 20a, 20e arranged at both ends are not connected to the power supply device 80 and are in an electrically floating state. The aluminum plates 10 are divided from each other, and the aluminum plate 10 is not connected to the power supply device 80 by wiring. For this reason, the aluminum plate 10 is in an electrically floating state.
 かかる構成では、両端に配置された電極20a、20e以外の電極20b、20c、20d、および各電極20間に配置されたアルミニウム板10には、給電を行なわなくてもよいため、装置構成が簡素であり、電極20の交換等のメンテナンスの際においても手間がかからない。さらに、一部の電極20のみに配線を接続すればよいので、各電極20への配線抵抗等のバランスが崩れるという事態が発生しない。それ故、アルミニウム板10に対するエッチング電流密度が安定している。以上は電極20が3枚以上でアルミニウム板が電源装置80と電気的にフローティング状態となっている場合を説明しているが、電極20が2枚で、その間にアルミニウム板10が1枚または複数枚配置されていてもよく、電極20が1枚で、アルミニウム板10が1枚でもよい。このように電極20とアルミニウム板10がそれぞれ1枚で一対一の場合は、電極20(20a)とアルミニウム板10(10a)が交流電源に接続されることになり、アルミニウム板10(10a)は片面のみのエッチングとなる。本願においては、電極20の枚数、アルミニウム板10の枚数、および電源装置80との電気的な接続方式は限定するものではない。 In such a configuration, since the electrodes 20b, 20c, 20d other than the electrodes 20a, 20e disposed at both ends and the aluminum plate 10 disposed between the electrodes 20 do not need to be fed, the apparatus configuration is simple. Thus, no trouble is required in maintenance such as replacement of the electrode 20. Furthermore, since it is only necessary to connect the wiring to only some of the electrodes 20, a situation in which the balance of the wiring resistance to each electrode 20 is not lost does not occur. Therefore, the etching current density for the aluminum plate 10 is stable. The above describes the case where there are three or more electrodes 20 and the aluminum plate is in an electrically floating state with the power supply device 80. However, there are two electrodes 20 and one or more aluminum plates 10 between them. One electrode 20 may be provided, and one aluminum plate 10 may be provided. Thus, when the electrode 20 and the aluminum plate 10 are one each and it is one to one, the electrode 20 (20a) and the aluminum plate 10 (10a) will be connected to AC power supply, and the aluminum plate 10 (10a) Etching only on one side. In the present application, the number of electrodes 20, the number of aluminum plates 10, and the electrical connection method with the power supply device 80 are not limited.
 本形態のエッチング装置100において、エッチング槽30には、相対向する側壁32、33の双方に複数枚の板部36が所定の間隔で形成されており、かかる板部36によって、エッチング槽30の内壁と電極20との間を塞ぐ電極用遮蔽部51が形成されている。本形態において、電極用遮蔽部51は、電極20の幅方向の両側に形成されている。また、電極用遮蔽部51は、内側に開口したまま上下方向に延在するスリット状に形成されており、かかるスリットは、電極20の幅方向の両端部が差し込まれる電極保持用のスリットである。また、本形態のエッチング装置100において、エッチング槽30には、板部36によって、エッチング槽30の内壁とアルミニウム板10との間を塞ぐアルミニウム板用遮蔽部52が形成されている。本形態において、アルミニウム板用遮蔽部52は、アルミニウム板10の幅方向の両側に形成されている。また、アルミニウム板用遮蔽部52は、内側に開口したまま上下方向に延在するスリット状に形成されており、かかるスリットは、アルミニウム板10の幅方向の両端部が差し込まれるアルミニウム板保持用のスリットである。 In the etching apparatus 100 of this embodiment, a plurality of plate portions 36 are formed in the etching tank 30 on both side walls 32 and 33 facing each other at a predetermined interval. An electrode shielding portion 51 is formed to block between the inner wall and the electrode 20. In this embodiment, the electrode shielding portions 51 are formed on both sides of the electrode 20 in the width direction. Further, the electrode shielding part 51 is formed in a slit shape extending in the vertical direction while being opened inside, and the slit is an electrode holding slit into which both end portions in the width direction of the electrode 20 are inserted. . Further, in the etching apparatus 100 of this embodiment, the etching tank 30 is formed with an aluminum plate shielding part 52 that closes between the inner wall of the etching tank 30 and the aluminum plate 10 by the plate part 36. In this embodiment, the aluminum plate shielding portions 52 are formed on both sides of the aluminum plate 10 in the width direction. Further, the aluminum plate shielding portion 52 is formed in a slit shape extending in the vertical direction while being opened inside, and the slit is used for holding an aluminum plate into which both end portions in the width direction of the aluminum plate 10 are inserted. It is a slit.
 このように構成したエッチング装置100において、電極用遮蔽部51に電極20を挿入し、アルミニウム板用遮蔽部52にアルミニウム板10を挿入すると、エッチング槽30には、電極20とアルミニウム板10とによって複数のエッチング室35(流路空間)が区画される。ここで、複数のエッチング室35に対しては、エッチング室35毎にエッチング液を供給する複数のエッチング液供給口55が設けられている。本形態において、複数のエッチング液供給口55は、エッチング槽30の壁面のうち、底壁34で開口している。従って、エッチング槽30の底部には、1枚のアルミニウム板10に対して、その両面側に位置する2つのエッチング室35(流路空間)の各々に向けて開口するエッチング液供給口55が設けられている。より具体的には、アルミニウム板10の一方面側のエッチング室35(流路空間)に向けてエッチング液を供給するエッチング液供給口55と、アルミニウム板10の他方面側のエッチング室35(流路空間)に向けてエッチング液を供給するエッチング液供給口55とが設けられている。 In the etching apparatus 100 configured as described above, when the electrode 20 is inserted into the electrode shielding portion 51 and the aluminum plate 10 is inserted into the aluminum plate shielding portion 52, the etching tank 30 includes the electrode 20 and the aluminum plate 10. A plurality of etching chambers 35 (channel spaces) are partitioned. Here, with respect to the plurality of etching chambers 35, a plurality of etching solution supply ports 55 for supplying an etching solution for each etching chamber 35 are provided. In the present embodiment, the plurality of etching solution supply ports 55 are opened at the bottom wall 34 among the wall surfaces of the etching tank 30. Accordingly, an etching solution supply port 55 that opens toward each of the two etching chambers 35 (channel spaces) located on both sides of the aluminum plate 10 is provided at the bottom of the etching tank 30. It has been. More specifically, an etchant supply port 55 for supplying an etchant toward the etching chamber 35 (flow path space) on one side of the aluminum plate 10 and an etching chamber 35 (flow) on the other side of the aluminum plate 10. An etchant supply port 55 for supplying an etchant toward the (road space) is provided.
 かかるエッチング槽30においてエッチング液供給口55が開口する底壁34に対して電極20が配置される側とは反対側、すなわち、底壁34の下方には、複数のエッチング液供給口55に連通するエッチング液供給路38が区画形成されている。エッチング液供給路38には複数枚の仕切り板53が設けられており、エッチング液供給路38は、この仕切り板53によって、エッチング室35に対して1対1で対応する個室381に区画されており、隣り合う個室381同士は独立して形成されている。このように、各個室381を仕切り板53によって完全に分離したことにより、複数のエッチング室35の間で電気的な影響を及ぼし合うことがより確実に防止されている。 In the etching tank 30, the etching solution supply ports 55 communicate with the plurality of etchant supply ports 55 on the side opposite to the side on which the electrode 20 is disposed with respect to the bottom wall 34 where the etchant supply ports 55 open. An etching solution supply path 38 is defined. The etchant supply path 38 is provided with a plurality of partition plates 53, and the etchant supply path 38 is partitioned into individual chambers 381 corresponding to the etch chamber 35 on a one-to-one basis by the partition plates 53. Adjacent private chambers 381 are formed independently. As described above, the individual chambers 381 are completely separated by the partition plate 53, so that electrical influences between the plurality of etching chambers 35 are more reliably prevented.
 エッチング槽30における側壁33の上端寄りの位置には、複数のオーバーフロー口61(エッチング液流出口)が形成されており、かかるオーバーフロー口61は、複数のエッチング室35の各々からエッチング液をオーバーフローさせる。エッチング槽30の側壁33の外面側には、オーバーフローしてきたエッチング液をオーバーフロー口61の下方位置において回収するための回収路39が構成されている。 A plurality of overflow ports 61 (etching solution outlets) are formed near the upper end of the side wall 33 in the etching tank 30, and the overflow ports 61 allow the etching solution to overflow from each of the plurality of etching chambers 35. . On the outer surface side of the sidewall 33 of the etching tank 30, a recovery path 39 for recovering the overflowing etching solution at a position below the overflow port 61 is configured.
 本形態のエッチング装置100は、オーバーフローしてきたエッチング液の一部を成分調整してエッチング槽に再供給するためのエッチング液循環装置62を備えている。エッチング液循環装置62は、回収路39の下方に設けられたオーバーフロー槽63と、オーバーフロー槽63の底部に接続された循環流路64と、循環流路64の下流部分と各個室381とを接続しているパイプ42を備えている。循環流路64の下流部分はエッチング液供給路38の各個室381の配列方向に沿って延びており、この部分に各パイプ42が接続されている。各パイプ42には、循環流路64から各個室381へのエッチング液の供給量を制御するための流量調整バルブ65(流量調整手段)が設けられている。 The etching apparatus 100 of this embodiment includes an etching liquid circulation device 62 for adjusting a component of a part of the overflowing etching liquid and re-supplying it to the etching tank. The etching liquid circulation device 62 connects an overflow tank 63 provided below the recovery path 39, a circulation flow path 64 connected to the bottom of the overflow tank 63, a downstream portion of the circulation flow path 64, and each individual chamber 381. A pipe 42 is provided. The downstream portion of the circulation flow path 64 extends along the arrangement direction of the individual chambers 381 of the etching solution supply path 38, and each pipe 42 is connected to this portion. Each pipe 42 is provided with a flow rate adjusting valve 65 (flow rate adjusting means) for controlling the amount of etching solution supplied from the circulation flow path 64 to each individual chamber 381.
 エッチング液循環装置62は、オーバーフロー槽63内のエッチング液の一部を抜き取るための配管66(流出手段)と、この配管66からの抜き取り量を調整するための定量抜きバルブ67(流出手段)とを備えている。また、外部から供給される成分調整用のエッチング液を循環流路64の上流部分に合流させるための配管68(流入手段)と、この配管68からのエッチング液の供給量を調整するための定量供給バルブ69(流入手段)とを備えている。エッチング液循環装置62は、流量調整バルブ65、定量抜きバルブ67、定量供給バルブ69の流量および開閉タイミングを制御可能に構成されている。例えば、配管66からの抜き取り量と配管68からの供給量が同一となるように制御し、エッチング槽30内の液量を一定に維持する。また、一定時間にオーバーフロー槽63に流入するエッチング液のうち、どれだけの量を抜き取って配管68からのエッチング液に置き換えるかを制御する。 The etching liquid circulation device 62 includes a pipe 66 (outflow means) for extracting a part of the etching liquid in the overflow tank 63, and a fixed amount extraction valve 67 (outflow means) for adjusting the amount of extraction from the pipe 66. It has. Further, a pipe 68 (inflow means) for joining the etching liquid for component adjustment supplied from the outside to the upstream portion of the circulation flow path 64 and a fixed amount for adjusting the supply amount of the etching liquid from the pipe 68. And a supply valve 69 (inflow means). The etchant circulation device 62 is configured to be able to control the flow rate and opening / closing timing of the flow rate adjusting valve 65, the fixed amount removal valve 67 and the fixed amount supply valve 69. For example, the amount of liquid extracted from the pipe 66 and the amount supplied from the pipe 68 are controlled to be the same, and the amount of liquid in the etching tank 30 is kept constant. Further, it controls how much of the etching solution flowing into the overflow tank 63 in a certain time is extracted and replaced with the etching solution from the pipe 68.
 かかるエッチング液循環装置62において、回収路39に流出したエッチング液は、オーバーフロー槽63に全量が流入した後、その一部が配管66を介して抜き取られ、抜き取り後の残量が、循環流路64において配管68から新たに流入するエッチング液と混合される。そして、混合後のエッチング液(以下、再生エッチング液という)は、各パイプ42を経由して各個室381へ供給される。各個室381に設けられたエッチング液供給口55は、アルミニウム板10の下端部を挟む両側近傍に開口している。このため、エッチング液供給口55からエッチング室35に供給されるエッチング液は、アルミニウム板10の表面に沿って下から上へ流動する。 In the etching solution circulation device 62, the entire amount of the etching solution that has flowed into the recovery passage 39 flows into the overflow tank 63, and then a part of the etching solution is withdrawn via the pipe 66. 64 is mixed with the etchant newly flowing from the pipe 68. Then, the mixed etching solution (hereinafter referred to as a regenerated etching solution) is supplied to each individual chamber 381 via each pipe 42. The etching solution supply ports 55 provided in the individual chambers 381 are open near both sides sandwiching the lower end portion of the aluminum plate 10. Therefore, the etching solution supplied from the etching solution supply port 55 to the etching chamber 35 flows from the bottom to the top along the surface of the aluminum plate 10.
(電解コンデンサ用アルミニウム電極板の製造方法)
 本形態において、アルミニウム板10は、例えば、電解質として、ポリピロール、ポリチオフェン、ポリアニリン等の機能性高分子が用いられるアルミニウム電解コンデンサの陽極(電解コンデンサ用アルミニウム電極板)を構成するのに用いられる。すなわち、アルミニウム板10は、エッチングされた後、その表面に陽極酸化皮膜が形成されて、アルミニウム固体電解コンデンサの陽極として用いられる。
(Method for producing aluminum electrode plate for electrolytic capacitor)
In this embodiment, the aluminum plate 10 is used, for example, to constitute an anode (an aluminum electrode plate for an electrolytic capacitor) of an aluminum electrolytic capacitor in which a functional polymer such as polypyrrole, polythiophene, or polyaniline is used as an electrolyte. That is, after the aluminum plate 10 is etched, an anodic oxide film is formed on the surface thereof, and the aluminum plate 10 is used as an anode of an aluminum solid electrolytic capacitor.
 本形態では、アルミニウム板10におけるアルミニウム純度を99.98質量%以上とする。このようにすると、アルミニウム板10の靭性が高く、電解コンデンサを製造する際の取り扱いが容易である。これに対し、アルミニウム純度が下限値未満であると、硬度が増して靭性が低下し、取り扱い中に割れ等の損傷が生じる虞があり、好ましくない。アルミニウム板10は、Al以外の元素(Fe、Si、Cu、Ga、V、Ni、Ti、Zrなど)の含有量を限定するものではないが、好ましくは、Fe50ppm以下、Cu40ppm以下、Si60ppm以下とするのがよい。また、アルミニウム板10の厚さは目的によって種々の厚さとすればよいが、例えば、150μm乃至1mm、通常は300~400μmのものが用いられる。 In this embodiment, the aluminum purity in the aluminum plate 10 is 99.98% by mass or more. If it does in this way, the toughness of the aluminum plate 10 will be high, and the handling at the time of manufacturing an electrolytic capacitor will be easy. On the other hand, if the aluminum purity is less than the lower limit, the hardness increases, the toughness decreases, and damage such as cracking may occur during handling, which is not preferable. The aluminum plate 10 does not limit the content of elements other than Al (Fe, Si, Cu, Ga, V, Ni, Ti, Zr, etc.), but preferably, Fe 50 ppm or less, Cu 40 ppm or less, Si 60 ppm or less. It is good to do. The aluminum plate 10 may have various thicknesses depending on the purpose. For example, a thickness of 150 μm to 1 mm, usually 300 to 400 μm is used.
 本形態では、当該アルミニウム板10に、一次電解処理として低濃度塩酸水溶液で交流エッチングを施す。なお、前処理として、アルミニウム板10に脱脂洗浄や軽度のエッチングを施すことにより、表面酸化膜を除去すると好ましい。一次電解処理は、上記のエッチング装置100を用いて行うことができる。 In this embodiment, the aluminum plate 10 is subjected to AC etching with a low concentration hydrochloric acid aqueous solution as a primary electrolytic treatment. As a pretreatment, it is preferable to remove the surface oxide film by performing degreasing cleaning or slight etching on the aluminum plate 10. The primary electrolytic treatment can be performed using the etching apparatus 100 described above.
 一次電解処理でエッチング液(電解液)として用いる低濃度塩酸水溶液には、例えば、1.5~2.4mol/lの塩酸と0.05~0.5mol/lの硫酸を含有する水溶液が用いられる。そして、液温度は40~55℃、周波数は10~25Hz、交流波形は正弦波形、矩形波形、交直重畳波形等、電流密度は40~50A/dm2、処理時間は30~60秒の条件でエッチング処理し、アルミニウム板10の表面に多数のピットを形成する。 For example, an aqueous solution containing 1.5 to 2.4 mol / l hydrochloric acid and 0.05 to 0.5 mol / l sulfuric acid is used as the low concentration hydrochloric acid aqueous solution used as an etching solution (electrolytic solution) in the primary electrolytic treatment. The liquid temperature is 40 to 55 ° C, the frequency is 10 to 25 Hz, the AC waveform is a sine waveform, rectangular waveform, AC / DC superimposed waveform, etc. The current density is 40 to 50 A / dm 2 , and the processing time is 30 to 60 seconds. Etching is performed to form a large number of pits on the surface of the aluminum plate 10.
 一次電解処理の後に、主電解処理を施すことにより、アルミニウム板10の両面に海綿状のピット集合体を形成する。本形態では、この主電解処理を、上記のエッチング装置100において、エッチング液循環装置62により各エッチング室35に再生エッチング液を供給しながら行う。すなわち、本形態では、本発明の製造方法を、主電解処理に適用している。 After the primary electrolytic treatment, the main electrolytic treatment is performed to form a spongy pit aggregate on both surfaces of the aluminum plate 10. In this embodiment, this main electrolytic treatment is performed in the etching apparatus 100 while supplying the regenerated etching solution to each etching chamber 35 by the etching solution circulation device 62. That is, in this embodiment, the manufacturing method of the present invention is applied to the main electrolytic treatment.
 主電解処理で用いるエッチング液(電解液)には、例えば、4~6mol/lの塩酸と0.05~0.5mol/lの硫酸を含有する水溶液が用いられる。そして、エッチング処理の条件を、例えば、液温度は一次電解処理よりも低い20~35℃、周波数は30~60Hz、交流波形は正弦波形、矩形波形、交直重畳波形等、電流密度は一次電解処理よりも低い20~30A/dm2、処理時間は所定のエッチング層厚さ(例えば、片面で70μm以上、両面の合計で140μm以上)までエッチングできる時間に設定する。 For example, an aqueous solution containing 4 to 6 mol / l hydrochloric acid and 0.05 to 0.5 mol / l sulfuric acid is used as the etching solution (electrolytic solution) used in the main electrolytic treatment. The etching conditions are, for example, 20 to 35 ° C., where the liquid temperature is lower than the primary electrolytic treatment, the frequency is 30 to 60 Hz, the AC waveform is a sine waveform, rectangular waveform, AC / DC superimposed waveform, etc., and the current density is the primary electrolytic treatment predetermined etching layer thickness (e.g., one side at 70μm or more, more 140μm in total of both sides) is 20 ~ 30A / dm 2, treatment time less than set to a time that can be etched away.
 更に、エッチング処理の条件として、各エッチング室35をアルミニウム板10の両面に沿って下から上へ流れるエッチング液の流速、および、各エッチング室35に供給する再生エッチング液のアルミニウムイオン濃度を設定する。アルミニウムイオン濃度は、12グラム/リットル以下を目標とすればよい。主電解処理においては、配管68から循環流路64に供給されるエッチング液を、エッチング槽30内のエッチング液よりもアルミニウムイオン濃度が低いもの、具体的には、アルミニウムイオンを実質的に含有していないエッチング液とし、あるいはまた、該液と、エッチング処理によってアルミニウムイオン濃度が高濃度化したエッチング液とを混合する。これにより、再生エッチング液のアルミニウムイオン濃度を、エッチング槽30内のエッチング液よりも低い濃度とすることが好ましい。具体的な濃度設定は、例えば、エッチング槽30内のアルミニウムイオン濃度を基準(100%)として、その何%の濃度とするかを設定する。 Further, as etching conditions, the flow rate of the etching solution flowing from the bottom to the top along each surface of the aluminum plate 10 and the aluminum ion concentration of the regenerated etching solution supplied to each etching chamber 35 are set. . The target of the aluminum ion concentration may be 12 grams / liter or less. In the main electrolytic treatment, the etching solution supplied from the pipe 68 to the circulation channel 64 has a lower aluminum ion concentration than the etching solution in the etching tank 30, specifically, substantially contains aluminum ions. Or an etching solution whose aluminum ion concentration is increased by an etching process. Thereby, it is preferable that the aluminum ion concentration of the regenerated etching solution is lower than the etching solution in the etching tank 30. The specific concentration is set, for example, by what percentage of the aluminum ion concentration in the etching bath 30 is the reference (100%).
 一方、流速は、0.002~0.015m/sの範囲内の値に設定するのが好ましいが、より好ましくは、0.004~0.010m/sとするのが良い。ここで、本形態における流速の定義は、各エッチング室35がアルミニウム板10と電極20との間に設けられた上下に延びる等断面形状の流路空間であるため、エッチング室35の断面積(流路面積)をS、各エッチング室35への再生エッチング液の単位時間当たりの供給量をQとしたとき、下記の式(1)により算出した値(v)になると考えることができる。供給量Qとしては、各流量調整バルブ65を流れる単位時間当たりの流量を用いることができる。
 v(m/s)=Q(m3/s)÷S(m2)・・・・式(1)
On the other hand, the flow velocity is preferably set to a value within the range of 0.002 to 0.015 m / s, and more preferably 0.004 to 0.010 m / s. Here, the definition of the flow velocity in this embodiment is that each etching chamber 35 is a channel space having an equal cross-sectional shape provided between the aluminum plate 10 and the electrode 20 and extending in the vertical direction. It can be considered that the value (v) calculated by the following equation (1) is assumed, where S is the channel area) and Q is the supply amount of the regenerated etching solution to each etching chamber 35 per unit time. As the supply amount Q, a flow rate per unit time flowing through each flow rate adjustment valve 65 can be used.
v (m / s) = Q (m 3 / s) ÷ S (m 2 )... (1)
 本形態では、上記のエッチング条件に従ってエッチング処理を行い、一次電解処理で穿孔したピットを更に穿孔する。なお、一次電解処理を行った後、主電解処理を行う前に、交直重畳波形を用いて一次電解処理で穿孔したピットを活性化させてから主電解処理に移行することにより、主電解処理を確実に進行させることができる。かかる処理では、例えば、デューティ比を約0.07~0.09とし、電流密度は12~17A/dm2の条件で60秒程度エッチング処理する。これにより、厚さ70μm以上のエッチング層を形成することが可能となる。 In this embodiment, the etching process is performed according to the above etching conditions, and the pits drilled by the primary electrolytic process are further drilled. After performing the primary electrolytic treatment and before performing the main electrolytic treatment, the main electrolytic treatment is performed by activating the pits drilled in the primary electrolytic treatment using the AC / DC superimposed waveform and then proceeding to the main electrolytic treatment. It is possible to proceed reliably. In this process, for example, the etching is performed for about 60 seconds under the condition that the duty ratio is about 0.07 to 0.09 and the current density is 12 to 17 A / dm 2 . Thereby, an etching layer having a thickness of 70 μm or more can be formed.
 主電解処理においては、上記のようなエッチング条件の設定により、ピット形成に寄与しない溶解を少なくして、海綿状のエッチング層を深くまで形成することができる。具体的には、1平方ミリメートルあたり数千~数十万の海綿状のピットを穿孔することができる。従って、本発明により製造された電解コンデンサ用アルミニウム電極板(エッチド板)は、エッチング倍率が高く、静電容量が高い電極板となる。 In the main electrolytic treatment, by setting the etching conditions as described above, it is possible to reduce the dissolution that does not contribute to pit formation and to form a spongy etching layer deeply. Specifically, several thousand to several hundreds of thousands of spongy pits can be drilled per square millimeter. Therefore, the aluminum electrode plate (etched plate) for an electrolytic capacitor manufactured according to the present invention is an electrode plate having a high etching magnification and a high capacitance.
 本願の発明者は、本願の製造方法におけるエッチング処理方法である交流エッチングについて、以下のように考察している。すなわち、交流エッチングにおいては、陽極時にアルミニウム板10のAlがAl3+となってエッチング液中に溶解拡散する。生成されたAl3+の一部は陰極時に(OH)一基と反応してAl(OH)3となりピット面に析出するが、残りの反応生成物は、その一部がエッチング液に拡散してピット外に排除され、一部はピット内のエッチング液中に残存する。この一連の繰り返しにより、Alの溶解しやすい起点の位置が移動しながらエッチングが進行し、アルミニウム板10が海綿状に深くエッチングされる。このとき、従来の交流エッチングでは、エッチング深さが深くなるに従って、アルミニウム板10がピット状に穿孔され難くなり、塩酸を含有するエッチング液やその他の影響により、エッチングされた部分のピット形状が崩れてくる。このため、更にエッチング処理を続けると、エッチング層の浅い部分でピット形状の崩壊が進み、静電容量が低下してしまう。 The inventor of the present application considers AC etching, which is an etching method in the manufacturing method of the present application, as follows. That is, in AC etching, Al on the aluminum plate 10 becomes Al 3+ during the anode and dissolves and diffuses into the etching solution. A part of the generated Al 3+ reacts with one (OH) group at the cathode to become Al (OH) 3 and precipitates on the pit surface, but a part of the remaining reaction product diffuses into the etching solution. Thus, it is removed outside the pit, and a part remains in the etching solution in the pit. By this series of repetitions, the etching progresses while the position of the starting point where Al is easily dissolved moves, and the aluminum plate 10 is deeply etched in a spongy manner. At this time, in the conventional AC etching, as the etching depth becomes deeper, the aluminum plate 10 becomes harder to be punched into pits, and the pit shape of the etched portion is destroyed due to an etching solution containing hydrochloric acid and other influences. Come. For this reason, if the etching process is further continued, the pit shape collapses at a shallow portion of the etching layer, and the electrostatic capacity is lowered.
 このような現象は、ピット内に反応生成物が堆積し、エッチング条件が徐々に変化するために発生するものと考えられる。そこで、本願の発明者は、以下のような考察に基づき、上記の主電解処理に用いたエッチング液の供給条件を設定している。すなわち、アルミニウム板10の表面に、エッチング槽30内のエッチング液よりもアルミニウムイオン濃度が低いエッチング液を供給すれば、ピット内外のアルミニウムイオンの濃度差により、ピット内のアルミニウムイオンがピット外のエッチング液側に排出されやすくなり、ピットの形成およびエッチングの進行を妨げるアルミニウムイオンが減少する。その結果、好ましい形状のピットが深くエッチングされ緻密に集合した海綿状のエッチング層を形成できるものと考えられる。具体的なエッチング液の供給方法としては、オーバーフローするエッチング液を一定量ずつ抜き取ってアルミニウムイオンを除去したエッチング液と混合することにより、エッチング処理によって高アルミニウムイオン濃度となったエッチング液をアルミニウムイオン濃度の低いエッチング液に再生し、これをエッチング槽30内に再供給する。 Such a phenomenon is considered to occur because reaction products accumulate in the pits and the etching conditions gradually change. Therefore, the inventor of the present application sets supply conditions for the etching solution used in the main electrolytic treatment based on the following considerations. That is, if an etching solution having a lower aluminum ion concentration than the etching solution in the etching tank 30 is supplied to the surface of the aluminum plate 10, the aluminum ions in the pits are etched outside the pits due to the concentration difference of the aluminum ions inside and outside the pits. Aluminum ions are easily discharged to the liquid side, and aluminum ions that hinder the formation of pits and the progress of etching are reduced. As a result, it is considered that a spongy etching layer in which pits having a preferable shape are deeply etched and densely gathered can be formed. As a specific method for supplying an etching solution, an etching solution that has a high aluminum ion concentration by etching treatment is obtained by extracting an overflowing etching solution by a certain amount and mixing it with an etching solution from which aluminum ions have been removed. The etching solution is regenerated to a low etching solution, and is supplied again into the etching bath 30.
 更に、ピット形成においては、エッチング層の表面に沿って流れるエッチング液の流速が影響すると考えられる。すなわち、エッチング槽30の底から供給したエッチング液を、アルミニウム板10の表面に沿って下から上へ流し、このときの流速を0.002~0.015m/sに保つようにすれば、ピット内のアルミニウムイオンがピット外に安定して移動し易くなると考えられる。エッチング液はアルミニウム板10の表面近傍では速度勾配によって流速が遅くなり、ピット内のアルミニウムイオンが拡散しにくくなる。具体的には、エッチング液の流速が0.002 m/s未満になると、ピットからのアルミニウムイオンの排出量が減少し、ピット形状の崩壊が進んでしまう。一方、流速が0.015m/sを超えると、アルミニウム板10の表面に沿って乱流が生じるため、アルミニウムイオンを安定してピットから排出できなくなる。加えて、乱流によってピット形状の崩壊が進んでしまう。このような検討から、好ましい流速の範囲を0.002~0.015m/sとしている。 Furthermore, it is considered that the flow rate of the etchant flowing along the surface of the etching layer affects the pit formation. That is, if the etching solution supplied from the bottom of the etching tank 30 is made to flow from the bottom to the top along the surface of the aluminum plate 10 and the flow velocity at this time is kept at 0.002 to 0.015 m / s, the aluminum in the pit It is considered that ions are likely to move stably outside the pit. In the vicinity of the surface of the aluminum plate 10, the etching solution has a low flow rate due to the velocity gradient, and the aluminum ions in the pits are difficult to diffuse. Specifically, when the flow rate of the etching solution is less than 0.002 m / s, the discharge amount of aluminum ions from the pits decreases, and the pit shape collapses. On the other hand, when the flow velocity exceeds 0.015 m / s, turbulent flow is generated along the surface of the aluminum plate 10, so that aluminum ions cannot be stably discharged from the pits. In addition, the pit shape collapses due to turbulence. From such examination, the preferable flow velocity range is set to 0.002 to 0.015 m / s.
 以上のように、本形態のエッチング装置100、および、このエッチング装置100を用いた電解コンデンサ用アルミニウム電極板の製造方法によれば、アルミニウム板10の表面のエッチング層において、ピット内のアルミニウムイオンがエッチング液の流動によってピット外に安定して移動して排除され易くなり、結果として、好ましいピット形状を崩すことなく、深くエッチングを行うことができる。また、アルミニウムイオン濃度が低い再生エッチング液によってピットの内外にアルミニウムイオンの濃度差が生じ、アルミニウムイオンがピット外に拡散され易くなる。これにより、アルミニウムイオンをピット内から効率よく除去することができ、エッチング液ならびに電解による有効なエッチングを促進できる。よって、CV積が大きく、投影単位面積当たりの静電容量の高いアルミニウム電解コンデンサ用電極板が得られる。また、これにより、大容量のコンデンサを実現でき、装置の小型化を達成できる。加えて、製造時の作業性がよく簡易に製造でき、気泡の除去作業や消泡作業なども不要であるため、製造装置や付帯設備が複雑化しない。その上、高い生産性でアルミニウム電解コンデンサ用電極板を製造できる。 As described above, according to the etching apparatus 100 of this embodiment and the method for manufacturing an aluminum electrode plate for an electrolytic capacitor using the etching apparatus 100, aluminum ions in the pits are formed in the etching layer on the surface of the aluminum plate 10. Due to the flow of the etching solution, it is easily moved out of the pits and easily removed, and as a result, deep etching can be performed without destroying the preferred pit shape. In addition, the reproduction etching solution having a low aluminum ion concentration causes a difference in aluminum ion concentration between the inside and outside of the pit, and the aluminum ion is easily diffused outside the pit. Thereby, aluminum ions can be efficiently removed from the pits, and effective etching by an etching solution and electrolysis can be promoted. Therefore, an electrode plate for an aluminum electrolytic capacitor having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and the product can be manufactured easily, and the bubble removing operation and the defoaming operation are unnecessary, the manufacturing apparatus and incidental facilities are not complicated. In addition, an electrode plate for an aluminum electrolytic capacitor can be manufactured with high productivity.
 また、本形態では、オーバーフローしたエッチング液の一部を再生エッチング液として再利用することができ、この際、オーバーフロー液の全量に対する抜き取り量および新たなエッチング液の混合量の比率を制御することにより、再生エッチング液を所望のアルミニウムイオン濃度とすることができる。更に、再生エッチング液をエッチング槽30の槽底から供給して、アルミニウム板に沿って下から上へエッチング液を流すことにより、流路空間全体に均等にエッチング液の流れを形成することにより、アルミニウム板の表面全体においてアルミニウムイオンをピット内から効率よく除去することができ、均一なエッチングを行うことができる。 Further, in this embodiment, a part of the overflowed etching solution can be reused as a regenerated etching solution, and at this time, by controlling the ratio of the extraction amount to the total amount of the overflow solution and the mixing amount of the new etching solution. The regenerated etching solution can have a desired aluminum ion concentration. Furthermore, by supplying a regenerated etching solution from the bottom of the etching bath 30 and flowing the etching solution from the bottom to the top along the aluminum plate, the flow of the etching solution is formed uniformly in the entire flow path space, Aluminum ions can be efficiently removed from the pits on the entire surface of the aluminum plate, and uniform etching can be performed.
(エッチング条件によるCV積の変化の確認)
 図2~4は各種のエッチング条件により製造したエッチング板のCV積のデータである。図2、4は実施例1のエッチング条件によるデータ、図3は実施例2のエッチング条件によるデータである。実施例1、2では、図1を参照して説明したエッチング方法およびエッチング装置100により、アルミニウム板10(厚さ0.35mm)をエッチングした後、アジピン酸アンモニウム水溶液中で陽極酸化を行ない、10Vの耐電圧を備えた酸化膜を形成したときのアジピン酸アンモニウム水溶液中での静電容量Cおよび皮膜耐電圧Vを測定し、CV積の値を求めた。
(Confirmation of change in CV product depending on etching conditions)
2 to 4 show CV product data of etched plates manufactured under various etching conditions. 2 and 4 are data based on the etching conditions of Example 1, and FIG. 3 is data based on the etching conditions of Example 2. In Examples 1 and 2, the aluminum plate 10 (thickness 0.35 mm) was etched by the etching method and the etching apparatus 100 described with reference to FIG. Capacitance C and film withstand voltage V in an aqueous solution of ammonium adipate when an oxide film having a withstand voltage was formed were measured, and the value of the CV product was determined.
(実施例1)
 実施例1では、エッチング室35に供給する再生エッチング液のアルミニウムイオン濃度割合を一定(エッチング槽30内のアルミニウムイオン濃度を100としたときに、その60%のアルミニウムイオン濃度)として、エッチング液の流速vおよびエッチング時間を変動させた場合のCV積を変化を検証した。実施例1では、図1記載の装置を用い、アルミニウム板のアルミニウム純度を99.98質量%以上とし、アルミニウム板の投影面積の合計500cm2、電解液量50リットル、初期のアルミニウムイオン濃度4グラム/リットルとした。エッチング槽30内からオーバーフローするエッチング液100部のうちの40部を抜き出し、その残量にアルミニウムイオンが実質的に添加されていないエッチング液40部を新たに混合した再生エッチング液を槽底から供給してエッチング処理を行った。エッチング液の流速v(供給量Q/流路断面積S)は、0.001~0.020m/sの範囲の各種の値とした。また、エッチング時間は、両面の合計で60μm、100μm、140μm、220μmの各厚さのエッチング層を形成する時間とした。結果を図2に示す。図2の横軸は流速(m/s)であり、縦軸はCV積の上昇率(%)である。実施例1のCV積の上昇率(%)は、流速を0.002m/sとした場合のCV積を100%として、この値に対する比率を示している。また、図2の4本のグラフは、4段階のエッチング時間(エッチング層の両面合計厚さ)に対応している。
Example 1
In Example 1, the aluminum ion concentration ratio of the regenerated etching solution supplied to the etching chamber 35 is constant (60% of the aluminum ion concentration when the aluminum ion concentration in the etching tank 30 is 100). The change in the CV product when the flow rate v and the etching time were varied was verified. In Example 1, using the apparatus shown in FIG. 1, the aluminum purity of the aluminum plate was 99.98% by mass or more, the total projected area of the aluminum plate was 500 cm 2 , the amount of electrolyte was 50 liters, and the initial aluminum ion concentration was 4 g / liter. It was. 40 parts of 100 parts of the etching liquid overflowing from the etching tank 30 are extracted, and a regenerated etching liquid obtained by newly mixing 40 parts of etching liquid in which aluminum ions are not substantially added to the remaining amount is supplied from the tank bottom. Then, an etching process was performed. The etching solution flow velocity v (supply amount Q / channel cross-sectional area S) was set to various values in the range of 0.001 to 0.020 m / s. The etching time was a time for forming an etching layer having a thickness of 60 μm, 100 μm, 140 μm, and 220 μm in total on both surfaces. The results are shown in FIG. The horizontal axis in FIG. 2 is the flow velocity (m / s), and the vertical axis is the rate of increase (%) in the CV product. The rate of increase (%) of the CV product in Example 1 indicates the ratio to this value, assuming that the CV product is 100% when the flow velocity is 0.002 m / s. Further, the four graphs in FIG. 2 correspond to four stages of etching time (total thickness of both surfaces of the etching layer).
 実施例1のエッチング条件でエッチングされたアルミニウム板のエッチング深さを顕微鏡で観察したところ、エッチング深さは、どの板も両面はほぼ同じ深さにエッチングされていた。図2の結果から、流速を増していくに従ってCV積が増加しており、CV積にピークが存在することが判る。従って、エッチング槽30内のエッチング液よりもアルミニウムイオン濃度の低いエッチング液を再生エッチング液として供給することが好ましいこと、および、再生エッチング液の流速を0.002~0.015m/sの範囲とすることが好ましいことが判る。すなわち、この条件において、高いCV積の値が得られている。 When the etching depth of the aluminum plate etched under the etching conditions of Example 1 was observed with a microscope, the etching depth of each plate was etched to substantially the same depth on both sides. From the results of FIG. 2, it can be seen that the CV product increases as the flow rate increases, and that there is a peak in the CV product. Therefore, it is preferable to supply an etching solution having a lower aluminum ion concentration than the etching solution in the etching tank 30 as a regenerating etching solution, and to set the flow rate of the regenerating etching solution in the range of 0.002 to 0.015 m / s. It turns out that it is preferable. That is, a high CV product value is obtained under this condition.
 図2に示すように、形成するエッチング層の厚さによってCV積の最大上昇率が異なっている。図4は、図2のデータに基づいてエッチング層の厚さとCV積の最大上昇率との関係を示したものであり、横軸はエッチング層の厚さ、縦軸はCV積の最大上昇率である。図4に示すように、エッチング層の両面合計厚さが120μm(片面で60μm)の近辺に変曲点がみられ、両面合計厚さを140μm(片面で70μm)以上とした場合に、CV積の上昇率が大きくなっている。 As shown in FIG. 2, the maximum rate of increase of the CV product varies depending on the thickness of the etching layer to be formed. FIG. 4 shows the relationship between the thickness of the etching layer and the maximum rate of increase of the CV product based on the data of FIG. 2, where the horizontal axis is the thickness of the etching layer and the vertical axis is the maximum rate of increase of the CV product. It is. As shown in FIG. 4, when the inflection point is observed in the vicinity of the total thickness of both sides of the etching layer being 120 μm (60 μm on one side) and the total thickness on both sides is 140 μm (70 μm on one side) or more, the CV product The rate of increase is increasing.
(実施例2)
 実施例2では、実施例1と同じ装置、同じ投影面積、液量、初期アルミニウムイオン濃度とした。エッチング室35におけるエッチング液の流速v(供給量Q/流路断面積S)を0.005m/sで一定とし、エッチング室35に供給する再生エッチング液のアルミニウムイオン濃度、および、エッチング時間を変動させた場合のCV積の変化を検証した。結果を図3に示す。図3の横軸は再生エッチング液のアルミニウムイオン濃度(エッチング槽30内のアルミニウムイオン濃度を100%とした場合の濃度割合)であり、縦軸はCV積の上昇率(%)であり、再生エッチング液のアルミニウムイオン濃度をエッチング槽30内と同一(100%)とした場合のCV積を100%として、この値に対する比率を示している。実施例2において、実施例1と同様の要領で、オーバーフローするエッチング液に対して、抜き出すエッチング液量および混合するエッチング液の液量を調整することにより、アルミニウムイオン濃度を変動させた。また、エッチング時間については、実施例1と同様に、エッチング層の両面合計厚さが60μm、100μm、140μm、220μmの各厚さとなる時間とした。
(Example 2)
In Example 2, the same apparatus, the same projected area, liquid amount, and initial aluminum ion concentration as in Example 1 were used. The flow rate v (supply amount Q / channel cross-sectional area S) of the etching solution in the etching chamber 35 is constant at 0.005 m / s, and the aluminum ion concentration of the regenerated etching solution supplied to the etching chamber 35 and the etching time are varied. The change in the CV product was verified. The results are shown in FIG. The horizontal axis of FIG. 3 is the aluminum ion concentration of the regenerated etching solution (concentration ratio when the aluminum ion concentration in the etching tank 30 is 100%), and the vertical axis is the rate of increase (%) of the CV product. When the aluminum ion concentration of the etching solution is the same (100%) as in the etching tank 30, the CV product is 100%, and the ratio to this value is shown. In Example 2, the aluminum ion concentration was varied by adjusting the amount of the etching solution to be extracted and the amount of the etching solution to be mixed with respect to the overflowing etching solution in the same manner as in Example 1. In addition, the etching time was set to the time when the total thickness of both surfaces of the etching layer was 60 μm, 100 μm, 140 μm, and 220 μm, as in Example 1.
 図3の結果から、再生エッチング液のアルミニウムイオン濃度が低い場合にCV積が増加していることが判る。また、エッチング層の両面合計厚さが140μmを超える場合に、CV積の上昇率がそれ以下の厚さのものと比べて大きいことが判る。また、図2ではエッチング層の両面合計厚さが140μmを超える場合にCV積が106%を超えたが、図3からは、両面合計厚さ140μmではアルミニウムイオン濃度を60%より薄くした場合にCV積が106%を超え、両面合計厚さ220μmでは、アルミニウムイオン濃度を70%より薄くした場合に106%を超えることが判る。 3 that the CV product is increased when the aluminum ion concentration in the regenerated etching solution is low. It can also be seen that when the total thickness of both surfaces of the etching layer exceeds 140 μm, the rate of increase of the CV product is larger than that of the thickness less than that. In FIG. 2, when the total thickness of both surfaces of the etching layer exceeds 140 μm, the CV product exceeded 106%, but from FIG. 3, when the total thickness of both surfaces is 140 μm, the aluminum ion concentration is less than 60%. It can be seen that when the CV product exceeds 106% and the total thickness of both surfaces is 220 μm, it exceeds 106% when the aluminum ion concentration is made thinner than 70%.
(画像解析によるエッチング状態の確認)
 図5、6はエッチング板におけるピットの画像解析写真およびエッチングピットの輪郭線を示した説明図であり、図5は本形態のエッチング条件(再生エッチング液のアルミニウムイオン濃度割合30%、流速0.005m/s、エッチング層両面合計厚さ220μm)によりエッチング処理を行ったエッチング板、図6は比較例のエッチング条件(再生エッチング液のアルミニウムイオン濃度割合100%、流速0.005m/s、エッチング層両面合計厚さ220μm)によりエッチング処理を行ったエッチング板である。
(Checking the etching state by image analysis)
FIGS. 5 and 6 are explanatory diagrams showing image analysis photographs of the pits on the etching plate and the contour lines of the etching pits, and FIG. / s, etching plate etched at a thickness of 220 μm on both sides of the etching layer, FIG. 6 shows the etching conditions of the comparative example (reproduction etching solution aluminum ion concentration ratio 100%, flow rate 0.005 m / s, etching layer on both sides) This is an etching plate subjected to an etching treatment with a thickness of 220 μm.
 図5(a)はエッチング板表面の安定していない層を表面から20μmの深さまで削除した面の画像解析写真であり、図5(b)は表面から50μmの深さまで削除した面の画像解析写真、図5(c)は表面から100μmの深さまで削除した面の画像解析写真である。また、図6(a)~(c)も同様に、表面から20μm、50μm、100μmの各深さまで削除した面の画像解析写真である。各写真において、黒い点状の箇所がエッチングピットを表し、灰色箇所が未エッチング部分を表す。図5(d)~(f)は、図5(a)~(c)を画像処理してエッチングピットの輪郭線の抽出を試みたものである。同様に、図6(d)~(f)は、図6(a)~(c)を画像処理してエッチングピットの輪郭線の抽出を試みたものである。 FIG. 5A is an image analysis photograph of a surface where an unstable layer on the etching plate surface is deleted to a depth of 20 μm from the surface, and FIG. 5B is an image analysis of a surface where the surface is deleted to a depth of 50 μm from the surface. The photograph, FIG. 5C, is an image analysis photograph of the surface removed from the surface to a depth of 100 μm. Similarly, FIGS. 6A to 6C are image analysis photographs of the surfaces deleted from the surface to respective depths of 20 μm, 50 μm, and 100 μm. In each photograph, a black dot-like portion represents an etching pit, and a gray portion represents an unetched portion. FIGS. 5D to 5F show the image processing of FIGS. 5A to 5C to try to extract the contour lines of the etching pits. Similarly, FIGS. 6D to 6F are obtained by trying to extract the outline of the etching pit by performing image processing on FIGS. 6A to 6C.
 図5(a)~(f)から、本形態のエッチング条件では、表面から20μm、50μm、100μmの各位置において、エッチングのされ方はほぼ同等と判断でき、深くエッチングできていることが判る。好ましいエッチング状態が得られたために、実施例1、2ではCV積の上昇率が高くなったものと考察できる。 5 (a) to 5 (f), it can be seen that, under the etching conditions of this embodiment, the etching is almost the same at each position of 20 μm, 50 μm, and 100 μm from the surface, and deep etching is possible. Since a preferable etching state was obtained, it can be considered that in Examples 1 and 2, the increase rate of the CV product was increased.
 一方、図6(a)~(f)から、比較例では全体にエッチング状態が悪く、しかも、表層から50μmの位置と表層から100μmの位置におけるエッチング状態を比較したとき、表層から100μmのエッチング状態はエッチングのされている部分が少ない。つまり、エッチング時間を長く取って無作為に深くエッチングしても、良好なエッチングピット形状に進行しないことが判る。 On the other hand, as shown in FIGS. 6A to 6F, in the comparative example, the etching state is poor overall, and when the etching state at the position of 50 μm from the surface layer is compared with the etching state at the position of 100 μm from the surface layer, the etching state from the surface layer is 100 μm. There are few etched parts. That is, it can be seen that even if the etching time is long and the etching is randomly performed deeply, it does not progress to a good etching pit shape.
 本発明によれば、アルミニウム板10の表面に、好ましいピット形状を崩すことなく、深くエッチングを行うことができる。よって、エッチング層を厚く形成した場合においても、CV積が大きく、投影単位面積当たりの静電容量の高いアルミニウム電解コンデンサ用電極板が得られる。また、これにより、大容量のコンデンサを実現でき、装置の小型化を達成できる。加えて、製造時の作業性がよく簡易に製造でき、気泡の除去作業や消泡作業なども不要であるため、製造装置や付帯設備が複雑化しないという効果も得られる。 According to the present invention, it is possible to perform deep etching on the surface of the aluminum plate 10 without breaking a preferable pit shape. Therefore, even when the etching layer is formed thick, an aluminum electrolytic capacitor electrode plate having a large CV product and a high capacitance per projected unit area can be obtained. In addition, this makes it possible to realize a large-capacitance capacitor and achieve downsizing of the device. In addition, since the workability at the time of manufacture is good and can be easily manufactured, and the operation of removing bubbles and the operation of defoaming are unnecessary, an effect that the manufacturing apparatus and incidental facilities are not complicated can be obtained.
10  アルミニウム板
20  電極
30  エッチング槽
32  側壁
33  側壁
34  底壁
35  エッチング室(流路空間)
36  板部
38  エッチング液供給路
381 個室
39  回収路
40  エッチング液
42  パイプ
51  電極用遮蔽部
52  アルミニウム板用遮蔽部
53  仕切り板
55  エッチング液供給口
61  オーバーフロー口(エッチング液流出口)
62  エッチング液循環装置
63  オーバーフロー槽
64  循環流路
65  流量調整バルブ(流量調整手段)
66  配管(流出手段)
67  定量抜きバルブ(流出手段)
68  配管(流入手段)
69  定量供給バルブ(流入手段)
80  電源装置
100 エッチング装置(製造装置)
10 Aluminum plate 20 Electrode 30 Etching tank 32 Side wall 33 Side wall 34 Bottom wall 35 Etching chamber (channel space)
36 Plate portion 38 Etching solution supply path 381 Private chamber 39 Recovery route 40 Etching solution 42 Pipe 51 Electrode shielding portion 52 Aluminum plate shielding portion 53 Partition plate 55 Etching solution supply port 61 Overflow port (etching solution outlet)
62 Etching solution circulating device 63 Overflow tank 64 Circulating flow path 65 Flow rate adjusting valve (flow rate adjusting means)
66 Piping (outflow means)
67 Metering valve (outflow means)
68 Piping (inflow means)
69 Constant supply valve (inflow means)
80 Power supply device 100 Etching device (manufacturing device)

Claims (4)

  1.  有底壁のエッチング槽内に貯留されたエッチング液中に1または複数の電極および当該電極の少なくとも1の面と対向する1または複数のアルミニウム板を配置して交流エッチングをバッチ式で行うにあたって、
     前記電極と前記アルミニウム板とに挟まれた流路空間に対して、当該流路空間の下方から上方に向けて前記エッチング液よりアルミニウムイオン濃度が低いエッチング液を、下式の条件
       0.002 m/s≦流速v≦0.015m/s
       v=Q÷S
        v:流速
        S:前記流路空間の断面積
        Q:前記流路空間への単位時間当たりのエッチング液供給量
    で供給し、前記アルミニウム板に片面当たり70μm以上の深さのエッチング層を形成することを特徴とする電解コンデンサ用アルミニウム電極板の製造方法。
    In performing AC etching in a batch manner by arranging one or more electrodes and one or more aluminum plates facing at least one surface of the electrodes in an etching solution stored in an etching tank of a bottomed wall,
    With respect to the channel space sandwiched between the electrode and the aluminum plate, an etchant having an aluminum ion concentration lower than the etchant from the lower side to the upper side of the channel space is expressed by the following condition 0.002 m / s ≤ Flow velocity v ≤ 0.015m / s
    v = Q ÷ S
    v: Flow velocity S: Cross-sectional area of the channel space Q: Supply an etching solution to the channel space at a unit time per unit time, and form an etching layer with a depth of 70 μm or more per side on the aluminum plate. The manufacturing method of the aluminum electrode plate for electrolytic capacitors characterized by these.
  2.  前記流速vを以下の条件
       0.004 m/s≦流速v≦0.010m/s
    に設定することを特徴とする請求項1に記載の電解コンデンサ用アルミニウム電極板の製造方法。
    The flow velocity v is as follows: 0.004 m / s ≦ flow velocity v ≦ 0.010 m / s
    The manufacturing method of the aluminum electrode plate for electrolytic capacitors of Claim 1 characterized by the above-mentioned.
  3.  前記流路空間に供給される前記エッチング液は、前記エッチング槽からオーバーフローしたエッチング液と、当該エッチング液よりもアルミニウムイオン濃度が低いエッチング液とを混合したものであることを特徴とする請求項1に記載の電解コンデンサ用アルミニウム電極板の製造方法。 2. The etching solution supplied to the flow path space is a mixture of an etching solution overflowing from the etching tank and an etching solution having a lower aluminum ion concentration than the etching solution. The manufacturing method of the aluminum electrode plate for electrolytic capacitors as described in any one of.
  4.  前記エッチング槽の底壁部には、前記アルミニウム板と前記電極に挟まれる前記流路空間に向けて前記エッチング液を供給するエッチング液供給口が設けられていることを特徴とする請求項1乃至3の何れか一項に記載の電解コンデンサ用アルミニウム電極板の製造方法。 The etching solution supply port for supplying the etching solution toward the channel space sandwiched between the aluminum plate and the electrode is provided in a bottom wall portion of the etching tank. 4. The method for producing an aluminum electrode plate for electrolytic capacitors according to any one of 3.
PCT/JP2010/001967 2010-03-18 2010-03-18 Process for production of aluminum electrode plate for electrolytic capacitor WO2011114380A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/001967 WO2011114380A1 (en) 2010-03-18 2010-03-18 Process for production of aluminum electrode plate for electrolytic capacitor
JP2012505312A JP5532122B2 (en) 2010-03-18 2010-03-18 Method for producing aluminum electrode plate for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001967 WO2011114380A1 (en) 2010-03-18 2010-03-18 Process for production of aluminum electrode plate for electrolytic capacitor

Publications (1)

Publication Number Publication Date
WO2011114380A1 true WO2011114380A1 (en) 2011-09-22

Family

ID=44648518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001967 WO2011114380A1 (en) 2010-03-18 2010-03-18 Process for production of aluminum electrode plate for electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP5532122B2 (en)
WO (1) WO2011114380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038430A1 (en) * 2016-08-23 2018-03-01 주식회사 포스코 Vertical electrolytic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518132A (en) * 1974-07-10 1976-01-22 Hitachi Denkaihaku Kenkyusho K Aruminiumuno koryuetsuchinguho
JPS57192300A (en) * 1981-05-22 1982-11-26 Mitsubishi Chem Ind Ltd Electrolytic etching method of aluminum sheet for printing plate
JPS60163425A (en) * 1984-02-03 1985-08-26 昭和アルミニウム株式会社 Method of etching aluminum foil for electrolytic condenser electrode
JPS61244014A (en) * 1985-04-22 1986-10-30 松下電器産業株式会社 Manufacture of electrode foil for aluminum electrolytic capacitor
JPH01200992A (en) * 1988-02-05 1989-08-14 Fuji Photo Film Co Ltd Surface treatment method for aluminum form plate
JP2003086468A (en) * 2000-11-29 2003-03-20 Matsushita Electric Ind Co Ltd Method for manufacturing electrode foil for aluminum electrolytic capacitor, and dc power supply device used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518132A (en) * 1974-07-10 1976-01-22 Hitachi Denkaihaku Kenkyusho K Aruminiumuno koryuetsuchinguho
JPS57192300A (en) * 1981-05-22 1982-11-26 Mitsubishi Chem Ind Ltd Electrolytic etching method of aluminum sheet for printing plate
JPS60163425A (en) * 1984-02-03 1985-08-26 昭和アルミニウム株式会社 Method of etching aluminum foil for electrolytic condenser electrode
JPS61244014A (en) * 1985-04-22 1986-10-30 松下電器産業株式会社 Manufacture of electrode foil for aluminum electrolytic capacitor
JPH01200992A (en) * 1988-02-05 1989-08-14 Fuji Photo Film Co Ltd Surface treatment method for aluminum form plate
JP2003086468A (en) * 2000-11-29 2003-03-20 Matsushita Electric Ind Co Ltd Method for manufacturing electrode foil for aluminum electrolytic capacitor, and dc power supply device used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038430A1 (en) * 2016-08-23 2018-03-01 주식회사 포스코 Vertical electrolytic device

Also Published As

Publication number Publication date
JPWO2011114380A1 (en) 2013-06-27
JP5532122B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN101962792B (en) Method for preparing pore diameter controllable through hole anodized aluminum oxide film
CN110085455B (en) Method for increasing specific volume of low-pressure corrosion aluminum foil
US20190112728A1 (en) Plating apparatus and plating method
JP7150769B2 (en) Electrolysis apparatus and electrolysis method
CN103695972A (en) Method for anisotropic plating and thin-film coil
JP5532122B2 (en) Method for producing aluminum electrode plate for electrolytic capacitor
KR100972998B1 (en) Electrolytic recycling device
JP2010065263A (en) Method for electrolytically refining copper
JP3301341B2 (en) Surface roughening equipment
US10886290B2 (en) Etching of silicon nitride and silica deposition control in 3D NAND structures
KR20140035571A (en) Apparatus to plate substrate
JP2009004409A (en) Apparatus and method for manufacturing etching foil for electrolytic capacitor
EP0579910B1 (en) Device for the electrolytic treatment of liquids in anodic and cathodic compartments
JP2005223180A (en) Method and apparatus for manufacturing electrode foil for aluminum electrolytic capacitor
JP4470741B2 (en) Electrolytic capacitor electrode foil manufacturing equipment
JP2018168406A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP2009105242A (en) Method of manufacturing electrode foil for electrolytic capacitor
WO2010131290A1 (en) Manufacturing method for an aluminum electrode plate for electrolytic capacitor and manufacturing apparatus therefor
JP7002494B2 (en) Electrolyzer and electrolysis method
JP5398696B2 (en) Wet etching equipment
JP2018168405A (en) Apparatus for electrolysis, and method for electrolysis using the same
JP6962960B2 (en) Electrolyzer and electrolysis method
US1006330A (en) Obtaining zinc and/or copper from complex ores or the like.
KR20180100768A (en) Copper recovery system
CN106098380A (en) The hole shape control method of high-voltage anode foil secondary chambering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505312

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847801

Country of ref document: EP

Kind code of ref document: A1