WO2011111907A1 - 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치 - Google Patents

단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치 Download PDF

Info

Publication number
WO2011111907A1
WO2011111907A1 PCT/KR2010/005072 KR2010005072W WO2011111907A1 WO 2011111907 A1 WO2011111907 A1 WO 2011111907A1 KR 2010005072 W KR2010005072 W KR 2010005072W WO 2011111907 A1 WO2011111907 A1 WO 2011111907A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
support
single crystal
silicon ingot
crystal silicon
Prior art date
Application number
PCT/KR2010/005072
Other languages
English (en)
French (fr)
Inventor
이종구
Original Assignee
퀄리플로나라테크(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄리플로나라테크(주) filed Critical 퀄리플로나라테크(주)
Publication of WO2011111907A1 publication Critical patent/WO2011111907A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • the present invention relates to a single crystal silicon ingot growth system, and more particularly, a magnet vertical transfer apparatus for a single crystal silicon ingot growth system, which enables to lift as needed the magnet adopted for applying a horizontal magnetic field to the single crystal silicon ingot growth system. It is about.
  • Silicon wafers used as substrates in the manufacture of semiconductor devices generally produce high-purity polycrystalline silicon ingots, and then grow single crystals from polycrystalline silicon through Czochralski crystal growth methods to produce single crystal silicon ingots. Then, it is made by cutting it thinly.
  • the above Czochralski crystal growth method for producing a single crystal silicon ingot includes heating a polycrystalline silicon in a quartz crucible to a melting point of 1414 ° C. using a heater. During crystal growth, the quartz crucible is rotated to keep the temperature constant regardless of the site. When the temperature of the molten silicon is stabilized, the arm or cable with silicon seed crystal is slowly lowered to reach the surface of the molten silicon, which is then used to grow larger crystals. It becomes the starting material. Then, when the lower part of the seed crystal starts to melt in the molten silicon and stabilizes, the arm or cable to which the seed crystal is attached is raised in an upward motion.
  • the molten silicon attached to the seed crystal solidifies and has the same crystal structure as the seed crystal.
  • Arms or cables continue to move upward to grow larger crystals, which continue until a certain amount of silicon remains in the quartz crucible. In this process, if the rotation speed of the quartz crucible and the seed crystal and the temperature of the quartz crucible are properly adjusted, a single crystal having a uniform diameter can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing an example of a single crystal silicon ingot growth system according to the prior art.
  • the biggest feature of the Czochralski crystal growth method is that the magnet is installed around the main chamber where crystal growth takes place as a means of improving the quality of the single crystal silicon ingot and a horizontal magnetic field is applied to the molten silicon inside the main chamber during the crystal growth. Is that.
  • the single crystal silicon ingot growth system according to the prior art, the main chamber 10, the crucible 20, the heater 30, the insulating wall 40, the cable 50, and And a magnet 70.
  • the main chamber 10 is formed in a hollow shape, the upper end is provided with an outlet 12 which is a passage through which the single crystal silicon ingot is discharged, and the exhaust duct 13 is provided at the lower end.
  • the crucible 20 is disposed inside the main chamber 10, and contains a silicon melt for growing single crystal silicon ingots therein.
  • a crucible 20 is mounted on the rotating shaft 60, and rotates together with the rotating shaft 60.
  • the heater 30 is for heating the crucible 20 to melt polycrystalline silicon and for heating the molten silicon melt.
  • the heater 30 is formed in a hollow cylindrical shape and is arranged to surround the crucible 20.
  • the thermal insulation wall 40 is to prevent the heat emitted from the heater 30 from spreading toward the inner wall of the main chamber 10 to improve thermal efficiency, and to protect the inner wall of the main chamber 10 from high temperature radiant heat.
  • Is also formed in a hollow cylindrical shape is arranged to surround the circumference of the heater (30).
  • the cable 50 is installed to pass through the outlet 12 of the main chamber 10, and is connected to a driving means (not shown) to rotate and lift.
  • a driving means not shown
  • the seed crystals 51 which are brought into contact with the silicon melt in the crucible 20 and grow with the cable 50, grow into a single crystal silicon ingot while being rotated and raised.
  • the magnet 70 is for applying a magnetic field to the silicon melt and is disposed to surround the outer circumferential surface of the main chamber 10, and is installed to be elevated. That is, while the polycrystalline silicon is melted in the crucible inside the main chamber and the crystal growth is in progress, the magnet 70 is placed in an elevated state located around the main chamber, and the polycrystalline silicon is introduced into the crucible inside the main chamber or the crystal growth is performed. During the work to be performed in the open state of the main chamber, such as taking out the finished single crystal silicon ingot from the crucible, the magnet 70 can be placed in the lowered state located below the main chamber for the convenience of the work.
  • Such a magnet 70 has a weight of 10 tons or more in general, and for lifting a magnet, which is such a heavy weight, a magnet vertical transfer device 80 is usually included in a single crystal silicon ingot growth system.
  • the magnet vertical transfer device 80 includes a plurality of screws 81 and a plurality of nuts 83.
  • the plurality of screws 81 are vertically disposed to be adjacent to the outer circumferential surface of the magnet 70 at regular angular intervals.
  • the plurality of screws 81 are driven by one drive motor (not shown), and rotates at the same rotational speed in conjunction with the rotation of the drive motor.
  • the nut 83 is assembled to interlock with the screw 81 in a state of being integrally coupled with the magnet 70 through the bracket 87, and thus the magnet (elevating) along the screw 81 when the screw 81 rotates. 70) can be elevated.
  • such a magnet vertical transfer device 80 is a structure in which several screws are operated by a single drive motor, so that the components necessary to transfer the power of the drive motor to the screws and ultimately elevate the magnet are provided.
  • the number of components, the connection between these components is inevitably complicated, and the installation space is increased as a space layout design is required to prevent spatial interference with other peripheral components of other single crystal silicon ingot growth systems. there was.
  • the present invention can implement the function of elevating the magnet, while the number of parts required for elevating and simplifying the connection relationship between the components, not only reduces the installation space, but also reduces the overall weight of the device and the single crystal that enables cost reduction It is an object to provide a magnet vertical transfer device for a silicon ingot growth system.
  • the present invention for realizing this,
  • a magnet vertical transfer device for a single crystal silicon ingot growth system for elevating a cylindrical magnet arranged concentrically around the main chamber.
  • a plurality of double-actuated cylinders, each vertically installed at radial positions of the same distance from the central axis of the main chamber, are arranged at regular intervals in the circumferential direction;
  • an annular mark net lifting plate coupled to an upper portion of the plurality of support bundles while being placed concentrically with the central axis.
  • a plurality of support pillars installed around the mark net lifting plate and having guide rods installed vertically at positions facing the mark net lifting plate, respectively, wherein the support bundles are based on the central axis. It is installed to protrude radially outward, characterized in that it comprises a guide roller for rotating around a horizontal axis of rotation parallel to the normal direction in a state constrained by the guide rod.
  • it characterized in that it further comprises two or more support beams coupled to connect the adjacent support pillar.
  • the support is provided with a receiving groove of a predetermined diameter in the lower portion, having a rod receiving portion which is opened downward to partially receive the end of the rod and formed of a larger diameter than the rod through the rod through the fastening member
  • a rod coupling block coupled to the rod and partially arranged to be inserted into the receiving groove, and a rod through hole formed to penetrate the rod in a central portion thereof, and a rod coupling hole formed to partially accommodate the lower side of the rod coupling block; It is provided with a neck portion is characterized in that coupled to the double-acting cylinder through a fastening block coupled to the support bundle via a fastening member.
  • the inner diameter of the receiving groove and the enlarged diameter portion is larger than the outer diameter of the rod coupling block, the inner diameter of the rod through hole is formed larger than the outer diameter of the rod, when the coupling block and the support bundle, It is characterized in that the horizontal position of the support bundle relative to the movable cylinder can be adjusted.
  • the present invention can implement a function to stably lift and lift a heavy magnet without eccentricity with a configuration using fewer parts and a simplified connection relationship between the parts. Therefore, not only the installation space is reduced, but also the effect of enabling the overall weight reduction and cost reduction of the apparatus can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing an example of a single crystal silicon ingot growth system according to the prior art.
  • FIG. 2 is a front view schematically showing a single crystal silicon ingot growth system to which a marknet vertical transfer device is applied according to an embodiment of the present invention
  • FIG. 3 is a front view of the mark net vertical transfer apparatus according to an embodiment of the present invention.
  • FIG. 4 is a plan view of the mark net vertical conveying apparatus according to an embodiment of the present invention.
  • FIG. 5 is an enlarged partial plan view of a portion B of FIG. 4;
  • FIG. 6 is a cross-sectional view showing the internal structure of a portion A of FIG.
  • Marknet vertical transfer device comprising a main chamber 100, the growth of a single crystal silicon ingot is installed on the chamber support frame 110 above Applied to the single crystal silicon ingot growth system, and serves to elevate the cylindrical magnet 150 arranged concentrically around the main chamber 100, each of the same distance from the central axis (X) of the main chamber 100 Are installed perpendicular to the radial position of the four double-acting cylinder 120 and are arranged at regular intervals from each other in the circumferential direction, the double-acting cylinder 120 is coupled to each of the double-acting cylinder 120 is provided Four support bundles 140 lifting up and down with the rod 125, and the annular mark coupled to the upper portion of the four support bundles 140 in a state concentric with the central axis of the main chamber 100 Net lifting plate 160 is included.
  • the mark net lifting plate 160 is provided to provide a space for the magnet 160 is formed in a cylindrical shape on the top, the lifting of the mark
  • the mark net vertical transfer apparatus is installed around the mark net lifting plate 160, respectively toward the mark net lifting plate 160 It includes four support pillars 180 having guide rods 175 installed vertically in position.
  • the support bundle 140 has a guide roller 135 that interacts with the guide rod 175.
  • the guide roller 135 is installed so as to protrude radially outward with respect to the central axis in each of the support bundle 140 is installed so as to rotate around a horizontal rotation axis parallel to the normal direction It is formed to have a guide groove 133 that can accommodate the guide rod 175. Therefore, the guide groove 133 is in contact with the surface of the guide rod 175 to interact with the guide rod 175 to enable a stable guide to prevent the eccentricity in the lifting process of the magnet lifting plate 160.
  • the mark net vertical conveying apparatus also includes two support beams 190 which are coupled to laterally connect two adjacent support pillars 180 laterally. do.
  • the support beam 190 serves to support and support the support pillar 180 to allow stable lifting while preventing the eccentricity of the magnet 150 due to its own weight in the process of lifting the magnet 150 which is a weight of 10 tons or more.
  • a greater number of supports 190 may be included.
  • the support bundle 140 is coupled to the upper end of the double-acting cylinder 120, the rod coupling block 145 and the fastening block for coupling with the double-acting cylinder 120 155 is used. And, the support bundle 140 is provided with a receiving groove 137 of a predetermined diameter in the lower portion to enable the coupling with the rod coupling block 145.
  • the rod coupling block 145 is provided with a rod receiving portion 143 opened downward to partially receive the end of the rod 125 of the double-acting cylinder 120 and is larger than the rod 125. It is formed to a diameter is coupled to the rod 125 through a fastening member, such as bolt 147, and is disposed so that the upper side is partially inserted into the receiving groove 137 of the support bundle 140.
  • the fastening block 155 is an enlarged diameter portion 157 formed to partially accommodate the lower portion of the rod through hole 153 and the rod coupling block 145 to allow the rod 125 to penetrate the center thereof.
  • a fastening member such as a bolt 159.
  • the inner diameter of the receiving groove 137 of the support bundle 140 and the enlarged diameter portion 157 of the fastening block 155 is formed larger than the outer diameter of the rod coupling block 145
  • the inner diameter of the rod through hole 153 is a rod It is preferable to form larger than the outer diameter of 125. This is to enable the horizontal relative position adjustment of the support bundle 140 with respect to the double-acting cylinder 120 when the fastening block 155 and the support bundle 140 are coupled.
  • the support bundle for the double-acting cylinder 120 in a state in which the rod coupling block 145 is coupled to the end of the rod 125 (
  • the fastening block 155 is coupled to the support bundle 140 with the bolts 159
  • the bottom surface and the rod of the receiving groove 137 of the support bundle 140 are in contact with each other.
  • the support bundle 140 is moved in the horizontal direction. The relative position fluctuation is limited and is placed in a stable coupling state with the double-acting cylinder 120.
  • the magnet lifting plate 160 is lifted by the double acting cylinder 120 while the magnet 150 is placed on the mark lifting plate 160.
  • the magnet 150 is located around the main chamber 100, to remove the grown single crystal silicon ingot from the main chamber 100 or to inject the polycrystalline silicon into the main chamber 100 for growth During operation, the magnet 150 is operated by the double acting cylinder 120 to lower the magnet lifting plate 160 so that the magnet 150 is positioned around the chamber support frame 110.
  • the lifting and lowering of the magnet by the mark vertical transfer device is performed by a simple method of operating only the double-acting cylinder 120 provided, and in this process, the guide rod is basically installed on the support pillar 180.
  • the guide rod is basically installed on the support pillar 180.
  • the beam 190 is provided, it is possible to effectively prevent the magnet 150 of the upper portion of the magnet lifting plate 160 from being eccentric even if excessive eccentric load is applied during operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치에 관한 것으로서, 챔버 지지 프레임 상부에 설치된 단결정 실리콘 잉곳의 성장이 일어나는 메인 챔버를 포함하는 단결정 실리콘 잉곳 성장 시스템에서, 상기 메인 챔버 둘레에 동심으로 배치되는 원통형의 마그네트를 승강시키는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치에 있어서: 각각 상기 메인 챔버의 중심축으로부터 동일한 거리의 반경 방향 위치에 수직으로 설치되되, 원주방향으로 서로 일정한 간격으로 배치되는 다수의 복동식 실린더; 상기 복동식 실린더와 각각 결합되어 상기 복동식 실린더 각각에 구비되는 로드와 함께 승강하는 다수의 지지뭉치; 및 상기 중심축과 동심으로 놓인 상태에서 상기 다수의 지지뭉치의 상부에 결합되는 환형의 마크네트 승강판;을 포함하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치를 제공함으로써, 이상과 같은 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치를 제공함으로써, 적은 부품을 사용하고 부품들 간의 연결관계가 단순화된 구성으로, 중량물인 마그네트를 편심없이 안정적으로 승강시키는 기능을 구현할 수 있으며, 따라서 설치공간이 감소할 뿐만 아니라, 장치의 전체 무게 감소와 원가절감을 가능하게 하는 효과를 얻을 수 있도록 한다.

Description

단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치
본 발명은 단결정 실리콘 잉곳 성장 시스템에 관한 것으로서, 보다 상세하게는 단결정 실리콘 잉곳 성장 시스템에 수평자기장을 인가하기 위해 채택되는 마그네트를 필요에 따라 승강시킬 수 있도록 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치에 관한 것이다.
반도체 소자의 제조시에 기판으로 사용되는 실리콘 웨이퍼는 일반적으로 고순도 다결정 실리콘 잉곳을 제조한 후, 쵸크랄스키(Czochralski) 결정성장법 등의 방법을 통해 다결정 실리콘으로부터 단결정을 성장시켜 단결정 실리콘 잉곳을 생산한 다음, 이를 얇게 절단하는 방식으로 만들어진다.
단결정 실리콘 잉곳을 생산하기 위한 상기한 쵸크랄스키 결정성장법은, 히터를 사용하여 석영 도가니 속의 다결정 실리콘을 융점인 1414℃까지 가열하는 과정을 포함한다. 결정성장 도중에는 석영 도가니를 회전시켜 온도가 부위에 관계없이 일정하게 유지되도록 한다. 용융된 실리콘의 온도가 안정되면 실리콘 종자결정(seed crystal)이 부착된 암(arm) 혹은 케이블이 천천히 하강하여 용융실리콘의 표면에 닿도록 하며, 이 실리콘 종자결정은 차후에 보다 큰 결정을 성장시키기 위한 출발원료가 된다. 그리고, 종자결정의 아랫부분이 용융실리콘 속에서 녹기 시작하여 안정되면 종자결정이 부착된 암(arm) 혹은 케이블을 상향운동으로 상승시킨다. 이때 종자결정을 용융실리콘으로부터 천천히 끌어올리면 종자결정에 붙은 용융실리콘이 응고되면서 종자결정과 동일한 결정구조를 가지게 된다. 한편 암 또는 케이블은 상향운동을 계속하여 보다 큰 결정을 성장시키는데 결정성장은 석영 도가니 속의 실리콘이 일정량 남아 있을 때까지 계속된다. 이런 과정에서 석영 도가니와 종자결정의 회전속도 및 석영 도가니의 온도를 적절히 조절하면 균일한 직경의 단결정을 얻을 수 있다.
한편, 석영 도가니 주위에 자기장을 인가하면 실리콘 용융액 내에서 일어나는 열대류가 방해를 받는다는 것이 발견되었으며, 이것을 기초로 하여 현재는 자장인가 쵸크랄스키(Magnetic Czochralski) 결정성장법이 사용되고 있다. 이 방법은 로렌츠의 법칙이 용융 실리콘에 적용되어 열대류를 억제하는 현상을 이용한다. 이렇게 열대류가 억제되면 결정과 용융액 경계면에 작은 온도 변동이 일어나 실리콘 잉곳의 직경과 저항의 변동이 매우 작게 일어나며 석영 도가니 벽으로부터 고상 경계면으로의 산소의 수송이 감소되어 보다 적은 산소가 실리콘 잉곳으로 침투하게 된다. 즉, 보다 적은 산소의 함량으로 인하여 산소 열 도우너(oxygen thermal donor)가 매우 적게 형성되며, 석출 및 적층(stacking)과 같이 산소의 침투로 인해 발생하는 문제점들이 감소하여 품질이 향상되는 것으로 알려져 있다.
도 1은 종래기술에 따른 단결정 실리콘 잉곳 성장 시스템의 일 예를 개략적으로 도시한 단면구성도이다.
자장인가 쵸크랄스키 결정성장법으로 단결정 실리콘 잉곳을 생산하기 위한 것으로서, 도 1에 도시한 바와 같은 단결정 실리콘 잉곳 성장 시스템이 제공된 바 있다.
자장인가 쵸크랄스키 결정성장법의 가장 큰 특징은, 단결정 실리콘 잉곳의 품질을 높이기 위한 수단으로 마그네트를 결정 성장이 이루어지는 메인 챔버 둘레에 설치하여 결정 성장 도중에 수평 자기장을 메인 챔버 내부의 용융 실리콘에 인가한다는 것이다.
구체적으로, 도 1에 도시한 바와 같이, 종래기술에 따른 단결정 실리콘 잉곳 성장 시스템은, 메인 챔버(10), 도가니(20), 히터(30), 보온벽(40), 케이블(50), 및 마그네트(70)를 포함한다.
메인 챔버(10)는 중공 형상으로 형성되되, 상단부에는 단결정 실리콘 잉곳이 배출되는 통로인 배출구(12)가 구비되며, 하단부에는 배기덕트(13)가 구비된다.
도가니(20)는 메인 챔버(10) 내부에 배치되며, 그 내부에 단결정 실리콘 잉곳을 성장시키기 위한 실리콘 용융액이 수용된다. 이와 같은 도가니(20)는 회전축(60)에 안착되어, 회전축(60)과 함께 회전하게 된다.
히터(30)는, 도가니(20)를 가열하여 다결정 실리콘을 융해시키고 융해된 실리콘 용융액을 가열하기 위한 것으로서, 중공의 원통형으로 형성되어 도가니(20) 둘레를 둘러싸도록 배치된다.
보온벽(40)은, 히터(30)에서 발산되는 열이 메인 챔버(10)의 내벽 쪽으로 확산되는 것을 방지하여 열효율을 향상시키며, 고온의 복사열로부터 메인 챔버(10)의 내벽을 보호하기 위한 것으로서, 역시 중공의 원통형으로 형성되어 히터(30)의 둘레를 둘러싸도록 배치된다.
케이블(50)은 메인 챔버(10)의 배출구(12)를 통과하도록 설치되며, 구동수단(미도시)과 연결되어 회전 및 승강이 가능하다. 그리고, 케이블(50)의 일단에는, 도가니(20) 내부의 실리콘 용융액에 접촉된 후 케이블(50)과 함께 회전 및 상승하면서 단결정 실리콘 잉곳으로 성장하게 되는, 종자결정(51)이 결합된다.
마그네트(70)는 실리콘 용융액에 자기장을 인가하기 위한 것으로서, 메인 챔버(10)의 외주면을 감싸도록 배치되되, 승강 가능하게 설치된다. 즉, 다결정 실리콘이 메인 챔버 내부의 도가니에서 융해되고 결정성장이 진행되는 동안에는 마그네트(70)가 메인 챔버 둘레에 위치하는 상승 상태에 놓이도록 하고, 다결정 실리콘을 메인 챔버 내부의 도가니에 투입하거나 결정성장이 완료된 단결정 실리콘 잉곳을 도가니로부터 꺼내는 작업 등 메인 챔버를 개방한 상태에서 수행해야 하는 작업중에는 작업의 편의를 위해 마그네트(70)가 메인 챔버 하부에 위치하는 하강 상태에 놓일 수 있도록 하는 것이다.
이와 같은 마그네트(70)는 통상 10ton 이상의 무게를 가지며, 이러한 중량물인 마그네트를 승강시키기 위한 것으로서, 통상 마그네트 수직 이송 장치(80)가 단결정 실리콘 잉곳 성장 시스템에 포함된다.
종래기술에 따른 마그네트 수직 이송 장치(80)는 다수의 스크류(81)와 다수의 너트(83)를 포함한다. 다수의 스크류(81)는 일정한 각도 간격으로 마그네트(70)의 외주면에 인접하게 위치하도록 수직으로 배치된다. 또한, 다수의 스크류(81)는 하나의 구동모터(미도시)에 의해 구동되며, 구동모터의 회전시 이에 연동하여 동일한 회전속도로 회전된다. 너트(83)는 브라켓(87)을 통해 마그네트(70)와 일체형으로 결합된 상태에서 스크류(81)와 연동하도록 조립되며, 따라서 스크류(81)의 회전시 스크류(81)를 따라 승강함으로써 마그네트(70)를 승강시킬 수 있도록 한다.
그러나, 이와 같은 마그네트 수직 이송 장치(80)는, 여러 스크류가 하나의 구동모터에 의해 작동하는 구조임에 따라, 구동모터의 동력을 스크류에 전달하여 궁극적으로 마그네트를 승강시킬 수 있도록 하는데 필요한 부품의 수가 많고, 이러한 부품들 간의 연결이 복잡할 수밖에 없으며, 기타 단결정 실리콘 잉곳 성장 시스템을 구성하는 다른 주변부품과의 공간적 간섭을 방지할 수 있도록 하는 공간배치설계가 요구됨에 따라 설치공간이 증대하는 문제점이 있었다.
상기한 바와 같은 종래기술의 문제점을 해소하기 위해 발명한 것으로서,
본 발명은 마그네트를 승강시키는 기능을 구현할 수 있으면서도, 승강을 위해 필요한 부품 수가 적고 부품들 간의 연결관계가 단순화되어, 설치공간이 감소할 뿐만 아니라, 장치의 전체 무게 감소와 원가절감을 가능하게 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치를 제공하는 것을 목적으로 한다.
이를 실현하기 위한 본 발명은,
챔버 지지 프레임 상부에 설치된 단결정 실리콘 잉곳의 성장이 일어나는 메인 챔버를 포함하는 단결정 실리콘 잉곳 성장 시스템에서, 상기 메인 챔버 둘레에 동심으로 배치되는 원통형의 마그네트를 승강시키는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치에 있어서: 각각 상기 메인 챔버의 중심축으로부터 동일한 거리의 반경 방향 위치에 수직으로 설치되되, 원주방향으로 서로 일정한 간격으로 배치되는 다수의 복동식 실린더; 상기 복동식 실린더와 각각 결합되어 상기 복동식 실린더 각각에 구비되는 로드와 함께 승강하는 다수의 지지뭉치; 및 상기 중심축과 동심으로 놓인 상태에서 상기 다수의 지지뭉치의 상부에 결합되는 환형의 마크네트 승강판;을 포함하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치를 제공한다.
그리고, 상기 마크네트 승강판의 둘레에 설치되되 각각 상기 마크네트 승강판을 향한 위치에 수직으로 설치되는 가이드 봉을 구비하는 다수의 지지기둥을 더 포함하며, 상기 지지뭉치는 각각 상기 중심축을 기준으로 반경방향 외측으로 돌출하도록 설치되되, 상기 가이드 봉에 구속된 상태에서 법선 방향과 나란한 수평회전축을 중심으로 회전하는 가이드 롤러를 구비하는 것을 특징으로 한다.
또한, 4개의 상기 복동식 실린더, 4개의 상기 지지뭉치 및 4개의 상기 지지기둥을 포함하는 것을 특징으로 한다.
나아가, 인접한 상기 지지기둥을 연결하도록 결합되는 둘 이상의 지지보를 더 포함하는 것을 특징으로 한다.
여기서, 상기 지지뭉치는, 하부에 소정 직경의 수용홈을 구비하며, 상기 로드의 단부를 부분적으로 수용하는 하방으로 개방된 로드 수용부를 구비하며 상기 로드보다 큰 직경으로 형성되어 체결부재를 통해 상기 로드에 결합되고 상측이 부분적으로 상기 수용홈에 삽입되도록 배치되는 로드결합블록, 및 중심부에 상기 로드가 관통할 수 있도록 형성되는 로드 관통공과 상기 로드결합블록의 하측을 부분적으로 수용할 수 있도록 형성되는 확경부를 구비하며 체결부재를 통해 상기 지지뭉치에 결합되는 체결블록을 통해 상기 복동식 실린더와 결합되는 것을 특징으로 한다.
아울러, 상기 수용홈과 상기 확경부의 내경은 상기 로드결합블록의 외경보다 크고, 상기 로드 관통공의 내경은 상기 로드의 외경보다 크게 형성되어, 상기 체결블록과 상기 지지뭉치의 결합시, 상기 복동식 실린더에 대한 상기 지지뭉치의 수평방향 상대적 위치조정이 가능한 것을 특징으로 한다.
이상과 같은 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치를 제공함으로써, 본 발명은 적은 부품을 사용하고 부품들 간의 연결관계가 단순화된 구성으로, 중량물인 마그네트를 편심없이 안정적으로 승강시키는 기능을 구현할 수 있으며, 따라서 설치공간이 감소할 뿐만 아니라, 장치의 전체 무게 감소와 원가절감을 가능하게 하는 효과를 얻을 수 있도록 한다.
도 1은 종래기술에 따른 단결정 실리콘 잉곳 성장 시스템의 일 예를 개략적으로 도시한 단면구성도이다.
도 2는 본 발명의 일 실시예에 따른 마크네트 수직 이송 장치가 적용된 단결정 실리콘 잉곳 성장 시스템을 개략적으로 도시한 정면도,
도 3은 본 발명의 일 실시예에 따른 마크네트 수직 이송 장치의 정면도,
도 4는 본 발명의 일 실시예에 따른 마크네트 수직 이송 장치의 평면도,
도 5는 도 4의 B 부분을 확대도시한 부분 평면도,
도 6은 도 3의 A 부분의 내부구조를 도시한 단면도.
이하, 본 발명의 바람직한 실시예를 첨부되는 도면을 참조하여 더욱 상세하게 설명한다.
본 발명의 바람직한 실시예에 따른 마크네트 수직 이송 장치는, 도 2 내지 도 4에 도시한 바와 같이, 챔버 지지 프레임(110) 상부에 설치된 단결정 실리콘 잉곳의 성장이 일어나는 메인 챔버(100)를 포함하는 단결정 실리콘 잉곳 성장 시스템에 적용되어, 메인 챔버(100) 둘레에 동심으로 배치되는 원통형의 마그네트(150)를 승강시키는 역할을 수행하는 것으로서, 각각 메인 챔버(100)의 중심축(X)으로부터 동일한 거리의 반경 방향 위치에 수직으로 설치되되, 원주방향으로 서로 일정한 간격으로 배치되는 4개의 복동식 실린더(120)와, 이 복동식 실린더(120)와 각각 결합되어 복동식 실린더(120) 각각에 구비되는 로드(125)와 함께 승강하는 4 개의 지지뭉치(140), 및 메인 챔버(100)의 중심축과 동심으로 놓인 상태에서 4 개의 지지뭉치(140)의 상부에 결합되는 환형의 마크네트 승강판(160)을 포함한다. 여기서 마크네트 승강판(160)은 상부에 원통형으로 형성되는 마그네트(160)가 배치될 수 있도록 하는 공간을 제공하는 것으로서, 마크네트 승강판(160)의 승강은 곧 마그네트(150)의 승강이라 할 수 있을 것이다.
또한, 본 발명의 바람직한 실시예에 따른 마크네트 수직 이송 장치는, 도 3 및 도 4에 도시한 바와 같이, 마크네트 승강판(160)의 둘레에 설치되되 각각 마크네트 승강판(160)을 향한 위치에 수직으로 설치되는 가이드 봉(175)을 구비하는 4 개의 지지기둥(180)을 포함한다. 그리고, 이에 대응하여 상기한 지지뭉치(140)는 가이드 봉(175)과 상호작용하는 가이드 롤러(135)를 구비한다.
구체적으로, 도 5에 도시한 바와 같이, 가이드 롤러(135)는 각각의 지지뭉치(140)에서 중심축을 기준으로 반경방향 외측으로 돌출하도록 설치되되 법선 방향과 나란한 수평회전축을 중심으로 회전하도록 설치되며, 가이드봉(175)을 수용할 수 있는 가이드홈(133)을 구비하도록 형성된다. 따라서 가이드홈(133)을 통해 가이드 봉(175)의 표면과 접촉하는 형태로 가이드 봉(175)과 상호작용하여 마그네트 승강판(160)의 승강과정에서 편심을 방지하는 안정적인 가이드가 가능하도록 한다.
그리고, 본 발명의 바람직한 실시예에 따른 마크네트 수직 이송 장치는, 도 4에 도시한 바와 같이, 인접한 두 개의 지지기둥(180)을 횡으로 연결하도록 결합되는 두 개의 지지보(190)를 또한 포함한다. 이와 같은 지지보(190)는 10ton 이상의 중량물인 마그네트(150)를 승강시키는 과정에서 자중에 의해 마그네트(150)의 편심이 방지되는 가운데 안정적인 승강이 가능하도록 지지기둥(180)을 보조하여 지지하는 역할을 수행하는 것으로서, 물론 더 많은 수의 지지보(190)가 포함될 수도 있을 것이다.
한편, 도 6에 도시한 바와 같이, 지지뭉치(140)는 각각, 복동식 실린더(120)의 상단부에 결합되는 것으로서, 복동식 실린더(120)와의 결합을 위해 로드결합블록(145)과 체결블록(155)이 사용된다. 그리고, 지지뭉치(140)는 로드결합블록(145)과의 결합이 가능하도록 하기 위해 하부에 소정 직경의 수용홈(137)을 구비한다.
좀더 구체적으로 설명하면, 로드결합블록(145)은 복동식 실린더(120)의 로드(125)의 단부를 부분적으로 수용하는 하방으로 개방된 로드 수용부(143)를 구비하며 로드(125)보다 큰 직경으로 형성되어 볼트(147)와 같은 체결부재를 통해 로드(125)에 결합되고 상측이 부분적으로 지지뭉치(140)의 수용홈(137)에 삽입되도록 배치된다. 그리고, 체결블록(155)은 그 중심부에 로드(125)가 관통할 수 있도록 형성되는 로드 관통공(153)과 로드결합블록(145)의 하측을 부분적으로 수용할 수 있도록 형성되는 확경부(157)를 구비하며, 역시 볼트(159)와 같은 체결부재를 통해 지지뭉치(140)에 결합된다. 여기서, 지지뭉치(140)의 수용홈(137)과 체결블록(155)의 확경부(157) 내경은 로드결합블록(145)의 외경보다 크게 형성되고, 로드 관통공(153)의 내경은 로드(125)의 외경보다 크게 형성되는 것이 바람직하다. 이는 체결블록(155)과 지지뭉치(140)의 결합시, 복동식 실린더(120)에 대한 지지뭉치(140)의 수평방향 상대적 위치조정이 가능하도록 하기 위함이다. 따라서, 복동식 실린더(120)의 로드(125)에 체결블록(155)을 끼운 후 로드(125)의 단부에 로드결합블록(145)을 결합한 상태에서 복동식 실린더(120)에 대한 지지뭉치(140)의 수평방향 위치조정이 이루어지고, 체결블록(155)을 지지뭉치(140)에 볼트(159)로 결합하게 되면, 서로 접촉하게 되는 지지뭉치(140)의 수용홈(137) 저면과 로드결합블록(145)의 상면 간의 접촉면압 및 로드결합블록(145) 둘레부분의 저면과 체결블록(155)의 확경부(157) 상면 간의 접촉면압에 의해, 지지뭉치(140)는 수평방향으로의 상대적인 위치변동이 제한되는 가운데 복동식 실린더(120)와의 안정적인 결합상태에 놓이게 된다.
이상과 같은 본 발명에 따른 단결정 실리콘 잉곳 성장 시스템용 마크네트 수직 이송 장치의 작동을 설명하면 다음과 같다.
메인 챔버(100)에서 단결정 실리콘 잉곳의 성장이 이루어지는 동안에는, 마크네트 승강판(160) 상부에 마그네트(150)가 놓인 상태에서, 복동식 실린더(120)에 의해 마크네트 승강판(160)을 상승시킴으로써 마그네트(150)가 메인 챔버(100)의 둘레에 위치하도록 하며, 메인 챔버(100)에서 성장완료된 단결정 실리콘 잉곳을 꺼내거나 성장을 위해 다결정 실리콘을 메인 챔버(100)에 투입하는 작업을 수행하는 동안에는, 복동식 실린더(120)에 의해 마그네트 승강판(160)을 하강시킴으로써 마그네트(150)가 챔버 지지 프레임(110) 둘레에 위치하도록 작동한다.
이와 같은, 본 발명에 따른 마크네트 수직 이송 장치에 의한 마그네트의 승강은 구비되는 복동식 실린더(120)만을 가동하는 단순한 방법으로 이루어지며, 이 과정에서 기본적으로 지지기둥(180)에 설치되는 가이드봉(175)과 지지뭉치(140)에 구비되는 가이드 롤러(135) 간의 상호작용을 통해 승강과정에서 마그네트(150)가 편심되는 것을 방지할 수 있으며, 부가적으로 지지기둥(180)을 연결하는 지지보(190)가 구비됨에 따라 가동 중 과도한 편심하중이 작용하더라도 마그네트 승강판(160) 상부의 마그네트(150)가 편심되는 것을 효과적으로 방지할 수 있게 된다.
비록 본 발명은 특정의 실시예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 변경 및 변화가 가능하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다.

Claims (6)

  1. 챔버 지지 프레임(110) 상부에 설치된 단결정 실리콘 잉곳의 성장이 일어나는 메인 챔버(100)를 포함하는 단결정 실리콘 잉곳 성장 시스템에서, 상기 메인 챔버(100) 둘레에 동심으로 배치되는 원통형의 마그네트(150)를 승강시키는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치에 있어서: 각각 상기 메인 챔버(100)의 중심축(X)으로부터 동일한 거리의 반경 방향 위치에 수직으로 설치되되, 원주방향으로 서로 일정한 간격으로 배치되는 다수의 복동식 실린더(120); 상기 복동식 실린더(120)와 각각 결합되어 상기 복동식 실린더(120) 각각에 구비되는 로드(125)와 함께 승강하는 다수의 지지뭉치(140); 및 상기 중심축(X)과 동심으로 놓인 상태에서 상기 다수의 지지뭉치(140)의 상부에 결합되는 환형의 마크네트 승강판(160);을 포함하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
  2. 제 1항에 있어서, 상기 마크네트 승강판(160)의 둘레에 설치되되 각각 상기 마크네트 승강판(160)을 향한 위치에 수직으로 설치되는 가이드 봉(175)을 구비하는 다수의 지지기둥(180)을 더 포함하며, 상기 지지뭉치(140)는 각각 상기 중심축(X)을 기준으로 반경 방향 외측으로 돌출하도록 설치되되, 상기 가이드 봉(175)에 구속된 상태에서 법선 방향과 나란한 수평회전축을 중심으로 회전하는 가이드 롤러(135)를 구비하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
  3. 제 2항에 있어서, 4개의 상기 복동식 실린더(120), 4개의 상기 지지뭉치(140) 및 4개의 상기 지지기둥(180)을 포함하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
  4. 제 3항에 있어서, 인접한 상기 지지기둥(180)을 연결하도록 결합되는 둘 이상의 지지보(190)를 더 포함하는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 지지뭉치(140)는, 하부에 소정 직경의 수용홈(137)을 구비하며, 상기 로드(125)의 단부를 부분적으로 수용하는 하방으로 개방된 로드 수용부(143)를 구비하며 상기 로드(125)보다 큰 직경으로 형성되어 체결부재를 통해 상기 로드(125)에 결합되고 상측이 부분적으로 상기 수용홈(137)에 삽입되도록 배치되는 로드결합블록(145), 및 중심부에 상기 로드(125)가 관통할 수 있도록 형성되는 로드 관통공(153)과 상기 로드결합블록(145)의 하측을 부분적으로 수용할 수 있도록 형성되는 확경부(157)를 구비하며 체결부재를 통해 상기 지지뭉치(140)에 결합되는 체결블록(155)을 통해 상기 복동식 실린더(120)와 결합되는 것을 특징으로 하는 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
  6. 제 5항에 있어서, 상기 수용홈(137)과 상기 확경부(157)의 내경은 상기 로드결합블록(145)의 외경보다 크고, 상기 로드 관통공(153)의 내경은 상기 로드(125)의 외경보다 크게 형성되어, 상기 체결블록(155)과 상기 지지뭉치(140)의 결합시, 상기 복동식 실린더(120)에 대한 상기 지지뭉치(140)의 수평방향 상대적 위치조정이 가능한 것을 특징으로 하는 것을 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치.
PCT/KR2010/005072 2010-03-10 2010-08-02 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치 WO2011111907A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0021543 2010-03-10
KR1020100021543A KR100965499B1 (ko) 2010-03-10 2010-03-10 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치

Publications (1)

Publication Number Publication Date
WO2011111907A1 true WO2011111907A1 (ko) 2011-09-15

Family

ID=42370348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005072 WO2011111907A1 (ko) 2010-03-10 2010-08-02 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치

Country Status (2)

Country Link
KR (1) KR100965499B1 (ko)
WO (1) WO2011111907A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124127A (ja) * 2013-12-27 2015-07-06 株式会社Sumco 単結晶の引上げ方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680213B1 (ko) * 2015-04-06 2016-11-28 주식회사 엘지실트론 실리콘 단결정 잉곳의 성장 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592895A (en) * 1983-07-26 1986-06-03 Kabushiki Kaisha Toshiba Single crystal pulling system
KR890002065B1 (ko) * 1984-08-10 1989-06-15 가부시끼가이샤 도시바 단결정 육성장치 및 단결정 육성방법
JPH11255579A (ja) * 1998-03-12 1999-09-21 Super Silicon Kenkyusho:Kk 単結晶引上げ装置
JP2000191393A (ja) * 1998-12-25 2000-07-11 Toshiba Ceramics Co Ltd 単結晶引上装置のマグネット昇降機構
KR20090072046A (ko) * 2007-12-28 2009-07-02 주식회사 실트론 실리콘 단결정 잉곳 생산용 마그네트 유닛 및 이를 구비한실리콘 단결정 잉곳 생산장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4592895A (en) * 1983-07-26 1986-06-03 Kabushiki Kaisha Toshiba Single crystal pulling system
KR890002065B1 (ko) * 1984-08-10 1989-06-15 가부시끼가이샤 도시바 단결정 육성장치 및 단결정 육성방법
JPH11255579A (ja) * 1998-03-12 1999-09-21 Super Silicon Kenkyusho:Kk 単結晶引上げ装置
JP2000191393A (ja) * 1998-12-25 2000-07-11 Toshiba Ceramics Co Ltd 単結晶引上装置のマグネット昇降機構
KR20090072046A (ko) * 2007-12-28 2009-07-02 주식회사 실트론 실리콘 단결정 잉곳 생산용 마그네트 유닛 및 이를 구비한실리콘 단결정 잉곳 생산장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015124127A (ja) * 2013-12-27 2015-07-06 株式会社Sumco 単結晶の引上げ方法

Also Published As

Publication number Publication date
KR100965499B1 (ko) 2010-06-23

Similar Documents

Publication Publication Date Title
CN108166053B (zh) 一种单晶炉二次加料方法
CN102418140A (zh) 硅熔体连续加注的直拉硅单晶生长炉及其方法
WO2008086705A1 (fr) Système de production de cristaux utilisé dans un procédé à gradient thermique par rotation de plusieurs creusets
CN101305116A (zh) 晶体生长的系统和方法
CN1265712A (zh) 生长富空位单晶硅的热屏蔽组件和方法
WO2010024541A2 (ko) 잉곳 제조 장치 및 제조 방법
EP3760767A1 (en) Ingot furnace for directional solidification growth of crystalline silicon and application
WO2015030408A1 (ko) 열차폐장치, 이를 포함하는 잉곳성장장치 및 이를 이용한 잉곳성장방법
CN102560624A (zh) 一种单晶炉整体
CN110184646A (zh) 大直径高效n型单晶硅的制备装置
WO2011111907A1 (ko) 단결정 실리콘 잉곳 성장 시스템용 마그네트 수직 이송 장치
WO2016117847A2 (ko) 단결정 잉곳의 직경 제어 시스템 및 제어 방법
WO2011108830A2 (en) Single crystal cooling apparatus and single crystal grower including the same
CN116288708B (zh) 一种单晶硅生产装置及生产方法
WO2010058980A2 (en) Single crystal growing apparatus
CN209039630U (zh) 直拉法生长高纯锗单晶的单晶生长炉
WO2022213643A1 (zh) 一种大尺寸化合物半导体单晶生长系统及方法
CN215713518U (zh) 一种提拉法晶体生长炉
WO2019156323A1 (ko) 실리콘 공급부, 이를 포함하는 실리콘 단결정 잉곳의 성장 장치 및 방법
CN202576639U (zh) 一种单晶炉整体
WO2017030275A1 (ko) 단결정 잉곳 성장장치 및 그 성장방법
CN1195107C (zh) 硅锭块生长装置
KR20130007354A (ko) 실리콘 결정 성장장치 및 그를 이용한 실리콘 결정 성장방법
KR20110088687A (ko) 이중가이더를 구비하는 실리콘 단결정 잉곳 형성장치
CN110616457A (zh) 一种用于锑化铟区域提纯的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 28/12/2012).

122 Ep: pct application non-entry in european phase

Ref document number: 10847541

Country of ref document: EP

Kind code of ref document: A1