WO2011111780A1 - Method for producing bis(fluorosulphonyl)imide - Google Patents

Method for producing bis(fluorosulphonyl)imide Download PDF

Info

Publication number
WO2011111780A1
WO2011111780A1 PCT/JP2011/055654 JP2011055654W WO2011111780A1 WO 2011111780 A1 WO2011111780 A1 WO 2011111780A1 JP 2011055654 W JP2011055654 W JP 2011055654W WO 2011111780 A1 WO2011111780 A1 WO 2011111780A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
imide
bis
fluorosulfonyl
urea
Prior art date
Application number
PCT/JP2011/055654
Other languages
French (fr)
Japanese (ja)
Inventor
常俊 本田
武志 神谷
大輔 ▲高▼野
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2012504515A priority Critical patent/JP5444453B2/en
Publication of WO2011111780A1 publication Critical patent/WO2011111780A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors

Definitions

  • the present invention relates to a method for producing bis (fluorosulfonyl) imide.
  • This application claims priority based on Japanese Patent Application No. 2010-054511 for which it applied to Japan on March 11, 2010, and uses the content here.
  • Bis (fluorosulfonyl) imide (FSO 2 ) 2 NH) is known to be a substance useful as an anion source of an ion conductive material or an ionic liquid.
  • the following patent document 1 and patent document 2 and the nonpatent literature 1 and the nonpatent literature 2 are known as a manufacturing method of bis (fluoro sulfonyl) imide.
  • Non-Patent Document 1 discloses a method in which urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H) are mixed and then reacted by heating.
  • urea CO (NH 2 ) 2
  • fluorosulfuric acid FSO 3 H
  • a chemical reaction as shown in the following reaction formula (1) occurs, and bis (fluorosulfonyl) imide, ammonium hydrogen sulfate (NH 4 HSO 4 ), hydrogen fluoride (HF), and carbon dioxide gas (CO 2 ) are produced. Generated.
  • the produced bis (fluorosulfonyl) imide and the excessively added fluorosulfuric acid can be recovered by distillation under reduced pressure.
  • Non-Patent Document 2 discloses a method of reacting bis (chlorosulfonyl) imide ((ClSO 2 ) 2 NH) with arsenic trifluoride (AsF 3 ).
  • a chemical reaction as shown in the following reaction formula (2) occurs, and bis (fluorosulfonyl) imide and arsenic trichloride (AsCl 3 ) are generated.
  • Patent Literature 1 and Patent Literature 2 disclose a method of reacting bis (chlorosulfonyl) imide and potassium fluoride (KF). In these methods, a chemical reaction as shown in the following reaction formula (3) occurs, and bis (fluorosulfonyl) imide and potassium chloride (KCl) are generated.
  • bis (chlorosulfonyl) imide is fluorinated with potassium fluoride in a nitromethane solvent.
  • bis (chlorosulfonyl) imide is fluorinated with potassium fluoride in the presence of a basic catalyst in an organic solvent.
  • Non-Patent Document 1 the method for producing bis (fluorosulfonyl) imide using urea and fluorosulfuric acid disclosed in Non-Patent Document 1 has a problem that a chemical reaction between raw materials proceeds in a runaway manner. Therefore, the method described in Non-Patent Document 1 has been difficult to implement industrially.
  • Patent Document 1 and Patent Document 2 it is difficult to industrially obtain bis (chlorosulfonyl) imide as a raw material. was there. Furthermore, the method for producing bis (fluorosulfonyl) imide disclosed in Non-Patent Document 2 has a problem that arsenic trifluoride as a raw material is expensive and difficult to handle because of its high toxicity.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing bis (fluorosulfonyl) imide capable of continuous production while controlling generation of carbon dioxide gas and reaction heat.
  • the method for producing bis (fluorosulfonyl) imide which is one embodiment of the present invention, includes mixing a fluorosulfuric acid without reacting urea to prepare an unreacted mixed solution, and heating the reaction vessel to the reaction vessel.
  • a bis (characteristic) comprising: a generation step of supplying an unreacted mixed solution to generate a reaction solution containing at least bis (fluorosulfonyl) imide; and a recovery step of recovering the reaction solution from the reaction vessel. This is a method for producing (fluorosulfonyl) imide.
  • mixing without reacting urea with fluorosulfuric acid means mixing fluorosulfuric acid and urea in a state where the mass of urea consumed by the reaction is 5% or less of the total mass of urea added. Is meant to do.
  • the reaction temperature of the fluorosulfuric acid and the urea in the reaction vessel is in the range of 100 to 170 ° C. Also good.
  • the temperature of the reaction solution in the reaction vessel may be in the range of 100 to 170 ° C.
  • the supply rate of the unreacted mixed liquid to the reaction vessel is such that the supply amount of urea in the unreacted mixed solution per hour is equal to the weight of the reaction solution contained in the reaction vessel. It may be controlled to be 15% or less.
  • the amount of the fluorosulfuric acid in the unreacted mixed solution is in a range of 2 to 10 times the mass part of the urea dissolved in the unreacted mixed solution. Also good.
  • the reaction solution produced by the production step may further contain ammonium fluorosulfate and may be in a slurry form.
  • urea is not previously reacted with fluorosulfuric acid to prepare an unreacted mixed solution at room temperature, and this unreacted reaction vessel is heated separately.
  • the liquid mixture is supplied to generate a reaction liquid containing at least bis (fluorosulfonyl) imide.
  • bis (fluorosulfonyl) imide can be produced while controlling the generation of carbon dioxide gas and the heat of reaction.
  • bis (fluorosulfonyl) imide can be continuously manufactured by providing the process of collect
  • This embodiment mixes fluorosulfuric acid without reacting urea, prepares an unreacted mixed solution (preparation step), supplies the unreacted mixed solution to a heated reaction vessel, and at least It is schematically configured to include a step of generating a reaction solution containing bis (fluorosulfonyl) imide (generation step) and a step of recovering the reaction solution from the reaction vessel (recovery step).
  • generation step a step of generating a reaction solution containing bis (fluorosulfonyl) imide
  • recovery step a step of recovering the reaction solution from the reaction vessel
  • urea is mixed with fluorosulfuric acid without reacting to prepare an unreacted mixed solution of urea and fluorosulfuric acid (hereinafter referred to as unreacted mixed solution).
  • the unreacted mixed solution can be easily prepared, for example, by adding urea little by little to fluorosulfuric acid cooled to 0 to 30 ° C. using an ice bath.
  • the temperature of fluorosulfuric acid is higher than 100 ° C., the reaction between the added urea and fluorosulfuric acid proceeds. Therefore, in the preparation process of the present invention, it is important that urea and fluorosulfuric acid are mixed without reacting to dissolve urea in fluorosulfuric acid.
  • Mixing without reacting urea with fluorosulfuric acid means mixing fluorosulfuric acid and urea in a state where the mass of urea consumed by the reaction is 5% or less of the total mass of urea charged. To do.
  • the amount of fluorosulfuric acid for dissolving urea is preferably in the range of 2 to 10 times, more preferably in the range of 3 to 5 times the mass part of urea to be added.
  • the amount of fluorosulfuric acid is less than twice the mass part of urea to be added, urea is not dissolved in fluorosulfuric acid and precipitates, which is not preferable.
  • the amount of fluorosulfuric acid exceeds 10 times the mass part of urea to be added, it is economically wasteful.
  • the unreacted mixed solution thus prepared has good stability at room temperature and is very easy to handle.
  • the unreacted mixed solution is supplied to a heated reaction vessel to generate a reaction solution containing at least bis (fluorosulfonyl) imide.
  • urea is previously dissolved in fluorosulfuric acid by the preparation step.
  • urea dissolved in fluorosulfuric acid is supplied into the reaction vessel and brought into contact with high-temperature fluorosulfuric acid or bis (fluorosulfonyl) imide, whereby the reaction between urea and fluorosulfuric acid proceeds promptly.
  • generation of carbon dioxide gas and reaction heat can be controlled. Therefore, in this embodiment, the reaction does not run out of control with rapid generation of carbon dioxide gas and intense heat generation.
  • the reaction mechanism in the method for producing bis (fluorosulfonyl) imide of the present invention was considered to be basically the same as the reaction mechanism represented by the above formula (1) described in Non-Patent Document 1.
  • the amount of ammonium hydrogen sulfate and hydrogen fluoride produced by the above formula (1) is very small. This is considered to be different from the reaction mechanism shown in the above formula (1).
  • reaction liquid containing bis (fluorosulfonyl) imide which is generated by the reaction of urea in the supplied unreacted liquid mixture with fluorosulfuric acid, is present in the reaction vessel being heated. become.
  • the reaction solution is a slurry-like mixture composed of the produced bis (fluorosulfonyl) imide, by-produced ammonium fluorosulfonate, and unreacted fluorosulfuric acid. Become a liquid. Therefore, it is preferable to react while stirring the inside of the reaction vessel.
  • the reaction vessel is prefilled with a reaction liquid containing fluorosulfuric acid or bis (fluorosulfonyl) imide or bis (fluorosulfonyl) imide produced by the reaction of urea and fluorosulfuric acid, and heated to a predetermined temperature. It is preferable to keep it.
  • the reaction temperature of fluorosulfuric acid and urea in the reaction vessel (that is, the temperature of the reaction solution generated in the reaction vessel) is 100 to 170. It is preferably within the range of ° C, and more preferably within the range of 120 to 150 ° C. Here, it is not preferable that the reaction temperature is 100 ° C. or lower because accumulation of the reaction is likely to occur, and if it is 170 ° C. or higher, the boiling point of the fluorosulfuric acid is exceeded and the fluorosulfuric acid is evaporated. is there.
  • the supply rate of the unreacted mixed solution to the reaction vessel is such that the supply amount of urea in the unreacted mixed solution per hour is 15% or less with respect to the weight of the reaction solution contained in the reaction vessel. It is preferable to control.
  • the supply rate is more preferably controlled within a range of 1% to 15%. It is even more preferable to control the supply rate within a range of 5% to 12.5%.
  • the supply amount of urea per hour exceeds 15% with respect to the weight of the reaction solution, unreacted raw materials are discharged out of the system and the yield is lowered, which is not preferable.
  • the supply rate is 15% or less, the reaction is completed while the supplied unreacted mixed liquid remains in the reaction vessel.
  • the method for supplying the unreacted mixed solution to the reaction vessel is not particularly limited, and can be appropriately selected according to the supply rate. Specifically, for example, dripping by a metering pump, dripping from a tank or the like, pressure feeding and the like can be mentioned.
  • the reaction vessel used in the present embodiment is not particularly limited, and can be appropriately selected according to the production scale of bis (fluorosulfonyl) imide.
  • the method for recovering the reaction solution from the reaction vessel is not limited as long as the reaction solution can be quantitatively extracted from the reaction vessel.
  • the extraction method include an overflow method in which a reaction vessel is provided with a discharge pipe, extraction using a metering pump, and the like.
  • a slurry-like reaction liquid containing bis (fluorosulfonyl) imide, by-produced ammonium salt of fluorosulfuric acid, and unreacted fluorosulfuric acid generated by supplying the unreacted mixed liquid to the reaction vessel is prepared. By continuously discharging, the reaction can be continued stably for a long time.
  • the reaction liquid in the reaction vessel is continuously discharged out of the system by the recovery step, it is smaller than the conventional batch type manufacturing method.
  • the reaction vessel can be used. This makes it possible to reduce the size of the entire reaction apparatus, which is excellent in economic efficiency.
  • the accumulation of reaction refers to a phenomenon in which carbon dioxide gas is not generated at the initial stage of the reaction, which is observed in the method for producing bis (fluorosulfonyl) imide disclosed in Non-Patent Document 1 described above. If the accumulation of this reaction is confirmed, the reaction proceeds in a runaway manner with a sudden generation of carbon dioxide gas and intense heat generation from the middle of the reaction, which causes a safety problem.
  • fluorosulfuric acid when fluorosulfuric acid is put in advance in a heated reaction vessel, it is preferable to add an additive in the reaction vessel in advance.
  • an additive in the reaction vessel it is possible to generally control the generation of carbon dioxide gas and the generation of heat by supplying the unreacted mixed solution to the reaction vessel and reacting urea with fluorosulfuric acid.
  • by adding an additive in advance to the fluorosulfuric acid introduced into the heated reaction vessel it is possible to prevent the accumulation of reaction that tends to occur at the beginning of the dropping.
  • M represents any one of cations selected from the group consisting of Na, K, Li, and ammonium. That is, as the bis (fluorosulfonyl) imide salt represented by the above formula (5), bis (fluorosulfonyl) imide sodium salt ((FSO 2 ) 2 N ⁇ Na), bis (fluorosulfonyl) imide potassium salt (( FSO 2 ) 2 N ⁇ K), bis (fluorosulfonyl) imide lithium salt ((FSO 2 ) 2 N ⁇ Li), bis (fluorosulfonyl) imide ammonium salt ((FSO 2 ) 2 N ⁇ NH 4 ) .
  • bis (fluorosulfonyl) imide salt represented by the above formula (5) bis (fluorosulfonyl) imide sodium salt ((FSO 2 ) 2 N ⁇ Na), bis (fluorosulfonyl) imide potassium salt (( FSO 2 ) 2 N ⁇ K), bis (flu
  • the addition amount of the additive is preferably in the range of 0.01 to 1.0 times the mass part of fluorosulfuric acid previously charged in the reaction vessel, 0.02 to 0.1 times More preferably, it is within the range. If the additive amount is less than 0.01 times, the effect of preventing the accumulation of reaction cannot be obtained, which is not preferable. On the other hand, if the additive amount exceeds 1.0, the effect is not changed and it is economically wasteful.
  • the reaction end solution containing bis (fluorosulfonyl) imide produced by the production method of the present invention as an additive is added to the next time.
  • reaction completion liquid When the reaction completion liquid is used as an additive, although depending on the concentration of bis (fluorosulfonyl) imide in the reaction completion liquid, it is 0.05 to 1.0 with respect to parts by mass of fluorosulfuric acid in the reaction vessel.
  • the range is preferably within the range of double, and more preferably within the range of 0.1 to 0.5. If the addition amount of the reaction end solution as an additive is less than 0.05 times, the effect of preventing the accumulation of reaction cannot be obtained, which is not preferable. On the other hand, if the addition amount of the reaction end liquid exceeds 1.0 times, the effect is not changed and it is economically useless.
  • urea is mixed with fluorosulfuric acid in advance to prepare an unreacted mixed solution.
  • the unreacted mixed solution is supplied to a separately heated reaction vessel to generate a reaction solution containing at least bis (fluorosulfonyl) imide, and the reaction solution is recovered from the reaction vessel. .
  • bis (fluorosulfonyl) imide can be continuously produced while controlling generation of carbon dioxide gas and reaction heat.
  • the reaction vessel is preheated to control the reaction temperature in the reaction vessel to be within a predetermined temperature range, and By controlling the supply rate of the unreacted mixed solution within a predetermined range, the reaction is completed while the supplied unreacted mixed solution stays in the reaction vessel. Thereby, an unreacted raw material is discharged
  • Example 1 A 5 L polytetrafluoroethylene (PTFE) reactor equipped with a stirrer and a thermometer was charged with 2.8 kg of fluorosulfuric acid, and 400 g of urea was added little by little while cooling to prepare a fluorosulfuric acid solution of urea. To a place where a 100 mL glass flask equipped with a stirrer, a thermometer, and a gas flow meter was heated at 140 ° C., a fluorosulfuric acid solution of urea was dropped at a rate of 50 g / Hr.
  • PTFE polytetrafluoroethylene
  • the dropping rate was controlled so that the supply amount of urea contained in the fluorosulfuric acid solution per hour was 6.25% of the weight of the reaction solution contained in the reactor. From the time when about 100 g of urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid continued to be discharged quantitatively.
  • the reaction temperature in the dropping reactor was maintained at 130 to 140 ° C. The dripping took a total of 64 hours.
  • the reaction solution was cooled to room temperature, dissolved in water, and analyzed by 19 F-NMR. As a result, a peak was confirmed at 52.1 ppm indicating the presence of bis (fluorosulfonyl) imide.
  • the yield based on urea of bis (fluorosulfonyl) imide calculated by the internal standard addition method based on the quantitative measurement value was 43% (519 g).
  • the theoretical maximum yield of bis (fluorosulfonyl) imide based on urea is 50%, and 43% yield corresponds to 86% of the theoretical maximum. From the results of Example 1, it can be seen that bis (fluorosulfonyl) imide was continuously produced in high yield easily and safely using inexpensive raw materials.
  • Example 2 A 2 L glass reactor equipped with a stirrer, a thermometer, and a gas flow meter was heated at 150 ° C., and 3.25 kg / urea of a urea fluorosulfuric acid solution prepared in the same manner as in Example 1 was used. The solution was dropped at a rate of Hr. The dropping rate was controlled so that the supply amount of urea contained in the fluorosulfuric acid solution of urea per hour was 15% of the weight of the reaction solution contained in the reactor. From the time when 2.7 kg of a urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid was continuously discharged quantitatively.
  • the reaction temperature in the dropping reactor was maintained at 140 to 150 ° C.
  • the dropwise addition of urea in fluorosulfuric acid was continued for 90 hours, and a total of 293 kg (37 kg of urea) was added dropwise.
  • the reaction solution was cooled to room temperature, dissolved in water, and analyzed by 19 F-NMR. As a result, a peak was confirmed at 52.1 ppm indicating the presence of bis (fluorosulfonyl) imide.
  • the urea-based yield of bis (fluorosulfonyl) imide calculated by the internal standard addition method was 42% (46 kg). A yield of 42% corresponds to a theoretical maximum of 84%. From the results of Example 2, it can be seen that bis (fluorosulfonyl) imide was continuously produced in high yield easily and safely using inexpensive raw materials.
  • Example 1 A 2 L glass reactor equipped with a stirrer, a thermometer, and a gas flow meter is heated at 150 ° C., and 3.75 kg / urea of a urea fluorosulfuric acid solution prepared in the same manner as in Example 1 is used. The solution was dropped at a rate of Hr. The dropping speed was 17% of the weight of the reaction solution contained in the reactor. From the time when about 2.7 kg of a urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid continued to be discharged quantitatively. The reaction temperature in the dropping reactor was maintained at 140 to 150 ° C.
  • bis (fluorosulfonyl) imide can be produced safely and easily in a high yield from a short reaction step using an inexpensive raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a method for producing bis(fluorosulphonyl)imide capable of continuous production while controlling the generation of carbon dioxide gas and reaction heat. A method for producing bis(fluorosulphonyl)imide characterized by comprising a process for mixing urea in fluorosulfuric acid without being reacted and preparing an unreacted liquid mixture, a process for supplying the unreacted liquid mixture to a heated reaction vessel and producing a reaction liquid containing at least bis(fluorosulphonyl)imide and a process for recovering the reaction liquid from the reaction vessel is used.

Description

ビス(フルオロスルホニル)イミドの製造方法Method for producing bis (fluorosulfonyl) imide
 本発明は、ビス(フルオロスルホニル)イミドの製造方法に関するものである。
 本願は、2010年3月11日に日本に出願された特願2010-054511号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing bis (fluorosulfonyl) imide.
This application claims priority based on Japanese Patent Application No. 2010-054511 for which it applied to Japan on March 11, 2010, and uses the content here.
 ビス(フルオロスルホニル)イミド((FSONH)は、イオン導電材料やイオン液体のアニオン源として有用な物質であることが知られている。そして、ビス(フルオロスルホニル)イミドの製造方法としては、下記の特許文献1及び特許文献2、並びに非特許文献1及び非特許文献2が知られている。 Bis (fluorosulfonyl) imide ((FSO 2 ) 2 NH) is known to be a substance useful as an anion source of an ion conductive material or an ionic liquid. And the following patent document 1 and patent document 2, and the nonpatent literature 1 and the nonpatent literature 2 are known as a manufacturing method of bis (fluoro sulfonyl) imide.
 非特許文献1には、尿素(CO(NH)とフルオロ硫酸(FSOH)とを混合した後に加熱して反応させる方法が開示されている。この方法では、下記反応式(1)に示すような化学反応が生じ、ビス(フルオロスルホニル)イミド、硫酸水素アンモニウム(NHHSO)、フッ化水素(HF)及び炭酸ガス(CO)が生成される。生成したビス(フルオロスルホニル)イミド及び過剰に投入されたフルオロ硫酸は減圧蒸留で回収することができる。
 3FSOH+CO(NH →
    (FSONH+NHHSO+HF+CO  式(1)
Non-Patent Document 1 discloses a method in which urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H) are mixed and then reacted by heating. In this method, a chemical reaction as shown in the following reaction formula (1) occurs, and bis (fluorosulfonyl) imide, ammonium hydrogen sulfate (NH 4 HSO 4 ), hydrogen fluoride (HF), and carbon dioxide gas (CO 2 ) are produced. Generated. The produced bis (fluorosulfonyl) imide and the excessively added fluorosulfuric acid can be recovered by distillation under reduced pressure.
3FSO 3 H + CO (NH 2 ) 2
(FSO 2 ) 2 NH + NH 4 HSO 4 + HF + CO 2 Formula (1)
 また、非特許文献2には、ビス(クロロスルホニル)イミド((ClSONH)と三フッ化ヒ素(AsF)とを反応させる方法が開示されている。この方法では、下記反応式(2)に示すような化学反応が生じ、ビス(フルオロスルホニル)イミド及び三塩化ヒ素(AsCl)が生成される。
 3(ClSONH+2AsF →
    3(FSONH+2AsCl  式(2)
Non-Patent Document 2 discloses a method of reacting bis (chlorosulfonyl) imide ((ClSO 2 ) 2 NH) with arsenic trifluoride (AsF 3 ). In this method, a chemical reaction as shown in the following reaction formula (2) occurs, and bis (fluorosulfonyl) imide and arsenic trichloride (AsCl 3 ) are generated.
3 (ClSO 2 ) 2 NH + 2AsF 3
3 (FSO 2 ) 2 NH + 2AsCl 3 formula (2)
 さらに、特許文献1及び特許文献2には、ビス(クロロスルホニル)イミドとフッ化カリウム(KF)とを反応させる方法が開示されている。これらの方法では、下記反応式(3)に示すような化学反応が生じ、ビス(フルオロスルホニル)イミドと塩化カリウム(KCl)とが生成される。特許文献1に記載の方法では、ニトロメタン溶媒中でビス(クロロスルホニル)イミドをフッ化カリウムでフッ素化する。一方、特許文献2に記載の方法では、有機溶媒中で塩基性触媒の存在下で、ビス(クロロスルホニル)イミドをフッ化カリウムでフッ素化する。
 (ClSONH+2KF →
    (FSONH+2KCl  式(3)
Furthermore, Patent Literature 1 and Patent Literature 2 disclose a method of reacting bis (chlorosulfonyl) imide and potassium fluoride (KF). In these methods, a chemical reaction as shown in the following reaction formula (3) occurs, and bis (fluorosulfonyl) imide and potassium chloride (KCl) are generated. In the method described in Patent Document 1, bis (chlorosulfonyl) imide is fluorinated with potassium fluoride in a nitromethane solvent. On the other hand, in the method described in Patent Document 2, bis (chlorosulfonyl) imide is fluorinated with potassium fluoride in the presence of a basic catalyst in an organic solvent.
(ClSO 2 ) 2 NH + 2KF →
(FSO 2 ) 2 NH + 2KCl Formula (3)
特表2004-522681号公報JP-T-2004-522681 特開2007-182410号公報JP 2007-182410 A
 ビス(フルオロスルホニル)イミドの製造方法として、尿素とフルオロ硫酸とを用いる方法は、反応工程が短く、原料も安価であるため工業的に有利である。しかしながら、非特許文献1に開示されている尿素とフルオロ硫酸とを用いるビス(フルオロスルホニル)イミドの製造方法では、反応初期には炭酸ガスが発生せず(これを「反応の蓄積」という)、反応途中から急激な炭酸ガスの発生と、激しい発熱とを伴う反応が起きる。そのため、非特許文献1に開示されている尿素とフルオロ硫酸とを用いるビス(フルオロスルホニル)イミドの製造方法では、原料間での化学反応が暴走的に進行してしまうという問題があった。したがって、非特許文献1に記載の方法は、工業的に実施することが困難であった。 As a method for producing bis (fluorosulfonyl) imide, a method using urea and fluorosulfuric acid is industrially advantageous because the reaction process is short and the raw materials are inexpensive. However, in the method for producing bis (fluorosulfonyl) imide using urea and fluorosulfuric acid disclosed in Non-Patent Document 1, carbon dioxide gas is not generated at the beginning of the reaction (this is referred to as “accumulation of reaction”). A reaction with sudden generation of carbon dioxide and intense exotherm occurs during the reaction. Therefore, the method for producing bis (fluorosulfonyl) imide using urea and fluorosulfuric acid disclosed in Non-Patent Document 1 has a problem that a chemical reaction between raw materials proceeds in a runaway manner. Therefore, the method described in Non-Patent Document 1 has been difficult to implement industrially.
 また、非特許文献2、特許文献1及び特許文献2に開示されているビス(フルオロスルホニル)イミドの製造方法では、原料であるビス(クロロスルホニル)イミドの工業的な入手が困難であるという問題があった。さらに、非特許文献2に開示されているビス(フルオロスルホニル)イミドの製造方法では、原料である三フッ化ヒ素が高価であり、毒性が強いために取り扱いが困難であるという問題があった。 Further, in the method for producing bis (fluorosulfonyl) imide disclosed in Non-Patent Document 2, Patent Document 1 and Patent Document 2, it is difficult to industrially obtain bis (chlorosulfonyl) imide as a raw material. was there. Furthermore, the method for producing bis (fluorosulfonyl) imide disclosed in Non-Patent Document 2 has a problem that arsenic trifluoride as a raw material is expensive and difficult to handle because of its high toxicity.
 本発明は、上記事情に鑑みてなされたものであって、炭酸ガスの発生と反応熱を制御しつつ、連続的な生産が可能なビス(フルオロスルホニル)イミドの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing bis (fluorosulfonyl) imide capable of continuous production while controlling generation of carbon dioxide gas and reaction heat. And
 本発明の一態様であるビス(フルオロスルホニル)イミドの製造方法は、フルオロ硫酸に尿素を反応させることなく混合して、未反応混合液を調製する調製工程と、加熱している反応容器に前記未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成する生成工程と、前記反応容器から前記反応液を回収する回収工程と、を備えることを特徴とするビス(フルオロスルホニル)イミドの製造方法である。
 ここで言う、フルオロ硫酸に尿素を反応させることなく混合するとは、反応により消費される尿素の質量が、投入された尿素の全質量の5%以下である状態で、フルオロ硫酸と尿素とを混合することを意味している。
 本発明の一態様であるビス(フルオロスルホニル)イミドの製造方法では、前記生成工程において、前記反応容器中の前記フルオロ硫酸と前記尿素との反応温度が、100~170℃の範囲内であってもよい。
 また、前記生成工程において、前記反応容器中の前記反応液の温度が、100~170℃の範囲内であってもよい。
 また、前記生成工程において、前記反応容器への前記未反応混合液の供給速度は、前記未反応混合液中の尿素の1時間当たりの供給量が、前記反応容器に含まれる反応液の重量の15%以下となるように制御されてもよい。
 また、前記調製工程において、前記未反応混合液中の前記フルオロ硫酸の量が、前記未反応混合液中に溶解している前記尿素の質量部に対して2~10倍の範囲内であってもよい。
 また、前記生成工程によって生成される前記反応液が、さらにフルオロ硫酸アンモニウムを含み、スラリー状であってもよい。
The method for producing bis (fluorosulfonyl) imide, which is one embodiment of the present invention, includes mixing a fluorosulfuric acid without reacting urea to prepare an unreacted mixed solution, and heating the reaction vessel to the reaction vessel. A bis (characteristic) comprising: a generation step of supplying an unreacted mixed solution to generate a reaction solution containing at least bis (fluorosulfonyl) imide; and a recovery step of recovering the reaction solution from the reaction vessel. This is a method for producing (fluorosulfonyl) imide.
Here, mixing without reacting urea with fluorosulfuric acid means mixing fluorosulfuric acid and urea in a state where the mass of urea consumed by the reaction is 5% or less of the total mass of urea added. Is meant to do.
In the method for producing bis (fluorosulfonyl) imide which is one embodiment of the present invention, in the production step, the reaction temperature of the fluorosulfuric acid and the urea in the reaction vessel is in the range of 100 to 170 ° C. Also good.
In the production step, the temperature of the reaction solution in the reaction vessel may be in the range of 100 to 170 ° C.
Further, in the generating step, the supply rate of the unreacted mixed liquid to the reaction vessel is such that the supply amount of urea in the unreacted mixed solution per hour is equal to the weight of the reaction solution contained in the reaction vessel. It may be controlled to be 15% or less.
In the preparation step, the amount of the fluorosulfuric acid in the unreacted mixed solution is in a range of 2 to 10 times the mass part of the urea dissolved in the unreacted mixed solution. Also good.
Moreover, the reaction solution produced by the production step may further contain ammonium fluorosulfate and may be in a slurry form.
 本発明のビス(フルオロスルホニル)イミドの製造方法によれば、予め尿素をフルオロ硫酸と反応させることなく常温で混合して未反応混合液を調製し、別に加熱している反応容器にこの未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成するという構成を有している。これにより、炭酸ガスの発生と反応熱を制御しながらビス(フルオロスルホニル)イミドを製造することができる。
 そして、反応容器から反応液を回収する工程を備えることにより、ビス(フルオロスルホニル)イミドを連続的に製造することができる。
According to the method for producing bis (fluorosulfonyl) imide of the present invention, urea is not previously reacted with fluorosulfuric acid to prepare an unreacted mixed solution at room temperature, and this unreacted reaction vessel is heated separately. The liquid mixture is supplied to generate a reaction liquid containing at least bis (fluorosulfonyl) imide. Thereby, bis (fluorosulfonyl) imide can be produced while controlling the generation of carbon dioxide gas and the heat of reaction.
And bis (fluorosulfonyl) imide can be continuously manufactured by providing the process of collect | recovering reaction liquid from reaction container.
 以下、本発明のビス(フルオロスルホニル)イミドの製造方法の実施形態について詳細に説明する。
 本実施形態は、フルオロ硫酸に尿素を反応させることなく混合して、未反応混合液を調製する工程(調製工程)と、加熱している反応容器に上記未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成する工程(生成工程)と、上記反応容器から上記反応液を回収する工程(回収工程)と、を備えて概略構成されている。以下、各工程について具体的に説明する。
Hereinafter, embodiments of the method for producing bis (fluorosulfonyl) imide of the present invention will be described in detail.
This embodiment mixes fluorosulfuric acid without reacting urea, prepares an unreacted mixed solution (preparation step), supplies the unreacted mixed solution to a heated reaction vessel, and at least It is schematically configured to include a step of generating a reaction solution containing bis (fluorosulfonyl) imide (generation step) and a step of recovering the reaction solution from the reaction vessel (recovery step). Hereinafter, each step will be specifically described.
(調製工程)
 先ず、フルオロ硫酸に尿素を反応させることなく混合して、尿素とフルオロ硫酸との未反応混合液(以下、未反応混合液という)を調製する。未反応混合液の調製は、例えば、氷浴を用いて0~30℃に冷却しているフルオロ硫酸に、尿素を少量ずつ添加することで容易に調製することができる。ここで、フルオロ硫酸の温度が100℃よりも高いと添加した尿素とフルオロ硫酸との反応が進行してしまう。したがって、本発明の調製工程では、尿素とフルオロ硫酸とを反応させずに混合して、フルオロ硫酸に尿素を溶解させることが重要である。
 フルオロ硫酸に尿素を反応させることなく混合するとは、反応により消費される尿素の質量が、投入された尿素の全質量の5%以下である状態で、フルオロ硫酸と尿素とを混合することを意味する。
(Preparation process)
First, urea is mixed with fluorosulfuric acid without reacting to prepare an unreacted mixed solution of urea and fluorosulfuric acid (hereinafter referred to as unreacted mixed solution). The unreacted mixed solution can be easily prepared, for example, by adding urea little by little to fluorosulfuric acid cooled to 0 to 30 ° C. using an ice bath. Here, if the temperature of fluorosulfuric acid is higher than 100 ° C., the reaction between the added urea and fluorosulfuric acid proceeds. Therefore, in the preparation process of the present invention, it is important that urea and fluorosulfuric acid are mixed without reacting to dissolve urea in fluorosulfuric acid.
Mixing without reacting urea with fluorosulfuric acid means mixing fluorosulfuric acid and urea in a state where the mass of urea consumed by the reaction is 5% or less of the total mass of urea charged. To do.
 尿素を溶解させるフルオロ硫酸の量は、添加する尿素の質量部に対して2~10倍の範囲内とすることが好ましく、3~5倍の範囲内とすることがより好ましい。フルオロ硫酸の量が添加する尿素の質量部に対して2倍未満であると、尿素がフルオロ硫酸に溶解せずに析出してしまうため、好ましくない。一方、フルオロ硫酸の量が添加する尿素の質量部に対して10倍を超えると経済的に無駄である。
 このようにして調製された未反応混合液は、常温で安定性も良く、取り扱いも非常に容易である。
The amount of fluorosulfuric acid for dissolving urea is preferably in the range of 2 to 10 times, more preferably in the range of 3 to 5 times the mass part of urea to be added. When the amount of fluorosulfuric acid is less than twice the mass part of urea to be added, urea is not dissolved in fluorosulfuric acid and precipitates, which is not preferable. On the other hand, if the amount of fluorosulfuric acid exceeds 10 times the mass part of urea to be added, it is economically wasteful.
The unreacted mixed solution thus prepared has good stability at room temperature and is very easy to handle.
(生成工程)
 次に、加熱している反応容器に上記未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成させる。本実施形態では、上記調製工程によって尿素を予めフルオロ硫酸に溶解している。そして、フルオロ硫酸に溶解した尿素を、反応容器中に供給し、高温のフルオロ硫酸又はビス(フルオロスルホニル)イミドと接触させることにより、尿素とフルオロ硫酸との反応が速やかに進行する。このように、フルオロ硫酸に溶解した尿素を加熱している反応容器に供給しながら順次反応させることによって、炭酸ガスの発生と反応熱を制御することができる。したがって、本実施形態では、急激な炭酸ガスの発生および激しい発熱を伴って、反応が暴走的に進行することがない。
(Generation process)
Next, the unreacted mixed solution is supplied to a heated reaction vessel to generate a reaction solution containing at least bis (fluorosulfonyl) imide. In this embodiment, urea is previously dissolved in fluorosulfuric acid by the preparation step. Then, urea dissolved in fluorosulfuric acid is supplied into the reaction vessel and brought into contact with high-temperature fluorosulfuric acid or bis (fluorosulfonyl) imide, whereby the reaction between urea and fluorosulfuric acid proceeds promptly. In this way, by sequentially reacting while supplying urea dissolved in fluorosulfuric acid to a heated reaction vessel, generation of carbon dioxide gas and reaction heat can be controlled. Therefore, in this embodiment, the reaction does not run out of control with rapid generation of carbon dioxide gas and intense heat generation.
 本発明のビス(フルオロスルホニル)イミドの製造方法における反応機構は、基本的には非特許文献1で説明した上記式(1)に示した反応機構と同様であると考えられていた。しかしながら、本発明のビス(フルオロスルホニル)イミドの製造方法によって、ビス(フルオロスルホニル)イミドを製造した場合、上記式(1)で生成する硫酸水素アンモニウム及びフッ化水素の生成量が微量であることが確認されており、上記式(1)に示した反応機構と異なっていると考えられる。すなわち、本発明のビス(フルオロスルホニル)イミドの製造方法では、下記式(4)示すような化学反応によって、ビス(フルオロスルホニル)イミド、フルオロスルホン酸アンモニウム及び二酸化炭素が生成していると推測される。
 5FSOH+2CO(NH →
    (FSONH+3NHSOF+2CO  式(4)
 上記の式(4)でビス(フルオロスルホニル)イミドが生成される場合、2モル等量の尿素から、1モル等量のビス(フルオロスルホニル)イミドが生成される。よって、式(1)の反応式では尿素基準でのビス(フルオロスルホニル)イミドの収率の理論上最大値は100%であるが、式(4)の反応式で反応が進行した場合は、尿素基準でのビス(フルオロスルホニル)イミドの収率の理論上最大値は50%である。
The reaction mechanism in the method for producing bis (fluorosulfonyl) imide of the present invention was considered to be basically the same as the reaction mechanism represented by the above formula (1) described in Non-Patent Document 1. However, when bis (fluorosulfonyl) imide is produced by the method for producing bis (fluorosulfonyl) imide of the present invention, the amount of ammonium hydrogen sulfate and hydrogen fluoride produced by the above formula (1) is very small. This is considered to be different from the reaction mechanism shown in the above formula (1). That is, in the method for producing bis (fluorosulfonyl) imide of the present invention, it is estimated that bis (fluorosulfonyl) imide, ammonium fluorosulfonate, and carbon dioxide are generated by a chemical reaction represented by the following formula (4). The
5FSO 3 H + 2CO (NH 2 ) 2
(FSO 2 ) 2 NH + 3NH 4 SO 3 F + 2CO 2 Formula (4)
When bis (fluorosulfonyl) imide is produced by the above formula (4), 1 mol equivalent of bis (fluorosulfonyl) imide is produced from 2 mol equivalent of urea. Therefore, in the reaction formula of the formula (1), the theoretical maximum value of the yield of bis (fluorosulfonyl) imide based on urea is 100%, but when the reaction proceeds in the reaction formula of the formula (4), The theoretical maximum yield of bis (fluorosulfonyl) imide on a urea basis is 50%.
 この場合、加熱している反応容器中には、供給された未反応混合液中の尿素が速やかにフルオロ硫酸と反応して生成された、ビス(フルオロスルホニル)イミドを含む反応液が存在することになる。
 結果として、上記反応液は、上記式(4)に示すように、生成したビス(フルオロスルホニル)イミドと、副生したフルオロスルホン酸アンモニウムと、未反応のフルオロ硫酸と、からなるスラリー状の混合液となる。したがって、反応容器内を撹拌しながら反応させることが好ましい。
In this case, a reaction liquid containing bis (fluorosulfonyl) imide, which is generated by the reaction of urea in the supplied unreacted liquid mixture with fluorosulfuric acid, is present in the reaction vessel being heated. become.
As a result, as shown in the above formula (4), the reaction solution is a slurry-like mixture composed of the produced bis (fluorosulfonyl) imide, by-produced ammonium fluorosulfonate, and unreacted fluorosulfuric acid. Become a liquid. Therefore, it is preferable to react while stirring the inside of the reaction vessel.
 なお、反応開始時には、反応容器を予めフルオロ硫酸又はビス(フルオロスルホニル)イミド、あるいは尿素とフルオロ硫酸が反応して生成したビス(フルオロスルホニル)イミドを含む反応液で満たし、所定の温度に加熱しておくことが好ましい。 At the start of the reaction, the reaction vessel is prefilled with a reaction liquid containing fluorosulfuric acid or bis (fluorosulfonyl) imide or bis (fluorosulfonyl) imide produced by the reaction of urea and fluorosulfuric acid, and heated to a predetermined temperature. It is preferable to keep it.
 反応容器へ上記未反応混合液を供給している間の、当該反応容器中のフルオロ硫酸と尿素との反応温度(すなわち、反応容器中に生成している反応液の温度)は、100~170℃の範囲内であることが好ましく、120~150℃の範囲内であることがより好ましい。ここで、反応温度が100℃以下であると、反応の蓄積が起こりやすくなるために好ましくなく、170℃以上であるとフルオロ硫酸の沸点を超え、フルオロ硫酸が蒸発するため、経済的に無駄である。 During the supply of the unreacted mixed solution to the reaction vessel, the reaction temperature of fluorosulfuric acid and urea in the reaction vessel (that is, the temperature of the reaction solution generated in the reaction vessel) is 100 to 170. It is preferably within the range of ° C, and more preferably within the range of 120 to 150 ° C. Here, it is not preferable that the reaction temperature is 100 ° C. or lower because accumulation of the reaction is likely to occur, and if it is 170 ° C. or higher, the boiling point of the fluorosulfuric acid is exceeded and the fluorosulfuric acid is evaporated. is there.
 反応容器への上記未反応混合液の供給速度は、前記未反応混合液中の尿素の1時間当たりの供給量が、反応容器に含まれる反応液の重量に対して15%以下となるように制御することが好ましい。上記供給速度は、1%~15%の範囲内に制御することがより好ましい。また、上記供給速度を5%~12.5%の範囲内に制御することが、さらにより好ましい。
 尿素の1時間当たりの供給量が、反応液の重量に対して15%を超えると、未反応の原料が系外に排出され、収率が低下するため好ましくない。これに対して、供給速度が15%以下であると、供給された未反応混合液が反応容器に滞留している間に反応が完結する。そのため、未反応の原料が系外に排出されることがなくなり、ビス(フルオロスルホニル)イミドの収量が向上する。
 上記供給量が1%以下であると、生成工程が長くなり、ビス(フルオロスルホニル)イミドの製造コストが高くなる。
 反応容器への上記未反応混合液の供給方法は、特に限定されるものではなく、上記供給速度に応じて適宜選択することができる。具体的には、例えば、定量ポンプによる滴下、タンクなどからの滴下、圧送等が挙げられる。
The supply rate of the unreacted mixed solution to the reaction vessel is such that the supply amount of urea in the unreacted mixed solution per hour is 15% or less with respect to the weight of the reaction solution contained in the reaction vessel. It is preferable to control. The supply rate is more preferably controlled within a range of 1% to 15%. It is even more preferable to control the supply rate within a range of 5% to 12.5%.
When the supply amount of urea per hour exceeds 15% with respect to the weight of the reaction solution, unreacted raw materials are discharged out of the system and the yield is lowered, which is not preferable. On the other hand, when the supply rate is 15% or less, the reaction is completed while the supplied unreacted mixed liquid remains in the reaction vessel. Therefore, unreacted raw materials are not discharged out of the system, and the yield of bis (fluorosulfonyl) imide is improved.
When the supply amount is 1% or less, the production process becomes long, and the production cost of bis (fluorosulfonyl) imide increases.
The method for supplying the unreacted mixed solution to the reaction vessel is not particularly limited, and can be appropriately selected according to the supply rate. Specifically, for example, dripping by a metering pump, dripping from a tank or the like, pressure feeding and the like can be mentioned.
 本実施形態で用いる反応容器としては、特に限定されるものではなく、ビス(フルオロスルホニル)イミドの生産規模に応じて適宜選択することができる。 The reaction vessel used in the present embodiment is not particularly limited, and can be appropriately selected according to the production scale of bis (fluorosulfonyl) imide.
(回収工程)
 次に、前記生成工程が開始され、反応容器内の反応液が所定量に達した後、前記反応容器から前記反応液を回収する。反応容器からの反応液の回収方法は、反応容器から反応液を定量的に抜き出せる方法であれば、限定されるものではない。抜き出し方法としては、例えば、反応容器に排出管を設けたオーバーフロー方式、定量ポンプによる抜き出し等が挙げられる。
 このように、反応容器への未反応混合液の供給により生成した、ビス(フルオロスルホニル)イミドと、副生したフルオロ硫酸のアンモニウム塩と、未反応のフルオロ硫酸とを含むスラリー状の反応液を連続的に排出させることにより、長時間安定して反応を続けることが可能となる。
(Recovery process)
Next, the production step is started, and after the reaction liquid in the reaction container reaches a predetermined amount, the reaction liquid is recovered from the reaction container. The method for recovering the reaction solution from the reaction vessel is not limited as long as the reaction solution can be quantitatively extracted from the reaction vessel. Examples of the extraction method include an overflow method in which a reaction vessel is provided with a discharge pipe, extraction using a metering pump, and the like.
Thus, a slurry-like reaction liquid containing bis (fluorosulfonyl) imide, by-produced ammonium salt of fluorosulfuric acid, and unreacted fluorosulfuric acid generated by supplying the unreacted mixed liquid to the reaction vessel is prepared. By continuously discharging, the reaction can be continued stably for a long time.
 また、本実施形態のビス(フルオロスルホニル)イミドの製造方法では、回収工程により、反応容器中の反応液を連続的に系外に排出するため、従来のバッチ式の製造方法と比較して小型の反応容器を用いることができる。これにより、反応装置全体の小型化が可能となるため、経済性においても優れる。 Moreover, in the manufacturing method of bis (fluorosulfonyl) imide of this embodiment, since the reaction liquid in the reaction vessel is continuously discharged out of the system by the recovery step, it is smaller than the conventional batch type manufacturing method. The reaction vessel can be used. This makes it possible to reduce the size of the entire reaction apparatus, which is excellent in economic efficiency.
 本明細書において反応の蓄積とは、上述した非特許文献1に開示されているビス(フルオロスルホニル)イミドの製造方法で見られる、反応初期には炭酸ガスが発生しない現象をいう。この反応の蓄積が確認されると、その後、反応途中から急激な炭酸ガスの発生と激しい発熱とを伴って、暴走的に反応が進行してしまうため、安全面の問題が生じる。 In this specification, the accumulation of reaction refers to a phenomenon in which carbon dioxide gas is not generated at the initial stage of the reaction, which is observed in the method for producing bis (fluorosulfonyl) imide disclosed in Non-Patent Document 1 described above. If the accumulation of this reaction is confirmed, the reaction proceeds in a runaway manner with a sudden generation of carbon dioxide gas and intense heat generation from the middle of the reaction, which causes a safety problem.
 また、本実施形態において、加熱している反応容器中に予めフルオロ硫酸を投入しておく場合は、予め添加剤を反応容器中に添加しておくことが好ましい。上述したように、反応容器に未反応混合液を供給して尿素とフルオロ硫酸とを反応させることで、概ね炭酸ガスの発生と発熱とを制御することが可能である。さらに、加熱している反応容器中に投入するフルオロ硫酸に予め添加剤を添加することで、滴下初期に起こりやすい反応の蓄積を防止することができる。 Further, in this embodiment, when fluorosulfuric acid is put in advance in a heated reaction vessel, it is preferable to add an additive in the reaction vessel in advance. As described above, it is possible to generally control the generation of carbon dioxide gas and the generation of heat by supplying the unreacted mixed solution to the reaction vessel and reacting urea with fluorosulfuric acid. Furthermore, by adding an additive in advance to the fluorosulfuric acid introduced into the heated reaction vessel, it is possible to prevent the accumulation of reaction that tends to occur at the beginning of the dropping.
 添加剤としては、本発明の製造方法の生成物であるビス(フルオロスルホニル)イミド又は下記式(5)で表されるビス(フルオロスルホニル)イミド塩を用いても良い。また、これらの一種又は二種以上を含む混合物を用いても良い。
 (FSON・M   式(5)
As an additive, you may use the bis (fluoro sulfonyl) imide which is a product of the manufacturing method of this invention, or the bis (fluoro sulfonyl) imide salt represented by following formula (5). Moreover, you may use the mixture containing these 1 type, or 2 or more types.
(FSO 2 ) 2 N · M Formula (5)
 上記式(5)において、Mは、Na、K、Li、アンモニウムからなる群から選ばれた陽イオンのいずれか一種を示す。すなわち、上記式(5)で表されるビス(フルオロスルホニル)イミド塩としては、ビス(フルオロスルホニル)イミドナトリウム塩((FSON・Na)、ビス(フルオロスルホニル)イミドカリウム塩((FSON・K)、ビス(フルオロスルホニル)イミドリチウム塩((FSON・Li)、ビス(フルオロスルホニル)イミドアンモニウム塩((FSON・NH)が挙げられる。 In the above formula (5), M represents any one of cations selected from the group consisting of Na, K, Li, and ammonium. That is, as the bis (fluorosulfonyl) imide salt represented by the above formula (5), bis (fluorosulfonyl) imide sodium salt ((FSO 2 ) 2 N · Na), bis (fluorosulfonyl) imide potassium salt (( FSO 2 ) 2 N · K), bis (fluorosulfonyl) imide lithium salt ((FSO 2 ) 2 N · Li), bis (fluorosulfonyl) imide ammonium salt ((FSO 2 ) 2 N · NH 4 ) .
 添加剤の添加量は、予め反応容器中に投入しておくフルオロ硫酸の質量部に対して0.01~1.0倍の範囲内とすることが好ましく、0.02~0.1倍の範囲内とすることがより好ましい。
 添加剤の添加量が0.01倍未満であると、反応の蓄積を防止する効果が得られないために好ましくない。一方、添加剤の添加量が1.0倍を超えると、効果に変化がなく経済的に無駄である。
The addition amount of the additive is preferably in the range of 0.01 to 1.0 times the mass part of fluorosulfuric acid previously charged in the reaction vessel, 0.02 to 0.1 times More preferably, it is within the range.
If the additive amount is less than 0.01 times, the effect of preventing the accumulation of reaction cannot be obtained, which is not preferable. On the other hand, if the additive amount exceeds 1.0, the effect is not changed and it is economically wasteful.
 また、ビス(フルオロスルホニル)イミドは、本発明の製造方法の生成物であることから、添加剤として本発明の製造方法で生成されたビス(フルオロスルホニル)イミドを含む反応終了液を、次回の製造時の反応前の反応容器へフルオロ硫酸とともに予め添加しても良い。 In addition, since bis (fluorosulfonyl) imide is a product of the production method of the present invention, the reaction end solution containing bis (fluorosulfonyl) imide produced by the production method of the present invention as an additive is added to the next time. You may add beforehand with a fluorosulfuric acid to the reaction container before the reaction at the time of manufacture.
 上記反応終了液を添加剤として用いる場合には、反応終了液中のビス(フルオロスルホニル)イミドの濃度にもよるが、反応容器中のフルオロ硫酸の質量部に対して0.05~1.0倍の範囲内とすることが好ましく、0.1~0.5倍の範囲内とすることがより好ましい。添加剤である反応終了液の添加量が0.05倍未満であると、反応の蓄積を防止する効果が得られないために好ましくない。また、反応終了液の添加量が1.0倍を超えると、効果に変化がなく経済的に無駄である。
 一方、フルオロ硫酸の代わりに、反応容器中にビス(フルオロスルホニル)イミドを加熱して反応させる場合には、フルオロ硫酸に添加剤を加えた場合と同様の効果が得られるために、新たに添加剤を添加する必要はない。
When the reaction completion liquid is used as an additive, although depending on the concentration of bis (fluorosulfonyl) imide in the reaction completion liquid, it is 0.05 to 1.0 with respect to parts by mass of fluorosulfuric acid in the reaction vessel. The range is preferably within the range of double, and more preferably within the range of 0.1 to 0.5. If the addition amount of the reaction end solution as an additive is less than 0.05 times, the effect of preventing the accumulation of reaction cannot be obtained, which is not preferable. On the other hand, if the addition amount of the reaction end liquid exceeds 1.0 times, the effect is not changed and it is economically useless.
On the other hand, when bis (fluorosulfonyl) imide is heated and reacted in a reaction vessel instead of fluorosulfuric acid, the same effect as when adding an additive to fluorosulfuric acid is obtained. There is no need to add an agent.
 以上説明したように、本実施形態のビス(フルオロスルホニル)イミドの製造方法によれば、予め尿素をフルオロ硫酸と反応させることなく混合して未反応混合液を調製し、未反応混合液とは別に加熱している反応容器にこの未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成するとともに、反応容器から上記反応液を回収するという構成を有している。これにより、炭酸ガスの発生と反応熱を制御しつつ、ビス(フルオロスルホニル)イミドを連続的に製造することができる。 As described above, according to the bis (fluorosulfonyl) imide production method of the present embodiment, urea is mixed with fluorosulfuric acid in advance to prepare an unreacted mixed solution. The unreacted mixed solution is supplied to a separately heated reaction vessel to generate a reaction solution containing at least bis (fluorosulfonyl) imide, and the reaction solution is recovered from the reaction vessel. . Thereby, bis (fluorosulfonyl) imide can be continuously produced while controlling generation of carbon dioxide gas and reaction heat.
 また、本実施形態のビス(フルオロスルホニル)イミドの製造方法によれば、反応容器を予め加熱して反応容器中での反応温度を所定の温度範囲内となるように制御するとともに、反応容器に未反応混合液の供給速度を所定の範囲に制御することにより、供給された未反応混合液が反応容器に滞留している間に反応が完結する。これにより、未反応の原料が系外に排出されて収率が低下を防ぐことができる。 Moreover, according to the method for producing bis (fluorosulfonyl) imide of the present embodiment, the reaction vessel is preheated to control the reaction temperature in the reaction vessel to be within a predetermined temperature range, and By controlling the supply rate of the unreacted mixed solution within a predetermined range, the reaction is completed while the supplied unreacted mixed solution stays in the reaction vessel. Thereby, an unreacted raw material is discharged | emitted out of the system, and a yield can be prevented from falling.
 また、加熱する反応容器中に予めフルオロ硫酸を投入し、さらに、添加剤としてビス(フルオロスルホニル)イミド又はイミド塩をフルオロ硫酸に予め添加することにより、供給初期に起こる反応の蓄積を防止することができる。したがって、イオン導電材料及びイオン液体のアニオン源として有用な物質であるビス(フルオロスルホニル)イミドを安全かつ容易に製造することができる。 In addition, by adding fluorosulfuric acid into the reaction vessel to be heated in advance and adding bis (fluorosulfonyl) imide or imide salt to fluorosulfuric acid as an additive in advance, accumulation of reaction that occurs at the initial stage of supply is prevented. Can do. Accordingly, bis (fluorosulfonyl) imide, which is a substance useful as an anion source for an ion conductive material and an ionic liquid, can be produced safely and easily.
 以下に、本発明の実施例を詳細に説明する。なお、本発明は実施例によって、なんら限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited at all by the Example.
(実施例1)
 攪拌機、温度計を備えた5Lのポリテトラフルオロエチレン(PTFE)製の反応器に、フルオロ硫酸2.8kgを仕込み、冷却しながら尿素400gを少量ずつ添加し、尿素のフルオロ硫酸溶液を調製した。
 攪拌機、温度計、ガス流量計を備えた100mLのガラス製フラスコを140℃で加熱しているところへ、尿素のフルオロ硫酸溶液を50g/Hrの速度で滴下した。なお、上記滴下速度は、尿素のフルオロ硫酸溶液に含まれる尿素の1時間当たりの供給量が、反応器に含まれる反応液の重量の6.25%となるように制御された。
 尿素のフルオロ硫酸溶液を約100g滴下した時点から、反応器に備え付けられた排出管から反応液の排出が確認され、その後は定量的に反応液が排出され続けた。滴下中の反応器中の反応温度は、130~140℃を保っていた。滴下には計64時間を要した。反応液を室温まで冷却後、水に溶解し、19F-NMRにて分析を行った。その結果、ビス(フルオロスルホニル)イミドの存在を示す52.1ppmにピークが確認された。定量測定値を基に、内部標準添加法により算出されたビス(フルオロスルホニル)イミドの尿素基準の収率は43%(519g)であった。式(4)から分かる通り、ビス(フルオロスルホニル)イミドの尿素基準の収率の理論上の最大値は50%であり、収率43%は理論上の最大値の86%に相当する。
 本実施例1の結果から、安価な原料を用いて、容易にかつ安全に、連続的にビス(フルオロスルホニル)イミドが高収率で製造されたことが分かる。
Example 1
A 5 L polytetrafluoroethylene (PTFE) reactor equipped with a stirrer and a thermometer was charged with 2.8 kg of fluorosulfuric acid, and 400 g of urea was added little by little while cooling to prepare a fluorosulfuric acid solution of urea.
To a place where a 100 mL glass flask equipped with a stirrer, a thermometer, and a gas flow meter was heated at 140 ° C., a fluorosulfuric acid solution of urea was dropped at a rate of 50 g / Hr. The dropping rate was controlled so that the supply amount of urea contained in the fluorosulfuric acid solution per hour was 6.25% of the weight of the reaction solution contained in the reactor.
From the time when about 100 g of urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid continued to be discharged quantitatively. The reaction temperature in the dropping reactor was maintained at 130 to 140 ° C. The dripping took a total of 64 hours. The reaction solution was cooled to room temperature, dissolved in water, and analyzed by 19 F-NMR. As a result, a peak was confirmed at 52.1 ppm indicating the presence of bis (fluorosulfonyl) imide. The yield based on urea of bis (fluorosulfonyl) imide calculated by the internal standard addition method based on the quantitative measurement value was 43% (519 g). As can be seen from equation (4), the theoretical maximum yield of bis (fluorosulfonyl) imide based on urea is 50%, and 43% yield corresponds to 86% of the theoretical maximum.
From the results of Example 1, it can be seen that bis (fluorosulfonyl) imide was continuously produced in high yield easily and safely using inexpensive raw materials.
(実施例2)
 攪拌機、温度計、ガス流量計を備えた2Lのガラス製の反応器を150℃で加熱しているところへ、実施例1と同様の方法にて調製した尿素のフルオロ硫酸溶液を3.25kg/Hrの速度で滴下した。なお、上記滴下速度は、尿素のフルオロ硫酸溶液に含まれる尿素の1時間当たりの供給量が、反応器に含まれる反応液の重量の15%となるように制御された。
 尿素のフルオロ硫酸溶液を2.7kg滴下した頃から反応器に備え付けられた排出管から反応液の排出が確認され、その後は定量的に反応液を排出し続けた。滴下中の反応器中の反応温度は、140~150℃を保っていた。尿素のフルオロ硫酸溶液の滴下は90時間続けて行い、合計293kg(尿素37kg)を滴下した。反応液を室温まで冷却後、水に溶解し、19F-NMRにて分析を行った。その結果、ビス(フルオロスルホニル)イミドの存在を示す52.1ppmにピークが確認された。定量測定値を基に、内部標準添加法により算出されたビス(フルオロスルホニル)イミドの尿素基準の収率は42%(46kg)であった。収率42%は理論上の最大値の84%に相当する。
 本実施例2の結果から、安価な原料を用いて、容易にかつ安全に、連続的にビス(フルオロスルホニル)イミドが高収率で製造されたことが分かる。
(Example 2)
A 2 L glass reactor equipped with a stirrer, a thermometer, and a gas flow meter was heated at 150 ° C., and 3.25 kg / urea of a urea fluorosulfuric acid solution prepared in the same manner as in Example 1 was used. The solution was dropped at a rate of Hr. The dropping rate was controlled so that the supply amount of urea contained in the fluorosulfuric acid solution of urea per hour was 15% of the weight of the reaction solution contained in the reactor.
From the time when 2.7 kg of a urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid was continuously discharged quantitatively. The reaction temperature in the dropping reactor was maintained at 140 to 150 ° C. The dropwise addition of urea in fluorosulfuric acid was continued for 90 hours, and a total of 293 kg (37 kg of urea) was added dropwise. The reaction solution was cooled to room temperature, dissolved in water, and analyzed by 19 F-NMR. As a result, a peak was confirmed at 52.1 ppm indicating the presence of bis (fluorosulfonyl) imide. Based on the quantitative measurement value, the urea-based yield of bis (fluorosulfonyl) imide calculated by the internal standard addition method was 42% (46 kg). A yield of 42% corresponds to a theoretical maximum of 84%.
From the results of Example 2, it can be seen that bis (fluorosulfonyl) imide was continuously produced in high yield easily and safely using inexpensive raw materials.
(比較例1)
 攪拌機、温度計、ガス流量計を備えた2Lのガラス製の反応器を150℃で加熱しているところへ、実施例1と同様の方法にて調製した尿素のフルオロ硫酸溶液を3.75kg/Hrの速度で滴下した。なお、上記滴下速度は、反応器に含まれる反応液の重量の17%であった。
 尿素のフルオロ硫酸溶液を約2.7kg滴下した時点から反応器に備え付けられた排出管から反応液の排出が確認され、その後は定量的に反応液が排出され続けた。滴下中の反応器中の反応温度は、140~150℃を保っていた。尿素のフルオロ硫酸溶液の滴下は20時間続けて行い、合計75kg(尿素9.4kg)を滴下した。反応液を室温まで冷却後、水に溶解し、19F-NMRにて分析を行った。その結果、ビス(フルオロスルホニル)イミドの存在を示す52.1ppmにピークが確認された。定量測定値を基に、内部標準添加法により算出されたビス(フルオロスルホニル)イミドの尿素基準の収率は30%(8.5kg)であった。収率30%は理論上の最大値の60%に相当する。
 比較例1においては、反応容器への尿素のフルオロ硫酸溶液の供給速度が、反応器に含まれる反応液の重量の17%であったために、排出管から原料の一部が未反応のまま排出され、結果として、実施例1および実施例2と比較して収率が低下したと考えられる。
(Comparative Example 1)
A 2 L glass reactor equipped with a stirrer, a thermometer, and a gas flow meter is heated at 150 ° C., and 3.75 kg / urea of a urea fluorosulfuric acid solution prepared in the same manner as in Example 1 is used. The solution was dropped at a rate of Hr. The dropping speed was 17% of the weight of the reaction solution contained in the reactor.
From the time when about 2.7 kg of a urea fluorosulfuric acid solution was dropped, the discharge of the reaction liquid was confirmed from the discharge pipe provided in the reactor, and thereafter, the reaction liquid continued to be discharged quantitatively. The reaction temperature in the dropping reactor was maintained at 140 to 150 ° C. The dropwise addition of urea in fluorosulfuric acid was continued for 20 hours, and a total of 75 kg (urea 9.4 kg) was added dropwise. The reaction solution was cooled to room temperature, dissolved in water, and analyzed by 19 F-NMR. As a result, a peak was confirmed at 52.1 ppm indicating the presence of bis (fluorosulfonyl) imide. Based on the quantitative measurement value, the urea-based yield of bis (fluorosulfonyl) imide calculated by the internal standard addition method was 30% (8.5 kg). A yield of 30% corresponds to 60% of the theoretical maximum.
In Comparative Example 1, since the feed rate of the urea fluorosulfuric acid solution to the reaction vessel was 17% of the weight of the reaction liquid contained in the reactor, a part of the raw material was discharged from the discharge pipe while remaining unreacted. As a result, it is considered that the yield was lowered as compared with Example 1 and Example 2.
(比較例2)
 攪拌機、温度計を備えた1Lのポリテトラフルオロエチレン(PTFE)製の反応器にフルオロ硫酸600gを仕込み、冷却しながら尿素100gを少量ずつ添加し、尿素のフルオロ硫酸溶液を調製した。この反応液を115℃のオイルバスで加熱したところ、反応液の温度が110℃付近から炭酸ガスの発生が確認され、その後炭酸ガスの激しい噴出とともに反応液の温度が20分で172℃まで上昇した後、発熱と炭酸ガスの発生が収まり、反応が終了した。
 その後、反応液から減圧蒸留にてビス(フルオロスルホニル)イミドとフルオロ硫酸の混合物を260g抜き出した。抜き出し後の残渣はフルオロ硫酸のアンモニウム塩であった。抜き出した成分について19F-NMRにて分析を行い、定量測定値を基に、内部標準添加法により算出されたビス(フルオロスルホニル)イミドの尿素基準の収率は40%であった。収率40%は理論上の最大値の80%に相当する。
 比較例2では、原料の化学反応の進行が制御されず、原料の全てがほぼ同時期に化学反応したために、反応の蓄積が起こり、結果として、急激な炭酸ガスの発生と、激しい発熱とを伴う暴走的な化学反応が進行したと考えられる。
 比較例2の結果から、比較例2の条件でのビス(フルオロスルホニル)イミドの製造は、安全性に問題があり、工業的に実施することが困難であることが分かる。
(Comparative Example 2)
600 g of fluorosulfuric acid was charged into a 1 L reactor made of polytetrafluoroethylene (PTFE) equipped with a stirrer and a thermometer, and 100 g of urea was added little by little while cooling to prepare a fluorosulfuric acid solution of urea. When this reaction liquid was heated in an oil bath at 115 ° C., carbon dioxide gas was confirmed to be generated from the temperature of the reaction liquid at around 110 ° C., and then the temperature of the reaction liquid rose to 172 ° C. in 20 minutes as the carbon dioxide gas was vigorously ejected After the heat generation and generation of carbon dioxide gas were stopped, the reaction was completed.
Thereafter, 260 g of a mixture of bis (fluorosulfonyl) imide and fluorosulfuric acid was extracted from the reaction solution by distillation under reduced pressure. The residue after extraction was an ammonium salt of fluorosulfuric acid. The extracted component was analyzed by 19 F-NMR, and the yield based on urea of bis (fluorosulfonyl) imide calculated by the internal standard addition method based on the quantitative measurement value was 40%. A yield of 40% corresponds to 80% of the theoretical maximum.
In Comparative Example 2, the progress of the chemical reaction of the raw materials was not controlled, and all of the raw materials chemically reacted almost at the same time. As a result, accumulation of reactions occurred, resulting in rapid generation of carbon dioxide gas and intense heat generation. The accompanying runaway chemical reaction is thought to have progressed.
From the results of Comparative Example 2, it can be seen that the production of bis (fluorosulfonyl) imide under the conditions of Comparative Example 2 is problematic in safety and difficult to implement industrially.
 本発明のビス(フルオロスルホニル)イミドの製造方法によれば、安価な原料を用いた短い反応工程から、安全かつ容易に、高い収率でビス(フルオロスルホニル)イミドを製造することができる。 According to the method for producing bis (fluorosulfonyl) imide of the present invention, bis (fluorosulfonyl) imide can be produced safely and easily in a high yield from a short reaction step using an inexpensive raw material.

Claims (6)

  1.  フルオロ硫酸に尿素を反応させることなく混合して、未反応混合液を調製する調製工程と、
     加熱している反応容器に前記未反応混合液を供給して、少なくともビス(フルオロスルホニル)イミドを含む反応液を生成する生成工程と、
     前記反応容器から前記反応液を回収する回収工程と、を備えることを特徴とするビス(フルオロスルホニル)イミドの製造方法。
    A preparation step of preparing an unreacted mixed solution by mixing urea without reacting with fluorosulfuric acid;
    A generating step of supplying the unreacted mixed solution to a heating reaction vessel to generate a reaction solution containing at least bis (fluorosulfonyl) imide;
    A recovery step of recovering the reaction solution from the reaction vessel. A method for producing bis (fluorosulfonyl) imide.
  2.  前記生成工程において、前記反応容器中の前記フルオロ硫酸と前記尿素との反応温度が、100~170℃の範囲内である請求項1に記載のビス(フルオロスルホニル)イミドの製造方法。 The method for producing bis (fluorosulfonyl) imide according to claim 1, wherein, in the production step, a reaction temperature between the fluorosulfuric acid and the urea in the reaction vessel is in a range of 100 to 170 ° C.
  3.  前記生成工程において、前記反応容器中の前記反応液の温度が、100~170℃の範囲内である請求項1又は2に記載のビス(フルオロスルホニル)イミドの製造方法。 The method for producing bis (fluorosulfonyl) imide according to claim 1 or 2, wherein, in the production step, the temperature of the reaction solution in the reaction vessel is in the range of 100 to 170 ° C.
  4.  前記生成工程において、前記反応容器への前記未反応混合液の供給速度は、前記未反応混合液中の尿素の1時間当たりの供給量が、前記反応容器に含まれる反応液の重量の15%以下となるように制御される請求項1から3のいずれか一項に記載のビス(フルオロスルホニル)イミドの製造方法。 In the generating step, the supply rate of the unreacted mixed solution to the reaction vessel is such that the supply amount of urea in the unreacted mixed solution per hour is 15% of the weight of the reaction solution contained in the reaction vessel. The manufacturing method of the bis (fluoro sulfonyl) imide as described in any one of Claim 1 to 3 controlled so that it may become the following.
  5.  前記調製工程において、前記未反応混合液中の前記フルオロ硫酸の量が、前記未反応混合液中に溶解している前記尿素の質量部に対して2~10倍の範囲内である請求項1から4のいずれか一項に記載のビス(フルオロスルホニル)イミドの製造方法。 2. In the preparation step, the amount of the fluorosulfuric acid in the unreacted mixed solution is in the range of 2 to 10 times the mass part of the urea dissolved in the unreacted mixed solution. To 4. The method for producing bis (fluorosulfonyl) imide according to any one of items 4 to 4.
  6.  前記生成工程によって生成される前記反応液が、さらにフルオロ硫酸アンモニウムを含み、スラリー状である請求項1から4のいずれか一項に記載のビス(フルオロスルホニル)イミドの製造方法。 The method for producing bis (fluorosulfonyl) imide according to any one of claims 1 to 4, wherein the reaction liquid produced in the production step further contains ammonium fluorosulfate and is in a slurry form.
PCT/JP2011/055654 2010-03-11 2011-03-10 Method for producing bis(fluorosulphonyl)imide WO2011111780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012504515A JP5444453B2 (en) 2010-03-11 2011-03-10 Method for producing bis (fluorosulfonyl) imide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010054511 2010-03-11
JP2010-054511 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011111780A1 true WO2011111780A1 (en) 2011-09-15

Family

ID=44563578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055654 WO2011111780A1 (en) 2010-03-11 2011-03-10 Method for producing bis(fluorosulphonyl)imide

Country Status (2)

Country Link
JP (1) JP5444453B2 (en)
WO (1) WO2011111780A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476482A (en) * 2016-08-19 2019-03-15 日本曹达株式会社 The manufacturing method of fluorine-containing sulfonamide compounds
WO2021126840A1 (en) * 2019-12-17 2021-06-24 Honeywell International Inc. Integrated processes for producing bis(fluorosulfonyl) imide
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
KR20220090746A (en) * 2020-12-23 2022-06-30 주식회사 중원신소재 Method for Producing Bis(Chlorosulfonyl)imide
WO2022150808A1 (en) * 2021-01-07 2022-07-14 Honeywell International Inc. Integrated processes for treatment of an ammonium fluorosulfate byproduct of the production of bis(fluorosulfonyl) imide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379509A (en) * 1961-12-09 1968-04-23 Olin Mathieson Imino bis (sulfuryl halide) product and process for preparing the same
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2007182410A (en) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing fluorine compound and fluorine compound obtained thereby
JP2009504790A (en) * 2005-08-22 2009-02-05 トランスファート プラス エスイーシー Process for preparing sulfonylimides and derivatives thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379509A (en) * 1961-12-09 1968-04-23 Olin Mathieson Imino bis (sulfuryl halide) product and process for preparing the same
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2009504790A (en) * 2005-08-22 2009-02-05 トランスファート プラス エスイーシー Process for preparing sulfonylimides and derivatives thereof
JP2007182410A (en) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd Method for producing fluorine compound and fluorine compound obtained thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTIN BERAN ET AL.: "A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F,Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 631, no. 1, 2005, pages 55 - 59 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109476482A (en) * 2016-08-19 2019-03-15 日本曹达株式会社 The manufacturing method of fluorine-containing sulfonamide compounds
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
WO2021126840A1 (en) * 2019-12-17 2021-06-24 Honeywell International Inc. Integrated processes for producing bis(fluorosulfonyl) imide
CN114901590A (en) * 2019-12-17 2022-08-12 霍尼韦尔国际公司 Integrated process for the production of bis (fluorosulfonyl) imide
JP2023507342A (en) * 2019-12-17 2023-02-22 ハネウェル・インターナショナル・インコーポレーテッド An integrated process for producing bis(fluorosulfonyl)imides
US11591218B2 (en) 2019-12-17 2023-02-28 Honeywell International Inc. Integrated processes for producing bis(fluorosulfonyl) imide
JP7390488B2 (en) 2019-12-17 2023-12-01 ハネウェル・インターナショナル・インコーポレーテッド Integrated process for producing bis(fluorosulfonyl)imides
CN114901590B (en) * 2019-12-17 2024-04-12 霍尼韦尔国际公司 Integrated process for the production of bis (fluorosulfonyl) imide
KR20220090746A (en) * 2020-12-23 2022-06-30 주식회사 중원신소재 Method for Producing Bis(Chlorosulfonyl)imide
KR102516462B1 (en) 2020-12-23 2023-04-03 주식회사 천보신소재 Method for Producing Bis(Chlorosulfonyl)imide
WO2022150808A1 (en) * 2021-01-07 2022-07-14 Honeywell International Inc. Integrated processes for treatment of an ammonium fluorosulfate byproduct of the production of bis(fluorosulfonyl) imide
US11772967B2 (en) 2021-01-07 2023-10-03 Honeywell International Inc. Integrated processes for treatment of an ammonium fluorosulfate byproduct of the production of bis (fluorosulfonyl) imide

Also Published As

Publication number Publication date
JP5444453B2 (en) 2014-03-19
JPWO2011111780A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5527993B2 (en) Method for producing bis (fluorosulfonyl) imide
JP5444453B2 (en) Method for producing bis (fluorosulfonyl) imide
CN107986248B (en) Preparation method of bis (fluorosulfonyl) imide
JP2015531744A (en) Synthesis of bis (fluorosulfonyl) imide
JP5899789B2 (en) Method for producing imide salt
TW200848365A (en) Process for producing phosphorus pentafluoride and hexafluorophosphate
WO2015150862A1 (en) Production of a hexafluorophosphate salt and of phosphorous pentafluoride
JP6292996B2 (en) Method for producing lithium fluorosulfate and a solution containing the same
US20100196251A1 (en) Method for Production of Iodine Heptafluoride
KR20190120744A (en) How to prepare phosphorus fluoride
JP5560136B2 (en) Method for producing bis (fluorosulfonyl) imide
JP2012508187A (en) Adiabatic process for producing mononitrobenzene
JP2016510328A (en) A simple method for preparing 5-nitrotetrazolate using a flow system
JP5538534B2 (en) Method for producing fluorine-containing imide compound
WO2019158577A1 (en) Catalysts for the synthesis of alkanesulfonic acids
JP2012162470A (en) Method of manufacturing bis(fluorosulfonyl) amide salt and perfluoro-n-(fluorosulfonyl) alkane sulfonyl amide salt
JP2013166698A (en) Method for producing imide compound
KR20020088054A (en) Process for preparing nitrogen trifluoride
JPS6137202B2 (en)
US20090274604A1 (en) Production Method of High Purity Silver Tetrafluoroborate
KR100591101B1 (en) Method for nitrogen trifluoride production
KR102014907B1 (en) How to prepare fluoride iodine
RU2178384C1 (en) Method of nitrogen fluoride synthesis
RU2256605C1 (en) Method for preparing nitrogen trifluoride
JP2012214464A (en) Method of producing n-sulfinyl-perfluoroalkane sulfonamide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753438

Country of ref document: EP

Kind code of ref document: A1