WO2011111692A1 - Ethanol manufacturing device and ethanol manufacturing method - Google Patents

Ethanol manufacturing device and ethanol manufacturing method Download PDF

Info

Publication number
WO2011111692A1
WO2011111692A1 PCT/JP2011/055352 JP2011055352W WO2011111692A1 WO 2011111692 A1 WO2011111692 A1 WO 2011111692A1 JP 2011055352 W JP2011055352 W JP 2011055352W WO 2011111692 A1 WO2011111692 A1 WO 2011111692A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
drying
filter cake
distillation
solid
Prior art date
Application number
PCT/JP2011/055352
Other languages
French (fr)
Japanese (ja)
Inventor
敏春 角谷
長谷川 博
山崎 幸一
隆史 下田
耕三 西堀
Original Assignee
株式会社雪国まいたけ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社雪国まいたけ filed Critical 株式会社雪国まいたけ
Publication of WO2011111692A1 publication Critical patent/WO2011111692A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/02Bioreactors or fermenters combined with devices for liquid fuel extraction; Biorefineries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/001Processes specially adapted for distillation or rectification of fermented solutions
    • B01D3/003Rectification of spirit
    • B01D3/004Rectification of spirit by continuous methods
    • B01D3/005Combined distillation and rectification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to an ethanol production apparatus and an ethanol production method for producing ethanol from lignocellulosic biomass.
  • lignocellulosic biomass such as woody biomass contains a large amount of cellulose, and this cellulose can be converted to ethanol by ethanol fermentation by degrading (saccharifying) to glucose.
  • Hydrolysis with concentrated sulfuric acid has been used for saccharification of lignocellulosic biomass (see Non-Patent Documents 1 and 2).
  • saccharification with concentrated sulfuric acid can extract glucose from lignocellulosic biomass, it is necessary to consider the corrosion of the apparatus, and it is not practical considering a large facility at the factory level. There is a problem that costs for saccharification and maintenance costs increase.
  • enzymatic saccharification methods are known. That is, it is a method of obtaining glucose under mild conditions by using an enzyme cellulase that decomposes cellulose.
  • there is a method of preventing the activity of cellulase from being inhibited by using ethanol fermentation with cellulase and yeast, and improving the ethanol conversion efficiency see Non-Patent Document 3).
  • ethanol can be produced from cellulose via glucose.
  • lignocellulosic biomass it is difficult to isolate cellulose because it is surrounded by lignin that is difficult to decompose.
  • Such lignocellulosic biomass is hardly saccharified even if it is directly reacted with cellulase or the like.
  • filamentous fungi are known as organisms that can degrade lignin contained in wood.
  • white rot fungi release strong lignin degrading enzymes to degrade lignin.
  • White rot fungi include edible mushrooms such as shiitake mushrooms, oyster mushrooms and maitake mushrooms, which are cultivated by fungus bed cultivation using wood. Edible mushrooms such as maitake are cultivated on a large scale in factories, and thus a large amount of waste fungus beds are produced after cultivation.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an ethanol production apparatus and an ethanol production method capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance.
  • the solid-liquid separation means which isolate
  • An ethanol production apparatus comprising: a steam supply unit configured to supply ethanol-containing steam generated by drying in the drying unit to the distillation unit.
  • the second invention is a solid-liquid separation step of separating the fermented product after ethanol fermentation into an ethanol-containing filtrate and a filter cake, A drying step of drying the filter cake, A method for producing ethanol, comprising: concentrating the ethanol-containing filtrate by distillation in a distillation column to obtain ethanol, and supplying the ethanol-containing vapor generated in the drying step to the distillation column. It is in.
  • the ethanol production apparatus of the first invention comprises at least the solid-liquid separation means, the distillation means, the drying means, and the steam supply means.
  • the solid-liquid separation means the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake.
  • the ethanol in the said ethanol containing filtrate is concentrated by distillation. In this way, ethanol can be obtained from the fermented product after ethanol fermentation.
  • the most notable point in the present invention is the provision of the drying means and the steam supply means. Since the drying means dries the filter cake separated in the solid-liquid separation means, during the drying, ethanol, moisture and the like remaining in the filter cake are generated as the ethanol-containing vapor. And since the ethanol manufacturing apparatus of this invention is equipped with the said vapor
  • the steam supply means supplies ethanol as the ethanol-containing steam to the distillation means in the form of steam
  • the heat energy of the ethanol-containing steam can be supplied to the distillation means and used for distillation. . That is, the thermal energy used in the drying means can be transferred to the distillation means for use. Therefore, the energy balance during ethanol production can be improved.
  • an ethanol production apparatus capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance can be provided.
  • the method for producing ethanol of the second invention includes at least the solid-liquid separation step, the drying step, and the distillation step.
  • the solid-liquid separation step the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake.
  • the distillation step the ethanol-containing filtrate is concentrated by distillation in a distillation column to obtain ethanol. In this way, ethanol can be obtained from the fermented product after ethanol fermentation.
  • the point to be noted in the present invention is that the drying step and the distillation step are performed. That is, in the drying step, the filter cake separated in the solid-liquid separation step is dried. At this time, ethanol and water contained in the filter cake are generated as the ethanol-containing vapor. In the distillation step, the ethanol-containing vapor generated in the drying step is supplied into the distillation column. Therefore, ethanol remaining in the filter cake after the solid-liquid separation step can also be recovered, and ethanol can be obtained with high yield.
  • the ethanol-containing vapor is supplied into the distillation column. That is, ethanol is supplied into the distillation column in a vapor state. Therefore, at least a part of the thermal energy necessary for distillation in the distillation step can be obtained from the ethanol-containing steam generated in the drying step. Therefore, the energy balance can be improved.
  • FIG. 3 is an explanatory diagram showing solid-liquid separation means according to the first embodiment. Explanatory drawing which shows the ultrafiltration means concerning Example 1.
  • FIG. 3 is an explanatory diagram showing distillation means according to the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a drying unit and a steam supply unit according to the first embodiment. Explanatory drawing which shows the drying means and vapor
  • FIG. 3 is an explanatory diagram showing a drying unit and a steam supply unit according to the first embodiment.
  • a fermented product after ethanol fermentation is used.
  • the fermented product is preferably obtained by subjecting a mixture of lignocellulosic biomass, water and cellulolytic enzyme to ethanol fermentation with a microorganism.
  • lignocellulosic biomass such as woody biomass can be effectively used.
  • the lignocellulosic biomass is preferably a fungal bed in which filamentous fungi are being cultured and / or a waste fungus bed of filamentous fungi. Since filamentous fungi can degrade lignin, in this case, the waste fungus bed contains cellulose in a state where it is easily degraded by enzymes. Therefore, ethanol fermentation can easily proceed, and the yield of ethanol from lignocellulosic biomass can be improved.
  • the filamentous fungus is preferably a white rot fungus.
  • the strong lignin resolving power of white rot fungi can be used, and the waste fungus bed contains cellulose in a state where it is more easily decomposed. Therefore, the yield of ethanol from the lignocellulosic biomass can be further improved.
  • the white rot fungi edible mushroom maitake, eringi, beech shimeji mushroom, shiitake mushroom or waste sorghum bed is preferred. Since these are cultivated on a large scale with fungus beds containing sawdust, a large amount of waste fungus beds containing cellulose can be obtained at a low cost while being easily decomposed. Particularly preferably, the white rot fungus is maitake.
  • cellulose-degrading enzyme those capable of saccharifying cellulose or hemicellulose can be used.
  • cellulase, hemicellulase, or a mixture of both can be used.
  • cellulolytic enzyme a purified product from a culture solution in which filamentous fungi are cultured, the culture solution itself, or a commercially available product can be used.
  • microorganism a microorganism capable of ethanol fermentation can be selected.
  • Saccharomyces cereviciae, Pichia stipitis, Shizosaccharomyces pombe, or the like can be used.
  • Commercial baker's yeast can also be used.
  • a culture solution in ethanol fermentation a medium optimal for microorganisms can be adopted.
  • the ethanol production apparatus includes at least the solid-liquid separation unit, the distillation unit, the drying unit, and the vapor supply unit.
  • the said solid-liquid separation means is comprised so that the fermented material after ethanol fermentation may be isolate
  • a centrifugal separator can be used in a small-scale apparatus.
  • a filter press is preferable. In this case, since pressure filtration can be performed, solid-liquid separation can be sufficiently performed even if the specific gravity difference between the solid and the liquid is small.
  • the ethanol production apparatus preferably includes an ultrafiltration means for recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate.
  • the fermented product is separated into an ethanol-containing filtrate and a filter cake by the solid-liquid separation means.
  • cellulose-degrading enzyme is used for ethanol fermentation, cellulose-degrading enzyme is contained in the ethanol-containing filtrate.
  • the ultrafiltration means is provided as described above, the expensive cellulose-degrading enzyme can be recovered from the ethanol-containing filtrate and can be reused.
  • the ultrafiltration means can be composed of a commercially available ultrafiltration membrane (UF membrane) or the like.
  • the distillation means is configured to concentrate ethanol in the ethanol-containing filtrate by distillation.
  • the distillation means can be constituted by a distillation column for performing rectification, a reboiler for cooking steam, a condenser for steam condensation, and the like.
  • a distillation column a plate column provided with a plurality of plates inside, or a packed column filled with a packing to be brought into gas-liquid contact can be adopted.
  • the drying means is for drying the filter cake and can be constituted by a commercially available dryer or the like.
  • a dryer that is heated via a mechanical heat transfer surface can be employed.
  • the present invention is not a drying method using a non-condensable carrier gas that makes it difficult to recover ethanol in a downstream process, and has a plurality of paddle shafts so that adhesion does not grow due to a self-cleaning effect.
  • a dryer that has a structure through which the heating medium passes and has a heat transfer area that is as large as possible compared to the capacity of the can body including the heating jacket outside the can body.
  • the drying means superheats the ethanol-containing steam generated from the filter cake during drying to a superheated steam state, and contacts the ethanol-containing steam in the superheated steam state with the filter cake.
  • a configuration That is, it is preferable to employ a superheated steam dryer as the drying means.
  • the ethanol-containing steam generated during drying is recycled and heated to superheated steam for drying, so that the heat balance (energy balance) can be further improved.
  • condensable steam is employed instead of non-condensable like air, and superheating is performed so that steam does not condense in the drying process.
  • the filter cake can be loosened by the superheated steam while the superheated steam is brought into direct contact with the filter cake. Therefore, the whole filter cake and the superheated steam can be brought into uniform contact with the filter cake (wet powder) flowing. Therefore, the filter cake can be dried by efficiently conducting heat transfer.
  • the said ethanol manufacturing apparatus is equipped with the combustion means which burns the residue obtained by drying the said filter cake with the said drying means.
  • combustion energy can be extracted from the residue, and the residue can be used as fuel.
  • the combustion energy generated here can be used for drying means, distillation means and the like. Therefore, the energy balance of the said ethanol manufacturing apparatus can be improved more.
  • the ethanol manufacturing apparatus includes a steam supply unit that supplies the ethanol-containing steam generated by drying in the drying unit to the distillation unit.
  • the steam supply means can be constituted by a pipe or the like connecting the drying means and the distillation means.
  • the said ethanol manufacturing apparatus is equipped with the concentration means which concentrates the ethanol concentrated by the said distillation means.
  • concentration means a known concentration / dehydration technique such as a membrane separation method such as a pervaporation (PV) method or a vapor permeation (VP) method, or a PSA (pressure swing adsorption) using an adsorbent is adopted.
  • the pervaporation method is good, and the concentration means can be constituted by, for example, a commercially available pervaporation (PV) membrane.
  • PV pervaporation
  • VP vapor permeation
  • PSA pressure swing adsorption
  • the solid-liquid separation step the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake.
  • the solid-liquid separation step it is preferable to perform solid-liquid separation until the liquid content of the filter cake is 75 wt% or less. When the liquid content of the filter cake exceeds 75 wt%, solid-liquid separation is insufficient and the final ethanol yield may be reduced. Moreover, the drying time in the below-mentioned drying process will become long, and there exists a possibility that an energy balance may worsen.
  • the recovery rate of the cellulose-degrading enzyme may be reduced.
  • the liquid content of the filter cake in the solid-liquid separation step is preferably 60 wt% or more. More preferably, it is 65 wt% or more.
  • the liquid content of the filter cake can be made 75 to 65 wt% by a solid-liquid separation means having a pressing mechanism of 0.3 to 3 MPaG.
  • the liquid content of the filter cake can be controlled by adjusting the size of the press pressure, the pore diameter of the filter, and the like.
  • an ultrafiltration step of recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate between the solid-liquid separation step and the distillation step it is preferable to perform an ultrafiltration step of recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate between the solid-liquid separation step and the distillation step.
  • the expensive cellulose-degrading enzyme used for ethanol fermentation can be recovered and reused.
  • the ultrafiltration step can be performed using, for example, an ultrafiltration membrane (UF membrane).
  • the filter cake is dried.
  • the drying step can be performed using a commercially available dryer such as a dryer that is heated via a mechanical heat transfer surface or a superheated steam dryer.
  • the ethanol-containing steam generated from the filter cake during drying is heated to a superheated steam state, and the ethanol-containing steam in the superheated steam state is brought into contact with the filter cake.
  • the filter cake it is possible to prevent the filter cake from adhering to the heat transfer surface, which may occur when a dryer using a mechanical heat transfer surface is used.
  • the ethanol-containing steam generated during drying is recycled and heated to superheated steam for drying, so that the heat balance (energy balance) can be further improved.
  • drying is preferably performed until the liquid content of the filter cake reaches 40 wt% to 60 wt%.
  • the liquid content of the filter cake exceeds 60 wt%, ethanol remains in the filter cake and the ethanol yield may be reduced.
  • the handleability of the filter cake is deteriorated and the combustion efficiency may be deteriorated.
  • the concentration of the recovered ethanol may decrease. Moreover, there is a possibility that the energy loss becomes large and the energy balance is deteriorated.
  • the ethanol concentration in the ethanol-containing steam decreases in a quadratic curve, and when the liquid content of the filter cake reaches 47-42 wt%, the ethanol is almost completely removed from the filter cake. It can be recovered. Therefore, in the drying step, it is more preferable to perform the drying until the liquid content of the filter cake becomes 40 wt% to 50 wt%.
  • the liquid content of the filter cake after the drying step can be controlled by adjusting drying conditions such as drying temperature and drying time.
  • the combustion process which burns the residue obtained by drying the said filter cake in the said drying process, and obtains combustion energy.
  • the residue can be used as a fuel, for example, as a heat energy source in a drying process or the like. Therefore, the energy balance of the said ethanol manufacturing apparatus can be improved more.
  • the concentration process which concentrates the ethanol concentrated in the said distillation process can be performed.
  • ethanol with higher purity can be obtained.
  • a known concentration / dehydration technique such as a membrane separation method such as a pervaporation (PV) method or a vapor permeation (VP) method or a PSA (pressure swing adsorption) using an adsorbent should be employed.
  • PV pervaporation
  • VP vapor permeation
  • PSA pressure swing adsorption
  • the pervaporation method is preferable. In this case, it becomes possible to obtain ethanol having a high purity of, for example, 99.5 wt% or more, and ethanol that can be used as an alcohol fuel can be manufactured.
  • the concentration step by the pervaporation method can be performed using, for example, a commercially available pervaporation (PV) membrane.
  • the ethanol production apparatus 1 of this example includes a solid-liquid separation unit 2, a distillation unit 3, a drying unit 4, and a steam supply unit 5.
  • the solid-liquid separation means 2 separates the fermented product 60 after ethanol fermentation into an ethanol-containing filtrate 61 and a filter cake 62.
  • the distillation means 3 concentrates ethanol in the ethanol-containing filtrate 61 by distillation. This gives ethanol 6.
  • the drying means 4 dries the filter cake 62.
  • the steam supply unit 5 supplies the ethanol-containing steam 63 generated by the drying in the drying unit 4 to the distillation unit 3.
  • the ethanol production apparatus 1 of this example further includes an ultrafiltration means 11 and a concentration means 12.
  • the ultrafiltration means 11 recovers the cellulose degrading enzyme 64 from the ethanol-containing filtrate 61 by ultrafiltration of the ethanol-containing filtrate 61.
  • the concentration means 12 further concentrates the ethanol 6 concentrated by the distillation means 3 by a pervaporation method.
  • a solid-liquid separation process, a drying process, and a distillation process can be performed. That is, in the solid-liquid separation step, the fermented product 60 after ethanol fermentation is separated into an ethanol-containing filtrate 61 and a filter cake 62. In the drying step, the filter cake 62 is dried, and in the distillation step, the ethanol-containing filtrate 61 is concentrated by distillation in the distillation column 3 to obtain ethanol 6, and the ethanol content generated in the distillation column 3 in the drying step is contained. Steam 63 is supplied.
  • an ultrafiltration process, a concentration process, and a combustion process can be performed.
  • the cellulolytic enzyme 64 is recovered by ultrafiltration of the ethanol-containing filtrate 61.
  • the concentration step the ethanol 6 concentrated in the distillation step is concentrated by a pervaporation method.
  • the combustion process the residue 65 obtained by drying the filter cake 62 in the drying process is burned to obtain combustion energy.
  • FIG. 1 is a block diagram including raw materials and products of the ethanol production apparatus of this example
  • FIGS. 2 to 5 are explanatory diagrams showing the ethanol production apparatus divided into four parts.
  • FIG. 2 shows an explanatory diagram showing the peripheral configuration of the solid-liquid separation means 2 of the ethanol production apparatus 1.
  • the ethanol production apparatus of this example includes a fermentation slurry tank 10 that stores a slurry-like fermentation product 60 upstream of the solid-liquid separation means 2.
  • the fermentation slurry tank 10 stores a fermented product 60 obtained by subjecting a mixture of lignocellulosic biomass, water, and cellulose-degrading enzyme (cellulase) to ethanol fermentation with a microorganism (Saccharomyces cerevisiae).
  • a microorganism Saccharomyces cerevisiae.
  • lignocellulosic biomass the waste microbial bed of maitake, which is a white rot fungus, is employed.
  • the fermentation slurry tank 10 stores a slurry in which a solid component such as lignin, unsaccharified cellulose, and hemicellulose and a liquid containing ethanol are mixed.
  • a filter press as the solid-liquid separation means 2 is provided downstream of the fermentation slurry tank 10.
  • the filter press 2 has a structure in which a plurality of filter frames 21 and filter cloths 22 are arranged in parallel.
  • small to large scale number of filter chambers: several to several hundred rooms, filtration area: several m 2 to several hundred m 2 ) Can be selected.
  • the fermentation slurry tank 10 and the solid-liquid separation means 2 are connected by a pipe 100 through which the fermented product 60 passes, and in the middle of the pipe 100, a slurry-like fermented product 60 stored in the fermentation slurry tank 10.
  • a driving pump 25 for press-fitting the liquid into the solid-liquid separation means 2 is provided.
  • the compressed air tank 26 which stores the compressed air 600 used in order to squeeze a fermented material after the injection into the solid-liquid separation means 2 is provided, and compressed air passes between the compression tank 26 and the solid-liquid separation means 2. They are connected by a pipe 101.
  • a filtrate tank 23 for storing the separated ethanol-containing filtrate and a belt conveyor 24 for carrying the separated filter cake to the drying means are provided downstream of the solid-liquid separation means 2.
  • the filtrate tank 23 is connected to the solid-liquid separation means 2 by a pipe 102 through which the ethanol-containing filtrate passes.
  • the ethanol production apparatus of this example includes an ultrafiltration means 11.
  • the ultrafiltration means 11 includes a circulation tank 110, a filtrate pump 111, and an ultrafiltration membrane (UF membrane) 112.
  • a filtrate pump 113 that supplies the ethanol-containing filtrate in the filtrate tank 23 to the circulation tank 110 is provided on the upstream side of the ultrafiltration means 11.
  • the filtrate tank 23 and the circulation tank 110 are connected by a pipe 103 through which an ethanol-containing filtrate passes, and a strainer 114 of 50 to 80 mesh (aperture 0.3 to 0.17 mm) is disposed in the middle of the pipe 103. ing.
  • the circulation tank 110 and the ultrafiltration membrane 112 are connected to the pipe 104 through which the ethanol-containing filtrate sent from the circulation tank 110 to the ultrafiltration membrane 112 passes, and from the ultrafiltration membrane 112 to the circulation tank 110. It is connected by a pipe 105 through which the returning ethanol-containing filtrate passes. That is, the ethanol-containing filtrate can be circulated between the circulation tank 110 and the ultrafiltration membrane 112.
  • the ultrafiltration membrane 112 one having a molecular weight fraction of 20,000 to 30,000 is adopted, and the cellulose-degrading enzyme is concentrated and recovered in the ultrafiltration membrane 112.
  • the ethanol-containing filtrate from which the cellulolytic enzyme is recovered is sent to the filtrate tank 30 through the pipe 106.
  • the ethanol production apparatus of this example includes a distillation means 3.
  • the distillation means 3 includes a distillation column 31 for performing rectification, a reboiler 311 for cooking steam, and a condenser 312 for condensing the steam, which is provided on the top of the distillation column 31.
  • a tray column provided with a plurality of shelves 310 inside, or a packed column filled with a packing to be brought into gas-liquid contact can be adopted.
  • An example employing a tower will be described (see FIG. 4).
  • the distillation column 31 has 20 shelf stages 310 inside, and constitutes a total of 22 theoretical stages together with the condenser 312 and the reboiler 311.
  • the ethanol-containing filtrate stored in the filtrate tank 30 is sent to the distillation means 3 through the pipe 107 by the distillation feed pump 32.
  • a flow rate control (FC) 33 is installed on the discharge side of the distillation feed pump 32, and the ethanol-containing filtrate is supplied to the distillation means 3 at a predetermined flow rate.
  • a distillation tower bottom pump 351 for discharging the liquid having a boiling point accumulated at the bottom of the distillation tower to the outside from the discharge pipe 354, and a level control (LC) 352 for controlling the discharge amount are discharged.
  • LC level control
  • a recovery heat exchanger 353 for recovering heat from the liquid.
  • the distillation means 3 introduces a filtrate inlet 341 into which an ethanol-containing filtrate sent from the filtrate tank 30 through the pipe 107 is introduced, and a steam introduction into which an ethanol-containing vapor sent from a dryer described later is introduced.
  • a mouth 342 is provided.
  • the steam inlet 342 is provided on the lower stage side than the filtrate inlet 341.
  • the filtrate inlet 341 is the seventh stage.
  • the steam inlet 342 is provided at the position of the eleventh stage.
  • the uppermost stage (first stage) is the condenser 312 and the lowermost stage (22nd stage) is the reboiler 311.
  • the positions of the filtrate inlet 341 and the steam inlet 342 can be determined by a simulation based on the ethanol concentration in the ethanol-containing filtrate and ethanol-containing steam and the ethanol concentration by the distillation means 3.
  • the positions of the filtrate inlet 341 and the steam inlet 342 are determined in the range of ethanol concentration 2 to 3 wt% in the ethanol-containing filtrate and ethanol concentration 3 to 5 wt% in the ethanol-containing steam.
  • the concentration means 12 made of a pervaporation membrane (PV membrane) is provided downstream of the distillation means 3, and the ethanol concentrated in the distillation means 3 is further concentrated in the concentration means 12.
  • PV membrane pervaporation membrane
  • the ethanol production apparatus of this example includes a drying means 4.
  • the drying means 4 may be, for example, a multi-axis dryer manufactured by Kurimoto Steel Works or Nara Machinery Co., Ltd.
  • FIG. 5 shows the dryer 4 having two paddle shafts 41 and 42 that can rotate in the drying can 40, and a plurality of heat transfer blades 415 and 425 are formed around the paddle shafts 41 and 42, respectively.
  • the periphery of the drying can 40 is covered with a jacket (not shown), and heat transfer can be further promoted.
  • a screw feeder 43 having a screw 431 inside is provided at the inlet of the dryer.
  • the filter cake separated by the solid-liquid separation means 2 is carried by the belt conveyor 24 (see FIG. 2), and is put into the drying means 4 from the screw feeder 43 shown in FIG.
  • a rotary valve 44 for extracting the residue after drying.
  • a vertical conveyor (not shown) is provided downstream of the rotary valve 44, and the residue is stored in a hopper (not shown) by this vertical conveyor. After that, it is burned by a boiler (not shown) as necessary, and combustion energy can be obtained. This combustion energy can be used as the energy of the drying means 4.
  • a steam supply means 5 comprising a pipe connecting the drying means 4 and the distillation means 3 (see FIG. 4) is provided at the upper part of the drying means 4, from the filter cake at the time of drying.
  • the generated ethanol-containing steam is sent from the steam supply means 5 to the distillation means 3 (see FIG. 4).
  • the fermented product 60 stored in the fermentation slurry tank 10 is pressed into the solid-liquid separation means 2 including a filter press through the pipe 100 by the driving pump 25. Further, the compressed air 600 in the compression tank 26 is introduced into the solid-liquid separation means 2 through the pipe 101.
  • the fermented product 60 is compressed in the solid-liquid separation means 2 by the compressed air 600 and separated into an ethanol-containing filtrate and a filter cake (solid-liquid separation step). In this example, squeezing is performed until the liquid content of the filter cake reaches 70 wt%.
  • the separated ethanol-containing filtrate is stored in the filtrate tank 23 through the pipe 102, and the filter cake is conveyed to the drying means 4 (see FIG. 5) by the belt conveyor 24.
  • the ethanol-containing filtrate stored in the filtrate tank 23 is once sent to the circulation tank 110 through the pipe 103 by the filtrate pump 113.
  • the particles (solid matter) contained in the ethanol-containing filtrate are removed by the strainer 114 disposed in the middle of the pipe 103.
  • blockage in the downstream ultrafiltration membrane can be prevented.
  • the ethanol-containing filtrate sent into the circulation tank 110 passes through the ultrafiltration membrane 112 through the pipe 104 and returns to the circulation tank 110 through the pipe 105 by the filtrate pump 111.
  • the cellulose-degrading enzyme contained in the ethanol-containing filtrate is concentrated, and the concentrate (cellulose-degrading enzyme) 64 is recovered (ultrafiltration step). Water, ethanol, and the like in the ethanol-containing filtrate pass through the ultrafiltration membrane 112 and are sent to the filtrate tank 30 through the pipe 106.
  • the filter cake separated in the solid-liquid separation means 2 as described above is conveyed to the drying means by the belt conveyor 24 (see FIGS. 2 and 5).
  • the filter cake is introduced into the drying means 4 by a predetermined amount by a screw 431 of the screw feeder 43.
  • the heat transfer blades 415 and 425 are rotated by rotating the two paddle shafts 41 and 42, and the filter cake is heated and dried by contact with the heated heat transfer blades (drying step). ).
  • the residue is dried to a liquid content of 45%.
  • the ethanol-containing steam generated at the time of drying is sent to the distillation means 3 shown in FIG. 4 through the steam supply means 5 composed of a pipe connected to the upper part of the drying means 4.
  • the residue remaining in the drying means 4 after drying is discharged from the rotary valve 44 and stored in a hopper (not shown) by a vertical conveyor.
  • the residue stored in the hopper is burned as necessary by combustion means (not shown) such as a boiler and used as combustion energy.
  • the ethanol-containing filtrate stored in the filtrate tank 30 as described above is sent to the distillation means 3 through the pipe 107 by the distillation feed pump 32 (see FIG. 4).
  • the ethanol-containing filtrate is supplied from the filtrate inlet 341 to the distillation means 3 at a predetermined flow rate by a flow rate control (FC) 33.
  • FC flow rate control
  • the ethanol-containing steam sent through the steam supply means 5 is supplied to the distillation means 3 from the steam inlet 342.
  • the high-temperature liquid in the distillation means 3 is discharged by the distillation tower bottom pump 351 by a predetermined amount controlled by the level control 352. It is discharged from the pipe 354 to the outside.
  • the hot liquid in the discharge pipe 354 is subjected to heat exchange with the ethanol-containing filtrate supplied to the distillation means 3 through the pipe 107 in the recovery heat exchanger 353 provided in the middle of the discharge pipe 354. It is discharged outside. That is, the ethanol-containing filtrate supplied to the distillation means 3 through the pipe 107 is heated by heat exchange with the high-temperature liquid discharged through the discharge pipe 354 in the recovery heat exchanger 353 and then the distillation means 3. Supplied in.
  • the liquid discharged through the discharge pipe 354 is cooled to near the temperature of the ethanol-containing filtrate before heat exchange by heat exchange with the ethanol-containing filtrate in the pipe 107 and then discharged.
  • the ethanol-containing filtrate and ethanol-containing steam introduced into the distillation tower are concentrated by distillation (distillation step).
  • the steam boiled by the reboiler 311 is condensed by the condenser 312, and a part thereof is extracted from the top of the column while refluxing to obtain ethanol concentrated to a purity of 90 wt%.
  • the concentration at the top of the column can be stabilized.
  • the ethanol concentrated in the distillation means 3 is sent to the concentration means 12 through the pipe 108. And in the concentration means 12, ethanol is further concentrated (concentration process), and ethanol 6 having a purity of 99.5 wt% or more can be obtained.
  • the ethanol production apparatus 1 of this example includes at least the solid-liquid separation means 2, the distillation means 3, the drying means 4, and the vapor supply means 5 (see FIGS. 1 to 5), as described above.
  • a solid-liquid separation process, a drying process, and a distillation process can be realized.
  • the most notable point in the ethanol production apparatus 1 of the present example is that the drying means 4 and the steam supply means 5 are provided.
  • ethanol and moisture remaining in the filter cake 62 are generated as the ethanol-containing vapor 63.
  • the ethanol manufacturing apparatus 1 is equipped with the vapor
  • FIG. Therefore, not only the ethanol-containing filtrate 61 but also the ethanol-containing steam 63 is supplied into the distillation means 3. Therefore, in the ethanol production apparatus 1 of this example, ethanol can be recovered from both the ethanol-containing filtrate 61 and the ethanol-containing steam 63, and ethanol can be obtained with high yield.
  • the heat energy of the ethanol-containing steam 63 can be used for distillation in the distillation means 3. Therefore, the heat energy used in the drying means 4 can be transferred to the distillation means 3 as steam and reused, and the energy balance can be improved.
  • a fermented product 60 obtained by subjecting a mixture of maitake mushroom beds, water, and a cellulolytic enzyme to ethanol fermentation with microorganisms is used.
  • cellulose is contained in a state in which it is easily decomposed by enzymes, and therefore, in the fermented product 60, the cellulose is sufficiently decomposed. Therefore, ethanol 6 can be obtained with high yield.
  • the solid-liquid separation means 2 is comprised by the filter press machine. Therefore, pressure filtration can be performed, and solid-liquid separation can be sufficiently performed even if the specific gravity difference between the solid and the liquid is small.
  • the ethanol production apparatus 1 also includes an ultrafiltration means 11 that recovers the cellulolytic enzyme 64 by ultrafiltration of the ethanol-containing filtrate 61. Therefore, the expensive cellulose-degrading enzyme 64 can be recovered from the ethanol-containing filtrate 61 and can be reused.
  • the ethanol production apparatus 1 of this example includes combustion means (not shown) for burning the residue 65 obtained by drying the filter cake 62 by the drying means 4. Therefore, the residue 65 can be used as fuel, and the energy balance of the ethanol production apparatus 1 can be further improved.
  • the ethanol production apparatus 1 is provided with a concentration means 12 for further concentrating the ethanol concentrated by the distillation means 3 by the pervaporation method. Therefore, it becomes possible to obtain ethanol having a high purity of, for example, 99.5 wt% or more, and ethanol 6 that can be applied as an alcohol fuel can be manufactured.
  • solid-liquid separation is performed until the liquid content of the filter cake reaches about 70 wt%. Therefore, it can prevent that the drying time in the drying means 4 becomes long and an energy balance deteriorates.
  • the cellulolytic enzyme can be sufficiently recovered in the ultrafiltration means 11. Furthermore, ethanol can be obtained in a sufficiently high yield. Solid-liquid separation until the liquid content of the filter cake reaches about 70 wt% can be easily realized using the solid-liquid separation means 2 by pressing at 0.5 MPaG or less.
  • the drying means 4 it dries until the liquid content of the filter cake 62 becomes about 45 wt%. Therefore, ethanol can be sufficiently recovered as the ethanol-containing vapor, and when the filter cake 62 is burned in the combustion means, the handleability of the filter cake is improved, and the filter cake 62 is made to have a relatively good combustion efficiency. Can be burned.
  • Example 2 In the first embodiment, a dryer that heats through a mechanical heat transfer surface is used as the drying means. However, in this example, a superheated steam dryer is used. The drying means of this example is also for drying the filter cake separated by the solid-liquid separation means 2 (see FIG. 2), as in the first embodiment.
  • the drying means 7 in this example includes a drying pipe 70, a superheater 75, and a circulation pipe 700 that circulates ethanol-containing steam generated in the drying can 70 between the drying can 70 and the superheater 75.
  • the drying can 70 includes a rotatable paddle shaft 71 and a plurality of stirring blades 715 provided around the paddle shaft.
  • a screw feeder 73 having a screw 731 inside is provided at the inlet of the filter cake into the drying can 70, as in the dryer of the first embodiment.
  • the filter cake separated by the solid-liquid separation means 2 is carried by the belt conveyor 24 (see FIG. 2), and is put into the drying can 70 from the screw feeder 73 shown in FIG.
  • a rotary valve 76 for extracting the residue after drying is provided at the bottom of the drying can 70.
  • a vertical conveyor (not shown) is provided downstream of the rotary valve 76 as in the first embodiment, and the residue is stored in a hopper (not shown) by this vertical conveyor. After that, it is burned by a boiler (not shown) as necessary, and combustion energy can be obtained. This combustion energy can be used as the energy of the drying means 7, for example.
  • a bag filter 74 for removing fine powder is provided on the upper portion of the drying can 70, and further, a steam supply means 5 comprising a pipe extending from the bag filter 74 to the distillation means 3 (see FIG. 4) is provided. Yes.
  • the steam supply means 5 connects the drying can 70 and the distillation means 3, and specifically, is connected to the steam inlet 342 of the distillation means 3 as in the first embodiment (see FIG. 4).
  • the drying means 7 is provided with a circulation pipe 700 composed of a pipe connecting the bag filter 74 and the superheater 75.
  • the circulation pipe 700 supplies a part of the ethanol-containing steam generated from the filter cake during drying to the superheater 75.
  • the superheater 75 a commercially available heat exchanger can be used, and as the heating medium, for example, steam obtained by burning the residue with an OG boiler can be used.
  • the superheater 75 indirectly heats the ethanol-containing steam sent to the superheater 75 through the circulation pipe 700 to a superheated state exceeding 100 ° C. to generate superheated steam.
  • the drying means 7 includes a hot air circulation blower 77 that introduces the superheated steam generated by the superheater 75 into the drying can 70.
  • a plurality of superheated steam inlets are provided at the bottom of the drying can 70, and the superheated steam is introduced upward from the bottom of the drying can 70.
  • the filter cake separated in the solid-liquid separation means 2 is conveyed to the drying means 7 by the belt conveyor 24 (see FIGS. 2 and 6).
  • the filter cake is introduced into the drying can 70 by a predetermined amount by the screw 731 of the screw feeder 73.
  • the stirring blade 715 rotates, and ethanol-containing vapor is generated from the filter cake by drying while the filter cake is stirred.
  • a part of the ethanol-containing steam is sent to the superheater 75 through the circulation pipe 700.
  • the ethanol-containing steam is heated to a superheated state.
  • the ethanol-containing steam in the superheated steam (superheated steam) state is introduced into the drying can 70 from the inlet at the bottom of the drying can 70 by the hot air circulation blower 77.
  • the filter cake is heated and dried to generate ethanol-containing steam again.
  • a part of the ethanol-containing steam generated here is sent from the steam supply means 5 to the distillation means 3 as in the first embodiment (see FIG. 4). Further, part of the ethanol-containing vapor is sent again to the superheater 75 through the circulation pipe 700 and is introduced into the drying can 70 as superheated vapor.
  • the residue is dried to a liquid content of 45%.
  • the pressure in the system is controlled to be constant and the outlet temperature is set to the dew point.
  • the amount of steam 69 supplied to the superheater 75 is controlled so that it does not become.
  • the steam is returned to the superheater 75 again through the bag filter 74, heated until it becomes superheated steam, and supplied to the drying can 70.
  • the superheated steam is supplied by the hot air circulation blower 77 from the bottom of the drying can 70 into the drying can 70 in an upward flow.
  • the residue remaining in the drying means 7 after drying is discharged from the rotary valve 44 as in the first embodiment, and the residue is stored in a hopper (not shown) by the vertical conveyor.
  • the residue stored in the hopper is burned as necessary by combustion means (not shown) such as a boiler and used as combustion energy.
  • combustion means such as a boiler and used as combustion energy.
  • the configuration other than the drying means 7 can be the same as that of the first embodiment.
  • a superheated steam dryer is employed as the drying means 7.
  • a direct drying method using superheated steam using ethanol-containing water contained in the filter cake itself is adopted. Therefore, it is possible to efficiently transfer heat to dry the filter cake, and to further improve the energy balance.
  • Example 1 when a dryer using a mechanical heat transfer surface is used, strong deposits are observed on the entire paddle shaft. In Example 1, since the biaxial dryer is used, there is almost no growth of deposits, but thin deposits adhere firmly to the entire paddle shaft. Therefore, the heat transfer efficiency can be reduced as compared with the case where there is no deposit. On the other hand, when a superheated steam dryer is used as in this example, the filter cake can be heated and dried with superheated steam, so that it is possible to efficiently dry without generating any deposits.
  • ethanol contained in the filter cake is circulated between the drying can 70 and the superheater 75 using ethanol-containing steam.
  • the steam returning from the drying can 70 to the superheater 75 is in a saturated state and is heated in the superheater 75 to be in a superheated (superheated) state and supplied into the drying can 70.
  • the filter cake introduced into the drying can 70 by the screw feeder 73 is separated into the ethanol-containing vapor and the drying residue and goes out of the system, so that the balance of the substance is achieved.
  • the amount of heat that the ethanol-containing vapor takes out of the system is given by the superheater 75.
  • the saturated steam-containing ethanol-containing steam that is circulated and supplied to the superheater 75 obtains heat from the superheater 75, becomes superheated, and is supplied into the drying can 70.
  • a heat source in the superheater 75 a part of heat generated by burning the dry residue can be changed to steam or directly used as it is.
  • the amount of ethanol-containing steam that passes through the circulation pipe 700 (circulation steam flow rate) inevitably increases in order to cover the amount of heat for drying the filter cake by only the sensible heat of the ethanol-containing steam (the amount of heat of the superheat). . This is effective for loosening the filter cake in the drying can 70 and making sufficient contact with the filter cake.

Abstract

The disclosed ethanol manufacturing device (1) is provided with a solid-liquid separation means (2), a distillation means (3), a drying means (4), and a vapor-supply means (5). The solid-liquid separation means (2) separates a fermented substance (60), which has undergone ethanol fermentation, into an ethanol-containing filtrate (61) and a filter cake (62). The distillation means (3) concentrates the ethanol-containing filtrate (61) via distillation, yielding ethanol (6). The drying means (4) dries the filter cake. The vapor-supply means (5) supplies, to the distillation means (3), an ethanol-containing vapor (63) generated by the drying performed by the drying means (4). Also disclosed is a method for manufacturing ethanol by performing a solid-liquid separation step, a drying step, and a distillation step.

Description

エタノール製造装置及びエタノールの製造方法Ethanol production apparatus and ethanol production method
 本発明は、リグノセルロース系バイオマスからエタノールを製造するためのエタノール製造装置及びエタノールの製造方法に関する。 The present invention relates to an ethanol production apparatus and an ethanol production method for producing ethanol from lignocellulosic biomass.
 近年、環境問題への意識の高まりからバイオマスからの燃料の再生が注目されている。例えば、木質系バイオマス等のリグノセルロース系バイオマスはセルロースを多く含有し、このセルロースは、グルコースまで分解(糖化)することにより、エタノール発酵によってエタノールに変換させることができる。リグノセルロース系バイオマスの糖化には、濃硫酸による加水分解が用いられていた(非特許文献1及び2参照)。
 しかし、濃硫酸による糖化は、リグノセルロース系バイオマスからグルコースを取り出すことができるものの装置の腐食を考慮する必要があり、工場レベルの大型設備を考えると実用的ではない。糖化にかかる費用及びメンテナンス費用が増大するという問題がある。
In recent years, the regeneration of fuel from biomass has attracted attention due to the growing awareness of environmental issues. For example, lignocellulosic biomass such as woody biomass contains a large amount of cellulose, and this cellulose can be converted to ethanol by ethanol fermentation by degrading (saccharifying) to glucose. Hydrolysis with concentrated sulfuric acid has been used for saccharification of lignocellulosic biomass (see Non-Patent Documents 1 and 2).
However, although saccharification with concentrated sulfuric acid can extract glucose from lignocellulosic biomass, it is necessary to consider the corrosion of the apparatus, and it is not practical considering a large facility at the factory level. There is a problem that costs for saccharification and maintenance costs increase.
 また、濃硫酸による糖化以外にも酵素による糖化方法が知られている。即ち、セルロースを分解する酵素セルラーゼを用いることにより、温和な条件でグルコースを得る方法である。また、セルラーゼと酵母によるエタノール発酵を併用することにより、セルラーゼの活性が阻害されることを防止し、エタノール変換効率を向上させる方法もある(非特許文献3参照)。 In addition to saccharification with concentrated sulfuric acid, enzymatic saccharification methods are known. That is, it is a method of obtaining glucose under mild conditions by using an enzyme cellulase that decomposes cellulose. In addition, there is a method of preventing the activity of cellulase from being inhibited by using ethanol fermentation with cellulase and yeast, and improving the ethanol conversion efficiency (see Non-Patent Document 3).
 このような方法により、セルロースからグルコースを経てエタノールを製造することができる。
 ところが、リグノセルロース系バイオマスにおいて、セルロースは、分解困難なリグニン等に囲まれているためその単離が困難である。このようなリグノセルロース系バイオマスをそのままセルラーゼ等と反応させても糖化し難い。
By such a method, ethanol can be produced from cellulose via glucose.
However, in lignocellulosic biomass, it is difficult to isolate cellulose because it is surrounded by lignin that is difficult to decompose. Such lignocellulosic biomass is hardly saccharified even if it is directly reacted with cellulase or the like.
 一方、糸状菌類は、木材に含まれるリグニンを分解できる生物として知られている。糸状菌類の中でも特に白色腐朽菌は、強力なリグニン分解酵素を放出してリグニンを分解する。
 白色腐朽菌には、シイタケ、ヒラタケ、マイタケなどの食用キノコが含まれ、これらは、木材を用いた菌床栽培によって栽培されている。
 マイタケ等の食用キノコは、工場で大規模栽培されるため、栽培後には、廃菌床が大量に生じる。そして、ここで生じる廃菌床は、リグニンが分解され、セルラーゼ分解し易い状態でセルロースが存在するリグノセルロース系バイオマスとして注目されており、これを用いたバイオエタノールへの変換方法が開発されている(特許文献1及び2参照)。
On the other hand, filamentous fungi are known as organisms that can degrade lignin contained in wood. Among the filamentous fungi, white rot fungi release strong lignin degrading enzymes to degrade lignin.
White rot fungi include edible mushrooms such as shiitake mushrooms, oyster mushrooms and maitake mushrooms, which are cultivated by fungus bed cultivation using wood.
Edible mushrooms such as maitake are cultivated on a large scale in factories, and thus a large amount of waste fungus beds are produced after cultivation. And the waste microbial bed generated here is attracting attention as lignocellulosic biomass in which cellulose is present in a state where lignin is decomposed and cellulase is easily decomposed, and a method for converting to bioethanol using this has been developed. (See Patent Documents 1 and 2).
特開2006-20603号公報JP 2006-20603 A 特開2006-230365号公報JP 2006-230365 A
 しかしながら、これまでに開発されているバイオエタノールへの変換方法は大型化が困難であった。
 即ち、工場の大規模レベルでエタノール発酵物からエタノールを製造する際には、エネルギー収支が重要になる。従来の方法においては、エネルギー収支の観点からは、その実用化が困難であった。
However, it has been difficult to increase the size of the bioethanol conversion methods that have been developed so far.
That is, when producing ethanol from an ethanol fermented product at a large-scale level in a factory, the energy balance becomes important. Conventional methods have been difficult to put into practical use from the viewpoint of energy balance.
 本発明はかかる問題点に鑑みてなされたものであって、優れたエネルギー収支でエタノール発酵物からエタノールを得ることができるエタノール製造装置及びエタノールの製造方法を提供しようとするものである。 The present invention has been made in view of such problems, and an object of the present invention is to provide an ethanol production apparatus and an ethanol production method capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance.
 第1の発明は、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する固液分離手段と、
 上記エタノール含有濾液中のエタノールを蒸留により濃縮する蒸留手段と、
 上記濾滓を乾燥させる乾燥手段と、
 上記乾燥手段における乾燥によって発生するエタノール含有蒸気を上記蒸留手段に供給する蒸気供給手段とを備えることを特徴とするエタノール製造装置にある。
1st invention, the solid-liquid separation means which isolate | separates the fermented material after ethanol fermentation into an ethanol containing filtrate and a filter cake,
A distillation means for concentrating ethanol in the ethanol-containing filtrate by distillation;
Drying means for drying the filter cake;
An ethanol production apparatus comprising: a steam supply unit configured to supply ethanol-containing steam generated by drying in the drying unit to the distillation unit.
 第2の発明は、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する固液分離工程と、
 上記濾滓を乾燥させる乾燥工程と、
 上記エタノール含有濾液を蒸留塔内で蒸留により濃縮してエタノールを得ると共に、上記蒸留塔内に上記乾燥工程において発生するエタノール含有蒸気を供給する蒸留工程とを有することを特徴とするエタノールの製造方法にある。
The second invention is a solid-liquid separation step of separating the fermented product after ethanol fermentation into an ethanol-containing filtrate and a filter cake,
A drying step of drying the filter cake,
A method for producing ethanol, comprising: concentrating the ethanol-containing filtrate by distillation in a distillation column to obtain ethanol, and supplying the ethanol-containing vapor generated in the drying step to the distillation column. It is in.
 第1の発明のエタノール製造装置は、少なくとも、上記固液分離手段と上記蒸留手段と上記乾燥手段と上記蒸気供給手段とを備えている。
 上記固液分離手段においては、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する。そして、上記蒸留手段においては、上記エタノール含有濾液中のエタノールを蒸留により濃縮する。このようにして、エタノール発酵後の発酵物からエタノールを得ることができる。
The ethanol production apparatus of the first invention comprises at least the solid-liquid separation means, the distillation means, the drying means, and the steam supply means.
In the solid-liquid separation means, the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake. And in the said distillation means, the ethanol in the said ethanol containing filtrate is concentrated by distillation. In this way, ethanol can be obtained from the fermented product after ethanol fermentation.
 本発明において最も注目すべき点は、上記乾燥手段と上記蒸気供給手段を備えていることにある。
 上記乾燥手段は、上記固液分離手段において分離した上記濾滓を乾燥させるため、乾燥中には上記濾滓中に残留するエタノール及び水分等が上記エタノール含有蒸気として発生する。そして、本発明のエタノール製造装置は、上記蒸気供給手段を備えているため、乾燥中に発生した上記エタノール含有蒸気を上記蒸留手段に供給することができる。そのため、上記濾滓中に残存していたエタノールをも回収することが可能になり、収率よくエタノールを得ることができる。
The most notable point in the present invention is the provision of the drying means and the steam supply means.
Since the drying means dries the filter cake separated in the solid-liquid separation means, during the drying, ethanol, moisture and the like remaining in the filter cake are generated as the ethanol-containing vapor. And since the ethanol manufacturing apparatus of this invention is equipped with the said vapor | steam supply means, it can supply the said ethanol-containing vapor | steam generated during drying to the said distillation means. Therefore, it is possible to recover the ethanol remaining in the filter cake and to obtain ethanol with a high yield.
 さらに、上記蒸気供給手段は、上記エタノール含有蒸気としてエタノールを蒸気の状態で上記蒸留手段に供給するため、上記エタノール含有蒸気が有する熱エネルギーを上記蒸留手段に供給し、蒸留に利用することができる。即ち、上記乾燥手段で使用した熱エネルギーを上記蒸留手段に移動させて利用することができる。それ故、エタノール製造時におけるエネルギー収支を向上させることができる。 Furthermore, since the steam supply means supplies ethanol as the ethanol-containing steam to the distillation means in the form of steam, the heat energy of the ethanol-containing steam can be supplied to the distillation means and used for distillation. . That is, the thermal energy used in the drying means can be transferred to the distillation means for use. Therefore, the energy balance during ethanol production can be improved.
 このように、上記第1の発明によれば、優れたエネルギー収支でエタノール発酵物からエタノールを得ることができるエタノール製造装置を提供することができる。 Thus, according to the first aspect of the present invention, an ethanol production apparatus capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance can be provided.
 第2の発明のエタノールの製造方法は、少なくとも、上記固液分離工程と上記乾燥工程と上記蒸留工程とを有する。
 上記固液分離工程においては、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する。そして、上記蒸留工程においては、上記エタノール含有濾液を蒸留塔内で蒸留により濃縮してエタノールを得る。このようにして、エタノール発酵後の発酵物からエタノールを得ることができる。
The method for producing ethanol of the second invention includes at least the solid-liquid separation step, the drying step, and the distillation step.
In the solid-liquid separation step, the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake. In the distillation step, the ethanol-containing filtrate is concentrated by distillation in a distillation column to obtain ethanol. In this way, ethanol can be obtained from the fermented product after ethanol fermentation.
 特に、本発明において注目すべき点は、上記乾燥工程と上記蒸留工程とを行うことにある。
 即ち、上記乾燥工程においては、上記固液分離工程にて分離した上記濾滓を乾燥させる。このとき、上記濾滓中に含まれるエタノール及び水分が上記エタノール含有蒸気として発生する。そして、上記蒸留工程においては、上記乾燥工程において発生する上記エタノール含有蒸気を上記蒸留塔内に供給する。そのため、上記固液分離工程後の上記濾滓中に残留していたエタノールをも回収することができ、収率よくエタノールを得ることができる。
In particular, the point to be noted in the present invention is that the drying step and the distillation step are performed.
That is, in the drying step, the filter cake separated in the solid-liquid separation step is dried. At this time, ethanol and water contained in the filter cake are generated as the ethanol-containing vapor. In the distillation step, the ethanol-containing vapor generated in the drying step is supplied into the distillation column. Therefore, ethanol remaining in the filter cake after the solid-liquid separation step can also be recovered, and ethanol can be obtained with high yield.
 さらに、上記蒸留工程においては、上記のごとく、上記エタノール含有蒸気を上記蒸留塔内に供給している。即ち、エタノールを蒸気の状態で上記蒸留塔内に供給する。そのため、上記蒸留工程における蒸留に必要な熱エネルギーの少なくとも一部を上記乾燥工程において発生した上記エタノール含有蒸気から得ることができる。それ故、エネルギー収支を向上させることができる。 Furthermore, in the distillation step, as described above, the ethanol-containing vapor is supplied into the distillation column. That is, ethanol is supplied into the distillation column in a vapor state. Therefore, at least a part of the thermal energy necessary for distillation in the distillation step can be obtained from the ethanol-containing steam generated in the drying step. Therefore, the energy balance can be improved.
 このように、上記第2の発明によれば、優れたエネルギー収支でエタノール発酵物からエタノールを得ることができるエタノール製造方法を提供することができる。 Thus, according to the second invention, it is possible to provide an ethanol production method capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance.
実施例1にかかる、エタノール製造装置を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the ethanol manufacturing apparatus concerning Example 1. FIG. 実施例1にかかる、固液分離手段を示す説明図。FIG. 3 is an explanatory diagram showing solid-liquid separation means according to the first embodiment. 実施例1にかかる、限外濾過手段を示す説明図。Explanatory drawing which shows the ultrafiltration means concerning Example 1. FIG. 実施例1にかかる、蒸留手段を示す説明図。FIG. 3 is an explanatory diagram showing distillation means according to the first embodiment. 実施例1にかかる、乾燥手段及び蒸気供給手段を示す説明図。FIG. 3 is an explanatory diagram illustrating a drying unit and a steam supply unit according to the first embodiment. 実施例2にかかる、乾燥手段及び蒸気供給手段を示す説明図。Explanatory drawing which shows the drying means and vapor | steam supply means concerning Example 2. FIG.
 本発明のエタノール製造装置及びエタノール製造方法においては、エタノール発酵後の発酵物を用いる。
 上記発酵物は、リグノセルロース系バイオマスと水とセルロース分解酵素との混合物を微生物によってエタノール発酵させてなることが好ましい。
 この場合には、木質系バイオマス等のリグノセルロース系バイオマスの有効利用が可能になる。
In the ethanol production apparatus and the ethanol production method of the present invention, a fermented product after ethanol fermentation is used.
The fermented product is preferably obtained by subjecting a mixture of lignocellulosic biomass, water and cellulolytic enzyme to ethanol fermentation with a microorganism.
In this case, lignocellulosic biomass such as woody biomass can be effectively used.
 上記リグノセルロース系バイオマスは、糸状菌を培養中の菌床及び/又は糸状菌の廃菌床であることが好ましい。
 糸状菌類は、リグニンを分解することができるため、この場合には、上記廃菌床は、酵素によって分解されやすい状態でセルロースを含有する。そのため、エタノール発酵が進行し易くなり、リグノセルロース系バイオマスからのエタノールの収率を向上させることができる。
The lignocellulosic biomass is preferably a fungal bed in which filamentous fungi are being cultured and / or a waste fungus bed of filamentous fungi.
Since filamentous fungi can degrade lignin, in this case, the waste fungus bed contains cellulose in a state where it is easily degraded by enzymes. Therefore, ethanol fermentation can easily proceed, and the yield of ethanol from lignocellulosic biomass can be improved.
 上記糸状菌は白色腐朽菌であることが好ましい。
 この場合には、白色腐朽菌が有する強力なリグニン分解能を利用することができ、上記廃菌床は、より一層分解されやすい状態でセルロースを含有する。
 そのため、上記リグノセルロース系バイオマスからのエタノールの収率をより一層向上させることができる。
The filamentous fungus is preferably a white rot fungus.
In this case, the strong lignin resolving power of white rot fungi can be used, and the waste fungus bed contains cellulose in a state where it is more easily decomposed.
Therefore, the yield of ethanol from the lignocellulosic biomass can be further improved.
 白色腐朽菌の中でも食用キノコのマイタケ、エリンギ、ブナシメジ、シイタケ、又はナメコの廃菌床が好ましい。これらは、オガコを含有する菌床で大規模に栽培されているため、分解されやすい状態でセルロースを含有する大量の廃菌床を低コストで得ることができる。
 特に好ましくは、上記白色腐朽菌は、マイタケであることがよい。
Among the white rot fungi, edible mushroom maitake, eringi, beech shimeji mushroom, shiitake mushroom or waste sorghum bed is preferred. Since these are cultivated on a large scale with fungus beds containing sawdust, a large amount of waste fungus beds containing cellulose can be obtained at a low cost while being easily decomposed.
Particularly preferably, the white rot fungus is maitake.
 上記セルロース分解酵素は、セルロースやヘミセルロースを糖化できるものを用いることができ、例えばセルラーゼ、ヘミセルラーゼ、又は両者の混合物を用いることができる。セルロース分解酵素としては、糸状菌を培養した培養液からの精製物、培養液そのもの、又は市販品等を利用することができる。 As the cellulose-degrading enzyme, those capable of saccharifying cellulose or hemicellulose can be used. For example, cellulase, hemicellulase, or a mixture of both can be used. As the cellulolytic enzyme, a purified product from a culture solution in which filamentous fungi are cultured, the culture solution itself, or a commercially available product can be used.
 また、上記微生物としては、エタノール発酵が可能な微生物を選択することができる。
 具体的には、例えばサッカロミセス・セルビシエ(Saccharomyces cereviciae)、ピチア・スチピチス(Pichia stipitis)、又はシゾサッカロミセス・ポンベ(Shizosaccharomyces pombe)等を用いることができる。市販のパン酵母を用いることもできる。
 エタノール発酵における培養液は、微生物に最適な培地を採用することができる。
Moreover, as the microorganism, a microorganism capable of ethanol fermentation can be selected.
Specifically, for example, Saccharomyces cereviciae, Pichia stipitis, Shizosaccharomyces pombe, or the like can be used. Commercial baker's yeast can also be used.
As a culture solution in ethanol fermentation, a medium optimal for microorganisms can be adopted.
 上記エタノール製造装置は、少なくとも上記固液分離手段と上記蒸留手段と上記乾燥手段と上記蒸気供給手段とを備えている。
 上記固液分離手段は、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離するように構成されており、例えばフィルタープレス機により構成することができる。小規模の装置では遠心分離機により構成することもできる。
 好ましくはフィルタープレスがよい。
 この場合には、圧力ろ過を行うことができるため、固体と液体との比重差が小さくても十分に固液分離を行うことができる。
The ethanol production apparatus includes at least the solid-liquid separation unit, the distillation unit, the drying unit, and the vapor supply unit.
The said solid-liquid separation means is comprised so that the fermented material after ethanol fermentation may be isolate | separated into an ethanol containing filtrate and a filter cake, for example, can be comprised with a filter press machine. In a small-scale apparatus, a centrifugal separator can be used.
A filter press is preferable.
In this case, since pressure filtration can be performed, solid-liquid separation can be sufficiently performed even if the specific gravity difference between the solid and the liquid is small.
 次に、上記エタノール製造装置は、上記エタノール含有濾液を限外濾過することにより上記セルロース分解酵素を回収する限外濾過手段を備えることが好ましい。
 上記固液分離手段により上記発酵物はエタノール含有濾液と濾滓に分離されるが、エタノール発酵にセルロース分解酵素を用いた場合には、上記エタノール含有濾液中にセルロース分解酵素が含まれる。
 上記のように限外濾過手段を備える場合には、上記エタノール含有濾液から高価なセルロース分解酵素を回収することができ、その再利用を図ることができる。
 上記限外濾過手段は、市販の限外濾過膜(UF膜)等により構成することができる。
Next, the ethanol production apparatus preferably includes an ultrafiltration means for recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate.
The fermented product is separated into an ethanol-containing filtrate and a filter cake by the solid-liquid separation means. When cellulose-degrading enzyme is used for ethanol fermentation, cellulose-degrading enzyme is contained in the ethanol-containing filtrate.
When the ultrafiltration means is provided as described above, the expensive cellulose-degrading enzyme can be recovered from the ethanol-containing filtrate and can be reused.
The ultrafiltration means can be composed of a commercially available ultrafiltration membrane (UF membrane) or the like.
 次に、上記蒸留手段は、蒸留により上記エタノール含有濾液中のエタノールを濃縮するように構成される。
 上記蒸留手段としては、精留を行なうための蒸留塔、蒸気を炊きあげるリボイラー、及び蒸気凝縮するコンデンサー等により構成することができる。蒸留塔としては、複数の棚段を内部に備えた棚段塔、又は気液接触させる充填物を内部に充填した充填塔などを採用することができる。
Next, the distillation means is configured to concentrate ethanol in the ethanol-containing filtrate by distillation.
The distillation means can be constituted by a distillation column for performing rectification, a reboiler for cooking steam, a condenser for steam condensation, and the like. As the distillation column, a plate column provided with a plurality of plates inside, or a packed column filled with a packing to be brought into gas-liquid contact can be adopted.
 また、上記乾燥手段は上記濾滓を乾燥させるものであり、市販の乾燥機等によって構成することができる。
 乾燥機には様々な方式及び種類があるが、例えば機械式伝熱面を介して加熱する乾燥機を採用することができる。本発明においては、下流のプロセスでエタノールの回収を困難にする非凝縮性のキャリアガスを用いた乾燥方式ではなく、複数のパドル軸を有しセルフクリーニング効果で付着が成長せず、軸、パドルにも加熱媒体が通る構造で、缶体外側の加熱用ジャケットも含めて缶体容量に比して極力伝熱面積が大きい乾燥機を採用することが好ましい。
The drying means is for drying the filter cake and can be constituted by a commercially available dryer or the like.
There are various types and types of dryers. For example, a dryer that is heated via a mechanical heat transfer surface can be employed. The present invention is not a drying method using a non-condensable carrier gas that makes it difficult to recover ethanol in a downstream process, and has a plurality of paddle shafts so that adhesion does not grow due to a self-cleaning effect. In addition, it is preferable to employ a dryer that has a structure through which the heating medium passes and has a heat transfer area that is as large as possible compared to the capacity of the can body including the heating jacket outside the can body.
 また、好ましくは、上記乾燥手段は、乾燥中に上記濾滓中から発生する上記エタノール含有蒸気を過熱蒸気の状態まで過熱し、該過熱蒸気の状態の上記エタノール含有蒸気を上記濾滓に接触させる構成を備えていることがよい。即ち、上記乾燥手段としては、過熱蒸気乾燥機を採用することが好ましい。
 この場合には、機械式伝熱面を利用した乾燥機を用いた場合に起こりうる伝熱面への濾滓の付着を防止することができる。また、この場合には、乾燥中に発生する上記エタノール含有蒸気をリサイクル加熱し、過熱蒸気にして乾燥を行うため、熱収支(エネルギー収支)をより向上させることができる。
Preferably, the drying means superheats the ethanol-containing steam generated from the filter cake during drying to a superheated steam state, and contacts the ethanol-containing steam in the superheated steam state with the filter cake. It is preferable to have a configuration. That is, it is preferable to employ a superheated steam dryer as the drying means.
In this case, it is possible to prevent the filter cake from adhering to the heat transfer surface, which may occur when a dryer using a mechanical heat transfer surface is used. In this case, the ethanol-containing steam generated during drying is recycled and heated to superheated steam for drying, so that the heat balance (energy balance) can be further improved.
 過熱蒸気乾燥機においては、空気のような非凝縮性でなく、凝縮性のスチームが採用されており、乾燥過程では蒸気が凝縮しないように過熱(スーパーヒート)されている。過熱蒸気乾燥機においては、乾燥機下部の全面から乾燥機上部に向けて過熱蒸気を吹き込むことが好ましい。この場合には、上記過熱蒸気を上記濾滓に直接接触させつつ、上記過熱蒸気により上記濾滓をほぐすことができる。したがって、該濾滓(湿粉)を流動させながら、濾滓全体と過熱蒸気とを均一に接触させることができる。そのため、効率よく伝熱を行わせて濾滓の乾燥を行うことができる。 In the superheated steam dryer, condensable steam is employed instead of non-condensable like air, and superheating is performed so that steam does not condense in the drying process. In the superheated steam dryer, it is preferable to blow superheated steam from the entire lower surface of the dryer toward the upper portion of the dryer. In this case, the filter cake can be loosened by the superheated steam while the superheated steam is brought into direct contact with the filter cake. Therefore, the whole filter cake and the superheated steam can be brought into uniform contact with the filter cake (wet powder) flowing. Therefore, the filter cake can be dried by efficiently conducting heat transfer.
 また、上記エタノール製造装置は、上記乾燥手段によって上記濾滓を乾燥させて得られる残渣を燃焼させる燃焼手段を備えることが好ましい。
 この場合には、上記残渣から燃焼エネルギーを取り出すことができ、上記残渣を燃料として利用することができる。ここで生じる燃焼エネルギーは、乾燥手段、蒸留手段等に利用することができる。そのため、上記エタノール製造装置のエネルギー収支をより向上させることができる。
Moreover, it is preferable that the said ethanol manufacturing apparatus is equipped with the combustion means which burns the residue obtained by drying the said filter cake with the said drying means.
In this case, combustion energy can be extracted from the residue, and the residue can be used as fuel. The combustion energy generated here can be used for drying means, distillation means and the like. Therefore, the energy balance of the said ethanol manufacturing apparatus can be improved more.
 次に、上記エタノール製造装置は、上記乾燥手段における乾燥によって発生するエタノール含有蒸気を上記蒸留手段に供給する蒸気供給手段を備える。
 上記蒸気供給手段は、上記乾燥手段と上記蒸留手段とを結ぶパイプ等にて構成することができる。
Next, the ethanol manufacturing apparatus includes a steam supply unit that supplies the ethanol-containing steam generated by drying in the drying unit to the distillation unit.
The steam supply means can be constituted by a pipe or the like connecting the drying means and the distillation means.
 また、上記エタノール製造装置は、上記蒸留手段によって濃縮されたエタノールを濃縮する濃縮手段を備えていることが好ましい。
 この場合には、より純度の高いエタノールを得ることができる。
 上記濃縮手段としては、浸透気化(PV)法、又は蒸気透過(VP)法等の膜分離法や、吸着剤を利用したPSA(pressure swing adsorption)等の公知の濃縮・脱水技術を採用することができる。
 好ましくは、浸透気化法がよく、上記濃縮手段は、例えば市販の浸透気化(PV)膜等により構成することができる。
 この場合には、例えば99.5wt%以上という高純度のエタノールを得ることが可能になり、アルコール燃料として適用可能なエタノールを製造することができる。
Moreover, it is preferable that the said ethanol manufacturing apparatus is equipped with the concentration means which concentrates the ethanol concentrated by the said distillation means.
In this case, ethanol with higher purity can be obtained.
As the concentration means, a known concentration / dehydration technique such as a membrane separation method such as a pervaporation (PV) method or a vapor permeation (VP) method, or a PSA (pressure swing adsorption) using an adsorbent is adopted. Can do.
Preferably, the pervaporation method is good, and the concentration means can be constituted by, for example, a commercially available pervaporation (PV) membrane.
In this case, it becomes possible to obtain ethanol having a high purity of, for example, 99.5 wt% or more, and ethanol that can be used as an alcohol fuel can be manufactured.
 次に、本発明のエタノールの製造方法においては、上記のごとく、上記固液分離工程と上記乾燥工程と上記蒸留工程とを行う。
 上記固液分離工程においては、エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する。
 上記固液分離工程においては、上記濾滓の含液量が75wt%以下になるまで固液分離を行うことが好ましい。
 上記濾滓の含液量が75wt%を超える場合には、固液分離が不十分で最終的なエタノールの収率が低下するおそれがある。また、後述の乾燥工程における乾燥時間が長くなり、エネルギー収支が悪くなるおそれがある。さらに、上記エタノール発酵にセルロース分解酵素を用い、後述の限外濾過工程を行って上記セルロース分解酵素の回収を行う場合には、上記セルロース分解酵素の回収率が低下するおそれがある。
 また、固液分離により上記含液率を60%未満にすることは、発酵物の特性から、3~5MPaGの圧搾機構を有するフィルタープレス等の固液分離手段を用いても困難であり、設備コストが高くなるおそれがある。この観点から、上記固液分離工程における上記濾滓の含液量は60wt%以上にすることがよい。より好ましくは65wt%以上がよい。なお、濾滓の含液量を75~65wt%にすることは、0.3~3MPaGの圧搾機構を有する固液分離手段により比較的容易に行うことができる。
 上記濾滓の含液量は、例えばフィルタープレスによって固液分離を行う場合には、プレス圧の大きさや、フィルタの孔径等を調整することにより制御することができる。
Next, in the method for producing ethanol of the present invention, as described above, the solid-liquid separation step, the drying step, and the distillation step are performed.
In the solid-liquid separation step, the fermented product after ethanol fermentation is separated into an ethanol-containing filtrate and a filter cake.
In the solid-liquid separation step, it is preferable to perform solid-liquid separation until the liquid content of the filter cake is 75 wt% or less.
When the liquid content of the filter cake exceeds 75 wt%, solid-liquid separation is insufficient and the final ethanol yield may be reduced. Moreover, the drying time in the below-mentioned drying process will become long, and there exists a possibility that an energy balance may worsen. Furthermore, when the cellulose-degrading enzyme is used for the ethanol fermentation and the cellulose-degrading enzyme is recovered by performing the ultrafiltration step described later, the recovery rate of the cellulose-degrading enzyme may be reduced.
In addition, it is difficult to reduce the liquid content to less than 60% by solid-liquid separation, even if solid-liquid separation means such as a filter press having a pressing mechanism of 3 to 5 MPaG is used due to the characteristics of the fermented product. Cost may increase. From this viewpoint, the liquid content of the filter cake in the solid-liquid separation step is preferably 60 wt% or more. More preferably, it is 65 wt% or more. Note that the liquid content of the filter cake can be made 75 to 65 wt% by a solid-liquid separation means having a pressing mechanism of 0.3 to 3 MPaG.
For example, when solid-liquid separation is performed by a filter press, the liquid content of the filter cake can be controlled by adjusting the size of the press pressure, the pore diameter of the filter, and the like.
 上記固液分離工程と上記蒸留工程の間に、上記エタノール含有濾液を限外濾過することにより上記セルロース分解酵素を回収する限外濾過工程を行うことが好ましい。
 この場合には、エタノール発酵に用いた高価なセルロース分解酵素を回収することができ、その再利用を図ることができる。
 上記限外濾過工程は、例えば限外濾過膜(UF膜)等を用いて行うことができる。
It is preferable to perform an ultrafiltration step of recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate between the solid-liquid separation step and the distillation step.
In this case, the expensive cellulose-degrading enzyme used for ethanol fermentation can be recovered and reused.
The ultrafiltration step can be performed using, for example, an ultrafiltration membrane (UF membrane).
 上記乾燥工程においては、上記濾滓を乾燥する。
 上記乾燥工程は、上述のごとく例えば機械式伝熱面を介して加熱する乾燥機、又は過熱蒸気乾燥機等の市販の乾燥機を用いて行うことができる。
In the drying step, the filter cake is dried.
As described above, the drying step can be performed using a commercially available dryer such as a dryer that is heated via a mechanical heat transfer surface or a superheated steam dryer.
 上記乾燥工程においては、乾燥中に上記濾滓中から発生する上記エタノール含有蒸気を過熱蒸気の状態まで過熱し、該過熱蒸気の状態の上記エタノール含有蒸気を上記濾滓に接触させることが好ましい。
 この場合には、機械式伝熱面を利用した乾燥機を用いた場合に起こりうる伝熱面への濾滓の付着を防止することができる。また、この場合には、乾燥中に発生する上記エタノール含有蒸気をリサイクル加熱し、過熱蒸気にして乾燥を行うため、熱収支(エネルギー収支)をより向上させることができる。
In the drying step, it is preferable that the ethanol-containing steam generated from the filter cake during drying is heated to a superheated steam state, and the ethanol-containing steam in the superheated steam state is brought into contact with the filter cake.
In this case, it is possible to prevent the filter cake from adhering to the heat transfer surface, which may occur when a dryer using a mechanical heat transfer surface is used. In this case, the ethanol-containing steam generated during drying is recycled and heated to superheated steam for drying, so that the heat balance (energy balance) can be further improved.
 上記乾燥工程においては、上記濾滓の含液量が40wt%~60wt%になるまで乾燥を行うことが好ましい。
 濾滓の含液量が60wt%を超える場合には、濾滓中にエタノールが残留し、エタノール収率が低下するおそれがある。さらに、上記濾滓を燃焼させて燃焼エネルギーを得る場合において、上記濾滓のハンドリング性が悪くなると共に、燃焼効率が悪くなるおそれがある。一方、40wt%未満の場合には、回収されるエタノールの濃度が低下するおそれがある。また、エネルギーロスが大きくなり、エネルギー収支が悪くなるおそれがある。
 回分式の蒸発テストによれば、エタノール含有蒸気中のエタノール濃度は2次曲線を描いて低下し、濾滓の含液量が47~42wt%になったところで濾滓中からエタノールをほぼ完全に回収することができる。よって、上記乾燥工程においては、上記濾滓の含液量が40wt%~50wt%になるまで乾燥を行うことがより好ましい。
 上記乾燥工程後における濾滓の含液量は、乾燥温度、乾燥時間等の乾燥条件を調整することにより制御することができる。
In the drying step, drying is preferably performed until the liquid content of the filter cake reaches 40 wt% to 60 wt%.
When the liquid content of the filter cake exceeds 60 wt%, ethanol remains in the filter cake and the ethanol yield may be reduced. Furthermore, when the filter cake is burned to obtain combustion energy, the handleability of the filter cake is deteriorated and the combustion efficiency may be deteriorated. On the other hand, if it is less than 40 wt%, the concentration of the recovered ethanol may decrease. Moreover, there is a possibility that the energy loss becomes large and the energy balance is deteriorated.
According to a batch-type evaporation test, the ethanol concentration in the ethanol-containing steam decreases in a quadratic curve, and when the liquid content of the filter cake reaches 47-42 wt%, the ethanol is almost completely removed from the filter cake. It can be recovered. Therefore, in the drying step, it is more preferable to perform the drying until the liquid content of the filter cake becomes 40 wt% to 50 wt%.
The liquid content of the filter cake after the drying step can be controlled by adjusting drying conditions such as drying temperature and drying time.
 また、上記乾燥工程において上記濾滓を乾燥させて得られる残渣を燃焼させて燃焼エネルギーを得る燃焼工程を備えることが好ましい。
 この場合には、上記残渣を燃料として利用することができ、例えば乾燥工程等における熱エネルギー源として利用することができる。そのため、上記エタノール製造装置のエネルギー収支をより向上させることができる。
Moreover, it is preferable to provide the combustion process which burns the residue obtained by drying the said filter cake in the said drying process, and obtains combustion energy.
In this case, the residue can be used as a fuel, for example, as a heat energy source in a drying process or the like. Therefore, the energy balance of the said ethanol manufacturing apparatus can be improved more.
 また、上記蒸留工程において濃縮されたエタノールを濃縮する濃縮工程を行うことができる。この場合には、より純度の高いエタノールを得ることができる。
 上記濃縮工程においては、浸透気化(PV)法、又は蒸気透過(VP)法等の膜分離法や、吸着剤を利用したPSA(pressure swing adsorption)等の公知の濃縮・脱水技術を採用することができる。
 好ましくは、浸透気化法がよい。この場合には、例えば99.5wt%以上という高純度のエタノールを得ることが可能になり、アルコール燃料として適用可能なエタノールを製造することができる。浸透気化法による上記濃縮工程は、例えば市販の浸透気化(PV)膜等を用いて行うことができる。
Moreover, the concentration process which concentrates the ethanol concentrated in the said distillation process can be performed. In this case, ethanol with higher purity can be obtained.
In the concentration step, a known concentration / dehydration technique such as a membrane separation method such as a pervaporation (PV) method or a vapor permeation (VP) method or a PSA (pressure swing adsorption) using an adsorbent should be employed. Can do.
The pervaporation method is preferable. In this case, it becomes possible to obtain ethanol having a high purity of, for example, 99.5 wt% or more, and ethanol that can be used as an alcohol fuel can be manufactured. The concentration step by the pervaporation method can be performed using, for example, a commercially available pervaporation (PV) membrane.
(実施例1)
 次に、本発明の実施例にかかるエタノール製造装置について説明する。
 図1に示すごとく、本例のエタノール製造装置1は、固液分離手段2と蒸留手段3と乾燥手段4と蒸気供給手段5とを備える。
 固液分離手段2は、エタノール発酵後の発酵物60をエタノール含有濾液61と濾滓62に分離する。蒸留手段3は、蒸留によりエタノール含有濾液61中のエタノールを濃縮する。これによりエタノール6を得る。
 また、乾燥手段4は、濾滓62を乾燥させる。蒸気供給手段5は、乾燥手段4における乾燥によって発生するエタノール含有蒸気63を蒸留手段3に供給する。
Example 1
Next, an ethanol production apparatus according to an embodiment of the present invention will be described.
As shown in FIG. 1, the ethanol production apparatus 1 of this example includes a solid-liquid separation unit 2, a distillation unit 3, a drying unit 4, and a steam supply unit 5.
The solid-liquid separation means 2 separates the fermented product 60 after ethanol fermentation into an ethanol-containing filtrate 61 and a filter cake 62. The distillation means 3 concentrates ethanol in the ethanol-containing filtrate 61 by distillation. This gives ethanol 6.
The drying means 4 dries the filter cake 62. The steam supply unit 5 supplies the ethanol-containing steam 63 generated by the drying in the drying unit 4 to the distillation unit 3.
 また、本例のエタノール製造装置1は、さらに限外濾過手段11と濃縮手段12とを備える。
 限外濾過手段11は、エタノール含有濾液61を限外濾過することによりエタノール含有濾液61からセルロース分解酵素64を回収する。濃縮手段12は、蒸留手段3によって濃縮されたエタノール6を浸透気化法によりさらに濃縮する。
The ethanol production apparatus 1 of this example further includes an ultrafiltration means 11 and a concentration means 12.
The ultrafiltration means 11 recovers the cellulose degrading enzyme 64 from the ethanol-containing filtrate 61 by ultrafiltration of the ethanol-containing filtrate 61. The concentration means 12 further concentrates the ethanol 6 concentrated by the distillation means 3 by a pervaporation method.
 本例のエタノール製造装置1を用いれば、固液分離工程と乾燥工程と蒸留工程を行うことができる。
 即ち、固液分離工程においては、エタノール発酵後の発酵物60をエタノール含有濾液61と濾滓62に分離する。
 乾燥工程においては、濾滓62を乾燥させ、蒸留工程においては、エタノール含有濾液61を蒸留塔3内で蒸留により濃縮してエタノール6を得ると共に、蒸留塔3内に乾燥工程において発生するエタノール含有蒸気63を供給する。
If the ethanol manufacturing apparatus 1 of this example is used, a solid-liquid separation process, a drying process, and a distillation process can be performed.
That is, in the solid-liquid separation step, the fermented product 60 after ethanol fermentation is separated into an ethanol-containing filtrate 61 and a filter cake 62.
In the drying step, the filter cake 62 is dried, and in the distillation step, the ethanol-containing filtrate 61 is concentrated by distillation in the distillation column 3 to obtain ethanol 6, and the ethanol content generated in the distillation column 3 in the drying step is contained. Steam 63 is supplied.
 また、本例のエタノール装置1においては、限外濾過工程と濃縮工程と燃焼工程とを行うことができる。
 限外濾過工程においては、エタノール含有濾液61を限外濾過することによりセルロース分解酵素64を回収する。濃縮工程においては、蒸留工程において濃縮されたエタノール6を浸透気化法により濃縮する。また、燃焼工程においては、乾燥工程において濾滓62を乾燥させて得られる残渣65を燃焼させて燃焼エネルギーを得る。
Moreover, in the ethanol apparatus 1 of this example, an ultrafiltration process, a concentration process, and a combustion process can be performed.
In the ultrafiltration step, the cellulolytic enzyme 64 is recovered by ultrafiltration of the ethanol-containing filtrate 61. In the concentration step, the ethanol 6 concentrated in the distillation step is concentrated by a pervaporation method. In the combustion process, the residue 65 obtained by drying the filter cake 62 in the drying process is burned to obtain combustion energy.
 以下、本例のエタノール製造装置1について、図1~図5を用いて詳細に説明する。
 なお、図1には、本例のエタノール製造装置について、原料及び生成物を含むブロック図を示し、図2~図5には、エタノール製造装置を4つの部分に分けて示した説明図を示す。
 まず、図2には、エタノール製造装置1の固液分離手段2の周辺構成を示す説明図を示す。同図に示すごとく、本例のエタノール製造装置は、固液分離手段2の上流に、スラリー状の発酵物60を蓄える発酵スラリータンク10を備える。
Hereinafter, the ethanol production apparatus 1 of this example will be described in detail with reference to FIGS.
FIG. 1 is a block diagram including raw materials and products of the ethanol production apparatus of this example, and FIGS. 2 to 5 are explanatory diagrams showing the ethanol production apparatus divided into four parts. .
First, FIG. 2 shows an explanatory diagram showing the peripheral configuration of the solid-liquid separation means 2 of the ethanol production apparatus 1. As shown in the figure, the ethanol production apparatus of this example includes a fermentation slurry tank 10 that stores a slurry-like fermentation product 60 upstream of the solid-liquid separation means 2.
 発酵スラリータンク10には、リグノセルロース系バイオマスと水とセルロース分解酵素(セルラーゼ)との混合物を微生物(サッカロミセス・セルビシエ)によってエタノール発酵させて得られる発酵物60が蓄えられる。リグノセルロース系バイオマスとしては、白色腐朽菌であるマイタケの廃菌床を採用する。
 発酵スラリータンク10には、リグニン、未糖化のセルロース、及びヘミセルロース等の固形分とエタノールを含む液体とが混在したスラリーが貯蔵される。
The fermentation slurry tank 10 stores a fermented product 60 obtained by subjecting a mixture of lignocellulosic biomass, water, and cellulose-degrading enzyme (cellulase) to ethanol fermentation with a microorganism (Saccharomyces cerevisiae). As lignocellulosic biomass, the waste microbial bed of maitake, which is a white rot fungus, is employed.
The fermentation slurry tank 10 stores a slurry in which a solid component such as lignin, unsaccharified cellulose, and hemicellulose and a liquid containing ethanol are mixed.
 発酵スラリータンク10の下流には固液分離手段2としてのフィルタープレスを備えている。このフィルタープレス2は、ろ枠21とろ布22とが複数並列に配された構造をしている。フィルタープレス2においては、ろ枠21・ろ布22のサイズ及び数量の組合せにより、小規模から大規模(ろ室数:数室~数百室、ろ過面積:数m2~数百m2)までの選定が可能である。 A filter press as the solid-liquid separation means 2 is provided downstream of the fermentation slurry tank 10. The filter press 2 has a structure in which a plurality of filter frames 21 and filter cloths 22 are arranged in parallel. In the filter press 2, depending on the combination of the size and quantity of the filter frame 21 and the filter cloth 22, small to large scale (number of filter chambers: several to several hundred rooms, filtration area: several m 2 to several hundred m 2 ) Can be selected.
 発酵スラリータンク10と固液分離手段2との間は発酵物60が通過するパイプ100で連結されており、パイプ100の途中には、発酵スラリータンク10内に蓄えられたスラリー状の発酵物60を固液分離手段2に圧入するための打ち込みポンプ25が設けられている。また、固液分離手段2への圧入後に発酵物を圧搾するために用いられる圧縮空気600を蓄える圧縮空気タンク26が設けられており、圧縮タンク26と固液分離手段2とは圧縮空気が通るパイプ101によって連結されている。 The fermentation slurry tank 10 and the solid-liquid separation means 2 are connected by a pipe 100 through which the fermented product 60 passes, and in the middle of the pipe 100, a slurry-like fermented product 60 stored in the fermentation slurry tank 10. A driving pump 25 for press-fitting the liquid into the solid-liquid separation means 2 is provided. Moreover, the compressed air tank 26 which stores the compressed air 600 used in order to squeeze a fermented material after the injection into the solid-liquid separation means 2 is provided, and compressed air passes between the compression tank 26 and the solid-liquid separation means 2. They are connected by a pipe 101.
 また、固液分離手段2の下流には、分離されたエタノール含有濾液を貯蔵する濾液タンク23と、分離された濾滓を乾燥手段に運搬するベルトコンベア24とが設けられている。濾液タンク23は、エタノール含有濾液が通過するパイプ102によって固液分離手段2に連結されている。 Further, downstream of the solid-liquid separation means 2, a filtrate tank 23 for storing the separated ethanol-containing filtrate and a belt conveyor 24 for carrying the separated filter cake to the drying means are provided. The filtrate tank 23 is connected to the solid-liquid separation means 2 by a pipe 102 through which the ethanol-containing filtrate passes.
 次に、図3に示すごとく、本例のエタノール製造装置は限外ろ過手段11を備えている。限外ろ過手段11は、循環タンク110と濾液ポンプ111と限外濾過膜(UF膜)112とにより構成されている。
 限外ろ過手段11の上流側には、濾液タンク23内のエタノール含有濾液を循環タンク110に供給する濾液ポンプ113が設けられている。濾液タンク23と循環タンク110とはエタノール含有濾液が通過するパイプ103によって連結されており、パイプ103の途中には50~80メッシュ(目開き0.3~0.17mm)のストレーナー114が配置されている。
Next, as shown in FIG. 3, the ethanol production apparatus of this example includes an ultrafiltration means 11. The ultrafiltration means 11 includes a circulation tank 110, a filtrate pump 111, and an ultrafiltration membrane (UF membrane) 112.
A filtrate pump 113 that supplies the ethanol-containing filtrate in the filtrate tank 23 to the circulation tank 110 is provided on the upstream side of the ultrafiltration means 11. The filtrate tank 23 and the circulation tank 110 are connected by a pipe 103 through which an ethanol-containing filtrate passes, and a strainer 114 of 50 to 80 mesh (aperture 0.3 to 0.17 mm) is disposed in the middle of the pipe 103. ing.
 限外ろ過手段11において、循環タンク110と限外濾過膜112は、循環タンク110から限外濾過膜112へ送り出されるエタノール含有濾液が通過するパイプ104、限外濾過膜112から循環タンク110へと戻ってくるエタノール含有濾液が通過するパイプ105によって連結されている。即ち、循環タンク110と限外濾過膜112間でエタノール含有濾液を循環させることができる構成になっている。限外濾過膜112としては、分子量分画2~3万のものを採用し、限外濾過膜112においてセルロース分解酵素が濃縮されて回収される。
 セルロース分解酵素が回収されたエタノール含有濾液は、パイプ106を通って濾液タンク30へ送られる。
In the ultrafiltration means 11, the circulation tank 110 and the ultrafiltration membrane 112 are connected to the pipe 104 through which the ethanol-containing filtrate sent from the circulation tank 110 to the ultrafiltration membrane 112 passes, and from the ultrafiltration membrane 112 to the circulation tank 110. It is connected by a pipe 105 through which the returning ethanol-containing filtrate passes. That is, the ethanol-containing filtrate can be circulated between the circulation tank 110 and the ultrafiltration membrane 112. As the ultrafiltration membrane 112, one having a molecular weight fraction of 20,000 to 30,000 is adopted, and the cellulose-degrading enzyme is concentrated and recovered in the ultrafiltration membrane 112.
The ethanol-containing filtrate from which the cellulolytic enzyme is recovered is sent to the filtrate tank 30 through the pipe 106.
 次に、図4に示すごとく、本例のエタノール製造装置は蒸留手段3を備えている。
 蒸留手段3は、精留を行なうための蒸留塔31、蒸留塔31の下部に設けられ、蒸気を炊きあげるリボイラー311と、蒸留塔31の上部に設けられ、蒸気を凝縮するコンデンサー312とを備える。
 蒸留塔31としては、内部に複数の棚段310を備えた棚段塔、又は気液接触させる充填物を内部に充填した充填塔などを採用することができるが、本例においては、棚段塔を採用した例について示す(図4参照)。本例において、蒸留塔31は、内部に20段の棚段310を有しており、コンデンサ312及びリボイラー311と併せて合計22段の理論段を構成している。
Next, as shown in FIG. 4, the ethanol production apparatus of this example includes a distillation means 3.
The distillation means 3 includes a distillation column 31 for performing rectification, a reboiler 311 for cooking steam, and a condenser 312 for condensing the steam, which is provided on the top of the distillation column 31. .
As the distillation column 31, a tray column provided with a plurality of shelves 310 inside, or a packed column filled with a packing to be brought into gas-liquid contact can be adopted. An example employing a tower will be described (see FIG. 4). In this example, the distillation column 31 has 20 shelf stages 310 inside, and constitutes a total of 22 theoretical stages together with the condenser 312 and the reboiler 311.
 濾液タンク30内に貯蔵されたエタノール含有濾液は、蒸留フィードポンプ32によって、パイプ107を通って蒸留手段3に送られる。蒸留フィードポンプ32の吐出側には流量コントロール(FC)33が設置されており、エタノール含有濾液は所定の流量で蒸留手段3に供給される。また、蒸留手段3の下部には、蒸留塔底部に溜まる沸点の液を排出パイプ354から外部に排出させる蒸留塔ボトムポンプ351と、その排出量を制御するレベルコントロール(LC)352と、排出された液体から熱を回収する回収熱交換器353とが設けられている。上述のパイプ107内のエタノール含有濾液は、蒸留手段3内に供給される際に、回収熱交換器353における熱交換により加熱されてから蒸留手段3内に供給される。 The ethanol-containing filtrate stored in the filtrate tank 30 is sent to the distillation means 3 through the pipe 107 by the distillation feed pump 32. A flow rate control (FC) 33 is installed on the discharge side of the distillation feed pump 32, and the ethanol-containing filtrate is supplied to the distillation means 3 at a predetermined flow rate. Also, at the bottom of the distillation means 3, a distillation tower bottom pump 351 for discharging the liquid having a boiling point accumulated at the bottom of the distillation tower to the outside from the discharge pipe 354, and a level control (LC) 352 for controlling the discharge amount are discharged. And a recovery heat exchanger 353 for recovering heat from the liquid. When the ethanol-containing filtrate in the pipe 107 is supplied into the distillation means 3, it is heated by heat exchange in the recovery heat exchanger 353 and then supplied into the distillation means 3.
 また、蒸留手段3には、濾液タンク30からパイプ107を通って送られてくるエタノール含有濾液が導入される濾液導入口341と、後述の乾燥機から送られるエタノール含有蒸気が導入される蒸気導入口342が設けられている。本例の蒸留手段3においては、蒸気導入口342は、濾液導入口341よりも下段側に設けられる。具体的には、本例の蒸留手段3においては、上述の合計22段の理論段数のうち、最上段を第1段目とし、最下段を22段目とすると、濾液導入口341は第7段目の位置に設けられ、蒸気導入口342は第11段目の位置に設けられている。なお、本例の蒸留手段3において、最上段(第1段目)はコンデンサ312となり、最下段(第22段目)はリボイラー311となる。 Further, the distillation means 3 introduces a filtrate inlet 341 into which an ethanol-containing filtrate sent from the filtrate tank 30 through the pipe 107 is introduced, and a steam introduction into which an ethanol-containing vapor sent from a dryer described later is introduced. A mouth 342 is provided. In the distillation means 3 of this example, the steam inlet 342 is provided on the lower stage side than the filtrate inlet 341. Specifically, in the distillation means 3 of this example, if the uppermost stage is the first stage and the lowermost stage is the 22nd stage among the total number of 22 theoretical stages described above, the filtrate inlet 341 is the seventh stage. The steam inlet 342 is provided at the position of the eleventh stage. In the distillation means 3 of this example, the uppermost stage (first stage) is the condenser 312 and the lowermost stage (22nd stage) is the reboiler 311.
 濾液導入口341及び蒸気導入口342の位置は、エタノール含有濾液及びエタノール含有蒸気中のエタノール濃度、蒸留手段3によるエタノール濃縮濃度によるシミュレーションにより決定できる。本例においては、エタノール含有濾液中のエタノール濃度2~3wt%、エタノール含有蒸気中のエタノール濃度3~5wt%の範囲において、濾液導入口341及び蒸気導入口342の位置を決定している。 The positions of the filtrate inlet 341 and the steam inlet 342 can be determined by a simulation based on the ethanol concentration in the ethanol-containing filtrate and ethanol-containing steam and the ethanol concentration by the distillation means 3. In this example, the positions of the filtrate inlet 341 and the steam inlet 342 are determined in the range of ethanol concentration 2 to 3 wt% in the ethanol-containing filtrate and ethanol concentration 3 to 5 wt% in the ethanol-containing steam.
 また、本例においては、蒸留手段3の下流に浸透気化膜(PV膜)からなる濃縮手段12が設けられており、蒸留手段3において濃縮されたエタノールは、濃縮手段12においてさらに濃縮される。 Further, in this example, the concentration means 12 made of a pervaporation membrane (PV membrane) is provided downstream of the distillation means 3, and the ethanol concentrated in the distillation means 3 is further concentrated in the concentration means 12.
 また、図5に示すごとく、本例のエタノール製造装置は、乾燥手段4を備えている。
 本例において乾燥手段4は、例えば(株)栗本鐵工所又は(株)奈良機械製作所製の多軸型の乾燥機を用いることができる。図5においては、乾燥缶40内に回転可能な2つのパドル軸41、42を有する乾燥機4を示してあり、パドル軸41、42の周囲にはそれぞれ複数の伝熱翼415、425が形成されている。また、乾燥缶40は、その周囲がジャケット(図示略)で覆われており、伝熱をより促進させることができる。
 乾燥機の投入口には内部にスクリュー431を備えたスクリューフィーダ43が設けられている。固液分離手段2で分離された濾滓はベルトコンベア24によって運ばれて(図2参照)、図5に示すスクリューフィーダ43から乾燥手段4に投入される。
As shown in FIG. 5, the ethanol production apparatus of this example includes a drying means 4.
In this example, the drying means 4 may be, for example, a multi-axis dryer manufactured by Kurimoto Steel Works or Nara Machinery Co., Ltd. FIG. 5 shows the dryer 4 having two paddle shafts 41 and 42 that can rotate in the drying can 40, and a plurality of heat transfer blades 415 and 425 are formed around the paddle shafts 41 and 42, respectively. Has been. Moreover, the periphery of the drying can 40 is covered with a jacket (not shown), and heat transfer can be further promoted.
A screw feeder 43 having a screw 431 inside is provided at the inlet of the dryer. The filter cake separated by the solid-liquid separation means 2 is carried by the belt conveyor 24 (see FIG. 2), and is put into the drying means 4 from the screw feeder 43 shown in FIG.
 乾燥手段4の底部には、乾燥後の残渣を抜き出すロータリバルブ44が設けられている。ロータリバルブ44の下流にはバーチカルコンベア(図示略)が設けられており、このバーチカルコンベアによって残渣はホッパー(図示略)に蓄えられる。その後必要に応じてボイラー(図示略)で燃焼されて燃焼エネルギーを得ることができる。この燃焼エネルギーは乾燥手段4のエネルギーとして利用することができる。 At the bottom of the drying means 4 is provided a rotary valve 44 for extracting the residue after drying. A vertical conveyor (not shown) is provided downstream of the rotary valve 44, and the residue is stored in a hopper (not shown) by this vertical conveyor. After that, it is burned by a boiler (not shown) as necessary, and combustion energy can be obtained. This combustion energy can be used as the energy of the drying means 4.
 また、図5に示すごとく、乾燥手段4の上部には、乾燥手段4と蒸留手段3(図4参照)とを連結するパイプからなる蒸気供給手段5が設けられており、乾燥時に濾滓から発生するエタノール含有蒸気が蒸気供給手段5から蒸留手段3(図4参照)に送られる。 Further, as shown in FIG. 5, a steam supply means 5 comprising a pipe connecting the drying means 4 and the distillation means 3 (see FIG. 4) is provided at the upper part of the drying means 4, from the filter cake at the time of drying. The generated ethanol-containing steam is sent from the steam supply means 5 to the distillation means 3 (see FIG. 4).
 次に、本例のエタノール製造装置における原料及び生成物の流れについて説明する。
 エタノール製造装置においては、まず、図2に示すごとく、発酵スラリータンク10に蓄えられた発酵物60が打ち込みポンプ25によってパイプ100を通ってフィルタープレスからなる固液分離手段2に圧入される。また、圧縮タンク26内の圧縮空気600がパイプ101を通って固液分離手段2内に導入される。この圧縮空気600により固液分離手段2内で発酵物60が圧搾され、エタノール含有濾液と濾滓とに分離される(固液分離工程)。本例においては、濾滓の含液量70wt%まで圧搾を行う。
 分離されたエタノール含有濾液は、パイプ102を通って濾液タンク23に貯蔵され、濾滓はベルトコンベア24により乾燥手段4(図5参照)に運搬される。
Next, the flow of raw materials and products in the ethanol production apparatus of this example will be described.
In the ethanol production apparatus, first, as shown in FIG. 2, the fermented product 60 stored in the fermentation slurry tank 10 is pressed into the solid-liquid separation means 2 including a filter press through the pipe 100 by the driving pump 25. Further, the compressed air 600 in the compression tank 26 is introduced into the solid-liquid separation means 2 through the pipe 101. The fermented product 60 is compressed in the solid-liquid separation means 2 by the compressed air 600 and separated into an ethanol-containing filtrate and a filter cake (solid-liquid separation step). In this example, squeezing is performed until the liquid content of the filter cake reaches 70 wt%.
The separated ethanol-containing filtrate is stored in the filtrate tank 23 through the pipe 102, and the filter cake is conveyed to the drying means 4 (see FIG. 5) by the belt conveyor 24.
 図3に示すごとく、濾液タンク23内に貯蔵されたエタノール含有濾液は、濾液ポンプ113によりパイプ103を通って一旦循環タンク110に送られる。このとき、パイプ103の途中に配置されたストレーナー114により、エタノール含有濾液中に含まれる粒子(固形物)が除去される。これにより、下流の限外濾過膜における閉塞を防止することができる。
 循環タンク110内に送られたエタノール含有濾液は、濾液ポンプ111によって、パイプ104を通って限外濾過膜112を通過し、さらにパイプ105を通って循環タンク110まで戻ってくる。このとき、限外濾過膜112においては、エタノール含有濾液中に含まれるセルロース分解酵素が濃縮され、濃縮液(セルロース分解酵素)64が回収される(限外濾過工程)。エタノール含有濾液中の水及びエタノール等は限外濾過膜112を通過してパイプ106を通って濾液タンク30に送られる。
As shown in FIG. 3, the ethanol-containing filtrate stored in the filtrate tank 23 is once sent to the circulation tank 110 through the pipe 103 by the filtrate pump 113. At this time, the particles (solid matter) contained in the ethanol-containing filtrate are removed by the strainer 114 disposed in the middle of the pipe 103. Thereby, blockage in the downstream ultrafiltration membrane can be prevented.
The ethanol-containing filtrate sent into the circulation tank 110 passes through the ultrafiltration membrane 112 through the pipe 104 and returns to the circulation tank 110 through the pipe 105 by the filtrate pump 111. At this time, in the ultrafiltration membrane 112, the cellulose-degrading enzyme contained in the ethanol-containing filtrate is concentrated, and the concentrate (cellulose-degrading enzyme) 64 is recovered (ultrafiltration step). Water, ethanol, and the like in the ethanol-containing filtrate pass through the ultrafiltration membrane 112 and are sent to the filtrate tank 30 through the pipe 106.
 一方、上述のごとく固液分離手段2において分離された濾滓はベルトコンベア24により乾燥手段に運搬される(図2及び図5参照)。図5に示すごとく、濾滓はスクリューフィーダ43のスクリュー431によって所定量ずつ乾燥手段4に導入される。
 乾燥手段4においては、2つのパドル軸41、42が回転することにより伝熱翼415、425が回転し、加熱した伝熱翼との接触等により濾滓が加熱されて乾燥される(乾燥工程)。本例においては残渣の含液率45%まで乾燥を行う。乾燥時に発生するエタノール含有蒸気は、乾燥手段4の上部に連結されたパイプからなる蒸気供給手段5を通って、図4に示す蒸留手段3に送られる。そして、蒸気導入口342から蒸留手段3内に供給される。
 また、図5に示すごとく、乾燥後に乾燥手段4内に残る残渣は、ロータリバルブ44から排出され、バーチカルコンベアによってホッパー(図示略)に蓄えられる。ホッパーに蓄えられた残渣は、ボイラー等の燃焼手段(図示略)によって必要に応じて燃焼され燃焼エネルギーとして利用される。
On the other hand, the filter cake separated in the solid-liquid separation means 2 as described above is conveyed to the drying means by the belt conveyor 24 (see FIGS. 2 and 5). As shown in FIG. 5, the filter cake is introduced into the drying means 4 by a predetermined amount by a screw 431 of the screw feeder 43.
In the drying means 4, the heat transfer blades 415 and 425 are rotated by rotating the two paddle shafts 41 and 42, and the filter cake is heated and dried by contact with the heated heat transfer blades (drying step). ). In this example, the residue is dried to a liquid content of 45%. The ethanol-containing steam generated at the time of drying is sent to the distillation means 3 shown in FIG. 4 through the steam supply means 5 composed of a pipe connected to the upper part of the drying means 4. And it is supplied into the distillation means 3 from the steam inlet 342.
Further, as shown in FIG. 5, the residue remaining in the drying means 4 after drying is discharged from the rotary valve 44 and stored in a hopper (not shown) by a vertical conveyor. The residue stored in the hopper is burned as necessary by combustion means (not shown) such as a boiler and used as combustion energy.
 また、上述のごとく濾液タンク30内に貯蔵されたエタノール含有濾液は、蒸留フィードポンプ32によって、パイプ107を通って蒸留手段3に送られる(図4参照)。このとき、エタノール含有濾液は、流量コントロール(FC)33により、所定の流量で濾液導入口341から蒸留手段3に供給される。また、上述の如く、蒸留手段3には、蒸気供給手段5を通って送られるエタノール含有蒸気が、蒸気導入口342から供給される。 Further, the ethanol-containing filtrate stored in the filtrate tank 30 as described above is sent to the distillation means 3 through the pipe 107 by the distillation feed pump 32 (see FIG. 4). At this time, the ethanol-containing filtrate is supplied from the filtrate inlet 341 to the distillation means 3 at a predetermined flow rate by a flow rate control (FC) 33. Further, as described above, the ethanol-containing steam sent through the steam supply means 5 is supplied to the distillation means 3 from the steam inlet 342.
 また、パイプ107内のエタノール含有濾液が蒸留手段3内に供給される際には、蒸留手段3内部の高温の液体が、蒸留塔ボトムポンプ351によって、レベルコントロール352により制御された所定量だけ排出パイプ354から外部へ排出される。排出パイプ354内の高温の液体は、排出パイプ354の途中に設けられた回収熱交換器353において、パイプ107内を通って蒸留手段3に供給されるエタノール含有濾液と熱交換が行なわれてから外部へ排出される。即ち、パイプ107を通って蒸留手段3に供給されるエタノール含有濾液は、回収熱交換器353において、排出パイプ354を通って排出される高温の液体との熱交換によって加熱されてから蒸留手段3内に供給される。一方、排出パイプ354を通って排出される液体は、パイプ107内のエタノール含有濾液との熱交換によって、熱交換前のエタノール含有濾液の温度近くにまで冷却されてから排出される。 When the ethanol-containing filtrate in the pipe 107 is supplied into the distillation means 3, the high-temperature liquid in the distillation means 3 is discharged by the distillation tower bottom pump 351 by a predetermined amount controlled by the level control 352. It is discharged from the pipe 354 to the outside. The hot liquid in the discharge pipe 354 is subjected to heat exchange with the ethanol-containing filtrate supplied to the distillation means 3 through the pipe 107 in the recovery heat exchanger 353 provided in the middle of the discharge pipe 354. It is discharged outside. That is, the ethanol-containing filtrate supplied to the distillation means 3 through the pipe 107 is heated by heat exchange with the high-temperature liquid discharged through the discharge pipe 354 in the recovery heat exchanger 353 and then the distillation means 3. Supplied in. On the other hand, the liquid discharged through the discharge pipe 354 is cooled to near the temperature of the ethanol-containing filtrate before heat exchange by heat exchange with the ethanol-containing filtrate in the pipe 107 and then discharged.
 蒸留手段3においては、蒸留塔内に導入されたエタノール含有濾液及びエタノール含有蒸気が蒸留によって濃縮される(蒸留工程)。蒸留手段3においては、リボイラー311で炊きあげられた蒸気をコンデンサー312で凝縮し、還流をかけながら一部を塔頂から抜き出すことにより、純度90wt%にまで濃縮されたエタノールを得る。特定の棚段の温度を制御することにより、塔頂の濃度を安定させることができる。 In the distillation means 3, the ethanol-containing filtrate and ethanol-containing steam introduced into the distillation tower are concentrated by distillation (distillation step). In the distillation means 3, the steam boiled by the reboiler 311 is condensed by the condenser 312, and a part thereof is extracted from the top of the column while refluxing to obtain ethanol concentrated to a purity of 90 wt%. By controlling the temperature of a specific platen, the concentration at the top of the column can be stabilized.
 蒸留手段3において濃縮されたエタノールは、パイプ108を通って、濃縮手段12に送られる。そして濃縮手段12において、エタノールはさらに濃縮され(濃縮工程)、純度99.5wt%以上のエタノール6を得ることができる。 The ethanol concentrated in the distillation means 3 is sent to the concentration means 12 through the pipe 108. And in the concentration means 12, ethanol is further concentrated (concentration process), and ethanol 6 having a purity of 99.5 wt% or more can be obtained.
 本例のエタノール製造装置1は、少なくとも、上記固液分離手段2と上記蒸留手段3と上記乾燥手段4と上記蒸気供給手段5とを備えており(図1~図5参照)、上述のごとく、固液分離工程、乾燥工程、蒸留工程を実現することができる。 The ethanol production apparatus 1 of this example includes at least the solid-liquid separation means 2, the distillation means 3, the drying means 4, and the vapor supply means 5 (see FIGS. 1 to 5), as described above. A solid-liquid separation process, a drying process, and a distillation process can be realized.
 図1に示すごとく、本例のエタノール製造装置1において最も注目すべき点は、上記乾燥手段4と上記蒸気供給手段5を備えていることにある。
 上記乾燥手段4による乾燥時には、濾滓62中に残留していたエタノール及び水分等がエタノール含有蒸気63として発生する。そして、エタノール製造装置1は、蒸気供給手段5を備えているため、乾燥中に発生したエタノール含有蒸気63を蒸留手段3に供給することができる。そのため、蒸留手段3内には、エタノール含有濾液61だけでなく、エタノール含有蒸気63も供給される。それ故、本例のエタノール製造装置1においては、エタノール含有濾液61とエタノール含有蒸気63の両方からエタノールを回収することができ、収率よくエタノールを得ることができる。
As shown in FIG. 1, the most notable point in the ethanol production apparatus 1 of the present example is that the drying means 4 and the steam supply means 5 are provided.
At the time of drying by the drying means 4, ethanol and moisture remaining in the filter cake 62 are generated as the ethanol-containing vapor 63. And since the ethanol manufacturing apparatus 1 is equipped with the vapor | steam supply means 5, it can supply the ethanol containing vapor | steam 63 which generate | occur | produced during drying to the distillation means 3. FIG. Therefore, not only the ethanol-containing filtrate 61 but also the ethanol-containing steam 63 is supplied into the distillation means 3. Therefore, in the ethanol production apparatus 1 of this example, ethanol can be recovered from both the ethanol-containing filtrate 61 and the ethanol-containing steam 63, and ethanol can be obtained with high yield.
 さらに、蒸留手段3には、乾燥手段4からエタノールを蒸気(エタノール含有蒸気63)の状態で供給するため、エタノール含有蒸気63の熱エネルギーを蒸留手段3における蒸留に利用することができる。そのため、乾燥手段4で使用した熱エネルギーを蒸気として蒸留手段3に移動させて再利用することができ、エネルギー収支を向上させることができる。 Furthermore, since ethanol is supplied from the drying means 4 to the distillation means 3 in the state of steam (ethanol-containing steam 63), the heat energy of the ethanol-containing steam 63 can be used for distillation in the distillation means 3. Therefore, the heat energy used in the drying means 4 can be transferred to the distillation means 3 as steam and reused, and the energy balance can be improved.
 また、本例においては、マイタケの廃菌床と水とセルロース分解酵素との混合物を微生物によってエタノール発酵させてなる発酵物60を用いている。マイタケの廃菌床においては、酵素によって分解されやすい状態でセルロースが含有されているため、発酵物60においては、セルロースが十分に分解されている。そのため、収率よくエタノール6を得ることができる。 Further, in this example, a fermented product 60 obtained by subjecting a mixture of maitake mushroom beds, water, and a cellulolytic enzyme to ethanol fermentation with microorganisms is used. In the waste maitake mushroom bed, cellulose is contained in a state in which it is easily decomposed by enzymes, and therefore, in the fermented product 60, the cellulose is sufficiently decomposed. Therefore, ethanol 6 can be obtained with high yield.
 また、本例においては、固液分離手段2は、フィルタープレス機により構成されている。そのため、圧力ろ過を行うことができ、個体と液体との比重差が小さくても十分に固液分離を行うことができる。
 また、エタノール製造装置1は、エタノール含有濾液61を限外濾過することによりセルロース分解酵素64を回収する限外濾過手段11を備える。そのため、エタノール含有濾液61から高価なセルロース分解酵素64を回収することができ、その再利用を図ることができる。
Moreover, in this example, the solid-liquid separation means 2 is comprised by the filter press machine. Therefore, pressure filtration can be performed, and solid-liquid separation can be sufficiently performed even if the specific gravity difference between the solid and the liquid is small.
The ethanol production apparatus 1 also includes an ultrafiltration means 11 that recovers the cellulolytic enzyme 64 by ultrafiltration of the ethanol-containing filtrate 61. Therefore, the expensive cellulose-degrading enzyme 64 can be recovered from the ethanol-containing filtrate 61 and can be reused.
 また、本例のエタノール製造装置1は、乾燥手段4によって濾滓62を乾燥させて得られる残渣65を燃焼させる燃焼手段(図示略)を備える。そのため、残渣65を燃料として利用することができ、エタノール製造装置1のエネルギー収支をより一層向上させることができる Moreover, the ethanol production apparatus 1 of this example includes combustion means (not shown) for burning the residue 65 obtained by drying the filter cake 62 by the drying means 4. Therefore, the residue 65 can be used as fuel, and the energy balance of the ethanol production apparatus 1 can be further improved.
 また、エタノール製造装置1は、蒸留手段3によって濃縮されたエタノールを浸透気化法によりさらに濃縮する濃縮手段12を備えている。そのため、例えば99.5wt%以上という高純度のエタノールを得ることが可能になり、アルコール燃料として適用可能なエタノール6を製造することができる。 Further, the ethanol production apparatus 1 is provided with a concentration means 12 for further concentrating the ethanol concentrated by the distillation means 3 by the pervaporation method. Therefore, it becomes possible to obtain ethanol having a high purity of, for example, 99.5 wt% or more, and ethanol 6 that can be applied as an alcohol fuel can be manufactured.
 また、本例の固液分離手段2においては、濾滓の含液量が約70wt%になるまで固液分離を行う。
 そのため、乾燥手段4における乾燥時間が長くなってエネルギー収支が悪化することを防止できる。また、限外濾過手段11においてセルロース分解酵素を十分に回収することができる。さらに、エタノールを十分に高い収率で得ることができる。
 濾滓の含液量が約70wt%になるまでの固液分離は、固液分離手段2を用いて、0.5MPaG以下の圧搾で容易に実現することが可能である。
Moreover, in the solid-liquid separation means 2 of this example, solid-liquid separation is performed until the liquid content of the filter cake reaches about 70 wt%.
Therefore, it can prevent that the drying time in the drying means 4 becomes long and an energy balance deteriorates. In addition, the cellulolytic enzyme can be sufficiently recovered in the ultrafiltration means 11. Furthermore, ethanol can be obtained in a sufficiently high yield.
Solid-liquid separation until the liquid content of the filter cake reaches about 70 wt% can be easily realized using the solid-liquid separation means 2 by pressing at 0.5 MPaG or less.
 また、乾燥手段4においては、濾滓62の含液量が約45wt%になるまで乾燥を行う。
 そのため、エタノール含有蒸気としてエタノールを十分に回収することができると共に、上記燃焼手段において濾滓62を燃焼させる際に、濾滓のハンドリング性がよくなり、比較的優れた燃焼効率で濾滓62を燃焼させることができる。
Moreover, in the drying means 4, it dries until the liquid content of the filter cake 62 becomes about 45 wt%.
Therefore, ethanol can be sufficiently recovered as the ethanol-containing vapor, and when the filter cake 62 is burned in the combustion means, the handleability of the filter cake is improved, and the filter cake 62 is made to have a relatively good combustion efficiency. Can be burned.
 このように、本例によれば、優れたエネルギー収支でエタノール発酵物からエタノールを得ることができるエタノール製造装置及びエタノール製造方法を提供することができる。 Thus, according to this example, it is possible to provide an ethanol production apparatus and an ethanol production method capable of obtaining ethanol from an ethanol fermentation product with an excellent energy balance.
(実施例2)
 実施例1においては、乾燥手段として、機械式伝熱面を介して加熱する乾燥機を用いたが、本例においては過熱蒸気乾燥機を用いる。
 本例の乾燥手段も、実施例1と同様に、固液分離手段2(図2参照)によって分離された濾滓を乾燥するためのものである。
(Example 2)
In the first embodiment, a dryer that heats through a mechanical heat transfer surface is used as the drying means. However, in this example, a superheated steam dryer is used.
The drying means of this example is also for drying the filter cake separated by the solid-liquid separation means 2 (see FIG. 2), as in the first embodiment.
 図6に示すごとく、本例における乾燥手段7は、乾燥缶70と過熱器75と乾燥缶70内で発生するエタノール含有蒸気を乾燥缶70及び過熱器75間で循環させる循環パイプ700を備える。
 乾燥缶70は、その内部に回転可能なパドル軸71とパドル軸の周囲に設けられた複数の撹拌翼715とを有する。
As shown in FIG. 6, the drying means 7 in this example includes a drying pipe 70, a superheater 75, and a circulation pipe 700 that circulates ethanol-containing steam generated in the drying can 70 between the drying can 70 and the superheater 75.
The drying can 70 includes a rotatable paddle shaft 71 and a plurality of stirring blades 715 provided around the paddle shaft.
 また、乾燥缶70への濾滓の投入口には、実施例1の乾燥機と同様に、内部にスクリュー731を備えたスクリューフィーダ73が設けられている。固液分離手段2で分離された濾滓はベルトコンベア24によって運ばれて(図2参照)、図6に示すスクリューフィーダ73から乾燥缶70内に投入される。 Further, a screw feeder 73 having a screw 731 inside is provided at the inlet of the filter cake into the drying can 70, as in the dryer of the first embodiment. The filter cake separated by the solid-liquid separation means 2 is carried by the belt conveyor 24 (see FIG. 2), and is put into the drying can 70 from the screw feeder 73 shown in FIG.
 また、乾燥缶70の底部には、実施例1の乾燥機と同様に、乾燥後の残渣を抜き出すロータリバルブ76が設けられている。ロータリバルブ76の下流には実施例1と同様にバーチカルコンベア(図示略)が設けられており、このバーチカルコンベアによって残渣はホッパー(図示略)に蓄えられる。その後必要に応じてボイラー(図示略)で燃焼されて燃焼エネルギーを得ることができる。この燃焼エネルギーは例えば乾燥手段7のエネルギーとして利用することができる。 Also, at the bottom of the drying can 70, as with the dryer of the first embodiment, a rotary valve 76 for extracting the residue after drying is provided. A vertical conveyor (not shown) is provided downstream of the rotary valve 76 as in the first embodiment, and the residue is stored in a hopper (not shown) by this vertical conveyor. After that, it is burned by a boiler (not shown) as necessary, and combustion energy can be obtained. This combustion energy can be used as the energy of the drying means 7, for example.
 また、乾燥缶70の上部には、微粉を取り除くためのバグフィルター74が設けられており、さらにバグフィルター74から蒸留手段3(図4参照)まで伸びるパイプからなる蒸気供給手段5が設けられている。蒸気供給手段5は、乾燥缶70と蒸留手段3とを連結し、具体的には実施例1と同様に蒸留手段3の蒸気導入口342に連結される(図4参照)
 また、乾燥手段7には、バグフィルター74と過熱器75と結ぶパイプからなる循環パイプ700が設けられている。循環パイプ700は、乾燥時に濾滓から発生するエタノール含有蒸気の一部を過熱器75に供給する。
Further, a bag filter 74 for removing fine powder is provided on the upper portion of the drying can 70, and further, a steam supply means 5 comprising a pipe extending from the bag filter 74 to the distillation means 3 (see FIG. 4) is provided. Yes. The steam supply means 5 connects the drying can 70 and the distillation means 3, and specifically, is connected to the steam inlet 342 of the distillation means 3 as in the first embodiment (see FIG. 4).
Further, the drying means 7 is provided with a circulation pipe 700 composed of a pipe connecting the bag filter 74 and the superheater 75. The circulation pipe 700 supplies a part of the ethanol-containing steam generated from the filter cake during drying to the superheater 75.
 また、過熱器75としては、市販の熱交換器が利用でき、加熱媒体としては、例えば残渣をオガボイラーで燃焼させて得られるスチームが利用できる。過熱器75は、循環パイプ700を通って過熱器75に送られるエタノール含有蒸気を、温度100℃を超える過熱状態まで間接加熱し過熱蒸気を生成する。また、乾燥手段7は、過熱器75で生成された過熱蒸気を乾燥缶70に導入する熱風循環ブロワー77を備える。乾燥缶70の底部には、複数の過熱蒸気導入口が設けられており、過熱蒸気は乾燥缶70の底部から上方に向けて導入される。 Further, as the superheater 75, a commercially available heat exchanger can be used, and as the heating medium, for example, steam obtained by burning the residue with an OG boiler can be used. The superheater 75 indirectly heats the ethanol-containing steam sent to the superheater 75 through the circulation pipe 700 to a superheated state exceeding 100 ° C. to generate superheated steam. The drying means 7 includes a hot air circulation blower 77 that introduces the superheated steam generated by the superheater 75 into the drying can 70. A plurality of superheated steam inlets are provided at the bottom of the drying can 70, and the superheated steam is introduced upward from the bottom of the drying can 70.
 以下、本例における乾燥手段7の動作について説明する。
 実施例1と同様に、固液分離手段2において分離された濾滓はベルトコンベア24により乾燥手段7に運搬される(図2及び図6参照)。図6に示すごとく、濾滓はスクリューフィーダ73のスクリュー731によって所定量ずつ乾燥缶70に導入される。
 乾燥缶70内においては、パドル軸71が回転することにより撹拌翼715が回転し、濾滓が撹拌されつつ乾燥により濾滓からエタノール含有蒸気が発生する。エタノール含有蒸気の一部は、循環パイプ700を通って過熱器75に送られる。
Hereinafter, the operation of the drying means 7 in this example will be described.
Similar to the first embodiment, the filter cake separated in the solid-liquid separation means 2 is conveyed to the drying means 7 by the belt conveyor 24 (see FIGS. 2 and 6). As shown in FIG. 6, the filter cake is introduced into the drying can 70 by a predetermined amount by the screw 731 of the screw feeder 73.
In the drying can 70, when the paddle shaft 71 rotates, the stirring blade 715 rotates, and ethanol-containing vapor is generated from the filter cake by drying while the filter cake is stirred. A part of the ethanol-containing steam is sent to the superheater 75 through the circulation pipe 700.
 過熱器75においては、エタノール含有蒸気が過熱状態まで加熱される。過熱蒸気(スーパーヒート蒸気)状態のエタノール含有蒸気は、熱風循環ブロワー77によって乾燥缶70の底部の導入口から乾燥缶70内に導入される。
 過熱蒸気との接触により濾滓が加熱されて乾燥し再びエタノール含有蒸気が発生する。ここで発生するエタノール含有蒸気の一部は、実施例1と同様に蒸気供給手段5から蒸留手段3に送られる(図4参照)。また、エタノール含有蒸気の一部は、循環パイプ700を通って再び過熱器75に送られて過熱蒸気となって乾燥缶70内に導入される。
 本例においては残渣の含液率45%まで乾燥を行う。
In the superheater 75, the ethanol-containing steam is heated to a superheated state. The ethanol-containing steam in the superheated steam (superheated steam) state is introduced into the drying can 70 from the inlet at the bottom of the drying can 70 by the hot air circulation blower 77.
By contact with superheated steam, the filter cake is heated and dried to generate ethanol-containing steam again. A part of the ethanol-containing steam generated here is sent from the steam supply means 5 to the distillation means 3 as in the first embodiment (see FIG. 4). Further, part of the ethanol-containing vapor is sent again to the superheater 75 through the circulation pipe 700 and is introduced into the drying can 70 as superheated vapor.
In this example, the residue is dried to a liquid content of 45%.
 本例においては、供給される水、エタノールの量に見合った量を蒸発させて蒸留手段3(図4参照)に抜き出すためには、系内の圧力を一定にコントロールし、出口温度が露点にならないように、過熱器75に供給するスチーム69の量をコントロールする。微粉を除くために、蒸気はバグフィルター74を通って再び過熱器75に戻されて過熱蒸気となるまで加熱されて乾燥缶70に供給される。過熱蒸気は、熱風循環ブロワー77によって乾燥缶70の底部から乾燥缶70内に上向流で供給される。 In this example, in order to evaporate an amount commensurate with the amount of water and ethanol supplied and extract it to the distillation means 3 (see FIG. 4), the pressure in the system is controlled to be constant and the outlet temperature is set to the dew point. The amount of steam 69 supplied to the superheater 75 is controlled so that it does not become. In order to remove fine powder, the steam is returned to the superheater 75 again through the bag filter 74, heated until it becomes superheated steam, and supplied to the drying can 70. The superheated steam is supplied by the hot air circulation blower 77 from the bottom of the drying can 70 into the drying can 70 in an upward flow.
 また、図6に示すごとく、乾燥後に乾燥手段7内に残る残渣は、実施例1と同様にロータリバルブ44から排出され、バーチカルコンベアによって残渣はホッパー(図示略)に蓄えられる。ホッパーに蓄えられた残渣は、ボイラー等の燃焼手段(図示略)によって必要に応じて燃焼され燃焼エネルギーとして利用される。
 本例のエタノール製造装置において、乾燥手段7を除くその他の構成については、実施例1と同様のものにすることができる。
Further, as shown in FIG. 6, the residue remaining in the drying means 7 after drying is discharged from the rotary valve 44 as in the first embodiment, and the residue is stored in a hopper (not shown) by the vertical conveyor. The residue stored in the hopper is burned as necessary by combustion means (not shown) such as a boiler and used as combustion energy.
In the ethanol production apparatus of the present example, the configuration other than the drying means 7 can be the same as that of the first embodiment.
 本例においては、乾燥手段7として過熱蒸気乾燥機を採用している。具体的には、上記のように、濾滓自身に含まれるエタノール含有水を利用した過熱蒸気による直接乾燥方式を採用している。
 そのため、効率よく伝熱を行わせて濾滓の乾燥を行うことができ、エネルギー収支をより向上させることができる。
In this example, a superheated steam dryer is employed as the drying means 7. Specifically, as described above, a direct drying method using superheated steam using ethanol-containing water contained in the filter cake itself is adopted.
Therefore, it is possible to efficiently transfer heat to dry the filter cake, and to further improve the energy balance.
 一般に、機械式伝熱面を利用した乾燥機を用いた場合には、パドル軸全面に強固な付着物が認められる。実施例1においては2軸乾燥機を用いているため、付着物の成長はほとんどないが、薄い付着物がパドル軸全面に強固に付着する。そのため、付着物がない場合に比べると伝熱効率の低下が起り得る。一方、本例のように、過熱蒸気乾燥機を用いると、過熱蒸気により濾滓を加熱して乾燥させることができるため、付着物の生成もなく、効率よく乾燥させることができる。 Generally, when a dryer using a mechanical heat transfer surface is used, strong deposits are observed on the entire paddle shaft. In Example 1, since the biaxial dryer is used, there is almost no growth of deposits, but thin deposits adhere firmly to the entire paddle shaft. Therefore, the heat transfer efficiency can be reduced as compared with the case where there is no deposit. On the other hand, when a superheated steam dryer is used as in this example, the filter cake can be heated and dried with superheated steam, so that it is possible to efficiently dry without generating any deposits.
 また、本例においては、乾燥缶70の底部全面から上部に向けて過熱蒸気を吹き込んでいる(図6参照)。そのため、上記過熱蒸気を上記濾滓に直接接触させつつ、上記過熱蒸気により上記濾滓をほぐすことができる。したがって、濾滓(湿粉)を流動させながら、濾滓全体と過熱蒸気を均一に接触させることができる。それ故、より一層効率よく伝熱を行わせて濾滓の乾燥を行うことができる。 Further, in this example, superheated steam is blown from the entire bottom of the drying can 70 toward the top (see FIG. 6). Therefore, the filter cake can be loosened by the superheated steam while the superheated steam is brought into direct contact with the filter cake. Therefore, the whole filter cake and superheated steam can be made to contact uniformly, making a filter cake (wet powder) flow. Therefore, the filter cake can be dried by conducting heat transfer more efficiently.
 また、本例の乾燥手段7においては、濾滓中に含まれるエタノールをエタノール含有蒸気として乾燥缶70と過熱器75間を循環させている。乾燥缶70から過熱器75へ戻る蒸気は飽和状態であり、過熱器75において加熱されてスーパーヒート(過熱)状態となり、乾燥缶70内に供給される。
 スクリューフィーダ73により乾燥缶70内に導入される濾滓は、エタノール含有蒸気と乾燥残渣とに別れて系外に出て行くことにより、物質上のバランスがとれる。
Moreover, in the drying means 7 of this example, ethanol contained in the filter cake is circulated between the drying can 70 and the superheater 75 using ethanol-containing steam. The steam returning from the drying can 70 to the superheater 75 is in a saturated state and is heated in the superheater 75 to be in a superheated (superheated) state and supplied into the drying can 70.
The filter cake introduced into the drying can 70 by the screw feeder 73 is separated into the ethanol-containing vapor and the drying residue and goes out of the system, so that the balance of the substance is achieved.
 エタノール含有蒸気が系外(蒸留手段3)に持って出る熱量は、過熱器75によって与えられる。過熱器75に循環供給される飽和蒸気状態のエタノール含有蒸気は、過熱器75から熱を得て過熱状態となって乾燥缶70内に供給される。過熱器75における熱源としては、乾燥残渣を燃焼することによって生じる熱の一部をスチームに変えて、又はそのまま直接利用することができる。 The amount of heat that the ethanol-containing vapor takes out of the system (distillation means 3) is given by the superheater 75. The saturated steam-containing ethanol-containing steam that is circulated and supplied to the superheater 75 obtains heat from the superheater 75, becomes superheated, and is supplied into the drying can 70. As a heat source in the superheater 75, a part of heat generated by burning the dry residue can be changed to steam or directly used as it is.
 エタノール含有蒸気の顕熱分(スーパーヒートの熱量分)だけで、濾滓を乾燥する熱量をまかなうためには、循環パイプ700を通るエタノール含有蒸気の量(循環蒸気流量)が必然的に多くなる。このことは、乾燥缶70内で濾滓をほぐし、濾滓との十分な接触を行なうために有効となる。 The amount of ethanol-containing steam that passes through the circulation pipe 700 (circulation steam flow rate) inevitably increases in order to cover the amount of heat for drying the filter cake by only the sensible heat of the ethanol-containing steam (the amount of heat of the superheat). . This is effective for loosening the filter cake in the drying can 70 and making sufficient contact with the filter cake.

Claims (18)

  1.  エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する固液分離手段と、
     上記エタノール含有濾液中のエタノールを蒸留により濃縮する蒸留手段と、
     上記濾滓を乾燥させる乾燥手段と、
     上記乾燥手段における乾燥によって発生するエタノール含有蒸気を上記蒸留手段に供給する蒸気供給手段とを備えることを特徴とするエタノール製造装置。
    Solid-liquid separation means for separating the fermented product after ethanol fermentation into an ethanol-containing filtrate and a filter cake,
    A distillation means for concentrating ethanol in the ethanol-containing filtrate by distillation;
    Drying means for drying the filter cake;
    An ethanol production apparatus comprising: a steam supply unit configured to supply ethanol-containing steam generated by drying in the drying unit to the distillation unit.
  2.  請求項1に記載のエタノール製造装置において、上記発酵物は、リグノセルロース系バイオマスと水とセルロース分解酵素との混合物を微生物によってエタノール発酵させてなることを特徴とするエタノール製造装置。 2. The ethanol production apparatus according to claim 1, wherein the fermented product is obtained by subjecting a mixture of lignocellulosic biomass, water, and cellulose-degrading enzyme to ethanol fermentation with a microorganism.
  3.  請求項2に記載のエタノール製造装置において、上記リグノセルロース系バイオマスは、糸状菌を培養中の菌床及び/又は糸状菌の廃菌床であることを特徴とするエタノール製造装置。 3. The ethanol production apparatus according to claim 2, wherein the lignocellulosic biomass is a fungal bed in which filamentous fungi are being cultured and / or a waste fungus bed of filamentous fungi.
  4.  請求項3に記載のエタノール製造装置において、上記糸状菌は白色腐朽菌であることを特徴とするエタノール製造装置。 4. The ethanol production apparatus according to claim 3, wherein the filamentous fungus is a white rot fungus.
  5.  請求項4に記載のエタノール製造装置において、上記白色腐朽菌は、マイタケであることを特徴とするエタノール製造装置。 5. The ethanol production apparatus according to claim 4, wherein the white rot fungus is maitake.
  6.  請求項2~5のいずれか一項に記載のエタノール製造装置において、上記エタノール含有濾液を限外濾過することにより上記セルロース分解酵素を回収する限外濾過手段を備えることを特徴とするエタノール製造装置。 The ethanol production apparatus according to any one of claims 2 to 5, further comprising ultrafiltration means for recovering the cellulolytic enzyme by ultrafiltration of the ethanol-containing filtrate. .
  7.  請求項1~6のいずれか一項に記載のエタノール製造装置において、上記乾燥手段は、乾燥中に上記濾滓中から発生する上記エタノール含有蒸気を過熱蒸気の状態まで過熱し、該過熱蒸気の状態の上記エタノール含有蒸気を上記濾滓に接触させる構成を備えていることを特徴とするエタノール製造装置。 The ethanol production apparatus according to any one of claims 1 to 6, wherein the drying means superheats the ethanol-containing steam generated from the filter cake during drying to a superheated steam state, An ethanol production apparatus comprising a configuration in which the ethanol-containing vapor in a state is brought into contact with the filter cake.
  8.  請求項1~7のいずれか一項に記載のエタノール製造装置において、上記乾燥手段によって上記濾滓を乾燥させて得られる残渣を燃焼させる燃焼手段を備えることを特徴とするエタノール製造装置。 The ethanol production apparatus according to any one of claims 1 to 7, further comprising combustion means for burning a residue obtained by drying the filter cake by the drying means.
  9.  エタノール発酵後の発酵物をエタノール含有濾液と濾滓に分離する固液分離工程と、
     上記濾滓を乾燥させる乾燥工程と、
     上記エタノール含有濾液を蒸留塔内で蒸留により濃縮してエタノールを得ると共に、上記蒸留塔内に上記乾燥工程において発生するエタノール含有蒸気を供給する蒸留工程とを有することを特徴とするエタノールの製造方法。
    A solid-liquid separation process for separating the fermented product after ethanol fermentation into an ethanol-containing filtrate and a filter cake;
    A drying step of drying the filter cake,
    A method for producing ethanol, comprising: concentrating the ethanol-containing filtrate by distillation in a distillation column to obtain ethanol, and supplying the ethanol-containing vapor generated in the drying step to the distillation column. .
  10.  請求項9に記載のエタノールの製造方法において、上記発酵物は、リグノセルロース系バイオマスと水とセルロース分解酵素との混合物を微生物によってエタノール発酵させてなることを特徴とするエタノールの製造方法。 10. The method for producing ethanol according to claim 9, wherein the fermented product is obtained by subjecting a mixture of lignocellulosic biomass, water and cellulose-degrading enzyme to ethanol fermentation with a microorganism.
  11.  請求項10に記載のエタノールの製造方法において、上記リグノセルロース系バイオマスは、糸状菌を培養中の菌床及び/又は糸状菌の廃菌床であることを特徴とするエタノールの製造方法。 11. The method for producing ethanol according to claim 10, wherein the lignocellulosic biomass is a fungal bed in which filamentous fungi are being cultured and / or a waste fungus bed of filamentous fungi.
  12.  請求項11に記載のエタノールの製造方法において、上記糸状菌は白色腐朽菌であることを特徴とするエタノールの製造方法。 12. The method for producing ethanol according to claim 11, wherein the filamentous fungus is a white rot fungus.
  13.  請求項12に記載のエタノールの製造方法において、上記白色腐朽菌は、マイタケであることを特徴とするエタノールの製造方法。 13. The method for producing ethanol according to claim 12, wherein the white rot fungus is maitake.
  14.  請求項10~13のいずれか一項に記載のエタノールの製造方法において、上記固液分離工程と上記蒸留工程の間に、上記エタノール含有濾液を限外濾過することにより上記セルロース分解酵素を回収する限外濾過工程を行うことを特徴とするエタノール製造装置。 The method for producing ethanol according to any one of claims 10 to 13, wherein the cellulolytic enzyme is recovered by ultrafiltration of the ethanol-containing filtrate between the solid-liquid separation step and the distillation step. An ethanol production apparatus that performs an ultrafiltration step.
  15.  請求項9~14のいずれか一項に記載のエタノールの製造方法において、上記固液分離工程においては、上記濾滓の含液量が75wt%以下になるまで固液分離を行うことを特徴とするエタノールの製造方法。 The method for producing ethanol according to any one of claims 9 to 14, wherein, in the solid-liquid separation step, solid-liquid separation is performed until the liquid content of the filter cake is 75 wt% or less. A method for producing ethanol.
  16.  請求項9~15のいずれか一項に記載のエタノールの製造方法において、上記乾燥工程においては、乾燥中に上記濾滓中から発生する上記エタノール含有蒸気を過熱蒸気の状態まで過熱し、該過熱蒸気の状態の上記エタノール含有蒸気を上記濾滓に接触させることを特徴とするエタノールの製造方法。 The method for producing ethanol according to any one of claims 9 to 15, wherein in the drying step, the ethanol-containing steam generated from the filter cake during drying is superheated to a superheated steam state. A method for producing ethanol, comprising bringing the ethanol-containing vapor in a vapor state into contact with the filter cake.
  17.  請求項9~16のいずれか一項に記載のエタノールの製造方法において、上記乾燥工程においては、上記濾滓の含液量が40wt%~60wt%になるまで乾燥を行うことを特徴とするエタノールの製造方法。 The method for producing ethanol according to any one of claims 9 to 16, wherein in the drying step, drying is performed until the liquid content of the filter cake reaches 40 wt% to 60 wt%. Manufacturing method.
  18.  請求項9~17のいずれか一項に記載のエタノールの製造方法において、上記乾燥工程において上記濾滓を乾燥させて得られる残渣を燃焼させて燃焼エネルギーを得る燃焼工程を備えることを特徴とするエタノールの製造方法。 The method for producing ethanol according to any one of claims 9 to 17, further comprising a combustion step of burning the residue obtained by drying the filter cake in the drying step to obtain combustion energy. A method for producing ethanol.
PCT/JP2011/055352 2010-03-08 2011-03-08 Ethanol manufacturing device and ethanol manufacturing method WO2011111692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-050109 2010-03-08
JP2010050109A JP5606756B2 (en) 2010-03-08 2010-03-08 Ethanol production apparatus and ethanol production method

Publications (1)

Publication Number Publication Date
WO2011111692A1 true WO2011111692A1 (en) 2011-09-15

Family

ID=44563493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055352 WO2011111692A1 (en) 2010-03-08 2011-03-08 Ethanol manufacturing device and ethanol manufacturing method

Country Status (2)

Country Link
JP (1) JP5606756B2 (en)
WO (1) WO2011111692A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080375A1 (en) * 2016-10-26 2018-05-03 Valmet Ab Method for producing ethanol and ethanol producing system
PL422196A1 (en) * 2017-07-12 2019-01-14 Wioletta Kosecka Method for wasteless obtaining of bioethanol, fodder yeast and carbon dioxide and the system for production of these products
CN111936610A (en) * 2018-03-27 2020-11-13 积水化学工业株式会社 Organic substance production device and gas processing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN09551A (en) * 2012-05-17 2015-07-17 Shell Int Research
US9206357B2 (en) 2012-05-17 2015-12-08 Shell Oil Company Methods and systems for processing biomass material
JP6207848B2 (en) * 2013-03-07 2017-10-04 三井造船株式会社 Bioethanol recovery method and recovery system
KR101621515B1 (en) * 2014-12-12 2016-05-19 서희동 Method for making alcohol from food waste
JP6756931B2 (en) 2018-08-27 2020-09-16 積水化学工業株式会社 Manufacturing method of organic substances

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159409A (en) * 1978-06-06 1979-12-17 Resutaa Rangu Jiyon Method of producing fuel and nutrient from waste
JPH105501A (en) * 1996-03-08 1998-01-13 Gist Brocades Nv Method for recovering useful compound from distillation residue produced during fermentation
JPH10505533A (en) * 1994-06-28 1998-06-02 クルトル オイ Fractionation method of distillation residue
JPH11169188A (en) * 1997-12-09 1999-06-29 Toshiba Corp Production of ethanol
JP2009240167A (en) * 2008-03-28 2009-10-22 Honda Motor Co Ltd Method for producing ethanol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361473A (en) * 1989-07-28 1991-03-18 Kiyoshi Yoshizawa Treatment of sake lee
JPH04287676A (en) * 1991-03-16 1992-10-13 Bishiyounen Shuzo Kk Method for recovering alcohol and esters from sake lees, and alcohol and esters recovered from sake lees
JP3405767B2 (en) * 1993-06-30 2003-05-12 財団法人電力中央研究所 Recycling method of monoethanolamine waste liquid
JP4571055B2 (en) * 2005-09-30 2010-10-27 学校法人東京農業大学 Fermentation distillation drying system
JP2009106258A (en) * 2007-10-12 2009-05-21 Nippon Steel Engineering Co Ltd Method for producing ethanol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159409A (en) * 1978-06-06 1979-12-17 Resutaa Rangu Jiyon Method of producing fuel and nutrient from waste
JPH10505533A (en) * 1994-06-28 1998-06-02 クルトル オイ Fractionation method of distillation residue
JPH105501A (en) * 1996-03-08 1998-01-13 Gist Brocades Nv Method for recovering useful compound from distillation residue produced during fermentation
JPH11169188A (en) * 1997-12-09 1999-06-29 Toshiba Corp Production of ethanol
JP2009240167A (en) * 2008-03-28 2009-10-22 Honda Motor Co Ltd Method for producing ethanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI SHIMODA ET AL.: "NEDO ni yoru Biomass Energy To Ko Koritsu Tenkan Gijutsu Kaihatsu 2) Kinoko Haikinsho no Ko Koritsu Toka Hakko Gijutsu no Kaihatsu", CLEAN ENERGY, vol. 20, no. 1, 10 January 2011 (2011-01-10), pages 7 - 13 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080375A1 (en) * 2016-10-26 2018-05-03 Valmet Ab Method for producing ethanol and ethanol producing system
US10676760B2 (en) 2016-10-26 2020-06-09 Valmet Ab Method for producing ethanol and ethanol producing system
EP3532625A4 (en) * 2016-10-26 2020-06-24 Valmet AB Method for producing ethanol and ethanol producing system
PL422196A1 (en) * 2017-07-12 2019-01-14 Wioletta Kosecka Method for wasteless obtaining of bioethanol, fodder yeast and carbon dioxide and the system for production of these products
CN111936610A (en) * 2018-03-27 2020-11-13 积水化学工业株式会社 Organic substance production device and gas processing system

Also Published As

Publication number Publication date
JP2011182685A (en) 2011-09-22
JP5606756B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5606756B2 (en) Ethanol production apparatus and ethanol production method
US20170298393A1 (en) Processes and Systems for Alcohol Production and Recovery
US8906204B2 (en) Methods for alcohol recovery and concentration of stillage by-products
Palmqvist et al. Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics
US20090263540A1 (en) Process and apparatus for reusing energy recovered in alcohol production
CN102311742A (en) Processing method of cellulose industrial biomass waste and process device thereof
CN205031905U (en) Device and cellulose class ethanol system that device, beer that is used for fermentation of refined follow cellulose class living beings to obtain flow containing vaporization system
CN101580794B (en) Biomass fermentation-separation coupling device and ethanol preparation method
CN106573866A (en) Energy-efficient and environmentally friendly process for the production of target chemical compounds from cellulosic material
CN106929546A (en) The method that rice straw produces cellulosic ethanol
CN102586337A (en) Method for utilizing agricultural and forestry waste containing cellulose, hemicellulose and lignin
JP2004208667A (en) Method for producing ethanol by utilizing biomass resource
CA2994668A1 (en) Hydrothermal-mechanical treatment of lignocellulosic biomass for production of fermentation products
CN102220379B (en) Starchy raw material fermentation method for producing anhydrous ethanol without external fossil energy
CN102051329A (en) Biomass ferment-separation coupling device and method for preparing ethanol
US10392590B1 (en) Method and system for distilling alcohol in an alcohol production process
Galbe et al. Cellulosic bioethanol production
EP2121948A1 (en) Volatile organic compounds reduction in ethanol plants
CN1662138A (en) Preservation of sugar cane and other plant materials
JP6737986B2 (en) Apparatus for producing ethanol from biomass resources and method for producing ethanol from biomass resources
CN114980997A (en) Integrated CO with vapor compression 2 System and method for reuse
CN110468162B (en) Production process and device for preparing fuel ethanol by one-time phase transition method
US20220105443A1 (en) Distillation Vacuum Technology
CN101346469A (en) Spirit brewing method
Gouws Techno-economic analysis of integrated sugarcane biorefinery scenarios for the production of 2, 3-butanediol, 1, 3-butadiene, polyhydroxybutyrate (PHB) or citric acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753350

Country of ref document: EP

Kind code of ref document: A1