WO2011111550A1 - Torque measurement method for rolling bearing device, torque measurement device for rolling bearing device, torque measurement method for rolling bearing and torque measurement device for rolling bearing - Google Patents

Torque measurement method for rolling bearing device, torque measurement device for rolling bearing device, torque measurement method for rolling bearing and torque measurement device for rolling bearing Download PDF

Info

Publication number
WO2011111550A1
WO2011111550A1 PCT/JP2011/054236 JP2011054236W WO2011111550A1 WO 2011111550 A1 WO2011111550 A1 WO 2011111550A1 JP 2011054236 W JP2011054236 W JP 2011054236W WO 2011111550 A1 WO2011111550 A1 WO 2011111550A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
rolling bearing
bearing device
measurement
measuring
Prior art date
Application number
PCT/JP2011/054236
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 小坂
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Publication of WO2011111550A1 publication Critical patent/WO2011111550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/16Rotary-absorption dynamometers, e.g. of brake type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
    • G01L3/1478Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft involving hinged levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a torque measuring method for a rolling bearing device, a torque measuring device for the rolling bearing device, a torque measuring method for the rolling bearing, and a torque measuring device for the rolling bearing.
  • an information recording / reproducing apparatus such as a hard disk for storing and reproducing various kinds of information on a disk magnetically or optically
  • an information recording / reproducing apparatus includes an actuator having a swing arm provided with a magnetic head for recording / reproducing a signal on / from a disk.
  • This actuator is rotatably supported by a bearing device provided on the base end side.
  • the swing arm can be rotated along a horizontal plane by rotating this bearing device, and the signal is recorded and reproduced by moving the magnetic head at the tip of the swing arm to a predetermined position on the disk. be able to.
  • the load cell 102 of the torque measurement device and the arm member 105 that is attached to the bearing device 103 and presses the measurement terminal 101 of the load cell 102 are not fixed.
  • the torque measurement can be performed normally when the button is pressed, the load cell 102 and the arm member 105 may be separated due to the repulsive force of the load cell 102 (measurement terminal 101) even during the torque measurement.
  • accurate torque measurement cannot be performed.
  • FIG. 25 shows the torque waveform measured by the conventional method
  • FIG. 26 shows the frequency analysis result of the torque waveform measured by the conventional method. As shown in FIGS. 25 and 26, an accurate torque waveform could not be measured due to the influence of noise.
  • the conventional method measures the torque by pressing the arm member 105 from one direction to the load cell 102, the torque change during the forward / reverse rotation operation cannot be measured continuously.
  • the torque is measured through the arm member 105 attached to the bearing device 103, the distance from the rotation center of the bearing device 103 to the measurement point is increased, and the force measured by the load cell 102 is reduced. Therefore, the measurement resolution of the torque measuring device is lowered.
  • the present invention has been made in view of the above-described circumstances, and there is little noise and a torque measuring method for a rolling bearing device capable of measuring a minute torque, a torque measuring device for a rolling bearing device, and a rolling bearing.
  • a torque measuring method and a torque measuring device for a rolling bearing are provided.
  • the present invention provides the following means.
  • a torque measurement method for a rolling bearing device includes a shaft formed in a columnar shape, a cylindrical sleeve disposed coaxially with the shaft at a predetermined interval from the outer peripheral surface of the shaft,
  • a torque measuring method for a rolling bearing device comprising: a rolling bearing disposed between a shaft and the sleeve, wherein an inner ring is fixed to the shaft and an outer ring is fixed to the sleeve.
  • one of the shaft or the sleeve of the rolling bearing device is rotated about the axis, and the measurement terminal is pressed against the other with a predetermined force, and the friction force of the measurement terminal
  • the torque of the rolling bearing device is measured by detecting the above.
  • the torque of the rolling bearing device can be measured simply by bringing the measuring terminal of the load cell into contact with the rolling bearing device so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the shaft or sleeve, it becomes difficult to be affected by external vibration and force, and noise can be reduced. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • the torque measurement method for the rolling bearing device includes a shaft formed in a columnar shape, a plurality of rolling bearings having an inner ring fixed to the outer peripheral surface of the shaft, and an outer ring of the adjacent rolling bearing.
  • a rolling bearing device torque measurement method comprising: a load cell having a measurement terminal capable of detecting torque; and one of the shaft or the outer ring and the spacer of the rolling bearing device. , The measuring terminal is pressed with a predetermined force, and the frictional force of the measuring terminal is detected to measure the torque of the rolling bearing device.
  • the measurement terminal of the load cell is connected to the outer peripheral surface of the shaft of the rolling bearing device, the outer ring of the rolling bearing, and the spacer.
  • the torque of the rolling bearing device can be measured simply by making contact with either one of the outer peripheral surfaces with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased.
  • the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
  • the above-described rolling bearing device is further provided with a swing arm that is fitted to the sleeve or the outer ring and configured to be rotatable about an axis.
  • a torque measurement method for a bearing device wherein one of the shaft or the sleeve, the outer ring and the spacer of the rolling bearing device is rotated about an axis, and the measurement terminal is pressed against the other with a predetermined force, The torque of the rolling bearing device is measured by detecting the frictional force of the measuring terminal.
  • the measurement terminal of the load cell is connected to the outer peripheral surface of the shaft of the rolling bearing device or the tip end surface of the swing arm (the other). It is possible to measure the torque of the rolling bearing device simply by bringing it into contact with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • the measuring terminal is moved from the direction perpendicular to the tangential direction of the rotation to the other outer peripheral surface in a state where the one is rotated about the axis.
  • the torque of the rolling bearing device is measured by bringing the measuring terminal into contact with a predetermined force.
  • the load cell measurement terminal is simply brought into contact with the outer peripheral surface of one of the shaft or sleeve of the rolling bearing device and the outer ring so as to be pressed with a predetermined force from the direction perpendicular to the tangential direction of rotation.
  • the torque of the rolling bearing device can be measured. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the shaft or sleeve, it becomes difficult to be affected by external vibration and force, and noise can be reduced.
  • the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
  • the measuring terminal is moved from the axial center direction to the other axial end face in a state where the one is rotated about the axial center. It is characterized in that the torque of the rolling bearing device is measured by abutting it so as to be pressed by force.
  • the torque of the rolling bearing device can be measured simply by bringing the measuring terminal of the load cell into contact with the axial end surface of one of the shaft or sleeve and outer ring of the rolling bearing device with a predetermined force. it can. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • the torque measurement method for a rolling bearing device includes: a distal end portion where the measurement terminal is in contact with the rolling bearing device; and a proximal end portion disposed between the distal end portion and the load cell main body portion. And the tip portion is made of a material having higher hardness than the base end portion.
  • the torque can be measured accurately and the durability of the measurement terminal can be improved by using a high hardness material with good wear resistance at the tip. Further, the torque can be measured more accurately by using a material having a low hardness and is difficult to apply a lateral pressure to the base end portion.
  • the torque measuring method for the rolling bearing device according to the present invention is characterized in that the constituent material of the measuring terminal has an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
  • the constituent material of the measurement terminal is a Shore A hardness of 40 or less
  • the output of the load cell can be stabilized even if the pressing force changes.
  • it can suppress that durability of a measurement terminal falls that the constituent material of a measurement terminal is Asker C hardness 10 or more.
  • the torque measuring method for a rolling bearing device uses a plurality of the load cells, arranges the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing device, and It is characterized by measuring the torque of the bearing device.
  • the torque measuring method of the rolling bearing device is the torque at the time of forward rotation of the rolling bearing device by reversing the rotation direction in a state where the measuring terminal is in contact with the one or the other. And the torque during reverse rotation are measured continuously.
  • a torque measuring device for a rolling bearing device includes a motor that rotates the one of the rolling bearing devices according to any of the above described above about an axis, and a state in which the one is rotated about the axis.
  • a load cell capable of measuring the torque of the rolling bearing device by detecting a frictional force of the supporting member that supports the rolling bearing device, and having a measuring terminal that can be brought into contact with and separated from the other; It is characterized by having.
  • the torque of the rolling bearing device is measured with a simple configuration in which the measurement terminal of the load cell is brought into contact with the rolling bearing device mounted on the support member so as to be pressed with a predetermined force. be able to. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • the rolling bearing torque measuring method includes a substantially cylindrical inner ring, a substantially cylindrical outer ring disposed coaxially with the inner ring at a predetermined interval from the outer circumferential surface of the inner ring,
  • a rolling bearing torque measurement method comprising a rolling element interposed between an inner ring and the outer ring, wherein a load cell having a measuring terminal capable of detecting torque is used, and the inner ring of the rolling bearing or One of the outer rings is rotated about its axis, the other is pressed against the other with a predetermined force, and the torque of the rolling bearing is measured by detecting the frictional force of the measurement terminal.
  • the torque of the rolling bearing can be measured simply by bringing the measuring terminal of the load cell into contact with the rolling bearing so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since the distance from the rotation center of a rolling bearing to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
  • the measuring terminal is moved from the direction perpendicular to the tangential direction of the rotation to the other peripheral surface in a state where the one is rotated about the axis. It is characterized in that the torque of the rolling bearing is measured by bringing the measuring terminal into contact with a predetermined force.
  • the load cell measuring terminal is simply brought into contact with the circumferential surface of either the inner ring or the outer ring of the rolling bearing so as to be pressed with a predetermined force from a direction perpendicular to the tangential direction of rotation. Torque can be measured. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the inner ring or the outer ring, it becomes difficult to be affected by external vibration and force, and noise can be reduced. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased.
  • the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since the distance from the rotation center of a rolling bearing to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
  • the measuring terminal is moved from the axial center direction to the other axial end face with a predetermined force while the one is rotated about the axial center.
  • the torque of the rolling bearing is measured by bringing it into contact with each other so as to press.
  • the torque of the rolling bearing can be measured simply by bringing the measurement terminal of the load cell into contact with the axial end surface of either the inner ring or the outer ring of the rolling bearing with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • the measurement terminal includes a distal end portion that is in contact with the rolling bearing device, and a proximal end portion disposed between the distal end portion and the load cell main body portion.
  • the tip portion is made of a material having higher hardness than the base end portion.
  • the torque can be measured accurately and the durability of the measurement terminal can be improved by using a high hardness material with good wear resistance at the tip. Further, the torque can be measured more accurately by using a material having a low hardness and is difficult to apply a lateral pressure to the base end portion.
  • the torque measurement method for a rolling bearing according to the present invention is characterized in that the constituent material of the measurement terminal is an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
  • the constituent material of the measurement terminal is a Shore A hardness of 40 or less
  • the output of the load cell can be stabilized even if the pressing force changes.
  • it can suppress that durability of a measurement terminal falls that the constituent material of a measurement terminal is Asker C hardness 10 or more.
  • the torque measurement method for a rolling bearing uses a plurality of the load cells, arranges the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing, and It is characterized by measuring torque.
  • This configuration makes it possible to cancel the load generated by pressing the measurement terminal of the load cell against the rolling bearing, so that the torque of the rolling bearing can be measured more accurately.
  • the rotation direction is reversed while the measuring terminal is in contact with the one or the other, so that the torque and the reverse rotation of the rolling bearing are reversed. It is characterized by continuously measuring the torque of the hour.
  • a torque measurement apparatus for a rolling bearing includes a motor that rotates the one of the rolling bearings according to any of the above-described ones about an axis, and the rolling bearing that rotates the one about an axis. And a load cell that has a measurement terminal that can be brought into contact with and separated from the other, and that can measure the torque of the rolling bearing by detecting the frictional force of the measurement terminal. It is characterized by that.
  • the torque of the rolling bearing device can be measured only by bringing the measuring terminal of the load cell into contact with the rolling bearing device so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened.
  • FIG. 1 is a schematic configuration diagram of an information recording / reproducing apparatus 1 according to the present invention.
  • the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer by a perpendicular recording method.
  • the information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11 through an optical waveguide 8, and a head supported on the distal end side of the carriage 11.
  • a gimbal assembly (HGA) 12 an actuator 6 that scans and moves the head gimbal assembly 12 in a horizontal plane parallel to the disk surface D1 (the surface of the disk D), and a spindle motor 7 that rotates the disk D about the rotation axis L2.
  • a control unit 5 for supplying a current modulated according to information to the slider 2 of the head gimbal assembly 12, and a housing 9 for housing these components therein.
  • the housing 9 has a box-like shape having a top opening made of a metal material such as aluminum, and has a rectangular bottom portion 9a as viewed from above, and a peripheral wall erected in the vertical direction with respect to the bottom portion 9a at the periphery of the bottom portion 9a. (Not shown). And the recessed part which accommodates each component mentioned above is formed in the inner side enclosed by the surrounding wall. In FIG. 1, the peripheral wall surrounding the housing 9 is omitted for easy understanding.
  • a lid (not shown) is fixed to the housing 9 so as to close the opening of the housing 9.
  • the spindle motor 7 is attached to substantially the center of the bottom portion 9a, and the disk D is fixed to the spindle motor 7.
  • the actuator 6 described above is attached to one corner of the bottom 9a outside the disk D.
  • the actuator 6 is provided with a carriage 11 that can rotate around a rotation axis L1 in a horizontal plane around a pivot shaft (bearing device) 10.
  • the carriage 11 includes an arm portion 14 extending from the base end portion toward the tip portion (in the direction of the disk D), and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. However, they are integrally formed by machining or the like.
  • the base portion 15 is formed in a substantially rectangular parallelepiped shape, and is supported by the pivot shaft 10 so as to be rotatable. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
  • the arm portion 14 extends in parallel with the surface direction (horizontal plane direction) of the upper surface of the base portion 15 on the side surface 15b opposite to the side surface 15a to which the actuator 6 is attached in the base portion 15 (side surface on the opposite side of the corner portion). It is a flat plate to be extended, and three pieces are extended along the height direction (vertical direction) of the base 15. Specifically, the arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14 and 14.
  • the arm part 14 and the disk D are configured to be alternately arranged, and the arm part 14 can be moved in a direction parallel to the surface of the disk D (horizontal plane direction) by driving the actuator 6. .
  • the carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
  • the head gimbal assembly 12 is connected to the tip of the arm portion 14, and includes a suspension 3 and a slider 2 attached to the tip of the suspension 3. Further, the head gimbal assembly 12 guides a light beam from the laser light source 20 to the slider 2 having a near-field light generating element (not shown) to generate near-field light (spot light), and uses the near-field light to disc Various information is recorded and reproduced in D.
  • the near-field light generating element includes, for example, an optical minute aperture, a protrusion formed in a nanometer size, and the like.
  • the pivot shaft 10 includes a shaft 21 formed in a substantially columnar shape, a substantially cylindrical sleeve 23 arranged at a predetermined distance from the outer peripheral surface 21 a of the shaft 21, and the shaft 21.
  • the first rolling bearing 31 interposed between the shaft 23 and the sleeve 23, and the second rolling bearing interposed between the shaft 21 and the sleeve 23 in parallel with the first rolling bearing 31 at a predetermined interval. 32.
  • the shaft 21 is a substantially cylindrical rod-like member, and a first rolling bearing 31 is mounted on one end side in the longitudinal direction (axial direction), and the second rolling bearing is spaced apart from the first rolling bearing 31 in the axial direction. 32 is mounted. Further, a flange portion 24 is formed on the end face on one end side of the shaft 21 so as to be larger than the diameter of the shaft 21 and to come into contact with the first rolling bearing 31.
  • the sleeve 23 is a member formed in a substantially cylindrical shape, and the first rolling bearing 31 is mounted on one end side in the longitudinal direction (axial direction), and the second rolling bearing 32 is mounted on the other end side.
  • the spacer portion 25 that maintains the distance between the first rolling bearing 31 and the second rolling bearing 32 at a predetermined distance is used. It protrudes inward in the direction.
  • the first rolling bearing 31 and the second rolling bearing 32 are fixed between the outer peripheral surface 21a of the shaft 21 and the inner peripheral surface 23b of the sleeve 23 using an adhesive or the like.
  • the first rolling bearing 31 and the second rolling bearing 32 are bearings formed in the same shape. Specifically, the first rolling bearing 31 is interposed between the inner ring 31a, the outer ring 31b arranged coaxially with the inner ring 31a, and between the inner ring 31a and the outer ring 31b, and a plurality of rolling at predetermined positions. Rolling element 31c. Similarly, the second rolling bearing 32 is interposed between the inner ring 32a, the outer ring 32b arranged coaxially with the inner ring 32a, and between the inner ring 32a and the outer ring 32b, and a plurality of rolling elements that roll at predetermined positions. And a moving body 32c.
  • the inner ring 31a and the outer ring 31b of the first rolling bearing 31 are formed so as to face a concave rolling surface 31d that holds the rolling element 31c in a rollable manner.
  • the inner ring 32a and the outer ring 32b of the second rolling bearing 32 are formed so as to face a concave rolling surface 32d that holds the rolling element 32c in a rollable manner.
  • FIG. 3 is a schematic block diagram of the torque measuring device 40 used when measuring the torque of the pivot shaft 10.
  • the torque measuring device 40 can rotate the shaft 21 by supporting the pivot shaft 10 and driving the motor 41 while rotating the shaft 21 of the pivot shaft 10 about the shaft center.
  • a controller 43 for adjusting the rotational speed of the motor 41 Connected to the load cell 44, a controller 43 for adjusting the rotational speed of the motor 41, a load cell 44 having a measurement terminal 51 that contacts and separates from the outer peripheral surface 23a of the sleeve 23 of the pivot shaft 10.
  • An amplifier 45, a recorder 46 connected to the amplifier 45, and a numerical processing device 47 that converts the voltage output connected to the recorder 46 and output from the load cell 44 into torque.
  • FIG. 4 is a perspective view of the load cell 44.
  • the load cell 44 detects the frictional force (distortion of the measurement terminal 51) between the measurement terminal 51 formed of, for example, urethane rubber, and the distal end surface 51a of the measurement terminal 51 and the outer peripheral surface 23a of the sleeve 23, thereby rotating the pivot shaft.
  • a main body 52 on which a CPU capable of detecting 10 torques is mounted.
  • the measurement terminal 51 is arranged so as to protrude in the vertical direction with respect to the side surface 52 a of the main body 52.
  • the torque of the pivot shaft 10 can be detected by bringing the front end surface 51 a of the measurement terminal 51 into contact with the outer peripheral surface 23 a of the sleeve 23 of the pivot shaft 10.
  • the constituent material of the measurement terminal 51 is a Shore A hardness of 40 or less, as shown in FIG. 23, the output of the load cell 44 can be stabilized even if the pressing force changes. Moreover, it can suppress that the durability of the measurement terminal 51 falls that the constituent material of the measurement terminal 51 is Asker C hardness 10 or more.
  • FIGS. 5 and 6 are views showing a state in which the torque of the pivot shaft 10 is measured using the load cell 44
  • FIG. 5 is a plan view
  • FIG. 6 is a side view.
  • the shaft 21 of the pivot shaft 10 placed on the support member 42 (not shown) is rotated about the axis.
  • the inner rings 31a and 32a of the first rolling bearing 31 and the second rolling bearing 32 rotate about the shaft center, and the rotational force is applied to the outer rings 31b and 32b via the rolling elements 31c and 32c.
  • the sleeve 23 transmitted and coupled to the outer rings 31b and 32b rotates about the axis.
  • the front end surface 51a of the measurement terminal 51 of the load cell 44 is brought into contact with the outer peripheral surface 23a of the sleeve 23 with a predetermined force from a direction perpendicular to the tangential direction of the rotation. Then, a frictional force is generated between the distal end surface 51 a of the measurement terminal 51 and the outer peripheral surface 23 a of the sleeve 23.
  • the measurement terminal 51 is configured to detect this frictional force. Also, the frictional force detection direction (measurement direction) of the measurement terminal 51 is set in a direction substantially parallel to the tangential direction of the rotation. Therefore, noise can be prevented from entering the measurement result.
  • the torque of the pivot shaft 10 can be measured simply by bringing the measurement terminal 51 of the load cell 44 into contact with the pivot shaft 10 so as to be pressed with a predetermined force. Therefore, the measured torque value is less affected by the noise of the load cell 44 and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell 44, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations during measurement is increased. As a result, the torque measurement time can be shortened.
  • the rotation direction of the shaft 21 halfway, the torque at the time of forward rotation and the torque at the time of reverse rotation of the pivot shaft 10 can be continuously measured. Therefore, the hysteresis of the torque of the pivot shaft 10 can be measured, and the evaluation in accordance with the actual use form of the pivot shaft 10 can be performed.
  • the torque measuring device 40 has a motor 41 that rotates one of the shaft 21 and the sleeve 23 of the pivot bearing 10 about the axis, and one of the shaft 21 and the sleeve 23 of the pivot bearing 10 that rotates about the axis.
  • a support member 42 that supports the pivot bearing 10 and a measurement terminal 51 that can be brought into contact with and separated from the shaft 21 or the sleeve 23 that rotates about the axis, and the pivoting force is detected by detecting the frictional force of the measurement terminal 51. Since the load cell 44 capable of measuring the torque of the bearing 10 is provided, the measurement terminal 51 of the load cell 44 is merely brought into contact with the pivot bearing 10 placed on the support member 42 so as to be pressed with a predetermined force. The torque of the pivot bearing 10 can be measured with a simple configuration.
  • the present invention is not limited to the above-described embodiment, and includes those obtained by adding various modifications to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the method for measuring the torque of the pivot shaft of the information recording / reproducing apparatus having a near-field optical head is described as the bearing apparatus.
  • the bearing apparatus such as a general HDD or optical disk apparatus, It can be employed in the rotating shaft portion of various devices. Further, it can also be used for torque measurement of a single rolling bearing such as the first rolling bearing 31 and the second rolling bearing 32.
  • the torque can be measured by fitting the jig having the above-described shaft function inside the inner ring.
  • the torque of the pivot shaft 10 is measured using only one load cell 44.
  • the torque measurement of the pivot shaft 10 is performed using a plurality of load cells 44. May be performed (in the case of using two load cells 44 in FIG. 10).
  • the load cells 44 are arranged so that the pressing forces of the load cells 44 against the pivot shaft 10 cancel each other. With this configuration, the load generated by pressing the measurement terminal 51 of the load cell 44 against the pivot shaft 10 can be canceled, so that the torque of the pivot shaft 10 can be measured more accurately.
  • the torque measurement is performed using the measurement terminal 51 made of urethane rubber.
  • the measurement terminal 60 is brought into contact with the pivot shaft 10 as shown in FIG. You may comprise so that it may have the front-end
  • a material having a hardness higher than that of the base end portion 62 may be used for the tip end portion 61.
  • the torque can be measured accurately and the durability of the measurement terminal 60 can be improved.
  • the torque can be measured more accurately by using a material with low hardness and less side pressure that is applied to the base end portion 62.
  • the measurement terminal is composed of a core 66 made of metal or plastic at the center of the measurement terminal 65 and urethane rubber or the like so as to cover the core 66.
  • the measuring terminal 65 having the coated material 67 may be employed.
  • a measuring terminal 70 having a trapezoidal cross section made of urethane rubber may be adopted as the measuring terminal.
  • the measurement terminal 70 can be fixed to the load cell 44 with the adhesive force, and the replacement operation can be easily performed when the measurement terminal 70 is replaced in the future due to wear or the like. Since the contact area between the load cell 44 and the measurement terminal 70 is larger than the contact area between the measurement terminal 70 and the pivot shaft 10, the measurement terminal 70 does not fall off the load cell 44 during torque measurement.
  • a measurement terminal 72 having a semicircular cross section formed of urethane rubber may be employed as the measurement terminal. In this case, if the semicircular diameter portion is joined to the main body portion 52, substantially the same effect as described above can be obtained.
  • the pivot shaft 10 having the shaft 21 and the sleeve 23 has been described.
  • the torque measuring method described above is also used for measuring the torque of the pivot shaft 75 having no sleeve 23. May be adopted.
  • a spacer 76 is provided between the first rolling bearing 31 and the second rolling bearing 32 so that the outer peripheral surfaces of the first rolling bearing 31, the second rolling bearing 32, and the spacer 76 are flush with each other. That's fine.
  • the torque of the pivot shaft 10 is measured, the torque is applied by pressing the measuring terminal 51 with a predetermined force to one of the outer peripheral surfaces of the first rolling bearing 31, the second rolling bearing 32, and the spacer 76. Can be measured.
  • the measurement terminal 51 is configured such that the frictional force detection direction (measurement direction) is set in a direction substantially parallel to the tangential direction of rotation, but the measurement terminal is set to the twist direction.
  • 77 can also be adopted.
  • an auxiliary member 80 in which an abutting member 78 that abuts on the outer peripheral surface 23 a of the sleeve 23 is disposed at the tip of the measurement terminal 77 is attached. Then, by bringing the contact member 78 into contact with the outer peripheral surface 23a of the sleeve 23, the torque can be measured by the measurement terminal 77 being deformed in the twisting direction.
  • the case where the measurement terminal 51 of the load cell 44 is brought into contact with the outer peripheral surface 23a of the sleeve 23 to measure the torque has been described, but as shown in FIG. A measurement terminal capable of detecting the frictional force may be employed.
  • the torque is measured by rotating the sleeve 23 instead of the shaft 21 around the axis and bringing the tip end surface 79a of the measuring terminal 79 into contact with the axial end surface 21b of the shaft 21 with a predetermined force. Can do. As shown in FIG.
  • a measurement terminal having a substantially cylindrical shape capable of coming into contact with the axial end surface 23c of the sleeve 23 and capable of detecting a frictional force in the torsional direction may be employed.
  • the torque can be measured by rotating the shaft 21 about the axis and bringing the tip end surface 85a of the measuring terminal 85 into contact with the axial end surface 23c of the sleeve 23 with a predetermined force.
  • the measurement terminal may be brought into contact with the axial end surface of the outer ring of the rolling bearing.
  • the shaft 21 is rotated in the axial direction, and the torque in the rotational direction of the sleeve 23 at that time is measured.
  • the motor 41 may be rotated about the axis, and the torque in the rotation direction of the shaft 21 at that time may be measured by the load cell 44.
  • the front end surface 51a of the measurement terminal 51 may contact
  • torque measurement may be performed by bringing the measurement terminal 51 of the load cell 44 into contact with the tip of the arm portion 14 with a predetermined force.
  • the shaft 21 is rotated in the axial direction and the torque in the rotational direction of the sleeve 23 at that time is measured.
  • the measurement direction of the measurement terminal 51 is measured. May be attached to the main body 52 and the torque measurement may be performed by bringing the measurement terminal 51 and the pivot bearing 10 into contact with each other so as to match the measurement direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Disclosed is a torque measurement method for a rolling bearing device (10) comprising a shaft (21) formed as a cylindrical column, a cylindrical sleeve (23) disposed coaxially to the shaft at a predetermined distance from the outer surface thereof, and a rolling bearing disposed between the shaft and the sleeve with the inner ring fixed to the shaft and the outer ring fixed to the sleeve, wherein a load cell (44) equipped with a measurement terminal (51) capable of detecting torque is used to measure the torque of the rolling bearing device by causing one element among the shaft or the sleeve of the roller bearing device to rotate, pressing the measurement terminal against the other part with a prescribed force, and detecting the frictional force on the measurement terminal.

Description

転がり軸受装置のトルク測定方法、転がり軸受装置のトルク測定装置、転がり軸受のトルク測定方法および転がり軸受のトルク測定装置Torque measuring method for rolling bearing device, torque measuring device for rolling bearing device, torque measuring method for rolling bearing, and torque measuring device for rolling bearing
 本発明は、転がり軸受装置のトルク測定方法、転がり軸受装置のトルク測定装置、転がり軸受のトルク測定方法および転がり軸受のトルク測定装置に関するものである。 The present invention relates to a torque measuring method for a rolling bearing device, a torque measuring device for the rolling bearing device, a torque measuring method for the rolling bearing, and a torque measuring device for the rolling bearing.
 従来から、各種の情報を磁気的又は光学的にディスクに記憶・再生させるハードディスクなどの情報記録再生装置が知られている。一般的に、情報記録再生装置は、ディスクに信号を記録再生する磁気ヘッドが先端に設けられたスイングアームを有するアクチュエータを備えている。このアクチュエータはその基端側に設けられた軸受装置に回動可能に支持されている。つまり、この軸受装置を回動させることで、スイングアームを水平面に沿って回動させることができ、スイングアーム先端の磁気ヘッドをディスクの所定位置に移動することで、信号の記録や再生を行うことができる。 2. Description of the Related Art Conventionally, an information recording / reproducing apparatus such as a hard disk for storing and reproducing various kinds of information on a disk magnetically or optically is known. Generally, an information recording / reproducing apparatus includes an actuator having a swing arm provided with a magnetic head for recording / reproducing a signal on / from a disk. This actuator is rotatably supported by a bearing device provided on the base end side. In other words, the swing arm can be rotated along a horizontal plane by rotating this bearing device, and the signal is recorded and reproduced by moving the magnetic head at the tip of the swing arm to a predetermined position on the disk. be able to.
 近年、コンピュータ機器におけるハードディスクなどの容量増加に伴って、単一記録面内における情報の記録密度が増加しており、これに対応すべく、磁気ヘッドの位置制御の精度向上が望まれている。このように、磁気ヘッドの位置制御を高精度化するためには、軸受装置が安定した所定のトルクで回動することが必要となる。そこで、軸受装置のトルクを測定するトルクテスタが提案されている(例えば、特許文献1~3参照)。 In recent years, as the capacity of hard disks and the like in computer equipment has increased, the recording density of information within a single recording surface has increased, and in order to cope with this, it is desired to improve the accuracy of position control of the magnetic head. As described above, in order to improve the position control of the magnetic head, it is necessary for the bearing device to rotate with a predetermined stable torque. Therefore, a torque tester for measuring the torque of the bearing device has been proposed (see, for example, Patent Documents 1 to 3).
特許第3458938号公報Japanese Patent No. 3458938 特許第3413475号公報Japanese Patent No. 3341475 特開2009-37674号公報JP 2009-37674 A
 ところで、特許文献1~3のような従来のトルク測定装置を用いて軸受装置のトルク測定を行う場合、図24に示すように、測定端子101を有するロードセル102を用いている。そして、軸受装置103のスリーブ104の外周面104aに嵌合するアーム部材105を取り付け、軸受装置103のシャフト106を軸中心に回転させることにより、スリーブ104を回転させる。すると、アーム部材105もスリーブ104とともに軸中心に回転するため、アーム部材105の突起部105aと測定端子101とを当接させることにより、軸受装置103のトルクを測定している。 Incidentally, when measuring the torque of the bearing device using conventional torque measuring devices such as Patent Documents 1 to 3, a load cell 102 having a measuring terminal 101 is used as shown in FIG. Then, the arm member 105 fitted to the outer peripheral surface 104a of the sleeve 104 of the bearing device 103 is attached, and the sleeve 104 is rotated by rotating the shaft 106 of the bearing device 103 about the axis. Then, since the arm member 105 also rotates around the axis together with the sleeve 104, the torque of the bearing device 103 is measured by bringing the projection 105a of the arm member 105 into contact with the measurement terminal 101.
 このような構成でトルク測定を行うと、トルク測定装置のロードセル102と、軸受装置103に取り付けられロードセル102の測定端子101を押すアーム部材105とは固定されていないため、アーム部材105がロードセル102を押している場合は正常にトルク測定を行うことができるが、ロードセル102(測定端子101)の反発力によりトルク測定中にも関わらずロードセル102とアーム部材105とが離れてしまうことがあり、このような現象が発生すると正確にトルク測定を行うことができない。 When torque measurement is performed in such a configuration, the load cell 102 of the torque measurement device and the arm member 105 that is attached to the bearing device 103 and presses the measurement terminal 101 of the load cell 102 are not fixed. Although the torque measurement can be performed normally when the button is pressed, the load cell 102 and the arm member 105 may be separated due to the repulsive force of the load cell 102 (measurement terminal 101) even during the torque measurement. When such a phenomenon occurs, accurate torque measurement cannot be performed.
 また、トルク測定を行う際に、測定とは異なる方向の振動が生ずると、トルク測定データにノイズとして現れてしまうため、微小なトルクを正確に測定することができない。さらに、ロードセル102の測定端子101先端がフリー状態になっているため、外部の僅かな振動や力でも振動してしまい、ノイズの原因となっていた。特に、このノイズには、ロードセル102の様々な固有周波数成分が含まれることが多い。 In addition, if vibration in a direction different from the measurement occurs when performing torque measurement, it appears as noise in the torque measurement data, so that a minute torque cannot be measured accurately. Furthermore, since the tip of the measurement terminal 101 of the load cell 102 is in a free state, it vibrates even with slight external vibration or force, causing noise. In particular, this noise often includes various natural frequency components of the load cell 102.
 また、上述したようにノイズが発生した場合にはフィルターによりノイズを除去することができるが、同時に、トルク測定とは異なる方向の振動に対して直近の周波数成分のトルク変動も合わせて除去されてしまうため、正確にトルク測定を行うことができない。 In addition, as described above, when noise is generated, the noise can be removed by a filter. At the same time, torque fluctuations of the latest frequency component with respect to vibration in a direction different from the torque measurement are also removed. Therefore, accurate torque measurement cannot be performed.
 図25が従来の方法で測定したトルク波形を示し、図26が従来の方法で測定したトルク波形の周波数分析結果を示す。図25,図26に示すように、ノイズの影響により正確なトルク波形を測定することができなかった。 FIG. 25 shows the torque waveform measured by the conventional method, and FIG. 26 shows the frequency analysis result of the torque waveform measured by the conventional method. As shown in FIGS. 25 and 26, an accurate torque waveform could not be measured due to the influence of noise.
 また、従来の方法はロードセル102にアーム部材105を一方向から押し付けてトルクを測定するため、正転逆転動作時のトルク変化を連続的に測定することができない。 Further, since the conventional method measures the torque by pressing the arm member 105 from one direction to the load cell 102, the torque change during the forward / reverse rotation operation cannot be measured continuously.
 さらに、軸受装置103に取り付けたアーム部材105を介してトルク測定を行うため、軸受装置103の回転中心から測定点までの距離が長くなり、ロードセル102で測定される力が小さくなる。したがって、トルク測定装置の測定分解能が低くなる。 Furthermore, since the torque is measured through the arm member 105 attached to the bearing device 103, the distance from the rotation center of the bearing device 103 to the measurement point is increased, and the force measured by the load cell 102 is reduced. Therefore, the measurement resolution of the torque measuring device is lowered.
 そして、軸受装置103のトルクを測定するためには、アーム部材105を取り付ける必要があり、その取付作業のために生産効率が低下する。また、アーム部材105の取付作業時に軸受装置103に傷やゴミをつけてしまう虞がある。 And, in order to measure the torque of the bearing device 103, it is necessary to attach the arm member 105, and the production efficiency is lowered due to the installation work. Further, there is a risk that the bearing device 103 may be scratched or dusted when the arm member 105 is attached.
 そこで、本発明は、上述の事情に鑑みてなされたものであり、ノイズが少なく、微小トルクの測定を行うことができる転がり軸受装置のトルク測定方法、転がり軸受装置のトルク測定装置、転がり軸受のトルク測定方法および転がり軸受のトルク測定装置を提供するものである。 Therefore, the present invention has been made in view of the above-described circumstances, and there is little noise and a torque measuring method for a rolling bearing device capable of measuring a minute torque, a torque measuring device for a rolling bearing device, and a rolling bearing. A torque measuring method and a torque measuring device for a rolling bearing are provided.
 上記の課題を解決するために、本発明は以下の手段を提供する。 In order to solve the above problems, the present invention provides the following means.
 本発明に係る転がり軸受装置のトルク測定方法は、円柱状に形成されたシャフトと、該シャフトの外周面に対して所定間隔離間して前記シャフトと同軸に配される円筒状のスリーブと、前記シャフトと前記スリーブとの間に配置され、内輪が前記シャフトに固定されるとともに、外輪が前記スリーブに固定された転がり軸受と、を備えた転がり軸受装置のトルク測定方法であって、トルクを検出可能な測定端子を有するロードセルを用いて、前記転がり軸受装置の前記シャフトまたは前記スリーブの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴としている。 A torque measurement method for a rolling bearing device according to the present invention includes a shaft formed in a columnar shape, a cylindrical sleeve disposed coaxially with the shaft at a predetermined interval from the outer peripheral surface of the shaft, A torque measuring method for a rolling bearing device, comprising: a rolling bearing disposed between a shaft and the sleeve, wherein an inner ring is fixed to the shaft and an outer ring is fixed to the sleeve. Using a load cell having a possible measurement terminal, one of the shaft or the sleeve of the rolling bearing device is rotated about the axis, and the measurement terminal is pressed against the other with a predetermined force, and the friction force of the measurement terminal The torque of the rolling bearing device is measured by detecting the above.
 このように、ロードセルの測定端子を転がり軸受装置に所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。さらに、ロードセルの測定端子先端をシャフトまたはスリーブに押し付けることで、外部の振動や力の影響を受け難くなり、ノイズを低減することができる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 Thus, the torque of the rolling bearing device can be measured simply by bringing the measuring terminal of the load cell into contact with the rolling bearing device so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the shaft or sleeve, it becomes difficult to be affected by external vibration and force, and noise can be reduced. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受装置のトルク測定方法は、円柱状に形成されたシャフトと、該シャフトの外周面に内輪が固定された複数の転がり軸受と、隣り合う前記転がり軸受の外輪の間に配されたスペーサと、を備えた転がり軸受装置のトルク測定方法であって、トルクを検出可能な測定端子を有するロードセルを用いて、前記転がり軸受装置の前記シャフトまたは前記外輪および前記スペーサの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴としている。 The torque measurement method for the rolling bearing device according to the present invention includes a shaft formed in a columnar shape, a plurality of rolling bearings having an inner ring fixed to the outer peripheral surface of the shaft, and an outer ring of the adjacent rolling bearing. A rolling bearing device torque measurement method comprising: a load cell having a measurement terminal capable of detecting torque; and one of the shaft or the outer ring and the spacer of the rolling bearing device. , The measuring terminal is pressed with a predetermined force, and the frictional force of the measuring terminal is detected to measure the torque of the rolling bearing device.
 このように、シャフトに複数の転がり軸受がスペーサにより所定間隔を空けながら配された転がり軸受装置であっても、ロードセルの測定端子を転がり軸受装置のシャフトの外周面や転がり軸受の外輪およびスペーサのいずれか一方の外周面に所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 In this way, even in a rolling bearing device in which a plurality of rolling bearings are arranged on the shaft with a predetermined interval by the spacer, the measurement terminal of the load cell is connected to the outer peripheral surface of the shaft of the rolling bearing device, the outer ring of the rolling bearing, and the spacer. The torque of the rolling bearing device can be measured simply by making contact with either one of the outer peripheral surfaces with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受装置のトルク測定方法は、上述した転がり軸受装置に、前記スリーブまたは前記外輪に嵌合して軸中心に回動可能に構成されたスイングアームがさらに設けられた転がり軸受装置のトルク測定方法であって、前記転がり軸受装置の前記シャフトまたは前記スリーブ、前記外輪および前記スペーサの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴としている。 In the rolling bearing device torque measuring method according to the present invention, the above-described rolling bearing device is further provided with a swing arm that is fitted to the sleeve or the outer ring and configured to be rotatable about an axis. A torque measurement method for a bearing device, wherein one of the shaft or the sleeve, the outer ring and the spacer of the rolling bearing device is rotated about an axis, and the measurement terminal is pressed against the other with a predetermined force, The torque of the rolling bearing device is measured by detecting the frictional force of the measuring terminal.
 このように、軸中心に回動可能に構成されたスイングアームが設けられた転がり軸受装置であっても、ロードセルの測定端子を転がり軸受装置のシャフトの外周面やスイングアームの先端面(他方)に所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 As described above, even in a rolling bearing device provided with a swing arm configured to be rotatable about the axis, the measurement terminal of the load cell is connected to the outer peripheral surface of the shaft of the rolling bearing device or the tip end surface of the swing arm (the other). It is possible to measure the torque of the rolling bearing device simply by bringing it into contact with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受装置のトルク測定方法は、前記一方が軸中心に回転されている状態で、前記測定端子を前記回転の接線方向に対して垂直な方向から前記他方の外周面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受装置のトルクを測定することを特徴としている。 Further, in the torque measuring method for a rolling bearing device according to the present invention, the measuring terminal is moved from the direction perpendicular to the tangential direction of the rotation to the other outer peripheral surface in a state where the one is rotated about the axis. The torque of the rolling bearing device is measured by bringing the measuring terminal into contact with a predetermined force.
 このように、ロードセルの測定端子を転がり軸受装置のシャフトまたはスリーブおよび外輪のいずれか一方の外周面に回転の接線方向に対して垂直な方向から所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。さらに、ロードセルの測定端子先端をシャフトまたはスリーブに押し付けることで、外部の振動や力の影響を受け難くなり、ノイズを低減することができる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 In this way, the load cell measurement terminal is simply brought into contact with the outer peripheral surface of one of the shaft or sleeve of the rolling bearing device and the outer ring so as to be pressed with a predetermined force from the direction perpendicular to the tangential direction of rotation. The torque of the rolling bearing device can be measured. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the shaft or sleeve, it becomes difficult to be affected by external vibration and force, and noise can be reduced. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受装置のトルク測定方法は、前記一方が軸中心に回転されている状態で、前記測定端子を前記軸中心方向から前記他方の軸方向端面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受装置のトルクを測定することを特徴としている。 Further, in the torque measuring method for a rolling bearing device according to the present invention, the measuring terminal is moved from the axial center direction to the other axial end face in a state where the one is rotated about the axial center. It is characterized in that the torque of the rolling bearing device is measured by abutting it so as to be pressed by force.
 このように、ロードセルの測定端子を転がり軸受装置のシャフトまたはスリーブおよび外輪のいずれか一方の軸方向端面に所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心近傍でトルク測定を行うことができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 Thus, the torque of the rolling bearing device can be measured simply by bringing the measuring terminal of the load cell into contact with the axial end surface of one of the shaft or sleeve and outer ring of the rolling bearing device with a predetermined force. it can. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since torque measurement can be performed in the vicinity of the rotation center of the rolling bearing device, the force to be measured is larger than in the prior art, and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受装置のトルク測定方法は、前記測定端子が、前記転がり軸受装置に当接される先端部と、該先端部とロードセル本体部との間に配される基端部と、を備え、前記先端部は前記基端部より高硬度材料が用いられていることを特徴としている。 The torque measurement method for a rolling bearing device according to the present invention includes: a distal end portion where the measurement terminal is in contact with the rolling bearing device; and a proximal end portion disposed between the distal end portion and the load cell main body portion. And the tip portion is made of a material having higher hardness than the base end portion.
 このように構成することで、先端部に耐摩耗性が良好な高硬度材料を用いることにより、トルクを正確に測定することができるとともに、測定端子の耐久性を向上することができる。また、基端部に硬度が低く側圧がかかりにくい材料を用いることにより、トルクをより正確に測定することができる。 With such a configuration, the torque can be measured accurately and the durability of the measurement terminal can be improved by using a high hardness material with good wear resistance at the tip. Further, the torque can be measured more accurately by using a material having a low hardness and is difficult to apply a lateral pressure to the base end portion.
 また、本発明に係る転がり軸受装置のトルク測定方法は、前記測定端子の構成材料が、アスカーC硬度10以上、かつ、ショアA硬度40以下であることを特徴としている。 Further, the torque measuring method for the rolling bearing device according to the present invention is characterized in that the constituent material of the measuring terminal has an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
 このように、測定端子の構成材料がショアA硬度40以下であると、押付力が変化しても、ロードセルの出力を安定させることができる。また、測定端子の構成材料がアスカーC硬度10以上であると、測定端子の耐久性が低下するのを抑制することができる。 Thus, when the constituent material of the measurement terminal is a Shore A hardness of 40 or less, the output of the load cell can be stabilized even if the pressing force changes. Moreover, it can suppress that durability of a measurement terminal falls that the constituent material of a measurement terminal is Asker C hardness 10 or more.
 また、本発明に係る転がり軸受装置のトルク測定方法は、複数の前記ロードセルを用い、前記転がり軸受装置に対する前記複数のロードセルの押付力を互いに打ち消すように前記複数のロードセルを配置して、前記転がり軸受装置のトルクを測定することを特徴としている。 The torque measuring method for a rolling bearing device according to the present invention uses a plurality of the load cells, arranges the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing device, and It is characterized by measuring the torque of the bearing device.
 このように構成することで、ロードセルの測定端子を転がり軸受装置に押し付けることにより生じる荷重をキャンセルすることができるため、転がり軸受装置のトルクをより正確に測定することができる。 With this configuration, the load generated by pressing the measurement terminal of the load cell against the rolling bearing device can be canceled, so that the torque of the rolling bearing device can be measured more accurately.
 また、本発明に係る転がり軸受装置のトルク測定方法は、前記測定端子を前記一方または前記他方に当接させた状態で、回転方向を反転させることで、前記転がり軸受装置の正転時のトルクと逆転時のトルクとを連続的に測定することを特徴としている。 Further, the torque measuring method of the rolling bearing device according to the present invention is the torque at the time of forward rotation of the rolling bearing device by reversing the rotation direction in a state where the measuring terminal is in contact with the one or the other. And the torque during reverse rotation are measured continuously.
 このように構成することで、正転逆転を繰り返す動作、つまり揺動動作におけるトルクの変動を連続的に測定することができる。なお、このときトルクのヒステリシスを測定することができる。したがって、転がり軸受装置の実使用形態に即した評価をすることができる。 With this configuration, it is possible to continuously measure torque fluctuations in an operation that repeats forward and reverse rotation, that is, a swinging operation. At this time, torque hysteresis can be measured. Therefore, the evaluation according to the actual use form of the rolling bearing device can be performed.
 また、本発明に係る転がり軸受装置のトルク測定装置は、上述のいずれかに記載の転がり軸受装置の前記一方を軸中心に回転させるモータと、前記一方を軸中心に回転させた状態で、前記転がり軸受装置を支持する支持部材と、前記他方に対して当接離反可能な測定端子を有し、該測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定可能なロードセルと、を備えていることを特徴としている。 In addition, a torque measuring device for a rolling bearing device according to the present invention includes a motor that rotates the one of the rolling bearing devices according to any of the above described above about an axis, and a state in which the one is rotated about the axis. A load cell capable of measuring the torque of the rolling bearing device by detecting a frictional force of the supporting member that supports the rolling bearing device, and having a measuring terminal that can be brought into contact with and separated from the other; It is characterized by having.
 このように構成することで、ロードセルの測定端子を支持部材に載置された転がり軸受装置に所定の力で押圧するように当接させるだけの簡易な構成で、転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 With this configuration, the torque of the rolling bearing device is measured with a simple configuration in which the measurement terminal of the load cell is brought into contact with the rolling bearing device mounted on the support member so as to be pressed with a predetermined force. be able to. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受のトルク測定方法は、略円筒状の内輪と、該内輪の外周面に対して所定間隔離間して前記内輪と同軸に配される略円筒状の外輪と、前記内輪と前記外輪との間に介装された転動体と、を備えた転がり軸受のトルク測定方法であって、トルクを検出可能な測定端子を有するロードセルを用いて、前記転がり軸受の前記内輪または前記外輪の一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、前記測定端子の摩擦力を検出することで前記転がり軸受のトルクを測定することを特徴としている。 The rolling bearing torque measuring method according to the present invention includes a substantially cylindrical inner ring, a substantially cylindrical outer ring disposed coaxially with the inner ring at a predetermined interval from the outer circumferential surface of the inner ring, A rolling bearing torque measurement method comprising a rolling element interposed between an inner ring and the outer ring, wherein a load cell having a measuring terminal capable of detecting torque is used, and the inner ring of the rolling bearing or One of the outer rings is rotated about its axis, the other is pressed against the other with a predetermined force, and the torque of the rolling bearing is measured by detecting the frictional force of the measurement terminal.
 このように、ロードセルの測定端子を転がり軸受に所定の力で押圧するように当接させるだけで転がり軸受のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受にトルク測定用部材を取り付ける必要がないため、転がり軸受に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 Thus, the torque of the rolling bearing can be measured simply by bringing the measuring terminal of the load cell into contact with the rolling bearing so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since the distance from the rotation center of a rolling bearing to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受のトルク測定方法は、前記一方が軸中心に回転されている状態で、前記測定端子を前記回転の接線方向に対して垂直な方向から前記他方の周面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受のトルクを測定することを特徴としている。 Further, in the torque measurement method for a rolling bearing according to the present invention, the measuring terminal is moved from the direction perpendicular to the tangential direction of the rotation to the other peripheral surface in a state where the one is rotated about the axis. It is characterized in that the torque of the rolling bearing is measured by bringing the measuring terminal into contact with a predetermined force.
 このように、ロードセルの測定端子を転がり軸受の内輪および外輪のいずれか一方の周面に回転の接線方向に対して垂直な方向から所定の力で押圧するように当接させるだけで転がり軸受のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。さらに、ロードセルの測定端子先端を内輪または外輪に押し付けることで、外部の振動や力の影響を受け難くなり、ノイズを低減することができる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受にトルク測定用部材を取り付ける必要がないため、転がり軸受に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 In this way, the load cell measuring terminal is simply brought into contact with the circumferential surface of either the inner ring or the outer ring of the rolling bearing so as to be pressed with a predetermined force from a direction perpendicular to the tangential direction of rotation. Torque can be measured. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Furthermore, by pressing the tip of the measurement terminal of the load cell against the inner ring or the outer ring, it becomes difficult to be affected by external vibration and force, and noise can be reduced. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since the distance from the rotation center of a rolling bearing to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受のトルク測定方法は、前記一方が軸中心に回転されている状態で、前記測定端子を前記軸中心方向から前記他方の軸方向端面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受のトルクを測定することを特徴としている。 In the rolling bearing torque measuring method according to the present invention, the measuring terminal is moved from the axial center direction to the other axial end face with a predetermined force while the one is rotated about the axial center. The torque of the rolling bearing is measured by bringing it into contact with each other so as to press.
 このように、ロードセルの測定端子を転がり軸受の内輪または外輪のいずれか一方の軸方向端面に所定の力で押圧するように当接させるだけで転がり軸受のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受にトルク測定用部材を取り付ける必要がないため、転がり軸受に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受の回転中心近傍でトルク測定を行うことができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 Thus, the torque of the rolling bearing can be measured simply by bringing the measurement terminal of the load cell into contact with the axial end surface of either the inner ring or the outer ring of the rolling bearing with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since torque measurement can be performed in the vicinity of the rotation center of the rolling bearing, the force to be measured is larger than in the prior art, and torque measurement with higher resolution can be performed.
 また、本発明に係る転がり軸受のトルク測定方法は、前記測定端子が、前記転がり軸受装置に当接される先端部と、該先端部とロードセル本体部との間に配される基端部と、を備え、前記先端部は前記基端部より高硬度材料が用いられていることを特徴としている。 Further, in the rolling bearing torque measuring method according to the present invention, the measurement terminal includes a distal end portion that is in contact with the rolling bearing device, and a proximal end portion disposed between the distal end portion and the load cell main body portion. The tip portion is made of a material having higher hardness than the base end portion.
 このように構成することで、先端部に耐摩耗性が良好な高硬度材料を用いることにより、トルクを正確に測定することができるとともに、測定端子の耐久性を向上することができる。また、基端部に硬度が低く側圧がかかりにくい材料を用いることにより、トルクをより正確に測定することができる。 With such a configuration, the torque can be measured accurately and the durability of the measurement terminal can be improved by using a high hardness material with good wear resistance at the tip. Further, the torque can be measured more accurately by using a material having a low hardness and is difficult to apply a lateral pressure to the base end portion.
 また、本発明に係る転がり軸受のトルク測定方法は、前記測定端子の構成材料が、アスカーC硬度10以上、かつ、ショアA硬度40以下であることを特徴としている。 Also, the torque measurement method for a rolling bearing according to the present invention is characterized in that the constituent material of the measurement terminal is an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
 このように、測定端子の構成材料がショアA硬度40以下であると、押付力が変化しても、ロードセルの出力を安定させることができる。また、測定端子の構成材料がアスカーC硬度10以上であると、測定端子の耐久性が低下するのを抑制することができる。 Thus, when the constituent material of the measurement terminal is a Shore A hardness of 40 or less, the output of the load cell can be stabilized even if the pressing force changes. Moreover, it can suppress that durability of a measurement terminal falls that the constituent material of a measurement terminal is Asker C hardness 10 or more.
 また、本発明に係る転がり軸受のトルク測定方法は、複数の前記ロードセルを用い、前記転がり軸受に対する前記複数のロードセルの押付力を互いに打ち消すように前記複数のロードセルを配置して、前記転がり軸受のトルクを測定することを特徴としている。 The torque measurement method for a rolling bearing according to the present invention uses a plurality of the load cells, arranges the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing, and It is characterized by measuring torque.
 このように構成することで、ロードセルの測定端子を転がり軸受に押し付けることにより生じる荷重をキャンセルすることができるため、転がり軸受のトルクをより正確に測定することができる。 This configuration makes it possible to cancel the load generated by pressing the measurement terminal of the load cell against the rolling bearing, so that the torque of the rolling bearing can be measured more accurately.
 また、本発明に係る転がり軸受のトルク測定方法は、前記測定端子を前記一方または前記他方に当接させた状態で、回転方向を反転させることで、前記転がり軸受の正転時のトルクと逆転時のトルクとを連続的に測定することを特徴としている。 In the rolling bearing torque measuring method according to the present invention, the rotation direction is reversed while the measuring terminal is in contact with the one or the other, so that the torque and the reverse rotation of the rolling bearing are reversed. It is characterized by continuously measuring the torque of the hour.
 このように構成することで、正転逆転を繰り返す動作、つまり揺動動作におけるトルクの変動を連続的に測定することができる。なお、このときトルクのヒステリシスを測定することができる。したがって、転がり軸受の実使用形態に即した評価をすることができる。 With this configuration, it is possible to continuously measure torque fluctuations in an operation that repeats forward and reverse rotation, that is, a swinging operation. At this time, torque hysteresis can be measured. Therefore, it is possible to evaluate in accordance with the actual usage form of the rolling bearing.
 また、本発明に係る転がり軸受のトルク測定装置は、上述のいずれかに記載の転がり軸受の前記一方を軸中心に回転させるモータと、前記一方を軸中心に回転させた状態で、前記転がり軸受を支持する支持部材と、前記他方に対して当接離反可能な測定端子を有し、該測定端子の摩擦力を検出することで前記転がり軸受のトルクを測定可能なロードセルと、を備えていることを特徴としている。 A torque measurement apparatus for a rolling bearing according to the present invention includes a motor that rotates the one of the rolling bearings according to any of the above-described ones about an axis, and the rolling bearing that rotates the one about an axis. And a load cell that has a measurement terminal that can be brought into contact with and separated from the other, and that can measure the torque of the rolling bearing by detecting the frictional force of the measurement terminal. It is characterized by that.
 このように構成することで、ロードセルの測定端子を支持部材に載置された転がり軸受に所定の力で押圧するように当接させるだけの簡易な構成で、転がり軸受のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受にトルク測定用部材を取り付ける必要がないため、転がり軸受に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 With this configuration, it is possible to measure the torque of the rolling bearing with a simple configuration in which the load cell measurement terminal is brought into contact with the rolling bearing placed on the support member so as to be pressed with a predetermined force. it can. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Further, since there is no need to attach a torque measuring member to the rolling bearing, it is possible to prevent the rolling bearing from being damaged, and it is possible to omit the attaching operation of the torque measuring member and improve the production efficiency. And since the distance from the rotation center of a rolling bearing to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
 本発明に係る転がり軸受装置のトルク測定方法によれば、ロードセルの測定端子を転がり軸受装置に所定の力で押圧するように当接させるだけで転がり軸受装置のトルクを測定することができる。したがって、測定されたトルク値は、ロードセルのノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセルが振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、転がり軸受装置にトルク測定用部材を取り付ける必要がないため、転がり軸受装置に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、転がり軸受装置の回転中心からトルク測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 According to the torque measuring method of the rolling bearing device according to the present invention, the torque of the rolling bearing device can be measured only by bringing the measuring terminal of the load cell into contact with the rolling bearing device so as to press it with a predetermined force. Therefore, the measured torque value is less affected by the load cell noise and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations at the time of measurement is increased. As a result, the torque measurement time can be shortened. Furthermore, since it is not necessary to attach a torque measurement member to the rolling bearing device, it is possible to prevent the rolling bearing device from being damaged, and to eliminate the mounting work of the torque measurement member and to improve production efficiency. it can. And since the distance from the rotation center of a rolling bearing apparatus to a torque measurement point can be shortened, compared with the past, the force to measure becomes large and torque measurement with higher resolution can be performed.
本発明の実施形態における情報記録再生装置の概略構成図である。It is a schematic block diagram of the information recording / reproducing apparatus in embodiment of this invention. 本発明の実施形態におけるピボット軸の断面図である。It is sectional drawing of the pivot axis | shaft in embodiment of this invention. 本発明の実施形態におけるピボット軸のトルク測定装置の概略構成ブロック図である。It is a schematic block diagram of the torque measuring device of the pivot shaft in the embodiment of the present invention. 本発明の実施形態におけるロードセルの斜視図である。It is a perspective view of the load cell in the embodiment of the present invention. 本発明の実施形態におけるピボット軸のトルク測定時の状態を示す平面図である。It is a top view which shows the state at the time of the torque measurement of the pivot shaft in embodiment of this invention. 図5の状態を示す側面図である。It is a side view which shows the state of FIG. 本発明の実施形態におけるトルク測定で得られたトルク波形を示すグラフである。It is a graph which shows the torque waveform obtained by the torque measurement in embodiment of this invention. 本発明の実施形態におけるトルク測定で得られたトルク波形の周波数分析結果を示すグラフである。It is a graph which shows the frequency analysis result of the torque waveform obtained by the torque measurement in embodiment of this invention. 本発明の実施形態におけるトルク測定で得られたトルクのヒステリシスを示すグラフである。It is a graph which shows the hysteresis of the torque obtained by the torque measurement in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(1)を示す概略構成図(平面図)である。It is a schematic block diagram (plan view) which shows another aspect (1) of the torque measurement method in embodiment of this invention. 本発明の実施形態における測定端子の別の態様(1)を示す側面図である。It is a side view which shows another aspect (1) of the measurement terminal in embodiment of this invention. 本発明の実施形態における測定端子の別の態様(2)を示す側面図である。It is a side view which shows another aspect (2) of the measurement terminal in embodiment of this invention. 本発明の実施形態における測定端子の別の態様(3)を示す側面図である。It is a side view which shows another aspect (3) of the measurement terminal in embodiment of this invention. 本発明の実施形態における測定端子の別の態様(4)を示す側面図である。It is a side view which shows another aspect (4) of the measurement terminal in embodiment of this invention. 本発明の実施形態におけるピボット軸の別の態様を示す断面図である。It is sectional drawing which shows another aspect of the pivot axis | shaft in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(2)を示す概略構成図(側面図)である。It is a schematic block diagram (side view) which shows another aspect (2) of the torque measuring method in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(3)を示す概略構成図(側面図)である。It is a schematic block diagram (side view) which shows another aspect (3) of the torque measuring method in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(4)を示す概略構成図(側面図)である。It is a schematic block diagram (side view) which shows another aspect (4) of the torque measuring method in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(5)を示す概略構成図(平面図)である。It is a schematic block diagram (plan view) which shows another aspect (5) of the torque measuring method in embodiment of this invention. 図18の状態を示す側面図である。It is a side view which shows the state of FIG. 本発明の実施形態におけるトルク測定方法の別の態様(6)を示す概略構成図(平面図)である。It is a schematic block diagram (plan view) which shows another aspect (6) of the torque measurement method in embodiment of this invention. 本発明の実施形態におけるトルク測定方法の別の態様(7)を示す概略構成図(平面図)である。It is a schematic block diagram (plan view) which shows another aspect (7) of the torque measurement method in embodiment of this invention. 本発明の実施形態における測定端子の硬度(ショアA硬度)別の出力特性を示すグラフである。It is a graph which shows the output characteristic according to the hardness (Shore A hardness) of the measurement terminal in embodiment of this invention. 従来のトルク測定方法を示す概略構成図(平面図)である。It is a schematic block diagram (plan view) showing a conventional torque measuring method. 従来のトルク測定で得られたトルク波形を示すグラフである。It is a graph which shows the torque waveform obtained by the conventional torque measurement. 従来のトルク測定で得られたトルク波形の周波数分析結果を示すグラフである。It is a graph which shows the frequency analysis result of the torque waveform obtained by the conventional torque measurement.
 次に、本発明に係る転がり軸受装置およびそのトルク測定方法について図1~図23を用いて説明する。なお、本実施形態では、転がり軸受装置が情報記録再生装置のピボット軸に用いられている場合について説明する。 Next, the rolling bearing device and its torque measuring method according to the present invention will be described with reference to FIGS. In the present embodiment, the case where the rolling bearing device is used for the pivot shaft of the information recording / reproducing device will be described.
 図1は、本発明に係る情報記録再生装置1の概略構成図である。なお、本実施形態の情報記録再生装置1は、垂直記録層を有するディスク(磁気記録媒体)Dに対して、垂直記録方式で書き込みを行う装置である。 FIG. 1 is a schematic configuration diagram of an information recording / reproducing apparatus 1 according to the present invention. Note that the information recording / reproducing apparatus 1 of the present embodiment is an apparatus for writing on a disk (magnetic recording medium) D having a perpendicular recording layer by a perpendicular recording method.
 図1に示すように、情報記録再生装置1は、キャリッジ11と、キャリッジ11の基端側から光導波路8を介して光束を供給するレーザ光源20と、キャリッジ11の先端側に支持されたヘッドジンバルアセンブリ(HGA)12と、ヘッドジンバルアセンブリ12をディスク面D1(ディスクDの表面)に平行な水平面内方向にスキャン移動させるアクチュエータ6と、ディスクDを回転軸L2を中心に回転させるスピンドルモータ7と、情報に応じて変調した電流をヘッドジンバルアセンブリ12のスライダ2に対して供給する制御部5と、これら各構成品を内部に収容するハウジング9と、を備えている。 As shown in FIG. 1, the information recording / reproducing apparatus 1 includes a carriage 11, a laser light source 20 that supplies a light beam from the proximal end side of the carriage 11 through an optical waveguide 8, and a head supported on the distal end side of the carriage 11. A gimbal assembly (HGA) 12, an actuator 6 that scans and moves the head gimbal assembly 12 in a horizontal plane parallel to the disk surface D1 (the surface of the disk D), and a spindle motor 7 that rotates the disk D about the rotation axis L2. And a control unit 5 for supplying a current modulated according to information to the slider 2 of the head gimbal assembly 12, and a housing 9 for housing these components therein.
 ハウジング9は、アルミニウム等の金属材料からなる上部開口部を有する箱型形状のものであり、上面視四角形状の底部9aと、底部9aの周縁において底部9aに対して鉛直方向に立設する周壁(不図示)とで構成されている。そして、周壁に囲まれた内側には、上述した各構成品を収容する凹部が形成される。なお、図1においては、説明を分かりやすくするため、ハウジング9の周囲を取り囲む周壁を省略している。 The housing 9 has a box-like shape having a top opening made of a metal material such as aluminum, and has a rectangular bottom portion 9a as viewed from above, and a peripheral wall erected in the vertical direction with respect to the bottom portion 9a at the periphery of the bottom portion 9a. (Not shown). And the recessed part which accommodates each component mentioned above is formed in the inner side enclosed by the surrounding wall. In FIG. 1, the peripheral wall surrounding the housing 9 is omitted for easy understanding.
 また、このハウジング9には、ハウジング9の開口を塞ぐように図示しない蓋が固定されるようになっている。底部9aの略中心には、上記スピンドルモータ7が取り付けられており、該スピンドルモータ7にディスクDが固定されている。 Further, a lid (not shown) is fixed to the housing 9 so as to close the opening of the housing 9. The spindle motor 7 is attached to substantially the center of the bottom portion 9a, and the disk D is fixed to the spindle motor 7.
 ディスクDの外側で、底部9aの一つの隅角部には、上述したアクチュエータ6が取り付けられている。このアクチュエータ6には、ピボット軸(軸受装置)10を中心に水平面内で回転軸L1を中心に回動可能なキャリッジ11が取り付けられている。このキャリッジ11は、基端部から先端部に向けて(ディスクD方向に向けて)延設されたアーム部14と、アーム部14を基端部を介して片持ち状に支持する基部15とが、削り出し加工等により一体形成されたものである。基部15は、略直方体形状に形成されたものであり、ピボット軸10により回動可能に支持されている。つまり、基部15はピボット軸10を介してアクチュエータ6に連結されており、このピボット軸10がキャリッジ11の回転中心となっている。 The actuator 6 described above is attached to one corner of the bottom 9a outside the disk D. The actuator 6 is provided with a carriage 11 that can rotate around a rotation axis L1 in a horizontal plane around a pivot shaft (bearing device) 10. The carriage 11 includes an arm portion 14 extending from the base end portion toward the tip portion (in the direction of the disk D), and a base portion 15 that supports the arm portion 14 in a cantilever manner via the base end portion. However, they are integrally formed by machining or the like. The base portion 15 is formed in a substantially rectangular parallelepiped shape, and is supported by the pivot shaft 10 so as to be rotatable. That is, the base portion 15 is connected to the actuator 6 via the pivot shaft 10, and the pivot shaft 10 is the rotation center of the carriage 11.
 アーム部14は、基部15におけるアクチュエータ6が取り付けられた側面15aと反対側の側面(隅角部の反対側の側面)15bにおいて、基部15の上面の面方向(水平面内方向)と平行に延出する平板状のものであり、基部15の高さ方向(垂直方向)に沿って3枚延出している。具体的には、アーム部14は、基端部から先端部に向かうにつれ先細るテーパ形状に形成されており、各アーム部14,14間に、ディスクDが挟み込まれるように配置されている。つまり、アーム部14とディスクDとが、交互に配置可能に構成されており、アクチュエータ6の駆動によってアーム部14がディスクDの表面に平行な方向(水平面内方向)に移動可能になっている。なお、キャリッジ11およびヘッドジンバルアセンブリ12は、ディスクDの回転停止時にアクチュエータ6の駆動によって、ディスクD上から退避するようになっている。 The arm portion 14 extends in parallel with the surface direction (horizontal plane direction) of the upper surface of the base portion 15 on the side surface 15b opposite to the side surface 15a to which the actuator 6 is attached in the base portion 15 (side surface on the opposite side of the corner portion). It is a flat plate to be extended, and three pieces are extended along the height direction (vertical direction) of the base 15. Specifically, the arm portion 14 is formed in a tapered shape that tapers from the proximal end portion toward the distal end portion, and is arranged so that the disk D is sandwiched between the arm portions 14 and 14. That is, the arm part 14 and the disk D are configured to be alternately arranged, and the arm part 14 can be moved in a direction parallel to the surface of the disk D (horizontal plane direction) by driving the actuator 6. . The carriage 11 and the head gimbal assembly 12 are retracted from the disk D by driving the actuator 6 when the rotation of the disk D is stopped.
 ヘッドジンバルアセンブリ12は、アーム部14の先端に連接されており、サスペンション3と、サスペンション3の先端に取り付けられたスライダ2とを備えている。また、ヘッドジンバルアセンブリ12は、図示しない近接場光発生素子を有するスライダ2に、レーザ光源20からの光束を導いて近接場光(スポット光)を発生させ、該近接場光を利用してディスクDに各種情報を記録再生させるものである。なお、近接場光発生素子は、例えば、光学的微小開口や、ナノメートルサイズに形成された突起部等により構成されている。 The head gimbal assembly 12 is connected to the tip of the arm portion 14, and includes a suspension 3 and a slider 2 attached to the tip of the suspension 3. Further, the head gimbal assembly 12 guides a light beam from the laser light source 20 to the slider 2 having a near-field light generating element (not shown) to generate near-field light (spot light), and uses the near-field light to disc Various information is recorded and reproduced in D. Note that the near-field light generating element includes, for example, an optical minute aperture, a protrusion formed in a nanometer size, and the like.
 図2に示すように、ピボット軸10は、略円柱状に形成されたシャフト21と、シャフト21の外周面21aに対して所定間隔離間して配される略円筒状のスリーブ23と、シャフト21とスリーブ23との間に介装される第一転がり軸受31と、シャフト21とスリーブ23との間に、第一転がり軸受31と所定間隔離間して並列して介装される第二転がり軸受32と、を有している。 As shown in FIG. 2, the pivot shaft 10 includes a shaft 21 formed in a substantially columnar shape, a substantially cylindrical sleeve 23 arranged at a predetermined distance from the outer peripheral surface 21 a of the shaft 21, and the shaft 21. The first rolling bearing 31 interposed between the shaft 23 and the sleeve 23, and the second rolling bearing interposed between the shaft 21 and the sleeve 23 in parallel with the first rolling bearing 31 at a predetermined interval. 32.
 シャフト21は、略円柱形状の棒状部材であり、長手方向(軸方向)の一端側に第一転がり軸受31が装着され、第一転がり軸受31と軸方向に所定間隔を空けて第二転がり軸受32が装着されている。また、シャフト21の一端側の端面には、シャフト21の直径よりも拡径され、第一転がり軸受31と当接されるフランジ部24が形成されている。 The shaft 21 is a substantially cylindrical rod-like member, and a first rolling bearing 31 is mounted on one end side in the longitudinal direction (axial direction), and the second rolling bearing is spaced apart from the first rolling bearing 31 in the axial direction. 32 is mounted. Further, a flange portion 24 is formed on the end face on one end side of the shaft 21 so as to be larger than the diameter of the shaft 21 and to come into contact with the first rolling bearing 31.
 スリーブ23は、略円筒形状に形成された部材であり、長手方向(軸方向)の一端側に第一転がり軸受31が装着され、他端側に第二転がり軸受32が装着される。また、スリーブ23における第一転がり軸受31と第二転がり軸受32とが配される間には、第一転がり軸受31と第二転がり軸受32との間隔を所定距離に保持するスペーサ部25が径方向内側に突出形成されている。なお、スリーブ23とスペーサ部25とは別部材で構成してもよい。 The sleeve 23 is a member formed in a substantially cylindrical shape, and the first rolling bearing 31 is mounted on one end side in the longitudinal direction (axial direction), and the second rolling bearing 32 is mounted on the other end side. In addition, while the first rolling bearing 31 and the second rolling bearing 32 in the sleeve 23 are arranged, the spacer portion 25 that maintains the distance between the first rolling bearing 31 and the second rolling bearing 32 at a predetermined distance is used. It protrudes inward in the direction. In addition, you may comprise the sleeve 23 and the spacer part 25 by another member.
 そして、第一転がり軸受31および第二転がり軸受32は、シャフト21の外周面21aおよびスリーブ23の内周面23bとの間に接着剤などを用いて固定されている。 The first rolling bearing 31 and the second rolling bearing 32 are fixed between the outer peripheral surface 21a of the shaft 21 and the inner peripheral surface 23b of the sleeve 23 using an adhesive or the like.
 第一転がり軸受31および第二転がり軸受32は、同一形状で形成された軸受である。具体的には、第一転がり軸受31は、内輪31aと、内輪31aに対して同軸に配置される外輪31bと、内輪31aと外輪31bとの間に介装され、所定位置で転動する複数の転動体31cと、を有している。同様に、第二転がり軸受32は、内輪32aと、内輪32aに対して同軸に配置される外輪32bと、内輪32aと外輪32bとの間に介装され、所定位置で転動する複数の転動体32cとを有している。 The first rolling bearing 31 and the second rolling bearing 32 are bearings formed in the same shape. Specifically, the first rolling bearing 31 is interposed between the inner ring 31a, the outer ring 31b arranged coaxially with the inner ring 31a, and between the inner ring 31a and the outer ring 31b, and a plurality of rolling at predetermined positions. Rolling element 31c. Similarly, the second rolling bearing 32 is interposed between the inner ring 32a, the outer ring 32b arranged coaxially with the inner ring 32a, and between the inner ring 32a and the outer ring 32b, and a plurality of rolling elements that roll at predetermined positions. And a moving body 32c.
 また、第一転がり軸受31の内輪31aおよび外輪31bには、転動体31cを転動可能に保持する凹陥状の転走面31dが対向するように形成されている。同様に、第二転がり軸受32の内輪32aおよび外輪32bには、転動体32cを転動可能に保持する凹陥状の転走面32dが対向するように形成されている。 Also, the inner ring 31a and the outer ring 31b of the first rolling bearing 31 are formed so as to face a concave rolling surface 31d that holds the rolling element 31c in a rollable manner. Similarly, the inner ring 32a and the outer ring 32b of the second rolling bearing 32 are formed so as to face a concave rolling surface 32d that holds the rolling element 32c in a rollable manner.
 次に、上述のように構成されたピボット軸10のトルク測定方法について図3~図9を用いて説明する。 Next, a method for measuring the torque of the pivot shaft 10 configured as described above will be described with reference to FIGS.
 図3がピボット軸10のトルク測定を行う際に用いるトルク測定装置40の概略ブロック図である。図3に示すように、トルク測定装置40は、ピボット軸10のシャフト21を軸中心に回転させるためのモータ41と、ピボット軸10を支持するとともにモータ41を駆動させることでシャフト21を回転可能に構成された支持部材42と、モータ41の回転数を調節するコントローラ43と、ピボット軸10のスリーブ23の外周面23aに当接離反される測定端子51を有するロードセル44と、ロードセル44に接続されたアンプ45と、アンプ45に接続されたレコーダ46と、レコーダ46に接続されロードセル44で出力される電圧出力をトルクに換算する数値処理装置47と、を備えている。 FIG. 3 is a schematic block diagram of the torque measuring device 40 used when measuring the torque of the pivot shaft 10. As shown in FIG. 3, the torque measuring device 40 can rotate the shaft 21 by supporting the pivot shaft 10 and driving the motor 41 while rotating the shaft 21 of the pivot shaft 10 about the shaft center. Connected to the load cell 44, a controller 43 for adjusting the rotational speed of the motor 41, a load cell 44 having a measurement terminal 51 that contacts and separates from the outer peripheral surface 23a of the sleeve 23 of the pivot shaft 10. An amplifier 45, a recorder 46 connected to the amplifier 45, and a numerical processing device 47 that converts the voltage output connected to the recorder 46 and output from the load cell 44 into torque.
 図4はロードセル44の斜視図である。ロードセル44は、例えばウレタンゴムで形成された測定端子51と、測定端子51の先端面51aとスリーブ23の外周面23aとの間の摩擦力(測定端子51の歪み)を検出することによりピボット軸10のトルクを検出可能なCPUが搭載された本体部52と、を備えている。また、測定端子51は、本体部52の側面52aに対して鉛直方向に突出するように配されている。そして、測定端子51の先端面51aをピボット軸10のスリーブ23の外周面23aに当接することによりピボット軸10のトルクを検出できるようになっている。 FIG. 4 is a perspective view of the load cell 44. The load cell 44 detects the frictional force (distortion of the measurement terminal 51) between the measurement terminal 51 formed of, for example, urethane rubber, and the distal end surface 51a of the measurement terminal 51 and the outer peripheral surface 23a of the sleeve 23, thereby rotating the pivot shaft. And a main body 52 on which a CPU capable of detecting 10 torques is mounted. The measurement terminal 51 is arranged so as to protrude in the vertical direction with respect to the side surface 52 a of the main body 52. The torque of the pivot shaft 10 can be detected by bringing the front end surface 51 a of the measurement terminal 51 into contact with the outer peripheral surface 23 a of the sleeve 23 of the pivot shaft 10.
 また、測定端子51の構成材料は、アスカーC硬度10以上、かつ、ショアA硬度40以下のものを採用することが好ましい。測定端子51の構成材料がショアA硬度40以下であると、図23に示すように、押付力が変化しても、ロードセル44の出力を安定させることができる。また、測定端子51の構成材料がアスカーC硬度10以上であると、測定端子51の耐久性が低下するのを抑制することができる。 In addition, it is preferable to employ a material having a Asker C hardness of 10 or more and a Shore A hardness of 40 or less as a constituent material of the measurement terminal 51. If the constituent material of the measurement terminal 51 is a Shore A hardness of 40 or less, as shown in FIG. 23, the output of the load cell 44 can be stabilized even if the pressing force changes. Moreover, it can suppress that the durability of the measurement terminal 51 falls that the constituent material of the measurement terminal 51 is Asker C hardness 10 or more.
 図5、図6はロードセル44を用いてピボット軸10のトルクを測定している状態を示す図であり、図5は平面図、図6は側面図である。図5、図6に示すように、支持部材42(不図示)に載置されたピボット軸10のシャフト21を軸中心に回転させる。すると、シャフト21の回転に伴って、第一転がり軸受31および第二転がり軸受32の内輪31a,32aが軸中心に回転し、その回転力が転動体31c,32cを介して外輪31b,32bに伝達され、外輪31b,32bに連結されたスリーブ23が軸中心に回転する。 5 and 6 are views showing a state in which the torque of the pivot shaft 10 is measured using the load cell 44, FIG. 5 is a plan view, and FIG. 6 is a side view. As shown in FIGS. 5 and 6, the shaft 21 of the pivot shaft 10 placed on the support member 42 (not shown) is rotated about the axis. Then, along with the rotation of the shaft 21, the inner rings 31a and 32a of the first rolling bearing 31 and the second rolling bearing 32 rotate about the shaft center, and the rotational force is applied to the outer rings 31b and 32b via the rolling elements 31c and 32c. The sleeve 23 transmitted and coupled to the outer rings 31b and 32b rotates about the axis.
 続いて、ロードセル44の測定端子51の先端面51aを、この回転の接線方向に対して垂直な方向からスリーブ23の外周面23aに所定の力で押圧するように当接させる。すると、測定端子51の先端面51aとスリーブ23の外周面23aとの間に摩擦力が生じる。測定端子51は、この摩擦力を検出することができるように構成されている。また、測定端子51の摩擦力検出方向(測定方向)が、この回転の接線方向と略平行な方向に設定されている。したがって、測定結果にノイズが入るのを防止することができる。 Subsequently, the front end surface 51a of the measurement terminal 51 of the load cell 44 is brought into contact with the outer peripheral surface 23a of the sleeve 23 with a predetermined force from a direction perpendicular to the tangential direction of the rotation. Then, a frictional force is generated between the distal end surface 51 a of the measurement terminal 51 and the outer peripheral surface 23 a of the sleeve 23. The measurement terminal 51 is configured to detect this frictional force. Also, the frictional force detection direction (measurement direction) of the measurement terminal 51 is set in a direction substantially parallel to the tangential direction of the rotation. Therefore, noise can be prevented from entering the measurement result.
 結果として、図7に示すようなトルク波形を得ることができるとともに、図8に示すようなトルク波形の周波数分析結果を得ることができる。従来の方法でトルクを測定した場合よりも、ノイズがなくなり正確なトルク波形を得ることができることが分かる。 As a result, a torque waveform as shown in FIG. 7 can be obtained, and a frequency analysis result of the torque waveform as shown in FIG. 8 can be obtained. It can be seen that noise is eliminated and an accurate torque waveform can be obtained as compared with the case where the torque is measured by the conventional method.
 また、本実施形態のように、測定端子51の先端面51aとスリーブ23の外周面23aとを当接するようにしてトルク測定を行うことにより、シャフト21の回転方向を途中で反転させた場合にも、図9に示すように、連続的にトルク波形を得ることができる。そして、このようにシャフト21の回転方向を正転逆転させることにより、ピボット軸10のトルクのヒステリシスを測定することができる。このトルクのヒステリシスは、ピボット軸10に連結されるキャリッジ11の位置決め動作に悪影響を及ぼすため、このヒステリシスを予め測定しておくことにより、キャリッジ11(ヘッドジンバルアセンブリ12)の位置決め精度を向上させることができる。 Further, as in the present embodiment, when the rotation direction of the shaft 21 is reversed halfway by performing the torque measurement so that the distal end surface 51a of the measurement terminal 51 and the outer peripheral surface 23a of the sleeve 23 are in contact with each other. However, as shown in FIG. 9, a torque waveform can be obtained continuously. The torque hysteresis of the pivot shaft 10 can be measured by reversing the rotation direction of the shaft 21 in this way. Since this torque hysteresis adversely affects the positioning operation of the carriage 11 connected to the pivot shaft 10, the positioning accuracy of the carriage 11 (head gimbal assembly 12) can be improved by measuring this hysteresis in advance. Can do.
 本実施形態によれば、ロードセル44の測定端子51をピボット軸10に所定の力で押圧するように当接させるだけでピボット軸10のトルクを測定することができる。したがって、測定されたトルク値は、ロードセル44のノイズの影響が少なくなり、微小トルクまで測定することが可能となる。また、ロードセル44が振動することで生じるノイズが無いため、高い周波数成分まで正確にトルク測定が可能となり、測定時の回転数を高くしても正確にトルクが測定できる。結果として、トルク測定時間を短縮することができる。さらに、ピボット軸10にトルク測定用部材(従来のアーム部材)を取り付ける必要がないため、ピボット軸10に傷がつくのを防止することができるとともに、トルク測定用部材の取付作業を省略でき生産効率を向上することができる。そして、ピボット軸10の回転中心から力の測定点までの距離を短くすることができるため、従来に比べて測定する力が大きくなり、より分解能の高いトルク測定を行うことができる。 According to the present embodiment, the torque of the pivot shaft 10 can be measured simply by bringing the measurement terminal 51 of the load cell 44 into contact with the pivot shaft 10 so as to be pressed with a predetermined force. Therefore, the measured torque value is less affected by the noise of the load cell 44 and can be measured up to a minute torque. Further, since there is no noise caused by the vibration of the load cell 44, it is possible to accurately measure torque up to a high frequency component, and it is possible to accurately measure torque even when the number of rotations during measurement is increased. As a result, the torque measurement time can be shortened. Further, since it is not necessary to attach a torque measuring member (conventional arm member) to the pivot shaft 10, it is possible to prevent the pivot shaft 10 from being damaged, and it is possible to eliminate the work of attaching the torque measuring member. Efficiency can be improved. Since the distance from the rotation center of the pivot shaft 10 to the force measurement point can be shortened, the force to be measured is larger than in the conventional case, and torque measurement with higher resolution can be performed.
 また、シャフト21の回転方向を途中で逆転させることで、ピボット軸10の正転時のトルクと逆転時のトルクとを連続的に測定することができる。したがって、ピボット軸10のトルクのヒステリシスを測定することができ、ピボット軸10の実使用形態に即した評価をすることができる。 Also, by rotating the rotation direction of the shaft 21 halfway, the torque at the time of forward rotation and the torque at the time of reverse rotation of the pivot shaft 10 can be continuously measured. Therefore, the hysteresis of the torque of the pivot shaft 10 can be measured, and the evaluation in accordance with the actual use form of the pivot shaft 10 can be performed.
 また、トルク測定装置40は、ピボット軸受10のシャフト21およびスリーブ23の一方を軸中心に回転させるモータ41と、ピボット軸受10のシャフト21およびスリーブ23の一方を軸中心に回転させた状態で、ピボット軸受10を支持する支持部材42と、軸中心に回転しているシャフト21またはスリーブ23に対して当接離反可能な測定端子51を有し、測定端子51の摩擦力を検出することでピボット軸受10のトルクを測定可能なロードセル44と、を備えて構成したため、ロードセル44の測定端子51を支持部材42に載置されたピボット軸受10に所定の力で押圧するように当接させるだけの簡易な構成で、ピボット軸受10のトルクを測定することができる。 Further, the torque measuring device 40 has a motor 41 that rotates one of the shaft 21 and the sleeve 23 of the pivot bearing 10 about the axis, and one of the shaft 21 and the sleeve 23 of the pivot bearing 10 that rotates about the axis. A support member 42 that supports the pivot bearing 10, and a measurement terminal 51 that can be brought into contact with and separated from the shaft 21 or the sleeve 23 that rotates about the axis, and the pivoting force is detected by detecting the frictional force of the measurement terminal 51. Since the load cell 44 capable of measuring the torque of the bearing 10 is provided, the measurement terminal 51 of the load cell 44 is merely brought into contact with the pivot bearing 10 placed on the support member 42 so as to be pressed with a predetermined force. The torque of the pivot bearing 10 can be measured with a simple configuration.
 尚、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and includes those obtained by adding various modifications to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
 例えば、本実施形態では、軸受装置を近接場光ヘッドを有する情報記録再生装置のピボット軸のトルク測定方法について説明をしたが、これに限らず、一般的なHDDや光ディスク装置などの軸受装置や各種装置の回転軸部に採用することができる。また、第一転がり軸受31や第二転がり軸受32のように転がり軸受単体のトルク測定にも採用することができる。なお、転がり軸受単体のトルク測定を行う際には、内輪の内側に上述のシャフトの機能を有する治具を嵌めこむことによりトルク測定を行うことができる。 For example, in this embodiment, the method for measuring the torque of the pivot shaft of the information recording / reproducing apparatus having a near-field optical head is described as the bearing apparatus. However, the present invention is not limited to this, and the bearing apparatus such as a general HDD or optical disk apparatus, It can be employed in the rotating shaft portion of various devices. Further, it can also be used for torque measurement of a single rolling bearing such as the first rolling bearing 31 and the second rolling bearing 32. When measuring the torque of a single rolling bearing, the torque can be measured by fitting the jig having the above-described shaft function inside the inner ring.
 また、本実施形態では、ロードセル44を一台だけ用いてピボット軸10のトルクを測定するように構成したが、図10に示すように、複数台のロードセル44を用いてピボット軸10のトルク測定を行ってもよい(図10では2台のロードセル44を用いた場合)。このとき、複数のロードセル44は、ピボット軸10に対するロードセル44の押付力を互いに打ち消すようにロードセル44を配置する。このように構成することにより、ロードセル44の測定端子51をピボット軸10に押し付けることにより生じる荷重をキャンセルすることができるため、ピボット軸10のトルクをより正確に測定することができる。 In this embodiment, the torque of the pivot shaft 10 is measured using only one load cell 44. However, as shown in FIG. 10, the torque measurement of the pivot shaft 10 is performed using a plurality of load cells 44. May be performed (in the case of using two load cells 44 in FIG. 10). At this time, the load cells 44 are arranged so that the pressing forces of the load cells 44 against the pivot shaft 10 cancel each other. With this configuration, the load generated by pressing the measurement terminal 51 of the load cell 44 against the pivot shaft 10 can be canceled, so that the torque of the pivot shaft 10 can be measured more accurately.
 また、本実施形態では、ウレタンゴムで構成された測定端子51を用いてトルク測定を行う場合の説明をしたが、測定端子60が、図11に示すように、ピボット軸10に当接されるフッ素ゴムなどで形成された先端部61と、先端部61と本体部52との間に配されるウレタンゴムなどで形成された基端部62と、を有するように構成してもよい。このとき、先端部61には基端部62の材料より高硬度の材料を採用すればよい。このように、先端部61に耐摩耗性が良好な高硬度材料を用いることにより、トルクを正確に測定することができるとともに、測定端子60の耐久性を向上することができる。また、基端部62に硬度が低く側圧がかかりにくい材料を用いることにより、トルクをより正確に測定することができる。 In the present embodiment, the torque measurement is performed using the measurement terminal 51 made of urethane rubber. However, the measurement terminal 60 is brought into contact with the pivot shaft 10 as shown in FIG. You may comprise so that it may have the front-end | tip part 61 formed with the fluoro rubber etc. and the base end part 62 formed with the urethane rubber etc. which are distribute | arranged between the front-end | tip part 61 and the main-body part 52. FIG. At this time, a material having a hardness higher than that of the base end portion 62 may be used for the tip end portion 61. Thus, by using a high-hardness material with good wear resistance for the tip portion 61, the torque can be measured accurately and the durability of the measurement terminal 60 can be improved. In addition, the torque can be measured more accurately by using a material with low hardness and less side pressure that is applied to the base end portion 62.
 なお、測定端子の構成としては、他にも図12に示すように、測定端子65の中心部分に金属やプラスチックで形成された芯材66と、芯材66を覆うようにウレタンゴムなどで形成されたコーティング材67と、を有する測定端子65を採用してもよい。芯材66を設けることにより、例えば測定端子65を長くしなければならない場合に、測定端子65が自重で撓んでしまうのを防止することができ、トルク測定の精度が低下するのを防止することができる。 In addition, as shown in FIG. 12, the measurement terminal is composed of a core 66 made of metal or plastic at the center of the measurement terminal 65 and urethane rubber or the like so as to cover the core 66. The measuring terminal 65 having the coated material 67 may be employed. By providing the core member 66, for example, when the measurement terminal 65 has to be lengthened, the measurement terminal 65 can be prevented from being bent by its own weight, and the torque measurement accuracy can be prevented from being lowered. Can do.
 他には、図13に示すように、測定端子として、ウレタンゴムで形成された断面台形状の測定端子70を採用してもよい。この場合、長辺側を本体部52に接合し、短辺側をピボット軸10への接触面とすればよい。このように構成することで、測定端子70の粘着力でロードセル44に固定することができ、将来的に摩耗などで測定端子70を交換する際に、容易に交換作業を行うことができる。なお、ロードセル44と測定端子70との接触面積が、測定端子70とピボット軸10との接触面積よりも大きいため、トルク測定時に測定端子70がロードセル44から脱落することはない。さらに、図14に示すように、測定端子として、ウレタンゴムで形成された断面半円形状の測定端子72を採用してもよい。この場合、半円形の直径部分を本体部52に接合すれば、上述と略同一の効果が得られる。 Alternatively, as shown in FIG. 13, a measuring terminal 70 having a trapezoidal cross section made of urethane rubber may be adopted as the measuring terminal. In this case, what is necessary is just to join the long side side to the main-body part 52, and let the short side side be a contact surface to the pivot axis | shaft 10. FIG. With this configuration, the measurement terminal 70 can be fixed to the load cell 44 with the adhesive force, and the replacement operation can be easily performed when the measurement terminal 70 is replaced in the future due to wear or the like. Since the contact area between the load cell 44 and the measurement terminal 70 is larger than the contact area between the measurement terminal 70 and the pivot shaft 10, the measurement terminal 70 does not fall off the load cell 44 during torque measurement. Furthermore, as shown in FIG. 14, a measurement terminal 72 having a semicircular cross section formed of urethane rubber may be employed as the measurement terminal. In this case, if the semicircular diameter portion is joined to the main body portion 52, substantially the same effect as described above can be obtained.
 また、本実施形態では、シャフト21およびスリーブ23を備えたピボット軸10を用いて説明したが、図15に示すように、スリーブ23を有しないピボット軸75のトルク測定にも上述のトルク測定方法を採用してもよい。この場合、第一転がり軸受31と第二転がり軸受32との間にスペーサ76を設けて、第一転がり軸受31、第二転がり軸受32およびスペーサ76の外周面が面一になるように構成すればよい。そして、このピボット軸10のトルクを測定する際には、第一転がり軸受31、第二転がり軸受32およびスペーサ76の外周面のいずれかに測定端子51を所定の力で押圧することによりトルクを測定することができる。 In the present embodiment, the pivot shaft 10 having the shaft 21 and the sleeve 23 has been described. However, as shown in FIG. 15, the torque measuring method described above is also used for measuring the torque of the pivot shaft 75 having no sleeve 23. May be adopted. In this case, a spacer 76 is provided between the first rolling bearing 31 and the second rolling bearing 32 so that the outer peripheral surfaces of the first rolling bearing 31, the second rolling bearing 32, and the spacer 76 are flush with each other. That's fine. When the torque of the pivot shaft 10 is measured, the torque is applied by pressing the measuring terminal 51 with a predetermined force to one of the outer peripheral surfaces of the first rolling bearing 31, the second rolling bearing 32, and the spacer 76. Can be measured.
 また、本実施形態では、測定端子51として摩擦力検出方向(測定方向)が回転の接線方向と略平行な方向に設定されたものを採用したが、測定方向が捩れ方向に設定された測定端子77を採用することもできる。この場合、図16に示すように、測定端子77の先端にスリーブ23の外周面23aに当接される当接部材78が配された補助部材80が取り付けられている。そして、当接部材78をスリーブ23の外周面23aに当接させることにより、測定端子77が捩れ方向に変形することでトルクを測定することができる。 In the present embodiment, the measurement terminal 51 is configured such that the frictional force detection direction (measurement direction) is set in a direction substantially parallel to the tangential direction of rotation, but the measurement terminal is set to the twist direction. 77 can also be adopted. In this case, as shown in FIG. 16, an auxiliary member 80 in which an abutting member 78 that abuts on the outer peripheral surface 23 a of the sleeve 23 is disposed at the tip of the measurement terminal 77 is attached. Then, by bringing the contact member 78 into contact with the outer peripheral surface 23a of the sleeve 23, the torque can be measured by the measurement terminal 77 being deformed in the twisting direction.
 また、本実施形態では、スリーブ23の外周面23aにロードセル44の測定端子51を当接させてトルクを測定する場合の説明をしたが、図17に示すように、測定端子79として、捩れ方向の摩擦力を検出可能な測定端子を採用してもよい。この場合、シャフト21ではなくスリーブ23を軸中心に回転させ、シャフト21の軸方向端面21bに測定端子79の先端面79aを所定の力で押圧するように当接させて、トルクを測定することができる。なお、図18に示すように、測定端子85として、スリーブ23の軸方向端面23cに当接可能な略円筒状で、かつ、捩れ方向の摩擦力を検出可能な測定端子を採用してもよい。この場合、シャフト21を軸中心に回転させ、スリーブ23の軸方向端面23cに測定端子85の先端面85aを所定の力で押圧するように当接させて、トルクを測定することができる。また、スリーブ23を設けない場合には、転がり軸受の外輪の軸方向端面に測定端子を当接させればよい。 Further, in the present embodiment, the case where the measurement terminal 51 of the load cell 44 is brought into contact with the outer peripheral surface 23a of the sleeve 23 to measure the torque has been described, but as shown in FIG. A measurement terminal capable of detecting the frictional force may be employed. In this case, the torque is measured by rotating the sleeve 23 instead of the shaft 21 around the axis and bringing the tip end surface 79a of the measuring terminal 79 into contact with the axial end surface 21b of the shaft 21 with a predetermined force. Can do. As shown in FIG. 18, as the measurement terminal 85, a measurement terminal having a substantially cylindrical shape capable of coming into contact with the axial end surface 23c of the sleeve 23 and capable of detecting a frictional force in the torsional direction may be employed. . In this case, the torque can be measured by rotating the shaft 21 about the axis and bringing the tip end surface 85a of the measuring terminal 85 into contact with the axial end surface 23c of the sleeve 23 with a predetermined force. When the sleeve 23 is not provided, the measurement terminal may be brought into contact with the axial end surface of the outer ring of the rolling bearing.
 また、本実施形態では、シャフト21を軸方向に回転させて、そのときのスリーブ23の回転方向のトルクを測定する場合の説明をしたが、図19、図20に示すように、スリーブ23をモータ41で軸中心に回転させ、そのときのシャフト21の回転方向のトルクをロードセル44で測定するように構成してもよい。この場合は、測定端子51の先端面51aをシャフト21の外周面21aに当接するように構成すればよい。 In the present embodiment, the shaft 21 is rotated in the axial direction, and the torque in the rotational direction of the sleeve 23 at that time is measured. However, as shown in FIGS. The motor 41 may be rotated about the axis, and the torque in the rotation direction of the shaft 21 at that time may be measured by the load cell 44. In this case, what is necessary is just to comprise so that the front end surface 51a of the measurement terminal 51 may contact | abut to the outer peripheral surface 21a of the shaft 21. FIG.
 さらに、本実施形態では、シャフト21を軸方向に回転させて、そのときのスリーブ23の回転方向のトルクを測定する場合の説明をしたが、図21に示すように、スリーブ23に連結されるキャリッジ11(アーム部14)を取り付けた状態で、アーム部14の先端にロードセル44の測定端子51を所定の力で押圧するように当接させてトルク測定を行ってもよい。 Furthermore, in the present embodiment, the case where the shaft 21 is rotated in the axial direction and the torque in the rotational direction of the sleeve 23 at that time is measured has been described. However, as shown in FIG. With the carriage 11 (arm portion 14) attached, torque measurement may be performed by bringing the measurement terminal 51 of the load cell 44 into contact with the tip of the arm portion 14 with a predetermined force.
 そして、本実施形態では、シャフト21を軸方向に回転させて、そのときのスリーブ23の回転方向のトルクを測定する場合の説明をしたが、図22に示すように、測定端子51の測定方向を変えて本体部52に取り付けて、その測定方向に合うように測定端子51とピボット軸受10とを当接させて、トルク測定を行ってもよい。 In this embodiment, the shaft 21 is rotated in the axial direction and the torque in the rotational direction of the sleeve 23 at that time is measured. As shown in FIG. 22, the measurement direction of the measurement terminal 51 is measured. May be attached to the main body 52 and the torque measurement may be performed by bringing the measurement terminal 51 and the pivot bearing 10 into contact with each other so as to match the measurement direction.
 10…ピボット軸(転がり軸受装置) 21…シャフト 21a…外周面 21b…軸方向端面 23…スリーブ 23a…外周面 31…第1転がり軸受(転がり軸受) 31a…内輪 31b…外輪 31c…転動体 32…第2転がり軸受(転がり軸受) 32a…内輪 32b…外輪 32c…転動体 41…モータ 42…支持部材 44…ロードセル 51…測定端子 51a…先端面(端面) 52…本体部(ロードセル本体部) 60…測定端子 61…先端部 62…基端部 76…スペーサ DESCRIPTION OF SYMBOLS 10 ... Pivot shaft (rolling bearing apparatus) 21 ... Shaft 21a ... Outer peripheral surface 21b ... Axial end surface 23 ... Sleeve 23a ... Outer peripheral surface 31 ... First rolling bearing (rolling bearing) 31a ... Inner ring 31b ... Outer ring 31c ... Rolling element 32 ... Second rolling bearing (rolling bearing) 32a ... inner ring 32b ... outer ring 32c ... rolling element 41 ... motor 42 ... support member 44 ... load cell 51 ... measurement terminal 51a ... tip face (end face) 52 ... main part (load cell main part) 60 ... Measurement terminal 61 ... distal end 62 ... proximal end 76 ... spacer

Claims (18)

  1. 円柱状に形成されたシャフトと、
     該シャフトの外周面に対して所定間隔離間して前記シャフトと同軸に配される円筒状のスリーブと、
     前記シャフトと前記スリーブとの間に配置され、内輪が前記シャフトに固定されるとともに、外輪が前記スリーブに固定された転がり軸受と、を備えた転がり軸受装置のトルク測定方法であって、
     トルクを検出可能な測定端子を有するロードセルを用いて、
     前記転がり軸受装置の前記シャフトまたは前記スリーブの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、
     前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴とする転がり軸受装置のトルク測定方法。
    A shaft formed in a cylindrical shape;
    A cylindrical sleeve disposed coaxially with the shaft at a predetermined interval from the outer peripheral surface of the shaft;
    A rolling bearing device torque measuring method comprising: a rolling bearing disposed between the shaft and the sleeve, an inner ring fixed to the shaft, and an outer ring fixed to the sleeve,
    Using a load cell with a measuring terminal that can detect torque,
    While rotating one of the shaft or the sleeve of the rolling bearing device around the axis, press the measurement terminal to the other with a predetermined force,
    A torque measuring method for a rolling bearing device, wherein the torque of the rolling bearing device is measured by detecting a frictional force of the measuring terminal.
  2. 円柱状に形成されたシャフトと、
     該シャフトの外周面に内輪が固定された複数の転がり軸受と、
     隣り合う前記転がり軸受の外輪の間に配されたスペーサと、を備えた転がり軸受装置のトルク測定方法であって、
     トルクを検出可能な測定端子を有するロードセルを用いて、
     前記転がり軸受装置の前記シャフトまたは前記外輪および前記スペーサの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、
     前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴とする転がり軸受装置のトルク測定方法。
    A shaft formed in a cylindrical shape;
    A plurality of rolling bearings having an inner ring fixed to the outer peripheral surface of the shaft;
    A spacer disposed between the outer rings of the adjacent rolling bearings, and a torque measuring method for a rolling bearing device comprising:
    Using a load cell with a measuring terminal that can detect torque,
    While rotating one of the shaft or the outer ring and the spacer of the rolling bearing device around the axis, press the measurement terminal to the other with a predetermined force,
    A torque measuring method for a rolling bearing device, wherein the torque of the rolling bearing device is measured by detecting a frictional force of the measuring terminal.
  3. 請求項1または請求項2の転がり軸受装置に、
     前記スリーブまたは前記外輪に嵌合して軸中心に回動可能に構成されたスイングアームがさらに設けられた転がり軸受装置のトルク測定方法であって、
     前記転がり軸受装置の前記シャフトまたは前記スリーブ、前記外輪および前記スペーサの一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、
     前記測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定することを特徴とする転がり軸受装置のトルク測定方法。
    In the rolling bearing device according to claim 1 or 2,
    A torque measuring method for a rolling bearing device further provided with a swing arm configured to be fitted to the sleeve or the outer ring and pivotable about an axis,
    While rotating one of the shaft or the sleeve, the outer ring and the spacer of the rolling bearing device around the axis, press the measurement terminal to the other with a predetermined force,
    A torque measuring method for a rolling bearing device, wherein the torque of the rolling bearing device is measured by detecting a frictional force of the measuring terminal.
  4. 前記一方が軸中心に回転されている状態で、前記測定端子を前記回転の接線方向に対して垂直な方向から前記他方の外周面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受装置のトルクを測定することを特徴とする請求項1~3のいずれかに記載の転がり軸受装置のトルク測定方法。 In a state where the one is rotated about the axis, the measurement terminal is brought into contact with the other outer peripheral surface from a direction perpendicular to the tangential direction of the rotation so as to press the measurement terminal with a predetermined force. The torque measuring method for a rolling bearing device according to any one of claims 1 to 3, wherein the torque of the rolling bearing device is measured.
  5. 前記一方が軸中心に回転されている状態で、前記測定端子を前記軸中心方向から前記他方の軸方向端面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受装置のトルクを測定することを特徴とする請求項1~3のいずれかに記載の転がり軸受装置のトルク測定方法。 The rolling bearing device by contacting the measurement terminal from the axial center direction to the other axial end surface so as to press the measurement terminal with a predetermined force in a state where the one is rotated about the axis. The torque measuring method for a rolling bearing device according to any one of claims 1 to 3, wherein the torque is measured.
  6. 前記測定端子が、前記転がり軸受装置に当接される先端部と、該先端部とロードセル本体部との間に配される基端部と、を備え、
     前記先端部は前記基端部より高硬度材料が用いられていることを特徴とする請求項1~5のいずれかに記載の転がり軸受装置のトルク測定方法。
    The measurement terminal includes a distal end portion that comes into contact with the rolling bearing device, and a proximal end portion disposed between the distal end portion and the load cell main body portion,
    The torque measurement method for a rolling bearing device according to any one of claims 1 to 5, wherein a material having a hardness higher than that of the base end portion is used for the tip end portion.
  7. 前記測定端子の構成材料が、アスカーC硬度10以上、かつ、ショアA硬度40以下であることを特徴とする請求項1~6のいずれかに記載の転がり軸受装置のトルク測定方法。 The method for measuring torque of a rolling bearing device according to any one of claims 1 to 6, wherein the constituent material of the measuring terminal has an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
  8. 複数の前記ロードセルを用い、
     前記転がり軸受装置に対する前記複数のロードセルの押付力を互いに打ち消すように前記複数のロードセルを配置して、前記転がり軸受装置のトルクを測定することを特徴とする請求項1~7のいずれかに記載の転がり軸受装置のトルク測定方法。
    Using a plurality of the load cells,
    8. The torque of the rolling bearing device is measured by arranging the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing device. Method for measuring torque of a rolling bearing device.
  9. 前記測定端子を前記一方または前記他方に当接させた状態で、
     回転方向を反転させることで、前記転がり軸受装置の正転時のトルクと逆転時のトルクとを連続的に測定することを特徴とする請求項1~8のいずれかに記載の転がり軸受装置のトルク測定方法。
    With the measurement terminal in contact with the one or the other,
    The rolling bearing device according to any one of claims 1 to 8, wherein the torque at the time of forward rotation and the torque at the time of reverse rotation of the rolling bearing device are continuously measured by reversing the rotation direction. Torque measurement method.
  10. 請求項1~9のいずれかに記載の転がり軸受装置の前記一方を軸中心に回転させるモータと、
     前記一方を軸中心に回転させた状態で、前記転がり軸受装置を支持する支持部材と、
     前記他方に対して当接離反可能な測定端子を有し、該測定端子の摩擦力を検出することで前記転がり軸受装置のトルクを測定可能なロードセルと、を備えていることを特徴とする転がり軸受装置のトルク測定装置。
    A motor for rotating the one of the rolling bearing devices according to any one of claims 1 to 9 about an axis;
    A support member that supports the rolling bearing device in a state in which the one is rotated around an axis;
    A rolling cell having a measuring terminal capable of coming into contact with and separating from the other, and a load cell capable of measuring the torque of the rolling bearing device by detecting a frictional force of the measuring terminal. Torque measuring device for bearing devices.
  11. 略円筒状の内輪と、
     該内輪の外周面に対して所定間隔離間して前記内輪と同軸に配される略円筒状の外輪と、
     前記内輪と前記外輪との間に介装された転動体と、を備えた転がり軸受のトルク測定方法であって、
     トルクを検出可能な測定端子を有するロードセルを用いて、
     前記転がり軸受の前記内輪または前記外輪の一方を軸中心に回転させるとともに、他方に前記測定端子を所定の力で押圧し、
     前記測定端子の摩擦力を検出することで前記転がり軸受のトルクを測定することを特徴とする転がり軸受のトルク測定方法。
    A substantially cylindrical inner ring,
    A substantially cylindrical outer ring disposed coaxially with the inner ring at a predetermined interval from the outer peripheral surface of the inner ring;
    A rolling bearing torque measuring method comprising: a rolling element interposed between the inner ring and the outer ring,
    Using a load cell with a measuring terminal that can detect torque,
    While rotating one of the inner ring or the outer ring of the rolling bearing around the axis, press the measurement terminal to the other with a predetermined force,
    A method for measuring a torque of a rolling bearing, wherein the torque of the rolling bearing is measured by detecting a frictional force of the measuring terminal.
  12. 前記一方が軸中心に回転されている状態で、前記測定端子を前記回転の接線方向に対して垂直な方向から前記他方の周面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受のトルクを測定することを特徴とする請求項11に記載の転がり軸受のトルク測定方法。 With the one rotating about the axis, the measurement terminal is brought into contact with the other peripheral surface from a direction perpendicular to the tangential direction of the rotation so as to press the measurement terminal with a predetermined force. The torque of the rolling bearing according to claim 11, wherein the torque of the rolling bearing is measured.
  13. 前記一方が軸中心に回転されている状態で、前記測定端子を前記軸中心方向から前記他方の軸方向端面に前記測定端子を所定の力で押圧するように当接させることで前記転がり軸受のトルクを測定することを特徴とする請求項11または12に記載の転がり軸受のトルク測定方法。 In a state where the one is rotated about the shaft center, the measuring terminal is brought into contact with the other axial end surface from the axial center direction so as to press the measuring terminal with a predetermined force. Torque is measured, The torque measuring method of the rolling bearing of Claim 11 or 12 characterized by the above-mentioned.
  14. 前記測定端子が、前記転がり軸受装置に当接される先端部と、該先端部とロードセル本体部との間に配される基端部と、を備え、
     前記先端部は前記基端部より高硬度材料が用いられていることを特徴とする請求項11~13のいずれかに記載の転がり軸受のトルク測定方法。
    The measurement terminal includes a distal end portion that comes into contact with the rolling bearing device, and a proximal end portion disposed between the distal end portion and the load cell main body portion,
    The rolling bearing torque measurement method according to any one of claims 11 to 13, wherein a material having a hardness higher than that of the base end portion is used for the tip end portion.
  15. 前記測定端子の構成材料が、アスカーC硬度10以上、かつ、ショアA硬度40以下であることを特徴とする請求項11~14のいずれかに記載の転がり軸受のトルク測定方法。 The method for measuring torque of a rolling bearing according to any one of claims 11 to 14, wherein the constituent material of the measurement terminal is an Asker C hardness of 10 or more and a Shore A hardness of 40 or less.
  16. 複数の前記ロードセルを用い、
     前記転がり軸受に対する前記複数のロードセルの押付力を互いに打ち消すように前記複数のロードセルを配置して、前記転がり軸受のトルクを測定することを特徴とする請求項11~15のいずれかに記載の転がり軸受のトルク測定方法。
    Using a plurality of the load cells,
    The rolling device according to any one of claims 11 to 15, wherein the torque of the rolling bearing is measured by arranging the plurality of load cells so as to cancel each other's pressing force of the plurality of load cells against the rolling bearing. Bearing torque measurement method.
  17. 前記測定端子を前記一方または前記他方に当接させた状態で、
     回転方向を反転させることで、前記転がり軸受の正転時のトルクと逆転時のトルクとを連続的に測定することを特徴とする請求項11~16のいずれかに記載の転がり軸受のトルク測定方法。
    With the measurement terminal in contact with the one or the other,
    The torque measurement of a rolling bearing according to any one of claims 11 to 16, wherein the torque at the time of forward rotation and the torque at the time of reverse rotation of the rolling bearing are continuously measured by reversing the rotation direction. Method.
  18. 請求項11~17のいずれかに記載の転がり軸受の前記一方を軸中心に回転させるモータと、
     前記一方を軸中心に回転させた状態で、前記転がり軸受を支持する支持部材と、
     前記他方に対して当接離反可能な測定端子を有し、該測定端子の摩擦力を検出することで前記転がり軸受のトルクを測定可能なロードセルと、を備えていることを特徴とする転がり軸受のトルク測定装置。
    A motor that rotates the one of the rolling bearings according to any one of claims 11 to 17 about an axis;
    A support member for supporting the rolling bearing in a state in which the one is rotated around an axis;
    A rolling bearing comprising: a measuring terminal capable of coming into contact with and separating from the other; and a load cell capable of measuring a torque of the rolling bearing by detecting a frictional force of the measuring terminal. Torque measurement device.
PCT/JP2011/054236 2010-03-12 2011-02-25 Torque measurement method for rolling bearing device, torque measurement device for rolling bearing device, torque measurement method for rolling bearing and torque measurement device for rolling bearing WO2011111550A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-056788 2010-03-12
JP2010056788A JP2011191149A (en) 2010-03-12 2010-03-12 Method and device of measuring torque of ball bearing and method and device of measuring torque of ball bearing

Publications (1)

Publication Number Publication Date
WO2011111550A1 true WO2011111550A1 (en) 2011-09-15

Family

ID=44563357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054236 WO2011111550A1 (en) 2010-03-12 2011-02-25 Torque measurement method for rolling bearing device, torque measurement device for rolling bearing device, torque measurement method for rolling bearing and torque measurement device for rolling bearing

Country Status (2)

Country Link
JP (1) JP2011191149A (en)
WO (1) WO2011111550A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205093A1 (en) * 2015-06-13 2016-12-22 Bruker Nano, Inc. Measurement of very low torque values
US10082178B2 (en) * 2016-06-29 2018-09-25 Aktiebolaget Skf Roller with integrated load cell
CN110631830A (en) * 2019-09-23 2019-12-31 清华大学 Radial rigidity measuring device for rolling bearing
RU218985U1 (en) * 2023-04-03 2023-06-21 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Torque measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308017A (en) * 1993-04-21 1994-11-04 Nippon Steel Corp Method and apparatus for analyzing sliding abrasion
JPH102840A (en) * 1996-06-18 1998-01-06 Toshiba Corp Work inspecting device
JPH1183650A (en) * 1997-09-01 1999-03-26 Nippon Seiko Kk Method for evaluating oscillation characteristic of rolling bearing apparatus
JP2003166907A (en) * 2001-11-29 2003-06-13 Nsk Ltd Torque-inspection method and device for rolling bearing device
JP2004125405A (en) * 2002-09-30 2004-04-22 Suzuko Seimitsu Kk Torque measuring instrument of rotor having inner ring and outer ring
JP2005010155A (en) * 2003-05-28 2005-01-13 Nsk Ltd Torque measuring device of ball screw

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308017A (en) * 1993-04-21 1994-11-04 Nippon Steel Corp Method and apparatus for analyzing sliding abrasion
JPH102840A (en) * 1996-06-18 1998-01-06 Toshiba Corp Work inspecting device
JPH1183650A (en) * 1997-09-01 1999-03-26 Nippon Seiko Kk Method for evaluating oscillation characteristic of rolling bearing apparatus
JP2003166907A (en) * 2001-11-29 2003-06-13 Nsk Ltd Torque-inspection method and device for rolling bearing device
JP2004125405A (en) * 2002-09-30 2004-04-22 Suzuko Seimitsu Kk Torque measuring instrument of rotor having inner ring and outer ring
JP2005010155A (en) * 2003-05-28 2005-01-13 Nsk Ltd Torque measuring device of ball screw

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205093A1 (en) * 2015-06-13 2016-12-22 Bruker Nano, Inc. Measurement of very low torque values
CN108351265A (en) * 2015-06-13 2018-07-31 布鲁克纳米公司 The measurement of extremely low torque value
EP3308119A4 (en) * 2015-06-13 2019-03-20 Bruker Nano, Inc. Measurement of very low torque values
CN108351265B (en) * 2015-06-13 2019-12-31 布鲁克纳米公司 Measurement of very low torque values
US10082178B2 (en) * 2016-06-29 2018-09-25 Aktiebolaget Skf Roller with integrated load cell
US10371206B2 (en) 2016-06-29 2019-08-06 Aktiebolaget Skf Sensorized roller
CN110631830A (en) * 2019-09-23 2019-12-31 清华大学 Radial rigidity measuring device for rolling bearing
RU218985U1 (en) * 2023-04-03 2023-06-21 Общество С Ограниченной Ответственностью Научно-Производственное Предприятие "Томская Электронная Компания" Torque measuring device

Also Published As

Publication number Publication date
JP2011191149A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JPWO2005112012A1 (en) Optical pickup and optical disk device
WO2011111550A1 (en) Torque measurement method for rolling bearing device, torque measurement device for rolling bearing device, torque measurement method for rolling bearing and torque measurement device for rolling bearing
TW410332B (en) Disk device
KR20010030264A (en) Magnetic head slider for flexible disc
JP5288545B2 (en) Manufacturing method of bearing device
JP2011154765A (en) Objective lens driving apparatus and optical pickup
JP5181343B2 (en) Bearing device and information recording / reproducing device
US8094415B2 (en) Disk drive suspension
JP2010054028A (en) Bearing device, method of manufacturing bearing device and information recording and reproducing device
JP3736250B2 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP4990808B2 (en) Arm support mechanism and information reproducing apparatus
JP5486826B2 (en) Bearing device and information recording / reproducing device
JP2011256989A (en) Bearing device and information recording/reproducing device
JP3477365B2 (en) Galvano mirror holding structure
US7023643B2 (en) Detecting transducer position precisely with a reusable sensor assembly
JP2000268485A (en) Information recording and reproducing device
JP3510775B2 (en) Galvano mirror
JP3510789B2 (en) Galvano mirror holding structure
US20070283376A1 (en) Disk apparatus
JP2001283506A (en) Method and device for evaluating mechanical driving characteristic of drive unit for storage medium disk
JP2003217249A (en) Disk mounting mechanism and disk device having this mechanism
JP2009199680A (en) Ramp mechanism and magnetic disk device
JP3764882B2 (en) Magnetic disk unit
JP2005025855A (en) Helical scan type magnetic tape controller
CN1851814A (en) Optical disk vertical deviation detecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004627

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 11753210

Country of ref document: EP

Kind code of ref document: A1