WO2011111456A1 - Current measurement device - Google Patents

Current measurement device Download PDF

Info

Publication number
WO2011111456A1
WO2011111456A1 PCT/JP2011/052658 JP2011052658W WO2011111456A1 WO 2011111456 A1 WO2011111456 A1 WO 2011111456A1 JP 2011052658 W JP2011052658 W JP 2011052658W WO 2011111456 A1 WO2011111456 A1 WO 2011111456A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
magnetic sensor
conductors
magnetic
current
Prior art date
Application number
PCT/JP2011/052658
Other languages
French (fr)
Japanese (ja)
Inventor
真司 三ツ谷
広行 蛇口
Original Assignee
アルプス・グリーンデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス・グリーンデバイス株式会社 filed Critical アルプス・グリーンデバイス株式会社
Publication of WO2011111456A1 publication Critical patent/WO2011111456A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications

Definitions

  • the present invention relates to a current measuring device that measures the current magnitude of a conductor, and more particularly to a current measuring device that measures the current magnitude of a predetermined conductor when a plurality of conductors are provided.
  • a motor In an electric vehicle, a motor is driven using electricity generated by an engine, and the magnitude of the current for driving the motor is detected by, for example, a current sensor.
  • a current sensor As this current sensor, a magnetic core having a notch (core gap) in part is disposed around a conductor, and a magnetic detection element is disposed in the core gap (Patent Document 1). .
  • a magnetic field proportional to the current to be measured passes through the core gap due to the lines of magnetic force generated in the magnetic core.
  • the magnetic detection element converts this magnetic field into a voltage signal, and an output voltage from the magnetic detection element is amplified by an amplifier circuit to generate an output voltage proportional to the current to be measured.
  • Patent Document 2 a current sensor that does not use a magnetic core has been proposed.
  • JP 2007-212306 A Japanese Patent Laid-Open No. 2006-112968
  • a magnetic sensor that detects a magnetic field generated when a current flows through a conductor is arranged near the conductor, but a plurality of conductors are provided close to the conductor through which the current to be measured flows.
  • the measurement accuracy of the magnetic sensor is lowered due to the influence of a magnetic field generated when a current flows through another conductor.
  • There is a method of installing a magnetic shield or the like in order to reduce the influence of the magnetic field from other conductors but there are problems that the design becomes difficult and the structure becomes complicated, leading to an increase in manufacturing cost.
  • the present invention has been made in view of such a point, and provides a current measuring device capable of measuring the magnitude of a current of a predetermined conductor with high accuracy even when it has a plurality of conductors.
  • a current measuring device capable of measuring the magnitude of a current of a predetermined conductor with high accuracy even when it has a plurality of conductors.
  • the current measuring device of the present invention has a plurality of conductors arranged side by side on the surface of a base material, and a magnetic sensor that measures a magnetic field generated when a current to be measured flows through the conductors, and measures the magnitude of the current.
  • the magnetic sensor has a magnetic field sensitivity selectively with respect to a direction parallel to the surface of the base material, and the sensor to be measured by the magnetic sensor among a plurality of conductors in plan view of the base material. It is provided so as to overlap above or below the measurement conductor, and the other conductor among the plurality of conductors is provided at a position where the direction of the magnetic field generated by the other conductor is insensitive to the magnetic sensor. Yes.
  • the dead direction is preferably a direction substantially perpendicular to the surface of the substrate.
  • the magnetic sensor is provided below the conductor to be measured, and the height of the other conductor with respect to the base material surface is equal to or higher than the height of the lower surface of the magnetic sensor. Or less.
  • the magnetic sensor is provided above the conductor to be measured, and the height of the other conductor with respect to the surface of the base material is higher than the height of the conductor to be specified. Or less.
  • the height of the other conductor with respect to the surface of the substrate is substantially equal to the height of the magnetic sensor.
  • a magnetic sensor for measuring a magnetic field generated when a current to be measured flows through another conductor is also provided above or below the other conductor.
  • the magnetic sensors respectively provided above or below the plurality of conductors are provided with their positions shifted along the extending direction of the plurality of conductors, and perpendicular to the extending direction of the plurality of conductors. In this direction, it is preferable that the height of the magnetic sensor is substantially equal to the height of the conductor adjacent to the magnetic sensor.
  • the conductor to be measured and the magnetic sensor are provided close to each other.
  • the magnetic sensor is preferably a GMR element.
  • the magnetic sensor is provided so as to be superimposed above or below the conductor to be measured, and the direction of the magnetic field generated in the magnetic sensor when the current flows through the other conductor is determined by the magnetic sensor.
  • the current value of the conductor to be measured can be measured with high accuracy even when there are a plurality of conductors.
  • FIG. 1 The current measuring apparatus shown in FIG. 1 measures a plurality of conductors 101a to 101c arranged in parallel on the surface of the same base material 100, and a predetermined conductor (here, the conductor 101a) among the plurality of conductors 101a to 101c. And a magnetic sensor 102 that measures a magnetic field generated when a current flows, and measures the magnitude of the current based on the resistance value of the magnetic sensor 102.
  • FIG. 1A shows the current measuring device on the surface side (plan view) of the substrate 100
  • FIG. 1B shows a cross section between A 1 and B 1 in FIG. 1C shows a cross section between A 2 and B 2 in FIG. 1A.
  • the magnetic sensor 102 has a magnetic field sensitivity selectively in at least one direction and does not have a magnetic field sensitivity in another direction different from the one direction or has a very low magnetic field sensitivity. Then, the conductor 101a is provided so that the direction of the magnetic field generated when the current to be measured flows through the conductor (conductor 101a) to be measured becomes the sensitivity direction (one direction) in the magnetic sensor 102, and other conductors (conductors) The conductors 101b and 101c are provided so that the direction of the magnetic field generated when a current flows through the current sensor 101b and 101c is in the insensitive direction (another direction) in the magnetic sensor 102.
  • the magnetic sensor 102 has the highest (selectively) magnetic field sensitivity in the direction parallel to the surface of the substrate 100 and the lowest magnetic field sensitivity in the direction perpendicular to the surface of the substrate 100.
  • the magnetic sensor which has can be used.
  • a GMR (Giant Magnetoresistivity) element, an AMR (An-isotropic Magnetoresistance) element, or the like can be applied.
  • a spin valve type GMR element constituted by a multilayer film having an antiferromagnetic layer, a pinned magnetic layer (pinned layer), a nonmagnetic layer, and a free magnetic layer on the substrate 100 can be used.
  • a silicon substrate, a glass substrate, or the like can be used as the base material 100.
  • a substrate in which an insulating film such as silicon oxide is formed over these substrates may be used.
  • the conductors 101a to 101c aluminum, copper, gold or the like can be used.
  • the conductors 101a to 101c can be formed on the GMR element by plating, sputtering, vapor deposition, or the like.
  • the magnetic sensor 102 When the magnetic sensor 102 has a magnetic field sensitivity selectively in a direction parallel to the surface of the base material 100, the magnetic sensor 102 is measured by the magnetic sensor 102 among the plurality of conductors 101a to 101c in a plan view of the base material 100. Is provided so as to overlap above or below the conductor for measurement 101a in which the measurement is performed (the conductor for measurement 101a and the magnetic sensor 102 overlap in plan view). Thereby, the direction of the magnetic field generated in the magnetic sensor 102 when the current to be measured flows through the conductor 101a is set to be parallel to the surface of the substrate 100 (the direction in which the magnetic sensor 102 has the highest magnetic field sensitivity). it can.
  • the conductor 101a and the magnetic sensor 102 as close as possible, the magnetic field generated in the magnetic sensor 102 when the current to be measured flows through the conductor 101a can be strengthened, so the conductor 101a and the magnetic sensor 102 are close to each other. It is preferable.
  • an insulating film can be formed between the conductor 101a and the magnetic sensor 102.
  • the current is generated in the magnetic sensor 102 when a current flows through the other conductors.
  • Another conductor is provided so that the direction of the magnetic field is insensitive to the magnetic sensor 102.
  • the dead direction here refers to a direction substantially perpendicular to the surface of the substrate 100.
  • the direction of the magnetic field generated when a current flows through the conductor may be a concentric magnetic field centered on the conductor.
  • the heights of the other conductors 101b and 101c with respect to the surface of the substrate 100 are set as follows. It is preferable that the height be equal to or higher than the lower surface of the magnetic sensor 102 and equal to or lower than the height of the conductor 101a.
  • the heights of the other conductors 101b and 101c with respect to the surface of the base material 100 are equal to or higher than the height of the conductor 101a. In this case, it is preferable that the height of the upper surface of the magnetic sensor 102 is equal to or less than the height.
  • the heights of the other conductors 101b and 101c are preferably substantially equal to that of the magnetic sensor 102.
  • what is necessary is just to consider the height of a conductor here on the basis of the center part of the conductor in a height direction.
  • the first conductor 101a and the second conductor 101b are provided in parallel to the horizontal direction of the paper with respect to the magnetic sensor 102 whose sensitivity direction is the downward direction of the paper (Configuration 1). ),
  • the distance between the first conductor 101a and the magnetic sensor 102 is 1 mm
  • the distance between the second conductor 101b and the magnetic sensor 102 is 11 mm
  • the current flowing through the first conductor 101a and the second conductor 101b is the same value.
  • the first conductor 101a is disposed so as to overlap the magnetic sensor 102 whose sensitivity direction is the horizontal direction on the paper surface, and the second conductor 101b is the first conductor 101a.
  • the first conductor 101a and the magnetic sensor 102 have a distance of 1 mm, and the second conductor 101b and the first conductor 101a have a distance of 10 mm.
  • the magnetic field Ba of the first conductor 101a and the magnetic field Bb of the second conductor 101b in the magnetic sensor 102 are as follows.
  • the magnetic field Bb generated by the second conductor 101b in the magnetic sensor 102 is obtained for the sensitivity direction component of the magnetic sensor 102.
  • the first conductor 101a is disposed so as to overlap the magnetic sensor 102 whose sensitivity direction is the horizontal direction on the paper surface, and the second conductor 101b is disposed on the paper surface with the magnetic sensor 102.
  • the distance between the first conductor 101a and the magnetic sensor 102 is 1 mm
  • the distance between the second conductor 101b and the magnetic sensor 102 is 10 mm
  • the first conductor 101a and the second conductor 101 are as follows.
  • the noise in the magnetic sensor 102 is 0% of the signal.
  • the relationship described above can also be applied when a conductor and a magnetic sensor are provided on a substrate.
  • the distance between the magnetic sensor 102 and the conductors 101a and 101b is changed as shown in FIGS. 8A and 8B in the configurations 2 and 3, the same as in FIG. Can think. Therefore, when the magnetic sensor 102 is provided above the conductor to be measured (conductor 101a), the height of the other conductors 101b and 101c with respect to the surface of the base material 100 is equal to or higher than the height of the conductor 101a.
  • the magnetic sensor 102 is provided so as to overlap above or below the conductor for measurement 101a in a plan view of the base material 100, and the current flows in the other conductors 101b and 101c.
  • the other conductors 101b and 101c so that the direction of the generated magnetic field becomes the insensitive direction of the magnetic sensor 102, the current value of the conductor to be measured can be measured with high accuracy even when there are a plurality of conductors. be able to.
  • FIG. 1 illustrates the case where a conductor having a circular cross section is used as the conductors 101a to 101c.
  • the present invention can be similarly applied to a case where a conductor having another shape such as a rectangular cross section is used.
  • 1 shows the case where the widths of the conductors 101a to 101c are formed smaller than the width of the magnetic sensor 102, the widths of the conductors 101a to 101c may be formed larger than the width of the magnetic sensor 102.
  • FIG. 1 shows a case where three conductors (conductors 101a to 101c) are provided as a plurality of conductors, but the present invention can be similarly applied to the case where four or more conductors are used.
  • a plurality of conductors are provided on the substrate 100, it is not always necessary that all conductors satisfy the above-described conditions for the positions where other conductors are provided. What is necessary is to consider a conductor that generates an influencing magnetic field.
  • the present invention is not limited to this, and another direction (for example, on the surface of the base material 100).
  • a magnetic sensor having magnetic field sensitivity in the vertical direction) may be used.
  • the conductor to be measured is provided so that the magnetic field due to the conductor to be measured is in the sensitivity direction of the magnetic sensor 102 (the direction perpendicular to the surface of the substrate 100), and the magnetic field due to the other conductor is the magnetic sensor 102.
  • the conductors 101b and 101c are provided so as to be in the insensitive direction (direction parallel to the surface of the substrate 100).
  • the current measuring apparatus shown in FIG. 2 is generated when a current to be measured flows through a plurality of conductors 101a to 101c formed side by side (arranged) on the surface of the substrate 100 and the plurality of conductors 101a to 101c.
  • the magnetic sensors 102a to 102c for measuring the magnetic fields are respectively measured, and the currents of the conductors 101a to 101c are measured based on the resistance values of the magnetic sensors 102a to 102c.
  • FIG. 2 (A) shows the current measuring device on the surface side (plan view) of the substrate 100
  • FIG. 2 (B) shows a cross section between A 1 and B 1 in FIG. 2C shows a cross section between A 2 and B 2 in FIG. 2A.
  • the magnetic sensors 102a to 102c are provided so as to overlap with or below the conductors 101a to 101c, respectively, in a plan view of the base material 100, whereby the conductors 101a to 101c are measured.
  • the direction of the magnetic field generated in each of the magnetic sensors 102a to 102c when the working current flows can be the direction having the highest magnetic field sensitivity in each of the magnetic sensors 102a to 102c.
  • the magnetic field generated in the magnetic sensors 102a to 102c when current flows through the other adjacent conductors are provided so that the direction is insensitive to the magnetic sensors 102a to 102c.
  • the conductors 101a to 101c are provided at substantially the same height, and the magnetic sensors 102a to 102c are provided at substantially the same height.
  • the measurement is performed above or below the conductor to be measured.
  • the magnetic field from the adjacent conductor can be made insensitive, and the current flowing through the plurality of conductors can be measured at once and can be measured with high accuracy.
  • FIG. 2 shows the case where the plurality of magnetic sensors 102a to 102c are provided so that their positions are aligned in a predetermined direction (the extending direction of the conductors 101a to 101c). However, as shown in FIG. A plurality of magnetic sensors 102a to 102c can also be provided by shifting the position along the extending direction of 101c.
  • the magnetic sensors 102a to 102c are respectively provided below the conductors 101a to 101c, the magnetic sensors (for example, the magnetic sensor 102a) are arranged in a direction perpendicular to the extending direction of the plurality of conductors 101a to 101c. Since the height and the height of the conductor adjacent to the magnetic sensor 102a (for example, the conductors 102a and 102c) are approximately equal, the direction of the magnetic field generated in the magnetic sensor 102a when a current flows through the other conductors 101b and 101c, The direction perpendicular to the surface of the substrate 100 (the direction in which the magnetic sensor 102 has the lowest magnetic field sensitivity) can be effectively obtained. Further, compared with the structure shown in FIG. 2, the positions of the plurality of magnetic sensors 102a to 102c are shifted along the extending direction of the plurality of conductors 101a to 101c, so that the distance between the conductors 101a to 101c is reduced. can do.
  • the current measuring device shown in this embodiment can be formed as one chip by forming a plurality of GMR elements as a magnetic sensor on the substrate 100 and forming a conductor on the GMR element by plating or the like. it can. By mounting this chip on an IC or the like and connecting a magnetic sensor and a conductor to a terminal, a current measuring device capable of measuring a current at a desired location can be obtained.
  • Modification 1 A structure having a plurality of conductors 101a to 101c arranged in parallel on the surface of the substrate 100 and magnetic sensors 102a to 102c for measuring magnetic fields generated when a current to be measured flows through the plurality of conductors 101a to 101c ( 2) may be provided as shown in FIG.
  • FIG. 4 shows a case where a plurality of conductors 101a to 101c and magnetic sensors 102a to 102c are formed on the surface of the base material 100.
  • the magnetic sensor 102a is provided between the conductors 101a formed separately on the substrate 100, and the conductors 101a formed separately are electrically connected via the conductor rod 103a.
  • the conductor rod 103a can be bent so as to be disposed above the magnetic sensor 102a.
  • the magnetic sensors 102b and 102c are respectively provided between the conductors 101b and 101c formed separately on the base material 100, and the conductors 101b and 101c formed separately via the conductor rods 103b and 103c. Are each electrically connected.
  • a plurality of magnetic sensors 102a to 102c can be provided by shifting the position of the structure shown in FIG. 4 along the extending direction of the plurality of conductors 101a to 101c (FIG. 5). reference).
  • a recess may be provided in the conductor 101 without using the base material, and the magnetic sensor 102 may be provided in the recess (see FIG. 6).
  • the current measuring device can be provided by the conductor 101 and the magnetic sensor 102 without using the base material.
  • a plurality of conductors having recesses can be provided side by side, and magnetic sensors can be provided in the recesses of the plurality of conductors, respectively.
  • the present invention is not limited to the first and second embodiments, and can be implemented with various modifications.
  • the materials, the arrangement position, the thickness, the size, the manufacturing method, and the like of the current sensor in the first and second embodiments can be changed as appropriate.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
  • the present invention can be applied to a current sensor that detects the magnitude of a current for driving a motor of an electric vehicle.

Abstract

Disclosed is a current measurement device that can highly accurately measure the magnitude of current in a predetermined conductor even if there is a plurality of conductors. The current measurement device that measures the magnitude of current has a plurality of conductors aligned on the surface of a substrate and has a magnetic sensor that measures the magnetic field generated when measured current flows through the conductors; the magnetic sensor has a selective level of sensitivity to magnetic fields with respect to a direction parallel to the surface of the substrate and is provided, in a plan view, superimposed above or below the measured conductor that the magnetic sensor measures out of the plurality of conductors; and the other conductors among the plurality of conductors are provided at positions such that that directions of the magnetic fields generated by the other conductors are in directions that the magnetic sensor is not sensitive to.

Description

電流測定装置Current measuring device
 本発明は、導体の電流の大きさを測定する電流測定装置に関し、特に、複数の導体を有する場合に所定の導体の電流の大きさを測定する電流測定装置に関する。 The present invention relates to a current measuring device that measures the current magnitude of a conductor, and more particularly to a current measuring device that measures the current magnitude of a predetermined conductor when a plurality of conductors are provided.
 電気自動車においては、エンジンで発電した電気を用いてモータを駆動しており、このモータ駆動用の電流の大きさは、例えば電流センサにより検出される。この電流センサとしては、導体の周囲に、一部に切り欠き(コアギャップ)を有する磁性体コアを配置し、このコアギャップ内に磁気検出素子を配置してなるものである(特許文献1)。この電流センサにおいては、磁性体コアの中に生じた磁力線によりコアギャップに被測定電流に比例した磁界が通る。磁気検出素子がこの磁界を電圧信号に変換し、この磁気検出素子からの出力電圧を増幅回路にて増幅し、被測定電流に比例した出力電圧を発生する。 In an electric vehicle, a motor is driven using electricity generated by an engine, and the magnitude of the current for driving the motor is detected by, for example, a current sensor. As this current sensor, a magnetic core having a notch (core gap) in part is disposed around a conductor, and a magnetic detection element is disposed in the core gap (Patent Document 1). . In this current sensor, a magnetic field proportional to the current to be measured passes through the core gap due to the lines of magnetic force generated in the magnetic core. The magnetic detection element converts this magnetic field into a voltage signal, and an output voltage from the magnetic detection element is amplified by an amplifier circuit to generate an output voltage proportional to the current to be measured.
 近年、電気自動車の大出力化・高性能化に伴って、取り扱う電流値が大きくなってきており、そのため大電流時の磁気飽和を回避する必要がある。磁気飽和を回避するためには磁性体コアを大きくする必要があるが、磁性体コアを大きくすると電流センサ自体が大型化するという問題がある。このような磁性体コアを用いた電流センサの課題を解決するために、磁性体コアを用いない電流センサが提案されている(特許文献2)。 In recent years, with the increase in output and performance of electric vehicles, the current value handled has increased, and therefore it is necessary to avoid magnetic saturation at high currents. In order to avoid magnetic saturation, it is necessary to enlarge the magnetic core, but if the magnetic core is enlarged, there is a problem that the current sensor itself is enlarged. In order to solve the problem of such a current sensor using a magnetic core, a current sensor that does not use a magnetic core has been proposed (Patent Document 2).
特開2007-212306号公報JP 2007-212306 A 特開2006-112968号公報Japanese Patent Laid-Open No. 2006-112968
 磁性体コアを用いない構造においては、導体に電流が流れることにより発生する磁場を検出する磁気センサを当該導体の近くに配置するが、被測定電流が流れる導体に近接して複数の導体を設ける場合には、他の導体に電流が流れる際に生じる磁界の影響で磁気センサの測定精度が低下する問題がある。他の導体からの磁界の影響を低減するために磁気シールド等を設置する方法があるが、設計が難しくなると共に構造が複雑化し、製造コストの増大を招く問題がある。 In a structure that does not use a magnetic core, a magnetic sensor that detects a magnetic field generated when a current flows through a conductor is arranged near the conductor, but a plurality of conductors are provided close to the conductor through which the current to be measured flows. In this case, there is a problem that the measurement accuracy of the magnetic sensor is lowered due to the influence of a magnetic field generated when a current flows through another conductor. There is a method of installing a magnetic shield or the like in order to reduce the influence of the magnetic field from other conductors, but there are problems that the design becomes difficult and the structure becomes complicated, leading to an increase in manufacturing cost.
 本発明はかかる点に鑑みてなされたものであり、複数の導体を有する場合であっても、所定の導体の電流の大きさを高精度で測定することができる電流測定装置を提供することを目的の一とする。 The present invention has been made in view of such a point, and provides a current measuring device capable of measuring the magnitude of a current of a predetermined conductor with high accuracy even when it has a plurality of conductors. One purpose.
 本発明の電流測定装置は、基材の表面に並設した複数の導体と、導体に被測定電流が流れたときに発生する磁界を測定する磁気センサとを有し、電流の大きさを測定する電流測定装置であって、磁気センサは、基材の表面と平行な方向に対して選択的に磁場感度を有し、且つ基材の平面視において複数の導体のうち磁気センサが測定する被測定用導体の上方又は下方に重畳して設けられ、複数の導体のうち他の導体は、他の導体により生じる磁界の方向が磁気センサにおいて不感方向となる位置に設けられていることを特徴としている。 The current measuring device of the present invention has a plurality of conductors arranged side by side on the surface of a base material, and a magnetic sensor that measures a magnetic field generated when a current to be measured flows through the conductors, and measures the magnitude of the current. The magnetic sensor has a magnetic field sensitivity selectively with respect to a direction parallel to the surface of the base material, and the sensor to be measured by the magnetic sensor among a plurality of conductors in plan view of the base material. It is provided so as to overlap above or below the measurement conductor, and the other conductor among the plurality of conductors is provided at a position where the direction of the magnetic field generated by the other conductor is insensitive to the magnetic sensor. Yes.
 本発明の電流測定装置において、不感方向は、基材の表面に概略垂直な方向であることが好ましい。 In the current measuring device of the present invention, the dead direction is preferably a direction substantially perpendicular to the surface of the substrate.
 本発明の電流測定装置において、磁気センサが被測定用導体の下方に設けられ、基材表面を基準とした他の導体の高さが、磁気センサの下面の高さ以上被特定用導体の高さ以下であることが好ましい。 In the current measuring device according to the present invention, the magnetic sensor is provided below the conductor to be measured, and the height of the other conductor with respect to the base material surface is equal to or higher than the height of the lower surface of the magnetic sensor. Or less.
 本発明の電流測定装置において、磁気センサが被測定用導体の上方に設けられ、基材表面を基準とした他の導体の高さが、被特定用導体の高さ以上磁気センサの上面の高さ以下であることが好ましい。 In the current measuring device of the present invention, the magnetic sensor is provided above the conductor to be measured, and the height of the other conductor with respect to the surface of the base material is higher than the height of the conductor to be specified. Or less.
 本発明の電流測定装置において、基材表面を基準とした他の導体の高さが、磁気センサの高さと概略等しいことが好ましい。 In the current measuring device of the present invention, it is preferable that the height of the other conductor with respect to the surface of the substrate is substantially equal to the height of the magnetic sensor.
 本発明の電流測定装置において、他の導体の上方又は下方にも他の導体に被測定電流が流れたときに発生する磁界を測定する磁気センサがそれぞれ設けられていることが好ましい。 In the current measuring apparatus of the present invention, it is preferable that a magnetic sensor for measuring a magnetic field generated when a current to be measured flows through another conductor is also provided above or below the other conductor.
 本発明の電流測定装置において、複数の導体の上方又は下方にそれぞれ設けられた磁気センサが、複数の導体の延在方向に沿って位置をずらして設けられ、複数の導体の延在方向と垂直な方向において、磁気センサの高さと磁気センサと隣接する導体の高さが概略等しいことが好ましい。 In the current measuring device according to the present invention, the magnetic sensors respectively provided above or below the plurality of conductors are provided with their positions shifted along the extending direction of the plurality of conductors, and perpendicular to the extending direction of the plurality of conductors. In this direction, it is preferable that the height of the magnetic sensor is substantially equal to the height of the conductor adjacent to the magnetic sensor.
 本発明の電流測定装置において、被測定用導体と磁気センサが近接して設けられていることが好ましい。 In the current measuring device of the present invention, it is preferable that the conductor to be measured and the magnetic sensor are provided close to each other.
 本発明の電流測定装置において、磁気センサがGMR素子であることが好ましい。 In the current measuring device of the present invention, the magnetic sensor is preferably a GMR element.
 本発明の電流測定装置によれば、磁気センサを被測定用導体の上方又は下方に重畳するように設け、且つ他の導体に電流が流れた際に磁気センサにおいて生じる磁界の方向が、磁気センサの不感方向となるように他の導体を設けることにより、複数の導体を有する場合であっても被測定用導体の電流値を高い精度で測定することができる。 According to the current measuring device of the present invention, the magnetic sensor is provided so as to be superimposed above or below the conductor to be measured, and the direction of the magnetic field generated in the magnetic sensor when the current flows through the other conductor is determined by the magnetic sensor. By providing another conductor so as to be in the insensitive direction, the current value of the conductor to be measured can be measured with high accuracy even when there are a plurality of conductors.
本発明の実施の形態に係る電流測定装置の一例を示す図である。It is a figure which shows an example of the electric current measurement apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電流測定装置の一例を示す図である。It is a figure which shows an example of the electric current measurement apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電流測定装置の一例を示す図である。It is a figure which shows an example of the electric current measurement apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電流測定装置の変形例を示す図である。It is a figure which shows the modification of the electric current measurement apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電流測定装置の変形例を示す図である。It is a figure which shows the modification of the electric current measurement apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る電流測定装置の変形例を示す図である。It is a figure which shows the modification of the electric current measurement apparatus which concerns on embodiment of this invention. 磁気センサに対する複数の導電体の位置を変化させた場合に、磁気センサで発生する磁界について説明する図である。It is a figure explaining the magnetic field which a magnetic sensor generate | occur | produces when the position of the several conductor with respect to a magnetic sensor is changed. 磁気センサに対する複数の導電体の位置を変化させた場合に、磁気センサで発生する磁界について説明する図である。It is a figure explaining the magnetic field which a magnetic sensor generate | occur | produces when the position of the several conductor with respect to a magnetic sensor is changed.
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(実施の形態1)
 図1に示す電流測定装置は、同じ基材100の表面上に並設された複数の導体101a~101cと、複数の導体101a~101cのうち所定の導体(ここでは、導体101a)に被測定電流が流れたときに発生する磁界を測定する磁気センサ102とを有し、当該磁気センサ102の抵抗値に基づいて電流の大きさを測定する。なお、図1において、図1(A)は電流測定装置を基材100の表面側(平面視)を示し、図1(B)は図1(A)のA-B間の断面(断面視)を示し、図1(C)は図1(A)のA-B間の断面を示している。
(Embodiment 1)
The current measuring apparatus shown in FIG. 1 measures a plurality of conductors 101a to 101c arranged in parallel on the surface of the same base material 100, and a predetermined conductor (here, the conductor 101a) among the plurality of conductors 101a to 101c. And a magnetic sensor 102 that measures a magnetic field generated when a current flows, and measures the magnitude of the current based on the resistance value of the magnetic sensor 102. In FIG. 1, FIG. 1A shows the current measuring device on the surface side (plan view) of the substrate 100, and FIG. 1B shows a cross section between A 1 and B 1 in FIG. 1C shows a cross section between A 2 and B 2 in FIG. 1A.
 磁気センサ102は、少なくともある一方向に対して選択的に磁場感度を有し、当該一方向と異なる他の一方向に対して磁場感度を有さない又は非常に磁場感度が低いものを用いる。そして、測定したい導体(導体101a)に被測定電流が流れたときに発生する磁界の方向が、磁気センサ102において感度方向(ある一方向)となるように導体101aを設け、その他の導体(導体101b、101c)に電流が流れたときに発生する磁界の方向が、磁気センサ102において不感方向(他の一方向)となるように導体101b、101cを設ける。 The magnetic sensor 102 has a magnetic field sensitivity selectively in at least one direction and does not have a magnetic field sensitivity in another direction different from the one direction or has a very low magnetic field sensitivity. Then, the conductor 101a is provided so that the direction of the magnetic field generated when the current to be measured flows through the conductor (conductor 101a) to be measured becomes the sensitivity direction (one direction) in the magnetic sensor 102, and other conductors (conductors) The conductors 101b and 101c are provided so that the direction of the magnetic field generated when a current flows through the current sensor 101b and 101c is in the insensitive direction (another direction) in the magnetic sensor 102.
 例えば、磁気センサ102として、基材100の表面と平行な方向に対して最も高い(選択的に)磁場感度を有し、且つ基材100の表面と垂直な方向に対して最も低い磁場感度を有する磁気センサを用いることができる。このような磁気センサとして、GMR(Giant Magnetoresistance)素子、AMR(An-isotropic Magnetoresistance)素子等を適用することができる。 For example, the magnetic sensor 102 has the highest (selectively) magnetic field sensitivity in the direction parallel to the surface of the substrate 100 and the lowest magnetic field sensitivity in the direction perpendicular to the surface of the substrate 100. The magnetic sensor which has can be used. As such a magnetic sensor, a GMR (Giant Magnetoresistivity) element, an AMR (An-isotropic Magnetoresistance) element, or the like can be applied.
 GMR素子は、基材100上に反強磁性層、固定磁性層(ピンド層)、非磁性層、フリー磁性層を有する多層膜で構成されるスピンバルブ型GMR素子を用いることができる。 As the GMR element, a spin valve type GMR element constituted by a multilayer film having an antiferromagnetic layer, a pinned magnetic layer (pinned layer), a nonmagnetic layer, and a free magnetic layer on the substrate 100 can be used.
 基材100としては、シリコン基板、ガラス基板等を用いることができる。また、これらの基板上に酸化シリコン等の絶縁膜を形成した基板を用いてもよい。 As the base material 100, a silicon substrate, a glass substrate, or the like can be used. Alternatively, a substrate in which an insulating film such as silicon oxide is formed over these substrates may be used.
 導体101a~101cとしては、アルミニウム、銅、金等を用いることができる。例えば、基材100上にGMR素子を形成した後、当該GMR素子上にめっき、スパッタ、蒸着等により導体101a~101cを形成することができる。 As the conductors 101a to 101c, aluminum, copper, gold or the like can be used. For example, after the GMR element is formed on the substrate 100, the conductors 101a to 101c can be formed on the GMR element by plating, sputtering, vapor deposition, or the like.
 磁気センサ102が基材100の表面と平行な方向に対して選択的に磁場感度を有する場合、基材100の平面視において磁気センサ102を複数の導体101a~101cのうち当該磁気センサ102により測定が行われる被測定用導体101aの上方又は下方に重畳する(被測定用導体101aと磁気センサ102とが平面視においてオーバーラップする)ように設ける。これにより、導体101aに被測定電流が流れた際に磁気センサ102において生じる磁界の方向が、基材100の表面と平行な方向(磁気センサ102が最も高い磁場感度を有する方向)とすることができる。特に、導体101aと磁気センサ102を出来るだけ近づけて設けることにより、導体101aに被測定電流が流れた際に磁気センサ102において生じる磁界を強くすることができるため、導体101aと磁気センサ102が近接していることが好ましい。導体101aと磁気センサ102を近接させて設ける場合には、導体101aと磁気センサ102の間に絶縁膜を形成することができる。 When the magnetic sensor 102 has a magnetic field sensitivity selectively in a direction parallel to the surface of the base material 100, the magnetic sensor 102 is measured by the magnetic sensor 102 among the plurality of conductors 101a to 101c in a plan view of the base material 100. Is provided so as to overlap above or below the conductor for measurement 101a in which the measurement is performed (the conductor for measurement 101a and the magnetic sensor 102 overlap in plan view). Thereby, the direction of the magnetic field generated in the magnetic sensor 102 when the current to be measured flows through the conductor 101a is set to be parallel to the surface of the substrate 100 (the direction in which the magnetic sensor 102 has the highest magnetic field sensitivity). it can. In particular, by providing the conductor 101a and the magnetic sensor 102 as close as possible, the magnetic field generated in the magnetic sensor 102 when the current to be measured flows through the conductor 101a can be strengthened, so the conductor 101a and the magnetic sensor 102 are close to each other. It is preferable. When the conductor 101a and the magnetic sensor 102 are provided close to each other, an insulating film can be formed between the conductor 101a and the magnetic sensor 102.
 一方で、導体101a以外の他の導体(導体101b、101c)から生じる磁界が磁気センサ102での測定に及ぼす影響を抑制するために、他の導体に電流が流れた際に磁気センサ102において生じる磁界の方向が、磁気センサ102の不感方向となるように他の導体を設ける。なお、ここでいう不感方向は、基材100の表面と概略垂直な方向をいう。また、導体に電流が流れた際に生じる磁界の方向は、導体を中心とした同心円状の磁界を考えればよい。 On the other hand, in order to suppress the influence of the magnetic field generated from other conductors ( conductors 101b and 101c) other than the conductor 101a on the measurement by the magnetic sensor 102, the current is generated in the magnetic sensor 102 when a current flows through the other conductors. Another conductor is provided so that the direction of the magnetic field is insensitive to the magnetic sensor 102. The dead direction here refers to a direction substantially perpendicular to the surface of the substrate 100. The direction of the magnetic field generated when a current flows through the conductor may be a concentric magnetic field centered on the conductor.
 次に、他の導体に電流が流れた際に生じる磁界を磁気センサ102に対して基板100の表面と概略垂直な方向から入射させるための具体的な構成について説明する。 Next, a specific configuration for causing a magnetic field generated when a current flows through another conductor to enter the magnetic sensor 102 from a direction substantially perpendicular to the surface of the substrate 100 will be described.
 磁気センサ102が被測定用導体(導体101a)の下方に設けられている場合(図1(C)参照)には、基材100表面を基準とした他の導体101b、101cの高さを、磁気センサ102の下面の高さ以上であって、導体101aの高さ以下にすることが好ましい。また、磁気センサ102が被測定用導体(導体101a)の上方に設けられている場合には、基材100表面を基準とした他の導体101b、101cの高さを、導体101aの高さ以上であって、磁気センサ102の上面の高さ以下とすることが好ましい。より好ましくは、他の導体101b、101cの高さを、磁気センサ102と概略等しくすることが好ましい。なお、ここでいう導体の高さは、高さ方向における導体の中央部を基準として考慮すればよい。 When the magnetic sensor 102 is provided below the conductor to be measured (conductor 101a) (see FIG. 1C), the heights of the other conductors 101b and 101c with respect to the surface of the substrate 100 are set as follows. It is preferable that the height be equal to or higher than the lower surface of the magnetic sensor 102 and equal to or lower than the height of the conductor 101a. When the magnetic sensor 102 is provided above the conductor to be measured (conductor 101a), the heights of the other conductors 101b and 101c with respect to the surface of the base material 100 are equal to or higher than the height of the conductor 101a. In this case, it is preferable that the height of the upper surface of the magnetic sensor 102 is equal to or less than the height. More preferably, the heights of the other conductors 101b and 101c are preferably substantially equal to that of the magnetic sensor 102. In addition, what is necessary is just to consider the height of a conductor here on the basis of the center part of the conductor in a height direction.
 他の導体101b、101cの高さを上述した範囲に設けることにより、他の導体に電流が流れた際に生じる磁界を磁気センサに対して基材100の表面と概略垂直な方向(磁気センサ102が最も低い磁場感度を有する方向)から入射させることができる。 By providing the heights of the other conductors 101b and 101c in the above-described range, a magnetic field generated when a current flows through the other conductors in a direction substantially perpendicular to the surface of the substrate 100 with respect to the magnetic sensor (the magnetic sensor 102). From the direction having the lowest magnetic field sensitivity).
 以下に、磁気センサ102と導体101a、102bとの位置関係を上述した構成とする場合の効果について図面を参照して説明する。 Hereinafter, the effect when the positional relationship between the magnetic sensor 102 and the conductors 101a and 102b has the above-described configuration will be described with reference to the drawings.
 まず、図7(A)に示すように、感度方向が紙面下方向である磁気センサ102に対して、第1の導体101aと第2の導体101bが紙面横方向に平行に設けられ(構成1)、第1の導体101aと磁気センサ102の距離が1mm、第2の導体101bと磁気センサ102の距離が11mmであり、第1の導体101aと第2の導体101bに流れる電流が同じ値・同じ方向であると仮定すると、磁気センサ102における第1の導体101aの磁界Baと第2の導体101bの磁界Bbは以下のようになる。なお、ある場所から距離R離れた導体から発生する磁界は「B=α/2πR」で規定され、距離Rに反比例する。 First, as shown in FIG. 7A, the first conductor 101a and the second conductor 101b are provided in parallel to the horizontal direction of the paper with respect to the magnetic sensor 102 whose sensitivity direction is the downward direction of the paper (Configuration 1). ), The distance between the first conductor 101a and the magnetic sensor 102 is 1 mm, the distance between the second conductor 101b and the magnetic sensor 102 is 11 mm, and the current flowing through the first conductor 101a and the second conductor 101b is the same value. Assuming that the directions are the same, the magnetic field Ba of the first conductor 101a and the magnetic field Bb of the second conductor 101b in the magnetic sensor 102 are as follows. Note that a magnetic field generated from a conductor at a distance R from a certain place is defined by “B = α / 2πR” and is inversely proportional to the distance R.
 Ba=α/2π
 Bb=α/22π
Ba = α / 2π
Bb = α / 22π
 この場合、Ba:Bb=11:1となり、磁気センサ102におけるノイズは信号の9%もの大きさとなる。 In this case, Ba: Bb = 11: 1, and the noise in the magnetic sensor 102 is as large as 9% of the signal.
 図7(B)に示すように、感度方向が紙面横方向である磁気センサ102に対して、第1の導体101aが上方に重畳して配置され、第2の導体101bが第1の導体101aと紙面横方向に平行に設けられ(構成2)、第1の導体101aと磁気センサ102の距離が1mm、第2の導体101bと第1の導体101aの距離が10mmであり、第1の導体101aと第2の導体101bに流れる電流が同じ値・同じ方向であると仮定すると、磁気センサ102における第1の導体101aの磁界Baと第2の導体101bの磁界Bbは以下のようになる。なお、磁気センサ102における第2の導体101bで発生する磁界Bbは、磁気センサ102の感度方向成分について求めている。 As shown in FIG. 7B, the first conductor 101a is disposed so as to overlap the magnetic sensor 102 whose sensitivity direction is the horizontal direction on the paper surface, and the second conductor 101b is the first conductor 101a. The first conductor 101a and the magnetic sensor 102 have a distance of 1 mm, and the second conductor 101b and the first conductor 101a have a distance of 10 mm. Assuming that the currents flowing through 101a and the second conductor 101b have the same value and the same direction, the magnetic field Ba of the first conductor 101a and the magnetic field Bb of the second conductor 101b in the magnetic sensor 102 are as follows. The magnetic field Bb generated by the second conductor 101b in the magnetic sensor 102 is obtained for the sensitivity direction component of the magnetic sensor 102.
 Ba=α/2π
 Bb=α/2π(√101)×sinθ=α/(2π×101)=α/202π
Ba = α / 2π
Bb = α / 2π (√101) × sin θ = α / (2π × 101) = α / 202π
 この場合、Ba:Bb=101:1となり、磁気センサ102におけるノイズは信号の0.99%の大きさに減少する。 In this case, Ba: Bb = 101: 1, and the noise in the magnetic sensor 102 is reduced to 0.99% of the signal.
 図7(C)に示すように、感度方向が紙面横方向である磁気センサ102に対して、第1の導体101aが上方に重畳して配置され、第2の導体101bが磁気センサ102と紙面横方向に平行に設けられ(構成3)、第1の導体101aと磁気センサ102の距離が1mm、第2の導体101bと磁気センサ102の距離が10mmであり、第1の導体101aと第2の導体101bに流れる電流が同じ値・同じ方向であると仮定すると、磁気センサ102における第1の導体101aの磁界Baと第2の導体101bの磁界Bbは以下のようになる。 As shown in FIG. 7C, the first conductor 101a is disposed so as to overlap the magnetic sensor 102 whose sensitivity direction is the horizontal direction on the paper surface, and the second conductor 101b is disposed on the paper surface with the magnetic sensor 102. Provided in parallel in the lateral direction (Configuration 3), the distance between the first conductor 101a and the magnetic sensor 102 is 1 mm, the distance between the second conductor 101b and the magnetic sensor 102 is 10 mm, and the first conductor 101a and the second conductor 101 Assuming that the currents flowing in the first conductor 101b have the same value and direction, the magnetic field Ba of the first conductor 101a and the magnetic field Bb of the second conductor 101b in the magnetic sensor 102 are as follows.
 Ba=α/2π
 Bb=0
Ba = α / 2π
Bb = 0
 この場合、磁気センサ102において、第2の導体101bで発生する磁界が磁気センサ102の感度方向と直交して不感方向となるため、磁気センサ102におけるノイズは信号の0%となる。 In this case, in the magnetic sensor 102, since the magnetic field generated by the second conductor 101b is in the insensitive direction perpendicular to the sensitivity direction of the magnetic sensor 102, the noise in the magnetic sensor 102 is 0% of the signal.
 上述した関係は、基材上に導体及び磁気センサを設けた場合にも適用できる。例えば、上記構成2、構成3を図8(A)、(B)に示すように、磁気センサ102と導電体101a、101bとの距離を変えた場合であっても、上記図7と同様に考えることができる。したがって、磁気センサ102が被測定用導体(導体101a)の上方に設けられる場合には、基材100表面を基準とした他の導体101b、101cの高さを、導体101aの高さ以上であって、磁気センサ102の上面の高さ以下とする構成(上記構成2)とすることが好ましい。より好ましくは、他の導体101b、101cの高さを、磁気センサ102と概略等しくする構成(上記構成3)とすることが好ましい。 The relationship described above can also be applied when a conductor and a magnetic sensor are provided on a substrate. For example, even if the distance between the magnetic sensor 102 and the conductors 101a and 101b is changed as shown in FIGS. 8A and 8B in the configurations 2 and 3, the same as in FIG. Can think. Therefore, when the magnetic sensor 102 is provided above the conductor to be measured (conductor 101a), the height of the other conductors 101b and 101c with respect to the surface of the base material 100 is equal to or higher than the height of the conductor 101a. Thus, it is preferable to adopt a configuration (the configuration 2 described above) that is equal to or lower than the height of the upper surface of the magnetic sensor 102. More preferably, the height of the other conductors 101b and 101c is preferably substantially the same as that of the magnetic sensor 102 (configuration 3 above).
 上述したように、基材100の平面視において磁気センサ102を被測定用導体101aの上方又は下方に重畳するように設け、且つ他の導体101b、101cに電流が流れた際に磁気センサ102において生じる磁界の方向が、磁気センサ102の不感方向となるように他の導体101b、101cを設けることにより、複数の導体を有する場合であっても被測定用導体の電流値を高い精度で測定することができる。 As described above, the magnetic sensor 102 is provided so as to overlap above or below the conductor for measurement 101a in a plan view of the base material 100, and the current flows in the other conductors 101b and 101c. By providing the other conductors 101b and 101c so that the direction of the generated magnetic field becomes the insensitive direction of the magnetic sensor 102, the current value of the conductor to be measured can be measured with high accuracy even when there are a plurality of conductors. be able to.
 なお、図1では、導体101a~101cとして断面円形の導体を用いる場合について説明しているが、断面が矩形状等の他の形状の導体を用いた場合にも同様に適用することができる。また、図1では、導体101a~101cの幅を磁気センサ102の幅より小さく形成する場合について示したが、導体101a~101cの幅を磁気センサ102の幅より大きく形成してもよい。 Note that FIG. 1 illustrates the case where a conductor having a circular cross section is used as the conductors 101a to 101c. However, the present invention can be similarly applied to a case where a conductor having another shape such as a rectangular cross section is used. 1 shows the case where the widths of the conductors 101a to 101c are formed smaller than the width of the magnetic sensor 102, the widths of the conductors 101a to 101c may be formed larger than the width of the magnetic sensor 102.
 また、図1では、複数の導体として3つの導体(導体101a~101c)を設けた場合を示しているが、4つ以上の導体を用いる場合にも同様に適用することができる。なお、基材100上に複数の導体を設ける場合には、他の導体を設ける位置について必ずしも全ての導体が上述した条件を満たす必要はなく、少なくとも使用時の電流値の範囲において磁気センサ102に影響を及ぼす磁界を生じる導体について考慮すればよい。 FIG. 1 shows a case where three conductors (conductors 101a to 101c) are provided as a plurality of conductors, but the present invention can be similarly applied to the case where four or more conductors are used. In the case where a plurality of conductors are provided on the substrate 100, it is not always necessary that all conductors satisfy the above-described conditions for the positions where other conductors are provided. What is necessary is to consider a conductor that generates an influencing magnetic field.
 なお、本実施の形態では、基材100の表面に平行な方向に磁場感度を有する磁気センサ102を用いる場合を示したが、これに限られず、別の方向(例えば、基材100の表面に垂直な方向)に磁場感度を有する磁気センサを用いてもよい。この場合であっても、測定したい導体による磁界が磁気センサ102の感度方向(基材100の表面に垂直な方向)となるように被測定用導体を設け、その他の導体による磁界が磁気センサ102の不感方向(基材100の表面に平行な方向)となるように導体101b、101cを設ける。 In the present embodiment, the case where the magnetic sensor 102 having magnetic field sensitivity in the direction parallel to the surface of the base material 100 is used. However, the present invention is not limited to this, and another direction (for example, on the surface of the base material 100). A magnetic sensor having magnetic field sensitivity in the vertical direction) may be used. Even in this case, the conductor to be measured is provided so that the magnetic field due to the conductor to be measured is in the sensitivity direction of the magnetic sensor 102 (the direction perpendicular to the surface of the substrate 100), and the magnetic field due to the other conductor is the magnetic sensor 102. The conductors 101b and 101c are provided so as to be in the insensitive direction (direction parallel to the surface of the substrate 100).
(実施の形態2)
 本実施の形態2では、上記実施の形態1と異なる電流測定装置について説明する。具体的には、上記実施の形態1に示した構成に、導体101b、101cを測定する磁気センサを加えた構成について図面を参照して説明する。なお、実施の形態2では、上記実施の形態1と異なる部分について説明し、その他の部分については上記実施の形態1と同様に行うことができる。
(Embodiment 2)
In the second embodiment, a current measuring device different from the first embodiment will be described. Specifically, a configuration in which a magnetic sensor for measuring the conductors 101b and 101c is added to the configuration shown in the first embodiment will be described with reference to the drawings. Note that in the second embodiment, parts different from those of the first embodiment are described, and other parts can be performed in the same manner as in the first embodiment.
 図2に示す電流測定装置は、基材100の表面上に並んで形成(並設)された複数の導体101a~101cと、複数の導体101a~101cに被測定電流が流れたときに発生する磁界をそれぞれ測定する磁気センサ102a~102cとを有し、当該磁気センサ102a~102cの抵抗値に基づいて、導体101a~101cの電流の大きさをそれぞれ測定する。なお、図2において、図2(A)は電流測定装置を基材100の表面側(平面視)を示し、図2(B)は図2(A)のA-B間の断面(断面視)を示し、図2(C)は図2(A)のA-B間の断面を示している。 The current measuring apparatus shown in FIG. 2 is generated when a current to be measured flows through a plurality of conductors 101a to 101c formed side by side (arranged) on the surface of the substrate 100 and the plurality of conductors 101a to 101c. The magnetic sensors 102a to 102c for measuring the magnetic fields are respectively measured, and the currents of the conductors 101a to 101c are measured based on the resistance values of the magnetic sensors 102a to 102c. In FIG. 2, FIG. 2 (A) shows the current measuring device on the surface side (plan view) of the substrate 100, and FIG. 2 (B) shows a cross section between A 1 and B 1 in FIG. 2C shows a cross section between A 2 and B 2 in FIG. 2A.
 図2に示すように、磁気センサ102a~102cは、基材100の平面視においてそれぞれ導体101a~101cの上方又は下方に重畳するように設けられており、これにより、導体101a~101cに被測定用電流が流れた際にそれぞれ磁気センサ102a~102cにおいて生じる磁界の方向を、それぞれの磁気センサ102a~102cにおいて最も高い磁場感度を有する方向とすることができる。 As shown in FIG. 2, the magnetic sensors 102a to 102c are provided so as to overlap with or below the conductors 101a to 101c, respectively, in a plan view of the base material 100, whereby the conductors 101a to 101c are measured. The direction of the magnetic field generated in each of the magnetic sensors 102a to 102c when the working current flows can be the direction having the highest magnetic field sensitivity in each of the magnetic sensors 102a to 102c.
 一方で、隣接する他の導体から生じる磁界が磁気センサ102a~102cでの測定に及ぼす影響を抑制するために、隣接する他の導体に電流が流れた際に磁気センサ102a~102cにおいて生じる磁界の方向が、磁気センサ102a~102cの不感方向となるように他の導体が設けられている。具体的には、導体101a~101cが概略同じ高さに設けられ、磁気センサ102a~102cが概略同じ高さに設けられている。 On the other hand, in order to suppress the influence of the magnetic field generated from other adjacent conductors on the measurement by the magnetic sensors 102a to 102c, the magnetic field generated in the magnetic sensors 102a to 102c when current flows through the other adjacent conductors. Other conductors are provided so that the direction is insensitive to the magnetic sensors 102a to 102c. Specifically, the conductors 101a to 101c are provided at substantially the same height, and the magnetic sensors 102a to 102c are provided at substantially the same height.
 このように、基材100上に並設された複数の導体101a~101cと、当該複数の導体をそれぞれ測定する磁気センサ102a~102cを設ける場合に、被測定用導体の上方又は下方に測定用の磁気センサを設けることにより、隣接する導体からの磁界を不感方向とすることができ、複数の導体に流れる電流を一度に測定できると共に精度よく測定することが可能となる。 As described above, when the plurality of conductors 101a to 101c arranged in parallel on the substrate 100 and the magnetic sensors 102a to 102c for measuring the plurality of conductors are provided, the measurement is performed above or below the conductor to be measured. By providing this magnetic sensor, the magnetic field from the adjacent conductor can be made insensitive, and the current flowing through the plurality of conductors can be measured at once and can be measured with high accuracy.
 図2では、複数の磁気センサ102a~102cが所定の方向(導体101a~101cの延在方向)において位置を揃えるように設ける場合を示したが、図3に示すように、複数の導体101a~101cの延在方向に沿って位置をずらして複数の磁気センサ102a~102cを設けることもできる。 FIG. 2 shows the case where the plurality of magnetic sensors 102a to 102c are provided so that their positions are aligned in a predetermined direction (the extending direction of the conductors 101a to 101c). However, as shown in FIG. A plurality of magnetic sensors 102a to 102c can also be provided by shifting the position along the extending direction of 101c.
 図3に示すように、磁気センサ102a~102cをそれぞれ導体101a~101cの下方に設ける場合、複数の導体101a~101cの延在方向と垂直な方向において、磁気センサ(例えば、磁気センサ102a)の高さと当該磁気センサ102aと隣接する導体(例えば、導体102a、102c)の高さが概略等しくなるため、他の導体101b、101cに電流が流れた際に磁気センサ102aにおいて生じる磁界の方向を、効果的に基材100の表面と垂直な方向(磁気センサ102が最も低い磁場感度を有する方向)とすることができる。また、図2に示した構造と比較して、複数の導体101a~101cの延在方向に沿って複数の磁気センサ102a~102cの位置がずれているため、導体101a~101c間の距離を小さくすることができる。 As shown in FIG. 3, when the magnetic sensors 102a to 102c are respectively provided below the conductors 101a to 101c, the magnetic sensors (for example, the magnetic sensor 102a) are arranged in a direction perpendicular to the extending direction of the plurality of conductors 101a to 101c. Since the height and the height of the conductor adjacent to the magnetic sensor 102a (for example, the conductors 102a and 102c) are approximately equal, the direction of the magnetic field generated in the magnetic sensor 102a when a current flows through the other conductors 101b and 101c, The direction perpendicular to the surface of the substrate 100 (the direction in which the magnetic sensor 102 has the lowest magnetic field sensitivity) can be effectively obtained. Further, compared with the structure shown in FIG. 2, the positions of the plurality of magnetic sensors 102a to 102c are shifted along the extending direction of the plurality of conductors 101a to 101c, so that the distance between the conductors 101a to 101c is reduced. can do.
 また、本実施の形態で示した電流測定装置は、磁気センサとしてGMR素子を基材100上に複数作製し、当該GMR素子上にめっき等により導体を形成することにより1チップとして形成することができる。このチップを、IC等に実装して磁気センサと導体を端子につなぐことにより、所望の場所の電流を測定可能な電流測定装置とすることができる。 In addition, the current measuring device shown in this embodiment can be formed as one chip by forming a plurality of GMR elements as a magnetic sensor on the substrate 100 and forming a conductor on the GMR element by plating or the like. it can. By mounting this chip on an IC or the like and connecting a magnetic sensor and a conductor to a terminal, a current measuring device capable of measuring a current at a desired location can be obtained.
(変形例1)
 基材100の表面上に並設された複数の導体101a~101cと、複数の導体101a~101cに被測定電流が流れたときに発生する磁界をそれぞれ測定する磁気センサ102a~102cを有する構造(図2参照)について、図4に示すように設けてもよい。
(Modification 1)
A structure having a plurality of conductors 101a to 101c arranged in parallel on the surface of the substrate 100 and magnetic sensors 102a to 102c for measuring magnetic fields generated when a current to be measured flows through the plurality of conductors 101a to 101c ( 2) may be provided as shown in FIG.
 図4では、基材100の表面上に複数の導体101a~101cと、磁気センサ102a~102cを形成する場合を示している。磁気センサ102aは、基材100上に分離して形成された導体101aの間に設けられ、分離して形成された導体101aが導体棒103aを介して電気的に接続されている。導体棒103aは、磁気センサ102aの上方に配置するように折り曲げて設けることができる。同様に、磁気センサ102b、102cは、それぞれ基材100上に分離して形成された導体101b、101cの間に設けられ、分離して形成された導体101b、101cが導体棒103b、103cを介してそれぞれ電気的に接続されている。 FIG. 4 shows a case where a plurality of conductors 101a to 101c and magnetic sensors 102a to 102c are formed on the surface of the base material 100. The magnetic sensor 102a is provided between the conductors 101a formed separately on the substrate 100, and the conductors 101a formed separately are electrically connected via the conductor rod 103a. The conductor rod 103a can be bent so as to be disposed above the magnetic sensor 102a. Similarly, the magnetic sensors 102b and 102c are respectively provided between the conductors 101b and 101c formed separately on the base material 100, and the conductors 101b and 101c formed separately via the conductor rods 103b and 103c. Are each electrically connected.
 また、上記図3に示したように、図4に示す構造を、複数の導体101a~101cの延在方向に沿って位置をずらして複数の磁気センサ102a~102cを設けることもできる(図5参照)。 Further, as shown in FIG. 3, a plurality of magnetic sensors 102a to 102c can be provided by shifting the position of the structure shown in FIG. 4 along the extending direction of the plurality of conductors 101a to 101c (FIG. 5). reference).
(変形例2)
 上述した構成において、基材を用いずに、導体101に凹部を設け、当該凹部に磁気センサ102を設けた構造としてもよい(図6参照)。この構成によれば、基材を用いずに導体101と磁気センサ102で電流測定装置を設けることができる。また、図6に示した構造において、上記図2で示したように、凹部を有する導体を複数併設させて、複数の導体の凹部にそれぞれ磁気センサを設けることができる。この場合、図3に示したように、複数の導体の延在方向に沿って位置をずらして複数の磁気センサをそれぞれ配置させた構造としてもよい。
(Modification 2)
In the above-described configuration, a recess may be provided in the conductor 101 without using the base material, and the magnetic sensor 102 may be provided in the recess (see FIG. 6). According to this configuration, the current measuring device can be provided by the conductor 101 and the magnetic sensor 102 without using the base material. In the structure shown in FIG. 6, as shown in FIG. 2, a plurality of conductors having recesses can be provided side by side, and magnetic sensors can be provided in the recesses of the plurality of conductors, respectively. In this case, as shown in FIG. 3, it is good also as a structure which shifted the position along the extending direction of a some conductor, and arrange | positioned the some magnetic sensor, respectively.
 本発明は上記実施の形態1、2に限定されず、種々変更して実施することができる。また、上記実施の形態1、2における材料、電流センサの配置位置、厚さ、大きさ、製法などは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 The present invention is not limited to the first and second embodiments, and can be implemented with various modifications. In addition, the materials, the arrangement position, the thickness, the size, the manufacturing method, and the like of the current sensor in the first and second embodiments can be changed as appropriate. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本発明は、電気自動車のモータ駆動用の電流の大きさを検出する電流センサに適用することが可能である。 The present invention can be applied to a current sensor that detects the magnitude of a current for driving a motor of an electric vehicle.
 本出願は、2010年3月11日出願の特願2010-054724に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2010-054724 filed on Mar. 11, 2010. All this content is included here.

Claims (9)

  1.  基材の表面に並設した複数の導体と、前記導体に被測定電流が流れたときに発生する磁界を測定する磁気センサとを有し、電流の大きさを測定する電流測定装置であって、
     前記磁気センサは、前記基材の表面と平行な方向に対して選択的に磁場感度を有し、且つ前記基材の平面視において前記複数の導体のうち前記磁気センサが測定する被測定用導体の上方又は下方に重畳して設けられ、
     前記複数の導体のうち他の導体は、前記他の導体により生じる磁界の方向が前記磁気センサにおいて不感方向となる位置に設けられていることを特徴とする電流測定装置。
    A current measuring device that has a plurality of conductors arranged side by side on the surface of a substrate and a magnetic sensor that measures a magnetic field generated when a current to be measured flows through the conductor, and measures the magnitude of the current. ,
    The magnetic sensor has a magnetic field sensitivity selectively with respect to a direction parallel to the surface of the base material, and the conductor for measurement measured by the magnetic sensor among the plurality of conductors in a plan view of the base material Is provided so as to overlap above or below
    The other conductor among the plurality of conductors is provided at a position where the direction of the magnetic field generated by the other conductor is a dead direction in the magnetic sensor.
  2.  前記不感方向は、前記基材の表面に概略垂直な方向であることを特徴とする請求項1に記載の電流測定装置。 2. The current measuring device according to claim 1, wherein the insensitive direction is a direction substantially perpendicular to a surface of the base material.
  3.  前記磁気センサが前記被測定用導体の下方に設けられ、
     前記基材表面を基準とした前記他の導体の高さが、前記磁気センサの下面の高さ以上前記被特定用導体の高さ以下であることを特徴とする請求項1又は請求項2に記載の電流測定装置。
    The magnetic sensor is provided below the conductor to be measured;
    The height of the other conductor with respect to the surface of the base material is not less than the height of the lower surface of the magnetic sensor and not more than the height of the conductor to be specified. The current measuring device described.
  4.  前記磁気センサが前記被測定用導体の上方に設けられ、
     前記基材表面を基準とした前記他の導体の高さが、前記被特定用導体の高さ以上前記磁気センサの上面の高さ以下であることを特徴とする請求項1又は請求項2に記載の電流測定装置。
    The magnetic sensor is provided above the conductor to be measured;
    The height of the other conductor with respect to the surface of the base material is not less than the height of the conductor to be specified and not more than the height of the upper surface of the magnetic sensor. The current measuring device described.
  5.  前記基材表面を基準とした前記他の導体の高さが、前記磁気センサの高さと概略等しいことを特徴とする請求項3又は請求項4に記載の電流測定装置。 The current measuring device according to claim 3 or 4, wherein a height of the other conductor based on the surface of the base material is substantially equal to a height of the magnetic sensor.
  6.  前記他の導体の上方又は下方にも前記他の導体に被測定電流が流れたときに発生する磁界を測定する磁気センサがそれぞれ設けられていることを特徴とする請求項1から請求項5のいずれかに記載の電流測定装置。 6. A magnetic sensor for measuring a magnetic field generated when a current to be measured flows through the other conductor is also provided above or below the other conductor, respectively. The current measuring device according to any one of the above.
  7.  前記複数の導体の上方又は下方にそれぞれ設けられた磁気センサが、前記複数の導体の延在方向に沿って位置をずらして設けられ、
     前記複数の導体の延在方向と垂直な方向において、磁気センサの高さと前記磁気センサと隣接する導体の高さが概略等しいことを特徴とする請求項6に記載の電流測定装置。
    Magnetic sensors respectively provided above or below the plurality of conductors are provided at different positions along the extending direction of the plurality of conductors,
    The current measuring device according to claim 6, wherein a height of the magnetic sensor is substantially equal to a height of a conductor adjacent to the magnetic sensor in a direction perpendicular to the extending direction of the plurality of conductors.
  8.  前記被測定用導体と前記磁気センサが近接して設けられていることを特徴とする請求項1から請求項7のいずれかに記載の電流測定装置。 The current measuring device according to any one of claims 1 to 7, wherein the conductor for measurement and the magnetic sensor are provided close to each other.
  9.  前記磁気センサがGMR素子であることを特徴とする請求項1から請求項8のいずれかに記載の電流測定装置。 9. The current measuring device according to claim 1, wherein the magnetic sensor is a GMR element.
PCT/JP2011/052658 2010-03-11 2011-02-08 Current measurement device WO2011111456A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010054724 2010-03-11
JP2010-054724 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011111456A1 true WO2011111456A1 (en) 2011-09-15

Family

ID=44563283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052658 WO2011111456A1 (en) 2010-03-11 2011-02-08 Current measurement device

Country Status (1)

Country Link
WO (1) WO2011111456A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142604A (en) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd Current sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (en) * 1999-09-02 2001-03-23 Yazaki Corp Current detector
JP2005233692A (en) * 2004-02-17 2005-09-02 Asahi Kasei Electronics Co Ltd Polyphase current detection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074783A (en) * 1999-09-02 2001-03-23 Yazaki Corp Current detector
JP2005233692A (en) * 2004-02-17 2005-09-02 Asahi Kasei Electronics Co Ltd Polyphase current detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142604A (en) * 2012-01-11 2013-07-22 Alps Green Devices Co Ltd Current sensor

Similar Documents

Publication Publication Date Title
JP6438959B2 (en) Single chip Z-axis linear magnetoresistive sensor
US9417269B2 (en) Current sensor
US8193897B2 (en) Integrated lateral short circuit for a beneficial modification of current distribution structure for xMR magnetoresistive sensors
US8269492B2 (en) Magnetic balance type current sensor
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
EP3062119B1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
JP5906488B2 (en) Current sensor
JP2014512003A (en) Single-chip push-pull bridge type magnetic field sensor
US20130057273A1 (en) Current sensor
JP5888402B2 (en) Magnetic sensor element
JP5641276B2 (en) Current sensor
WO2012053296A1 (en) Current sensor
JP4853807B2 (en) Current sensing device
JP6267613B2 (en) Magnetic sensor and current sensor including the magnetic sensor
US9146260B2 (en) Magnetic balance type current sensor
US8395383B2 (en) Current sensor including magnetic detecting element
TWI467204B (en) Magnatoresistive sensing device
US11009569B2 (en) Magnetic field sensing device
JP5187598B2 (en) Current detection circuit
JP5057245B2 (en) Current sensor
WO2011111456A1 (en) Current measurement device
JP5504483B2 (en) Current sensor
JP5458319B2 (en) Current sensor
CN106796253A (en) Current sensing means and electric current detecting method
JP2013205201A (en) Current sensor and current sensor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP