WO2011111004A1 - Magnetocaloric materials - Google Patents
Magnetocaloric materials Download PDFInfo
- Publication number
- WO2011111004A1 WO2011111004A1 PCT/IB2011/050982 IB2011050982W WO2011111004A1 WO 2011111004 A1 WO2011111004 A1 WO 2011111004A1 IB 2011050982 W IB2011050982 W IB 2011050982W WO 2011111004 A1 WO2011111004 A1 WO 2011111004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetocaloric
- solid
- cooling
- stage
- materials
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/012—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
- H01F1/015—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0214—Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V99/00—Subject matter not provided for in other main groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to polycrystalline magnetocaloric materials, to processes for their production and to their use in coolers, heat exchangers or generators, in particular in refrigerators.
- Thermomagnetic materials also referred to as magnetocaloric materials, can be used for cooling, for example in refrigerators or air conditioning units, in heat pumps or for direct generation of power from heat without intermediate connection of a conversion to mechanical energy.
- Magnetic cooling techniques are based on the magnetocaloric effect (MCE) and may constitute an alternative to the known vapor circulation cooling methods.
- MCE magnetocaloric effect
- the alignment of randomly aligned magnetic moments by an external magnetic field leads to heating of the material.
- This heat can be removed from the MCE material to the surrounding atmosphere by a heat transfer.
- the magnetic field is then switched off or removed, the magnetic moments revert back to a random arrangement, which leads to cooling of the material below ambient temperature. This effect can be exploited for cooling purposes, but also for heating.
- a heat transfer medium such as water is used for heat removal from the magnetocaloric material.
- thermomagnetic generators are likewise based on the magnetocaloric effect.
- a material which exhibits a magnetocaloric effect a small change in temperature can lead to a big change in magnetization. Magnetized by an external magnetic field, when the material is heated, a big change in the induction flow through a coil and thus an electromotive force are generated. Cooling the material below the critical temperature leads again to the occurrence of an electromotive force. This effect can be exploited for conversion of heat to electrical energy.
- the magnetocaloric generation of electrical energy is associated with magnetic heating and cooling.
- the process for energy generation was described as pyromagnetic energy generation.
- these magnetocaloric devices can have a significantly higher energy efficiency.
- Kirol described numerous possible applications and conducted thermodynamic analyses thereof.
- gadolinium was considered to be a potential material for applications close to room temperature.
- a pyromagnetoelectric generator is described, for example, by N. Tesla in US 428,057.
- the magnetic properties of iron or other magnetic substances can be destroyed partially or entirely or can disappear as a result of heating to a particular temperature. In the course of cooling, the magnetic properties are re-established and return to the starting state. This effect can be exploited to generate electrical power.
- an electrical conductor is exposed to a varying magnetic field, the changes in the magnetic field lead to the induction of an electrical current in the conductor.
- the magnetic material is surrounded by a coil and is then heated in a permanent magnetic field and then cooled, an electrical current is induced in the coil in the course of heating and cooling in each case. This allows thermal energy to be converted to electrical energy, without an intermediate conversion to mechanical work.
- iron as the magnetic substance, is heated by means of an oven or a closed fireplace and then cooled again.
- thermomagnetic or magnetocaloric applications the material should permit efficient heat exchange in order to be able to achieve high efficiencies. Both in the course of cooling and in the course of power generation, the thermomagnetic material is used in a heat exchanger.
- x preferably has a minimum value of 0.28, more preferably of 0.3.
- the maximum value of x is preferably 0.34, in particular 0.33. More preferably 0.28 ⁇ x ⁇ 0.34, in particular 0.30 ⁇ x ⁇ 0.33.
- y preferably has a minimum value of 0.4.
- the maximum value of y is preferably 0.6, more preferably 0.44. More preferably 0.4 ⁇ y ⁇ 0.6, in particular 0.4 ⁇ y ⁇ 0.44.
- z may differ from 0 by small values.
- -0.05 ⁇ z ⁇ 0.05, in particular -0.02 ⁇ z ⁇ 0.02, especially z 0.
- the inventive magnetocaloric materials preferably have a hexagonal structure of the Fe 2 P type.
- the inventive materials allow a working temperature in application in the range from 0°C to + 150°C.
- the magnetocaloric effect of the inventive materials is comparable to the magnetocaloric effect of what are known as giant magnetocaloric materials such as MnFeP x Asi -x ,Gd 5 (Si, Ge) 4 or La(Fe, Si) 13 -
- the thermal hysteresis determined in a magnetic field of 1 T with a sweep rate of c/min, is preferably ⁇ 5°C, more preferably ⁇ 2°C, due to the balanced Mn/Fe and P Si ratios.
- the inventive materials additionally have the advantage that they are formed from elements which are available in large amounts and are generally classified as nontoxic.
- the thermomagnetic materials used in accordance with the invention can be produced in any suitable manner.
- the inventive magnetocaloric materials can be produced by solid phase conversion or liquid phase conversion of the starting elements or starting alloys for the material, subsequently cooling, then pressing, sintering and heat treating under inert gas atmosphere and subsequently cooling to room temperature, or by melt spinning of a melt of the starting elements or starting alloys.
- thermomagnetic materials are produced, for example, by solid phase reaction of the starting elements or starting alloys for the material in a ball mill, subsequent pressing, sintering and heat treatment under inert gas atmosphere and subsequent cooling, for example slow cooling, to room temperature.
- a process is described, for example, in J. Appl. Phys. 99, 2006, 08Q107.
- suitable amounts of Mn, Fe, P and Si in element form or in the form of preliminary alloys such as Mn 2 P or Fe 2 P can be ground in a ball mill.
- the powders are pressed and sintered at temperatures in the range from 900 to 1300°C, preferably of about 1 100°C, for a suitable time, preferably 1 to 5 hours, especially about 2 hours, and then heat treated at temperatures in the range from 700 to 1000°C, preferably about 850°C, for suitable periods, for example 1 to 100 hours, more preferably 10 to 30 hours, especially about 20 hours, under a protective gas atmosphere.
- the element powders or preliminary alloy powders can be melted together in an induction oven. It is then possible in turn to perform a heat treatment as specified above.
- thermomagnetic materials comprising the following steps: converting chemical elements and/or alloys in a stoichiometry which corresponds to the magnetocaloric material in the solid and/or liquid phase, optionally converting the reaction product from stage a) to a solid, sintering and/or heat treating the solid from stage a) or b), quenching the sintered and/or heat treated solid from stage c) at a cooling rate of at least 100 K/s.
- the thermal hysteresis can be reduced significantly and a large magnetocaloric effect can be achieved when the magnetocaloric materials are not cooled slowing to ambient temperature after the sintering and/or heat treatment, but rather are quenched at a high cooling rate.
- This cooling rate is at least 100 K/s.
- the cooling rate is preferably from 100 to 10 000 K/s, more preferably from 200 to 1300 K/s. Especially preferred cooling rates are from 300 to 1000 K/s.
- the quenching can be achieved by any suitable cooling processes, for example by quenching the solid with water or aqueous liquids, for example cooled water or ice/water mixtures.
- the solids can, for example, be allowed to fall into ice-cooled water. It is also possible to quench the solids with subcooled gases such as liquid nitrogen. Further processes for quenching are known to those skilled in the art. What is advantageous here is controlled and rapid cooling.
- the rest of the production of the magnetocaloric/thermomagnetic materials is less critical, provided that the last step comprises the quenching of the sintered and/or heat treated solid at the inventive cooling rate.
- the process may be applied to the production of any suitable thermomagnetic materials, as described above.
- step (a) of the process the elements and/or alloys which are present in the later thermomagnetic material are converted in a stoichiometry which corresponds to the thermomagnetic material in the solid or liquid phase.
- a reaction is known in principle; cf. the documents cited above.
- powders of the individual elements or powders of alloys of two or more of the individual elements which are present in the later thermomagnetic material are mixed in pulverulent form in suitable proportions by weight. If necessary, the mixture can additionally be ground in order to obtain a microcrystalline powder mixture.
- This powder mixture is preferably heated in a ball mill, which leads to further comminution and also good mixing, and to a solid phase reaction in the powder mixture.
- the individual elements are mixed as a powder in the selected stoichiometry and then melted.
- the combined heating in a closed vessel allows the fixing of volatile elements and control of the stoichiometry. Specifically in the case of use of phosphorus, this would evaporate easily in an open system.
- the reaction is followed by sintering and/or heat treatment of the solid, for which one or more intermediate steps can be provided.
- the solid obtained in stage a) can be subjected to shaping before it is sintered and/or heat treated.
- melt-spinning processes are known per se and are described, for example, in Rare Metals, Vol. 25, October 2006, pages 544 to 549, and also in WO 2004/068512 and WO 2009/133049.
- the composition obtained in stage a) is melted and sprayed onto a rotating cold metal roller.
- This spraying can be achieved by means of elevated pressure upstream of the spray nozzle or reduced pressure downstream of the spray nozzle.
- a rotating copper drum or roller is used, which can additionally optionally be cooled.
- the copper drum preferably rotates at a surface speed of from 10 to 40 m/s, especially from 20 to 30 m/s.
- the liquid composition is cooled at a rate of preferably from 10 2 to 10 7 K/s, more preferably at a rate of at least 10 4 K/s, especially with a rate of from 0.5 to 2 x 10 6 K/s.
- the melt-spinning like the reaction in stage a) too, can be performed under reduced pressure or under an inert gas atmosphere.
- melt-spinning achieves a high processing rate, since the subsequent sintering and heat treatment can be shortened. Specifically on the industrial scale, the production of the thermomagnetic materials thus becomes significantly more economically viable. Spray-drying also leads to a high processing rate. Particular preference is given to performing melt spinning.
- spray cooling can be carried out, in which a melt of the composition from stage a) is sprayed into a spray tower.
- the spray tower may, for example, additionally be cooled.
- cooling rates in the range from 10 3 to 10 5 K/s, especially about 10 4 K/s, are frequently achieved.
- the sintering and/or heat treatment of the solid is effected in stage c) as described above.
- the period for sintering or heat treatment can be shortened significantly, for example to periods of from 5 minutes to 5 hours, preferably from 10 minutes to 1 hour. Compared to the otherwise customary values of 10 hours for sintering and 50 hours for heat treatment, this results in a major time advantage.
- the sintering/heat treatment results in partial melting of the particle boundaries, such that the material is compacted further.
- stage b) The melting and rapid cooling in stage b) thus allows the duration of stage c) to be reduced considerably. This also allows continuous production of the thermomagnetic materials.
- inventive magnetocaloric materials can be used in any suitable applications.
- they are used in coolers, heat exchangers or generators. Particular preference is given to use in refrigerators.
- the invention is illustrated in detail by examples.
- the magnetic properties of the samples thus prepared were determined in a Quantum Design MPMSXL SQUID magnetometer.
- Figure 1 shows the temperature dependence of the magnetization M(Am 2 kg "1 ), determined with a sweep rate of 1 K/min in a magnetic field of 1 T.
- the temperature dependence between the heating and cooling curves at the transition shows the thermal hysteresis of the first-order magnetic transition for these samples. The value depends on the particular sample, but is always less than 2 K in the samples studied.
- the significant change in magnetization in the region of about 70 Am 2 kg "1 as a result of the sharp magnetic transition shows a large magnetocaloric effect.
- Figure 2 shows the change in magnetic entropy -AS n (J/kg K) as a function of temperature for these samples.
- the change in magnetic entropy was derived from the magnetic isotherms, measured at different temperatures close to the transition, using the Maxwell equation.
- the values obtained for the change in magnetic entropy are comparable to corresponding values for the so-called GMCEs (giant magnetocaloric effect materials).
- the unfilled symbols relate to a field change of 0-1 T.
- the filled symbols represent a field change for 0-2 T.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Compounds Of Iron (AREA)
- Heat Treatment Of Articles (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012143308/07A RU2012143308A (en) | 2010-03-11 | 2011-03-09 | MAGNETO-CALORIC MATERIALS |
CN201180013368.6A CN102792393B (en) | 2010-03-11 | 2011-03-09 | Magneto-caloric material |
BR112012021783A BR112012021783A2 (en) | 2010-03-11 | 2011-03-09 | magnetocaloric material, process for the production of magnetocaloric materials, and, use of magnetocaloric materials |
AU2011225713A AU2011225713A1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
EP11752934.7A EP2545563B1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric material and process for producing it |
JP2012556631A JP5809646B2 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric material |
KR1020127026630A KR101848520B1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
CA2789797A CA2789797A1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
NZ601798A NZ601798A (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10156184.3 | 2010-03-11 | ||
EP10156184 | 2010-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111004A1 true WO2011111004A1 (en) | 2011-09-15 |
Family
ID=44562927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2011/050982 WO2011111004A1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP2545563B1 (en) |
JP (1) | JP5809646B2 (en) |
KR (1) | KR101848520B1 (en) |
CN (1) | CN102792393B (en) |
AU (1) | AU2011225713A1 (en) |
BR (1) | BR112012021783A2 (en) |
CA (1) | CA2789797A1 (en) |
NZ (1) | NZ601798A (en) |
RU (1) | RU2012143308A (en) |
TW (1) | TW201140625A (en) |
WO (1) | WO2011111004A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513536A (en) * | 2011-12-28 | 2012-06-27 | 北京工业大学 | Process for preparing magnetic cooling material |
US9245673B2 (en) | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
US9784483B2 (en) | 2013-05-08 | 2017-10-10 | Basf Se | Use of rotating magnetic shielding system for a magnetic cooling device |
US9887027B2 (en) | 2013-09-27 | 2018-02-06 | Basf Se | Corrosion inhibitors for Fe2P structure magnetocaloric materials in water |
CN114540657A (en) * | 2022-03-24 | 2022-05-27 | 中南大学 | Rare earth copper alloy material with broadband electromagnetic shielding and preparation method thereof |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101575861B1 (en) | 2014-02-13 | 2015-12-10 | 충북대학교 산학협력단 | Magnetocaloric metal compound and method for preparing thereof |
JP6606790B2 (en) * | 2014-12-26 | 2019-11-20 | 大電株式会社 | Method for manufacturing magnetic refrigeration material |
US11139093B2 (en) * | 2015-10-30 | 2021-10-05 | Technische Universiteit Delft | Magnetocaloric materials comprising manganese, iron, silicon, phosphorus and nitrogen |
US11410803B2 (en) * | 2016-06-10 | 2022-08-09 | Technische Universiteit Delft | Magnetocaloric materials comprising manganese, iron, silicon, phosphorus and carbon |
KR102698478B1 (en) * | 2017-10-04 | 2024-08-23 | 칼라젠, 인크. | Thermoelectric element driven by electric pulse |
US11056265B2 (en) | 2017-10-04 | 2021-07-06 | Calagen, Inc. | Magnetic field generation with thermovoltaic cooling |
KR102069770B1 (en) | 2018-06-07 | 2020-01-23 | 한국생산기술연구원 | Magneto-caloric alloy and preparing method thereof |
US11996790B2 (en) | 2019-08-20 | 2024-05-28 | Calagen, Inc. | Producing electrical energy using an etalon |
EP4018779A1 (en) | 2019-08-20 | 2022-06-29 | Calagen, Inc. | Circuit for producing electrical energy |
US11942879B2 (en) | 2019-08-20 | 2024-03-26 | Calagen, Inc. | Cooling module using electrical pulses |
KR102665067B1 (en) * | 2020-01-28 | 2024-05-13 | 현대자동차주식회사 | Mn-based magnetocaloric materials containing Al |
KR102651747B1 (en) | 2021-11-30 | 2024-03-28 | 한국재료연구원 | Magneto-caloric alloy and preparing method thereof |
KR102589531B1 (en) | 2022-04-20 | 2023-10-16 | 한국재료연구원 | Magneto-caloric alloy and preparing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US428057A (en) | 1890-05-13 | Nikola Tesla | Pyromagneto-Electric Generator | |
US20060117758A1 (en) | 2003-01-29 | 2006-06-08 | Stichting voor de Technische Weteneschappen | Magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material |
WO2008122535A1 (en) * | 2007-04-05 | 2008-10-16 | Universite Henri Poincare Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
WO2009121811A1 (en) * | 2008-03-31 | 2009-10-08 | Universite Henri Poincare Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
WO2009133049A1 (en) | 2008-04-28 | 2009-11-05 | Technology Foundation Stw | Method for producing metal-based materials for magnetic cooling or heat pumps |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1018668C2 (en) * | 2001-07-31 | 2003-02-03 | Stichting Tech Wetenschapp | Material suitable for magnetic cooling, method of preparing it and application of the material. |
GB2424901B (en) * | 2005-04-01 | 2011-11-09 | Neomax Co Ltd | Method of making a sintered body of a magnetic alloyl |
DE102006046041A1 (en) * | 2006-09-28 | 2008-04-03 | Siemens Ag | Heat transfer system used as a cooling/heating system comprises a magnetizable body having an open-pore foam made from a material with a magneto-calorific effect |
TW201003024A (en) * | 2008-04-28 | 2010-01-16 | Basf Se | Open-cell porous shaped bodies for heat exchangers |
TW201145319A (en) * | 2010-01-11 | 2011-12-16 | Basf Se | Magnetocaloric materials |
-
2011
- 2011-03-09 RU RU2012143308/07A patent/RU2012143308A/en not_active Application Discontinuation
- 2011-03-09 AU AU2011225713A patent/AU2011225713A1/en not_active Abandoned
- 2011-03-09 BR BR112012021783A patent/BR112012021783A2/en not_active IP Right Cessation
- 2011-03-09 CA CA2789797A patent/CA2789797A1/en not_active Abandoned
- 2011-03-09 EP EP11752934.7A patent/EP2545563B1/en not_active Not-in-force
- 2011-03-09 WO PCT/IB2011/050982 patent/WO2011111004A1/en active Application Filing
- 2011-03-09 CN CN201180013368.6A patent/CN102792393B/en not_active Expired - Fee Related
- 2011-03-09 JP JP2012556631A patent/JP5809646B2/en not_active Expired - Fee Related
- 2011-03-09 KR KR1020127026630A patent/KR101848520B1/en active IP Right Grant
- 2011-03-09 NZ NZ601798A patent/NZ601798A/en not_active IP Right Cessation
- 2011-03-11 TW TW100108424A patent/TW201140625A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US428057A (en) | 1890-05-13 | Nikola Tesla | Pyromagneto-Electric Generator | |
US20060117758A1 (en) | 2003-01-29 | 2006-06-08 | Stichting voor de Technische Weteneschappen | Magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material |
WO2008122535A1 (en) * | 2007-04-05 | 2008-10-16 | Universite Henri Poincare Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
WO2009121811A1 (en) * | 2008-03-31 | 2009-10-08 | Universite Henri Poincare Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
WO2009133049A1 (en) | 2008-04-28 | 2009-11-05 | Technology Foundation Stw | Method for producing metal-based materials for magnetic cooling or heat pumps |
Non-Patent Citations (9)
Title |
---|
"Magnetocalorics and Magnetism in MnFe (P,Si,Ge) materials", PH. D. THESIS, 21 April 2009 (2009-04-21) |
CAN THANH ET AL., JOURNAL OF APPLIED PHYSICS, vol. 103, 2008, pages 07B318 |
DIVIS M. ET AL: "Electronic structure and magnetism of MnFeP1 xSix alloys from first-principles calculations", PHYSICA B: CONDENSED MATTER, vol. 403, no. 18, 1 September 2008 (2008-09-01), pages 3276 - 3278, XP023782667 * |
LIU X.B. ET AL: "A first-principles study on the magnetocaloric compound MnFeP2/3Si1/3", JOURNAL OF APPLIED PHYSICS, vol. 105, no. 7, 2009, pages 07A902-1 - 07A902-3, XP012124332 * |
See also references of EP2545563A4 |
T.C.T. DINH: "Magnetocalorics and Magnetism in MnFe(P,Si,Ge) materials", 21 April 2009 (2009-04-21), pages 73 - 105, XP008169018 * |
WANG, GAOFENG: "Magnetic Property and Magnetocaloric Effect of (Mn,Fe)2(P,Si,Ge) Compounds", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 15 March 2008 (2008-03-15), pages 45 - 49, XP008169048 * |
ZHANG L. ET AL: "Neutron diffraction study of history dependence in MnFeP0.6Si0.4", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 290-291, no. PART 1, April 2005 (2005-04-01), pages 679 - 681, XP004800191 * |
ZHANG, LIAN: "Unusual Magnetic Behavior of Some Rare-Earth and Manganese Compounds", 19 May 2005 (2005-05-19), pages 105 - 148, XP055115412 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513536A (en) * | 2011-12-28 | 2012-06-27 | 北京工业大学 | Process for preparing magnetic cooling material |
US9245673B2 (en) | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
US9915447B2 (en) | 2013-01-24 | 2018-03-13 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
US9784483B2 (en) | 2013-05-08 | 2017-10-10 | Basf Se | Use of rotating magnetic shielding system for a magnetic cooling device |
US9887027B2 (en) | 2013-09-27 | 2018-02-06 | Basf Se | Corrosion inhibitors for Fe2P structure magnetocaloric materials in water |
CN114540657A (en) * | 2022-03-24 | 2022-05-27 | 中南大学 | Rare earth copper alloy material with broadband electromagnetic shielding and preparation method thereof |
CN114540657B (en) * | 2022-03-24 | 2022-11-25 | 中南大学 | Rare earth copper alloy material with broadband electromagnetic shielding function and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5809646B2 (en) | 2015-11-11 |
CN102792393A (en) | 2012-11-21 |
EP2545563A4 (en) | 2016-02-17 |
KR20130051440A (en) | 2013-05-20 |
RU2012143308A (en) | 2014-04-20 |
CN102792393B (en) | 2016-06-15 |
CA2789797A1 (en) | 2011-09-15 |
KR101848520B1 (en) | 2018-04-12 |
AU2011225713A1 (en) | 2012-08-23 |
TW201140625A (en) | 2011-11-16 |
NZ601798A (en) | 2014-01-31 |
JP2013527308A (en) | 2013-06-27 |
BR112012021783A2 (en) | 2016-05-17 |
EP2545563A1 (en) | 2013-01-16 |
EP2545563B1 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2523927B1 (en) | Magnetocaloric materials | |
EP2545563B1 (en) | Magnetocaloric material and process for producing it | |
US20110220838A1 (en) | Magnetocaloric materials | |
CN102077375B (en) | Thermomagnetic generator | |
CN102017025B (en) | Method for producing metal-based materials for magnetic cooling or heat pumps | |
US9318245B2 (en) | Heat carrier medium for magnetocaloric materials | |
CA2771669A1 (en) | Polycrystalline magnetocaloric materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180013368.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11752934 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011225713 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6880/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2789797 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2011752934 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011752934 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011225713 Country of ref document: AU Date of ref document: 20110309 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012556631 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127026630 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012143308 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012021783 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012021783 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120829 |