TW201140625A - Magnetocaloric materials - Google Patents

Magnetocaloric materials Download PDF

Info

Publication number
TW201140625A
TW201140625A TW100108424A TW100108424A TW201140625A TW 201140625 A TW201140625 A TW 201140625A TW 100108424 A TW100108424 A TW 100108424A TW 100108424 A TW100108424 A TW 100108424A TW 201140625 A TW201140625 A TW 201140625A
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic calorie
cooling
initial
calorie material
Prior art date
Application number
TW100108424A
Other languages
Chinese (zh)
Inventor
Ekkehard Brueck
Zhi-Quiang Ou
Lian Zhang
Caron Luana
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of TW201140625A publication Critical patent/TW201140625A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

What are described are magnetocaloric materials of the general formula (MnxFe1-x)2+z P1-ySiy where 0.20 ≤ x ≤ 0.40 0.4 ≤ y ≤ 0.8 -0.1 ≤ z ≤ 0.1.

Description

201140625 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種多晶磁卡路里材料、製造其等之方法 及其等在冷卻器、熱交換器或發電機(特定而言冰箱)中之 . 用途。 【先前技術】 熱磁材料(亦稱為磁卡路里材料)可用於在(例如)冰箱或 空氣調節單元、熱泵中冷卻,或用於直接自熱產生功率, 而無需轉化成機械能之中間連接。 該等材料基本上係已知,且係描述於(例如)w〇 2004/068512中。磁冷卻技術係基於磁卡路里效應(MCE), 且可構成已知之蒸氣循環冷卻法之替代技術。在展現磁卡 路里效應之材料中,藉由外部磁場調整隨機排列之磁矩, 導致加熱該材料。該熱可藉由熱傳遞自該MCE材料移除至 周圍環境。當隨後關閉或移除該磁場時,該等磁矩恢復至 Ik機配置,從而導致該材料冷卻至環境溫度以下。該效應 可用於冷卻目的,且亦可用於加熱。通常,熱傳遞介質 (例如水)係用於自該磁卡路里材料移除熱。 . 用於熱磁發電機中之材料同樣係基於磁卡路里效應。在 . 顯不磁卡路里效應之材料中’較小的溫度變化會導致磁化 的較大變化。當加熱經外部磁場磁化之材料時,線圈中的 感應流發生較大變化,且因此產生電動勢。將該材料冷卻 至臨界溫度以下再次導致產生電動勢。該效應可用於將熱 轉化為電能。 154540.doc 201140625 磁熱發電係與磁加熱及冷卻相關。就第一概念而言,能 量產生之過程被描述為熱磁能產生。與Pehier型或Seebeck 型之裝置相比,該等磁卡路里裝置可具有明顯更高之能量 效率。 關於該物理現象之研究係始於丨9世紀末期,當時兩位科 學家(Tesla及Edison)申請關於熱磁發電機之專利。在1984 年,Kirol描述多種可能應用並進行其熱力學分析。當時, 乱被認為係接近室溫應用之可能材料。 一熱磁發電機係由(例如)N. Tesla在美國專利第428,057 號中描述。其陳述鐵或其他磁性物質之磁性會由於加熱至 特定溫度而被部份或完全破壞或可消失。在冷卻過程中, 該等磁性經重新建立並恢復至初始狀態。可利用該效應以 產生電此。當將一電導體暴露於一變化磁場中時,該磁場 之變化導致在該導體中感應電流。當(例如)該磁性材料被 一線圈環繞且隨後在永久磁場中經加熱並隨後冷卻時,在 各情況中在加熱及冷卻過程中於該線圈令感應產生一電 流。此允許在無中間轉化成機械功下,將熱能轉化成電 能。在Tesla所述之方法中,使鐵(作為該磁性物質)經烘箱 或封閉壁爐加熱,並隨後再次冷卻。 就該熱磁或磁卡路里應用而言,該材料應允許高效之熱 交換,以能夠實現高效率❶在冷卻及發電兩個過程中,該 熱磁材料係用於熱交換器中。201140625 VI. Description of the Invention: [Technical Field] The present invention relates to a polycrystalline magnetic calorie material, a method of manufacturing the same, and the like, and the like in a cooler, a heat exchanger or a generator (specifically, a refrigerator) Use. [Prior Art] Thermomagnetic materials (also known as magnetic calorie materials) can be used for cooling in, for example, a refrigerator or an air conditioning unit, a heat pump, or for direct self-heating without the need to convert intermediate connections into mechanical energy. Such materials are basically known and are described, for example, in WO 2004/068512. Magnetic cooling technology is based on the magnetic calorie effect (MCE) and can form an alternative to the known vapor cycle cooling method. In materials exhibiting a magnetic calorie effect, the magnetic field randomly arranged is adjusted by an external magnetic field, resulting in heating of the material. This heat can be removed from the MCE material to the surrounding environment by heat transfer. When the magnetic field is subsequently turned off or removed, the magnetic moments return to the Ik configuration, causing the material to cool below ambient temperature. This effect can be used for cooling purposes and can also be used for heating. Typically, a heat transfer medium (e.g., water) is used to remove heat from the magnetic calorie material. The materials used in thermomagnetic generators are also based on the magnetic calorie effect. In materials with a magnetically ineffective calorie effect, a small temperature change results in a large change in magnetization. When the material magnetized by the external magnetic field is heated, the induced flow in the coil undergoes a large change, and thus an electromotive force is generated. Cooling the material below the critical temperature again results in an electromotive force. This effect can be used to convert heat into electrical energy. 154540.doc 201140625 Magnetocalor is related to magnetic heating and cooling. In the first concept, the process of energy production is described as the generation of thermomagnetic energy. These magnetic calorie devices can have significantly higher energy efficiency than devices of the Pehier or Seebeck type. The research on this physical phenomenon began in the late 9th century when two scientists (Tesla and Edison) applied for patents on thermomagnetic generators. In 1984, Kirol described a variety of possible applications and performed thermodynamic analysis. At the time, chaos was considered to be a possible material for near room temperature applications. A thermomagnetic generator is described, for example, in U.S. Patent No. 4,428,057 to N. Tesla. It states that the magnetic properties of iron or other magnetic substances may be partially or completely destroyed or may disappear due to heating to a specific temperature. During the cooling process, the magnets are re-established and restored to their original state. This effect can be utilized to generate electricity. When an electrical conductor is exposed to a varying magnetic field, a change in the magnetic field causes an electrical current to be induced in the conductor. When, for example, the magnetic material is surrounded by a coil and then heated in a permanent magnetic field and subsequently cooled, a current is induced in the coil during heating and cooling in each case. This allows thermal energy to be converted into electricity without intermediate conversion to mechanical work. In the method described by Tesla, iron (as the magnetic substance) is heated in an oven or a closed fireplace and then cooled again. For this thermomagnetic or magnetic calorie application, the material should allow for efficient heat exchange to enable high efficiency in both the cooling and power generation processes used in heat exchangers.

US 2006/0117758 及琛〇 2〇〇9/133〇49揭示通式 Μη^ (PwGexSiz)之磁卡路里材料。較佳材料係MnFepQdM 154540.doc 201140625US 2006/0117758 and 琛〇 2〇〇9/133〇49 disclose a magnetic calorie material of the formula Μη^ (PwGexSiz). The preferred material is MnFepQdM 154540.doc 201140625

Ge0.55-0_3。或河⑽^^“以圯匀㈠们^在各情況下’該等 實例組合物包括Ge^_。該等物質仍然不具備供所有用 途用之足夠大之磁卡路里效應。 2010年1月11日申請且已在本申請案之優先日期公開之 標題為「磁卡路里材料」的歐洲專利申請案第i〇 411.6號描述一種以下通式之磁卡路里材料: (MnxFe卜〇2+2卩丨 ySiy 其中 〇.55<χ<1 ; 〇 4<y<〇.8 ; -〇.l<z<〇.l 〇 【發明内容】 本發明之目的係、提供具有強磁卡路里效應、低熱滞後性 及在0至150°C範圍内之操作溫度之磁卡路里材料。 該目的係根據本發明藉由以下通式之磁卡路里材料實 現: (MnxFei-x)2+zplySiy 其中 0.20<x<0.40 ; 〇.4<y<〇.8 ; -O.lSzSO.l。 較佳地’ 0.25分<0.35。x之最小值較佳係〇 28,更佳係 〇_3。X之最大值較佳係〇.34,尤其飢33。更佳地,〇犯 xSO.34,特定而言 〇.3〇$d33。 154540.doc 201140625 y之最小值較佳係0.4。y之最大值較佳係0.6,更佳係 0.44。更佳地,〇.4£χ£〇.6,特定言之〇.4$χ$0.44。 z可自〇以微小值變化。較佳地,-〇 〇5公% 〇5,特定言 之-0_02$ζ£0·02,尤其係 z=〇。 本發明之磁卡路里材料較佳具有Fe2P型之六邊形結構。 根據本發明已發現’小於0.54(尤其係在0.5/1.5至0.7/1.3 之範圍内)之Mn/Fe元素比例尤其產生具有安定相形成及低 熱滞後性之磁卡路里材料。 本發明材料允許應用中之操作溫度在〇。〇至+丨5〇。〇之範 圍内。 本發明材料之磁卡路里效應係與稱為強磁卡路里材料者 (例如 MnFePxASl_x、Gd5(Si,Ge)4La(Fe,Si)丨3)的磁卡路 里效應相當。 由於平衡之Mn/Fe及P/Si比,因此在1 τ之磁場下以rc/ min之掃描速度測定之熱滞後較佳係<5t:,更佳<;rc。 本發明材料之其他優點係:其等係由可大量購得且通常 分類為無毒性之元素形成。 可以任何合適之方法製造本發明所用之熱磁材料。 可藉由固相轉化或液相轉化材料之初始元素或初始人 金,隨後冷卻,之後壓製,燒結並在惰性氣錢圍下= 理並隨後冷卻至室溫;或藉由熔融紡絲該等初始元素处 始合金之熔體,來製造本發明之磁卡路里材料。 例如’藉由使材料之初始元素或初始合金在球 相反應,隨後壓製,在惰性氣體氛圍下燒結並熱處理及隨 154540.doc 201140625 後冷卻(例如緩慢冷卻)至室溫,來製造該等熱磁材料。此 方法係描述於(例如)J· Appl. Phys. 99,2006,08Q107 中。 例如,可將適量呈元素形式或初級合金形式(例如 或FhP)之錳、鐵、磷及矽於球磨機中研磨。在保護氣體 氛圍令,將該等粉末在900至i3〇(TC範圍内,較佳約 1100 C之溫度下,壓製並燒結合適之時間(較佳丨至5小 時,尤其係約2小時),隨後在了卯至⑺⑻艽範圍内,較佳 約850°C之溫度下熱處理合適之時間,例如i至1〇〇小時, 更佳10至3 0小時,尤其約2〇小時。 或者,可在感應烘箱中將該等元素粉末或初級合金粉末 溶融在一起。隨後可依序進行上述熱處理。 亦可藉由熔融紡絲來處理。其可能形成更均勻之元素分 佈,從而形成改良之磁卡路里效應(參照Rare MeUls,v〇1 25,2006年10月,544至549頁)》在該文所述之方法中, 該等初始元素係首先在氬氣氛圍下經感應熔融,並隨後在 熔融狀態下經由喷嘴噴霧至旋轉銅輥上。隨後在1〇〇〇充下 燒結並緩慢冷卻至室溫。此外,關於製造,可參考w〇 2004/068512及 WO 2009/133049。 製造该等熱磁材料之方法較佳包括以下步驟: a) 將對應於該磁卡路里材料之化學計量的化學元素及/ 或合金以固相及/或液相轉化; b) 視需要將階段a)之反應產物轉化成固體; c) 燒結及/或熱處理來自階段甸或…之固體; d) 使來自階段c)之經燒結及/或經熱處理之固體以至少 154540.doc 201140625 100 K/s之冷卻速度驟冷。 在該燒結及/或熱處理之後,當該等基於金屬之材料非 經緩慢冷卻至環境溫度,而是在高冷卻速度下驟冷時,可 顯著地降低該熱滯後,且可達成強磁卡路里效應。該冷卻 速度係至少100 Κ/s。該冷卻速度較佳係1〇〇至1〇 〇〇〇 K/s, 更佳係200至1300 K/s。特別佳之冷卻速度係3〇〇至1〇〇〇 K/s。 可藉由任何合適之冷卻方法達成該驟冷,例如藉由利用 水或水性液體(如冷卻水或冰/水混合物)來驟冷該固體。例 如,可使該等固體落入經冰冷卻之水中。亦可利用過冷氣 體(例如液氮)驟冷該等固體。熟悉此項技術者已知其他驟 冷方法。有利於本發明者係受控及快速的冷卻。 製造該等熱磁材料之剩餘部份較不重要,其限制條件係 最終步驟包括在本發明之冷卻速度下驟冷該經燒結及/或 熱處理之固體。可將該方法應用於製造上述任何合適之熱 磁材料。 在該方法之步驟a)中,將存在於隨後熱磁材料中之元素 及/或合金以對應於該熱磁材料之化學計量並以固相及/或 液相轉化。 較佳係藉由在封閉容器中或在擠壓機中組合加熱該等元 素及/或合金’或藉由在球磨機中之固相反應,來進行階 段a)之反應。特佳係進行固相反應,其尤其係在球磨機中 實施。大體已知該反應(參照上述文獻)…般而言,將存 在於隨後之熱磁材料中之個別元素之粉末或兩種或更多種 154540.doc 201140625 個別元素之合金粉末以粉狀形式以合適之重量比例混合。 若需要,可額外研磨該混合物以獲得微晶粉末混合物。較 佳係在球磨機中加熱該粉末混合物,其造成進一步粉碎及 良好混合,且造成該粉末混合物之固相反應。或者,以所 選擇之化學計量將該等個別元素作為粉末混合,並隨後炼 融》 在封閉容器中組合加熱可固定揮發性元素並控制該化學 計量。明確言之在使用磷之情況下’其在開放系統中將易 於蒸發。 在該反應之後’燒結及/或熱處理該固體,為此可提供 一或多個中間步驟。例如,在燒結及/或熱處理之前,可 使階段a)中獲得之固體接受成型。 或者’可將自該球磨機獲得之固體送至溶融紡絲製程。 溶融纺絲方法本身係已知’且係描述於(例如冰咖Ge0.55-0_3. Or the river (10) ^^ "to 圯 ( (1) ^ In each case 'These example compositions include Ge ^ _. These substances still do not have enough magnetic calorie effect for all purposes. January 11, 2010 European Patent Application No. 411.6, entitled "Magnetic Calorie Material", which is filed on the priority date of the present application, describes a magnetic calorie material of the following general formula: (MnxFe Bu 2+2卩丨ySiy Wherein 〇.55<χ<1;〇4<y<〇.8;-〇.l<z<〇.l 〇 [Abstract] The object of the present invention is to provide a strong magnetic calorie effect and low thermal hysteresis And a magnetic calorie material having an operating temperature in the range of 0 to 150 ° C. The object is achieved according to the invention by a magnetic calorie material of the formula: (MnxFei-x) 2+zplySiy wherein 0.20<x<0.40;〇.4<y<〇.8; -O.lSzSO.l. Preferably '0.25 points < 0.35. The minimum value of x is preferably 28, more preferably 〇3. The maximum value of X is preferably The system is .34, especially hungry 33. More preferably, it is xSO.34, specifically 〇.3〇$d33. 154540.doc 201140625 y is the best value The maximum value of 0.4.y is preferably 0.6, more preferably 0.44. More preferably, 〇.4£χ£〇.6, specific words 〇4.χ$0.44. z can be changed by a small value. Preferably, -5 %% 〇5, specifically -0_02$ζ£0·02, especially z=〇. The magnetic calorie material of the present invention preferably has a hexagonal structure of Fe2P type. It has been found that a ratio of Mn/Fe element of less than 0.54 (especially in the range of 0.5/1.5 to 0.7/1.3) produces, in particular, a magnetic calorie material with stable phase formation and low thermal hysteresis. The material of the invention allows operation in the application. The temperature is in the range of 〇.〇 to +丨5〇.〇 The magnetic calorie effect of the material of the invention is called a strong magnetic calorie material (for example, MnFePxASl_x, Gd5(Si,Ge)4La(Fe,Si)丨3 The magnetic calorie effect is equivalent. Due to the balanced Mn/Fe and P/Si ratio, the thermal hysteresis measured at a scan speed of rc/min under a magnetic field of 1 τ is preferably <5t:, more preferably <5t: ; rc. Other advantages of the materials of the invention are that they are formed from elements that are commercially available and generally classified as non-toxic. Method for producing the thermomagnetic material used in the present invention. The initial element or initial human gold of the material can be converted by solid phase conversion or liquid phase, followed by cooling, followed by pressing, sintering and cooling under inert gas and then cooling to the chamber. The magnetic calorie material of the present invention is produced by melt spinning the melt of the initial alloy. For example, 'the heat is produced by reacting the initial element or initial alloy of the material in the spherical phase, followed by pressing, sintering and heat treatment under an inert gas atmosphere, and cooling (eg, slow cooling) to room temperature with 154540.doc 201140625. Magnetic material. This method is described, for example, in J. Appl. Phys. 99, 2006, 08Q107. For example, an appropriate amount of manganese, iron, phosphorus, and antimony in elemental form or primary alloy form (e.g., or FhP) may be ground in a ball mill. In a protective gas atmosphere, the powders are pressed and sintered at a temperature in the range of 900 to 3 Torr (preferably at about 1100 C, for a suitable period of time (preferably 丨 to 5 hours, especially about 2 hours), Then, it is heat-treated at a temperature of about 850 ° C for a suitable period of time, for example, i to 1 hour, more preferably 10 to 30 hours, especially about 2 hours, in the range of (7) (8) 卯. These elemental powders or primary alloy powders are melted together in an induction oven. The above heat treatment can then be carried out sequentially. It can also be treated by melt spinning, which may result in a more uniform distribution of elements, resulting in an improved magnetic calorie effect. (Refer to Rare MeUls, v〇1 25, October 2006, pages 544 to 549). In the method described herein, the initial elements are first inductively melted under an argon atmosphere and subsequently in a molten state. Sprayed onto the rotating copper roll via a nozzle, followed by sintering at 1 Torr and slowly cooling to room temperature. Further, for manufacturing, reference is made to W〇2004/068512 and WO 2009/133049. The manufacture of such thermomagnetic materials Method package The following steps: a) converting the stoichiometric chemical elements and/or alloys corresponding to the magnetic calorie material in a solid phase and/or a liquid phase; b) converting the reaction product of stage a) into a solid as needed; c) sintering And/or heat treating the solid from stage or ...; d) quenching the sintered and/or heat treated solid from stage c) at a cooling rate of at least 154540.doc 201140625 100 K/s. After the sintering and/or heat treatment, when the metal-based material is not slowly cooled to ambient temperature, but is quenched at a high cooling rate, the thermal hysteresis can be significantly reduced and a strong magnetic calorie effect can be achieved. . This cooling rate is at least 100 Κ/s. The cooling rate is preferably from 1 Torr to 1 〇 / K/s, more preferably from 200 to 1300 K/s. A particularly good cooling rate is 3 〇〇 to 1 〇〇〇 K/s. The quenching can be accomplished by any suitable cooling method, such as by quenching the solids with water or an aqueous liquid such as cooling water or an ice/water mixture. For example, the solids can be allowed to fall into ice-cooled water. The solids may also be quenched by subcooled gas (e.g., liquid nitrogen). Other quenching methods are known to those skilled in the art. It is advantageous for the inventors to have controlled and rapid cooling. The remainder of the manufacture of the thermomagnetic materials is less critical, with the limitation that the final step comprises quenching the sintered and/or heat treated solid at the cooling rate of the present invention. The method can be applied to the manufacture of any suitable thermomagnetic material as described above. In step a) of the process, the elements and/or alloys present in the subsequent thermomagnetic material are converted to the stoichiometry of the thermomagnetic material and converted in a solid phase and/or a liquid phase. Preferably, the reaction of stage a) is carried out by heating the elements and/or alloys ' in combination in a closed vessel or in an extruder or by solid phase reaction in a ball mill. The Tetra system performs a solid phase reaction, which is especially carried out in a ball mill. The reaction is generally known (refer to the above literature). Generally, a powder of individual elements present in a subsequent thermomagnetic material or two or more alloy powders of 154540.doc 201140625 individual elements are in powder form. Mix in suitable weight ratios. If desired, the mixture can be additionally ground to obtain a microcrystalline powder mixture. Preferably, the powder mixture is heated in a ball mill which causes further comminution and good mixing and causes a solid phase reaction of the powder mixture. Alternatively, the individual elements may be mixed as a powder in a selected stoichiometry, and then refining. Combined heating in a closed vessel may immobilize the volatile element and control the stoichiometry. It is clear that in the case of the use of phosphorus, it will be susceptible to evaporation in an open system. The solid is 'sintered and/or heat treated after the reaction, for which one or more intermediate steps may be provided. For example, the solid obtained in stage a) can be subjected to shaping prior to sintering and/or heat treatment. Alternatively, the solids obtained from the ball mill can be sent to a melt spinning process. The melt spinning method itself is known 'and is described in (for example, ice coffee)

Metals,25 卷,200ό 年 10 月,544 至 549 頁;及 WO 2004/ 068512與 WO 2009/133049 中。 在s亥等方法中,將階段a)中得到之組合物熔融並喷霧於 旋轉冷金屬輥上。可藉由位在該喷嘴上游之高壓或位在該 喷嘴下游之減壓達成該喷霧。一般而言,使用可另外視需 要經冷卻之旋轉銅滾筒或輥。該銅滾筒較佳在1〇至4〇 m/s ’尤其20至3 0 m/s之表面速度下旋轉。在該銅滾筒上, 較佳係在102至1〇7 K/s之速度下,更佳係在至少1〇4 k/s之 速度下,尤其係在〇,5至2xl〇6 κ/s之速度下,冷卻該液體 組合物。 154540.doc 201140625 亦如同階段a)中之反應一般,可在減壓下或在惰性氣體 氛圍下進行該熔融紡絲。 因為可縮短隨後之燒結與熱處理,故該熔融紡絲達到高 處理速度。明確言之在工業規模下,該等熱磁材料之製造 因此明顯變得更加經濟可行。喷霧乾燥亦導致高處理速 度。特佳係進行熔融紡絲。 或者,可在階段b)進行喷霧冷卻,其中將來自階段叻之 組合物之熔體喷霧至喷霧塔中。例如,可另外冷卻該喷霧 塔。在喷霧塔中,一般達到1〇3至1〇5 K/s範圍内,尤其約 l〇4K/s之冷卻速度。 該固體之燒結及/或熱處理係如上所述於階段中實現。 在使用熔融紡絲法之情況中,可使燒結或熱處理之時間 顯著縮短,例如縮短至5分鐘至5小時,較佳1〇分鐘至W、 時之時間。與燒結1()小時及熱處理5〇小時之其他慣用值相 比,此產生較大的時間優勢。 該燒結/熱處理造成該等顆粒邊界之部份熔融,使得材 料進一步地壓實。 因此,階段b)中之溶融及快速冷卻使得階段之持續時 間顯著減少。此亦允料續製造料熱磁材料。 之應用中。例 中。特佳係用 可將本發明之磁卡路里材料用於任何合適 如,其等可用於冷卻器、熱交換器或發電器 於冰箱中。 【實施方式】 藉由實例詳細描述本發明。 154540.doc 201140625 實例 製備磁卡路里材料 將15克錳薄片、矽薄片及Fe2P粉末之混合物(標稱化學 計量為河11。.461.4?〇.68丨().4)於81^(球對粉末之重量比)為4之 行星式球磨機中研磨10小時。隨後將研磨得到之粉末壓製 成圓柱形式,並密封於200 mbar氬氣下之安额。隨後為 在1100°C下2小時之燒結步驟及在850°C下20小時之熱處 理。在該熔爐已冷卻後,移出該樣品。 以同樣方法製備標稱組成為Mno.66FeK34Po.58Sio.42、 Mn。.62Fe1·38P。.58Si◦.42及Mn。.66Fe1.34P。.56Sio.44之樣品。 磁性 在Quantum Design MPMSXL SQUID磁力計中測定如此 製備之樣品之磁性。 圖1顯示在1 T磁場中’以1 K/min之掃描速度測定之磁化 M(Am2kg )之溫度關係曲線。在過渡區之加熱與冷卻曲線 之間之溫度關係曲線顯示該等樣品之一級磁性轉變之熱滯 後。該值係視特定樣品而定,但在所研究之樣品中,始終 )於2 K。由於該急劇磁性轉變而導致之在約70 Am'g.1區 域中之磁化之顯著改變顯示巨大之磁卡路里效應。 圖2顯不該等樣品之作為溫度函數之磁熵之改變 -△Sn(J/kg K)。該磁熵之改變係來源於利用方程式 在接近該過渡區之不同溫度下測量之磁等溫線。磁熵改變 所得之數值係相當於所謂GMCE(強磁卡路里效應材料)之 對應值。 154540.doc -11· 201140625 該等空心符號係與〇至1 τ之場變化相關。該等實心符號 代表0至2 Τ之場變化。 【圖式簡單說明】 圖1顯示在1 Τ磁場中,於1 K/min之掃描速度下測定之磁 化M(Am2kg·”之溫度關係曲線。 圖2顯示樣品之作為溫度函數的磁熵之改變-ASnCJ/kg K) 〇 154540.doc •12·Metals, Volume 25, October, 544 to 549; and WO 2004/068512 and WO 2009/133049. In the method of shai or the like, the composition obtained in the stage a) is melted and sprayed onto a rotating cold metal roll. The spray can be achieved by a high pressure upstream of the nozzle or a reduced pressure downstream of the nozzle. In general, use a rotating copper drum or roller that can be additionally cooled as needed. The copper cylinder preferably rotates at a surface speed of from 1 Torr to 4 〇 m/s', especially from 20 to 30 m/s. Preferably, the copper drum is at a speed of 102 to 1 〇 7 K/s, more preferably at a speed of at least 1 〇 4 k/s, especially at 〇, 5 to 2xl 〇 6 κ/s. At this speed, the liquid composition is cooled. 154540.doc 201140625 Also like the reaction in stage a), the melt spinning can be carried out under reduced pressure or under an inert gas atmosphere. The melt spinning achieves a high processing speed because subsequent sintering and heat treatment can be shortened. Clearly speaking, on an industrial scale, the manufacture of such thermomagnetic materials has thus become significantly more economically viable. Spray drying also results in high processing speeds. The special system is melt-spun. Alternatively, spray cooling can be carried out in stage b) wherein the melt from the stage mash composition is sprayed into the spray tower. For example, the spray tower can be additionally cooled. In the spray tower, it generally reaches a cooling rate in the range of 1 〇 3 to 1 〇 5 K/s, especially about 1 〇 4 K/s. The sintering and/or heat treatment of the solid is carried out in stages as described above. In the case of using the melt spinning method, the time for sintering or heat treatment can be remarkably shortened, for example, to 5 minutes to 5 hours, preferably 1 minute to W hours. This produces a greater time advantage than other conventional values of sintering 1 () hours and heat treatment for 5 hours. The sintering/heat treatment causes partial melting of the grain boundaries to further compact the material. Therefore, the melting and rapid cooling in stage b) results in a significant reduction in the duration of the stage. This also allows the continuous production of thermomagnetic materials. In the application. In the example. Exceptional Use The magnetic calorie material of the present invention can be used in any suitable form, such as, for use in a chiller, heat exchanger or generator in a refrigerator. [Embodiment] The present invention is described in detail by way of examples. 154540.doc 201140625 Example Preparation of Magnetic Calorie Material A mixture of 15 grams of manganese flakes, bismuth flakes and Fe2P powder (nominal stoichiometry for river 11.461.4??.68丨().4) at 81^(ball to powder) The weight ratio of the planetary ball mill of 4 was ground for 10 hours. The ground powder was then pressed into a cylindrical shape and sealed to an ampoule at 200 mbar argon. This was followed by a 2 hour sintering step at 1100 ° C and a heat treatment at 850 ° C for 20 hours. After the furnace has cooled, the sample is removed. The nominal composition was prepared in the same manner as Mno.66FeK34Po.58Sio.42, Mn. .62Fe1·38P. .58Si◦.42 and Mn. .66Fe1.34P. Sample of .56Sio.44. Magnetic The magnetic properties of the samples thus prepared were determined in a Quantum Design MPMSXL SQUID magnetometer. Fig. 1 is a graph showing the temperature relationship of magnetization M (Am 2 kg ) measured at a scanning speed of 1 K/min in a 1 T magnetic field. The temperature relationship between the heating and cooling curves in the transition zone shows the thermal hysteresis of the one-stage magnetic transition of the samples. This value depends on the particular sample, but is always 2 K in the sample under study. The significant change in magnetization in the region of about 70 Am'g.1 due to this sharp magnetic transition shows a large magnetic calorie effect. Figure 2 shows the change in magnetic entropy as a function of temperature for these samples - ΔSn (J/kg K). The change in magnetic entropy is derived from the magnetic isotherms measured using equations at different temperatures near the transition zone. The value obtained by changing the magnetic entropy is equivalent to the corresponding value of the so-called GMCE (strong magnetic calorie effect material). 154540.doc -11· 201140625 These hollow symbols are related to the field variation from 〇 to 1 τ. These solid symbols represent field variations from 0 to 2 。. [Simple description of the diagram] Figure 1 shows the temperature dependence of magnetization M (Am2kg·" measured at a scanning speed of 1 K/min in a 1 Τ magnetic field. Figure 2 shows the change in magnetic entropy of the sample as a function of temperature. -ASnCJ/kg K) 〇154540.doc •12·

Claims (1)

201140625 七、申請專利範圍: 1. 一種磁卡路里材料,其具有以下通式 其中 (MnxFei.x)2+zPi 外 〇.20<χ<〇.4〇 ; °-4<y<〇.8 ; -〇.l$zs〇.l。 2. 3. 4. 如請求項l之磁卡路里材料,其中〇 27$χ$〇 如請求項1之磁卡路里材料,其中〇4$y$〇6 如請求項1至3中任一項之班士 ,女田U 項之磁卡路里材料,其中_〇 〇5<ζ 0.05。 "" 5. 如請求項⑴中任-項之磁卡路里材料,其具有⑽類 型之六邊形結構。 6. —種製造如請求項丨至3中任一項之磁卡路里材料之方 法’其係、藉由固相II變或液相II變該材料之初始元素或 初始合金,視需要冷卻,隨後壓製,在惰性氣體氛圍下 燒結及熱處理並隨後冷卻至室溫;或藉由熔融紡絲該等 初始元素或初始合金之炼體。 7. 如凊求項6之方法,其包括以下步驟: a) 以對應於該磁卡路里材料之化學計量並以固相及/或 液相轉化化學元素及/或合金; b) 視需要將階段a)之反應產物轉化成固體; c) 燒結及/或熱處理來自階段a)*b)之固體; d) 使來自階段c)之經燒結及/或熱處理之固體以至少100 154540.doc 201140625 K/s之冷卻速度驟冷。 8.如請求項1至3中任一項之磁卡路里材料,其係用於冷卻 器、熱交換器或發電機中。 154540.doc201140625 VII. Patent application scope: 1. A magnetic calorie material having the following general formula (MnxFei.x)2+zPi outer 〇.20<χ<〇.4〇;°-4<y<〇.8; -〇.l$zs〇.l. 2. 3. 4. In the magnetic calorie material of claim 1, wherein 〇27$χ$〇 is the magnetic calorie material of claim 1, where 〇4$y$〇6 is as in any of claims 1 to 3. Banshi, the female magnetic material of the U-shaped item, _〇〇5<ζ0.05. "" 5. The magnetic calorie material of any of the items in item (1) has a hexagonal structure of type (10). 6. A method of manufacturing a magnetic calorie material according to any one of claims 3 to 3, wherein the initial element or initial alloy of the material is changed by solid phase II or liquid phase II, optionally cooled, and subsequently Pressing, sintering and heat treatment under an inert gas atmosphere and then cooling to room temperature; or spinning of the initial elements or initial alloys by melt spinning. 7. The method of claim 6, comprising the steps of: a) converting chemical elements and/or alloys in a solid phase and/or a liquid phase corresponding to the stoichiometry of the magnetic calorie material; b) as needed The reaction product of a) is converted to a solid; c) sintered and/or heat treated from the solids of stage a)*b); d) the solidified and/or heat treated solid from stage c) is at least 100 154540.doc 201140625 K The cooling rate of /s is quenched. 8. The magnetic calorie material of any of claims 1 to 3 for use in a chiller, heat exchanger or generator. 154540.doc
TW100108424A 2010-03-11 2011-03-11 Magnetocaloric materials TW201140625A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10156184 2010-03-11

Publications (1)

Publication Number Publication Date
TW201140625A true TW201140625A (en) 2011-11-16

Family

ID=44562927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108424A TW201140625A (en) 2010-03-11 2011-03-11 Magnetocaloric materials

Country Status (11)

Country Link
EP (1) EP2545563B1 (en)
JP (1) JP5809646B2 (en)
KR (1) KR101848520B1 (en)
CN (1) CN102792393B (en)
AU (1) AU2011225713A1 (en)
BR (1) BR112012021783A2 (en)
CA (1) CA2789797A1 (en)
NZ (1) NZ601798A (en)
RU (1) RU2012143308A (en)
TW (1) TW201140625A (en)
WO (1) WO2011111004A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513536A (en) * 2011-12-28 2012-06-27 北京工业大学 Process for preparing magnetic cooling material
US9245673B2 (en) 2013-01-24 2016-01-26 Basf Se Performance improvement of magnetocaloric cascades through optimized material arrangement
CN105190200A (en) 2013-05-08 2015-12-23 巴斯夫欧洲公司 Use of a rotating magnetic shielding system for a magnetic cooling device
US9887027B2 (en) 2013-09-27 2018-02-06 Basf Se Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
KR101575861B1 (en) 2014-02-13 2015-12-10 충북대학교 산학협력단 Magnetocaloric metal compound and method for preparing thereof
JP6606790B2 (en) * 2014-12-26 2019-11-20 大電株式会社 Method for manufacturing magnetic refrigeration material
KR102563429B1 (en) * 2015-10-30 2023-08-04 테크니쉐 유니버시테이트 델프트 Magnetocaloric materials containing manganese, iron, silicon, phosphorus, and nitrogen
CN109313971B (en) * 2016-06-10 2021-02-19 巴斯夫欧洲公司 Magnetocaloric materials comprising manganese, iron, silicon, phosphorus and carbon
US11056265B2 (en) 2017-10-04 2021-07-06 Calagen, Inc. Magnetic field generation with thermovoltaic cooling
AU2018345384B2 (en) * 2017-10-04 2023-08-03 Calagen, Inc. Thermo-electric element driven by electric pulses
KR102069770B1 (en) 2018-06-07 2020-01-23 한국생산기술연구원 Magneto-caloric alloy and preparing method thereof
JP2022545008A (en) 2019-08-20 2022-10-24 カラジェン インコーポレイテッド A circuit for generating electrical energy
US11942879B2 (en) 2019-08-20 2024-03-26 Calagen, Inc. Cooling module using electrical pulses
KR102651747B1 (en) 2021-11-30 2024-03-28 한국재료연구원 Magneto-caloric alloy and preparing method thereof
CN114540657B (en) * 2022-03-24 2022-11-25 中南大学 Rare earth copper alloy material with broadband electromagnetic shielding function and preparation method thereof
KR102589531B1 (en) * 2022-04-20 2023-10-16 한국재료연구원 Magneto-caloric alloy and preparing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US428057A (en) 1890-05-13 Nikola Tesla Pyromagneto-Electric Generator
NL1018668C2 (en) * 2001-07-31 2003-02-03 Stichting Tech Wetenschapp Material suitable for magnetic cooling, method of preparing it and application of the material.
CA2514773C (en) * 2003-01-29 2012-10-09 Stichting Voor De Technische Wetenschappen A magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material
GB2424901B (en) * 2005-04-01 2011-11-09 Neomax Co Ltd Method of making a sintered body of a magnetic alloyl
DE102006046041A1 (en) * 2006-09-28 2008-04-03 Siemens Ag Heat transfer system used as a cooling/heating system comprises a magnetizable body having an open-pore foam made from a material with a magneto-calorific effect
US8293030B2 (en) * 2007-04-05 2012-10-23 Universite De Lorraine Intermetallic compounds, their use and a process for preparing the same
EP2107575B1 (en) * 2008-03-31 2011-07-13 Université Henri Poincaré - Nancy 1 New intermetallic compounds, their use and a process for preparing the same
TW201003024A (en) * 2008-04-28 2010-01-16 Basf Se Open-cell porous shaped bodies for heat exchangers
JP5855457B2 (en) 2008-04-28 2016-02-09 テクノロジー、ファウンデーション、エステーヴェー Method for producing metal-based material for magnetic cooling or heat pump
TW201145319A (en) * 2010-01-11 2011-12-16 Basf Se Magnetocaloric materials

Also Published As

Publication number Publication date
EP2545563A1 (en) 2013-01-16
AU2011225713A1 (en) 2012-08-23
CN102792393B (en) 2016-06-15
RU2012143308A (en) 2014-04-20
WO2011111004A1 (en) 2011-09-15
BR112012021783A2 (en) 2016-05-17
JP2013527308A (en) 2013-06-27
CN102792393A (en) 2012-11-21
KR20130051440A (en) 2013-05-20
JP5809646B2 (en) 2015-11-11
KR101848520B1 (en) 2018-04-12
EP2545563A4 (en) 2016-02-17
CA2789797A1 (en) 2011-09-15
NZ601798A (en) 2014-01-31
EP2545563B1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
TW201140625A (en) Magnetocaloric materials
TW201145319A (en) Magnetocaloric materials
JP5855457B2 (en) Method for producing metal-based material for magnetic cooling or heat pump
JP5793074B2 (en) Thermomagnetic generator
JP5887599B2 (en) Polycrystalline magnetocaloric material
US20110220838A1 (en) Magnetocaloric materials