EP2545563B1 - Magnetocaloric material and process for producing it - Google Patents
Magnetocaloric material and process for producing it Download PDFInfo
- Publication number
- EP2545563B1 EP2545563B1 EP11752934.7A EP11752934A EP2545563B1 EP 2545563 B1 EP2545563 B1 EP 2545563B1 EP 11752934 A EP11752934 A EP 11752934A EP 2545563 B1 EP2545563 B1 EP 2545563B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetocaloric
- cooling
- materials
- magnetocaloric material
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000000463 material Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 15
- 238000001816 cooling Methods 0.000 claims description 26
- 238000005245 sintering Methods 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000002074 melt spinning Methods 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000000843 powder Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 238000010791 quenching Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 108010053481 Antifreeze Proteins Proteins 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003746 solid phase reaction Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/012—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
- H01F1/015—Metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0207—Using a mixture of prealloyed powders or a master alloy
- C22C33/0214—Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V99/00—Subject matter not provided for in other main groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Definitions
- the invention relates to polycrystalline magnetocaloric materials, to processes for their production and to their use in coolers, heat exchangers or generators, in particular in refrigerators.
- Thermomagnetic materials also referred to as magnetocaloric materials, can be used for cooling, for example in refrigerators or air conditioning units, in heat pumps or for direct generation of power from heat without intermediate connection of a conversion to mechanical energy.
- Magnetic cooling techniques are based on the magnetocaloric effect (MCE) and may constitute an alternative to the known vapor circulation cooling methods.
- MCE magnetocaloric effect
- the alignment of randomly aligned magnetic moments by an external magnetic field leads to heating of the material.
- This heat can be removed from the MCE material to the surrounding atmosphere by a heat transfer.
- the magnetic field is then switched off or removed, the magnetic moments revert back to a random arrangement, which leads to cooling of the material below ambient temperature. This effect can be exploited for cooling purposes, but also for heating.
- a heat transfer medium such as water is used for heat removal from the magnetocaloric material.
- thermomagnetic generators are likewise based on the magnetocaloric effect.
- a material which exhibits a magnetocaloric effect a small change in temperature can lead to a big change in magnetization. Magnetized by an external magnetic field, when the material is heated, a big change in the induction flow through a coil and thus an electromotive force are generated. Cooling the material below the critical temperature leads again to the occurrence of an electromotive force. This effect can be exploited for conversion of heat to electrical energy.
- the magnetocaloric generation of electrical energy is associated with magnetic heating and cooling.
- the process for energy generation was described as pyromagnetic energy generation.
- these magnetocaloric devices can have a significantly higher energy efficiency.
- a pyromagnetoelectric generator is described, for example, by N. Tesla in US 428,057 . It is stated that the magnetic properties of iron or other magnetic substances can be destroyed partially or entirely or can disappear as a result of heating to a particular temperature. In the course of cooling, the magnetic properties are re-established and return to the starting state. This effect can be exploited to generate electrical power.
- an electrical conductor is exposed to a varying magnetic field, the changes in the magnetic field lead to the induction of an electrical current in the conductor.
- the magnetic material is surrounded by a coil and is then heated in a permanent magnetic field and then cooled, an electrical current is induced in the coil in the course of heating and cooling in each case. This allows thermal energy to be converted to electrical energy, without an intermediate conversion to mechanical work.
- iron as the magnetic substance, is heated by means of an oven or a closed fireplace and then cooled again.
- thermomagnetic or magnetocaloric applications the material should permit efficient heat exchange in order to be able to achieve high efficiencies. Both in the course of cooling and in the course of power generation, the thermomagnetic material is used in a heat exchanger.
- magnetocaloric materials of the general formula MnFe(P w Ge x Si z ).
- Preferred materials are MnFeP 0.45-0.70 Ge 0.55-0.30 or MnFeP 0.5-0.70 (Si/Ge) 0.5-0.30 .
- the example compositions comprise proportions of Ge. These substances still do not have a sufficiently great magnetocaloric effect for all applications.
- x preferably has a minimum value of 0.28, more preferably of 0.3.
- the maximum value of x is preferably 0.34, in particular 0.33. More preferably 0.28 ⁇ x ⁇ 0.34, in particular 0.30 ⁇ x ⁇ 0.33.
- y preferably has a minimum value of 0.4.
- the maximum value of y is preferably 0.6, more preferably 0.44. More preferably 0.4 ⁇ y ⁇ 0.6, in particular 0.4 ⁇ y ⁇ 0.44.
- z may differ from 0 by small values.
- -0.05 ⁇ z ⁇ 0.05, in particular -0.02 ⁇ z ⁇ 0.02, especially z 0.
- the inventive magnetocaloric materials preferably have a hexagonal structure of the Fe 2 P type.
- the magnetocaloric effect of the inventive materials is comparable to the magnetocaloric effect of what are known as giant magnetocaloric materials such as MnFeP x As 1-x ,Gd 5 (Si, Ge) 4 or La(Fe, Si) 13 .
- the thermal hysteresis determined in a magnetic field of 1 T with a sweep rate of 1°C/min, is preferably ⁇ 5°C, more preferably ⁇ 2°C, due to the balanced Mn/Fe and P Si ratios.
- inventive materials additionally have the advantage that they are formed from elements which are available in large amounts and are generally classified as nontoxic.
- thermomagnetic materials used in accordance with the invention can be produced in any suitable manner.
- the inventive magnetocaloric materials can be produced by the process of claim 6.
- thermomagnetic materials are produced, for example, by solid phase reaction of the starting elements or starting alloys for the material in a ball mill, subsequent pressing, sintering and heat treatment under inert gas atmosphere and subsequent cooling, for example slow cooling, to room temperature.
- solid phase reaction of the starting elements or starting alloys for the material in a ball mill
- subsequent pressing, sintering and heat treatment under inert gas atmosphere and subsequent cooling, for example slow cooling, to room temperature.
- subsequent cooling for example slow cooling
- suitable amounts of Mn, Fe, P and Si in element form or in the form of preliminary alloys such as Mn 2 P or Fe 2 P can be ground in a ball mill.
- the powders are pressed and sintered at temperatures in the range from 900 to 1300°C, preferably of about 1100°C, for a suitable time, preferably 1 to 5 hours, especially about 2 hours, and then heat treated at temperatures in the range from 700 to 1000°C, preferably about 850°C, for suitable periods, for example 1 to 100 hours, more preferably 10 to 30 hours, especially about 20 hours, under a protective gas atmosphere.
- the element powders or preliminary alloy powders can be melted together in an induction oven. It is then possible in turn to perform a heat treatment as specified above.
- thermomagnetic materials comprising the following steps:
- the thermal hysteresis can be reduced significantly and a large magnetocaloric effect can be achieved when the magnetocaloric materials are not cooled slowing to ambient temperature after the sintering and/or heat treatment, but rather are quenched at a high cooling rate.
- This cooling rate is at least 100 K/s.
- the cooling rate is preferably from 100 to 10 000 K/s, more preferably from 200 to 1300 K/s. Especially preferred cooling rates are from 300 to 1000 K/s.
- the quenching can be achieved by any suitable cooling processes, for example by quenching the solid with water or aqueous liquids, for example cooled water or ice/water mixtures.
- the solids can, for example, be allowed to fall into ice-cooled water. It is also possible to quench the solids with subcooled gases such as liquid nitrogen. Further processes for quenching are known to those skilled in the art. What is advantageous here is controlled and rapid cooling.
- the rest of the production of the magnetocaloric/thermomagnetic materials is less critical, provided that the last step comprises the quenching of the sintered and/or heat treated solid at the inventive cooling rate.
- the process may be applied to the production of any suitable thermomagnetic materials, as described above.
- step (a) of the process the elements and/or alloys which are present in the later thermomagnetic material are converted in a stoichiometry which corresponds to the thermomagnetic material in the solid or liquid phase.
- a reaction is known in principle; cf. the documents cited above.
- powders of the individual elements or powders of alloys of two or more of the individual elements which are present in the later thermomagnetic material are mixed in pulverulent form in suitable proportions by weight. If necessary, the mixture can additionally be ground in order to obtain a microcrystalline powder mixture.
- This powder mixture is preferably heated in a ball mill, which leads to further comminution and also good mixing, and to a solid phase reaction in the powder mixture.
- the individual elements are mixed as a powder in the selected stoichiometry and then melted.
- the combined heating in a closed vessel allows the fixing of volatile elements and control of the stoichiometry. Specifically in the case of use of phosphorus, this would evaporate easily in an open system.
- reaction is followed by sintering and/or heat treatment of the solid, for which one or more intermediate steps can be provided.
- the solid obtained in stage a) can be subjected to shaping before it is sintered and/or heat treated.
- melt-spinning processes are known per se and are described, for example, in Rare Metals, Vol. 25, October 2006, pages 544 to 549 , and also in WO 2004/068512 and WO 2009/133049 , which however do not form part of the present invention.
- the composition obtained in stage a) is melted and sprayed onto a rotating cold metal roller.
- This spraying can be achieved by means of elevated pressure upstream of the spray nozzle or reduced pressure downstream of the spray nozzle.
- a rotating copper drum or roller is used, which can additionally optionally be cooled.
- the copper drum preferably rotates at a surface speed of from 10 to 40 m/s, especially from 20 to 30 m/s.
- the liquid composition is cooled at a rate of preferably from 10 2 to 10 7 K/s, more preferably at a rate of at least 10 4 K/s, especially with a rate of from 0.5 to 2 x 10 6 K/s.
- the melt-spinning like the reaction in stage a) too, can be performed under reduced pressure or under an inert gas atmosphere.
- melt-spinning achieves a high processing rate, since the subsequent sintering and heat treatment can be shortened. Specifically on the industrial scale, the production of the thermomagnetic materials thus becomes significantly more economically viable. Spray-drying also leads to a high processing rate. Particular preference is given to performing melt spinning.
- spray cooling can be carried out, in which a melt of the composition from stage a) is sprayed into a spray tower.
- the spray tower may, for example, additionally be cooled.
- cooling rates in the range from 10 3 to 10 5 K/s, especially about 10 4 K/s, are frequently achieved.
- stage c The sintering and/or heat treatment of the solid is effected in stage c) as described above.
- the period for sintering or heat treatment can be shortened significantly, for example to periods of from 5 minutes to 5 hours, preferably from 10 minutes to 1 hour. Compared to the otherwise customary values of 10 hours for sintering and 50 hours for heat treatment, this results in a major time advantage.
- the sintering/heat treatment results in partial melting of the particle boundaries, such that the material is compacted further.
- stage b) The melting and rapid cooling in stage b) thus allows the duration of stage c) to be reduced considerably. This also allows continuous production of the thermomagnetic materials.
- inventive magnetocaloric materials can be used in any suitable applications.
- they are used in coolers, heat exchangers or generators. Particular preference is given to use in refrigerators.
- the magnetic properties of the samples thus prepared were determined in a Quantum Design MPMSXL SQUID magnetometer.
- the unfilled symbols relate to a field change of 0-1 T.
- the filled symbols represent a field change for 0-2 T.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Compounds Of Iron (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Heat Treatment Of Articles (AREA)
Description
- The invention relates to polycrystalline magnetocaloric materials, to processes for their production and to their use in coolers, heat exchangers or generators, in particular in refrigerators.
- Thermomagnetic materials, also referred to as magnetocaloric materials, can be used for cooling, for example in refrigerators or air conditioning units, in heat pumps or for direct generation of power from heat without intermediate connection of a conversion to mechanical energy.
- Such materials are known in principle and are described, for example, in
WO 2004/068512 . Magnetic cooling techniques are based on the magnetocaloric effect (MCE) and may constitute an alternative to the known vapor circulation cooling methods. In a material which exhibits a magnetocaloric effect, the alignment of randomly aligned magnetic moments by an external magnetic field leads to heating of the material. This heat can be removed from the MCE material to the surrounding atmosphere by a heat transfer. When the magnetic field is then switched off or removed, the magnetic moments revert back to a random arrangement, which leads to cooling of the material below ambient temperature. This effect can be exploited for cooling purposes, but also for heating. Typically, a heat transfer medium such as water is used for heat removal from the magnetocaloric material. - The materials used in thermomagnetic generators are likewise based on the magnetocaloric effect. In a material which exhibits a magnetocaloric effect, a small change in temperature can lead to a big change in magnetization. Magnetized by an external magnetic field, when the material is heated, a big change in the induction flow through a coil and thus an electromotive force are generated. Cooling the material below the critical temperature leads again to the occurrence of an electromotive force. This effect can be exploited for conversion of heat to electrical energy.
- The magnetocaloric generation of electrical energy is associated with magnetic heating and cooling. At the time of first conception, the process for energy generation was described as pyromagnetic energy generation. Compared to devices of the Peltier or Seebeck type, these magnetocaloric devices can have a significantly higher energy efficiency.
- The research into this physical phenomenon began in the late 19th century, when two scientists, Tesla and Edison, filed a patent on pyromagnetic generators. In 1984, Kirol described numerous possible applications and conducted thermodynamic analyses thereof. At that time, gadolinium was considered to be a potential material for applications close to room temperature.
- A pyromagnetoelectric generator is described, for example, by
N. Tesla in US 428,057 . It is stated that the magnetic properties of iron or other magnetic substances can be destroyed partially or entirely or can disappear as a result of heating to a particular temperature. In the course of cooling, the magnetic properties are re-established and return to the starting state. This effect can be exploited to generate electrical power. When an electrical conductor is exposed to a varying magnetic field, the changes in the magnetic field lead to the induction of an electrical current in the conductor. When, for example, the magnetic material is surrounded by a coil and is then heated in a permanent magnetic field and then cooled, an electrical current is induced in the coil in the course of heating and cooling in each case. This allows thermal energy to be converted to electrical energy, without an intermediate conversion to mechanical work. In the process described by Tesla, iron, as the magnetic substance, is heated by means of an oven or a closed fireplace and then cooled again. - For the thermomagnetic or magnetocaloric applications, the material should permit efficient heat exchange in order to be able to achieve high efficiencies. Both in the course of cooling and in the course of power generation, the thermomagnetic material is used in a heat exchanger.
-
US 2006/0117758 andWO 2009/133049 disclose magnetocaloric materials of the general formula MnFe(PwGexSiz). Preferred materials are MnFeP0.45-0.70Ge0.55-0.30 or MnFeP0.5-0.70(Si/Ge)0.5-0.30. In each case, the example compositions comprise proportions of Ge. These substances still do not have a sufficiently great magnetocaloric effect for all applications. -
- Can Thanh et al. JOURNAL OF APPLIED PHYSICS 103, 07B318 (2008) describe structure, magnetism, and magnetocaloric properties of certain MnFeP1-xSix compounds.
- DINH THI C PRO AM THANH: "Magnetocalorics and Magnetism in MnFe (P,Si,Ge) materials" (ph. D. thesis, Universiteit van Amsterdam, NL, 21 April 2009, ISBN: 978-90-5776-188-1) describes MnFe(P,Si,Ge) explores MnFe (P,Si,Ge) materials for magnetic cooling applications, especially certain MnFeP1-xSix compounds.
- It is an object of the present invention to provide magnetocaloric materials having a large magnetocaloric effect, low thermal hysteresis and a working temperature in the range from 0 to 150°C.
- The object is achieved in accordance with the invention by the magnetocaloric material defined by claim 1.
- Preferably, 0.25 ≤ x ≤ 0.35. x preferably has a minimum value of 0.28, more preferably of 0.3. The maximum value of x is preferably 0.34, in particular 0.33. More preferably 0.28 ≤ x ≤ 0.34, in particular 0.30 ≤ x ≤ 0.33.
- y preferably has a minimum value of 0.4. The maximum value of y is preferably 0.6, more preferably 0.44. More preferably 0.4 ≤ y ≤ 0.6, in particular 0.4 ≤ y ≤ 0.44.
- z may differ from 0 by small values. Preferably -0.05 ≤ z ≤ 0.05, in particular -0.02 ≤ z ≤ 0.02, especially z = 0.
- The inventive magnetocaloric materials preferably have a hexagonal structure of the Fe2P type.
- It has been found in accordance with the invention that especially an Mn/Fe element ratio of less than 0.54, especially in the range from 0.5/1.5 to 0.7/1.3, leads to magnetocaloric materials with stabilized phase formation and low thermal hysteresis. The inventive materials allow a working temperature in application in the range from 0°C to + 150°C.
- The magnetocaloric effect of the inventive materials is comparable to the magnetocaloric effect of what are known as giant magnetocaloric materials such as MnFePxAs1-x,Gd5(Si, Ge)4 or La(Fe, Si)13.
- The thermal hysteresis, determined in a magnetic field of 1 T with a sweep rate of 1°C/min, is preferably < 5°C, more preferably < 2°C, due to the balanced Mn/Fe and P Si ratios.
- The inventive materials additionally have the advantage that they are formed from elements which are available in large amounts and are generally classified as nontoxic.
- The thermomagnetic materials used in accordance with the invention can be produced in any suitable manner.
- The inventive magnetocaloric materials can be produced by the process of claim 6.
- The thermomagnetic materials are produced, for example, by solid phase reaction of the starting elements or starting alloys for the material in a ball mill, subsequent pressing, sintering and heat treatment under inert gas atmosphere and subsequent cooling, for example slow cooling, to room temperature. Such a process is described, for example, in J. Appl. Phys. 99, 2006, 08Q107.
- For example, suitable amounts of Mn, Fe, P and Si in element form or in the form of preliminary alloys such as Mn2P or Fe2P can be ground in a ball mill. The powders are pressed and sintered at temperatures in the range from 900 to 1300°C, preferably of about 1100°C, for a suitable time, preferably 1 to 5 hours, especially about 2 hours, and then heat treated at temperatures in the range from 700 to 1000°C, preferably about 850°C, for suitable periods, for example 1 to 100 hours, more preferably 10 to 30 hours, especially about 20 hours, under a protective gas atmosphere.
- Alternatively, the element powders or preliminary alloy powders can be melted together in an induction oven. It is then possible in turn to perform a heat treatment as specified above.
- Processing via melt spinning is also possible. This makes possible a more homogeneous element distribution which leads to an improved magnetocaloric effect; cf. Rare Metals, Vol. 25, October 2006, pages 544 to 549. In the process described there, the starting elements are first induction-melted in an argon gas atmosphere and then sprayed in the molten state through a nozzle onto a rotating copper roller. There follows sintering at 1000°C and slow cooling to room temperature. In addition, reference may be made to
WO 2004/068512 andWO 2009/133049 which however do not form part of the present invention. - Also disclosed is a process for producing the thermomagnetic materials, comprising the following steps:
- a) converting chemical elements and/or alloys in a stoichiometry which corresponds to the magnetocaloric material in the solid and/or liquid phase,
- b) optionally converting the reaction product from stage a) to a solid,
- c) sintering and/or heat treating the solid from stage a) or b),
- d) quenching the sintered and/or heat treated solid from stage c) at a cooling rate of at least 100 K/s.
- The thermal hysteresis can be reduced significantly and a large magnetocaloric effect can be achieved when the magnetocaloric materials are not cooled slowing to ambient temperature after the sintering and/or heat treatment, but rather are quenched at a high cooling rate. This cooling rate is at least 100 K/s. The cooling rate is preferably from 100 to 10 000 K/s, more preferably from 200 to 1300 K/s. Especially preferred cooling rates are from 300 to 1000 K/s.
- The quenching can be achieved by any suitable cooling processes, for example by quenching the solid with water or aqueous liquids, for example cooled water or ice/water mixtures. The solids can, for example, be allowed to fall into ice-cooled water. It is also possible to quench the solids with subcooled gases such as liquid nitrogen. Further processes for quenching are known to those skilled in the art. What is advantageous here is controlled and rapid cooling.
- The rest of the production of the magnetocaloric/thermomagnetic materials is less critical, provided that the last step comprises the quenching of the sintered and/or heat treated solid at the inventive cooling rate. The process may be applied to the production of any suitable thermomagnetic materials, as described above.
- In step (a) of the process, the elements and/or alloys which are present in the later thermomagnetic material are converted in a stoichiometry which corresponds to the thermomagnetic material in the solid or liquid phase.
- Preference is given to performing the reaction in stage a) by combined heating of the elements and/or alloys in a closed vessel or in an extruder, or by solid phase reaction in a ball mill. Particular preference is given to performing a solid phase reaction, which is effected especially in a ball mill. Such a reaction is known in principle; cf. the documents cited above. Typically, powders of the individual elements or powders of alloys of two or more of the individual elements which are present in the later thermomagnetic material are mixed in pulverulent form in suitable proportions by weight. If necessary, the mixture can additionally be ground in order to obtain a microcrystalline powder mixture. This powder mixture is preferably heated in a ball mill, which leads to further comminution and also good mixing, and to a solid phase reaction in the powder mixture. Alternatively, the individual elements are mixed as a powder in the selected stoichiometry and then melted.
- The combined heating in a closed vessel allows the fixing of volatile elements and control of the stoichiometry. Specifically in the case of use of phosphorus, this would evaporate easily in an open system.
- The reaction is followed by sintering and/or heat treatment of the solid, for which one or more intermediate steps can be provided. For example, the solid obtained in stage a) can be subjected to shaping before it is sintered and/or heat treated.
- Alternatively, it is possible to send the solid obtained from the ball mill to a melt-spinning process. Melt-spinning processes are known per se and are described, for example, in Rare Metals, Vol. 25, October 2006, pages 544 to 549, and also in
WO 2004/068512 andWO 2009/133049 , which however do not form part of the present invention. - In these processes, the composition obtained in stage a) is melted and sprayed onto a rotating cold metal roller. This spraying can be achieved by means of elevated pressure upstream of the spray nozzle or reduced pressure downstream of the spray nozzle. Typically, a rotating copper drum or roller is used, which can additionally optionally be cooled. The copper drum preferably rotates at a surface speed of from 10 to 40 m/s, especially from 20 to 30 m/s. On the copper drum, the liquid composition is cooled at a rate of preferably from 102 to 107 K/s, more preferably at a rate of at least 104 K/s, especially with a rate of from 0.5 to 2 x 106 K/s.
- The melt-spinning, like the reaction in stage a) too, can be performed under reduced pressure or under an inert gas atmosphere.
- The melt-spinning achieves a high processing rate, since the subsequent sintering and heat treatment can be shortened. Specifically on the industrial scale, the production of the thermomagnetic materials thus becomes significantly more economically viable. Spray-drying also leads to a high processing rate. Particular preference is given to performing melt spinning.
- Alternatively, in stage b), spray cooling can be carried out, in which a melt of the composition from stage a) is sprayed into a spray tower. The spray tower may, for example, additionally be cooled. In spray towers, cooling rates in the range from 103 to 105 K/s, especially about 104 K/s, are frequently achieved.
- The sintering and/or heat treatment of the solid is effected in stage c) as described above.
- In the case of use of the melt-spinning process, the period for sintering or heat treatment can be shortened significantly, for example to periods of from 5 minutes to 5 hours, preferably from 10 minutes to 1 hour. Compared to the otherwise customary values of 10 hours for sintering and 50 hours for heat treatment, this results in a major time advantage.
The sintering/heat treatment results in partial melting of the particle boundaries, such that the material is compacted further. - The melting and rapid cooling in stage b) thus allows the duration of stage c) to be reduced considerably. This also allows continuous production of the thermomagnetic materials.
- The inventive magnetocaloric materials can be used in any suitable applications. For example, they are used in coolers, heat exchangers or generators. Particular preference is given to use in refrigerators.
- The invention is illustrated in detail by examples.
- 15 g of a mixture of Mn flakes, Si flakes and Fe2P powder with a nominal stoichiometry of Mn0.6Fe1.4P0.6Si0.4 were ground in a planetary ball mill with a BPR (ball to powder weight ratio) of 4 for 10 hours. The powder obtained in the grinding was then pressed into cylinder form and sealed in an ampoule under 200 mbar of argon gas. This was followed by a sintering step at 1100°C for 2 hours and a heat treatment at 850°C for 20 hours. The sample was removed after the furnace had been cooled down.
- Samples with the nominal composition Mn0.66Fe1.34P0.58Si0.42, Mn0.62Fe1.38P0.58Si0.42 and Mn0.66Fe1.34P0.56Si0.44 were prepared in the same way.
- The magnetic properties of the samples thus prepared were determined in a Quantum Design MPMSXL SQUID magnetometer.
-
Figure 1 shows the temperature dependence of the magnetization M(Am2kg-1), determined with a sweep rate of 1 K/min in a magnetic field of 1 T. The temperature dependence between the heating and cooling curves at the transition shows the thermal hysteresis of the first-order magnetic transition for these samples. The value depends on the particular sample, but is always less than 2 K in the samples studied. The significant change in magnetization in the region of about 70 Am2kg-1 as a result of the sharp magnetic transition shows a large magnetocaloric effect. -
Figure 2 shows the change in magnetic entropy -ΔSn(J/kg K) as a function of temperature for these samples. The change in magnetic entropy was derived from the magnetic isotherms, measured at different temperatures close to the transition, using the Maxwell equation. The values obtained for the change in magnetic entropy are comparable to corresponding values for the so-called GMCEs (giant magnetocaloric effect materials). - The unfilled symbols relate to a field change of 0-1 T. The filled symbols represent a field change for 0-2 T.
Claims (8)
- The magnetocaloric material according to claim 1 , wherein 0.25 ≤ x ≤ 0.35.
- The magnetocaloric material according to claim 1 or 2, wherein 0.4 ≤ y ≤ 0.6.
- The magnetocaloric material according to any of claims 1 to 3, wherein -0.05 ≤ z ≤ 0.05.
- The magnetocaloric material according to any of claims 1 to 4, which has a hexagonal structure of the Fe2P type.
- A process for producing the magnetocaloric materials according to any of claims 1 to 5 by solid phase conversion or liquid phase conversion of the starting elements or starting alloys for the material, optionally cooling, then pressing, sintering and heat treating under inert gas atmosphere and subsequently cooling to room temperature, or by melt spinning of a melt of the starting elements or starting alloys.
- Use of the magnetocaloric materials according to any of claims 1 to 5 coolers, heat exchangers or generators.
- The use according to claim 7 in refrigerators.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11752934.7A EP2545563B1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric material and process for producing it |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10156184 | 2010-03-11 | ||
PCT/IB2011/050982 WO2011111004A1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric materials |
EP11752934.7A EP2545563B1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric material and process for producing it |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2545563A1 EP2545563A1 (en) | 2013-01-16 |
EP2545563A4 EP2545563A4 (en) | 2016-02-17 |
EP2545563B1 true EP2545563B1 (en) | 2017-05-31 |
Family
ID=44562927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11752934.7A Not-in-force EP2545563B1 (en) | 2010-03-11 | 2011-03-09 | Magnetocaloric material and process for producing it |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP2545563B1 (en) |
JP (1) | JP5809646B2 (en) |
KR (1) | KR101848520B1 (en) |
CN (1) | CN102792393B (en) |
AU (1) | AU2011225713A1 (en) |
BR (1) | BR112012021783A2 (en) |
CA (1) | CA2789797A1 (en) |
NZ (1) | NZ601798A (en) |
RU (1) | RU2012143308A (en) |
TW (1) | TW201140625A (en) |
WO (1) | WO2011111004A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11056265B2 (en) | 2017-10-04 | 2021-07-06 | Calagen, Inc. | Magnetic field generation with thermovoltaic cooling |
US11303229B2 (en) | 2019-08-20 | 2022-04-12 | Calagen, Inc. | Cooling module using electrical pulses |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102513536A (en) * | 2011-12-28 | 2012-06-27 | 北京工业大学 | Process for preparing magnetic cooling material |
US9245673B2 (en) | 2013-01-24 | 2016-01-26 | Basf Se | Performance improvement of magnetocaloric cascades through optimized material arrangement |
KR20160003693A (en) | 2013-05-08 | 2016-01-11 | 바스프 에스이 | Use of a rotating magnetic shielding system for a magnetic cooling device |
BR112016006653A2 (en) | 2013-09-27 | 2017-08-01 | Basf Se | use of a composition and cooling systems, climate control units, heat pumps and magnetocaloric generators |
KR101575861B1 (en) | 2014-02-13 | 2015-12-10 | 충북대학교 산학협력단 | Magnetocaloric metal compound and method for preparing thereof |
JP6606790B2 (en) * | 2014-12-26 | 2019-11-20 | 大電株式会社 | Method for manufacturing magnetic refrigeration material |
WO2017072334A1 (en) * | 2015-10-30 | 2017-05-04 | Basf Se | Magnetocaloric materials comprising manganese, iron, silicon, phosphorus and nitrogen |
US11410803B2 (en) * | 2016-06-10 | 2022-08-09 | Technische Universiteit Delft | Magnetocaloric materials comprising manganese, iron, silicon, phosphorus and carbon |
CA3078359A1 (en) * | 2017-10-04 | 2019-04-11 | Calagen, Inc. | Thermo-electric element driven by electric pulses |
KR102069770B1 (en) | 2018-06-07 | 2020-01-23 | 한국생산기술연구원 | Magneto-caloric alloy and preparing method thereof |
US11942879B2 (en) | 2019-08-20 | 2024-03-26 | Calagen, Inc. | Cooling module using electrical pulses |
US11996790B2 (en) | 2019-08-20 | 2024-05-28 | Calagen, Inc. | Producing electrical energy using an etalon |
KR102665067B1 (en) * | 2020-01-28 | 2024-05-13 | 현대자동차주식회사 | Mn-based magnetocaloric materials containing Al |
KR102651747B1 (en) | 2021-11-30 | 2024-03-28 | 한국재료연구원 | Magneto-caloric alloy and preparing method thereof |
CN114540657B (en) * | 2022-03-24 | 2022-11-25 | 中南大学 | Rare earth copper alloy material with broadband electromagnetic shielding function and preparation method thereof |
KR102589531B1 (en) | 2022-04-20 | 2023-10-16 | 한국재료연구원 | Magneto-caloric alloy and preparing method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US428057A (en) | 1890-05-13 | Nikola Tesla | Pyromagneto-Electric Generator | |
NL1018668C2 (en) * | 2001-07-31 | 2003-02-03 | Stichting Tech Wetenschapp | Material suitable for magnetic cooling, method of preparing it and application of the material. |
WO2004068512A1 (en) | 2003-01-29 | 2004-08-12 | Stichting Voor De Technische Wetenschappen | A magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material |
GB2424901B (en) * | 2005-04-01 | 2011-11-09 | Neomax Co Ltd | Method of making a sintered body of a magnetic alloyl |
DE102006046041A1 (en) * | 2006-09-28 | 2008-04-03 | Siemens Ag | Heat transfer system used as a cooling/heating system comprises a magnetizable body having an open-pore foam made from a material with a magneto-calorific effect |
WO2008122535A1 (en) * | 2007-04-05 | 2008-10-16 | Universite Henri Poincare Nancy 1 | New intermetallic compounds, their use and a process for preparing the same |
ES2369718T3 (en) * | 2008-03-31 | 2011-12-05 | Université Henri Poincaré - Nancy 1 | NEW INTERMETAL COMPOUNDS, ITS USE AND PROCEDURE FOR PREPARATION. |
AU2009242216C1 (en) | 2008-04-28 | 2014-09-04 | Technology Foundation Stw | Method for producing metal-based materials for magnetic cooling or heat pumps |
TW201003024A (en) * | 2008-04-28 | 2010-01-16 | Basf Se | Open-cell porous shaped bodies for heat exchangers |
TW201145319A (en) * | 2010-01-11 | 2011-12-16 | Basf Se | Magnetocaloric materials |
-
2011
- 2011-03-09 CA CA2789797A patent/CA2789797A1/en not_active Abandoned
- 2011-03-09 AU AU2011225713A patent/AU2011225713A1/en not_active Abandoned
- 2011-03-09 CN CN201180013368.6A patent/CN102792393B/en not_active Expired - Fee Related
- 2011-03-09 WO PCT/IB2011/050982 patent/WO2011111004A1/en active Application Filing
- 2011-03-09 KR KR1020127026630A patent/KR101848520B1/en active IP Right Grant
- 2011-03-09 JP JP2012556631A patent/JP5809646B2/en not_active Expired - Fee Related
- 2011-03-09 RU RU2012143308/07A patent/RU2012143308A/en not_active Application Discontinuation
- 2011-03-09 BR BR112012021783A patent/BR112012021783A2/en not_active IP Right Cessation
- 2011-03-09 NZ NZ601798A patent/NZ601798A/en not_active IP Right Cessation
- 2011-03-09 EP EP11752934.7A patent/EP2545563B1/en not_active Not-in-force
- 2011-03-11 TW TW100108424A patent/TW201140625A/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11056265B2 (en) | 2017-10-04 | 2021-07-06 | Calagen, Inc. | Magnetic field generation with thermovoltaic cooling |
US11081273B1 (en) | 2017-10-04 | 2021-08-03 | Calagen, Inc. | Magnetic field generation with thermovoltaic cooling |
US11303229B2 (en) | 2019-08-20 | 2022-04-12 | Calagen, Inc. | Cooling module using electrical pulses |
US11309810B2 (en) | 2019-08-20 | 2022-04-19 | Calagen, Inc. | Producing electrical energy |
Also Published As
Publication number | Publication date |
---|---|
CN102792393B (en) | 2016-06-15 |
WO2011111004A1 (en) | 2011-09-15 |
NZ601798A (en) | 2014-01-31 |
KR20130051440A (en) | 2013-05-20 |
CN102792393A (en) | 2012-11-21 |
AU2011225713A1 (en) | 2012-08-23 |
KR101848520B1 (en) | 2018-04-12 |
CA2789797A1 (en) | 2011-09-15 |
JP5809646B2 (en) | 2015-11-11 |
RU2012143308A (en) | 2014-04-20 |
TW201140625A (en) | 2011-11-16 |
JP2013527308A (en) | 2013-06-27 |
EP2545563A4 (en) | 2016-02-17 |
EP2545563A1 (en) | 2013-01-16 |
BR112012021783A2 (en) | 2016-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2545563B1 (en) | Magnetocaloric material and process for producing it | |
EP2523927B1 (en) | Magnetocaloric materials | |
US20110220838A1 (en) | Magnetocaloric materials | |
CN102017025B (en) | Method for producing metal-based materials for magnetic cooling or heat pumps | |
CN102077375B (en) | Thermomagnetic generator | |
EP3031057B1 (en) | Magnetocaloric materials containing b | |
CA2771669A1 (en) | Polycrystalline magnetocaloric materials | |
US20150123025A1 (en) | Heat carrier medium for magnetocaloric materials | |
JP2016532778A (en) | Magneto-caloric material containing B |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121011 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160115 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 1/00 20060101ALI20160111BHEP Ipc: C22C 38/04 20060101ALI20160111BHEP Ipc: C22C 38/02 20060101ALI20160111BHEP Ipc: C22C 33/02 20060101ALI20160111BHEP Ipc: B22F 3/10 20060101ALI20160111BHEP Ipc: B22F 9/10 20060101ALI20160111BHEP Ipc: H01F 1/01 20060101AFI20160111BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160404 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160930 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LUANA, CARON Inventor name: BRUECK, EKKEHARD Inventor name: OU, ZHIQIANG Inventor name: ZHANG, LIAN |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 898123 Country of ref document: AT Kind code of ref document: T Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011038358 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 898123 Country of ref document: AT Kind code of ref document: T Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170901 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170831 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170831 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170930 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 25011 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011038358 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 25011 Country of ref document: SK Effective date: 20180309 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180331 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190327 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190531 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190401 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011038358 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180309 |