WO2011110071A1 - 基带信号传输方法和装置 - Google Patents

基带信号传输方法和装置 Download PDF

Info

Publication number
WO2011110071A1
WO2011110071A1 PCT/CN2011/071418 CN2011071418W WO2011110071A1 WO 2011110071 A1 WO2011110071 A1 WO 2011110071A1 CN 2011071418 W CN2011071418 W CN 2011071418W WO 2011110071 A1 WO2011110071 A1 WO 2011110071A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrus
downlink
antennas
baseband signals
rru
Prior art date
Application number
PCT/CN2011/071418
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11752814.1A priority Critical patent/EP2611229B1/en
Publication of WO2011110071A1 publication Critical patent/WO2011110071A1/zh
Priority to US13/779,296 priority patent/US9066252B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to the field of communications, and in particular, to a baseband signal transmission method and apparatus. Background technique
  • the distributed system is divided into two parts: a baseband unit (BBU) and a remote radio unit (RRU).
  • the RRU is placed at a remote access point from the BBU. At the same time, they are connected by optical fiber, and the baseband wireless signal is transmitted by analog or digital.
  • the distance between the BBU and the RRU is generally about several tens of meters to one hundred or two hundred meters. The advantage of this is that the system is more flexible and convenient to construct the network.
  • the antenna installation is not affected by the location of the equipment room, and the large-capacity design of the base station system is also facilitated, which is beneficial to reducing the system cost.
  • DAS Distributed Antenna System
  • the distance between the BBU and the RRU can be extended to several kilometers or even tens of kilometers, in addition to the direct fiber connection, It adopts optical optical network connection such as passive optical network, wavelength division and inter-use WDM, and more preferably adopts multi-cell joint processing, for example, network ⁇ (multi-input and multi-out system), multi-cell joint scheduling, etc. Interference between small cells further increases system capacity.
  • the wireless spectrum width is increasing (20MHz-100MHz), and RRUs usually support multi-antenna technologies such as MIMO, thus resulting in the bandwidth required for baseband wireless signal transmission between the BBU and the RRU.
  • MIMO multi-antenna technologies
  • the baseband wireless signal transmission rate corresponding to each RU is as high as 10 Gbps, obviously, this is very important for the baseband signal transmission between the BBU and the RRU. Big challenge.
  • each BBU's baseband wireless signal routing switching unit needs to route tens to hundreds of wireless signals with a transmission rate of up to 10 Gbps per channel. Exchange, this does not include individual wireless access processing modules. Data exchange between blocks, obviously, this poses a very high challenge to the implementation of the BBU.
  • C-RAN cloud computing architecture
  • a large number of high-speed baseband wireless signals need to be transmitted and exchanged between each BBU, which poses a great challenge to the design and reliable operation of the entire C-RAN system.
  • Embodiments of the present invention provide a baseband signal transmission method and apparatus to compress a transmission bandwidth of a baseband signal and reduce system complexity.
  • An embodiment of the present invention provides a baseband signal transmission method, including:
  • One embodiment of the present invention discloses a baseband signal transmission method, including:
  • each of the areas is
  • the uplink baseband signals transmitted by the RRU are combined into a set of uplink baseband signals, and the set of uplink baseband signals correspond to all RRUs in the area.
  • An embodiment of the present invention provides a BBU, including:
  • a signal generating module configured to generate or receive a set of downlink baseband signals when a downlink traffic of one of the areas covered by the multiple RRUs is lower than a preset threshold, where the set of downlink basebands corresponds to the one area All RRU;
  • a signal distribution module configured to separately transmit the set of downlink baseband signals to each RRU in the one area, so that each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and the downlink radio frequency The signal is sent out.
  • An embodiment of the present invention provides a BBU, including:
  • a receiving module configured to receive an uplink baseband signal transmitted by each RRU of one of the areas covered by the multiple RRUs, where the uplink baseband signals transmitted by the respective RRUs are converted by the RRUs according to the received radio frequency signals;
  • a signal combining module configured to combine, when the uplink traffic of the one area is lower than a preset threshold, the uplink baseband signals transmitted by the RRUs in the one area into a set of uplink baseband signals, and the set of uplink baseband signals Corresponds to all RRUs in the area.
  • the embodiment of the invention provides a baseband signal transmission method, including:
  • BBU Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backward-Backwards, and the RRUs generate the downlink radio frequency signals by the downlink baseband signals. Signaling, and transmitting the downlink radio frequency signal.
  • An embodiment of the present invention provides a BBU, including:
  • the information receiving module is configured to receive indication information of the BBU corresponding to the area covered by the multiple RRUs, where the indication information is used to indicate RRU information in one of the areas covered by the multiple RRUs; Generating a set of downlink baseband signals according to the indication information, where the set of downlink baseband signals corresponds to all RRUs in the one area; a transmission module, configured to transmit the set of downlink baseband signals to the BBU corresponding to the area covered by the multiple RRUs, where the coverage area corresponding to the multiple RRUs is used to separate the set of downlink baseband signals And transmitting, to the RRUs in the one area, the RRUs to generate downlink radio frequency signals by using the downlink baseband signals, and sending the downlink radio frequency signals.
  • the uplink baseband signals of the RRUs in the area are combined into a group of uplink baseband signals, and the uplink baseband signals correspond to all the cells in the area, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the implementation is simple. Reduced system complexity.
  • FIG. 1 is a flowchart of a baseband signal transmission method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a baseband signal transmission method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting a baseband signal according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a baseband signal transmission method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for transmitting a baseband signal according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for transmitting a baseband signal according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a BBU according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a signal generating module of a BBU according to an embodiment of the present invention
  • FIG. 9 is a structural diagram of a signal distribution module of a BBU according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a BBU according to an embodiment of the present invention.
  • FIG. 11a is a structural diagram of a BBU according to an embodiment of the present invention.
  • Figure lib shows a BBU structure diagram provided by an embodiment of the present invention.
  • FIG. 11c is a structural diagram of a BBU according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a BBU according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a baseband signal transmission system according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a method for transmitting a baseband signal according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of a BBU according to an embodiment of the present invention. detailed description
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the foregoing one set of downlink baseband signals may be generated by a BBU corresponding to a region covered by multiple RRUs, or may be generated by another BBU (not corresponding to the area covered by the multiple RRUs), and then transmitted to and The BBU corresponding to the area covered by the multiple RRUs, that is, the BBU corresponding to the area covered by the multiple RRUs receives the set of downlink baseband signals generated by the other BBU.
  • 4 is set to k (where k is a natural number) to be the number of antennas of the RRU having the smallest number of antennas among all RRUs in the above-described one region.
  • the set of downlink baseband signals is generated according to k (it is to be noted that whether the BBU corresponding to the area covered by the plurality of RRUs is used to generate the downlink baseband signal, or is generated by another BBU)
  • the group of downlink baseband signals can be used to generate this set of downlink baseband signals according to k).
  • the set of downlink baseband signals includes k-channel downlink baseband signals (ie, the set of downlink baseband signals is composed of the K-channel downlink baseband signals.
  • the set of downlink baseband signals may also include other Some non-downlink baseband signals, such as noise and other signals). In one embodiment, there are two situations:
  • the first BBU generates the set of downlink baseband wireless signals according to the number of antennas; at this time, the minimum number of antennas of each RRU is its own number of antennas k.
  • the first BBU if each RRU in the above one region has a different number of antennas, the first BBU generates the set of downlink baseband signals according to the number of antennas k of the RRUs having the smallest number of antennas in all RRUs.
  • the downlink baseband signal includes only one downlink baseband signal, that is, the first BBU generates only one downlink baseband signal.
  • the downlink baseband signal is respectively transmitted to each RRU in the one area, so that each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and sends the generated downlink radio frequency signal.
  • the BBU corresponding to the area covered by the plurality of RRUs respectively sets the downlink baseband signals of the group. Transfer to each RRU in one of the above areas.
  • the another BBU when the set of downlink baseband signals is generated by the another BBU, the another BBU transmits the generated downlink baseband signals to the BBUs corresponding to the areas covered by the plurality of RRUs; and After receiving the downlink baseband signal transmitted by the another BBU, the BBU corresponding to the area covered by the multiple RRUs transmits the downlink downlink baseband signals to the respective RRUs in the one area.
  • the BBU that generates the downlink baseband signal is in an embodiment.
  • the group of downlink baseband signals may also be transmitted to the BBU corresponding to the area covered by the multiple RRUs for processing (for example, when the method can be applied to a distributed base station system, a distributed antenna system, or a C-RAN system, etc.)
  • a distributed system there are multiple BBUs in these systems, and each BBU can process data in cooperation with each other).
  • the middle can pass through multiple BBUs, so that only a downlink baseband signal is transmitted, and the transmission bandwidth is compressed in the transmission process.
  • the traffic volume of one of the areas covered by the multiple RRUs is lower than the preset threshold, only one downlink baseband signal is generated for the area, and the downlink baseband signal corresponds to the foregoing area. All cells, and pass to the RRU of each cell in this area
  • the BBUs that transmit the downlink baseband signals and generate the downlink baseband signals may also transmit the downlink downlinkband signals to the BBUs corresponding to the areas covered by the plurality of RRUs for processing. This greatly compresses the transmission bandwidth of the downlink baseband signal, and the implementation is simple, which reduces the complexity of the system.
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the support k (where k is a natural number) is the number of antennas of the RRU having the smallest number of antennas among all RRUs in the above-described one region. Then the first BBU generates this set of downlink baseband signals according to k. At this time, the set of downlink baseband signals includes k-channel downlink baseband signals (ie, the set of downlink baseband signals is composed of the K-channel downlink baseband signals. Of course, in one embodiment, the set of downlink baseband signals may also include other Some non-downlink baseband signals, such as signals such as noise, may have the following two scenarios in one embodiment:
  • the first BBU if each RRU corresponding to each cell in the foregoing area has the same number of antennas, the first BBU generates the set of downlink baseband wireless signals according to the number of antennas;
  • the number of antennas is the number k of its own antennas.
  • the first BBU if each RRU in the above one region has a different number of antennas, the first BBU generates the set of downlink baseband signals according to the number of antennas k of the RRUs having the smallest number of antennas in all RRUs.
  • this area contains 4 RRUs, of which 2 RRUs have 4 antennas and 2 RRUs have 2 antennas.
  • the first BBU generates the set of downlink baseband signals according to the number of antennas of each RRU, and the set of downlink baseband signals corresponds to all cells in the area.
  • the set of downlink baseband signals includes two downlink baseband signals.
  • the first BBU when the downlink traffic of one of the areas covered by the multiple RRUs corresponding to the first BBU is lower than the preset threshold, the first BBU generates a downlink baseband signal corresponding to the foregoing area. All RRUs within, then one of the above areas can be understood as a separate communication area.
  • the first BBU transmits the downlink downlink baseband signals to the foregoing RRUs separately.
  • Each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and sends the generated downlink radio frequency signal.
  • the first BBU after generating a set of downlink baseband signals according to the method (the minimum number of antennas) in step S110, the first BBU transmits the set of downlink baseband signals to the respective RRUs in the one area, respectively.
  • each RRU in the above one area fixedly select any k antennas of all the antennas, and respectively transmit the k downlink downlink baseband signals to k antennas of the respective RRUs; where k is all RRUs The number of antennas of the RRU with the smallest number of antennas.
  • each RRU After receiving the k-channel downlink baseband signal (the above-mentioned downlink baseband signal includes the k-channel downlink baseband signal), each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and then generates a downlink by using the k antennas respectively. The radio frequency signal is sent out.
  • the RRU k antennas
  • all antennas are selected when the above method is used.
  • the downlink baseband signal includes only one downlink baseband signal, that is, the first BBU generates only one downlink baseband signal.
  • this area contains 4 RRUs, 2 of which have an antenna number of 4, and
  • the number of antennas of two R U is two.
  • two of the four antennas can be arbitrarily selected to transmit the generated two downlink baseband signals respectively (ie, one downlink baseband signal is transmitted to one of the two antennas, Another downlink baseband signal is transmitted to the other antenna, and the set of downlink baseband signals includes the two downlink baseband signals).
  • the fixed 2 antennas in each RRU for an RRU with an antenna number of 1, it is well understood that both antennas are selected) after receiving the downlink baseband signal of the first BBU transmission, each RRU The downlink baseband signal is generated by the downlink baseband signal, and the generated downlink radio frequency signal is transmitted through the fixed 2 antennas.
  • each RRU in the above-mentioned area select any k antennas of all the antennas at predetermined time intervals, and respectively transmit the k-channel downlink baseband signals to the k antennas of the respective RRUs; where k is all The number of antennas of the RRU with the smallest number of antennas in the RRU.
  • each RRU After receiving the k-channel downlink baseband signal (the above-mentioned downlink baseband signal includes the k-channel downlink baseband signal), each RRU generates the downlink radio frequency signal by using the downlink baseband signal, and then generates the generated by the k antennas respectively.
  • the downlink radio frequency signal is sent out.
  • this area contains four RRUs, of which the number of antennas of two RRUs is four, and the number of antennas of the other two RUs is two.
  • one of the four antennas may be selected to transmit the generated downlink baseband signals in the first time period (the downlink downlink baseband signals include two downlink baseband signals).
  • the other two of the four antennas are selected to separately transmit the generated two downlink baseband signals (ie, one downlink baseband signal is transmitted to one of the two antennas, and the other downlink is transmitted to the other antenna).
  • Downlink baseband signal may be selected to transmit the generated downlink baseband signals in the first time period (the downlink downlink baseband signals include two downlink baseband signals).
  • the other two of the four antennas are selected to separately transmit the generated two downlink baseband signals (ie, one downlink baseband signal is transmitted to one of the two antennas, and the other downlink is transmitted to the other antenna).
  • Downlink baseband signal may be selected to transmit the generated downlink baseband signals in the first
  • each RRU After receiving the downlink baseband signal of the first BBU transmission, each RRU will The downlink baseband signal generates a downlink radio frequency signal, and the generated downlink radio frequency signal is transmitted through the selected two antennas.
  • the antenna is divided into k groups, and the k-channel downlink baseband signals are transmitted to the k-group antennas of the respective RRUs.
  • k is the number of antennas of the RRU with the smallest number of antennas in all RRUs.
  • each RRU After receiving the downlink baseband signal, each RRU generates a downlink radio frequency signal from the downlink baseband signal, and then sends the generated downlink radio frequency signal through the k group antenna.
  • this area contains 4 RRUs, of which 2 R U have 4 antennas and 2 RRUs have 2 antennas.
  • the four antennas of each RRU are divided into two groups, and the two downlink baseband signals generated before are respectively transmitted to the two antennas.
  • each group may be 2 antennas, in which case one downlink baseband signal is transmitted to one group of antennas, and the downlink baseband signal is transmitted to another group antenna; in one embodiment, one group may also be 1 The other antenna is three antennas. At this time, one downlink baseband signal is transmitted to one group (one antenna), and the other downlink baseband signal is transmitted to the other group (three antennas).
  • each RRU After the two antenna packets in each RRU receive the downlink baseband signal transmitted by the first BBU, each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and the generated downlink radio frequency signal is grouped by using the two antennas. Send it separately.
  • each RRU in the above region has the same number of antennas (at this time, since the number of antennas is the same, the minimum number of antennas k is the number of all antennas of one RRU, so this
  • the group downlink baseband signal is generated according to the number of all antennas of one RRU, and then the first BBU transmits the downlink baseband signal to each RRU in the above one area respectively. Then, k downlink downlink baseband signals are respectively transmitted to all antennas of each RRU.
  • the first BBU and each of the above RRUs may be star connected. It is assumed that the number of all RRUs in one of the areas covered by the plurality of RRUs is N, and N is a positive integer. At this time, the BBU copies the set of downlink baseband signals by N shares, and transmits the N downlink baseband signals to the N RRUs.
  • the transmission mode of each RRU antenna has been described in detail in the foregoing embodiments, and details are not described herein again.
  • the first BBU and each of the foregoing RRUs may also use a ring connection, that is, the same physical fiber loop is used to connect the foregoing RRUs and the first BBU. It is assumed that the number of all cells in one of the areas covered by the plurality of RRUs is N, and N is a positive integer.
  • the first BBU transmits the same group of the above downlink baseband signals to the N RRUs through the ring connection link.
  • the transmission mode of each RRU antenna has been described in detail in the foregoing embodiments, and details are not described herein.
  • the baseband signal is a set of downlink baseband signals corresponding to the N RRUs in the foregoing area, and if the method provided by the embodiment of the present invention is not used, the Nuk downlink baseband signal needs to be generated, which can be seen if the embodiment of the present invention provides The method can compress the transmission bandwidth of the downlink baseband signal by N times.
  • the method according to the embodiment of the present invention is provided. Then, only the k-channel downlink baseband signal needs to be generated (the k-channel downlink baseband signal is a group of downlink baseband signals corresponding to N RRUs in the above one region). However, if the method provided by the embodiment of the present invention is not used, it is apparent that a downlink baseband signal larger than the Nuk path needs to be generated. It can be seen that if the method provided by the embodiment of the present invention is used, the transmission bandwidth of the downlink baseband signal can be compressed by more than N times.
  • the first BBU when the traffic volume of one of the areas covered by the multiple RRUs is lower than the preset threshold, the first BBU generates only one downlink baseband signal for the area.
  • the first BBU can transmit the generated downlink baseband signals to other BBUs for processing (for example, when the method can be applied to distributed base station systems, distributed antenna systems)
  • a distributed system such as a system or a C-RA system
  • each BBU can process data in cooperation with each other.
  • multiple BBUs can pass through in the middle, because only one downlink baseband is transmitted. Signal, which compresses the transmission bandwidth much during transmission.
  • the first BBU After the first BBU generates the downlink baseband signal, only the k-channel signal needs to be transmitted during the internal transmission of the first BBU (such as transmitting the downlink baseband signal from one internal board to another).
  • the transmission bandwidth is compressed by at least N times than the scheme of this embodiment.
  • a downlink baseband signal is generated for the area, and the downlink baseband signal corresponds to the foregoing one area.
  • the number of RRUs in the area and the implementation is simple, reducing the complexity of the system.
  • the set of downlink baseband signals may be generated according to the number of antennas of the RRU with the smallest number of antennas in all RRUs; the transmission bandwidth of the downlink baseband signals is further compressed.
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the first BBU when the downlink traffic of the area or the area of the coverage area of the multiple RRUs of the first BBU is lower than the preset threshold, the first BBU sends the indication information to the second BBU, where the indication information is used to go to the second The BBU indicates RRU information in the one area;
  • the RRU information in the one area includes information such as the number of RRUs, the number of antennas of the RRUs having the smallest number of antennas in all RRUs, and the like.
  • the second BBU after receiving the indication information, the second BBU generates a set of downlink baseband signals, where the set of downlink baseband signals corresponds to all RRUs of one of the areas covered by the multiple RRUs corresponding to the first BBU;
  • the set of downlink baseband signals generated by the second BBU corresponds to the foregoing one. All RRUs in the area, then one of the above areas can be understood as a separate communication area.
  • the support k (here, k is a natural number) is the number of antennas of the RUs having the smallest number of antennas among all the RRUs in the above one region. Then the second BBU generates this group according to k.
  • Downlink baseband signal includes k-channel downlink baseband signals (ie, the set of downlink baseband signals is composed of the ⁇ -channel downlink baseband signals.
  • the set of downlink baseband signals may also include other Some non-downlink baseband signals, such as noise and other signals).
  • the downlink baseband signal includes only one downlink baseband signal, that is, the second BBU generates only one downlink baseband signal.
  • the second BBU generates the set of downlink baseband wireless signals according to the number of antennas; at this time, the minimum number of antennas of each RRU is itself. Number of antennas;
  • the second BBU generates the set of downlink baseband signals according to the number of antennas of the RRU having the smallest number of antennas in all RRUs.
  • this area contains 4 RRUs, of which 2 RRUs have 4 antennas and 2 RRUs have 2 antennas.
  • the second BBU generates the set of downlink baseband signals according to the number of antennas of each RRU, and the set of downlink baseband signals corresponds to all cells in the area.
  • the set of downlink baseband signals includes two downlink baseband signals.
  • the second BBU transmits the foregoing group of downlink baseband signals to the first BBU;
  • the first BBU receives the foregoing one set of downlink baseband signals transmitted by the second BBU.
  • the first BBU transmits the downlink radioband signals to the RRUs, and the RPUs generate the downlink radio frequency signals by using the downlink radioband signals, and send the generated downlink radio frequency signals.
  • the first BBU after generating a set of downlink baseband signals (including k-channel downlink baseband signals) according to the method in step S220, the first BBU transmits the set of downlink baseband signals to the respective RRUs in the one area respectively.
  • each RRU fixedly select any k antennas of all the antennas, and respectively transmit the k downlink downlink baseband signals to k antennas of the respective RUs; where k is all RRUs The number of antennas of the RRU with the smallest number of antennas.
  • each RRU After receiving the k-channel downlink baseband signal (the above-mentioned downlink baseband signal includes the k-channel downlink baseband signal), each RRU generates the downlink radio frequency signal by using the downlink baseband signal, and then generates the generated by the k antennas respectively.
  • the downlink radio frequency signal is sent out.
  • all antennas are selected when the above method is used.
  • the set of downlink baseband signals includes only one downlink baseband signal, that is, the second BBU generates only one downlink baseband signal.
  • this area contains 4 RRUs, 2 of which have an antenna number of 4, and
  • the number of antennas of two R U is two.
  • one of the four antennas can be arbitrarily selected to transmit the generated two downlink baseband signals (ie, one downlink baseband signal is transmitted to one of the two antennas, Another downlink baseband signal is transmitted to the other antenna, and the set of downlink baseband signals includes the two downlink baseband signals).
  • the fixed 2 antennas in each RRU (for RRUs with 2 antennas, it is well understood that both antennas are selected) after receiving the downlink baseband signal of the first BBU transmission, each RRU The downlink baseband signal is generated by the downlink baseband signal, and the generated downlink radio frequency signal is transmitted through the fixed 2 antennas.
  • each RRU select any k antennas of all the antennas at predetermined time intervals, and respectively transmit the k-channel downlink baseband signals to the k antennas of the respective RRUs; where k is all The number of antennas of the RRU with the smallest number of antennas in the RRU.
  • each RRU After receiving the k-channel downlink baseband signal (the above-mentioned downlink baseband signal includes the k-channel downlink baseband signal), each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and then generates a downlink by using the k antennas respectively. The radio frequency signal is sent out.
  • this area contains 4 RRUs, 2 of which have an antenna number of 4, and
  • the number of antennas of the two RRUs is two.
  • two of the four antennas may be selected for transmitting the generated downlink baseband signals in the first time period (the downlink downlink baseband signals include two downlink baseband signals).
  • the other two of the four antennas are selected to separately transmit the generated two downlink baseband signals (ie, one downlink baseband signal is transmitted to one of the two antennas, and the other downlink is transmitted to the other antenna).
  • Downlink baseband signal may be selected for transmitting the generated downlink baseband signals in the first time period (the downlink downlink baseband signals include two downlink baseband signals).
  • the other two of the four antennas are selected to separately transmit the generated two downlink baseband signals (ie, one downlink baseband signal is transmitted to one of the two antennas, and the other downlink is transmitted to the other antenna).
  • Downlink baseband signal may be selected for transmitting the generated downlink baseband signals in the first time period (the downlink downlink baseband signals include two downlink baseband signals).
  • each RRU After receiving the downlink baseband signal, each RRU will The downlink baseband signal generates a downlink radio frequency signal, and the generated downlink radio frequency signal is transmitted through the selected two antennas. 3.
  • the antennas are divided into k groups, and the k-channel downlink baseband signals are respectively transmitted to the k-group antennas of the respective RRUs.
  • k is the number of antennas of the RRU with the smallest number of antennas among all RRUs.
  • each RRU After receiving the downlink baseband signal, each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and then sends the generated downlink radio frequency signal by using the k group antenna.
  • this area contains 4 RRUs, of which 2 RRUs have 4 antennas and 2 RRUs have 2 antennas.
  • the four antennas of each RRU are divided into two groups, and the two downlink baseband signals generated before are respectively transmitted to the two antennas.
  • each group may be 2 antennas, in which case one downlink baseband signal is transmitted to one group of antennas, and the downlink baseband signal is transmitted to another group antenna; in one embodiment, one group may also be 1 The other antenna is three antennas. At this time, one downlink baseband signal is transmitted to one group (one antenna), and the other downlink baseband signal is transmitted to the other group (three antennas).
  • each RRU After the two antenna packets in each RRU receive the downlink baseband signal transmitted by the first BBU, each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and the generated downlink radio frequency signal is grouped by using the two antennas. Send it separately.
  • the first BBU and each of the above RRUs may be star connected. It is assumed that the number of all RRUs in one of the areas covered by the plurality of RRUs is N, which is a positive integer. At this time, the first BBU copies the N sets of downlink baseband signals to the N RRUs, and copies the N downlink baseband signals to the N RRUs.
  • the transmission mode of each RRU antenna has been described in detail in the foregoing embodiments, and details are not described herein again.
  • the first BBU and each of the foregoing RRUs may also use a ring connection, that is, connect the respective RRUs and the first BBUs with the same physical fiber loop. It is assumed that the number of all cells in one of the areas covered by the plurality of RRUs is N, and N is a positive integer.
  • the second BBU transmits the same group of the above downlink baseband signals to the N RRUs through the ring connection link.
  • the transmission mode of each RRU antenna has been described in detail in the foregoing embodiments, and details are not described herein.
  • the second BBU when the traffic volume of one of the areas covered by the multiple RRUs is lower than the preset threshold, the second BBU generates only one downlink baseband signal for the area. It is well understood that the second BBU can transmit the generated downlink baseband signal to other BBUs for processing, for example, according to The above method is transmitted to the first BBU. In the transmission process, multiple BBUs can pass through in the middle, so that only one downlink baseband signal is transmitted between each BBU (the downlink downlink baseband signal includes k downlink downlink baseband signals), and the transmission is greatly compressed during transmission. bandwidth.
  • the second BBU After the second BBU generates the downlink baseband signal, only the k-channel signal needs to be transmitted during the internal transmission of the second BBU (such as transmitting the downlink baseband signal from one internal board to another).
  • the transmission bandwidth is at least N times compressed than without the scheme of the present embodiment.
  • the method can be applied to distributed systems such as distributed base station systems, distributed antenna systems, or C-RA systems, since these systems have multiple BBUs, and these BBUs can process data in cooperation with each other.
  • a BBU produces a downlink baseband signal (the downlink downlink baseband signal includes k downlink downlink baseband signals), and when other BBUs assist in processing the downlink downlink baseband signals, only A set of downlink baseband signals are transmitted between the respective BBUs, and the transmission bandwidth is at least N times compressed compared to the scheme without the embodiment.
  • a downlink baseband signal is generated for the area, and the downlink baseband signal corresponds to the foregoing one area. All of the RRUs, and transmitting the downlink baseband signals to the respective RRUs in the one area, so that the transmission bandwidth of the downlink baseband signals is compressed to a large extent (the downlink baseband signal transmission bandwidth is compressed by at least N times, N is the The number of RRUs in an area), and the implementation of the order, reduces the complexity of the system.
  • the set of downlink baseband signals may be generated according to the number of antennas of the RRUs having the smallest number of antennas in all RRUs; the transmission bandwidth of the downlink baseband signals is further compressed.
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the BBU receives the uplink baseband signals transmitted by the RRUs of the one of the areas covered by the multiple RRUs, and the uplink baseband signals transmitted by the RRUs are converted by the foregoing RRUs according to the received radio frequency signals.
  • the uplink baseband signals transmitted by the respective RRUs in the above region may be combined into a set of uplink baseband signals by linear combining.
  • the linear combining mode may be a linear addition manner, that is, linearly adding and combining the uplink baseband signals transmitted by the respective RRUs in the above one region into one uplink wireless signal.
  • the uplink baseband signal transmitted by each RRU in the above region may also be multiplied by a preset scaling factor, and then linearly added.
  • each of the RRUs covered by the BBU and the plurality of RRUs may be star connected.
  • each of the RRUs covered by the BBU and the plurality of RRUs may employ a ring connection.
  • the BBU may further perform internal processing on the set of uplink baseband signals (for example, performing modulation and demodulation, etc.). In this way, when the BBU transmits internally (such as transmitting the downlink baseband signal from one internal board to another), only one uplink baseband signal needs to be transmitted, and the transmission bandwidth of the uplink baseband signal is compressed to a large extent. .
  • BBUs can also assist the BBU in processing the uplink baseband signals (for example, when the method can be applied to distributed base station systems, distributed antenna systems, or C-RA systems).
  • the method can be applied to distributed base station systems, distributed antenna systems, or C-RA systems.
  • each BBU can process data in cooperation with each other, so that the BBU can transmit only one set of uplink baseband signals to other BBUs, and compresses the transmission of uplink baseband signals to a large extent. bandwidth.
  • the uplink baseband signals transmitted by the RRUs in the one area are combined into one uplink baseband.
  • the signal, the set of uplink baseband signals corresponds to all cells in the area, so that the transmission bandwidth of the downlink baseband signal is compressed greatly, and the system is implemented, which reduces the complexity of the system.
  • the set of downlink baseband signals may be generated according to the number of antennas of the RRUs having the smallest number of antennas in all RRUs; the transmission bandwidth of the downlink baseband signals is further compressed.
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the BBU receives the k-channel uplink baseband signals transmitted by the respective RRUs of the foregoing one region by using the k-th or k-group antennas, and the k-channel uplink baseband signals transmitted by the foregoing RRUs are received by the foregoing RRUs according to the k-th or k-group antennas.
  • the k-channel radio frequency signal is converted; the above k is a natural number, and is the number of antennas of the RRU with the smallest number of antennas in the RU of each cell.
  • S520 When the uplink traffic of the foregoing area is lower than a preset threshold, use one of the k-channel uplink baseband signals transmitted by one RRU in the foregoing one area by using one of the k or k sets of antennas, and the other RRUs remaining in the foregoing one area.
  • the k-channel uplink baseband signals transmitted by the k- or k-group antennas are combined to obtain k-channel combined uplink baseband signals.
  • a group of uplink baseband signals in the foregoing embodiment corresponding to FIG. 4 includes the above-mentioned k-way combined uplink baseband signals.
  • the method may also include: prior to S510:
  • RRU 1 For example, in one embodiment, it is assumed that there are three RRUs in the above area, which are respectively RRU 1.
  • RRU 2 and RRU 3 where RRU 1 has a minimum number of antennas of 2 and RRU 2 and RRU 3 have antenna numbers greater than 2.
  • each RRU receives two radio frequency signals according to the selected two antennas through the air interface, and receives two radio frequency signals. Converted to the uplink baseband signal and transmitted to the BBU. In this way, the BBU will receive 6 uplink baseband signals (since each RRU transmits 2 uplink baseband signals, and 3 RRUs transmit a total of 6 uplink baseband signals).
  • the BBU When the uplink traffic of this area is lower than the predetermined threshold, the BBU combines the 6 baseband signals received at that time to obtain a set of uplink baseband signals. In one embodiment, the BBU combines the received 2 uplink baseband signals transmitted by the RRU 1 with the received 2 uplink baseband signals of the RRU 2 transmission and the 2 uplink baseband signals of the received RRU 3, Get 2 channels of the combined uplink baseband signal.
  • the BBU will receive the first uplink baseband signal of the two uplink baseband signals transmitted by the RRU 1 and the received two uplink baseband signals of the RRU 2 transmission.
  • the first uplink baseband signal and the first uplink baseband signal of the two uplink baseband signals transmitted by the received RRU 3 are combined to obtain a combined uplink baseband signal;
  • the BBU transmits the received RRU 1
  • the second uplink baseband signals are combined to obtain another merged uplink baseband signal.
  • a total of two combined uplink baseband signals i.e., a set of uplink baseband signals
  • the BBU will receive the second uplink baseband signal of the two uplink baseband signals transmitted by the RRU 1 and the second uplink of the received two uplink baseband signals of the RRU 2 transmission.
  • the baseband signal is combined with the first uplink baseband signal of the two uplink baseband signals transmitted by the received RRU 3 to obtain a combined uplink baseband signal;
  • the BBU will receive the received two uplink baseband signals of the RRU 1
  • the second uplink baseband signal in the second uplink baseband signal and the second uplink baseband signal in the received two uplink baseband signals of the RRU 2 and the second uplink baseband in the two uplink baseband signals transmitted in the received RRU 3 The signals are combined to obtain another merged uplink baseband signal;
  • the uplinks transmitted by k antennas are used for each RRU at the BBU. After the signal is combined, there is only a k-channel uplink baseband signal; if the method is not provided in the embodiment of the present invention, there is a Nuk-channel uplink baseband signal at the BBU, and the method provided by the embodiment of the present invention can be used to transmit the uplink baseband signal.
  • the transmission bandwidth is compressed by N times.
  • the method according to the embodiment of the present invention is performed for each RRU. Choose to send the uplink baseband signal with k antennas, so for each at the BBU The RRU uses the uplink signals transmitted by the k antennas to merge and only has the k-channel uplink baseband signal. If the method is not provided in the embodiment of the present invention, the uplink sub-band signal is greater than the Nuk path at the BBU. The method can compress the transmission bandwidth of the uplink baseband signal by more than N times.
  • the BBU may further perform internal processing on the set of uplink baseband signals (for example, performing modulation and demodulation, etc.).
  • internal processing on the set of uplink baseband signals (for example, performing modulation and demodulation, etc.).
  • a BBU is internally transmitted (such as transmitting this set of downlink baseband signals from one internal board to another), only one uplink baseband signal needs to be transmitted (this set of uplink baseband signals includes k uplink baseband signals) ), this compresses the transmission bandwidth of the uplink baseband signal by at least N times.
  • BBUs can also assist the BBU in processing the uplink baseband signals (for example, when the method can be applied to distributed base station systems, distributed antenna systems, or C-RAN systems, etc.)
  • the system there are multiple BBUs in the system, and each BBU can process data in cooperation with each other, so that the BBU can transmit only one uplink baseband signal to other BBUs, thereby compressing the transmission bandwidth of the uplink baseband signal at least. N times.
  • the uplink baseband signals transmitted by the RRUs in the one area are combined into one uplink baseband.
  • the signal, the set of uplink baseband signals corresponds to all cells in the area, so that the transmission bandwidth of the downlink baseband signal is compressed by a large and large, and the implementation is simple, and the complexity of the system is reduced.
  • the uplink baseband signal transmitted by each RRU is transmitted by using a minimum number of antennas or antenna groups selected by the BBU, and a set of downlink basebands are combined according to the selected minimum antenna or the uplink baseband signals transmitted by the antenna group. The signal further compresses the transmission bandwidth of the downlink baseband signal.
  • an embodiment of the present invention provides a baseband signal transmission method, including:
  • the BBU corresponding to the area covered by the plurality of RRUs generates a set of downlink baseband signals. In one embodiment, it can also be by another BBU (not with the above The areas covered by the plurality of RRUs are correspondingly generated to generate the set of downlink baseband signals, and then transmitted to the BBUs corresponding to the plurality of RRUs.
  • the downlink baseband signal is respectively transmitted to each RRU in the first area, so that each RRU generates a downlink radio frequency signal by using the downlink baseband signal, and sends the generated downlink radio frequency signal.
  • Steps S610-S640 the specific transmission modes of the same number and different antennas of the RRUs are described in detail in the foregoing embodiments, and details are not described herein again.
  • Steps S630 to S640 where the number of antennas of the respective RRUs is the same and the specific transmission mode is different, which has been described in detail in the foregoing embodiments, and details are not described herein again.
  • the downlink step (S610 ⁇ S620) and the uplink step (S630 ⁇ S640) can be performed simultaneously. In one embodiment, the downlink steps (S610 to S620) and the uplink steps (S630-S640) may also be performed at different times.
  • the downlink direction does not generate a set of downlink baseband signals (the downlink downlink baseband signals include k uplink baseband signals), but A downlink baseband signal of a corresponding number of channels is generated according to the total number of antennas of all RRUs in the first region; the uplink baseband signals transmitted by the RRUs of the cells in the second region in the uplink direction are combined into a group of uplink baseband signals.
  • the downlink baseband signals transmitted by the RRUs of the cells in the second region in the uplink direction are combined into a group of uplink baseband signals.
  • the downlink baseband signals corresponds to all cells in the first area. For example, in one embodiment, there are a total of 10 RRUs, and each RRU has 2 antennas. Then, in the downlink direction, only 2 downlink baseband signals are generated. No. (The two uplink baseband signals form a group of downlink baseband signals). In the upstream direction, the RRU—to transmit a total of 20 uplink baseband signals, is not combined at this time.
  • the number of antennas of each RRU is different, for example, the above 10 RRUs, if the number of antennas of one RRU is 1, and the number of antennas of the other 9 RRUs is 2, in the downlink direction, if the number of antennas is not used, In the method provided by the embodiment of the invention, 19 downlink baseband signals are generated. If the method in the embodiment of the present invention is used, only one downlink baseband signal needs to be generated (the one channel also constitutes one downlink baseband signal), and the downlink baseband signal has a transmission bandwidth of only one-seventh. In the uplink direction, if the method provided by the embodiment of the present invention is not used, 19 uplink baseband signals are transmitted.
  • only one antenna of the RRU greater than one antenna is selected to receive the radio frequency.
  • the signal and the transmitted uplink baseband signal are only combined with one uplink baseband signal after being combined at the BBU, so that only one uplink baseband signal needs to be transmitted.
  • the transmission bandwidth of the uplink baseband signal is only 1/19 of the original.
  • the uplink or downlink transmission bandwidth can be reduced to one of the original N minutes, and N is in the foregoing one region (the downlink corresponds to the first region, and the uplink Corresponding to the second area)
  • the number of RRUs If the number of antennas of each RRU is different, the transmission bandwidth of the uplink or downlink can be reduced by less than one-nth of the original, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the effect is remarkable.
  • first area and the second area may be the same, that is, the first area and the second area may be composed of the same RRU; in one embodiment, the first area And the second area may also be different, that is, the first area and the second area may be different
  • RRU constitutes.
  • a downlink baseband signal is generated for the area, and the downlink baseband signal is corresponding to the downlink baseband signal.
  • an embodiment of the present invention provides a BBU, including:
  • the signal generating module 110 is configured to: when a downlink traffic of one of the areas covered by the multiple RRUs is lower than a preset threshold, generate or receive a set of downlink baseband signals, where the set of downlink basebands corresponds to the one area All RUs;
  • the signal distribution module 120 is configured to separately transmit the set of downlink baseband signals to the respective RRUs in the one area, so that each of the RRUs generates the downlink radio frequency signal by using the downlink baseband signal, and sends the generated downlink radio frequency signal. .
  • the signal generation module 110 can include:
  • the obtaining unit 111 is configured to obtain the number of antennas of the RRU with the smallest number of antennas among all the RRUs in the foregoing one area;
  • the obtaining unit 111 may obtain the number of antennas of the RRU with the smallest number of antennas in advance, or may obtain the number of antennas of the RRU with the smallest number of antennas in the process.
  • the generating unit 112 is configured to generate the foregoing one set of downlink baseband signals according to the number of antennas of the RRUs with the smallest number of antennas in all the RRUs; the set of downlink baseband signals includes k downlink downlink baseband signals, where k is a natural number, and is used in all RRUs. The number of antennas of the RRU with the smallest number of antennas.
  • the signal generating module 110 may be specifically configured to: when the downlink traffic of one of the areas covered by the multiple RRUs is lower than a preset threshold, receive another BBU according to all RRUs in the foregoing one area. a set of downlink baseband signals generated by the number of antennas having the highest number of antennas, wherein the set of downlink basebands corresponds to all RRUs in the one region, the BBUs correspond to areas covered by the plurality of RRUs, and the other BBUs and the foregoing The area covered by the multiple RRUs does not correspond; the set of downlink baseband signals includes k downlink downlink baseband signals, and k is a natural number, which is the number of antennas of the RRU with the smallest number of antennas in all RRUs.
  • the signal distribution module 120 may include a first allocation unit 121 or a second allocation unit 122 or a third allocation unit 123, where:
  • the first allocating unit 121 is configured to select any k antennas of all the antennas of the foregoing RRUs, and transmit the k downlink downlink baseband signals to the k antennas of the RRUs, so that the respective RRUs use the downlink baseband signals.
  • the second allocating unit 122 is configured to select any k antennas of all the antennas of the foregoing RRUs at predetermined times, and respectively transmit the k downlink downlink baseband signals to the k antennas of the respective RRUs, so that the foregoing RRUs are respectively Generating a downlink radio frequency signal by using the downlink baseband signal, and transmitting the downlink radio frequency signal by using the k antennas;
  • the third allocating unit 123 is configured to divide the foregoing RRU antennas into k groups, and respectively transmit the k-channel downlink baseband signals to the k-group antennas of the respective RRUs, so that each of the RRUs generates the downlink radio frequency signals by using the downlink baseband signals. And transmitting the downlink radio frequency signal by using the k group antenna.
  • the BBU may be applied to a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN (Cloud Radio Access Network) system.
  • a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN (Cloud Radio Access Network) system.
  • a downlink baseband signal is generated or received, and the downlink baseband signal corresponds to all the areas in the foregoing area.
  • a cell and transmitting the downlink baseband signal to the RRU of each cell in the area, so that the transmission bandwidth of the downlink baseband signal is compressed to a large extent, and further, the number of antennas of the RRU with the smallest number of antennas in all RRUs may be used.
  • the above-mentioned group of downlink baseband signals are generated; the transmission bandwidth of the downlink baseband signals is further compressed, and the implementation is simple, and the complexity of the system is reduced.
  • an embodiment of the present invention provides a BBU, including:
  • the receiving module 210 is configured to receive an uplink baseband signal transmitted by each RRU of one of the areas covered by the multiple RRUs corresponding to the BBU, and the uplink baseband signals transmitted by the foregoing RRUs are converted by the foregoing RRUs according to the received radio frequency signals. ;
  • the signal combining module 220 is configured to combine the uplink baseband signals transmitted by the RRUs in the one area into a set of uplink baseband signals when the uplink traffic of the one area is lower than the preset threshold, where the set of uplink baseband signals corresponds to the foregoing All RRUs in the area.
  • the receiving module 210 is specifically configured to: receive, by each of the RUs of the foregoing region, k-channel uplink baseband signals transmitted by using the k-th or k-group antennas, and the k-channel uplink baseband signals transmitted by the foregoing RRUs are used by the foregoing RRUs.
  • K-channel received according to its own k or k group antenna The radio frequency signal is converted; the above k is a natural number, and is the number of antennas of the RRU having the smallest number of antennas in the RRU of each cell.
  • the signal combining module 220 is specifically configured to: receive, by each of the RRUs of the foregoing region, k-channel uplink baseband signals transmitted by using the k-th or k-group antennas, and the k-channel uplink baseband signals transmitted by the respective RRUs are The RRU is converted according to the k-channel radio frequency signals received by the k-th or k-group antennas; the k is a natural number, and is the number of antennas of the RRU with the smallest number of antennas in the RRU of each cell.
  • the BBU may further include: a first antenna allocation module 200 or a second antenna allocation module 201 or a third antenna allocation module 202, where: the first antenna allocation module 200, For each of the above RRUs, fixed selections of each of the above
  • any k antennas of all RRU antennas so that each of the above RRUs respectively receives the k-channel radio frequency signals through the k antennas;
  • the second antenna allocation module 201 is configured to select, for each of the foregoing RRUs, any k antennas of all the antennas of the foregoing RRUs at predetermined times, so that the foregoing RRUs respectively receive the k radio frequency signals through the k antennas. ;
  • the third antenna allocation module 202 is configured to divide the antennas of the RRUs into k groups for each of the RRUs, so that the respective RRUs respectively receive the k-channel radio frequency signals through the k-group antennas.
  • the BBU may be applied to a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN system.
  • a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN system.
  • the uplink baseband signals transmitted by the RRUs in the one area are combined into one uplink baseband.
  • the signal, the set of uplink baseband signals corresponds to all cells in the area, so that the transmission bandwidth of the downlink baseband signal is compressed by a large and large, and the implementation is simple, and the complexity of the system is reduced.
  • the uplink baseband signal transmitted by each RRU is transmitted by using a minimum number of antennas or antenna groups selected by the BBU, and a set of downlink basebands are combined according to the selected minimum antenna or the uplink baseband signals transmitted by the antenna group.
  • the signal further compresses the transmission bandwidth of the downlink baseband signal.
  • an embodiment of the present invention provides a BBU, including:
  • the signal generating module 110 is configured to: when a downlink traffic of one of the areas covered by the multiple RRUs is lower than a preset threshold, generate or receive a set of downlink baseband signals, where the set of downlink basebands corresponds to the one area All RUs;
  • the signal distribution module 120 is configured to separately transmit the set of downlink baseband signals to the respective RRUs in the one area, so that each of the RRUs generates the downlink radio frequency signal by using the downlink baseband signal, and sends the generated downlink radio frequency signal. ;
  • the receiving module 210 is configured to receive an uplink baseband signal transmitted by each RRU of one of the areas covered by the multiple RRUs corresponding to the BBU, and the uplink baseband signals transmitted by the foregoing RRUs are converted by the foregoing RRUs according to the received radio frequency signals. ;
  • the signal combining module 220 is configured to combine the uplink baseband signals transmitted by the RRUs in the one area into a set of uplink baseband signals when the uplink traffic of the one area is lower than the preset threshold, where the set of uplink baseband signals corresponds to the foregoing All RRUs in the area.
  • the BBU may be applied to a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN system.
  • a distributed system such as a distributed base station system, a distributed antenna system, or a C-RAN system.
  • a downlink baseband signal is generated for the area, and the downlink baseband signal is corresponding to the downlink baseband signal.
  • the uplink baseband signals of the RRUs in the area are combined into a group of uplink baseband signals, and the uplink baseband signals correspond to all the cells in the area, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the implementation is simple and low.
  • the complexity of the system is used to combine the uplink baseband signals into a group of uplink baseband signals, and the uplink baseband signals correspond to all the cells in the area, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the implementation is simple and low. The complexity of the system.
  • an embodiment of the present invention provides a baseband signal transmission system, including: at least one BBU node (such as BBU 1, BBU 2, and BBU 3 in FIG. 13) and multiple corresponding to at least one BBU node.
  • the area covered by the RRU (such as the coverage area 1, the coverage area 2, and the coverage area 3 in FIG. 13).
  • the BBU is configured to: when a downlink traffic of one of the areas covered by the multiple RRUs is lower than a preset threshold, generate a group of downlink baseband signals, where the set of downlink baseband signals correspond to all RRUs in the foregoing area; Transmitting the above-mentioned one set of downlink baseband signals to each RRU in the one area; receiving the uplink baseband signals transmitted by the respective RRUs of one of the areas covered by the corresponding multiple RRUs, and the uplink baseband signals transmitted by the respective RRUs are as described above Each RRU is converted according to the received radio frequency signal;
  • the uplink baseband signals transmitted by the RRUs in the one area are combined into a group of uplink baseband signals, and the set of uplink baseband signals correspond to all the RRUs in the area.
  • the RRU of the area covered by the multiple RRUs is configured to receive the downlink baseband signal transmitted by the BBU, generate a downlink radio frequency signal by using the downlink baseband signal, and send the generated downlink radio frequency signal; and convert the received radio frequency signal into For the uplink baseband signal, the uplink baseband signal is transmitted to the BBU.
  • the RRUs in each of the covered areas can receive radio frequency signals of terminals in the respective coverage areas through the air interface.
  • the BBU may be ring-connected or star-connected with the area covered by the corresponding plurality of RRUs. As shown in FIG. 12, the BBU 1 and the BBU 2 are respectively connected to the corresponding coverage area 1 and the coverage area 2 by a star connection, and the BBU 3 and the corresponding coverage area 3 are connected by a ring.
  • the BBU 1 when the downlink traffic of a certain area in the coverage area 1 corresponding to the BBU 1 (shown by a circle in FIG. 13) is lower than a preset threshold, The BBU 1 generates a set of downlink baseband signals corresponding to all RRUs in a certain region (shown by a circle ⁇ in FIG. 13) (ie, 4 RUs in the circular coil in FIG. 13) .
  • the BBU2 when the downlink traffic of a certain area in the coverage area 1 corresponding to the BBU 1 (as shown by the circle coil in FIG. 13) is lower than the preset threshold, the BBU2 (or the BBU 3) also This set of downlink baseband signals can be generated instead of BBU 1.
  • the BBU 1 sends the indication information to the BBU 2, where the indication information is used to indicate to the BBU 2 that the downlink traffic of the area of the coverage area 1 is lower than the preset threshold; after receiving the indication information, the BBU 2 generates A set of downlink baseband signals corresponding to all RRUs of the one area of the coverage area 1.
  • the set of downlink baseband signals are transmitted to the BBU 1 , and the BBU 1 receives the set of downlink baseband signals transmitted by the BBU 2, and transmits the set of downlink baseband signals to the RRUs in the one region (ie, the circular coils in FIG. 13) 4 RRUs).
  • a downlink baseband signal is generated for the area, and the downlink baseband signal is corresponding to the downlink baseband signal.
  • the uplink baseband signals of the RRUs in the area are combined into a group of uplink baseband signals, and the uplink baseband signals correspond to all the cells in the area, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the implementation is simple and low.
  • the complexity of the system is used to combine the uplink baseband signals into a group of uplink baseband signals, and the uplink baseband signals correspond to all the cells in the area, so that the transmission bandwidth of the baseband signal is compressed to a large extent, and the implementation is simple and low. The complexity of the system.
  • an embodiment of the present invention provides a baseband signal transmission method, including: S1310, receiving indication information of a BBU corresponding to an area covered by multiple RRUs, where the indication information is used to indicate a coverage area of the multiple RRUs RRU information in one of the areas;
  • the indication information is that the BBU corresponding to the area covered by the multiple RRUs is sent when the downlink traffic of the one area is lower than a preset threshold.
  • the RRU information in the one area includes information such as the number of RRUs, the number of antennas of the RRUs having the smallest number of antennas in all RRUs, and the like.
  • the set of downlink baseband signals may be generated based on the number of antennas of the RRU having the smallest number of antennas among all RRUs in the one region.
  • the foregoing group of downlink baseband signals are transmitted to the BBUs corresponding to the areas covered by the plurality of RRUs, and the BBUs corresponding to the areas covered by the plurality of RRUs are used to transmit the set of downlink baseband signals to the one area respectively.
  • Each RRU so that each of the above RRUs will be the above-mentioned downlink baseband
  • the signal generates a downlink radio frequency signal, and sends the downlink radio frequency signal.
  • the traffic volume of one of the areas covered by the multiple RRUs is lower than the preset threshold, only one downlink baseband signal is generated for the area, and the downlink baseband signal corresponds to the foregoing area. All the cells, and the downlink baseband signals are transmitted to the RRUs of the cells in the area, so that the transmission bandwidth of the downlink baseband signals is compressed to a large extent, and the implementation is simple, and the complexity of the system is reduced.
  • an embodiment of the present invention provides a BBU, including:
  • the information receiving module 1410 is configured to receive the indication information of the BBU corresponding to the area covered by the multiple RRUs, where the indication information is used to indicate the RRU information in one of the areas covered by the multiple RRUs;
  • the indication information is that the BBU corresponding to the area covered by the multiple RRUs is sent when the downlink traffic of the one area is lower than a preset threshold.
  • the RRU information in the one area includes information such as the number of RRUs, the number of antennas of the RRUs having the smallest number of antennas in all RRUs, and the like.
  • the baseband signal generating module 1420 is configured to generate, according to the indication information, a set of downlink baseband signals, where the set of downlink baseband signals corresponds to all RRUs in the foregoing one region;
  • the baseband signal generation module 1420 can generate the set of downlink baseband signals based on the number of antennas of the RRU having the smallest number of antennas among all RRUs in the above-described one region.
  • the transmission module 1430 is configured to transmit the foregoing group of downlink baseband signals to the BBU corresponding to the area covered by the multiple RRUs, where the coverage area corresponding to the plurality of RRUs is used to transmit the group of downlink baseband signals to the foregoing
  • Each of the RUs in an area causes the foregoing RRUs to generate a downlink radio frequency signal from the downlink baseband signal, and send the downlink radio frequency signal.
  • the BBU corresponding to the area covered by the foregoing multiple RRUs is used to separately separate the foregoing group of downlink baseband signals
  • the specific transmission method that is transmitted to each of the RRUs in the foregoing area has been described in detail in the foregoing embodiments, and details are not described herein again.
  • the traffic volume of one of the areas covered by the multiple RRUs is lower than the preset threshold, only one downlink baseband signal is generated for the area, and the downlink baseband signal corresponds to the foregoing area. All the cells, and the downlink baseband signals are transmitted to the RRUs of the cells in the area, so that the transmission bandwidth of the downlink baseband signals is compressed to a large extent, and the implementation is simple, and the complexity of the system is reduced.
  • the storage medium shield may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种基带信号传输方法,包括:当多个远端射频单元RRU所覆盖区域中的一个区域的下行业务量低于预设门限时,产生或接收一组下行基带信号,所述一组下行基带信号对应所述一个区域内的所有RRU;将所述一组下行基带信号分别传输给所述一个区域内的各个RRU,使所述各个RRU将所述下行基带信号生成下行无线射频信号,并将所述下行无线射频信号发送出去。相应的,本发明实施例还公开了一种基带信号传输方法和BBU,通过以上技术方案,大幅度的压缩了基带信号的传输带宽,而且实施简单,降低了系统的复杂度。

Description

基带信号传输方法和装置 本申请要求于 2010 年 8 月 27 日提交中国专利局, 申请号为 201010264785.5, 发明名称为"基带信号传输方法和装置"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种基带信号传输方法和装置。 背景技术
分布式基站与传统宏基站相比, 整个系统被划分为基带处理单元 BBU (Base Band Unit)与远端射频单元 RRU (Remote RF Unit)两部分, 其中 RRU被 放置在离 BBU较远接入点处, 它们之间通过光纤连接起来, 并采用模拟或数 字方式传输基带无线信号, BBU和 RRU之间的距离一般在几十米到一两百米 左右。 这样的好处是系统建网更加灵活方便, 天线架设不受机房位置的影响, 也便于基站系统的大容量设计, 有利于降低系统成本。 分布式天线系统 DAS (Distributed Antenna System) , 与射频拉远的分布式基站类似, 但 BBU和 RRU 之间的距离可以扩展到数千米甚至数十千米, 除了采用直接的光纤连接外,也 采用无源光网络 ΡΟΝ、 波分互用 WDM等光传输网连接, 而且, 较优地采用 多小区联合处理的方式, 例如, 网络 ΜΙΜΟ (多入多出系统)、 多小区联合调 度等来减小小区之间的干扰, 进一步提高系统容量。
随着 LTE 等 3G/4G 技术的 出现, 无线频谱宽度越来越大 ( 20MHz- 100MHz ), 同时 RRU通常支持 MIMO等多天线技术, 这样, 导致 BBU与 RRU之间基带无线信号传输所需要的带宽越来越大, 例如, 采用数字 方式传输 20MHz带宽的 LTE基带 I/Q信号, 每个 R U对应的基带无线信号 传输速率高达 lOGbps, 显然, 这对 BBU和 RRU之间的基带信号传输提出了 非常大的挑战。 对于单个 BBU而言, 典型可以连接数十到数百个 RRU, 这意 味着每个 BBU的基带无线信号路由交换单元需要对数十到数百个每路传输速 率高达 lOGbps的无线信号进行路由和交换, 这还不包括各个无线接入处理模 块之间的数据交换, 显然, 这对 BBU的实现提出很高的挑战。 进一步采用云 计算架构即 C-RAN时, 每个 BBU之间还需要传输和交换大量的高速基带无 线信号, 这对整个 C-RAN系统的设计和可靠运行, 都提出了巨大的挑战。 因 此,有效压缩基带无线信号,从而降低 BBU和 RRU之间的基带信号传输带宽 需求、 以及降低 BBU及多个 BBU互联的 C-RAN系统的复杂度, 显得非常重 要。 现有技术中通常有四种方式实现基带无线信号压缩, 即降低釆样率、 非线 性量化、 IQ数据压缩和子载波压缩。
但是, 上述现有的四种基带无线信号压缩技术共同的问题是: 由于基带信 号速率极高致使采用上述四种方式的复杂度过大, 而且会带来较大的性能损 失。 发明内容
本发明实施例提供一种基带信号传输方法和装置,以压缩了基带信号的传 输带宽, 降低系统的复杂度。
本发明一个实施例提供一种基带信号传输方法, 包括:
当多个远端射频单元 RRU所覆盖区域中的一个区域的下行业务量低于预 设门限时, 产生或接收一组下行基带信号, 所述一組下行基带信号对应所述一 个区域内的所有 RRU;
将所述一组下行基带信号分别传输给所述一个区域内的各个 RRU, 使所 述各个 RRU将所述下行基带信号生成下行无线射频信号, 并将所述下行无线 射频信号发送出去。
本发明一个实施例公开了一种基带信号传输方法, 包括:
接收对应的多个 RRU所覆盖区域中的一个区域的各个 RRU传输的上行基 带信号 ,所述各个 RRU传输的上行基带信号由所述各个 RRU根据接收的无线 射频信号转换得到;
当所述一个区域的上行业务量低于预设门限时, 将所述一个区域中各个
RRU传输的上行基带信号合并为一组上行基带信号, 所述一组上行基带信号 对应所述区域内的所有 RRU。 本发明一个实施例提供一种 BBU, 包括:
信号发生模块, 用于当多个 RRU所覆盖区域中的一个区域的下行业务量 低于预设门限时, 产生或接收一组下行基带信号, 所述一组下行基带对应所述 一个区域内的所有 RRU;
信号分配模块,用于将所述一组下行基带信号分別传输给所述一个区域内 的各个 RRU, 使所述各个 RRU将所述下行基带信号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
本发明一个实施例提供一种 BBU, 包括:
接收模块, 用于接收对应的多个 RRU 所覆盖区域中的一个区域的各个 RRU传输的上行基带信号, 所述各个 RRU传输的上行基带信号由所述各个 RRU根据接收的无线射频信号转换得到;
信号合并模块, 用于当所述一个区域的上行业务量低于预设门限时,将所 述一个区域中各个 RRU传输的上行基带信号合并为一組上行基带信号, 所述 一组上行基带信号对应所述区域内的所有 RRU。
本发明实施例提供一种基带信号传输方法, 包括:
接收和多个 RRU所覆盖区域对应的 BBU的指示信息,该指示信息用于指 示所述多个 RRU所覆盖区域中的一个区域内的 RRU信息;
根据该指示信息产生一组下行基带信号,所述一組下行基带信号对应所述 一个区域内的所有 RRU;
将所述一组下行基带信号传输给所述和多个 RRU 所覆盖区域对应的
BBU, 所述和多个 RRU所覆盖区域对应 BBU用于将所述一组下行基带信号 分别传输给所述一个区域内的各个 RRU,使所述各个 RRU将所述下行基带信 号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
本发明实施例提供一种 BBU, 包括:
信息接收模块,用于接收和多个 RRU所覆盖区域对应的 BBU的指示信息, 该指示信息用于指示所述多个 RRU所覆盖区域中的一个区域内的 RRU信息; 基带信号产生模块,用于根据该指示信息产生一组下行基带信号, 所述一 组下行基带信号对应所述一个区域内的所有 RRU; 传输模块, 用于将所述一组下行基带信号传输给所述和多个 RRU所覆盖 区域对应的 BBU, 所述和多个 RRU所覆盖区域对应 BBU用于将所述一组下 行基带信号分别传输给所述一个区域内的各个 RRU,使所述各个 RRU将所述 下行基带信号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
本发明实施例通过以上技术方案, 在下行方向, 当多个 RRU所覆盖区域 中的一个区域的业务量低于预设的门限时, 产生或接收一组下行基带信号, 该 一组下行基带信号对应上述区域内的所有 RRU, 并且向该区域内的各个小区 的 RRU传输这一组下行基带信号; 或者, 在上行方向, 当多个 RRU所覆盖区 域中的一个区域的业务量低于预设的门限时, 将该区域内各个 RRU的上行基 带信号合并为一组上行基带信号, 上行基带信号对应上述区域内的所有小区, 这样较大幅度的压缩了基带信号的传输带宽, 而且实施简单, 降低了系统的复 杂度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1本发明实施例提供的一种基带信号传输方法流程图;
图 2本发明实施例提供的一种基带信号传输方法流程图;
图 3本发明实施例提供的一种基带信号传输方法流程图;
图 4本发明实施例提供的一种基带信号传输方法流程图;
图 5本发明实施例提供的一种基带信号传输方法流程图;
图 6本发明实施例提供的一种基带信号传输方法流程图;
图 7本发明实施例提供的一种 BBU结构图;
图 8本发明实施例提供的一种 BBU的信号发生模块的结构图; 图 9本发明实施例提供的一种 BBU的信号分配模块结构图;
图 10本发明实施例提供的一种 BBU结构图;
图 11a本发明实施例提供的一种 BBU结构图; 图 lib本发明实施例提供的一种 BBU结构图;
图 11c本发明实施例提供的一种 BBU结构图;
图 12本发明实施例提供的一种 BBU结构图;
图 13本发明实施例提供的一种基带信号传输系统示意图;
图 14本发明实施例提供的一种基带信号传输方法流程图;
图 15本发明实施例提供的一种 BBU结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 本发明实施例提供一种基带信号传输方法, 包括:
S101, 当多个 RRU所覆盖区域中的一个区域的下行业务量低于预设门限 时,产生或接收一组下行基带信号, 上述一組下行基带信号对应上述一个区域 内的所有 RRU;
需要说明的是, 上述一组下行基带信号可以由和多个 RRU所覆盖区域对 应的 BBU产生; 也可以是由另一个 BBU (不和上述多个 RRU所覆盖区域对 应)产生, 然后传输给和多个 RRU所覆盖区域对应的 BBU, 即这是和多个 RRU所覆盖区域对应的这个 BBU接收另一 BBU产生的这一组下行基带信号。
在一个实施例中, 4 设 k (这里, k为自然数)为上述一个区域中的所有 RRU中天线数最小的 RRU的天线数。那么就按照 k来生成这一组下行基带信 号(需要说明的是,无论是和上述多个 RRU所覆盖区域对应的这个 BBU来产 生这一组下行基带信号, 还是由另一个 BBU来产生这一组下行基带信号, 都 可以用按照 k来生成这一组下行基带信号)。 此时, 这一组下行基带信号包括 k路下行基带信号(即这一组下行基带信号由这 K路下行基带信号組成。 当然 在一个实施例中, 这一组下行基带信号还可能包括其它的一些非下行基带信 号, 例如噪声等信号)。 在一个实施例中可以有下面两种情形:
1、在一个实施例中,如果上述一个区域内的各个 RRU具有相同的天线数, 那么第一 BBU按照这个天线数来生成该一组下行基带无线信号; 这时各个 RRU的最小天线数就是自身的天线数 k。
2、在一个实施例中 ,如果上述一个区域内的各个 RRU具有不同的天线数, 那么第一 BBU按照所有 RRU中天线数最小的 RRU的天线数 k来生成该一组 下行基带信号。
当然很好理解的是, 当最小天线数为 1时, 这一组下行基带信号就只包括 一路下行基带信号, 即这时第一 BBU只产生一路下行基带信号。
S102, 将该下行基带信号分别传输给上述一个区域内的各个 RRU, 使上 述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线 射频信号发送出去。
在一个实施例中, 当这一组下行基带信号是由和上述多个 RRU所覆盖区 域对应的这个 BBU产生时, 和上述多个 RRU所覆盖区域对应的这个 BBU将 这一組下行基带信号分别传输给上述一个区域内的各个 RRU。
在一个实施例中, 当这一组下行基带信号是由上述另一个 BBU产生时, 上述另一个 BBU将产生的这一組下行基带信号传输给和上述多个 RRU所覆盖 区域对应的 BBU; 和上述多个 RRU所覆盖区域对应的 BBU接收到上述另一 个 BBU传输的这一組下行基带信号后, 将这一组下行基带信号分别传输给上 述一个区域内的各个 RRU。
本实施例中当多个 RRU所覆盖区域中的一个区域的业务量低于预设的门 限时,只为这个区域产生一组下行基带信号,产生这一组下行基带信号的 BBU 在一个实施例中, 还可以将此一組下行基带信号传输给和上述多个 RRU所覆 盖区域对应的 BBU进行处理(例如, 当本方法可以应用在分布式基站系统、 分布式天线系统或者 C-RAN系统等分布式系统中, 这些系统中有多个 BBU, 各个 BBU可以相互协作的处理数据)。 当然很好理解的是, 在传输过程中, 中 间可以经过多个 BBU, 这样由于只传输一组下行基带信号, 在传输过程中较 大的压缩了传输带宽。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时, 只为这个区域产生一组下行基带信号, 该下行基 带信号对应上述区域内的所有小区, 并且向这个区域内的各个小区的 RRU传 输这一组下行基带信号, 而且产生这一组下行基带信号的 BBU还可以将此一 组下行基带信号传输给和上述多个 RRU所覆盖区域对应的 BBU进行处理。这 样较大幅度的压缩了下行基带信号的传输带宽, 而且实施简单, 降低了系统的 复杂度。
如图 2所示, 本发明实施例提供一种基带信号传输方法, 包括:
S 110 , 当第一 BBU对应的多个 RRU所覆盖区域中的一个区域的下行业 务量低于预设门限时, 第一 BBU产生一组下行基带信号, 该一组下行基带信 号对应上述区域内的所有 RRU;
在一个实施例中, 支设 k (这里, k为自然数)为上述一个区域中的所有 RRU中天线数最小的 RRU的天线数。 那么第一 BBU就按照 k来生成这一组 下行基带信号。 此时, 这一组下行基带信号包括 k路下行基带信号(即这一組 下行基带信号由这 K路下行基带信号组成。 当然在一个实施例中, 这一组下 行基带信号还可能包括其它的一些非下行基带信号, 例如噪声等信号)在一个 实施例中可以有下面两种情形:
1、在一个实施例中,如果上述一个区域内的各个小区对应的各个 RRU具 有相同的天线数, 那么第一 BBU按照这个天线数来生成该一组下行基带无线 信号; 这时各个 RRU的最小天线数就是自身的天线数 k。
2、在一个实施例中,如果上述一个区域内的各个 RRU具有不同的天线数, 那么第一 BBU按照所有 RRU中天线数最小的 RRU的天线数 k来生成该一组 下行基带信号。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外 2个 RRU的天线数为 2。 这时, 第一 BBU按照每个 RRU的天线数为 2来生 成该一组下行基带信号, 该一组下行基带信号对应上述区域内的所有小区。此 时, 这一组下行基带信号包括 2路下行基带信号。
在一个实施例中, 在步骤 S110中, 第一 BBU对应的多个 RRU所覆盖区 域中的一个区域的下行业务量低于预设门限时, 第一 BBU产生的一组下行基 带信号对应上述区域内的所有 RRU, 这时可以将上述一个区域理解成一个独 立的通信区域。
S120, 第一 BBU将该一组下行基带信号传分别输给上述各个 RRU,使上 述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线 射频信号发送出去。
在一个实施例中, 在按照步骤 S110中的方法(最小天线数)产生一组下 行基带信号后, 第一 BBU在将该一组下行基带信号分別传输给上述一个区域 内的各个 RRU的时 4矣, 可以釆取如下几种方式:
1、 对于上述一个区域内的各个 RRU, 固定的选择其所有天线中的任意 k 个天线, 分别向所述各个 RRU的 k个天线传输所述 k路下行基带信号; 在这 里, k为所有 RRU中天线数最小的 RRU的天线数。 每个 RRU接收到上述 k 路下行基带信号(上述一组下行基带信号包括这 k路下行基带信号)后, 将上 述下行基带信号生成下行无线射频信号,然后通过上述 k个天线分别将生成的 下行无线射频信号发送出去。 当然很好理解的是, 对于天线数最小的 RRU ( k 个天线), 采用上述方法时, 全部天线都被选择。
当然很好理解的是, 当最小天线数为 1时, 这一組下行基带信号就只包括 一路下行基带信号, 即这时第一 BBU只产生一路下行基带信号。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外
2个 R U的天线数为 2。 对于这 2个具有 4个天线的 RRU, 可以固定的任意 选择 4个天线中的 2个来分别传输产生的 2路下行基带信号(即, 向这 2个天 线中的一个传输一路下行基带信号, 向另一个天线传输另一路下行基带信号, 上述一组下行基带信号包括这 2路下行基带信号)。每个 RRU中的被固定选择 的 2个天线(对于天线数为 1的 RRU, 很好理解的是, 这两个天线全部被选 择)收到第一 BBU传输的下行基带信号后,每个 RRU将该下行基带信号生成 下行无线射频信号,并将生成的下行无线射频信号通过被固定选择的 2个天线 发送出去。
2、 对于上述一个区域内的各个 RRU, 每隔预定的时间选择其所有天线中 的任意 k个天线, 分別向上述各个 RRU的 k个天线传输上述 k路下行基带信 号; 在这里, k为所有 RRU中天线数最小的 RRU的天线数。 每个 RRU接收 到上迷 k路下行基带信号 (上述一组下行基带信号包括这 k路下行基带信号) 后,将上述下行基带信号生成下行无线射频信号, 然后通过上述 k个天线分别 将生成的下行无线射频信号发送出去。 例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外 2个 R U的天线数为 2。 对于这 2个具有 4个天线的 RRU, 可以在第一时间 段,选择 4个天线中的 1个来分别传输产生的一组下行基带信号(这一组下行 基带信号包括 2路下行基带信号), 在第二时间段, 选择 4个天线中的另外 2 个来分别传输产生的 2路下行基带信号(即, 向这 2个天线中的一个传输一路 下行基带信号, 向另一个天线传输另一路下行基带信号)。每个 RRU中的被选 择的 2个天线(对于天线数为 2的 RRU, 很好理解的是, 这两个天线全部被 选择)收到第一 BBU传输的下行基带信号后,每个 RRU将该下行基带信号生 成下行无线射频信号,并将生成的下行无线射频信号通过被选择的 2个天线发 送出去。
3、 对于上述一个区域内的各个 RRU, 将其天线分为 k组, 分别向上述各 个 RRU的 k组天线传输上述 k路下行基带信号。 在这里, k为所有 RRU中天 线数最小的 RRU的天线数。每个 RRU接收到上述下行基带信号后,将上述下 行基带信号生成下行无线射频信号,然后通过上述 k组天线分别将生成的下行 无线射频信号发送出去。
例如, 这一个区域中包含 4个 RRU, 其中 2个 R U的天线数为 4, 另外 2个 RRU的天线数为 2。 对于这 2个具有 4个天线的 RRU, 将每个 RRU的 4 个天线分为 2组, 向这 2組天线分别传输前面产生的 2路下行基带信号。
例如, 在一个实施例中, 可以每組为 2个天线, 这时向一组天线传输一路 下行基带信号, 向另一组天线传输下行基带信号; 在一个实施例中, 也可以一 组为 1个天线, 另一組为 3个天线, 这时向一组( 1个天线)传输一路下行基 带信号, 向另一组(3个天线)传输另一路下行基带信号。
在每个 RRU中的 2个天线分组收到第一 BBU传输的下行基带信号后,每 个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线射频 信号通过上述 2个天线分組分别发送出去。
当然很好理解的是, 在一个实施例中, 如果上述一个区域内的各个 RRU 具有相同的天线数(此时, 因为天线数相同, 最小天线数 k就是一个 RRU的 所有天线数,所以这一组下行基带信号按照一个 RRU所有天线数来生成),那 么第一 BBU在将该下行基带信号分别传输给上述一个区域内的各个 RRU的时 候, 分别向每个 RRU的所有天线发送 k路下行基带信号。
在一个实施例中,第一 BBU和上述各个 RRU可以采用星形连接。假设上 述多个 RRU所覆盖区域中的一个区域内的所有 RRU的数量为 N, N为正整数。 这时, 笫一 BBU将该一組下行基带信号复制 N份,将这 N份下行基带信号分 别传输给这 N个 RRU。具体针对各个 RRU天线的传输方式,在前述实施例中 已经详细描述, 在此不再赘述。
在一个实施例中, 第一 BBU和上述各个 RRU也可以釆用环形连接, 即, 采用相同的物理光纤环路连接上述各个 RRU和第一 BBU。假设上述多个 RRU 所覆盖区域中的一个区域内的所有小区的数量为 N, N为正整数。 这时, 第一 BBU通过环形连接链路向这个 N个 RRU传输同一组上述下行基带信号。具体 针对各个 RRU天线的传输方式, 在前述实施例中已经详细描述, 在此不再赘 述。
在一个实施例中,如果上述一个区域内的一共有 N个 RRU,各个 RRU的 天线数为 k, 则按照本发明实施例提供的方法, 则只需要产生 k路下行基带信 号(这 k路下行基带信号为一组下行基带信号, 对应上述一个区域内的 N个 RRU ), 而如果不按照本发明实施例提供的方法, 则需要产生 Nuk路下行基带 信号,可见如果釆用本发明实施例提供的方法, 可以将下行基带信号的传输带 宽压缩 N倍。
在另一个实施例中, 当上述一个区域内的 RRU的天线数量不相同时, 假 设只有一个 RRU的天线数是 k, 其余的 RRU的天线数均大于 k, 那么按照本 发明实施例提供的方法, 则只需要产生 k路下行基带信号 (这 k路下行基带信 号为一组下行基带信号,对应上述一个区域内的 N个 RRU )。 而如果不按照本 发明实施例提供的方法, 显然需要产生大于 Nuk路的下行基带信号, 可见如 果釆用本发明实施例提供的方法,可以将下行基带信号的传输带宽压缩大于 N 倍。
本实施例中当多个 RRU所覆盖区域中的一个区域的业务量低于预设的门 限时, 第一 BBU只为这个区域产生一组下行基带信号。
艮好理解的是, 第一 BBU可以将产生的这一组下行基带信号传输给其它 BBU进行处理(例如, 当本方法可以应用在分布式基站系统、 分布式天线系 统或者 C-RA 系统等分布式系统中, 这些系统中有多个 BBU, 各个 BBU可 以相互协作的处理数据), 在传输过程中, 中间可以经过多个 BBU, 这样由于 只传输一组下行基带信号, 在传输过程中较大的压縮了传输带宽。 而且第一 BBU产生这一组下行基带信号后, 在第一 BBU内部传输时(如将这一组下行 基带信号从内部的一个单板传输到另一个单板)只需要传输 k路信号,相比不 釆用本实施例的方案传输带宽被压缩了至少 N倍。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时, 为这个区域产生一组下行基带信号, 该下行基带 信号对应上述一个区域内的所有 RRU, 并且向该一个区域内的各个 RRU传输 这一组下行基带信号, 这样较大幅度的压缩了下行基带信号的传输带宽(下行 基带信号带宽被压缩了至少 N倍, N为该一个区域内的 RRU数), 而且实施 简单, 降低了系统的复杂度。 进一步地, 可以按照所有 RRU中天线数最小的 RRU 的天线数, 来生成上述一组下行基带信号; 进一步地压缩了下行基带信 号的传输带宽。
如图 3所示, 本发明实施例提供一种基带信号传输方法, 包括:
S210, 当第一 BBU对应的多个 RRU所覆盖区 3或中的一个区域的下行业 务量低于预设门限时,第一 BBU向第二 BBU发送指示信息,该指示信息用于 向第二 BBU指示该一个区域内的 RRU信息;
在一个实施例中, 该一个区域内的 RRU信息包括, RRU数量, 所有 RRU 中天线数最小的 RRU的天线数等信息。
S220, 第二 BBU收到所示指示信息后, 产生一組下行基带信号, 该一組 下行基带信号对应上述第一 BBU对应的多个 RRU所覆盖区域中的的一个区域 的所有 RRU;
在一个实施例中, 在步骤 S220中, 第一 BBU对应的多个 RRU所覆盖区 域中的一个区域的下行业务量低于预设门限时, 第二 BBU产生的一组下行基 带信号对应上述一个区域内的所有 RRU, 这时可以将上述一个区域理解成一 个独立的通信区域。
在一个实施例中, 支设 k (这里, k为自然数)为上述一个区域中的所有 RRU中天线数最小的 R U的天线数。 那么第二 BBU就按照 k来生成这一组 下行基带信号。 此时, 这一组下行基带信号包括 k路下行基带信号(即这一组 下行基带信号由这 κ路下行基带信号组成。 当然在一个实施例中, 这一组下 行基带信号还可能包括其它的一些非下行基带信号, 例如噪声等信号)。 当然 很好理解的是, 当最小天线数为 1时, 这一组下行基带信号就只包括一路下行 基带信号, 即这时第二 BBU只产生一路下行基带信号。
当然可以包括以下两种情况:
1、在一个实施例中 ,如果上述一个区域内的各个 RRU具有相同的天线数, 那么第二 BBU按照这个天线数来生成该一组下行基带无线信号; 这时各个 RRU的最小天线数就是自身的天线数;
2、在一个实施例中,如果上述一个区域内的各个 RRU具有不同的天线数, 那么第二 BBU按照所有 RRU中天线数最小的 RRU的天线数来生成该一组下 行基带信号。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外 2个 RRU的天线数为 2。 这时, 第二 BBU按照每个 RRU的天线数为 2来生 成该一组下行基带信号, 该一组下行基带信号对应上述区域内的所有小区。此 时, 这一组下行基带信号包括 2路下行基带信号。
S230, 第二 BBU将上述一組下行基带信号传输给第一 BBU;
S240, 第一 BBU接收第二 BBU传输的上述一组下行基带信号;
S250, 第一 BBU将该一组下行基带信号传分别输给上述各个 RRU,使上 述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线 射频信号发送出去。
在一个实施例中, 按照步骤 S220中的方法生成一组下行基带信号 (包括 k路下行基带信号)后, 第一 BBU在将该一组下行基带信号分别传输给上述 一个区域内的各个 RRU的时候, 可以釆取如下几种方式:
1、 对于上述一个区域内的各个 RRU, 固定的选择其所有天线中的任意 k 个天线, 分别向所述各个 R U的 k个天线传输所述 k路下行基带信号; 在这 里, k为所有 RRU中天线数最小的 RRU的天线数。 每个 RRU接收到上述 k 路下行基带信号(上述一组下行基带信号包括这 k路下行基带信号)后, 将上 述下行基带信号生成下行无线射频信号,然后通过上述 k个天线分别将生成的 下行无线射频信号发送出去。 当然很好理解的是, 对于天线数最小的 RRU ( k 个天线), 釆用上述方法时, 全部天线都被选择。
当然很好理解的是, 当最小天线数为 1时, 这一组下行基带信号就只包括 一路下行基带信号, 即这时第二 BBU只产生一路下行基带信号。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外
2个 R U的天线数为 2。 对于这 2个具有 4个天线的 RRU, 可以固定的任意 选择 4个天线中的 Ί个来分别传输产生的 2路下行基带信号(即, 向这 2个天 线中的一个传输一路下行基带信号, 向另一个天线传输另一路下行基带信号, 上述一组下行基带信号包括这 2路下行基带信号)。每个 RRU中的被固定选择 的 2个天线(对于天线数为 2的 RRU, 很好理解的是, 这两个天线全部被选 择)收到第一 BBU传输的下行基带信号后,每个 RRU将该下行基带信号生成 下行无线射频信号,并将生成的下行无线射频信号通过被固定选择的 2个天线 发送出去。
2、 对于上述一个区域内的各个 RRU, 每隔预定的时间选择其所有天线中 的任意 k个天线, 分別向上述各个 RRU的 k个天线传输上述 k路下行基带信 号; 在这里, k为所有 RRU中天线数最小的 RRU的天线数。 每个 RRU接收 到上述 k路下行基带信号 (上述一組下行基带信号包括这 k路下行基带信号) 后,将上述下行基带信号生成下行无线射频信号, 然后通过上述 k个天线分别 将生成的下行无线射频信号发送出去。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外
2个 RRU的天线数为 2。 对于这 2个具有 4个天线的 RRU, 可以在第一时间 段,选择 4个天线中的 2个来分别传输产生的一組下行基带信号(这一组下行 基带信号包括 2路下行基带信号), 在第二时间段, 选择 4个天线中的另外 2 个来分别传输产生的 2路下行基带信号(即, 向这 2个天线中的一个传输一路 下行基带信号, 向另一个天线传输另一路下行基带信号)。每个 RRU中的被选 择的 2个天线(对于天线数为 2的 RRU, 很好理解的是, 这两个天线全部被 选择 )收到第一 BBU传输的下行基带信号后,每个 RRU将该下行基带信号生 成下行无线射频信号,并将生成的下行无线射频信号通过被选择的 2个天线发 送出去。 3、 对于上述一个区域内的各个 RRU, 将其天线分为 k组, 分别向上述各 个 RRU的 k组天线传输上述 k路下行基带信号。 在这里, k为所有 RRU中天 线数最小的 RRU的天线数。每个 RRU接收到上述下行基带信号后,将上述下 行基带信号生成下行无线射频信号,然后通过上述 k組天线分别将生成的下行 无线射频信号发送出去。
例如, 这一个区域中包含 4个 RRU, 其中 2个 RRU的天线数为 4, 另外 2个 RRU的天线数为 2。 对于这 2个具有 4个天线的 RRU, 将每个 RRU的 4 个天线分为 2组, 向这 2组天线分别传输前面产生的 2路下行基带信号。
例如, 在一个实施例中, 可以每组为 2个天线, 这时向一组天线传输一路 下行基带信号, 向另一组天线传输下行基带信号; 在一个实施例中, 也可以一 组为 1个天线, 另一组为 3个天线, 这时向一组( 1个天线)传输一路下行基 带信号, 向另一组(3个天线)传输另一路下行基带信号。
在每个 RRU中的 2个天线分组收到第一 BBU传输的下行基带信号后,每 个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线射频 信号通过上述 2个天线分组分别发送出去。
在一个实施例中,第一 BBU和上述各个 RRU可以采用星形连接。 设上 述多个 RRU所覆盖区域中的一个区域内的所有 RRU的数量为 N, 为正整数。 这时, 第一 BBU将该一组下行基带信号复制 N份,将这 N份下行基带信号分 别传输给这 N个 RRU。具体针对各个 RRU天线的传输方式,在前述实施例中 已经详细描述, 在此不再赘述。
在一个实施例中, 第一 BBU和上述各个 RRU也可以釆用环形连接, 即, 釆用相同的物理光纤环路连接上迷各个 RRU和第一 BBU。假设上述多个 RRU 所覆盖区域中的一个区域内的所有小区的数量为 N, N为正整数。 这时, 第二 BBU通过环形连接链路向这个 N个 RRU传输同一组上述下行基带信号。具体 针对各个 RRU天线的传输方式, 在前述实施例中已经详细描述, 在此不再赘 述。
本实施例中当多个 RRU所覆盖区域中的一个区域的业务量低于预设的门 限时, 第二 BBU只为这个区域产生一组下行基带信号。 很好理解的是, 第二 BBU可以将产生的这一组下行基带信号传输给其它 BBU进行处理,例如按照 上述方法传输给第一 BBU。 在传输过程中, 中间可以经过多个 BBU, 这样由 于各个 BBU之间只传输一组下行基带信号(该一组下行基带信号包括 k路下 行基带信号),在传输过程中较大的压缩了传输带宽。 而且第二 BBU产生这一 组下行基带信号后, 在第二 BBU内部传输时(如将这一组下行基带信号从内 部的一个单板传输到另一个单板 )只需要传输 k路信号, 相比不采用本实施例 的方案传输带宽被至少压缩了 N倍。
在一个实施例中, 本方法可以应用在分布式基站系统、分布式天线系统或 者 C-RA 系统等分布式系统中时,由于这些系统有多个 BBU,而且这些 BBU 可以相互协作的处理数据。 当采用本实施例提供的方法后, 一个 BBU产所生 一组下行基带信号(该一组下行基带信号包括 k路下行基带信号), 其它 BBU 协助处理这一组下行基带信号时, 就可以只在各个 BBU之间传输一组下行基 带信号, 相比不采用本实施例的方案传输带宽被至少压缩了 N倍。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时, 为这个区域产生一組下行基带信号, 该下行基带 信号对应上述一个区域内的所有 RRU, 并且向该一个区域内的各个 RRU传输 这一组下行基带信号, 这样较大幅度的压缩了下行基带信号的传输带宽(下行 基带信号传输带宽被压缩了至少 N倍, N为该一个区域内的 RRU数), 而且 实施筒单, 降低了系统的复杂度。 进一步地, 可以按照所有 RRU中天线数最 小的 RRU的天线数, 来生成上述一组下行基带信号; 进一步地压缩了下行基 带信号的传输带宽。
如图 4所示, 本发明实施例提供一种基带信号传输方法, 包括:
S201, BBU接收对应的多个 RRU所覆盖区域中的一个区域的各个 RRU 传输的上行基带信号, 上述各个 RRU传输的上行基带信号由上述各个 RRU 根据接收的无线射频信号转换得到;
S202, 当上述一个区域的上行业务量低于预设门限时,将上述一个区域中 各个 RRU传输的上行基带信号合并为一组上行基带信号, 上述一组上行基带 信号对应上述一个区域内的所有 RRU。
在一个实施例中,可以釆用线性合并的方式,将上述一个区域内各个 RRU 传输的上行基带信号合并为一组上行基带信号。 在一个实施例中, 线性合并方式可以为线性相加的方式, 即, 将上述一个 区域内各个 RRU传输的上行基带信号进行线性相加合并为一路上行无线信 号。 在一个实施例中, 也可以先将上述一个区域内各个 RRU传输的上行基带 信号乘以预置的比例系数, 然后再进行线性相加。
在一个实施例中, BBU和多个 RRU所覆盖区域中的各个 RRU可以采用 星形连接。
在一个实施例中, BBU和多个 RRU所覆盖区域中的各个 RRU可以釆用 环形连接。
在一个实施例中,当 BBU将上述一个区域中各个 RRU传输的上行基带信 号合并为一组上行基带信号后, BBU还可将该一組上行基带信号进行内部处 理(例如进行调制解调等处理)这样 BBU在内部传输时(如将这一组下行基 带信号从内部的一个单板传输到另一个单板)只需要传输一组上行基带信号, 较大幅度的压缩了上行基带信号的传输带宽。
当然很好理解的是,其它一些 BBU还可以协助上述 BBU对这一组上行基 带信号进行处理(例如, 当本方法可以应用在分布式基站系统、 分布式天线系 统或者 C-RA 系统等分布式系统中, 这些系统中有多个 BBU, 各个 BBU可 以相互协作的处理数据 ),这样上述 BBU就可以只传输一组上行基带信号给其 它的这些 BBU, 较大幅度的压缩了上行基带信号的传输带宽。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的上行业务量低于预设的门限时, 将该一个区域内各个 RRU传输的上行基带 信号合并为一组上行基带信号,该一组上行基带信号对应上述区域内的所有小 区, 这样较大大幅度的压缩了下行基带信号的传输带宽, 而且实施筒单, 降低 了系统的复杂度。进一步地,可以按照所有 RRU中天线数最小的 RRU的天线 数,来生成上述一组下行基带信号;进一步地压缩了下行基带信号的传输带宽。
如图 5所示, 本发明实施例提供一种基带信号传输方法, 包括:
S510, BBU接收上述一个区域的各个 RRU利用自身 k个或者 k组天线传 输的 k路上行基带信号, 上述各个 RRU传输的 k路上行基带信号由上述各个 RRU根据自身 k个或者 k组天线接收到的 k路无线射频信号转换得到;上述 k 为自然数, 为上述各个小区的 R U中天线数最小的 RRU的天线数。 S520, 当上述一个区域的上行业务量低于预设门限时,将上述一个区域中 一个 RRU利用自身 k个或 k组天线传输的 k路上行基带信号与上述一个区域 中剩余的其它各个 RRU利用自身 k个或 k组天线传输的 k路上行基带信号进 行合并, 得到 k路经过合并的上行基带信号。
需要说明的是, 在这里, 前面图 4对应的实施例中的一组上行基带信号包 括上述 k路经过合并的上行基带信号。
在一个实施例中, 如图 5中的虚线框所示, 在 S510之前该方法还可以包 括:
S500, 对于上述各个 RRU, 固定的选择上述各个 RRU所有天线中的任意 k个天线, 来使上述各个 RRU通过上述 k个天线分别接收上述 k路无线射频 信号; 或者, 对于上述各个 RRU, 每隔预定的时间选择上述各个 R U所有天 线中的任意 k个天线, 来使上述各个 RRU通过上述 k个天线分别接收上述 k 路无线射频信号; 或者, 对于上述各个 RRU, 将上述各个 R U的天线分为 k 组, 来使上述各个 RRU通过上述 k组天线分别接收上述 k路无线射频信号。
例如,在一个实施例中, 设上述一个区域中有 3个 RRU,分別为 RRU 1、
RRU 2和 RRU 3 , 其中 RRU 1的天线数最少为 2 , RRU 2和 RRU 3的天线数 均大于 2。通过 S500中提供的方法在 RRU 2和 RRU 3各选出 2根天线后, 每 个 RRU根据自身被选择的 2个天线通过空中接口接收 2路选线射频信号 , 将 接收的 2路无线射频信号转换为上行基带信号后传输给 BBU。这样 BBU就会 收到 6路上行基带信号 (因为每个 RRU都传输 2路上行基带信号, 3个 RRU 一共传输 6路上行基带信号)。
当这个区域的上行业务量低于预定门限时, BBU将届时接收到的 6路上 行基带信号进行合并, 得到一组上行基带信号。 在一个实施例中, BBU将接 收到的 RRU 1传输的 2路上行基带信号和接收到的 RRU 2传输的 2路上行基 带信号以及和接收到的 RRU 3中的 2路上行基带信号进行合并, 得到 2路经 过合并后的上行基带信号。
具体地, 在一个实施例中, BBU将接收到的 RRU 1传输的 2路上行基带 信号中的第 1路上行基带信号和接收到的 RRU 2传输的 2路上行基带信号中 的第 1路上行基带信号以及和接收到的 RRU 3传输的 2路上行基带信号中的 第 1路上行基带信号进行合并, 得到一路经过合并的上行基带信号; BBU将 接收到的 RRU 1传输的 2路上行基带信号中的第 1路上行基带信号和接收到 的 RRU 2传输的 1路上行基带信号中的笫 2上行基带路信号以及和接收到的 RRU 3传输的 2路上行基带信号中的第 2路上行基带信号进行合并,得到另一 路经过合并的上行基带信号。经过上述合并,一共得到 2路经过合并的上行基 带信号(即, 一组上行基带信号)。
当然, 在另一个实施例中, BBU将接收到的 RRU 1传输的 2路上行基带 信号中的第 1路上行基带信号和接收到的 RRU 2传输的 2路上行基带信号中 的第 2路上行基带信号以及和接收到的 RRU 3传输的 2路上行基带信号中的 第 1路上行基带信号进行合并, 得到一路经过合并的上行基带信号; BBU将 接收到的 RRU 1传输的 2路上行基带信号中的第 2路上行基带信号和接收到 的 RRU 2传输的 2路上行基带信号中的第 1路上行基带信号以及和接收到的 RRU 3传输的 2路上行基带信号中的第 2路上行基带信号进行合并,得到另一 路经过合并的上行基带信号;
当然很好理解的是,在其它实施例中还可以有其它的合并方法得到 2路经 过合并的上行基带信号, 本发明实施例对此不做特別的限定。
当然很好理解的是, 当最小天线数为 k时同样适用上面提到的合并方法。 即将一个 RRU传输的一路信号和其他各个 RRU中的一路信号, 以此类推,直 到将这个 RRU传输的最后一路信号和其他各个 RRU传输的最后一路信号合并 完毕, 得到 k路经过合并的上行基带信号。
在一个实施例中,如果上述一个区域内的 RRU的总数为 N,每个 RRU均 为 k个天线, 那么按照本发明实施例的方法, 在 BBU处对每个 RRU利用 k 个天线传输的上行信号进行合并后就只有 k路上行基带信号;如果不按照本发 明实施例提供的方法, 那么在 BBU处就有 Nuk路上行基带信号, 可见本发明 实施例提供的方法, 可以将上行基带信号的传输带宽压缩 N倍。
在另一个实施例中,如果上述 RRU的天线数并不相同,假设只有一个 RRU 有 k个天线, 其余的 RRU的天线数均大于 k, 那么按照本发明实施例的方法, 对每个 RRU均选择用 k个天线来发送上行基带信号, 这样在 BBU处对每个 RRU利用 k个天线传输的上行信号进行合并后就只有 k路上行基带信号; 如 果不按照本发明实施例提供的方法, 那么在 BBU处就有大于 Nuk路上行基带 信号,可见本发明实施例提供的方法, 可以将上行基带信号的传输带宽压缩大 于 N倍。
在一个实施例中,当 BBU将上述一个区域中各个 RRU传输的上行基带信 号合并为一组上行基带信号后, BBU还可将该一组上行基带信号进行内部处 理(例如进行调制解调等处理)这样 BBU在内部传输时(如将这一组下行基 带信号从内部的一个单板传输到另一个单板) 只需要传输一组上行基带信号 (这一组上行基带信号包括 k路上行基带信号), 这样将上行基带信号的传输 带宽压缩了至少 N倍。
当然很好理解的是,其它一些 BBU还可以协助上述 BBU对这一组上行基 带信号进行处理(例如, 当本方法可以应用在分布式基站系统、 分布式天线系 统或者 C-RAN系统等分布式系统中, 这些系统中有多个 BBU, 各个 BBU可 以相互协作的处理数据 ),这样上述 BBU就可以只传输一组上行基带信号给其 它的这些 BBU, 这样将上行基带信号的传输带宽压缩了至少 N倍。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的上行业务量低于预设的门限时, 将该一个区域内各个 RRU传输的上行基带 信号合并为一组上行基带信号,该一组上行基带信号对应上述区域内的所有小 区, 这样较大大幅度的压缩了下行基带信号的传输带宽, 而且实施简单, 降低 了系统的复杂度。进一步地,各个 RRU传输的上行基带信号是通过 BBU选择 出的最小天线数个天线或者天线組来传输的,根据选择的最小天线数个天线或 者天线组传输的上行基带信号合并的一组下行基带信号,进一步地压缩了下行 基带信号的传输带宽。
如图 6所示, 本发明实施例提供一种基带信号传输方法, 包括:
S610, 当多个 RRU所覆盖区域中的第一区域的下行业务量低于预设门限 时,产生或接收一组下行基带信号, 上述一组下行基带信号对应上述第一区域 内的所有 RRU;
步骤 S610中,在一个实施例中,和上述多个 RRU所覆盖区域对应的 BBU 产生一组下行基带信号。 在一个实施例中, 也可以由另一个 BBU (不和上述 多个 RRU所覆盖区域对应)来产生这一组下行基带信号 , 然后传输给和上述 多个 RRU对应的 BBU。
S620, 将该下行基带信号分别传输给上述第一区域内的各个 RRU, 使上 述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线 射频信号发送出去;
S630, 接收其对应的多个 RRU所覆盖区域中的第二区域中各个 RRU传 输的上行基带信号,上述各个 RRU传输的上行基带信号由上述各个 RRU根据 接收的无线射频信号转换得到;
S640, 当上述第二区域的上行业务量低于预设门限时,将上述第二区域中 各个 RRU传输的上行基带信号合并为一组上行基带信号, 上述一组上行基带 信号对应上述第二区域内的所有 RRU。
步骤 S610 - S640 , 各个 RRU的天线数量相同和不同时的具体传输方式, 在前述实施例中已经详细描述, 在此不再赘述。
步骤 S630 ~ S640,各个的 RRU的天线数量相同和不同时的具体传输方式, 在前述实施例中已经详细描述, 在此不再赘述。
需要说明的是, 在一个实施例中, 下行步骤 ( S610 ~ S620 )和上行步骤 ( S630 ~ S640 ) 可以同时进行。 在一个实施例中, 下行步骤( S610 ~ S620 ) 和上行步骤( S630 - S640 )也可以不同时进行。 例如, 当下行业务量较大, 但 上行业务量较小而低于预设门限时, 下行方向并不产生一组下行基带信号(该 一组下行基带信号包括 k路上行基带信号 ), 而是根据第一区域中的所有 RRU 总的天线的数量, 产生相应数量路数的下行基带信号; 上行方向对第二区域中 各个小区的 RRU传输的上行基带信号合并为一组上行基带信号。 例如, 在一 个实施例中, 一共有 10个 RRU, 每个 RRU有 2根天线, 那么这时在下行方 向, 并不只产生 2路下行基带信号(该 2路上行基带信号组成一组下行基带信 号),而是根据总的天线数产生 20路下行基带信号。反之, 当上行业务量较大, 但下行业务量较小而低于预设门限时, 上行方向对第二区域中各个 RRU传输 的上行基带信号并不进行合并; 下行方向产生一組下行基带信号, 该下行基带 信号对应上述第一区域内的所有小区。 例如, 在一个实施例中, 一共有 10个 RRU, 每个 RRU有 2根天线, 那么这时在下行方向, 只产生 2路下行基带信 号(该 2路上行基带信号组成一组下行基带信号)。 而在上行方向 , RRU—共 要传输 20个上行基带信号, 这时并不进行合并。
在一个实施例中 , 如果各个 RRU的天线数量不同 , 例如上述 10个 RRU, 如果有一个 RRU的天线数为 1, 另外 9个 RRU的天线数为 2, 就下行方向来 说, 如果不采用本发明实施例提供的方法, 则要产生 19个下行基带信号。 如 果釆用了本发明实施例中的方法, 只需要产生 1路下行基带信号(这 1路也就 构成 1组下行基带信号 ), 下行基带信号的传输带宽只为原来的 19分之 1。 上 行方向,如果不采用本发明实施例提供的方法, 则要传输 19个上行基带信号, 如果采用本发明实施例提供的方法, 对于大于 1个天线的 RRU只选择其中的 1个天线来接收射频信号和传输上行基带信号,在 BBU处经过合并后就只有 1 路上行基带信号, 这样只需要传输 1路上行基带信号。上行基带信号的传输带 宽只为原来的 19分之 1。
由此可见, 通过本实施例提供的方法, 如果各个 R U的天线数量相同可 以将上行或者下行的传输带宽降为原来的 N分之一, N为上述一个区域中(下 行对应第一区域, 上行对应第二区域) RRU的数量。 如果各个 RRU的天线数 量不同, 则可以降上行或者下行的传输带宽将为不到原来的 N分之一, 这样 较大幅度的压缩了基带信号的传输带宽, 效果比较显著。
另外还需要说明的是,在一个实施例中, 上述第一区域和第二区域可以相 同, 即, 第一区域和第二区域可以由相同的 RRU构成; 在一个实施例中, 上 述第一区域和第二区域也可以不同, 即, 第一区域和第二区域可以由不同的
RRU构成。
本发明实施例通过以上技术方案, 在下行方向, 当多个 RRU所覆盖区域 中的一个区域的业务量低于预设的门限时, 为这个区域产生一组下行基带信 号, 该下行基带信号对应上述区域内的所有 RRU, 并且向该区域内的各个小 区的 RRU传输这一组下行基带信号; 或者, 在上行方向, 当多个 RRU所覆盖 区域中的一个区域的业务量低于预设的门限时, 将该区域内各个 RRU的上行 基带信号合并为一组上行基带信号, 上行基带信号对应上述区域内的所有小 区, 这样较大幅度的压缩了基带信号的传输带宽, 而且实施筒单, 降低了系统 的复杂度。 如图 7所示, 本发明实施例提供一种 BBU, 包括:
信号发生模块 110, 用于当多个 RRU所覆盖区域中的一个区域的下行业 务量低于预设门限时, 产生或接收一组下行基带信号, 所述一组下行基带对应 所述一个区域内的所有 R U;
信号分配模块 120 , 用于将该一组下行基带信号分別传输给上述一个区域 内的各个 RRU, 使上述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线射频信号发送出去。
在一个实施例中, 如图 8所示, 信号发生模块 110可以包括:
获取单元 111 ,用于获取上述一个区域内的所有 RRU中天线数最小的 RRU 的天线数;
在一个实施例中, 获取单元 111可以预先获得天线数最小的 RRU的天线 数, 也可以处理的过程中获得天线数最小的 RRU的天线数。
产生单元 112, 用于按照所有 RRU中天线数最小的 RRU的天线数, 来生 成上述一组下行基带信号; 上述一组下行基带信号包括 k路下行基带信号, 上 述 k为自然数, 为所有 RRU中天线数最小的 RRU的天线数。
在另一个实施例中, 信号发生模块 110可以具体用于: 当多个 RRU所覆 盖区域中的一个区域的下行业务量低于预设门限时, 接收另一 BBU按照上述 一个区域内的所有 RRU中天线数最 、的 RRU的天线数产生的一组下行基带信 号, 上述一组下行基带对应上述一个区域内的所有 RRU, 上述 BBU与上述多 个 RRU所覆盖区域对应,上述另一 BBU与上述多个 RRU所覆盖区域不对应; 上述一组下行基带信号包括 k路下行基带信号, 上述 k为自然数, 为所有 RRU中天线数最小的 RRU的天线数。
在一个实施例中, 如图 9所示, 信号分配模块 120可以包括, 第一分配单 元 121或者第二分配单元 122或者第三分配单元 123 , 其中:
第一分配单元 121 ,用于固定的选择上述各个 RRU的所有天线中的任意 k 个天线, 分别向上述各个 RRU的 k个天线传输上述 k路下行基带信号, 使上 述各个 RRU将上述下行基带信号生成下行无线射频信号, 并通过上述 k个天 线将上述下行无线射频信号发送出去; 第二分配单元 122, 用于每隔预定的时间选择上述各个 RRU的所有天线 中的任意 k个天线, 分别向上述各个 RRU的 k个天线来分别传输上述 k路下 行基带信号, 使上述各个 RRU将上述下行基带信号生成下行无线射频信号, 并通过上述 k个天线将上述下行无线射频信号发送出去;
第三分配单元 123 , 用于将上述各个 RRU天线分为 k组, 分别向上述各 个 RRU的 k组天线传输上述 k路下行基带信号,使上述各个 RRU将上述下行 基带信号生成下行无线射频信号,并通过上述 k组天线将上述下行无线射频信 号发送出去。
在一个实施例中, 上述 BBU可以应用在分布式基站系统、 分布式天线系 统或者 C-RAN (Cloud Radio Access Network, 云无线接入网络)系统等分布式 系统中。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时,产生或接收一组下行基带信号, 该下行基带信号 对应上述区域内的所有小区, 并且向这个区域内的各个小区的 RRU传输这一 组下行基带信号,这样较大幅度的压缩了下行基带信号的传输带宽,进一步地, 可以按照所有 RRU中天线数最小的 RRU的天线数,来生成上述一组下行基带 信号; 进一步地压缩了下行基带信号的传输带宽, 而且实施简单, 降低了系统 的复杂度。
如图 10所示, 本发明实施例提供一种 BBU, 包括:
接收模块 210,用于接收上述 BBU对应的多个 RRU所覆盖区域中的一个 区域的各个 RRU传输的上行基带信号,上述各个 RRU传输的上行基带信号由 上述各个 RRU根据接收的无线射频信号转换得到;
信号合并模块 220, 用于当上述一个区域的上行业务量低于预设门限时, 将上述一个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 上述一组上行基带信号对应上述区域内的所有 RRU。
在一个实施例中 ,接收模块 210具体用于:接收上述一个区域的各个 R U 利用自身 k个或者 k组天线传输的 k路上行基带信号, 上述各个 RRU传输的 k路上行基带信号由上述各个 RRU根据自身 k个或者 k组天线接收到的 k路 无线射频信号转换得到; 上述 k为自然数, 为上述各个小区的 RRU中天线数 最小的 RRU的天线数。
在一个实施例中, 信号合并模块 220具体用于: 接收上述一个区域的各个 RRU利用自身 k个或者 k组天线传输的 k路上行基带信号,上述各个 RRU传 输的 k路上行基带信号由上述各个 RRU根据自身 k个或者 k组天线接收到的 k路无线射频信号转换得到; 上述 k为自然数, 为上述各个小区的 RRU中天 线数最小的 RRU的天线数。
在一个实施例中, 如图 11a - 11c所示, 该 BBU还可以包括, 第一天线分 配模块 200或者第二天线分配模块 201或者第三天线分配模块 202, 其中: 第一天线分配模块 200, 用于对于上述各个 RRU, 固定的选择上述各个
RRU所有天线中的任意 k个天线,来使上述各个 RRU通过上述 k个天线分别 接收上述 k路无线射频信号;
第二天线分配模块 201,用于对于上述各个 RRU,每隔预定的时间选择上 述各个 RRU所有天线中的任意 k个天线,来使上述各个 RRU通过上述 k个天 线分別接收上述 k路无线射频信号;
第三天线分配模块 202, 用于对于上述各个 RRU, 将上述各个 RRU的天 线分为 k组, 来使上述各个 RRU通过上述 k组天线分别接收上述 k路无线射 频信号。
在一个实施例中, 上述 BBU可以应用在分布式基站系统、 分布式天线系 统或者 C-RAN系统等分布式系统中。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的上行业务量低于预设的门限时, 将该一个区域内各个 RRU传输的上行基带 信号合并为一组上行基带信号,该一组上行基带信号对应上述区域内的所有小 区, 这样较大大幅度的压缩了下行基带信号的传输带宽, 而且实施简单, 降低 了系统的复杂度。进一步地,各个 RRU传输的上行基带信号是通过 BBU选择 出的最小天线数个天线或者天线組来传输的,根据选择的最小天线数个天线或 者天线组传输的上行基带信号合并的一组下行基带信号,进一步地压缩了下行 基带信号的传输带宽。 如图 12所示, 本发明实施例提供一种 BBU, 包括:
信号发生模块 110, 用于当多个 RRU所覆盖区域中的一个区域的下行业 务量低于预设门限时, 产生或接收一组下行基带信号, 所述一组下行基带对应 所述一个区域内的所有 R U;
信号分配模块 120 , 用于将该一组下行基带信号分別传输给上述一个区域 内的各个 RRU, 使上述各个 RRU将该下行基带信号生成下行无线射频信号, 并将生成的下行无线射频信号发送出去;
接收模块 210,用于接收上述 BBU对应的多个 RRU所覆盖区域中的一个 区域的各个 RRU传输的上行基带信号,上述各个 RRU传输的上行基带信号由 上述各个 RRU根据接收的无线射频信号转换得到;
信号合并模块 220 , 用于当上述一个区域的上行业务量低于预设门限时, 将上述一个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 上述一组上行基带信号对应上述区域内的所有 RRU。
本实施例中,上述各个模块的具体结构和功能在前面的装置实施例中已经 详细描述, 在此不再赘述。
在一个实施例中, 上述 BBU可以应用在分布式基站系统、 分布式天线系 统或者 C-RAN系统等分布式系统中。
本发明实施例通过以上技术方案, 在下行方向, 当多个 RRU所覆盖区域 中的一个区域的业务量低于预设的门限时, 为这个区域产生一组下行基带信 号, 该下行基带信号对应上述区域内的所有 RRU, 并且向该区域内的各个小 区的 RRU传输这一組下行基带信号; 或者, 在上行方向, 当多个 RRU所覆盖 区域中的一个区域的业务量低于预设的门限时, 将该区域内各个 RRU的上行 基带信号合并为一组上行基带信号, 上行基带信号对应上述区域内的所有小 区, 这样较大幅度的压缩了基带信号的传输带宽, 而且实施简单, 降低了系统 的复杂度。
如图 13所示, 本发明实施例提供一种基带信号传输系统, 包括, 至少一 个 BBU节点 (如图 13中的 BBU 1、 BBU 2和 BBU 3 ) 以及与上述至少一个 BBU节点对应的多个 RRU所覆盖区域(如图 13中的覆盖区域 1、覆盖区域 2 和覆盖区域 3 )。 上述 BBU用于,当多个 RRU所覆盖区域中的一个区域的下行业务量低于 预设门限时,产生接收一组下行基带信号,上述一组下行基带信号对应上述一 个区域内的所有 RRU; 将上述一组下行基带信号分别传输给上述一个区域内 的各个 RRU; 接收对应的多个 RRU所覆盖区域中的一个区域的各个 RRU传 输的上行基带信号,上述各个 RRU传输的上行基带信号由上述各个 RRU根据 接收的无线射频信号转换得到;
当上述一个区域的上行业务量低于预设门限时, 将上述一个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 上述一组上行基带信号 对应上述区域内的所有 RRU。
上述多个 RRU所覆盖区域的 RRU用于, 接收上述 BBU传输的下行基带 信号,将该下行基带信号生成下行无线射频信号, 并将生成的下行无线射频信 号发送出去; 将接收的无线射频信号转换为上行基带信号,将上行基带信号传 输给上述 BBU。
在一个实施例中,如图 13所示,各个所覆盖区域中的 RRU可以通过空中 接口开接收各个所覆盖区域内的终端的无线射频信号。
在一个实施例中, BBU可以和对应的多个 RRU所覆盖区域采用环形连 接或者星形连接。 如图 12所示, BBU 1和 BBU 2分別和对应的覆盖区域 1和 覆盖区域 2采用星形连接, BBU 3和对应的覆盖区域 3采用环形连接。
具体的, 在下行方向时, 在一个实施例中, 当 BBU 1对应的覆盖区域 1 中的某个区域(如图 13中的圓线圏所示)的下行业务量低于预设门限时, BBU 1 产生一组下行基带信号, 该一组下行基带信号对应上述某个区域(如图 13 中的圆线圏所示) 内的所有 RRU (即, 图 13中圓线圈内的 4个 R U )。
当然在另一个实施例中, 当 BBU 1对应的覆盖区域 1中的某个区域(如 图 13中的圓线圈所示) 的下行业务量低于预设门限时, BBU2 (或者 BBU 3 ) 也可以代替 BBU 1来产生这一组下行基带信号。 这时, BBU 1向第 BBU 2 发送指示信息, 该指示信息用于向 BBU 2指示覆盖区域 1的这一个区域的下 行业务量低于预设门限; BBU 2收到所示指示信息后,产生一组下行基带信号, 该下行基带信号对应覆盖区域 1的这一个区域的所有 RRU。 BBU 2将产生的 这一组下行基带信号传输給 BBU 1 , BBU 1接收 BBU 2传输的这一组下行基 带信号, 将这一组下行基带信号传输给这个一个区域内的 RRU (即, 图 13中 圓线圈内的 4个 RRU )。
上述 BBU的具体结构和功能在前面的装置实施例中已经详细描述, 在此 不再赘述。
本发明实施例通过以上技术方案, 在下行方向, 当多个 RRU所覆盖区域 中的一个区域的业务量低于预设的门限时, 为这个区域产生一组下行基带信 号, 该下行基带信号对应上述区域内的所有 RRU, 并且向该区域内的各个小 区的 RRU传输这一组下行基带信号; 或者, 在上行方向, 当多个 RRU所覆盖 区域中的一个区域的业务量低于预设的门限时, 将该区域内各个 RRU的上行 基带信号合并为一组上行基带信号, 上行基带信号对应上述区域内的所有小 区, 这样较大幅度的压缩了基带信号的传输带宽, 而且实施简单, 降低了系统 的复杂度。
如图 14所示, 本发明实施例提供一种基带信号传输方法, 包括: S1310, 接收和多个 RRU所覆盖区域对应的 BBU的指示信息, 该指示信 息用于指示上述多个 RRU所覆盖区域中的一个区域内的 RRU信息;
在一个实施例中,该指示信息是上述和多个 RRU所覆盖区域对应 BBU在 上述一个区域的下行业务量低于预设门限时发出的。
在一个实施例中, 该一个区域内的 RRU信息包括, RRU数量, 所有 RRU 中天线数最小的 RRU的天线数等信息。
S1320, 根据该指示信息产生一组下行基带信号, 上述一组下行基带信号 对应上述一个区域内的所有 RRU;
在一个实施例中, 该一组下行基带信号可以根据上述一个区域内的所有 RRU中天线数最小的 RRU的天线数来产生。 具体的方法, 在前述实施例中已 经详细描述, 在此不再赘述。
S1330,将上述一组下行基带信号传输给上述和多个 RRU所覆盖区域对应 的 BBU, 上述和多个 RRU所覆盖区域对应 BBU用于将上述一组下行基带信 号分別传输给上述一个区域内的各个 RRU,使上述各个 RRU将上述下行基带 信号生成下行无线射频信号, 并将上述下行无线射频信号发送出去。
上述和多个 RRU所覆盖区域对应 BBU用于将上述一组下行基带信号分别 传输给上述一个区域内的各个 RRU中的具体的传输方法, 在前述实施例中已 经详细描述, 在此不再赘述。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时, 只为这个区域产生一组下行基带信号, 该下行基 带信号对应上述区域内的所有小区, 并且向这个区域内的各个小区的 RRU传 输这一组下行基带信号, 这样较大幅度的压缩了下行基带信号的传输带宽, 而 且实施简单, 降低了系统的复杂度。
如图 15所示, 本发明实施例提供一种 BBU, 包括:
信息接收模块 1410, 用于接收和多个 RRU所覆盖区域对应的 BBU的指 示信息, 该指示信息用于指示上述多个 RRU所覆盖区域中的一个区域内的 RRU信息;
在一个实施例中,该指示信息是上述和多个 RRU所覆盖区域对应 BBU在 上述一个区域的下行业务量低于预设门限时发出的。
在一个实施例中, 该一个区域内的 RRU信息包括, RRU数量, 所有 RRU 中天线数最小的 RRU的天线数等信息。
基带信号产生模块 1420, 用于根据该指示信息产生一组下行基带信号, 上述一组下行基带信号对应上述一个区域内的所有 RRU;
在一个实施例中, 基带信号产生模块 1420可以根据上述一个区域内的所 有 RRU中天线数最小的 RRU的天线数来产生该一组下行基带信号。具体的方 法, 在前述实施例中已经详细描述, 在此不再赘述。
传输模块 1430, 用于将上述一组下行基带信号传输给上述和多个 RRU所 覆盖区域对应的 BBU, 上述和多个 RRU所覆盖区域对应 BBU用于将上述一 组下行基带信号分别传输给上述一个区域内的各个 R U,使上述各个 RRU将 上述下行基带信号生成下行无线射频信号,并将上述下行无线射频信号发送出 去。
上述和多个 RRU所覆盖区域对应 BBU用于将上述一组下行基带信号分別 传输给上述一个区域内的各个 RRU中的具体的传输方法, 在前述实施例中已 经详细描述, 在此不再赘述。
本发明实施例通过以上技术方案, 当多个 RRU所覆盖区域中的一个区域 的业务量低于预设的门限时, 只为这个区域产生一组下行基带信号, 该下行基 带信号对应上述区域内的所有小区, 并且向这个区域内的各个小区的 RRU传 输这一组下行基带信号, 这样较大幅度的压缩了下行基带信号的传输带宽, 而 且实施简单, 降低了系统的复杂度。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介盾可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体 ( andom Access Memory, RAM )等。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开 的可以对本发明进行各种改动或变型而不脱离本发明的 4青神和范围。

Claims

权 利 要 求
1、 一种基带信号传输方法, 其特征在于, 包括:
当多个远端射频单元 RRU所覆盖区域中的一个区域的下行业务量低于预 设门限时, 产生或接收一组下行基带信号, 所述一組下行基带信号对应所述一 个区域内的所有 RRU;
将所述一组下行基带信号分別传输给所述一个区域内的各个 RRU, 使所 述各个 RRU将所述下行基带信号生成下行无线射频信号, 并将所述下行无线 射频信号发送出去。
2、 如权利要求 1所述的基带信号传输方法, 其特征在于, 所述产生一组 下行基带信号, 包括: 按照所有 R U中天线数最小的 RRU的天线数, 来生成 所述一组下行基带信号; 所述接收一组下行基带信号, 包括: 接收按照所有 RRU中天线数最小的 RRU的天线数产生的所述一組下行基带信号;
所述一组下行基带信号包括 k路下行基带信号, 所述 k为自然数, 为所有 RRU中天线数最小的 RRU的天线数。
3、 如权利要求 1或 2所述的基带信号传输方法, 其特征在于, 所述产生 一组下行基带信号是: 由与所述多个 RRU 所覆盖区域对应的基带处理单元 BBU产生; 所述接收一组下行基带信号是: 由与所述多个 RRU所覆盖区域对 应的 BBU接收另一 BBU产生并传输的一组下行基带信号; 且
所述将所述一組下行基带信号分別传输给所述一个区域内的各个 RRU 是:由与所述多个 RRU所覆盖区域对应的 BBU传输给所述一个区域内的各个 RRU。
4、 如权利要求 2所述的基带信号传输方法, 其特征在于, 所述将所述一 组下行基带信号分别传输给所述一个区域内的各个 RRU, 包括:
对于所述各个 R U, 固定的选择所述各个 RRU的所有天线中的任意 k个 天线, 分别向所述各个 RRU的 k个天线传输所述 k路下行基带信号;
或者, 对于所述各个 RRU, 每隔预定的时间选择所述各个 RRU的所有天 线中的任意 k个天线, 分别向所述各个 RRU的 k个天线传输所述 k路下行基 带信号;
或者, 对于所述各个 RRU, 将所述各个 RRU的天线分为 k組, 分別向所 述各个 RRU的 k组天线传输所述 k路下行基带信号。
5、 一种基带信号传输方法, 其特征在于, 包括:
接收对应的多个 RRU所覆盖区域中的一个区域的各个 RRU传输的上行基 带信号 ,所述各个 RRU传输的上行基带信号由所述各个 RRU根据接收的无线 射频信号转换得到;
当所述一个区域的上行业务量低于预设门限时, 将所述一个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 所述一组上行基带信号 对应所述区域内的所有 RRU。
6、 如权利要求 5所述的基带信号传输方法, 其特征在于, 所述接收对应 的多个 RRU所覆盖区域中的一个区域的各个 RRU传输的上行基带信号,所述 各个 RRU传输的上行基带信号由所述各个 RRU根据接收的无线射频信号转换 得到, 包括:
接收所述一个区域的各个 RRU利用自身 k个或者 k组天线传输的 k路上 行基带信号,所述各个 RRU传输的 k路上行基带信号由所述各个 RRU根据自 身 k个或者 k组天线接收到的 k路无线射频信号转换得到; 所述 k为自然数, 为所述各个 RRU中天线数最小的 RRU的天线数。
7、 如权利要求 5所述的基带信号传输方法, 其特征在于, 所述一组上行 基带信号包括 k路经过合并的上行基带信号, 所述 k为自然数, 为所述一个区 域的各个 RRU中天线数最小的 RRU的天线数。
8、 如权利要求 7所述的基带信号传输方法, 其特征在于, 所述将所述一 个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 包括: 将所述一个区域中一个 RRU利用自身 k个或 k组天线传输的 k路上行基 带信号与所述一个区域中的其它各个 RRU利用自身 k个或 k组天线传输的 k 路上行基带信号中进行合并, 得到 k路经过合并的上行基带信号。
9、 如权利要求 6所述的基带信号传输方法, 其特征在于, 所述接收对应 的多个 RRU所覆盖区域中的一个区域的各个 RRU传输的上行基带信号之前, 还包括:
对于所述各个 RRU, 固定的选择所述各个 RRU所有天线中的任意 k个天 线, 来使所述各个 RRU通过所述 k个天线分别接收所述 k路无线射频信号; 或者, 对于所述各个 RRU, 每隔预定的时间选择所述各个 RRU所有天线 中的任意 k个天线, 来使所述各个 RRU通过所述 k个天线分别接收所述 k路 无线射频信号;
或者, 对于所述各个 RRU, 将所述各个 RRU的天线分为 k組, 来使所述 各个 RRU通过所述 k組天线分别接收所述 k路无线射频信号。
10、 一种基带处理单元 BBU, 其特征在于, 包括:
信号发生模块, 用于当多个 RRU所覆盖区域中的一个区域的下行业务量 低于预设门限时, 产生或接收一组下行基带信号, 所述一组下行基带对应所述 一个区域内的所有 RRU;
信号分配模块,用于将所述一组下行基带信号分別传输给所述一个区域内 的各个 RRU, 使所述各个 RRU将所述下行基带信号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
11、 如权利要求 9所述的 BBU, 其特征在于, 所述信号发生模块包括: 获取单元,用于获取所述一个区域内的所有 RRU中天线数最小的 RRU的 天线数;
产生单元,用于按照所述所有 RRU中天线数最小的 RRU的天线数,来生 成所述一组下行基带信号; 所述一组下行基带信号包括 k路下行基带信号, 所 述 k为自然数, 为所有 RRU中天线数最小的 RRU的天线数。
12、 如权利要求 9所述的 BBU, 其特征在于, 所述信号发生模块具体用 于, 当多个 RRU所覆盖区域中的一个区域的下行业务量低于预设门限时, 接 收另一 BBU按照所述一个区域内的所有 RRU中天线数最小的 RRU的天线数 产生的一组下行基带信号, 所述一组下行基带对应所述一个区域内的所有 RRU , 所述 BBU与所述多个 RRU所覆盖区域对应, 所述另一 BBU与所述多 个 RRU所覆盖区域不对应; 所述一组下行基带信号包括 k路下行基带信号, 所述 k为自然数, 为所有 RRU中天线数最小的 RRU的天线数。
13、 如权利要求 11或 12所述的 BBU, 其特征在于, 所述信号分配模块 包括, 第一分配单元或者第二分配单元或者第三分配单元,
所述第一分配单元, 用于固定的选择所述各个 RRU的所有天线中的任意 k个天线, 分别向所述各个 RRU的 k个天线传输所述 k路下行基带信号, 使 所述各个 RRU将所述下行基带信号生成下行无线射频信号, 并通过所述 k个 天线将所述下行无线射频信号发送出去;
所述第二分配单元, 用于每隔预定的时间选择所述各个 RRU的所有天线 中的任意 k个天线, 分別向所述各个 RRU的 k个天线传输所述 k路下行基带 信号, 使所述各个 RRU将所述下行基带信号生成下行无线射频信号, 并通过 所述 k个天线将所述下行无线射频信号发送出去;
所述第三分配单元, 用于将所述各个 RRU的天线分为 k组, 分别向所述 各个 RRU的 k组天线传输所述 k路下行基带信号,使所述各个 RRU将所述下 行基带信号生成下行无线射频信号,并通过所述 k组天线将所述下行无线射频 信号发送出去。
14、 一种基带处理单元 BBU, 其特征在于, 包括:
接收模块, 用于接收对应的多个 RRU 所覆盖区域中的一个区域的各个 RRU传输的上行基带信号, 所述各个 RRU传输的上行基带信号由所述各个 RRU根据接收的无线射频信号转换得到;
信号合并模块, 用于当所述一个区域的上行业务量低于预设门限时,将所 述一个区域中各个 RRU传输的上行基带信号合并为一组上行基带信号, 所述 一组上行基带信号对应所述区域内的所有 RRU。
15、 如权利要求 14所述的 BBU, 其特征在于, 所述接收模块具体用于: 接收所述一个区域的各个 RRU利用自身 k个或者 k组天线传输的 k路上 行基带信号,所述各个 RRU传输的 k路上行基带信号由所述各个 RRU根据自 身 k个或者 k组天线接收到的 k路无线射频信号转换得到; 所述 k为自然数, 为所述各个小区的 RRU中天线数最小的 RRU的天线数。
16、 如权利要求 15所述的的 BBU, 其特征在于, 所述信号合并模块具体 用于:
将所述一个区域中一个 RRU利用自身 k个或 k组天线传输的 k路上行基 带信号与所述一个区域中剩余的其它各个 RRU利用自身 k个或 k组天线传输 的 k路上行基带信号进行合并,得到 k路经过合并的上行基带信号; 所述一组 上行基带信号包括所述 k路经过合并的上行基带信号,
17、 如权利要求 15所述的 BBU, 其特征在于, 所述 BBU还包括第一天 线分配模块或者第二天线分配模块或者第三天线分配模块,
所述第一天线分配模块, 用于对于所述各个 RRU, 固定的选择所述各个 RRU所有天线中的任意 k个天线,来使所述各个 RRU通过所述 k个天线分别 接收所述 k路无线射频信号;
所述第二天线分配模块, 用于对于所述各个 R U, 每隔预定的时间选择 所述各个 RRU所有天线中的任意 k个天线, 来使所述各个 RRU通过所述 k 个天线分别接收所述 k路无线射频信号;
所述第三天线分配模块, 用于对于所述各个 RRU, 将所述各个 RRU的天 线分为 k组 , 来使所述各个 RRU通过所述 k组天线分别接收所述 k路无线射 频信号。
18、 一种基带信号传输方法, 其特征在于, 包括:
接收和多个 RRU所覆盖区域对应的 BBU的指示信息,该指示信息用于指 示所述多个 RRU所覆盖区域中的一个区域内的 RRU信息;
根据该指示信息产生一组下行基带信号,所述一組下行基带信号对应所述 一个区域内的所有 RRU;
将所述一组下行基带信号传输给所述和多个 RRU 所覆盖区域对应的 BBU, 所述和多个 RRU所覆盖区域对应 BBU用于将所述一组下行基带信号 分别传输给所述一个区域内的各个 RRU,使所述各个 RRU将所述下行基带信 号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
19、 如权利要求 18所述的基带信号传输方法, 其特征在于, 所述指示信 息是所述和多个 RRU所覆盖区域对应 BBU在所述一个区域的下行业务量低于 预设门限时发出的。
20、 一种基带处理单元 BBU, 其特征在于, 包括:
信息接收模块,用于接收和多个 RRU所覆盖区域对应的 BBU的指示信息, 该指示信息用于指示所述多个 R U所覆盖区域中的一个区域内的 RRU信息; 基带信号产生模块,用于根据该指示信息产生一组下行基带信号, 所述一 组下行基带信号对应所述一个区域内的所有 RRU;
传输模块, 用于将所述一组下行基带信号传输给所述和多个 RRU所覆盖 区域对应的 BBU, 所述和多个 RRU所覆盖区域对应 BBU用于将所述一组下 行基带信号分别传输给所述一个区域内的各个 RRU,使所述各个 RRU将所述 下行基带信号生成下行无线射频信号, 并将所述下行无线射频信号发送出去。
PCT/CN2011/071418 2010-08-27 2011-03-01 基带信号传输方法和装置 WO2011110071A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11752814.1A EP2611229B1 (en) 2010-08-27 2011-03-01 Baseband signal transmission method and apparatus
US13/779,296 US9066252B2 (en) 2010-08-27 2013-02-27 Method and apparatus for transmitting baseband signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010264785.5 2010-08-27
CN201010264785.5A CN102377477B (zh) 2010-08-27 2010-08-27 基带信号传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/779,296 Continuation US9066252B2 (en) 2010-08-27 2013-02-27 Method and apparatus for transmitting baseband signals

Publications (1)

Publication Number Publication Date
WO2011110071A1 true WO2011110071A1 (zh) 2011-09-15

Family

ID=44562874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071418 WO2011110071A1 (zh) 2010-08-27 2011-03-01 基带信号传输方法和装置

Country Status (4)

Country Link
US (1) US9066252B2 (zh)
EP (1) EP2611229B1 (zh)
CN (1) CN102377477B (zh)
WO (1) WO2011110071A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140362763A1 (en) * 2012-01-06 2014-12-11 Comba Telecom Systemc (China) Ltd. Wireless communication system and method and expansion unit of flat network architecture
CN106464626A (zh) * 2014-05-12 2017-02-22 华为技术有限公司 一种基带单元bbu与远端射频单元rru之间的数据传输方法和装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427971B (zh) * 2012-05-25 2016-09-07 华为技术有限公司 上行数据传输方法、装置及系统
US9380466B2 (en) * 2013-02-07 2016-06-28 Commscope Technologies Llc Radio access networks
US9414399B2 (en) 2013-02-07 2016-08-09 Commscope Technologies Llc Radio access networks
CN104348764B (zh) * 2013-07-31 2017-09-19 国际商业机器公司 在数据接收链路中分配计算单元的方法和装置
US10045333B2 (en) 2013-11-07 2018-08-07 Lg Electronics Inc. Method for updating terminal-centered coverage
EP3079407A4 (en) * 2013-12-04 2017-06-14 LG Electronics Inc. Method for transceiving system information in cloud wireless communication system and apparatus therefor
US20170250927A1 (en) * 2013-12-23 2017-08-31 Dali Systems Co. Ltd. Virtual radio access network using software-defined network of remotes and digital multiplexing switches
CN103841582B (zh) * 2013-12-30 2017-11-21 上海华为技术有限公司 一种控制方法和装置
US9577922B2 (en) 2014-02-18 2017-02-21 Commscope Technologies Llc Selectively combining uplink signals in distributed antenna systems
WO2015156927A1 (en) 2014-04-09 2015-10-15 Commscope Technologies Llc Multistage combining sub-system for distributed antenna system
CA3167284A1 (en) 2014-06-09 2015-12-17 Airvana Lp Radio access networks
WO2016090644A1 (zh) * 2014-12-12 2016-06-16 华为技术有限公司 装置、通信系统及基站协同管理方法
US10231232B2 (en) * 2014-12-19 2019-03-12 Intel IP Corporation Remote radio unit and baseband unit for asymetric radio area network channel processing
WO2016125315A1 (en) 2015-02-04 2016-08-11 Nec Corporation Information processing apparatus, information processing method, and control program
US10028274B2 (en) * 2015-04-15 2018-07-17 Viavi Solutions Uk Limited Techniques for providing front-haul data awareness
CN107409103A (zh) * 2015-04-16 2017-11-28 安德鲁无线系统有限公司 用于使用以太网数据网络的移动无线电信号分布系统的上行链路信号组合器
CN106470072B (zh) * 2015-08-14 2020-06-12 中兴通讯股份有限公司 基站内级联器件光口资源配置方法及装置、基站、通信系统
EP3360266A1 (en) * 2015-10-08 2018-08-15 Telefonaktiebolaget LM Ericsson (publ.) Combining uplink radio signals
US9917622B2 (en) 2016-03-03 2018-03-13 Andrew Wireless Systems Gmbh Hybrid RAN/digital DAS repeater system with ethernet transport
EP3435734B1 (en) * 2016-03-25 2021-04-21 NTT DoCoMo, Inc. Base station and cell setting method
EP3504842B1 (en) * 2016-08-23 2023-01-18 Telefonaktiebolaget LM Ericsson (PUBL) Intermediate node, transport network, central hub node and methods
CN110235376B (zh) * 2016-09-30 2021-06-01 华为技术有限公司 一种无源互调pim消除方法、装置及基站
JP6952255B2 (ja) * 2016-10-26 2021-10-20 パナソニックIpマネジメント株式会社 無線通信システム
RU2733275C1 (ru) * 2017-02-21 2020-10-01 Телефонактиеболагет Лм Эрикссон (Пабл) Способ и устройства для двойной соединяемости между оборудованием пользователя с двойным стеком протоколов и двумя блоками основной полосы частот телекоммуникационной сети радиодоступа
CN111740768A (zh) * 2019-03-25 2020-10-02 华为技术有限公司 一种通信方法及设备
US10992385B2 (en) 2019-04-08 2021-04-27 Netsia, Inc. Apparatus and method for joint profile-based slicing of mobile access and optical backhaul
CN110149659B (zh) * 2019-05-05 2022-04-19 武汉虹信科技发展有限责任公司 数据上行、下行传输方法、装置和系统
EP4068646A4 (en) * 2019-11-25 2024-01-03 Solid Inc COMMUNICATION SYSTEM AND OPERATING PROCEDURES THEREOF
CN113133060B (zh) * 2019-12-30 2022-12-27 华为技术有限公司 接入网系统、传输方法以及相关设备
CN111372287B (zh) * 2020-03-09 2021-09-28 京信网络系统股份有限公司 信号处理方法、接入网设备及多制式接入网设备
CN115529630B (zh) * 2022-11-29 2023-03-10 广州世炬网络科技有限公司 复合通信系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104576A1 (fr) * 2004-04-22 2005-11-03 Utstarcom Telecom Co., Ltd. Systeme sans fil distribue destine a la commande centrale d'une ressource
CN101141778A (zh) * 2007-09-25 2008-03-12 中兴通讯股份有限公司 利用镜像射频单元实现分区覆盖的方法和系统
WO2009021359A1 (fr) * 2007-08-14 2009-02-19 Alcatel Shanghai Bell Co., Ltd. Ensemble de gestion de cellules, système d'antennes distribué et procédé de réaffectation associé

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047028B2 (en) * 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
JP2007531424A (ja) 2004-03-30 2007-11-01 ユーティー シ ダ カン トン スン ヨウ シアン ゴン シ 集中基地局を使用する移動体通信システムにおけるマイクロセル管理の方法
WO2006015517A1 (fr) * 2004-08-13 2006-02-16 Utstarcom Telecom Co., Ltd. Procede d'attribution dynamique des ressources dans une station de base centralisee
GB0513583D0 (en) * 2005-07-01 2005-08-10 Nokia Corp A mobile communications network with multiple radio units
US8174428B2 (en) 2008-05-21 2012-05-08 Integrated Device Technology, Inc. Compression of signals in base transceiver systems
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104576A1 (fr) * 2004-04-22 2005-11-03 Utstarcom Telecom Co., Ltd. Systeme sans fil distribue destine a la commande centrale d'une ressource
WO2009021359A1 (fr) * 2007-08-14 2009-02-19 Alcatel Shanghai Bell Co., Ltd. Ensemble de gestion de cellules, système d'antennes distribué et procédé de réaffectation associé
CN101141778A (zh) * 2007-09-25 2008-03-12 中兴通讯股份有限公司 利用镜像射频单元实现分区覆盖的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2611229A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140362763A1 (en) * 2012-01-06 2014-12-11 Comba Telecom Systemc (China) Ltd. Wireless communication system and method and expansion unit of flat network architecture
US9838885B2 (en) * 2012-01-06 2017-12-05 Comba Telecom Systems (China) Ltd. Wireless communication system and method and expansion unit of flat network architecture
CN106464626A (zh) * 2014-05-12 2017-02-22 华为技术有限公司 一种基带单元bbu与远端射频单元rru之间的数据传输方法和装置
CN106464626B (zh) * 2014-05-12 2020-01-21 华为技术有限公司 一种基带单元bbu与远端射频单元rru之间的数据传输方法和装置

Also Published As

Publication number Publication date
EP2611229A4 (en) 2013-09-18
CN102377477B (zh) 2015-01-21
US20130170353A1 (en) 2013-07-04
EP2611229A1 (en) 2013-07-03
EP2611229B1 (en) 2015-11-11
CN102377477A (zh) 2012-03-14
US9066252B2 (en) 2015-06-23

Similar Documents

Publication Publication Date Title
WO2011110071A1 (zh) 基带信号传输方法和装置
KR102187281B1 (ko) 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치
US20190312665A1 (en) Method for determining slot format of user equipment in wireless communication system and user equipment using the same
KR101909038B1 (ko) 이동통신 시스템에서 단말의 성능을 보고하는 방법 및 장치
US20130279452A1 (en) Frequency domain transmission method and apparatus
CN108353057A (zh) 使用noma技术的发送装置和接收装置
JP2013541875A5 (zh)
CN108476407B (zh) 用于经铜缆传送无线电信号的方法和系统
US10218561B2 (en) Communications system, control apparatus, and network management server
CN109151981A (zh) 一种上行波形指示方法及相关设备
WO2015165044A1 (zh) 射频拉远集线器rhub、室内通信系统、信号传输方法
EP4207661A1 (en) Device and method for fronthaul transmission in wireless communication system
CN105981340A (zh) 用于在分布式天线系统中将虚拟无线电实例映射到物理相干体积中的系统和方法
WO2019154259A1 (zh) 一种基站、用户设备中的用于无线通信的方法和装置
US10764878B2 (en) Method and device for transmitting signal
US10412602B2 (en) Apparatus and method
CN110971349A (zh) 一种重复传输方法、终端和网络侧设备
WO2020145008A1 (ja) 通信装置、通信制御装置、通信方法、及び通信制御方法
CN108934073A (zh) 一种数据传输的方法、基带单元和拉远射频单元
KR102048751B1 (ko) 밀리미터파 기반의 인빌딩 릴레이 동작 방법 및 장치
US20210391900A1 (en) Apparatus and methods for uplink mimo enhancement in wireless systems
CN110351709A (zh) 通信方法和通信装置
CN110839278B (zh) 一种室内基站及定位方法
WO2020107154A1 (zh) 数据传输方法、装置及计算机存储介质
CN111083803A (zh) 一种实现公网对讲机与dmr对讲机通信的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011752814

Country of ref document: EP