WO2011110015A1 - 一种通道校准方法、装置及系统 - Google Patents

一种通道校准方法、装置及系统 Download PDF

Info

Publication number
WO2011110015A1
WO2011110015A1 PCT/CN2010/076741 CN2010076741W WO2011110015A1 WO 2011110015 A1 WO2011110015 A1 WO 2011110015A1 CN 2010076741 W CN2010076741 W CN 2010076741W WO 2011110015 A1 WO2011110015 A1 WO 2011110015A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude value
channel
sliding window
peak
delay
Prior art date
Application number
PCT/CN2010/076741
Other languages
English (en)
French (fr)
Inventor
李少明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2010/076741 priority Critical patent/WO2011110015A1/zh
Priority to CN201080007137.XA priority patent/CN102812594B/zh
Priority to EP10847273.9A priority patent/EP2602867B1/en
Publication of WO2011110015A1 publication Critical patent/WO2011110015A1/zh
Priority to US13/788,036 priority patent/US8891671B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel calibration method, apparatus, and system.
  • Multi-antenna beamforming systems such as smart antenna systems, multi-input multi-output (MIMO) systems, active antenna systems, etc., using multiple transmit channels to adjust the amplitude phase on different channels, the transmitted signal Superimposed on the air interface to form different spatial beams. Since there are more active and passive circuits on each channel, and some unavoidable phase differences such as local oscillators, the delay, amplitude, and phase of each transmission channel are different. Therefore, the channel difference needs to be calibrated. And compensation, so that the air interface signal can be in-phase superimposed and out-of-phase canceled in the expected direction to form the expected transmission pattern, thereby ensuring that the multi-antenna system transmit beamforming can work normally.
  • MIMO multi-input multi-output
  • a detection signal with a power much lower than the service signal is transmitted.
  • the detection signal is lower than the service signal by -30 dB, and is generally a pseudo-random signal (PN, Pseudo Random Noise multi-channel signal is combined by the multi-integration combiner through each feedback path.
  • PN pseudo-random signal
  • the road detects the delay, amplitude and phase of each transmission channel by performing a sliding correlation matching with the transmitted detection signal in the digital domain.
  • the detection signal causes interference to the service signal, and the inspection and control are complicated.
  • the signal power of the service is fluctuating, and the power of the probe signal needs to be adaptively adjusted to avoid affecting the service signal.
  • the current high spectral efficiency modulation mode such as 16 Quadrature Amplitude Modulation (QAM), 64QAM, etc.
  • QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM
  • the noise requirement is higher than the Quadrature Phase Shift Keying (QPSK), which requires less impact on the detection signal; this adaptive process increases the complexity of detection and control.
  • Embodiments of the present invention provide a channel calibration method, apparatus, and system to avoid interference of a sounding signal with a service signal.
  • Embodiments of the present invention provide a channel calibration method, including:
  • the calibration of the transmit channel is performed based on the amplitude value, delay, and phase of the actual peak point.
  • Embodiments of the present invention provide a channel calibration apparatus, including:
  • a first acquiring unit configured to acquire a downlink service signal after a delay of the current one channel
  • a delay controller configured to control, by the first acquiring unit, a downlink service signal after the delay of the current one channel after a specific time delay
  • a second acquiring unit configured to acquire a feedback signal of the channel
  • a sliding correlation unit configured to perform sliding correlation processing on the obtained delayed downlink service signal and the acquired feedback signal of the channel, and obtain a set of correlation values of the channel in the sliding window by sampling; the sliding window a time window for sampling the correlation value;
  • a determining unit configured to determine a peak amplitude value of the amplitude values of the set of correlation values in the sliding window and an amplitude value of two adjacent left and right points of the point corresponding to the peak amplitude value;
  • a calculating unit configured to interpolate the peak amplitude value and the amplitude values of the two adjacent left and right points to obtain an amplitude value, a delay, and an actual peak point of the set of correlation values of the transmitting channel in the sliding window
  • a calibration unit configured to perform calibration of the transmission channel according to the amplitude value, delay, and phase of the actual peak point.
  • the embodiment of the invention provides a multi-antenna beamforming system, comprising: the channel calibration device described above, for calibrating each transmission channel.
  • the downlink service signal delayed by the current one-way transmission channel is subjected to sliding correlation processing with the feedback signal of the transmitting channel, and the sample is obtained by sampling.
  • the sliding window being a time window for sampling the correlation value; determining a peak amplitude value and a peak amplitude value of the amplitude values of the set of correlation values in the sliding window An amplitude value of two points adjacent to the left and right points of the corresponding point; interpolating the peak amplitude value and the amplitude values of the two adjacent left and right points to obtain an actual peak value of a set of correlation values of the transmitting channel in the sliding window Amplitude value, delay and phase of the point; performing calibration of the transmitting channel according to the amplitude value, delay and phase of the actual peak point, thereby realizing
  • the structure of the service signal itself for channel calibration it is not necessary to transmit the detection signal, and the channel calibration is realized, and the interference of the detection signal on the service signal is avoided.
  • FIG. 1 is a schematic diagram of a prior art channel calibration
  • FIG. 2 is a flowchart of a channel calibration method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for determining an amplitude value, a delay, and a phase of an actual peak point by interpolation in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of channel calibration according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing the actual operation of the channel calibration principle shown in Figure 4.
  • FIG. 6 is a schematic structural view of a channel calibration apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a channel calibration apparatus according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a channel calibration apparatus according to still another embodiment of the present invention.
  • the embodiment of the present invention provides a channel calibration method.
  • the method includes the following steps: Step 20: Perform a sliding correlation process between a downlink service signal delayed by a current transmission channel and a feedback signal of the transmission channel. Sampling to obtain a set of correlation values of the transmitting channel in the sliding window; the sliding window is a time window for sampling the correlation value;
  • Step 21 determining a peak amplitude value of the amplitude values of the set of correlation values in the sliding window and an amplitude value of the left and right adjacent two points of the point corresponding to the peak amplitude value;
  • Step 22 Interpolating the peak amplitude value and the amplitude values of the two adjacent left and right points to obtain an amplitude value, a delay, and a phase of an actual peak point of the set of correlation values of the transmitting channel in the sliding window;
  • Step 23 Perform calibration of the transmission channel according to the amplitude value, delay, and phase of the actual peak point.
  • step 20 optionally, before the downlink service signal delayed by the current one-channel transmission channel and the feedback signal of the transmitting channel are subjected to sliding correlation processing, the feedback signal of the transmitting channel is descrambled and coherently accumulated. deal with.
  • the size of the sliding window in the embodiment of the present invention is determined by the estimated delay difference between the channels, so that the sliding window
  • the size is greater than the relative delay difference between the channels, and the correlation length of the sliding correlation may be greater than 100 sampling points, for example, 300 sampling points.
  • the downlink service signals in the embodiments of the present invention include, but are not limited to, a common channel in a Global System for Mobile Communications (GSM), such as a dedicated service signal of a Broadcast Control Channel (BCCH); CDMA2000.
  • GSM Global System for Mobile Communications
  • BCCH Broadcast Control Channel
  • CDMA2000 Each sector in /WCDMA/HSPA transmits a service signal of a continuous common pilot channel (CPICH, Common Pilot Channel); and each sector in Long Term Evolution (LTE) has a CPICH service signal;
  • CPICH continuous common pilot channel
  • LTE Long Term Evolution
  • the method for determining a peak amplitude value of a set of correlation values in the sliding window and an amplitude value of two adjacent left and right points of the point corresponding to the peak amplitude value may be:
  • the I and the values of each sampling point in a set of correlation values are calculated by the following formula to obtain the amplitude values of the sampling points;
  • P represents the amplitude value of the current sample point of the set of correlation values;
  • I represents the in-phase portion of the data of the current sample point of the set of correlation values;
  • Q represents the data of the current sample point of the set of correlation values Orthogonal part;
  • j represents an imaginary unit; represents the phase of the current sample point in the set of correlation values; exp(j* represents a phasor;
  • the peak amplitude value is interpolated with the amplitude values of the two adjacent left and right points to obtain an amplitude value and a delay of the actual peak point of a set of correlation values of the transmitting channel in the sliding window.
  • the phase method specifically includes: determining the delay and amplitude values of the actual peak point by using the following formula: 7 denotes a chip duration; a peak amplitude value among amplitude values of a plurality of sampling points in the set of correlation values in the sliding window, P] and ⁇ are respectively left and right adjacent points of the peak amplitude value The amplitude value of two points;
  • ⁇ a ⁇ r represents the peak amplitude value corresponding point of the amplitude values of the plurality of sampling points in the set of correlation values and the phasor after the weighted average of the adjacent two points, indicating the set of correlation values in the sliding window a peak phase value corresponding to the peak amplitude value of the amplitude values of the plurality of sampling points, ⁇ , respectively representing a phase value corresponding to the amplitude value A ⁇ of the two adjacent left and right points of the point corresponding to the peak amplitude value; a peak amplitude value of amplitude values of a plurality of sampling points in the set of correlation values in the sliding window, where P] and ⁇ are amplitude values of two adjacent left and right points of the point corresponding to the peak amplitude value, respectively; The in-phase portion of the peak point, representing the orthogonal portion of the actual peak point.
  • step 23 the performing calibration of the transmitting channel according to the amplitude value, the delay, and the phase of the actual peak point comprises: using the amplitude value, the delay, and the phase of the actual peak point to the transmitting channel The corresponding amplitude value, delay and phase of the signal are compensated for calibration.
  • the embodiments of the present invention are applicable to Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), and High Speed Packet Access (CDMA).
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • CDMA High Speed Packet Access
  • HSPA high speed packet access
  • TD-SCDMA Time-Division Synchronization Code Division-Multiple-Access
  • TD-LTE Time Division Duplex-Long Term Evolution
  • FDD-LTE Frequency Division Duplex - Long Term Evolution
  • the sampling channel is sampled in the sliding window.
  • the sliding window is a time window for sampling the correlation value; determining a peak amplitude value of the amplitude value of the set of correlation values in the sliding window and a left and right adjacent point of the point corresponding to the peak amplitude value Amplitude value of two points; interpolating the peak amplitude value and the amplitude values of the two adjacent left and right points to obtain an amplitude value and a delay of an actual peak point of a set of correlation values of the transmitting channel in the sliding window And phase; performing calibration of the transmission channel according to the amplitude value, delay and phase of the actual peak point, so as to realize channel calibration by using the structure of the service signal itself, without transmitting a detection signal, thereby realizing channel calibration , avoiding the interference of the detection signal on the
  • the time required for the channel calibration of the present invention is shortened by more than four orders of magnitude or more, from tens of seconds. Shortening to a few milliseconds is a fast channel calibration method; in the case of UMTS, the time required for calibration per channel is 76us. Even with the settling time of the switch, the time required for calibration per channel is ⁇ 100us, and 16 are calibrated.
  • the required time of the channel is ⁇ 1.6ms ; in the existing channel calibration scheme, taking -30dB as an example, 16 channels, the signal-to-noise ratio of the detection signal is -42dB, and the signal-to-noise ratio required for calibration accuracy is above 40dB, so
  • the coherent accumulation gain is 82dB, and the corresponding coherent accumulation length is 1.58*10 A 8Tchip, and the time length is 42s.
  • the channel calibration method of the present invention does not affect the fast closed loop power control and the DPD LUT update, and does not need to turn off the closed loop power control and the DPD LUT table update; whereas in the existing channel calibration scheme, other operations on the transmit channel, such as Fast closed-loop power control, DPD operation has interference.
  • the fast closed loop power control For emission calibration, the fast closed loop power control must be turned off and the DPD LUT update operation.
  • the closed-loop power control, DPD LUT update period is several tens to hundreds of milliseconds, so it may cause power fluctuations and sudden changes of the DPD LUT table, causing the risk of out-of-band spurs; therefore, the channel calibration method of the embodiment of the present invention avoids Risk of out-of-band spurs;
  • the channel calibration method of the embodiment of the present invention eliminates the common local oscillator limit of the service channel and the feedback channel, reduces the frequency offset requirement, and increases the flexibility of system design.
  • the implementation principle of an embodiment of the channel calibration method of the present invention is as shown in FIG. 4.
  • the switching controller 40 switches the switch to a channel
  • the corresponding control feedback signal switch hits the feedback signal of the channel.
  • the channel is calibrated, and the delay controller controls the downlink service signal to be correlated with the corresponding feedback signal after a specific time delay, to obtain a set of correlation values, and determine the amplitude value of the set of correlation values.
  • Step 50 The switching controller switches the switch to the feedback channel of the transmitting channel, and performs a sliding correlation process between the downlink service signal delayed by the transmitting channel and the feedback signal of the transmitting channel to obtain a set of related values in the sliding window;
  • the correlation length can be taken as more than 100 sampling points, for example, 300 sampling points.
  • the EVM of the general transmitted signal is below 10% (-20dB), the signal-to-noise ratio of the correlation peak is above 44dB.
  • the size of the sliding window is determined by the estimated relative delay difference between the channels, and the size of the sliding window is greater than the relative delay difference between the channels; Step 51: Obtain a peak amplitude value of a set of correlation values in the sliding window and an amplitude value of two adjacent points of the point corresponding to the peak amplitude value, and perform interpolation calculation on the amplitude values of the three points. An amplitude value, a delay, and a phase of an actual peak point of a set of correlation values in the sliding window of the transmitting channel;
  • Step 52 Compensating the corresponding amplitude value, delay, and phase of the signal of the transmitting channel according to the calculated amplitude value, delay, and phase of the actual peak point to achieve calibration of the channel.
  • the switch of the switching controller is switched to the feedback channel of the other transmitting channel, and the steps 51 to 52 are repeated to obtain the channel data of the other transmitting channel.
  • the switch of the switching controller traverses all channels, and the amplitude, delay, and phase of all transmit channels can be measured, so that each transmit channel can be calibrated according to the measured amplitude, delay, and phase of each channel.
  • the method in this embodiment realizes channel calibration by using the structure of the service signal itself, and does not need to transmit the detection signal, thereby avoiding interference of the detection signal to the service signal while realizing channel calibration.
  • the embodiment of the invention further provides a channel calibration device. As shown in FIG. 6, the device includes:
  • the first obtaining unit 60 is configured to obtain a downlink service signal after the delay of the current one channel
  • the delay controller 61 is configured to control the first acquiring unit 60 to acquire the current one after a specific time delay The downlink service signal after the delay of the channel.
  • a second obtaining unit 62 configured to acquire a feedback signal of the channel
  • a sliding correlation unit 63 configured to perform sliding correlation processing on the acquired delayed downlink service signal and the acquired feedback signal of the channel, and obtain a set of correlation values in the channel sliding window by sampling; the sliding window A time window for sampling the correlation value; the correlation length of the sliding correlation may be greater than 100 sampling points, for example, 300 sampling points.
  • the size of the sliding window is determined by the estimated delay difference between the channels, so that the sliding window size is larger than the relative delay difference between the channels.
  • a determining unit 64 configured to determine a maximum amplitude value of a set of correlation values in the sliding window and an amplitude value of two adjacent left and right points of a point corresponding to the maximum amplitude value; determining a maximum amplitude value and two adjacent left and right points
  • the calculating unit 65 is configured to interpolate the maximum amplitude value and the amplitude values of the left and right adjacent points to obtain an actual maximum amplitude value, a delay, and a phase of a set of correlation values in the sliding window of the transmitting channel; For the method of value calculation, refer to the description of the above embodiment, and details are not described herein again.
  • the calibration unit 66 is configured to perform calibration of the channel according to the actual maximum amplitude value, delay, and phase.
  • the apparatus may further include:
  • the feedback signal processing unit 67 is configured to perform descrambling and coherent accumulation processing on the acquired feedback signals of the respective channels before the sliding correlation.
  • the device may further include:
  • the switching controller 68 is configured to control the first acquiring unit 60 and the second obtaining unit 62 to acquire signals of another channel after performing calibration on one channel, and perform calibration on another channel, for example, control each switch to hit another One channel corresponds to the signal.
  • the scenario including the switching controller is shown in FIG.
  • the device in this embodiment may be an independent device for channel calibration, or may be a device for extending functions of the original processors at the transmitting end, such as a digital processor such as a field programmable gate array.
  • a digital processor such as a field programmable gate array.
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • the device in the embodiment of the present invention performs channel calibration by using the structure of the service signal itself, and does not need to transmit a detection signal, thereby avoiding interference of the detection signal on the service signal;
  • the channel calibration time of the present invention is shorter than the existing method by more than 4 orders of magnitude, shortening from tens of seconds to several milliseconds, which is a fast channel calibration method; for UMTS as an example, each channel is required for calibration The time is 76us, even if the settling time of the switch is added, the time required for calibration per channel is ⁇ 100us, and the time required to calibrate 16 channels is ⁇ 1.6ms;
  • the channel calibration method of the present invention does not affect the fast closed loop power control and the DPD LUT update, and does not need to close the closed loop power control and the DPD LUT table update; and eliminates the common local oscillator limit of the service channel and the feedback channel, and reduces the frequency. Partial requirements increase the flexibility of system design.
  • the embodiment of the invention further provides a multi-antenna beamforming system.
  • the channel calibration device described in the above embodiment is provided at the transmitting end of the system for channel calibration of each transmitting channel.
  • the embodiment of the present invention implements channel calibration by using the structure of the service signal itself, and does not need to transmit a detection signal, thereby avoiding interference of the detection signal on the service signal;
  • the channel calibration time of the present invention is shorter than the existing method by more than 4 orders of magnitude, shortening from tens of seconds to several milliseconds, which is a fast channel calibration method; for UMTS as an example, each channel is required for calibration The time is 76us, even if the settling time of the switch is added, the time required for calibration per channel is ⁇ 100us, and the time required to calibrate 16 channels is ⁇ 1.6ms;
  • the channel calibration method of the present invention does not affect the fast closed loop power control and the DPD LUT update, and does not need to close the closed loop power control and the DPD LUT table update; and eliminates the common local oscillator limit of the service channel and the feedback channel, and reduces the frequency. Partial requirements increase the flexibility of system design. It will be understood by those skilled in the art that all or part of the steps of the foregoing embodiments may be implemented by a program to instruct related hardware, and the program may be stored in a computer readable storage medium, and the program is executed. At the time, the flow of the embodiment of each of the above methods may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种通道校准方法、 装置及系统 技术领域
本发明涉及通信技术领域, 尤其涉及一种通道校准方法、 装置及系统。
发明背景
多天线波束成型系统中, 如智能天线系统, 多输入多输出 (MIMO , Multi-Input Multi-Output) 系统, 有源天线系统等, 利用多发射通道在不同的通道上调整幅度相位, 发射的信号在空口叠加, 形成不同的空间波束。 由于每路通道上有较多的有源和无源电 路, 以及本振等部分不可避免的相位差,使得各发射通道的时延、幅度、相位存在差异, 因此, 需要对通道的差异进行校准和补偿, 以实现空口合路信号能够按照预期的方向进 行同相叠加和异相抵消, 形成预期的发射方向图, 从而保证多天线系统发射波束成型可 以正常工作。
现有技术的通道校准方案如图 1中所示, 方案如下:
通常发射一个功率远低于业务信号的探测信号, 比如探测信号低于业务信号 -30dB, 一般为伪随机信号(PN, Pseudo Random Noise 多通道信号通过各反馈通路用多合一 合路器进行合路, 然后在数字域通过与发送的探测信号进行滑动相关匹配的方法, 检测 出各发射通道的时延、 幅度及相位。
发明人在实现本发明过程中发现,现有的应用探测信号的通道校准方法至少存在如 下缺点:
探测信号对业务信号造成干扰, 检查及控制复杂。 业务信号功率有波动, 探测信号 功率也需要自适应进行调节, 以避免影响业务信号; 在目前的高频谱效率调制方式中, 如 16正交幅度调制(QAM, Quadrature Amplitude Modulation), 64QAM等, 对噪声的要 求比四相相移键控(QPSK, Quadrature Phase Shift Keying)高, 要求探测信号的影响要 更小; 这种自适应过程增加了检测和控制的复杂度。 发明内容
本发明实施例提供一种通道校准方法、装置及系统, 以避免探测信号对业务信号的 干扰。
本发明实施例是通过以下技术方案实现的:
本发明实施例提供一种通道校准方法, 包括:
将当前一路发射通道延时后的下行业务信号与所述发射通道的反馈信号进行滑动 相关处理, 采样得到所述发射通道在滑动窗口内一组相关值; 所述滑动窗口为采样所述 相关值的时间窗口;
确定所述滑动窗口内所述一组相关值的幅度值中峰值幅度值以及所述峰值幅度值 对应的点的左右相邻两点的幅度值;
将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发射通 道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位;
根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的校准。
本发明实施例提供一种通道校准装置, 包括:
第一获取单元, 用于获取当前一路发射通道延时后的下行业务信号;
延时控制器, 用于控制所述第一获取单元在延时特定时间后获取所述当前一路发 射通道延时后的下行业务信号;
第二获取单元, 用于获取所述通道的反馈信号;
滑动相关单元, 用于将所述获取的延时后的下行业务信号与获取的所述通道的反 馈信号进行滑动相关处理, 采样获得所述通道在滑动窗口内一组相关值; 所述滑动窗口 为采样所述相关值的时间窗口;
确定单元, 用于确定所述滑动窗口内所述一组相关值的幅度值中峰值幅度值以及 所述峰值幅度值对应的点的左右相邻两点的幅度值;
计算单元, 用于将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发射通道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位; 校准单元, 用于根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的 校准。
本发明实施例提供一种多天线波束成型系统, 包括: 上面所述的通道校准装置, 用于对各发射通道进行校准。
由上述本发明实施例提供的技术方案可以看出, 本发明实施例中, 通过将当前一 路发射通道延时后的下行业务信号与所述发射通道的反馈信号进行滑动相关处理,采样 得到所述发射通道在滑动窗口内一组相关值;所述滑动窗口为采样所述相关值的时间窗 口;确定所述滑动窗口内所述一组相关值的幅度值中峰值幅度值以及所述峰值幅度值对 应的点的左右相邻两点的幅度值;将所述峰值幅度值与所述左右相邻两点的幅度值进行 插值运算, 得到所述发射通道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及 相位; 根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的校准, 从而实现 了利用业务信号本身的结构进行通道校准,不需发射探测信号,在实现通道校准的同时, 避免了探测信号对业务信号的干扰。
附图简要说明
图 1为现有技术通道校准原理图;
图 2为本发明实施例通道校准方法流程图;
图 3为本发明实施例插值运算求得实际峰值点的幅度值、 时延及相位的方法示意 图;
图 4为本发明实施例通道校准原理图;
图 5为图 4所示通道校准原理的实际操作流程图;
图 6为本发明一个实施例通道校准装置结构示意图;
图 7为本发明另一个实施例通道校准装置结构示意图;
图 8为本发明又一个实施例通道校准装置结构示意图。
实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种通道校准方法, 参照图 2, 所述方法包括如下步骤: 步骤 20:将当前一路发射通道延时后的下行业务信号与所述发射通道的反馈信号进 行滑动相关处理, 采样得到所述发射通道在滑动窗口内一组相关值; 所述滑动窗口为采 样所述相关值的时间窗口;
步骤 21 :确定所述滑动窗口内一组相关值的幅度值中峰值幅度值以及所述峰值幅度 值对应的点的左右相邻两点的幅度值;
步骤 22: 将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述 发射通道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位;
步骤 23 : 根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的校准。 其中, 步骤 20中, 可选地, 将当前一路发射通道延时后的下行业务信号与所述发射 通道的反馈信号进行滑动相关处理前,对所述发射通道的反馈信号进行解扰及相干累加 处理。
本发明实施例所述滑动窗口的大小由预估的各通道之间的时延差决定,令滑动窗口 大小大于各通道之间相对时延差, 所述滑动相关的相关长度可取大于 100个采样点, 例 如 300个采样点。
另外,本发明实施例所述的下行业务信号包括但不限于:全球移动通信系统(GSM, Global System Mobile) 中的公共信道, 如广播控制信道(BCCH, Broadcasting Control Channel ) 的专用业务信号; CDMA2000/WCDMA/HSPA中每个扇区发射连续的公共导 引信道(CPICH, Common Pilot Channel) 的业务信号; 及长期演进(LTE, Long Term Evolution) 中每个扇区有 CPICH的业务信号;
其中, 步骤 21中, 所述确定所述滑动窗口内一组相关值的幅度值中峰值幅度值以及 所述峰值幅度值对应的点的左右相邻两点的幅度值的方法可以为: 由所述一组相关值中 各采样点的 I、 值, 通过如下公式计算获得各采样点的幅度值;
Figure imgf000006_0001
, 其中 P表示所述一组相关值中当前采 样点的幅度值; I表示所述一组相关值中当前采样点的数据的同相部分; Q表示所述一组 相关值中当前采样点的数据的正交部分; j表示虚数单位; 表示所述一组相关值中当前 采样点的相位; exp(j* 表示相量;
根据计算结果确定所述滑动窗口内所述一组相关值中多个采样点的幅度值中峰值 幅度值记为 P0, 以及该峰值幅度值对应的点的左右相邻两点的幅度值, 记为 Pl、 P2, 如 图 3中所示。
其中, 步骤 22中, 将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发射通道在滑动窗口内一组相关值的实际峰值点的幅度值、时延及相位的方法 具体包括: 利用下列公式求出实际峰值点的时延 和幅度值 :
Figure imgf000006_0002
其中 7表示码片时长; 为所述滑动窗口内所述一组相 关值中多个采样点的幅度值中峰值幅度值, P】、 ^分别为所述峰值幅度值对应的点的左 右相邻两点的幅度值;
Ppeak ^ 8 (2Ρο - {ρι + ρ2 ))
再由下列公式求出实际峰值点的最大相位值 eXpt/^rf
Figure imgf000007_0001
phaser = Po exp(i^0 )+ A Qxp{je, )+ p2 exp(j^2 )
其中, Po + Pi + P2
其中 ^a^r表示所述一组相关值中多个采样点的幅度值中峰值幅度值对应点以及相 邻两点加权平均后的相量, 表示所述滑动窗口内所述一组相关值中多个采样点的幅度 值中峰值幅度值对应的峰值相位值, θ\, 分别表示所述峰值幅度值对应的点的左右相 邻两点的幅度值 A ^对应的相位值; 为所述滑动窗口内所述一组相关值中多个采样 点的幅度值中峰值幅度值, P】、 ^分别为所述峰值幅度值对应的点的左右相邻两点的幅 度值; /^ 表示实际峰值点的同相部分, 表示实际峰值点的正交部分。
其中, 步骤 23中, 所述根据所述实际峰值点的幅度值、 时延及相位进行所述发射通 道的校准包括: 以所述实际峰值点的幅度值、 时延及相位对所述发射通道的信号的相应 幅度值、 时延及相位进行补偿, 以实现校准。
本发明实施例适用于全球移动通信系统 (GSM, Global System Mobile) , 码分多址 ( CDMA, Code Division Multiple Access )2000, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access) /高速分组接入 (HSPA, high Speed Packet Access ) , 时分 -同步 码分多址 ( TD-SCDMA, Time-Division Synchronization Code Division-Multiple- Access ) , 时分双工-长期演进 ( TDD-LTE, Time Division Duplex -Long Term Evolution) , 频分双 工 (FDD-LTE, Frequency Division Duplex— Long Term Evolution) 等各禾中无线通信系统 的多天线波束成型系统的通道校准;
可见, 本发明实施例所述通道校准方法中, 通过将当前一路发射通道延时后的下行 业务信号与所述发射通道的反馈信号进行滑动相关处理,采样得到所述发射通道在滑动 窗口内一组相关值; 所述滑动窗口为采样所述相关值的时间窗口; 确定所述滑动窗口内 所述一组相关值的幅度值中峰值幅度值以及所述峰值幅度值对应的点的左右相邻两点 的幅度值; 将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发 射通道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位; 根据所述实际峰 值点的幅度值、 时延及相位进行所述发射通道的校准, 以实现利用业务信号本身的结构 进行通道校准, 不需发射探测信号, 从而在实现通道校准的同时, 避免了探测信号对业 务信号的干扰;
另外, 本发明的通道校准所需时间比现有方案缩短将近 4个数量级以上, 从几十秒 缩短到几毫秒, 是一种快速的通道校准方法; 以 UMTS为例, 每个通道校准所需时间为 76us, 即使加上切换开关的稳定时间, 每通道校准所需时间 <100us, 校准 16个通道所需 时间为 <1.6ms; 而现有的通道校准方案中, 以 -30dB为例, 16个通道, 探测信号信噪比 为 -42dB, 校准精度要求的信噪比要在 40dB以上, 因此相干累加增益为 82dB, 对应相干 累加长度为 1.58*10A8Tchip, 时间长度为 42s。 同时, 本发明的通道校准方法对快速闭 环功控和 DPD LUT更新不构成影响, 不需关闭闭环功控和 DPD LUT表更新; 而现有的 通道校准方案中, 对发射通道的其他操作, 如快速闭环功控, DPD操作有干扰。 发射校 准, 须关闭快速闭环功控, DPD LUT更新操作。 一般闭环功控, DPD LUT更新周期在 几十到几百毫秒,所以可能会引起功率波动和 DPD LUT表的突变,引起带外杂散的风险; 因此, 本发明实施例的通道校准方法避免了带外杂散的风险;
进一步的, 本发明实施例的通道校准方法消除了业务通道与反馈通道的共本振限 制, 降低了频偏要求, 增加了系统设计的灵活性。 本发明所述通道校准方法的一种实施例实现原理如图 4中所示, 当切换控制器 40将 开关打到一个通道时, 对应的控制反馈信号的开关打到接通该通道的反馈信号上, 对该 通道进行校准, 由延时控制器控制在每延时特定时间后将下行业务信号与对应的反馈信 号进行滑动相关处理, 获取一组相关值, 确定该一组相关值的幅度值中峰值幅度值以及 所述峰值幅度值对应的点的左右相邻两点的幅度值,再将所述最大幅度值与所述左右相 邻两点的幅度值进行插值运算得到所述一组相关值中的实际最大幅度值、 时延及相位; 利用该实际最大幅度值、 时延及相位对该通道的信号进行补偿, 实现对该通道的校准, 若需对其他通道进行校准,只需将切换控制器 40的开关打到对应的下行业务信号及反馈 信号上即可, 整个实现过程耗时短, 不受探测信号干扰。对应的具体通道校准方法流程 参见图 5中所示, 对某一路发射通道进行校准时, 包括如下步骤:
步骤 50: 切换控制器将开关打到该发射通道的反馈通道, 利用该发射通道延迟后 的下行业务信号与该发射通道的反馈信号进行滑动相关处理,得到滑动窗口内的一组相 关值;
相关长度可取为 100个采样点以上, 比如 300个采样点, 根据一般发射信号的 EVM 在 10%(-20dB)以下, 则相关峰的信噪比在 44dB以上。 所述滑动窗口大小由预估的各通 道之间相对时延差决定, 所述滑动窗口的大小大于各通道之间相对时延差; 步骤 51 : 获取所述滑动窗口内一组相关值的幅度值中峰值幅度值以及所述峰值幅 度值对应的点的左右相邻两点的幅度值, 将三点的幅度值进行插值运算, 得到所述发射 通道滑动窗口内一组相关值的实际峰值点的幅度值、 时延和相位;
步骤 52: 根据计算得到的所述实际峰值点的幅度值、 时延及相位对该发射通道的信 号的相应的幅度值、 时延及相位进行补偿, 以实现对该通道的校准。
把切换控制器的开关打到另外一路发射通道的反馈通道, 重复执行 51~52步骤, 可 得到所述另外一路发射通道的通道数据。
依此类推, 切换控制器的开关遍历所有通道, 则可测出所有发射通道的幅度、 时 延和相位, 从而可以根据测出的各通道的幅度、 时延和相位对各发射通道进行校准。
本实施例所述方法实现了利用业务信号本身的结构进行通道校准,不需发射探测信 号, 从而在实现通道校准的同时, 避免了探测信号对业务信号的干扰。 本发明实施例还提供一种通道校准装置, 如图 6中所示, 该装置包括:
第一获取单元 60, 用于获取当前一路发射通道延时后的下行业务信号; 延时控制器 61, 用于控制所述第一获取单元 60, 在延时特定时间后获取所述当前 一路发射通道的延时后的下行业务信号。
第二获取单元 62, 用于获取所述通道的反馈信号;
滑动相关单元 63, 用于将所述获取的延时后的下行业务信号与获取的所述通道的 反馈信号进行滑动相关处理, 采样获得所述通道滑动窗口内一组相关值; 所述滑动窗口 为采样所述相关值的时间窗口; 所述滑动相关的相关长度可取大于 100个采样点, 例如 300个采样点。 所述滑动窗口的大小由预估的各通道之间的时延差决定, 令滑动窗口大 小大于各通道之间相对时延差。
确定单元 64, 用于确定所述滑动窗口内一组相关值中最大幅度值以及所述最大幅 度值对应的点的左右相邻两点的幅度值;确定最大幅度值以及左右相邻两点的幅度值的 方法参见上面的描述, 此处不再赘述。
计算单元 65, 用于将所述最大幅度值与所述左右相邻两点的幅度值进行插值运算 得到所述发射通道滑动窗口内一组相关值的实际最大幅度值、 时延及相位; 差值运算的 方法参见上面实施例的描述, 此处不再赘述。
校准单元 66, 用于根据所述实际最大幅度值、 时延及相位进行所述通道的校准。 可选地, 如图 7中所示, 所述装置还可以包括: 反馈信号处理单元 67, 用于在滑动相关前对获取的所述各通道的反馈信号进行解 扰及相干累加处理。
或者, 可选地, 如图 8中所示, 所述装置还可以包括:
切换控制器 68, 用于在对一个通道完成校准后, 控制所述第一获取单元 60及第二 获取单元 62获取另外一通道的信号, 对另一通道进行校准, 例如控制各开关打到另一通 道对应的信号上。 如图 3中所示为包含切换控制器的场景。
本实施例所述装置可以为用于进行通道校准而设置的独立的装置, 也可以为对发 射端的原有各处理器进行功能扩展后的装置, 如对数字处理器如现场可编程门列阵 ( FPGA, Field Programmable Gate Array ) , 数字信号处理器 (DSP, Digital Signal Processor)等进行功能扩展, 来完成通道校准功能。
本发明实施例所述装置利用业务信号本身的结构进行通道校准, 不需发射探测信 号, 避免了探测信号对业务信号的干扰;
另外, 本发明的通道校准所需时间比现有方法缩短将近 4个数量级以上, 从几十秒 缩短到几毫秒, 是一种快速的通道校准方法; 以 UMTS为例, 每个通道校准所需时间为 76us, 即使加上切换开关的稳定时间, 每通道校准所需时间 <100us, 校准 16个通道所需 时间为 <1.6ms;
同时,本发明的通道校准方法对快速闭环功控和 DPD LUT更新不构成影响,不需关 闭闭环功控和 DPD LUT表更新;且消除了业务通道与反馈通道的共本振限制, 降低了频 偏要求, 增加了系统设计的灵活性。
本发明实施例还提供一种多天线波束成型系统,在该系统的发射端设置有上面实施 例所述的通道校准装置, 用于对各发射通道进行通道校准。
综上所述, 本发明实施例实现了利用业务信号本身的结构进行通道校准, 不需发射 探测信号, 避免了探测信号对业务信号的干扰;
另外, 本发明的通道校准所需时间比现有方法缩短将近 4个数量级以上, 从几十秒 缩短到几毫秒, 是一种快速的通道校准方法; 以 UMTS为例, 每个通道校准所需时间为 76us, 即使加上切换开关的稳定时间, 每通道校准所需时间 <100us, 校准 16个通道所需 时间为 <1.6ms;
同时,本发明的通道校准方法对快速闭环功控和 DPD LUT更新不构成影响,不需关 闭闭环功控和 DPD LUT表更新;且消除了业务通道与反馈通道的共本振限制, 降低了频 偏要求, 增加了系统设计的灵活性。 本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中, 该 程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、 光盘、只读存储记忆体(Read-Only Memory, ROM)或随机存储记忆体(Random Access Memory, RAM) 等。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种通道校准方法, 其特征在于, 包括:
将当前一路发射通道延时后的下行业务信号与所述发射通道的反馈信号进行滑动 相关处理, 采样得到所述发射通道在滑动窗口内一组相关值; 所述滑动窗口为采样所述 相关值的时间窗口;
确定所述滑动窗口内所述一组相关值的幅度值中峰值幅度值以及所述峰值幅度值 对应的点的左右相邻两点的幅度值;
将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发射通 道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位;
根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的校准。
2、 如权利要求 1所述的方法, 其特征在于, 将当前一路发射通道延时后的下行业 务信号与所述发射通道的反馈信号进行滑动相关处理前, 所述方法进一步包括:
对所述发射通道的反馈信号进行解扰及相干累加处理。
3、 如权利要求 1所述的方法, 其特征在于, 所述滑动窗口的长度大于各通道之间 相对时延差。
4、 如权利要求 1所述的方法, 其特征在于, 所述根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的校准, 包括:
以所述实际峰值点的幅度值、 时延及相位对所述发射通道的信号的相应幅度值、 时延及相位进行补偿, 以实现校准。
5、如权利要求 1所述的方法, 其特征在于, 所述确定所述滑动窗口内所述一组相关 值的幅度值中峰值幅度值以及所述峰值幅度值对应的点的左右相邻两点的幅度值, 包 括:
利用如下公式计算得到所述滑动窗口内所述一组相关值中多个采样点中每个采样 点的幅度值 ^
p = ^I2 + Q2 , exp(j * Θ) = {Ι + jQ)l^I2 + Q2, 其中, /表示所述一组相关值中当前 采样点的数据的同相部分; β表示所述一组相关值中当前采样点的数据的正交部分; _ /表示 虚数单位; 表示所述一组相关值中当前采样点的相位; expCi* 表示相角;
根据计算结果确定所述滑动窗口内所述一组相关值中多个采样点的幅度值中峰值 幅度值 ¾以及所述峰值幅度值对应的点的左右相邻两点的幅度值 、 P2
6、 如权利要求 5所述的方法, 其特征在于, 所述将所述峰值幅度值与所述左右相 邻两点的幅度值进行插值运算,得到所述发射通道在所述滑动窗口内所述一组相关值中 实际峰值点的幅度值、 时延及相位, 包括:
利用如下公式计算得到所述通道在所述滑动窗口内所述一组相关值中实际峰值点 的幅度值 ^和时延 ,
Figure imgf000013_0001
其中 表示码片时长, ¾为所述滑动窗口内所述一组相关值中多个采样点的幅度值中峰值幅度值, P! ^分别 为所述峰值幅度值对应的点的左右相邻两点的幅度值;
利用如下公式计算得到所述通道在所述滑动窗口内所述一组相关值中实际峰值点 的相位值
Figure imgf000013_0002
其中, phascr =
Figure imgf000013_0003
, + P1 + P2 ,
^a^r表示所述一组相关值中多个采样点的幅度值中峰值幅度值对应点以及相邻两 点加权平均后的相量, _ /表示虚数单位; 表示所述滑动窗口内所述一组相关值中多个 采样点的幅度值中峰值幅度值对应的峰值相位值, θ 分别表示所述峰值幅度值对应 的点的左右相邻两点的幅度值 、 ^对应的相位值; 为所述滑动窗口内所述一组相关 值中多个采样点的幅度值中峰值幅度值, P ^分别为所述峰值幅度值对应的点的左右 相邻两点的幅度值, 表示实际峰值点的同相部分, βρ 表示实际峰值点的正交部 分。
7、 一种通道校准装置, 其特征在于, 包括:
第一获取单元, 用于获取当前一路发射通道延时后的下行业务信号;
延时控制器, 用于控制所述第一获取单元在延时特定时间后获取所述当前一路发 射通道延时后的下行业务信号;
第二获取单元, 用于获取所述通道的反馈信号;
滑动相关单元, 用于将所述获取的延时后的下行业务信号与获取的所述通道的反 馈信号进行滑动相关处理, 采样获得所述通道在滑动窗口内一组相关值; 所述滑动窗口 为采样所述相关值的时间窗口;
确定单元, 用于确定所述滑动窗口内所述一组相关值的幅度值中峰值幅度值以及 所述峰值幅度值对应的点的左右相邻两点的幅度值;
计算单元, 用于将所述峰值幅度值与所述左右相邻两点的幅度值进行插值运算, 得到所述发射通道在滑动窗口内一组相关值的实际峰值点的幅度值、 时延及相位; 校准单元, 用于根据所述实际峰值点的幅度值、 时延及相位进行所述发射通道的 校准。
8、 如权利要求 7所述的装置, 其特征在于, 所述校准单元具体用于以所述实际峰 值点的幅度值、时延及相位对所述发射通道的信号的相应幅度值、时延及相位进行补偿, 以实现校准。
9、 如权利要求 7或 8所述的装置, 其特征在于, 进一步包括:
反馈信号处理单元, 用于对获取的所述当前一路发射通道的反馈信号进行解扰及 相干累加处理;
相应的, 滑动相关单元具体用于将所述发射通道的延时后的下行业务信号与解扰 及相干累加处理后的反馈信号进行滑动相关处理,采样获得所述发射通道在滑动窗口内 一组相关值; 所述滑动窗口为采样所述相关值的时间窗口。
10、 如权利要求 7或 8所述的装置, 其特征在于, 还包括:
切换控制器, 用于在对当前一路发射通道完成校准后, 控制所述第一获取单元及 第二获取单元获取另外一通道的信号, 以实现对另一通道进行校准。
11、 一种多天线波束成型系统, 其特征在于, 包括: 权利要求 7至 10中任一项所述 的通道校准装置, 用于对各发射通道进行校准。
PCT/CN2010/076741 2010-09-08 2010-09-08 一种通道校准方法、装置及系统 WO2011110015A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2010/076741 WO2011110015A1 (zh) 2010-09-08 2010-09-08 一种通道校准方法、装置及系统
CN201080007137.XA CN102812594B (zh) 2010-09-08 2010-09-08 一种通道校准方法、装置及系统
EP10847273.9A EP2602867B1 (en) 2010-09-08 2010-09-08 Method, device and system for channel calibration
US13/788,036 US8891671B2 (en) 2010-09-08 2013-03-07 Method, apparatus and system for calibrating channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/076741 WO2011110015A1 (zh) 2010-09-08 2010-09-08 一种通道校准方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/788,036 Continuation US8891671B2 (en) 2010-09-08 2013-03-07 Method, apparatus and system for calibrating channel

Publications (1)

Publication Number Publication Date
WO2011110015A1 true WO2011110015A1 (zh) 2011-09-15

Family

ID=44562844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076741 WO2011110015A1 (zh) 2010-09-08 2010-09-08 一种通道校准方法、装置及系统

Country Status (4)

Country Link
US (1) US8891671B2 (zh)
EP (1) EP2602867B1 (zh)
CN (1) CN102812594B (zh)
WO (1) WO2011110015A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3516797A4 (en) * 2016-10-08 2019-11-27 Huawei Technologies Co., Ltd. SYSTEM AND METHOD FOR DETECTING PILOT DATA BY CORRELATION TIP TRACKING
KR102360496B1 (ko) * 2017-06-07 2022-02-10 삼성전자주식회사 신호 위상을 보상하는 전자 장치 및 그 방법
CN110824466A (zh) * 2019-10-28 2020-02-21 南京理工大学 一种多目标跟踪系统及其dbf通道校准fpga实现方法
CN112311394B (zh) * 2020-11-07 2023-02-24 中国人民解放军战略支援部队信息工程大学 一种阵列通道相对延时精确校准方法
CN113193889B (zh) * 2021-06-16 2022-08-19 嘉兴军创电子科技有限公司 一种基于分数时延的超宽带数字多波束发射方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783748A (zh) * 2004-12-02 2006-06-07 三星电子株式会社 用于信号校准的智能天线通信系统
CN1804656A (zh) * 2006-01-20 2006-07-19 武汉大学 一种利用电离层回波进行高频雷达天线阵列通道校正的方法
CN101572576A (zh) * 2008-04-30 2009-11-04 京信通信系统(中国)有限公司 一种多通道td-rru的通道校正方法
WO2009142691A1 (en) * 2008-05-21 2009-11-26 Alcatel-Lucent Usa Inc. Cakubrating radiofrequency paths of a phased-array antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157343A (en) 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
US7228113B1 (en) * 2004-04-05 2007-06-05 National Semiconductor Corporation SIMO/MISO transceiver for providing packet data communication with SISO transceiver
CN100550513C (zh) 2005-10-31 2009-10-14 中兴通讯股份有限公司 一种智能天线的室外射频系统装置及通道校正实现方法
KR100705504B1 (ko) * 2005-12-09 2007-04-09 한국전자통신연구원 직교 주파수 분할 다중화 시스템에서 기지국 스마트 안테나무선 송신 장치의 캘리브레이션 장치 및 방법
CN100514947C (zh) 2005-12-23 2009-07-15 华为技术有限公司 一种通道校正的方法和系统
CN100512046C (zh) 2006-02-10 2009-07-08 华为技术有限公司 一种在多输入多输出系统中发射通道校正方法
TWI361588B (en) * 2007-12-11 2012-04-01 Ind Tech Res Inst Method and device for detecting a synchronization signal in a communication system
US8000408B2 (en) * 2008-05-13 2011-08-16 Freescale Semiconductor, Inc. Loop delay and gain control methods in closed-loop transmitters and wireless devices
CN101304276B (zh) 2008-06-30 2012-07-04 华为技术有限公司 一种发射通道校正的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783748A (zh) * 2004-12-02 2006-06-07 三星电子株式会社 用于信号校准的智能天线通信系统
CN1804656A (zh) * 2006-01-20 2006-07-19 武汉大学 一种利用电离层回波进行高频雷达天线阵列通道校正的方法
CN101572576A (zh) * 2008-04-30 2009-11-04 京信通信系统(中国)有限公司 一种多通道td-rru的通道校正方法
WO2009142691A1 (en) * 2008-05-21 2009-11-26 Alcatel-Lucent Usa Inc. Cakubrating radiofrequency paths of a phased-array antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENG, XINTAO.: "A Method on Amplitude and Phase Calibration for Phased Array Antennas Transmit System.", RADIO COMMUNICATIONS TECHNOLOGY., vol. 34, no. 1, February 2008 (2008-02-01), pages 59 - 61 *
See also references of EP2602867A4 *

Also Published As

Publication number Publication date
EP2602867B1 (en) 2014-11-12
US8891671B2 (en) 2014-11-18
CN102812594A (zh) 2012-12-05
CN102812594B (zh) 2015-08-19
EP2602867A4 (en) 2013-07-03
US20130182793A1 (en) 2013-07-18
EP2602867A1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
EP2452397B1 (en) Wireless network element and method for antenna array control
US8787248B2 (en) Method in a wireless repeater employing an antenna array including vertical and horizontal feeds for interference reduction
JP6562566B2 (ja) 干渉除去の装置および方法
EP2334122B1 (en) Method and apparatus for data communication in LTE cellular networks
KR101200736B1 (ko) 주파수 영역의 신호 처리를 위한 스마트 안테나 시스템 및이를 위한 이동 단말과 기지국의 송수신 장치 및 방법
EP1182728B1 (en) Adaptive antenna reception apparatus
US7869761B2 (en) Radio repeater for mobile communication system and repeating method using the same
KR20140080539A (ko) 안테나 장치의 캘리브레이션을 위한 방법, 처리 장치, 컴퓨터 프로그램, 컴퓨터 프로그램 프로덕트 및 안테나 장치
WO2010017706A1 (zh) 有源天线、基站、刷新幅度和相位的方法及信号处理方法
US9912467B2 (en) Full duplex technique
WO2011110015A1 (zh) 一种通道校准方法、装置及系统
US8477665B2 (en) Method in a wireless repeater employing an antenna array for interference reduction
EP2438648A1 (en) System for controlling a radiation pattern of a directional antenna
US9065605B2 (en) Methods and systems for crest factor reduction in multi-carrier multi-channel architectures
CA2628478C (en) Antenna array calibration for wireless communication systems
JP3920794B2 (ja) 送信方法およびそれを利用した無線装置
EP1875632B1 (en) Antenna array calibration for wireless communication systems
US20080291976A1 (en) Communication device, communication method, communication system and program
JP6475039B2 (ja) 無線送信局
EP3465952B1 (en) Method and apparatus for antenna array calibration using on-board receiver
JP2001223628A (ja) 無線中継装置
EP2809013B1 (en) A radio receiver and a method therein
JP2007027908A (ja) アダプティブアレイアンテナ受信装置およびその制御方法
KR102375697B1 (ko) 빔 공간 mimo에서 기저대역 신호 변조 방법 및 장치
WO2023132967A1 (en) Method and radio unit for massive multiple-input multiple-output antenna calibration using non-coherent combining of noise

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007137.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010847273

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE