WO2011108660A1 - Method for producing modified natural rubber - Google Patents

Method for producing modified natural rubber Download PDF

Info

Publication number
WO2011108660A1
WO2011108660A1 PCT/JP2011/054944 JP2011054944W WO2011108660A1 WO 2011108660 A1 WO2011108660 A1 WO 2011108660A1 JP 2011054944 W JP2011054944 W JP 2011054944W WO 2011108660 A1 WO2011108660 A1 WO 2011108660A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
polymer
rubber
natural rubber
modified natural
Prior art date
Application number
PCT/JP2011/054944
Other languages
French (fr)
Japanese (ja)
Inventor
直生 岩瀬
今井 英幸
明繁 瀬尾
河原 成元
祥正 山本
圭一郎 塩原
Original Assignee
豊田合成 株式会社
国立大学法人 長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田合成 株式会社, 国立大学法人 長岡技術科学大学 filed Critical 豊田合成 株式会社
Priority to JP2012503259A priority Critical patent/JP5739867B2/en
Priority to CN2011800120188A priority patent/CN102858805A/en
Publication of WO2011108660A1 publication Critical patent/WO2011108660A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • C08C19/06Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/02Chemical or physical treatment of rubber latex before or during concentration
    • C08C1/04Purifying; Deproteinising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C2/00Treatment of rubber solutions
    • C08C2/02Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a method for producing a modified natural rubber, and more particularly, to a method for producing a modified natural rubber capable of simplifying the production process after the epoxidation process.
  • Plant-derived materials are expected to suppress the consumption of limited petroleum resources and to suppress global warming because carbon dioxide is absorbed during the plant growth process.
  • Plant-derived natural rubber (rubber-like polymer) is collected from rubber trees as a polymer. Natural rubber is excellent in processability and strength. On the other hand, natural rubber is inferior in weather resistance and ozone resistance. For this reason, various modifications of natural rubber have been attempted for the purpose of improving rubber properties and imparting new rubber properties. Various modified natural rubbers have been developed for the purpose of improving the application range and convenience.
  • Patent Document 1 describes a modified nature in which unsaturated double bonds in the main chain are reduced to reduce unsaturated double bonds, and a part of the unsaturated double bonds are epoxidized and opened to give a hydroxyl group.
  • a rubber is disclosed.
  • the modified natural rubber disclosed in this document has excellent weather resistance and ozone resistance because unsaturated double bonds are reduced.
  • the modified natural rubber disclosed in this document is excellent in cross-linking ability because it has a hydroxyl group.
  • Such modified natural rubber is applied, for example, to automotive window frame parts such as weather strips and parts used around water such as water hoses.
  • a modified natural rubber in which the unsaturated double bond in the main chain is reduced to reduce the unsaturated double bond, and a part of the unsaturated double bond is epoxidized and opened to give a hydroxyl group to the above rubber The following method is used as a method for producing from a polymer. First, in the epoxidation process, an organic peracid is added to a latex in which a rubber-like polymer is dispersed in water, and a part of the unsaturated double bond in the main chain of the rubber-like polymer is epoxidized to epoxidize it. A rubbery polymer is produced.
  • the organic acid and the organic acid salt derived from the organic peracid added in the epoxidation step may be present in the reaction system.
  • undesired side reactions such as cyclization and formation of crosslinks may be caused in the epoxidized rubber-like polymer, and rubber properties may be lost. Therefore, conventionally, after the epoxidation step, the epoxidized rubber-like polymer in the latex is solidified and isolated from the dispersion medium, whereby the epoxidized rubber-like polymer and the organic peracid-derived substance are combined. It was separated.
  • a latex in which a plant-derived rubbery polymer having a plurality of unsaturated double bonds in the main chain is dispersed in water as a dispersion medium.
  • the organic peracid-derived substance generated from the organic peracid in the polymerization step is removed from the latex, and the content of the organic peracid-derived substance in the latex is 35 masses per 100 parts by mass of the epoxidized rubber-like polymer.
  • the removing step it is preferable to replace a part of the dispersion medium in which the substance derived from the organic peracid in the latex is dissolved with a new dispersion medium.
  • the latex after the epoxidation step is subjected to a centrifugal separation treatment, whereby the latex is mainly composed of an upper layer in which the epoxidized rubber-like polymer is dispersed, and is mainly organic. It is preferable to separate into a lower layer in which the peracid-derived substance is dissolved, and to remove the lower layer and add a new dispersion medium to the upper layer.
  • the organic peracid-derived substance is removed from the latex to separate the epoxidized rubber-like polymer and the organic peracid-derived substance.
  • the epoxidation step and the reduction / ring-opening step can be continuously performed in the latex state without isolating and purifying the epoxidized rubber-like polymer from the latex. For this reason, the work efficiency at the time of manufacture improves.
  • Natural rubber latex collected from plants contains various proteins in addition to rubbery polymers.
  • a modified natural rubber is produced using a natural rubber latex mixed with such a protein as a raw material, the physical properties of the resulting modified natural rubber may become unstable or the quality may be lowered. Therefore, when producing a modified natural rubber using a natural rubber latex mixed with protein as a raw material, it is desirable to perform a deproteinization treatment to remove the protein.
  • the production process of the modified natural rubber can be simplified.
  • a plant-derived rubber-like polymer having a plurality of unsaturated double bonds in the main chain is used as a raw material. Then, the unsaturated double bond in the main chain is reduced to reduce the unsaturated double bond, and a part of the unsaturated double bond is epoxidized and opened to provide a modified natural rubber having a hydroxyl group. To manufacture.
  • the method for producing a modified natural rubber in the present embodiment includes an epoxidation step, a removal step, and a reduction / ring-opening step.
  • epoxidation step a part of unsaturated double bonds of a plant-derived rubber-like polymer having a plurality of unsaturated double bonds in the main chain is epoxidized to obtain an epoxidized rubber-like polymer.
  • the organic peracid-derived substance generated in the epoxidation step is removed.
  • part or all of the unsaturated double bond remaining in the epoxidized rubber-like polymer is reduced, and part or all of the epoxy group of the epoxidized rubber-like polymer is opened.
  • ⁇ Raw material> As a raw material, natural rubber latex containing a plant-derived rubber-like polymer having a plurality of (two or more) unsaturated double bonds in the main chain can be used. Specifically, a field latex obtained from a natural rubber tree and a processed product obtained by treating the field latex can be used. Examples of the treated product include latex in which field latex is concentrated to increase the rubbery polymer concentration, latex in which field latex is treated with ammonia, latex in which field latex is deproteinized, and a mixture thereof. Further, a solid rubber obtained by isolating and purifying a rubber-like polymer from natural rubber latex can also be used as a raw material.
  • the deproteinization treatment method examples include known methods described in JP-A Nos. 6-56902 and 2004-99696.
  • the nitrogen content in the natural rubber latex is preferably set to 0.1 parts by mass or less with respect to 100 parts by mass of the rubbery polymer, and more preferably set to 0.05 parts by mass or less. preferable.
  • ⁇ Epoxidation process> In the epoxidation step, an organic peracid is reacted with the rubber-like polymer, and a part of the unsaturated double bond of the main chain of the rubber-like polymer is substituted with an epoxy group to obtain an epoxidized rubber-like polymer.
  • a natural rubber latex or a solid rubber as a raw material is dispersed in water as a dispersion medium to prepare a reaction system latex.
  • reaction latex used in the production process is described as reaction latex.
  • organic peracid is reacted with the rubber-like polymer in the prepared reaction latex to perform epoxidation.
  • organic peracids include perbenzoic acid, peracetic acid, performic acid, perphthalic acid, perpropionic acid, trifluoroperacetic acid, and perbutyric acid. These organic peracids may be added directly to the reaction system latex.
  • a component capable of generating an organic peracid may be added to generate the organic peracid in the reaction system latex.
  • formic acid can be produced by sequentially adding formic acid and hydrogen peroxide.
  • acetic anhydride and hydrogen peroxide may be added sequentially.
  • the reaction system latex is neutralized with a base such as an aqueous ammonia solution.
  • a base such as an aqueous ammonia solution.
  • the organic peracid and the organic acid present in the reaction system latex are neutralized to produce an organic peracid and a salt of the organic acid.
  • the organic peracid is peracetic acid and neutralization is performed using an aqueous ammonia solution, acetic acid is generated from the peracetic acid, and the reaction system latex containing acetic acid is neutralized. Is generated.
  • a removal process is a process of removing the organic acid and organic acid salt which are the substances derived from an organic peracid from the reaction system latex after an epoxidation process, and reducing those density
  • the total content of the organic acid derived from the organic peracid and the salt thereof in the reaction system latex is 35 parts by mass or less, preferably 30 parts by mass or less, more preferably 100 parts by mass of the epoxidized rubber polymer. Is reduced to 25 parts by mass or less.
  • the reaction system latex can be separated into an upper layer and a lower layer (separation operation) by centrifuging the reaction system latex after the epoxidation step.
  • the upper layer is a latex (cream) layer in which mainly an epoxidized rubber-like polymer is dispersed at a high concentration.
  • the lower layer is a liquid layer in which a substance derived from an organic peracid is dissolved. For example, if the centrifugation treatment is performed for several tens of minutes at 5000 to 15000 G, the reaction system latex can be separated as described above.
  • the dispersion medium added in the redispersion operation may be the same as or different from the composition during the epoxidation step.
  • the separation operation and the redispersion operation the dispersion medium in which the substance derived from the organic peracid in the reaction system latex is dissolved is replaced with a new dispersion medium.
  • the concentration of the organic peracid-derived substance is reduced.
  • the deproteinization treatment can be performed simultaneously in the removal step. Specifically, a protein denaturant is added to the reaction system latex before the centrifugation treatment to denature the protein in the reaction system latex.
  • a protein denaturant is added to the reaction system latex before the centrifugation treatment to denature the protein in the reaction system latex.
  • the protein in the reaction system latex moves to a liquid lower layer in which a substance derived from organic peracid exists. For this reason, the protein which modified
  • Examples of protein denaturants include urea compounds (urea derivatives, urea double salts) represented by the following general formula (1), and sodium hypochlorite.
  • Examples of urea compounds represented by the following general formula (1) include urea, methyl urea, ethyl urea, n-propyl urea, i-propyl urea, n-butyl urea, i-butyl urea, and n-pentyl urea.
  • urea, methylurea, and ethylurea are particularly preferable.
  • the nitrogen content in the reaction system latex is preferably set to 0.1 parts by mass or less with respect to 100 parts by mass of the epoxidized rubber-like polymer, and 0.05 parts by mass or less. It is more preferable to set.
  • the reduction / ring-opening step reduces part or all of the unsaturated double bonds remaining in the epoxidized rubber-like polymer in the reaction system latex, and part or all of the epoxy groups of the epoxidized rubber-like polymer. Is a step of opening the ring.
  • Known reduction methods and ring-opening methods carried out in the state of latex as reduction of unsaturated double bonds of epoxidized rubber-like polymer and ring-opening reaction of epoxy groups (hereinafter referred to as reduction / ring-opening reaction) Can be used.
  • organic acid salts include sodium salts, potassium salts, calcium salts, amine salts (primary to tertiary) of carboxylic acids such as benzoic acid, acetic acid, formic acid, phthalic acid, propionic acid, trifluoroacetic acid, and butyric acid, And ammonia salts.
  • the organic acid salt may be an organic acid salt derived from an organic peracid that remains in the reaction latex without being removed during the removal step, or may be a newly added organic acid salt during the reduction / ring-opening reaction. There may be.
  • the content of the organic acid salt during the reduction / ring-opening reaction is preferably 0.1 to 35 parts by mass and preferably 1.7 to 25 parts by mass with respect to 100 parts by mass of the epoxidized rubber polymer. More preferred.
  • Examples of the known reduction method and ring-opening method performed in the latex state described above include, for example, a method in which hydrogen is brought into contact with the epoxidized rubber-like polymer in the presence of a hydrogenation catalyst.
  • a method of bringing hydrogen gas into contact with the epoxidized rubber-like polymer in the presence of a hydrogenation catalyst will be described as a reduction / ring-opening reaction.
  • a hydrogenation catalyst is added to the reaction system latex after the removal step, and the pH of the reaction system latex is adjusted to a range of 7-8.
  • the organic peracid-derived organic acid salt is not contained in the reaction latex after the removing step, a predetermined amount of the organic acid salt is added to the reaction latex before adjusting the pH.
  • an organic acid salt may be added to the reaction system latex. In this case, the condition is that the pH of the reaction latex after the addition of the organic acid salt is maintained in the range of 7-8.
  • the pH of the reaction system latex is adjusted to the range of 7 to 8 after adding the hydrogenation catalyst.
  • the hydrogenation catalyst a homogeneous catalyst and a heterogeneous catalyst can be used.
  • the hydrogenation catalyst include metal catalysts such as nickel, ruthenium, platinum, palladium, and rhodium.
  • hydrogen is supplied into the reaction system latex in an air atmosphere, an inert gas atmosphere such as argon or nitrogen, or a hydrogen atmosphere.
  • hydrogen gas such as high-pressure hydrogen gas may be directly supplied, or hydrogen generated in the reaction system may be supplied by adding a component capable of generating hydrogen (hydrogen donor).
  • hydrogen is brought into contact with the epoxidized rubber-like polymer in the reaction system latex at a predetermined temperature for a predetermined time.
  • the hydrogenation rate of the modified natural rubber as a product is preferably 80% or more.
  • the hydrogenation rate of the modified natural rubber can be adjusted by changing the treatment temperature and treatment time in the reduction / ring-opening reaction.
  • the treatment temperature in the reduction / ring-opening reaction is preferably set in the range of 0 to 100 ° C, more preferably in the range of 40 to 80 ° C. When the treatment temperature is less than 0 ° C., it becomes difficult to sufficiently advance the reaction. If the treatment temperature exceeds 100 ° C., the molecular chain of the epoxidized rubber-like polymer may be broken, leading to a reduction in molecular weight.
  • the hydrogenation rate of the modified natural rubber can be calculated by the following formula.
  • the “number of double bonds of rubber polymer” in the formula (number before epoxidation) and “remaining number of double bonds of modified natural rubber” can be obtained from, for example, the measurement result of 1H-NMR. it can.
  • the recovery step is a step of recovering the modified natural rubber in the reaction system latex.
  • the modified natural rubber is recovered using a known method for recovering the rubber component from the latex in which the rubber component is dispersed. For example, by adding methanol to the reaction system latex, the modified natural rubber in the reaction system latex is condensed and precipitated. The modified natural rubber can be isolated by collecting the precipitate. At that time, it is preferable to remove the hydrogenation catalyst in the reaction system latex before adding methanol.
  • a method for removing the hydrogenation catalyst for example, a method of adding a complexing agent such as dimethylglyoxime to the reaction system latex to precipitate and remove the hydrogenation catalyst can be mentioned.
  • the organic peracid-derived substance is removed from the reaction system latex in the state of the latex in which the epoxidized rubber-like polymer is dispersed. Then, the reaction latex from which the organic peracid-derived substance has been removed is treated in a subsequent reduction / ring-opening step. Therefore, as in the past, it is necessary to solidify the epoxidized rubber-like polymer from the reaction system latex, isolate and purify, and re-disperse the solidified epoxidized rubber-like polymer to form a latex. And not.
  • the isolation process and redispersion process of the epoxidized rubber-like polymer which were performed between the epoxidation process and the reduction / ring-opening process are omitted. Therefore, the manufacturing process after the epoxidation process can be simplified. Also, without isolating and purifying the rubber component (rubber-like polymer or epoxidized rubber-like polymer) from the reaction system latex, the epoxidation step and the reduction / ring-opening step are continuously performed in the latex state. It can be carried out. For this reason, the working efficiency at the time of manufacture and the yield of the natural modified rubber which is the final product are improved.
  • the protein present in the reaction latex is removed together with the organic peracid-derived substance. Therefore, it is not necessary to newly add a separation operation for separating the rubber component and the protein. Therefore, the increase in the work amount accompanying the addition of the deproteinization step can be minimized.
  • the reduction / ring-opening reaction is performed under conditions of pH 7 to 8 and in the presence of an organic acid salt. Thereby, the cyclization of the epoxidized rubber-like polymer during the reduction / ring-opening reaction can be suppressed.
  • the present embodiment may be modified as follows. -You may abbreviate
  • reaction system latex adjustment As a natural rubber latex of raw material, singleHA latex (rubber component concentration (rubber-like polymer concentration) 60.2% by mass, ammonia content 0.7% by mass, average particle size of rubber particles about 1 ⁇ m) manufactured by GOLDEN HOPE PLATATION used. And while diluting the said raw material latex using distilled water, sodium dodecyl sulfate (henceforth SDS) which is an anionic surfactant was added. Thus, a reaction latex having a rubber component concentration (rubber polymer concentration) of 10% by mass and an SDS concentration of 1% by mass was prepared.
  • rubber component concentration rubber-like polymer concentration
  • reaction system latex To 100 g of the reaction system latex, 10 ml of peracetic acid was added dropwise at a rate of 1 ml / second. And reaction system latex and peracetic acid were made to react, shaking for 3 hours on 6 degreeC conditions. Thereafter, the reaction system latex was centrifuged (15 ° C., 10000 G, 30 minutes). Thereby, the reaction system latex was separated into a creamy upper layer and a liquid lower layer (separation operation). The upper creamy latex was recovered and a 1% by mass SDS aqueous solution was added to the upper layer. Thus, a reaction system latex having a rubber component concentration (epoxidized rubber-like polymer concentration) of 10% by mass was prepared again (redispersion operation).
  • rubber component concentration epoxidized rubber-like polymer concentration
  • the reconstituted reaction system latex was neutralized using 28% aqueous ammonia. After neutralization, 0.1 part by mass of urea was added to 100 parts by mass of the rubber component in the reaction system latex. And it stirred at 25 degreeC for 2 hours, and modified
  • the rubber component concentration epoxidized rubber-like polymer concentration
  • the concentration of acetic acid and ammonium acetate present in the reaction system latex was quantified using 1H-NMR. Specifically, a known amount of an internal standard (standard substance) is added to the reaction system latex to be subjected to 1H-NMR, 1H-NMR measurement is performed, and a peak based on the internal standard in the obtained NMR spectrum; The peaks based on acetic acid and ammonium acetate were compared. And it confirmed that the total content of the acetic acid derived from peracetic acid and ammonium acetate in reaction system latex was 35 mass parts or less with respect to 100 mass parts of epoxidized rubber-like polymers.
  • Tables 1 and 2 show the production methods of Examples and Comparative Examples, and modified natural rubbers obtained by the production methods, respectively.
  • “the number of repetitions of separation operation and redispersion operation”, “concentration of rubber component in reaction system latex (epoxidized rubber-like polymer concentration) in reduction / ring-opening step”, and “reduction / ring-opening step” “Catalyst amount” and "pH during reduction / ring-opening process” are changed.
  • a separation latex and a redispersion operation were performed without performing a neutralization treatment, and a reaction system latex to be treated in the reduction / ring opening step was prepared.
  • the pH of the reaction system latex was adjusted to 7 by repeating the separation operation and the redispersion operation and performing dilution treatment.
  • the reaction system latex of pH 7 is simply heated at 70 ° C. for 9 hours, and the addition of a hydrogenation catalyst, pH adjustment with an aqueous sodium hydroxide solution, and bubbling of hydrogen gas are not performed. It was.
  • Comparative Examples 2 and 3 are examples in which the pH during the reduction / ring-opening reaction was 9 and 6, respectively.
  • Comparative Example 4 is an example in which a reduction / ring-opening reaction was performed in the absence of an organic acid salt. In these cases as well, as in Comparative Example 1, the epoxidized rubber-like polymer in the reaction system latex was cyclized, and the desired modified natural rubber could not be obtained.
  • the results of Comparative Examples 1 to 3 show that, in order to suppress cyclization of the epoxidized rubber-like polymer during the reduction / ring-opening reaction, the pH is in the range of 7 to 8 and in the presence of the organic acid salt. This suggests that a reduction / ring-opening reaction is necessary.
  • ⁇ Analysis of modified natural rubber> The hydrogenation rate of the modified natural rubber obtained by the production method of each example was calculated based on the measurement result using 1H-NMR. Further, a component having a particularly high molecular weight (hereinafter referred to as a high molecular weight component) contained in the resulting modified natural rubber was measured by the following method. Modified natural rubber finely chopped in toluene was added to a concentration of 0.1% by mass and immersed for one week. Then, the toluene solution was separated into a sol component soluble in toluene and a gel component unnecessary for toluene by centrifuging (15 ° C., 10,000 G, 30 minutes).
  • a gel component unnecessary for toluene was recovered as a high molecular weight component, and this was dried at 50 ° C. for one week.
  • the weight of the high molecular weight component after drying was measured, and the ratio of the high molecular weight component contained in the modified natural rubber was calculated from the ratio to the charged amount.
  • Table 3 shows the hydrogenation rate of the modified natural rubber obtained by the production method of each example and the ratio of the high molecular weight component.
  • Reference Example 1 shown in Table 3 is an example in which modified natural rubber was produced using a conventional method.
  • the removal step and the reduction / ring-opening step are different from those in each Example.
  • the epoxidized rubber-like polymer in the latex was coagulated and isolated from the dispersion medium. Then, the isolated epoxidized rubber-like polymer was dried and allowed to stand for another month to remove acetic acid and acetate.
  • the dried epoxidized rubber-like polymer was dissolved in p-xylene, and paratoluenesulfonyl hydrazide was added to the p-xylene solution.
  • restoration and ring-opening reaction were performed by recirculating
  • the modified natural rubber obtained by the production method of each example was hydrogenated in the range of 30 to 90% hydrogenation rate. That is, the desired modified natural rubber was obtained.
  • the proportion of epoxy groups in the modified natural rubber was measured using 1H-NMR. As a result, the number of epoxy groups was reduced to a level where measurement was impossible. From this, it can be inferred that almost all of the epoxy groups introduced in the epoxidation step were opened in the reduction / ring-opening step to form hydroxyl groups.
  • the modified natural rubber obtained by the production method of each example contained a high molecular weight component in a proportion of 35% or more.
  • the modified natural rubber obtained by the production method of Reference Example 1 did not contain the high molecular weight component as described above.
  • the difference in the content of the high molecular weight component between each example and the reference example is considered to result from the difference in the treatment temperature during the reduction / ring-opening reaction.

Abstract

Disclosed is a method for producing modified natural rubber, comprising an epoxidation step, a removal step, and a reduction and ring-opening step. In the epoxidation step, in a latex in which a plant-derived rubbery polymer having a plurality of unsaturated double bonds in the main chain is dispersed in water serving as a dispersion medium, an organic peracid is reacted with the rubbery polymer. In this manner, by the epoxidation of a part of the unsaturated double bonds in the rubbery polymer, an epoxidated rubbery polymer is obtained. In the removal step, organic peracid-derived substances generated from the organic peracid in the epoxidation step are removed from the latex, whereby the content of the organic peracid-derived substances in the latex is reduced to 35 parts by mass or less based on 100 parts by mass of the epoxidated rubbery polymer. In the reduction and ring-opening step, under the conditions of pH 7 to 8 and in the presence of an organic acid salt, a part or the whole of the remaining unsaturated double bonds in the epoxidated rubbery polymer in the latex are reduced, and also a part or the whole of the epoxy groups in the epoxidated rubbery polymer are ring-opened.

Description

改質天然ゴムの製造方法Method for producing modified natural rubber
 本発明は、改質天然ゴムの製造方法に関し、詳しくは、エポキシ化工程後の製造工程を簡略化することのできる改質天然ゴムの製造方法に関する。 The present invention relates to a method for producing a modified natural rubber, and more particularly, to a method for producing a modified natural rubber capable of simplifying the production process after the epoxidation process.
 従来、様々な分野において、ゴム製品が実用化されている。ゴム製品の原料は、植物由来の天然ゴムと、石油由来の合成ゴムとに分類される。合成ゴムの中でも、耐油性、耐候性、ガス透過性、耐寒性等に優れた様々な合成ゴムが実用化されている。例えば、耐候性、及び耐オゾン性に優れた合成ゴムとして、エチレン-プロピレンゴム(EPDM)が挙げられる。この種の合成ゴムは、自動車部品、絶縁体等の用途に使用されている。 Conventionally, rubber products have been put to practical use in various fields. Raw materials for rubber products are classified into plant-derived natural rubber and petroleum-derived synthetic rubber. Among synthetic rubbers, various synthetic rubbers excellent in oil resistance, weather resistance, gas permeability, cold resistance and the like have been put into practical use. For example, as a synthetic rubber excellent in weather resistance and ozone resistance, ethylene-propylene rubber (EPDM) can be mentioned. This type of synthetic rubber is used in applications such as automobile parts and insulators.
 近年、石油資源の枯渇や地球温暖化等が懸念されている。このため、石油由来材料の代替材料として、植物由来材料への関心が高まっている。植物由来材料には、限りある石油資源の消費を抑制すると共に、植物の生長過程で二酸化炭素を吸収するため地球温暖化を抑制することが期待されている。 In recent years, there are concerns about the depletion of petroleum resources and global warming. For this reason, interest in plant-derived materials is increasing as an alternative material for petroleum-derived materials. Plant-derived materials are expected to suppress the consumption of limited petroleum resources and to suppress global warming because carbon dioxide is absorbed during the plant growth process.
 植物由来の天然ゴム(ゴム状重合体)は、ゴムの木から重合体として採集される。天然ゴムは、加工性及び強度等に優れている。一方で、天然ゴムは、耐候性や耐オゾン性に劣る。このため、ゴム特性の向上や新たなゴム特性の付与等を目的として、様々な天然ゴムの改質が試みられている。また、適用範囲及び利便性の向上を目的として、種々の改質天然ゴムが開発されている。 Plant-derived natural rubber (rubber-like polymer) is collected from rubber trees as a polymer. Natural rubber is excellent in processability and strength. On the other hand, natural rubber is inferior in weather resistance and ozone resistance. For this reason, various modifications of natural rubber have been attempted for the purpose of improving rubber properties and imparting new rubber properties. Various modified natural rubbers have been developed for the purpose of improving the application range and convenience.
 特許文献1は、主鎖中の不飽和二重結合を還元して不飽和二重結合を減らすと共に、不飽和二重結合の一部をエポキシ化及び開環して水酸基を付与した改質天然ゴムを開示する。この文献に開示の改質天然ゴムは、不飽和二重結合が減らされているため、耐候性及び耐オゾン性に優れている。更に、この文献に開示の改質天然ゴムは、水酸基が付与されているため、架橋形成能にも優れている。こうした改質天然ゴムは、例えば、ウェザーストリップ等の自動車用の窓枠部品や、ウォーターホース等の水まわりに用いられる部品に適用される。 Patent Document 1 describes a modified nature in which unsaturated double bonds in the main chain are reduced to reduce unsaturated double bonds, and a part of the unsaturated double bonds are epoxidized and opened to give a hydroxyl group. A rubber is disclosed. The modified natural rubber disclosed in this document has excellent weather resistance and ozone resistance because unsaturated double bonds are reduced. Furthermore, the modified natural rubber disclosed in this document is excellent in cross-linking ability because it has a hydroxyl group. Such modified natural rubber is applied, for example, to automotive window frame parts such as weather strips and parts used around water such as water hoses.
特開2008-308601号公報JP 2008-308601 A
 主鎖中の不飽和二重結合を還元して不飽和二重結合を減らすと共に、不飽和二重結合の一部をエポキシ化及び開環して水酸基を付与した改質天然ゴムを上記のゴム状重合体から製造する方法として、以下の方法が用いられる。まず、エポキシ化工程では、ゴム状重合体を水に分散させたラテックス中に有機過酸を添加し、ゴム状重合体の主鎖の不飽和二重結合の一部をエポキシ化して、エポキシ化ゴム状重合体を生成する。次に、還元・開環工程では、水素化触媒の存在下でエポキシ化ゴム状重合体に水素を添加し、主鎖のエポキシ基を開環すると共に残りの不飽和二重結合を還元して、改質天然ゴムを生成する。そして、開環・還元工程後の反応液中の改質天然ゴムを固化して、単離及び精製を行う。こうして、固形状の改質天然ゴムが得られる。 A modified natural rubber in which the unsaturated double bond in the main chain is reduced to reduce the unsaturated double bond, and a part of the unsaturated double bond is epoxidized and opened to give a hydroxyl group to the above rubber The following method is used as a method for producing from a polymer. First, in the epoxidation process, an organic peracid is added to a latex in which a rubber-like polymer is dispersed in water, and a part of the unsaturated double bond in the main chain of the rubber-like polymer is epoxidized to epoxidize it. A rubbery polymer is produced. Next, in the reduction / ring opening step, hydrogen is added to the epoxidized rubber-like polymer in the presence of a hydrogenation catalyst to open the epoxy group of the main chain and reduce the remaining unsaturated double bonds. To produce modified natural rubber. Then, the modified natural rubber in the reaction solution after the ring-opening / reducing step is solidified to be isolated and purified. Thus, a solid modified natural rubber is obtained.
 還元・開環工程に際し、エポキシ化工程で添加した有機過酸由来の物質である有機酸及びその有機酸塩が反応系中に多量に存在することがある。この場合、環化や架橋の形成等の不所望な副反応がエポキシ化ゴム状重合体に引き起こされて、ゴム特性が失われるおそれがある。そのため、従来では、エポキシ化工程の後に、ラテックス中のエポキシ化ゴム状重合体を固化して分散媒中から単離することで、エポキシ化ゴム状重合体と、有機過酸由来の物質とを分離していた。そして、固化したエポキシ化ゴム状重合体を分散媒に再分散させたもの、又は有機溶媒に溶解させたものを、還元・開環工程にて処理していた。このように、従来の製造方法では、エポキシ化工程と還元・開環工程との間に、エポキシ化ゴム状重合体の単離処理と再分散処理又は溶解処理との両方を行う必要がある。このため、製造工程が複雑であった。 In the reduction / ring-opening step, a large amount of the organic acid and the organic acid salt derived from the organic peracid added in the epoxidation step may be present in the reaction system. In this case, undesired side reactions such as cyclization and formation of crosslinks may be caused in the epoxidized rubber-like polymer, and rubber properties may be lost. Therefore, conventionally, after the epoxidation step, the epoxidized rubber-like polymer in the latex is solidified and isolated from the dispersion medium, whereby the epoxidized rubber-like polymer and the organic peracid-derived substance are combined. It was separated. And what re-dispersed the solidified epoxidized rubber-like polymer in the dispersion medium, or the thing melt | dissolved in the organic solvent was processed in the reduction | restoration and ring-opening process. As described above, in the conventional production method, it is necessary to perform both the isolation treatment and the redispersion treatment or the dissolution treatment of the epoxidized rubber-like polymer between the epoxidation step and the reduction / ring-opening step. For this reason, the manufacturing process was complicated.
 この発明の目的は、製造工程を簡略化することのできる改質天然ゴムの製造方法を提供することにある。 An object of the present invention is to provide a method for producing a modified natural rubber capable of simplifying the production process.
 上記目的を達成するため、本発明の第一の態様によれば、主鎖に複数の不飽和二重結合を有する植物由来のゴム状重合体を、分散媒としての水に分散させたラテックス中にて、ゴム状重合体に有機過酸を反応させて、ゴム状重合体の不飽和二重結合の一部をエポキシ化することにより、エポキシ化ゴム状重合体を得るエポキシ化工程と、エポキシ化工程において有機過酸から生じた有機過酸由来の物質をラテックス中から除去して、ラテックス中における有機過酸由来の物質の含有量をエポキシ化ゴム状重合体100質量部に対して35質量部以下にまで低下させる除去工程と、pH7~8の条件下で、且つ有機酸塩の存在下にて、ラテックス中のエポキシ化ゴム状重合体に残存する不飽和二重結合の一部又は全部を還元すると共に、エポキシ化ゴム状重合体のエポキシ基の一部又は全部を開環する還元・開環工程とを有する改質天然ゴムの製造方法が提供される。 In order to achieve the above object, according to the first aspect of the present invention, in a latex in which a plant-derived rubbery polymer having a plurality of unsaturated double bonds in the main chain is dispersed in water as a dispersion medium. An epoxidation step of obtaining an epoxidized rubber-like polymer by reacting an organic peracid with the rubber-like polymer and epoxidizing a part of the unsaturated double bond of the rubber-like polymer; The organic peracid-derived substance generated from the organic peracid in the polymerization step is removed from the latex, and the content of the organic peracid-derived substance in the latex is 35 masses per 100 parts by mass of the epoxidized rubber-like polymer. Part or all of unsaturated double bonds remaining in the epoxidized rubber-like polymer in the latex under the condition of pH 7-8 and in the presence of an organic acid salt. As well as the epoch Method for producing a modified natural rubber and a reduction and ring opening step for opening a part or all of the epoxy groups of the sheet of rubbery polymer is provided.
 上記の改質天然ゴムの製造方法において、除去工程では、ラテックス中における有機過酸由来の物質が溶解した分散媒の一部を、新たな分散媒と入れ替えることが好ましい。
 上記の改質天然ゴムの製造方法において、除去工程では、エポキシ化工程後のラテックスに対して遠心分離処理を行うことにより、ラテックスを、主としてエポキシ化ゴム状重合体が分散した上層と、主として有機過酸由来の物質が溶解した下層とに分離し、更に、下層を除去すると共に、上層に対して新たな分散媒を加えることが好ましい。
In the above modified natural rubber production method, in the removing step, it is preferable to replace a part of the dispersion medium in which the substance derived from the organic peracid in the latex is dissolved with a new dispersion medium.
In the method for producing a modified natural rubber, in the removing step, the latex after the epoxidation step is subjected to a centrifugal separation treatment, whereby the latex is mainly composed of an upper layer in which the epoxidized rubber-like polymer is dispersed, and is mainly organic. It is preferable to separate into a lower layer in which the peracid-derived substance is dissolved, and to remove the lower layer and add a new dispersion medium to the upper layer.
 上記の各発明の構成では、エポキシ化工程の後、ラテックス中から有機過酸由来の物質を除去して、エポキシ化ゴム状重合体と、有機過酸由来の物質とが分離される。つまり、従来のように、ラテックス中からエポキシ化ゴム状重合体を固化して単離及び精製し、更に、固化したエポキシ化ゴム状重合体を再分散してラテックス状にするといった作業を必要としない。よって、エポキシ化工程と還元・開環工程との間に行われていたエポキシ化ゴム状重合体の単離処理及び再分散処理が省略される。従って、エポキシ化工程後の製造工程を簡略化することができる。また、ラテックス中からエポキシ化ゴム状重合体を単離及び精製することなく、エポキシ化工程及び還元・開環工程をラテックス状態のままで連続して行うことができる。このため、製造時の作業効率が向上する。 In the configuration of each invention described above, after the epoxidation step, the organic peracid-derived substance is removed from the latex to separate the epoxidized rubber-like polymer and the organic peracid-derived substance. In other words, as in the past, it is necessary to solidify and isolate and purify the epoxidized rubber-like polymer from the latex, and to redisperse the solidified epoxidized rubber-like polymer into a latex. do not do. Therefore, the isolation process and redispersion process of the epoxidized rubber-like polymer which were performed between the epoxidation process and the reduction / ring-opening process are omitted. Therefore, the manufacturing process after the epoxidation process can be simplified. Further, the epoxidation step and the reduction / ring-opening step can be continuously performed in the latex state without isolating and purifying the epoxidized rubber-like polymer from the latex. For this reason, the work efficiency at the time of manufacture improves.
 上記の改質天然ゴムの製造方法において、除去工程において、有機過酸由来の物質と共にラテックス中の蛋白質を除去することが好ましい。
 植物から採集される天然ゴムラテックスには、ゴム状重合体の他に種々の蛋白質が含有されている。こうした蛋白質が混在する天然ゴムラテックスを原料として改質天然ゴムを製造した場合、得られる改質天然ゴムの物性が不安定化したり、品質が低下したりするおそれがある。そのため、蛋白質が混在する天然ゴムラテックスを原料として用いて改質天然ゴムを製造する場合には、蛋白質を除去する脱蛋白処理を行うことが望ましい。
In the above modified natural rubber production method, it is preferable to remove proteins in the latex together with the organic peracid-derived substance in the removing step.
Natural rubber latex collected from plants contains various proteins in addition to rubbery polymers. When a modified natural rubber is produced using a natural rubber latex mixed with such a protein as a raw material, the physical properties of the resulting modified natural rubber may become unstable or the quality may be lowered. Therefore, when producing a modified natural rubber using a natural rubber latex mixed with protein as a raw material, it is desirable to perform a deproteinization treatment to remove the protein.
 上記構成によれば、除去工程において、有機過酸由来の物質の除去と同時に、蛋白質も除去される。これにより、一連の製造工程中に脱蛋白処理を追加した場合であっても、ゴム成分と蛋白質とを分離するための作業を追加する必要はない。よって、作業量の増加が最小限に抑えられることができる。 According to the above configuration, in the removing step, the protein is also removed simultaneously with the removal of the organic peracid-derived substance. Thereby, even if it is a case where a deproteinization process is added during a series of manufacturing processes, it is not necessary to add the operation | work for isolate | separating a rubber component and a protein. Therefore, an increase in work amount can be minimized.
 上記の改質天然ゴムの製造方法において、還元・開環工程では、エポキシ化ゴム状重合体に残存する不飽和二重結合に水素原子を付加すると共に、エポキシ化ゴム状重合体のエポキシ基を開環して、水酸基を形成することが好ましい。 In the above modified natural rubber production method, in the reduction / ring-opening step, hydrogen atoms are added to the unsaturated double bond remaining in the epoxidized rubber-like polymer, and the epoxy group of the epoxidized rubber-like polymer is added. It is preferred to open the ring to form a hydroxyl group.
 本発明によれば、改質天然ゴムの製造工程を簡略化することができる。 According to the present invention, the production process of the modified natural rubber can be simplified.
 以下、本発明に係る改質天然ゴムの製造方法を具体化した一実施形態について詳細に説明する。
 本実施形態における改質天然ゴムの製造方法では、主鎖に複数の不飽和二重結合を有する植物由来のゴム状重合体を原料として用いる。そして、主鎖中の不飽和二重結合を還元して不飽和二重結合を減らすと共に、不飽和二重結合の一部をエポキシ化及び開環して、水酸基を付与した改質天然ゴムを製造する。本実施形態における改質天然ゴムの製造方法は、エポキシ化工程と、除去工程と、還元・開環工程とを含む。エポキシ化工程では、主鎖に複数の不飽和二重結合を有する植物由来のゴム状重合体の不飽和二重結合の一部をエポキシ化して、エポキシ化ゴム状重合体が得られる。除去工程では、エポキシ化工程において生じた有機過酸由来の物質が除去される。還元・開環工程では、エポキシ化ゴム状重合体に残存する不飽和二重結合の一部又は全部が還元されると共に、エポキシ化ゴム状重合体のエポキシ基の一部又は全部が開環される。
Hereinafter, an embodiment embodying a method for producing a modified natural rubber according to the present invention will be described in detail.
In the method for producing a modified natural rubber in the present embodiment, a plant-derived rubber-like polymer having a plurality of unsaturated double bonds in the main chain is used as a raw material. Then, the unsaturated double bond in the main chain is reduced to reduce the unsaturated double bond, and a part of the unsaturated double bond is epoxidized and opened to provide a modified natural rubber having a hydroxyl group. To manufacture. The method for producing a modified natural rubber in the present embodiment includes an epoxidation step, a removal step, and a reduction / ring-opening step. In the epoxidation step, a part of unsaturated double bonds of a plant-derived rubber-like polymer having a plurality of unsaturated double bonds in the main chain is epoxidized to obtain an epoxidized rubber-like polymer. In the removal step, the organic peracid-derived substance generated in the epoxidation step is removed. In the reduction / ring-opening step, part or all of the unsaturated double bond remaining in the epoxidized rubber-like polymer is reduced, and part or all of the epoxy group of the epoxidized rubber-like polymer is opened. The
 <原料>
 原料として、主鎖に複数(2以上)の不飽和二重結合を有する植物由来のゴム状重合体を含有する天然ゴムラテックスを用いることができる。具体的には、天然ゴムの木から得られるフィールドラテックス、及びフィールドラテックスを処理した処理物を用いることができる。処理物として、例えば、フィールドラテックスを濃縮してゴム状重合体濃度を高めたラテックス、フィールドラテックスをアンモニア処理したラテックス、フィールドラテックスを脱蛋白処理したラテックス、及びこれらの混合物が挙げられる。また、原料として、天然ゴムラテックスからゴム状重合体を単離・精製した固形ゴムを用いることもできる。
<Raw material>
As a raw material, natural rubber latex containing a plant-derived rubber-like polymer having a plurality of (two or more) unsaturated double bonds in the main chain can be used. Specifically, a field latex obtained from a natural rubber tree and a processed product obtained by treating the field latex can be used. Examples of the treated product include latex in which field latex is concentrated to increase the rubbery polymer concentration, latex in which field latex is treated with ammonia, latex in which field latex is deproteinized, and a mixture thereof. Further, a solid rubber obtained by isolating and purifying a rubber-like polymer from natural rubber latex can also be used as a raw material.
 脱蛋白処理の方法として、例えば、特開平6-56902号公報及び特開2004-99696号公報に記載される公知の方法が挙げられる。脱蛋白処理では、天然ゴムラテックス中の窒素含有量を、ゴム状重合体100質量部に対して0.1質量部以下に設定することが好ましく、0.05質量部以下に設定することがより好ましい。 Examples of the deproteinization treatment method include known methods described in JP-A Nos. 6-56902 and 2004-99696. In the deproteinization treatment, the nitrogen content in the natural rubber latex is preferably set to 0.1 parts by mass or less with respect to 100 parts by mass of the rubbery polymer, and more preferably set to 0.05 parts by mass or less. preferable.
 <エポキシ化工程>
 エポキシ化工程は、ゴム状重合体に対して有機過酸を反応させ、ゴム状重合体の主鎖の不飽和二重結合の一部をエポキシ基に置換してエポキシ化ゴム状重合体を得る工程である。具体的には、まず、原料である天然ゴムラテックス又は固形ゴムを分散媒としての水に分散させて、反応系ラテックスを調製する。ここでは、天然ゴムラテックスと区別するため、製造工程で用いられるラテックスを反応系ラテックスとして記載する。このとき、ゴム状重合体の分散状態を安定化させるため、分散媒中に界面活性剤を添加することが好ましい。
<Epoxidation process>
In the epoxidation step, an organic peracid is reacted with the rubber-like polymer, and a part of the unsaturated double bond of the main chain of the rubber-like polymer is substituted with an epoxy group to obtain an epoxidized rubber-like polymer. It is a process. Specifically, first, a natural rubber latex or a solid rubber as a raw material is dispersed in water as a dispersion medium to prepare a reaction system latex. Here, in order to distinguish from natural rubber latex, latex used in the production process is described as reaction latex. At this time, in order to stabilize the dispersion state of the rubber-like polymer, it is preferable to add a surfactant to the dispersion medium.
 分散媒としての水は、水以外の成分、例えば、親水性有機溶媒を少量含有してもよい。界面活性剤として、アニオン系界面活性剤であるドデシル硫酸ナトリウムが好適に使用されるが、これに限らず、カルボン酸系、スルホン酸系、硫酸エステル系、リン酸エステル系などのアニオン系界面活性剤、ポリエチレングリコール系や多価アルコール系などのノニオン系界面活性剤、第4級アンモニウム塩などのカチオン系界面活性剤、アミノ酸系やベタイン系などの両性界面活性剤、植物由来のバイオベースの界面活性剤等を使用してもよい。 Water as the dispersion medium may contain a small amount of components other than water, for example, a hydrophilic organic solvent. As the surfactant, anionic surfactant sodium dodecyl sulfate is preferably used, but is not limited to this, and anionic surfactants such as carboxylic acid, sulfonic acid, sulfate, and phosphate Agents, nonionic surfactants such as polyethylene glycol and polyhydric alcohols, cationic surfactants such as quaternary ammonium salts, amphoteric surfactants such as amino acids and betaines, plant-based biobased interfaces An activator or the like may be used.
 次に、調製された反応系ラテックス中のゴム状重合体に有機過酸を反応させて、エポキシ化を行う。有機過酸として、例えば、過安息香酸、過酢酸、過ギ酸、過フタル酸、過プロピオン酸、トリフルオロ過酢酸、及び過酪酸が挙げられる。これらの有機過酸は、反応系ラテックス中に直接添加してもよい。これとは別の方法として、有機過酸を生成し得る成分を添加して、反応系ラテックス中で有機過酸を生成してもよい。例えば、過ギ酸を生成するには、ギ酸と過酸化水素とを順次添加すればよい。過酢酸を生成するには、無水酢酸と過酸化水素とを順次添加すればよい。 Next, an organic peracid is reacted with the rubber-like polymer in the prepared reaction latex to perform epoxidation. Examples of organic peracids include perbenzoic acid, peracetic acid, performic acid, perphthalic acid, perpropionic acid, trifluoroperacetic acid, and perbutyric acid. These organic peracids may be added directly to the reaction system latex. As another method, a component capable of generating an organic peracid may be added to generate the organic peracid in the reaction system latex. For example, formic acid can be produced by sequentially adding formic acid and hydrogen peroxide. In order to produce peracetic acid, acetic anhydride and hydrogen peroxide may be added sequentially.
 有機過酸を加えてから所定時間経過後、アンモニア水溶液等の塩基を用いて、反応系ラテックスの中和処理を行う。このときの中和反応により、反応系ラテックス中に存在する有機過酸及び有機酸が中和されて、有機過酸及び有機酸の塩が生成される。例えば、有機過酸が過酢酸であり、アンモニア水溶液を用いて中和処理を行った場合には、過酢酸から酢酸が生成され、酢酸を含む反応系ラテックスが中和されることにより、酢酸アンモニウムが生成される。 After a predetermined time has elapsed since the addition of the organic peracid, the reaction system latex is neutralized with a base such as an aqueous ammonia solution. By the neutralization reaction at this time, the organic peracid and the organic acid present in the reaction system latex are neutralized to produce an organic peracid and a salt of the organic acid. For example, when the organic peracid is peracetic acid and neutralization is performed using an aqueous ammonia solution, acetic acid is generated from the peracetic acid, and the reaction system latex containing acetic acid is neutralized. Is generated.
 エポキシ化反応は、生成物であるエポキシ化ゴム重合体のエポキシ化率が1~25%の範囲となるように行うことが好ましい。エポキシ化ゴム重合体のエポキシ化率は、有機過酸の添加量、及び処理時間などを変更して調整される。エポキシ化ゴム重合体のエポキシ化率は、下記式により算出することができる。式中における「ゴム重合体の二重結合の数」(エポキシ化前の数値)、及び「エポキシ化ゴム重合体のエポキシ基の数」は、例えば、1H-NMRの測定結果から得ることができる。 The epoxidation reaction is preferably performed so that the epoxidation rate of the product epoxidized rubber polymer is in the range of 1 to 25%. The epoxidation rate of the epoxidized rubber polymer is adjusted by changing the amount of organic peracid added and the processing time. The epoxidation rate of the epoxidized rubber polymer can be calculated by the following formula. In the formula, “number of double bonds of rubber polymer” (value before epoxidation) and “number of epoxy groups of epoxidized rubber polymer” can be obtained from the measurement result of 1H-NMR, for example. .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 <除去工程>
 除去工程は、エポキシ化工程後の反応系ラテックス中から、有機過酸由来の物質である有機酸及び有機酸塩を除去して、それらの濃度を低下させる工程である。除去工程では、反応系ラテックス中における有機過酸由来の有機酸及びその塩の合計含有量を、エポキシ化ゴム重合体100質量部に対して35質量部以下、好ましくは30質量部以下、より好ましくは25質量部以下にまで低下させる。
<Removal process>
A removal process is a process of removing the organic acid and organic acid salt which are the substances derived from an organic peracid from the reaction system latex after an epoxidation process, and reducing those density | concentrations. In the removal step, the total content of the organic acid derived from the organic peracid and the salt thereof in the reaction system latex is 35 parts by mass or less, preferably 30 parts by mass or less, more preferably 100 parts by mass of the epoxidized rubber polymer. Is reduced to 25 parts by mass or less.
 反応系ラテックス中から有機過酸由来の物質を除去する方法として、例えば、遠心分離処理が用いられる。具体的には、エポキシ化工程後の反応系ラテックスを遠心分離処理することによって、反応系ラテックスを上層と下層とに分離することができる(分離操作)。上層は、主としてエポキシ化ゴム状重合体が高濃度で分散したラテックス状(クリーム状)の層である。下層は、主として有機過酸由来の物質が溶解した液状の層である。例えば、遠心分離処理を5000~15000Gで数十分程度行えば、反応系ラテックスを上記のように分離することができる。 As a method for removing the organic peracid-derived substance from the reaction latex, for example, a centrifugal separation process is used. Specifically, the reaction system latex can be separated into an upper layer and a lower layer (separation operation) by centrifuging the reaction system latex after the epoxidation step. The upper layer is a latex (cream) layer in which mainly an epoxidized rubber-like polymer is dispersed at a high concentration. The lower layer is a liquid layer in which a substance derived from an organic peracid is dissolved. For example, if the centrifugation treatment is performed for several tens of minutes at 5000 to 15000 G, the reaction system latex can be separated as described above.
 次に、上層を回収すると共に、この上層に分散媒を加える(再分散操作)。再分散操作で加えられる分散媒は、エポキシ化工程時の組成と同一であってもよいし、異なっていてもよい。分離操作及び再分散操作によって、反応系ラテックス中の有機過酸由来の物質が溶解した分散媒と、新たな分散媒とが入れ替えられる。こうして、有機過酸由来の物質の濃度が低下する。この場合、再分散操作後の反応系ラテックス中の有機過酸由来の物質の濃度に応じて、分離操作及び再分散操作を2回以上繰り返すことが好ましい。 Next, the upper layer is recovered and a dispersion medium is added to the upper layer (redispersion operation). The dispersion medium added in the redispersion operation may be the same as or different from the composition during the epoxidation step. By the separation operation and the redispersion operation, the dispersion medium in which the substance derived from the organic peracid in the reaction system latex is dissolved is replaced with a new dispersion medium. Thus, the concentration of the organic peracid-derived substance is reduced. In this case, it is preferable to repeat the separation operation and the redispersion operation twice or more according to the concentration of the organic peracid-derived substance in the reaction system latex after the redispersion operation.
 また、原料として脱蛋白処理を行っていない天然ゴムラテックスを用いた場合は、除去工程において脱蛋白処理を同時に行うこともできる。具体的には、遠心分離処理前の反応系ラテックス中に蛋白質変性剤を添加して、反応系ラテックス中の蛋白質を変性させる。蛋白質が変性した状態で遠心分離処理を行うと、反応系ラテックス中の蛋白質が、有機過酸由来の物質が存在する液状の下層へと移行する。このため、上層と下層とを分離することで、有機過酸由来の物質と共に変性した蛋白質を除去することもできる。蛋白質変性剤として、例えば、下記一般式(1)で表される尿素系化合物(尿素誘導体、尿素複塩)、及び次亜塩素酸ナトリウムが挙げられる。下記一般式(1)で表される尿素系化合物として、例えば、尿素、メチル尿素、エチル尿素、n-プロピル尿素、i-プロピル尿素、n-ブチル尿素、i-ブチル尿素、n-ペンチル尿素が挙げられる。これらのなかでも、特に、尿素、メチル尿素、及びエチル尿素が好ましい。 In addition, when natural rubber latex that has not been subjected to deproteinization treatment is used as a raw material, the deproteinization treatment can be performed simultaneously in the removal step. Specifically, a protein denaturant is added to the reaction system latex before the centrifugation treatment to denature the protein in the reaction system latex. When centrifugation is performed in a state where the protein is denatured, the protein in the reaction system latex moves to a liquid lower layer in which a substance derived from organic peracid exists. For this reason, the protein which modified | denatured with the substance derived from an organic peracid can also be removed by isolate | separating an upper layer and a lower layer. Examples of protein denaturants include urea compounds (urea derivatives, urea double salts) represented by the following general formula (1), and sodium hypochlorite. Examples of urea compounds represented by the following general formula (1) include urea, methyl urea, ethyl urea, n-propyl urea, i-propyl urea, n-butyl urea, i-butyl urea, and n-pentyl urea. Can be mentioned. Of these, urea, methylurea, and ethylurea are particularly preferable.
  RNHCONH …(1)
  (式中のRは、H又は炭素数1~5のアルキル基を表す)
 脱蛋白処理を行った場合、反応系ラテックス中の窒素含有量を、エポキシ化ゴム状重合体100質量部に対して0.1質量部以下に設定することが好ましく、0.05質量部以下に設定することがより好ましい。
RNHCONH 2 (1)
(Wherein R represents H or an alkyl group having 1 to 5 carbon atoms)
When deproteinization treatment is performed, the nitrogen content in the reaction system latex is preferably set to 0.1 parts by mass or less with respect to 100 parts by mass of the epoxidized rubber-like polymer, and 0.05 parts by mass or less. It is more preferable to set.
 <還元・開環工程>
 還元・開環工程は、反応系ラテックス中のエポキシ化ゴム状重合体に残存する不飽和二重結合の一部又は全部を還元すると共に、エポキシ化ゴム状重合体のエポキシ基の一部又は全部を開環する工程である。エポキシ化ゴム状重合体の不飽和二重結合の還元、及びエポキシ基の開環反応(以下、還元・開環反応という。)として、ラテックスの状態で行われる公知の還元方法及び開環方法を用いることができる。
<Reduction / ring opening process>
The reduction / ring-opening step reduces part or all of the unsaturated double bonds remaining in the epoxidized rubber-like polymer in the reaction system latex, and part or all of the epoxy groups of the epoxidized rubber-like polymer. Is a step of opening the ring. Known reduction methods and ring-opening methods carried out in the state of latex as reduction of unsaturated double bonds of epoxidized rubber-like polymer and ring-opening reaction of epoxy groups (hereinafter referred to as reduction / ring-opening reaction) Can be used.
 この場合、還元・開環反応時のpHを、所定の範囲内に調整する必要がある。つまり、還元・開環反応時のpHが7~8の範囲を外れて酸性側又は塩基性側へシフトすると、還元・開環反応時におけるエポキシ化ゴム状重合体の環化等が過度に促進される。そのため、いずれの方法を採用する場合であっても、pH7~8の条件下で、かつ有機酸塩の存在下において、還元・開環反応を進める必要がある。有機酸塩は、反応系ラテックスの分散媒である水に溶解することで緩衝液として働く。このため、有機酸塩は、還元・開環反応時におけるpHの大きな変化を抑制することができる。 In this case, it is necessary to adjust the pH during the reduction / ring-opening reaction within a predetermined range. In other words, if the pH during the reduction / ring-opening reaction is shifted to the acidic side or the basic side outside the range of 7-8, the cyclization of the epoxidized rubber-like polymer during the reduction / ring-opening reaction is excessively accelerated. Is done. Therefore, regardless of which method is employed, it is necessary to proceed the reduction / ring-opening reaction under the conditions of pH 7 to 8 and in the presence of an organic acid salt. The organic acid salt works as a buffer solution by dissolving in water which is a dispersion medium of the reaction system latex. For this reason, the organic acid salt can suppress a large change in pH during the reduction / ring-opening reaction.
 有機酸塩として、例えば、安息香酸、酢酸、ギ酸、フタル酸、プロピオン酸、トリフルオロ酢酸、及び酪酸等のカルボン酸のナトリウム塩、カリウム塩、カルシウム塩、アミン塩(1級~3級)、及びアンモニア塩が挙げられる。有機酸塩は、除去工程時に除去されずに反応系ラテックス中に残留している有機過酸由来の有機酸塩であってもよいし、還元・開環反応時に新たに添加した有機酸塩であってもよい。還元・開環反応時における有機酸塩の含有量は、エポキシ化ゴム重合体100質量部に対して0.1~35質量部であることが好ましく、1.7~25質量部であることがより好ましい。 Examples of organic acid salts include sodium salts, potassium salts, calcium salts, amine salts (primary to tertiary) of carboxylic acids such as benzoic acid, acetic acid, formic acid, phthalic acid, propionic acid, trifluoroacetic acid, and butyric acid, And ammonia salts. The organic acid salt may be an organic acid salt derived from an organic peracid that remains in the reaction latex without being removed during the removal step, or may be a newly added organic acid salt during the reduction / ring-opening reaction. There may be. The content of the organic acid salt during the reduction / ring-opening reaction is preferably 0.1 to 35 parts by mass and preferably 1.7 to 25 parts by mass with respect to 100 parts by mass of the epoxidized rubber polymer. More preferred.
 上述した、ラテックスの状態で行われる公知の還元方法及び開環方法として、例えば、水素化触媒の存在下において、エポキシ化ゴム状重合体に水素を接触させる方法が挙げられる。以下、還元・開環反応として、水素化触媒の存在下でエポキシ化ゴム状重合体に水素ガスを接触させる方法を用いた場合について説明する。 Examples of the known reduction method and ring-opening method performed in the latex state described above include, for example, a method in which hydrogen is brought into contact with the epoxidized rubber-like polymer in the presence of a hydrogenation catalyst. Hereinafter, a case where a method of bringing hydrogen gas into contact with the epoxidized rubber-like polymer in the presence of a hydrogenation catalyst will be described as a reduction / ring-opening reaction.
 まず、除去工程後の反応系ラテックス中に水素化触媒を添加し、反応系ラテックスのpHを7~8の範囲に調整する。ここで、除去工程後の反応系ラテックス中に有機過酸由来の有機酸塩が含有されていない場合は、pH調整の前に、反応系ラテックス中に所定量の有機酸塩を添加する。pH調整後、反応系ラテックス中に有機酸塩を添加してもよい。この場合、有機酸塩の添加後の反応系ラテックスのpHを7~8の範囲の範囲に維持することが条件となる。 First, a hydrogenation catalyst is added to the reaction system latex after the removal step, and the pH of the reaction system latex is adjusted to a range of 7-8. Here, when the organic peracid-derived organic acid salt is not contained in the reaction latex after the removing step, a predetermined amount of the organic acid salt is added to the reaction latex before adjusting the pH. After adjusting the pH, an organic acid salt may be added to the reaction system latex. In this case, the condition is that the pH of the reaction latex after the addition of the organic acid salt is maintained in the range of 7-8.
 一方、除去工程後の反応系ラテックス中に有機過酸由来の有機酸塩が含有されている場合は、水素化触媒を添加後、そのまま反応系ラテックスのpHを7~8の範囲に調整する。水素化触媒として、均一系触媒及び不均一系触媒を用いることができる。水素化触媒として、具体的には、ニッケル、ルテニウム、白金、パラジウム、ロジウム等の金属触媒が挙げられる。 On the other hand, when the reaction system latex after the removal step contains an organic acid salt derived from an organic peracid, the pH of the reaction system latex is adjusted to the range of 7 to 8 after adding the hydrogenation catalyst. As the hydrogenation catalyst, a homogeneous catalyst and a heterogeneous catalyst can be used. Specific examples of the hydrogenation catalyst include metal catalysts such as nickel, ruthenium, platinum, palladium, and rhodium.
 反応系ラテックスのpHを調整した後、空気雰囲気下、アルゴンや窒素等の不活性気体雰囲気下、又は水素雰囲気下において、反応系ラテックス中に水素を供給する。この場合、高圧水素ガス等の水素ガスを直接供給してもよく、又は、水素を生成し得る成分(水素ドナー)を添加して反応系中にて生成される水素を供給してもよい。そして、水素化触媒の存在下、水素と、反応系ラテックス中のエポキシ化ゴム状重合体とを所定温度にて所定時間接触させる。 After adjusting the pH of the reaction system latex, hydrogen is supplied into the reaction system latex in an air atmosphere, an inert gas atmosphere such as argon or nitrogen, or a hydrogen atmosphere. In this case, hydrogen gas such as high-pressure hydrogen gas may be directly supplied, or hydrogen generated in the reaction system may be supplied by adding a component capable of generating hydrogen (hydrogen donor). Then, in the presence of the hydrogenation catalyst, hydrogen is brought into contact with the epoxidized rubber-like polymer in the reaction system latex at a predetermined temperature for a predetermined time.
 その結果、エポキシ化ゴム状重合体の主鎖に残存する不飽和二重結合に水素原子が付加されて不飽和二重結合が還元される。同時に、エポキシ化ゴム状重合体の主鎖のエポキシ基が開環されると共に、酸素原子に水素原子が付加されて水酸基が形成される。これにより、主鎖中の不飽和二重結合を還元して不飽和二重結合を減らすと共に、不飽和二重結合の一部をエポキシ化及び開環して水酸基を付与した改質天然ゴム(以下、単に改質天然ゴムと記載する)が生成される。 As a result, a hydrogen atom is added to the unsaturated double bond remaining in the main chain of the epoxidized rubber-like polymer, and the unsaturated double bond is reduced. At the same time, the epoxy group of the main chain of the epoxidized rubber-like polymer is opened, and a hydrogen atom is added to an oxygen atom to form a hydroxyl group. This reduces the unsaturated double bond in the main chain to reduce the unsaturated double bond, and also epoxidizes and opens a part of the unsaturated double bond to give a hydroxyl group. Hereinafter, it is simply referred to as modified natural rubber).
 還元・開環反応では、生成物である改質天然ゴムの水素添加率が80%以上であることが好ましい。改質天然ゴムの水素添加率は、還元・開環反応における処理温度及び処理時間等を変更して調整することができる。還元・開環反応における処理温度は、0~100℃の範囲に設定することが好ましく、40~80℃の範囲に設定することがより好ましい。処理温度が0℃未満であると、反応を十分に進行させることが困難になる。処理温度が100℃を超えると、エポキシ化ゴム状重合体の分子鎖が分断されて低分子量化をまねくおそれがある。 In the reduction / ring-opening reaction, the hydrogenation rate of the modified natural rubber as a product is preferably 80% or more. The hydrogenation rate of the modified natural rubber can be adjusted by changing the treatment temperature and treatment time in the reduction / ring-opening reaction. The treatment temperature in the reduction / ring-opening reaction is preferably set in the range of 0 to 100 ° C, more preferably in the range of 40 to 80 ° C. When the treatment temperature is less than 0 ° C., it becomes difficult to sufficiently advance the reaction. If the treatment temperature exceeds 100 ° C., the molecular chain of the epoxidized rubber-like polymer may be broken, leading to a reduction in molecular weight.
 改質天然ゴムの水素添加率は、下記式により算出することができる。式中の「ゴム重合体の二重結合の数」(エポキシ化前の数値)、及び「改質天然ゴムの二重結合の残数」は、例えば、1H-NMRの測定結果から得ることができる。 The hydrogenation rate of the modified natural rubber can be calculated by the following formula. The “number of double bonds of rubber polymer” in the formula (number before epoxidation) and “remaining number of double bonds of modified natural rubber” can be obtained from, for example, the measurement result of 1H-NMR. it can.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 <回収工程>
 回収工程は、反応系ラテックス中の改質天然ゴムを回収する工程である。改質天然ゴムは、ゴム成分が分散したラテックス中からゴム成分を回収する公知の手法を用いて回収される。例えば、反応系ラテックス中にメタノールを添加することにより、反応系ラテックス中の改質天然ゴムを凝縮及び沈殿させる。そして、その沈殿物を回収することによって、改質天然ゴムを単離することができる。その際、メタノールを添加する前に反応系ラテックス中の水素化触媒を除去しておくことが好ましい。水素化触媒を除去する方法として、例えば、ジメチルグリオキシム等の錯形成剤を反応系ラテックス中に添加して水素化触媒を沈殿させて除去する方法が挙げられる。
<Recovery process>
The recovery step is a step of recovering the modified natural rubber in the reaction system latex. The modified natural rubber is recovered using a known method for recovering the rubber component from the latex in which the rubber component is dispersed. For example, by adding methanol to the reaction system latex, the modified natural rubber in the reaction system latex is condensed and precipitated. The modified natural rubber can be isolated by collecting the precipitate. At that time, it is preferable to remove the hydrogenation catalyst in the reaction system latex before adding methanol. As a method for removing the hydrogenation catalyst, for example, a method of adding a complexing agent such as dimethylglyoxime to the reaction system latex to precipitate and remove the hydrogenation catalyst can be mentioned.
 次に本実施形態における作用効果について、以下に記載する。
 (1)エポキシ化工程後の除去工程において、エポキシ化ゴム状重合体を分散させたラテックスの状態のままで、反応系ラテックス中から有機過酸由来の物質が除去される。そして、有機過酸由来の物質が除去された反応系ラテックスを、続く還元・開環工程にて処理する。そのため、従来のように、反応系ラテックス中からエポキシ化ゴム状重合体を固化して単離及び精製し、固化したエポキシ化ゴム状重合体を再分散させてラテックス状にするための工程を必要としない。よって、エポキシ化工程と還元・開環工程との間に行われていたエポキシ化ゴム状重合体の単離処理及び再分散処理が省略される。従って、エポキシ化工程後の製造工程を簡略化することができる。また、反応系ラテックス中からゴム成分(ゴム状重合体又はエポキシ化ゴム状重合体)を単離及び精製することなく、エポキシ化工程及び還元・開環工程をラテックスの状態のままで連続して行うことができる。このため、製造時の作業効率、及び最終生成物である天然改質ゴムの収率が向上する。
Next, operational effects in the present embodiment will be described below.
(1) In the removal step after the epoxidation step, the organic peracid-derived substance is removed from the reaction system latex in the state of the latex in which the epoxidized rubber-like polymer is dispersed. Then, the reaction latex from which the organic peracid-derived substance has been removed is treated in a subsequent reduction / ring-opening step. Therefore, as in the past, it is necessary to solidify the epoxidized rubber-like polymer from the reaction system latex, isolate and purify, and re-disperse the solidified epoxidized rubber-like polymer to form a latex. And not. Therefore, the isolation process and redispersion process of the epoxidized rubber-like polymer which were performed between the epoxidation process and the reduction / ring-opening process are omitted. Therefore, the manufacturing process after the epoxidation process can be simplified. Also, without isolating and purifying the rubber component (rubber-like polymer or epoxidized rubber-like polymer) from the reaction system latex, the epoxidation step and the reduction / ring-opening step are continuously performed in the latex state. It can be carried out. For this reason, the working efficiency at the time of manufacture and the yield of the natural modified rubber which is the final product are improved.
 (2)除去工程において、反応系ラテックス中の有機過酸由来の物質が溶解した分散媒の一部は、新たな分散媒と入れ替えられる。これにより、原料である天然ゴムラテックス中に含有される水溶性の夾雑物についても、除去工程において有機過酸由来の物質と共に除去することができる。 (2) In the removal step, a part of the dispersion medium in which the substance derived from the organic peracid in the reaction latex is dissolved is replaced with a new dispersion medium. Thereby, the water-soluble impurities contained in the raw natural rubber latex can be removed together with the organic peracid-derived substance in the removal step.
 (3)除去工程において、有機過酸由来の物質と共に、反応系ラテックス中に存在する蛋白質が除去される。そのため、ゴム成分と蛋白質とを分離するための分離作業を、新たに追加する必要はない。よって、脱蛋白工程の追加に伴う作業量の増加を最小限に抑えることができる。 (3) In the removal step, the protein present in the reaction latex is removed together with the organic peracid-derived substance. Therefore, it is not necessary to newly add a separation operation for separating the rubber component and the protein. Therefore, the increase in the work amount accompanying the addition of the deproteinization step can be minimized.
 (4)pH7~8の条件下で、且つ有機酸塩の存在下にて、還元・開環反応が行われる。これにより、還元・開環反応時におけるエポキシ化ゴム状重合体の環化等を抑制することができる。 (4) The reduction / ring-opening reaction is performed under conditions of pH 7 to 8 and in the presence of an organic acid salt. Thereby, the cyclization of the epoxidized rubber-like polymer during the reduction / ring-opening reaction can be suppressed.
 (5)改質天然ゴムの分子量が低下すると、改質天然ゴムの強度も低下する。その点、上記実施形態によれば、還元・開環反応時における処理温度が0~100℃の範囲に設定されるため、還元・開環反応時におけるエポキシ化ゴム状重合体、及びエポキシ化ゴム状重合体から得られる改質天然ゴムの低分子量化を抑制することができる。よって、改質天然ゴムの低分子量化に起因する改質天然ゴムの強度低下も抑制することができる。 (5) When the molecular weight of the modified natural rubber decreases, the strength of the modified natural rubber also decreases. In that respect, according to the above embodiment, the treatment temperature during the reduction / ring-opening reaction is set in the range of 0 to 100 ° C., so that the epoxidized rubber-like polymer during the reduction / ring-opening reaction and The molecular weight reduction of the modified natural rubber obtained from the polymer can be suppressed. Therefore, the strength reduction of the modified natural rubber due to the low molecular weight of the modified natural rubber can also be suppressed.
 本実施形態は、次のように変更してもよい。
 ・除去工程時における脱蛋白処理を省略してもよい。つまり、除去工程とは別に、例えば、エポキシ化工程前に脱蛋白質処理を行ってもよい。また、脱蛋白処理を全く行わなくてもよい。
The present embodiment may be modified as follows.
-You may abbreviate | omit the deproteinization process in the removal process. That is, apart from the removal step, for example, deproteinization treatment may be performed before the epoxidation step. Moreover, it is not necessary to perform the deproteinization process at all.
 ・上記実施形態では、エポキシ化工程において反応系ラテックスの中和処理を行っていたが、除去工程内又は除去工程後に中和処理を行ってもよい。
 ・上記実施形態の改質天然ゴムの製造方法は、天然ゴムの改質方法に応用することができる。
-In the said embodiment, although the neutralization process of the reaction system latex was performed in the epoxidation process, you may perform the neutralization process in a removal process or after a removal process.
-The manufacturing method of the modified natural rubber of the said embodiment can be applied to the modification method of natural rubber.
 次に、各実施例及び比較例を挙げて上記実施形態を更に具体的に説明する。
 <反応系ラテックスの調整>
 原料の天然ゴムラテックスとして、GOLDEN HOPE PLANTATION社製のsingleHAラテックス(ゴム成分濃度(ゴム状重合体濃度)60.2質量%、アンモニア分0.7質量%、ゴム粒子の平均粒径約1μm)を使用した。そして、蒸留水を用いて上記原料ラテックスを希釈すると共に、アニオン系界面活性剤であるドデシル硫酸ナトリウム(以下、SDSと記載する)を添加した。こうして、ゴム成分濃度(ゴム重合体濃度)10質量%、SDS濃度1質量%の反応系ラテックスを調製した。
Next, the above embodiment will be described more specifically with reference to examples and comparative examples.
<Reaction system latex adjustment>
As a natural rubber latex of raw material, singleHA latex (rubber component concentration (rubber-like polymer concentration) 60.2% by mass, ammonia content 0.7% by mass, average particle size of rubber particles about 1 μm) manufactured by GOLDEN HOPE PLATATION used. And while diluting the said raw material latex using distilled water, sodium dodecyl sulfate (henceforth SDS) which is an anionic surfactant was added. Thus, a reaction latex having a rubber component concentration (rubber polymer concentration) of 10% by mass and an SDS concentration of 1% by mass was prepared.
 <エポキシ化工程、及び除去工程(脱蛋白処理を含む)>
 天然ゴムのエポキシ化工程として、過酢酸又は過ギ酸による処理が一般的である。この試験において、安全性の観点から過酢酸による処理を採用した。しかしながら、過ギ酸による処理を採用した場合も、上記の場合と同様の結果を得ることができた。以下、具体的に記載する。
<Epoxidation step and removal step (including deproteinization treatment)>
As a natural rubber epoxidation process, treatment with peracetic acid or performic acid is common. In this test, treatment with peracetic acid was adopted from the viewpoint of safety. However, even when the treatment with performic acid was adopted, the same result as in the above case could be obtained. Specific description will be given below.
 反応系ラテックス100gに対して、過酢酸10mlを1ml/秒の速度で滴下した。そして、6℃の条件下で3時間振とうしながら、反応系ラテックスと過酢酸とを反応させた。その後、反応系ラテックスに対して遠心分離処理(15℃、10000G、30分)を行った。これにより、反応系ラテックスを、クリーム状の上層と、液状の下層とに分離した(分離操作)。上層のクリーム状のラテックスを回収すると共に、上層に1質量%SDS水溶液を加えた。こうして、ゴム成分濃度(エポキシ化ゴム状重合体濃度)が10質量%の反応系ラテックスを再調製した(再分散操作)。 To 100 g of the reaction system latex, 10 ml of peracetic acid was added dropwise at a rate of 1 ml / second. And reaction system latex and peracetic acid were made to react, shaking for 3 hours on 6 degreeC conditions. Thereafter, the reaction system latex was centrifuged (15 ° C., 10000 G, 30 minutes). Thereby, the reaction system latex was separated into a creamy upper layer and a liquid lower layer (separation operation). The upper creamy latex was recovered and a 1% by mass SDS aqueous solution was added to the upper layer. Thus, a reaction system latex having a rubber component concentration (epoxidized rubber-like polymer concentration) of 10% by mass was prepared again (redispersion operation).
 次に、28%アンモニア水を用いて、再調製した反応系ラテックスの中和を行った。中和処理後、反応系ラテックス中のゴム成分100質量部に対して、0.1質量部の尿素を添加した。そして、25℃で2時間撹拌して、反応系ラテックス中の蛋白質を変性させた。その後、分離操作及び再分散操作を所定回、繰り返した。中和処理及び蛋白変性処理を行った後の1回目(通算して2回目)の分離操作及び再分散操作において、過酢酸由来の物質である酢酸及び酢酸塩と共に、変性した蛋白質も除去した。通算して2回目以降の再分散操作では、ゴム成分濃度(エポキシ化ゴム状重合体濃度)が30質量%となるように、反応系ラテックスを再調製した。 Next, the reconstituted reaction system latex was neutralized using 28% aqueous ammonia. After neutralization, 0.1 part by mass of urea was added to 100 parts by mass of the rubber component in the reaction system latex. And it stirred at 25 degreeC for 2 hours, and modified | denatured the protein in reaction system latex. Thereafter, the separation operation and the redispersion operation were repeated a predetermined number of times. In the first separation operation and the redispersion operation after the neutralization treatment and protein denaturation treatment, the denatured protein was removed together with acetic acid and acetate, which are peracetic acid-derived substances. In total, in the second and subsequent redispersion operations, the reaction system latex was re-prepared so that the rubber component concentration (epoxidized rubber-like polymer concentration) was 30% by mass.
 ここで、1H-NMRを用いて、反応系ラテックス中に存在する酢酸及び酢酸アンモニウムの濃度を定量した。具体的には、1H-NMRに供する反応系ラテックス中に既知量の内部標準(標準物質)を添加して1H-NMRの測定を行い、得られたNMRスペクトル中の内部標準に基づくピークと、酢酸及び酢酸アンモニウムに基づくピークとを比較した。そして、反応系ラテックス中における過酢酸由来の酢酸及び酢酸アンモニウムの合計含有量が、エポキシ化ゴム状重合体100質量部に対して35質量部以下であることを確認した。 Here, the concentration of acetic acid and ammonium acetate present in the reaction system latex was quantified using 1H-NMR. Specifically, a known amount of an internal standard (standard substance) is added to the reaction system latex to be subjected to 1H-NMR, 1H-NMR measurement is performed, and a peak based on the internal standard in the obtained NMR spectrum; The peaks based on acetic acid and ammonium acetate were compared. And it confirmed that the total content of the acetic acid derived from peracetic acid and ammonium acetate in reaction system latex was 35 mass parts or less with respect to 100 mass parts of epoxidized rubber-like polymers.
 <還元・開環工程>
 まず、所定量の塩化パラジウムを塩酸に溶解して、水素化触媒を調製した。次に、除去工程で得られた、ゴム成分濃度(エポキシ化ゴム状重合体濃度)30質量%、SDS濃度1質量%の反応系ラテックスを、1質量%SDS水溶液で希釈した。こうして、反応系ラテックス中のゴム成分濃度(エポキシ化ゴム状重合体濃度)を所定の濃度に調整した。反応系ラテックス100ml中に上記の水素化触媒を滴下した後、水酸化ナトリウム水溶液を用いて、反応系ラテックスのpHを所定のpH値に調整した。その後、70℃の条件下で十分に攪拌を行いながら、反応系ラテックス中に水素ガスを100ml/分の流量で9時間バブリングした。
<Reduction / ring opening process>
First, a predetermined amount of palladium chloride was dissolved in hydrochloric acid to prepare a hydrogenation catalyst. Next, the reaction system latex having a rubber component concentration (epoxidized rubber-like polymer concentration) of 30% by mass and an SDS concentration of 1% by mass obtained in the removing step was diluted with a 1% by mass SDS aqueous solution. Thus, the rubber component concentration (epoxidized rubber-like polymer concentration) in the reaction system latex was adjusted to a predetermined concentration. After dropping the hydrogenation catalyst into 100 ml of the reaction system latex, the pH of the reaction system latex was adjusted to a predetermined pH value using an aqueous sodium hydroxide solution. Thereafter, hydrogen gas was bubbled into the reaction system latex at a flow rate of 100 ml / min for 9 hours while sufficiently stirring at 70 ° C.
 続いて、反応系ラテックスの温度を40℃まで冷却し、過酸化水素4mlを加えて1時間攪拌した。更に、ジメチルグリオキシム1gを加えて、48時間攪拌した。そして、反応系ラテックスを、40℃で24時間静置して水素化触媒を沈殿させた。その後、デカンテーションにより、上澄み液を分離した。分離後の上澄み液にメタノールを加えて、ゴム成分を凝縮させた。そして、その沈殿物を回収することにより、改質天然ゴムを得た。 Subsequently, the temperature of the reaction system latex was cooled to 40 ° C., 4 ml of hydrogen peroxide was added, and the mixture was stirred for 1 hour. Further, 1 g of dimethylglyoxime was added and stirred for 48 hours. And reaction system latex was left still at 40 degreeC for 24 hours, and the hydrogenation catalyst was precipitated. Thereafter, the supernatant was separated by decantation. Methanol was added to the supernatant after separation to condense the rubber component. And the modified natural rubber was obtained by collect | recovering the deposits.
 表1及び表2はそれぞれ、実施例及び比較例の製造方法、並びにその製造方法により得られた改質天然ゴムを示す。各実施例では、「分離操作及び再分散操作の繰り返し回数」、「還元・開環工程における反応系ラテックス中のゴム成分濃度(エポキシ化ゴム状重合体濃度)」、及び「還元・開環工程にて用いた触媒量」、「還元・開環工程時のpH」がそれぞれ変更されている。 Tables 1 and 2 show the production methods of Examples and Comparative Examples, and modified natural rubbers obtained by the production methods, respectively. In each example, “the number of repetitions of separation operation and redispersion operation”, “concentration of rubber component in reaction system latex (epoxidized rubber-like polymer concentration) in reduction / ring-opening step”, and “reduction / ring-opening step” "Catalyst amount" and "pH during reduction / ring-opening process" are changed.
 また、比較例1は、除去工程を省略した例である。比較例1では、中和処理を行った反応系ラテックスを、続く還元・開環工程にてそのまま処理した。比較例2及び3は、還元・開環反応時のpHを7~8の範囲から外した例である。比較例4は、有機酸塩の非存在下にて還元・開環反応を行った例である。比較例4では、製造過程にて有機酸塩が生成されないように製造方法の一部を変更した。具体的には、エポキシ化工程において、中和処理を行うことなく分離操作及び再分散操作を行い、還元・開環工程にて処理される反応系ラテックスを調製した。分離操作及び再分散操作を繰り返すと共に希釈処理することによって、反応系ラテックスのpHを7とした。そして、還元・開環工程では、単に、pH7の反応系ラテックスを70℃にて9時間加熱するのみとし、水素化触媒の添加、水酸化ナトリウム水溶液によるpH調整、及び水素ガスのバブリングを行わなかった。 Further, Comparative Example 1 is an example in which the removal process is omitted. In Comparative Example 1, the reaction system latex subjected to the neutralization treatment was directly treated in the subsequent reduction / ring-opening step. Comparative Examples 2 and 3 are examples in which the pH during the reduction / ring-opening reaction was excluded from the range of 7-8. Comparative Example 4 is an example in which a reduction / ring-opening reaction was performed in the absence of an organic acid salt. In Comparative Example 4, a part of the production method was changed so that an organic acid salt was not generated during the production process. Specifically, in the epoxidation step, a separation latex and a redispersion operation were performed without performing a neutralization treatment, and a reaction system latex to be treated in the reduction / ring opening step was prepared. The pH of the reaction system latex was adjusted to 7 by repeating the separation operation and the redispersion operation and performing dilution treatment. In the reduction / ring-opening step, the reaction system latex of pH 7 is simply heated at 70 ° C. for 9 hours, and the addition of a hydrogenation catalyst, pH adjustment with an aqueous sodium hydroxide solution, and bubbling of hydrogen gas are not performed. It was.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、エポキシ化工程の後に除去工程を行った各実施例では、酢酸及びその塩(酢酸アンモニウム)の濃度が1質量%以下であった。この結果から、本発明の除去工程を採用した場合にも、エポキシ化ゴム状重合体と酢酸及びその塩とを効果的に分離できることが確認できた。そして、各実施例では、続く、還元・開環工程においてエポキシ化ゴム状重合体が環化することなく、改質天然ゴムを得ることができた。 As shown in Table 1, in each Example in which the removal step was performed after the epoxidation step, the concentration of acetic acid and its salt (ammonium acetate) was 1% by mass or less. From this result, it was confirmed that the epoxidized rubber-like polymer and acetic acid and salts thereof can be effectively separated even when the removing step of the present invention is adopted. In each Example, the modified natural rubber could be obtained without the epoxidized rubber-like polymer being cyclized in the subsequent reduction / ring-opening step.
 表2に示すように、エポキシ化工程に引き続いて還元・開環工程をそのまま行った比較例1では、還元・開環反応時に、反応系ラテックス中のエポキシ化ゴム状重合体が凝縮して粒状物が浮遊する状態となった。その結果、目的の改質天然ゴムを得ることはできなかった。これは、多量に存在する酢酸及びその塩による副反応によって、反応系ラテックス中のエポキシ化ゴム状重合体が環化したためである。 As shown in Table 2, in Comparative Example 1 in which the reduction / ring-opening step was performed as it was following the epoxidation step, the epoxidized rubber-like polymer in the reaction system latex was condensed during the reduction / ring-opening reaction. Things became floating. As a result, the intended modified natural rubber could not be obtained. This is because the epoxidized rubber-like polymer in the reaction system latex was cyclized by a side reaction caused by a large amount of acetic acid and its salt.
 比較例2及び3は、還元・開環反応時のpHをそれぞれ9及び6とした例である。比較例4は、有機酸塩の非存在下にて還元・開環反応を行った例である。これらの場合も、比較例1と同様に、反応系ラテックス中のエポキシ化ゴム状重合体が環化してしまい、目的の改質天然ゴムを得ることはできなかった。比較例1~3の結果は、還元・開環反応時におけるエポキシ化ゴム状重合体の環化を抑制するには、pHを7~8の範囲内とし、且つ有機酸塩の存在下にて還元・開環反応を行う必要があることを示唆する。 Comparative Examples 2 and 3 are examples in which the pH during the reduction / ring-opening reaction was 9 and 6, respectively. Comparative Example 4 is an example in which a reduction / ring-opening reaction was performed in the absence of an organic acid salt. In these cases as well, as in Comparative Example 1, the epoxidized rubber-like polymer in the reaction system latex was cyclized, and the desired modified natural rubber could not be obtained. The results of Comparative Examples 1 to 3 show that, in order to suppress cyclization of the epoxidized rubber-like polymer during the reduction / ring-opening reaction, the pH is in the range of 7 to 8 and in the presence of the organic acid salt. This suggests that a reduction / ring-opening reaction is necessary.
 <改質天然ゴムの分析>
 各実施例の製造方法により得られた改質天然ゴムの水素添加率を、1H-NMRを用いた測定結果に基づいて算出した。また、得られた改質天然ゴムに含まれる特に分子量の高い成分(以下、高分子量成分と記載する。)を、下記の方法により測定した。トルエンに細かく刻んだ改質天然ゴムを0.1質量%濃度となるように添加して、一週間浸漬させた。その後、そのトルエン溶液を遠心分離処理(15℃、10000G、30分)することにより、トルエンに可溶なゾル成分と、トルエンに不要なゲル成分とに分離した。トルエンに不要なゲル成分を高分子量成分として回収し、これを50℃にて一週間乾燥させた。乾燥後の上記高分子量成分の重量を測定すると共に、仕込み量との比率から、改質天然ゴムに含まれる高分子量成分の割合を算出した。各実施例の製造方法により得られた改質天然ゴムの水素添加率、及び高分子量成分の割合を表3に示す。
<Analysis of modified natural rubber>
The hydrogenation rate of the modified natural rubber obtained by the production method of each example was calculated based on the measurement result using 1H-NMR. Further, a component having a particularly high molecular weight (hereinafter referred to as a high molecular weight component) contained in the resulting modified natural rubber was measured by the following method. Modified natural rubber finely chopped in toluene was added to a concentration of 0.1% by mass and immersed for one week. Then, the toluene solution was separated into a sol component soluble in toluene and a gel component unnecessary for toluene by centrifuging (15 ° C., 10,000 G, 30 minutes). A gel component unnecessary for toluene was recovered as a high molecular weight component, and this was dried at 50 ° C. for one week. The weight of the high molecular weight component after drying was measured, and the ratio of the high molecular weight component contained in the modified natural rubber was calculated from the ratio to the charged amount. Table 3 shows the hydrogenation rate of the modified natural rubber obtained by the production method of each example and the ratio of the high molecular weight component.
 表3に示す参考例1は、従来の方法を用いて改質天然ゴムを製造した例である。参考例1について、特に、除去工程及び還元・開環工程が、各実施例のそれと異なっている。参考例1では、エポキシ化工程における中和処理後、ラテックス中のエポキシ化ゴム状重合体を凝固させて、分散媒中から単離した。そして、単離したエポキシ化ゴム状重合体を乾燥し、更に1ヶ月間静置して、酢酸及び酢酸塩を除去した。また、還元・開環工程では、乾燥させたエポキシ化ゴム状重合体をp-キシレンに溶かし、p-キシレン溶液にパラトルエンスルホニルヒドラジドを添加した。そして、145℃にて6時間還流することにより、還元・開環反応をおこなった。 Reference Example 1 shown in Table 3 is an example in which modified natural rubber was produced using a conventional method. Regarding Reference Example 1, in particular, the removal step and the reduction / ring-opening step are different from those in each Example. In Reference Example 1, after the neutralization treatment in the epoxidation step, the epoxidized rubber-like polymer in the latex was coagulated and isolated from the dispersion medium. Then, the isolated epoxidized rubber-like polymer was dried and allowed to stand for another month to remove acetic acid and acetate. In the reduction / ring-opening step, the dried epoxidized rubber-like polymer was dissolved in p-xylene, and paratoluenesulfonyl hydrazide was added to the p-xylene solution. And reduction | restoration and ring-opening reaction were performed by recirculating | refluxing at 145 degreeC for 6 hours.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、各実施例の製造方法により得られた改質天然ゴムは、水素添加率30~90%の範囲で水素添加されていた。つまり、目的の改質天然ゴムが得られた。また、1H-NMRを用いて、改質天然ゴム中のエポキシ基の割合を測定した。その結果、エポキシ基の数は、計測不能な程度にまで減少していた。このことから、エポキシ化工程において導入されたエポキシ基のほぼ全てが還元・開環工程において開環されて水酸基が形成されたものと推察できる。 As shown in Table 3, the modified natural rubber obtained by the production method of each example was hydrogenated in the range of 30 to 90% hydrogenation rate. That is, the desired modified natural rubber was obtained. In addition, the proportion of epoxy groups in the modified natural rubber was measured using 1H-NMR. As a result, the number of epoxy groups was reduced to a level where measurement was impossible. From this, it can be inferred that almost all of the epoxy groups introduced in the epoxidation step were opened in the reduction / ring-opening step to form hydroxyl groups.
 また、各実施例の製造方法により得られた改質天然ゴムは、35%以上の割合で高分子量成分を含有していた。これに対して、参考例1の製造方法により得られた改質天然ゴムは、上記のような高分子量成分を含有していなかった。各実施例と参考例との間の高分子量成分の含有量の差は、還元・開環反応時における処理温度の差に起因するものと考えられる。 Further, the modified natural rubber obtained by the production method of each example contained a high molecular weight component in a proportion of 35% or more. On the other hand, the modified natural rubber obtained by the production method of Reference Example 1 did not contain the high molecular weight component as described above. The difference in the content of the high molecular weight component between each example and the reference example is considered to result from the difference in the treatment temperature during the reduction / ring-opening reaction.
 つまり、還元・開環反応時において反応系ラテックス中のエポキシ化ゴム状重合体及び改質天然ゴムが高温条件下に曝されることにより、分子鎖が分断されて低分子量化が進む。参考例1の製造方法では、145℃という比較的高温で還元・開環反応を行った。このような高温条件により還元・開環反応時におけるエポキシ化ゴム状重合体及び改質天然ゴムの低分子量化が促進されたため、最終的に得られた改質天然ゴム中には高分子量成分が残らなかったものと考えられる。これに対して、各実施例の製造方法では、70℃という比較的低温で還元・開環反応を行った。これにより、還元・開環反応におけるエポキシ化ゴム状重合体及び改質天然ゴムの低分子量化が抑制されたため、最終的に得られた改質天然ゴム中に高分子量成分を残存させることができたと考えられる。 That is, when the epoxidized rubber-like polymer and the modified natural rubber in the reaction system latex are exposed to high temperature conditions during the reduction / ring-opening reaction, the molecular chain is broken and the molecular weight is lowered. In the production method of Reference Example 1, the reduction / ring-opening reaction was performed at a relatively high temperature of 145 ° C. Such high temperature conditions promoted the reduction of the molecular weight of the epoxidized rubber-like polymer and the modified natural rubber during the reduction / ring-opening reaction, so that the finally obtained modified natural rubber has a high molecular weight component. It is thought that it did not remain. On the other hand, in the production method of each example, the reduction / ring-opening reaction was performed at a relatively low temperature of 70 ° C. As a result, the reduction of the molecular weight of the epoxidized rubber-like polymer and the modified natural rubber in the reduction / ring-opening reaction was suppressed, so that the high molecular weight component can remain in the finally obtained modified natural rubber. It is thought.
 表3に示すように、各実施例の製造方法により得られた改質天然ゴムは、高い割合で高分子量成分を含有していた。このことから、得られた改質天然ゴムの強度は高かったと言える。実際に、実施例5及び参考例1の製造方法により得られた改質天然ゴムの引張強さ(Tb)を測定した。その結果、実施例5及び参考例1における改質天然ゴムの引張強さの測定値は、それぞれ3.99MPa及び0.97MPaであった。つまり、各実施例の製造方法によれば、参考例の製造方法よりも強度の高い改質天然ゴムが得られることが示された。改質天然ゴムの引張強さ(Tb)は、実施例5及び参考例1の製造方法により得られた改質天然ゴムにアジピン酸ヒドラジドを4phr加え、180℃、11Mpaにて20分間加熱プレスしたものをサンプルとし、ISO 37(JIS K6251)に準拠して測定した。 As shown in Table 3, the modified natural rubber obtained by the production method of each Example contained a high molecular weight component at a high ratio. From this, it can be said that the strength of the obtained modified natural rubber was high. Actually, the tensile strength (Tb) of the modified natural rubber obtained by the production methods of Example 5 and Reference Example 1 was measured. As a result, the measured values of the tensile strength of the modified natural rubber in Example 5 and Reference Example 1 were 3.99 MPa and 0.97 MPa, respectively. That is, according to the production method of each example, it was shown that a modified natural rubber having higher strength than the production method of the reference example can be obtained. As for the tensile strength (Tb) of the modified natural rubber, 4 phr of adipic acid hydrazide was added to the modified natural rubber obtained by the production method of Example 5 and Reference Example 1, and heated and pressed at 180 ° C. and 11 Mpa for 20 minutes. The sample was taken as a sample and measured according to ISO 37 (JIS K6251).

Claims (5)

  1. 主鎖に複数の不飽和二重結合を有する植物由来のゴム状重合体を、分散媒としての水に分散させたラテックス中にて、前記ゴム状重合体に有機過酸を反応させて、前記ゴム状重合体の不飽和二重結合の一部をエポキシ化することにより、エポキシ化ゴム状重合体を得るエポキシ化工程と、
     前記エポキシ化工程において前記有機過酸から生じた有機過酸由来の物質をラテックス中から除去して、ラテックス中における前記有機過酸由来の物質の含有量を前記エポキシ化ゴム状重合体100質量部に対して35質量部以下にまで低下させる除去工程と、
     pH7~8の条件下で、且つ有機酸塩の存在下にて、ラテックス中の前記エポキシ化ゴム状重合体に残存する不飽和二重結合の一部又は全部を還元すると共に、前記エポキシ化ゴム状重合体のエポキシ基の一部又は全部を開環する還元・開環工程とを有することを特徴とする改質天然ゴムの製造方法。
    In a latex in which a plant-derived rubbery polymer having a plurality of unsaturated double bonds in the main chain is dispersed in water as a dispersion medium, the rubbery polymer is reacted with an organic peracid, An epoxidation step of obtaining an epoxidized rubber-like polymer by epoxidizing a part of the unsaturated double bond of the rubber-like polymer;
    In the epoxidation step, the organic peracid-derived substance generated from the organic peracid is removed from the latex, and the content of the organic peracid-derived substance in the latex is 100 parts by mass of the epoxidized rubber-like polymer. Removing step to reduce to 35 parts by mass or less,
    Reducing part or all of unsaturated double bonds remaining in the epoxidized rubber-like polymer in the latex under the conditions of pH 7 to 8 and in the presence of an organic acid salt, and the epoxidized rubber And a reduction / ring-opening step for opening a part or all of the epoxy groups of the polymer.
  2. 前記除去工程では、ラテックス中における前記有機過酸由来の物質が溶解した分散媒の一部を、新たな分散媒と入れ替えることを特徴とする請求項1に記載の改質天然ゴムの製造方法。 The method for producing a modified natural rubber according to claim 1, wherein in the removing step, a part of the dispersion medium in which the substance derived from the organic peracid in the latex is dissolved is replaced with a new dispersion medium.
  3. 前記除去工程では、前記エポキシ化工程後のラテックスに対して遠心分離処理を行うことにより、前記ラテックスを、主として前記エポキシ化ゴム状重合体が分散した上層と、主として前記有機過酸由来の物質が溶解した下層とに分離し、更に、前記下層を除去すると共に、前記上層に対して新たな分散媒を加えることを特徴とする請求項1又は請求項2に記載の改質天然ゴムの製造方法。 In the removing step, the latex after the epoxidation step is subjected to a centrifugal separation treatment, whereby the latex is mainly composed of an upper layer in which the epoxidized rubber-like polymer is dispersed and a substance mainly derived from the organic peracid. The method for producing a modified natural rubber according to claim 1 or 2, wherein the method further comprises separating into a dissolved lower layer, further removing the lower layer, and adding a new dispersion medium to the upper layer. .
  4. 前記除去工程において、前記有機過酸由来の物質と共にラテックス中の蛋白質を除去することを特徴とする請求項1~請求項3のいずれか一項に記載の改質天然ゴムの製造方法。 The method for producing a modified natural rubber according to any one of claims 1 to 3, wherein, in the removing step, proteins in the latex are removed together with the substance derived from the organic peracid.
  5. 前記還元・開環工程では、前記エポキシ化ゴム状重合体に残存する不飽和二重結合に水素原子を付加すると共に、前記エポキシ化ゴム状重合体のエポキシ基を開環して水酸基を形成することを特徴とする請求項1~請求項3のいずれか一項に記載の改質天然ゴムの製造方法。 In the reduction / ring-opening step, a hydrogen atom is added to the unsaturated double bond remaining in the epoxidized rubber-like polymer, and the epoxy group of the epoxidized rubber-like polymer is opened to form a hydroxyl group. The method for producing a modified natural rubber according to any one of claims 1 to 3, wherein:
PCT/JP2011/054944 2010-03-05 2011-03-03 Method for producing modified natural rubber WO2011108660A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012503259A JP5739867B2 (en) 2010-03-05 2011-03-03 Method for producing modified natural rubber
CN2011800120188A CN102858805A (en) 2010-03-05 2011-03-03 Method for producing modified natural rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010049512 2010-03-05
JP2010-049512 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108660A1 true WO2011108660A1 (en) 2011-09-09

Family

ID=44542307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054944 WO2011108660A1 (en) 2010-03-05 2011-03-03 Method for producing modified natural rubber

Country Status (3)

Country Link
JP (1) JP5739867B2 (en)
CN (1) CN102858805A (en)
WO (1) WO2011108660A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021261489A1 (en) * 2020-06-24 2021-12-30

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531290A (en) * 1976-06-02 1978-01-09 Minnesota Mining & Mfg Polymer containing repeating units of 2*55oxolanylene
JPH06329702A (en) * 1993-05-24 1994-11-29 Kao Corp Modified natural rubber and its production
JP2004176013A (en) * 2002-11-29 2004-06-24 Nagaoka University Of Technology Liquid epoxidized natural rubber and its manufacturing method
JP2008308601A (en) * 2007-06-15 2008-12-25 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire having tire member using the composition
JP2009173727A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Modified rubber and method for producing it
JP2010084077A (en) * 2008-10-01 2010-04-15 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire
JP2010248388A (en) * 2009-04-16 2010-11-04 Toyoda Gosei Co Ltd Modified natural rubber and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531290A (en) * 1976-06-02 1978-01-09 Minnesota Mining & Mfg Polymer containing repeating units of 2*55oxolanylene
JPH06329702A (en) * 1993-05-24 1994-11-29 Kao Corp Modified natural rubber and its production
JP2004176013A (en) * 2002-11-29 2004-06-24 Nagaoka University Of Technology Liquid epoxidized natural rubber and its manufacturing method
JP2008308601A (en) * 2007-06-15 2008-12-25 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire having tire member using the composition
JP2009173727A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Modified rubber and method for producing it
JP2010084077A (en) * 2008-10-01 2010-04-15 Sumitomo Rubber Ind Ltd Rubber composition for tire and tire
JP2010248388A (en) * 2009-04-16 2010-11-04 Toyoda Gosei Co Ltd Modified natural rubber and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021261489A1 (en) * 2020-06-24 2021-12-30
WO2021261489A1 (en) * 2020-06-24 2021-12-30 根上工業株式会社 Rubber particles and method for producing same
JP7153412B2 (en) 2020-06-24 2022-10-14 根上工業株式会社 Rubber particles and method for producing the same

Also Published As

Publication number Publication date
JPWO2011108660A1 (en) 2013-06-27
JP5739867B2 (en) 2015-06-24
CN102858805A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
CN1054159C (en) Separation of proteins
EP1971569B1 (en) Process for isolation of an organic amine
JP4708046B2 (en) Method for producing deproteinized natural rubber latex
JP5739867B2 (en) Method for producing modified natural rubber
EP2496565B1 (en) Process for preparing divinylarene dioxides
US20220396482A1 (en) Systems for Production of Metal Peroxides
JP2022068188A (en) Process for producing epoxidized polymers
JP2001081106A (en) Cationic deproteinized natural rubber latex, its production and treating agent used therefor
WO2013055202A1 (en) A method of recovering rubber from skim natural rubber latex
CN112457503B (en) Preparation method of epoxidized eucommia ulmoides latex
JP5414037B2 (en) Modified natural rubber and method for producing the same
KR100788848B1 (en) A new micellar-enhanced ultrafiltration process using polymer nanoparticles for removal of hydrophobic pollutants from water
JP2009173727A (en) Modified rubber and method for producing it
JP2004176013A (en) Liquid epoxidized natural rubber and its manufacturing method
CN113831430B (en) Production method of epoxidized SIS
WO2014069979A1 (en) An improved method of recovering rubber from skim natural rubber latex
JP5658672B2 (en) Protein-free natural rubber, its latex and production method thereof
JPH05501800A (en) Method for producing glyoxylic acid by enzymatic oxidation of glycolic acid
JPH11349661A (en) Preparation of epoxy resin with low content of hydrolyzable chlorine
CN112441906B (en) Process for oxidation of cyclic ketones
KR20200110394A (en) Method for purifying nitrile solvent
JP3686381B2 (en) Method for producing epoxidized polymer
CN110016071B (en) Method for refining vasopressin [4-Glu ] impurity
JP2000169504A (en) Deproteinized natural rubber which is epoxidized and preparation thereof
US4921983A (en) Method for the continuous epoxidation of olefins

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012018.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503259

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750769

Country of ref document: EP

Kind code of ref document: A1