WO2011108463A1 - Annealing device, annealing method, and thin-film substrate manufacturing system - Google Patents

Annealing device, annealing method, and thin-film substrate manufacturing system Download PDF

Info

Publication number
WO2011108463A1
WO2011108463A1 PCT/JP2011/054328 JP2011054328W WO2011108463A1 WO 2011108463 A1 WO2011108463 A1 WO 2011108463A1 JP 2011054328 W JP2011054328 W JP 2011054328W WO 2011108463 A1 WO2011108463 A1 WO 2011108463A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
annealing
electromagnetic wave
frequency
Prior art date
Application number
PCT/JP2011/054328
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 清水
進 有馬
秀典 奥崎
知行 大谷
将嗣 山下
Original Assignee
東京エレクトロン株式会社
国立大学法人山梨大学
独立行政法人 理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人山梨大学, 独立行政法人 理化学研究所 filed Critical 東京エレクトロン株式会社
Publication of WO2011108463A1 publication Critical patent/WO2011108463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers

Definitions

  • the present invention relates to an annealing apparatus, an annealing method, and a thin film substrate manufacturing system for annealing a thin film on a substrate surface.
  • Patent Document 1 discloses an annealing apparatus that can efficiently cool a light emitting element without degrading maintainability.
  • the glass transition point of the substrate may be lower than the annealing temperature of the thin film.
  • the substrate may be deformed and the thin film may be peeled off from the substrate. Therefore, the substrate material is limited to those having a glass transition point higher than the annealing temperature of the thin film.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an annealing apparatus and an annealing apparatus capable of heating the thin film to a higher temperature among the thin film formed on the substrate and the substrate surface.
  • a method and a thin film substrate manufacturing system are provided.
  • the substrate and the thin film formed on the surface of the substrate are irradiated with electromagnetic waves and heated, and in the annealing apparatus for annealing the thin film, based on the film thickness and resistivity of the given thin film, It is characterized by comprising calculation means for calculating the frequency of the electromagnetic wave applied to the substrate and the thin film, and electromagnetic wave supply means for applying the electromagnetic wave having the frequency calculated by the calculation means to the substrate and the thin film.
  • the annealing apparatus is characterized in that the calculation means calculates the frequency of the electromagnetic wave so that the penetration depth of the electromagnetic wave into the thin film corresponds to the film thickness of the thin film.
  • the annealing apparatus is characterized in that the electromagnetic wave supply means heats the thin film to a higher temperature than the substrate.
  • the annealing apparatus includes a cooling means for cooling the substrate.
  • the substrate and the thin film formed on the substrate surface are irradiated with electromagnetic waves and heated, and the thin film is annealed, the substrate and the thin film formed on the basis of the thickness and resistivity of the thin film
  • the frequency of the electromagnetic wave irradiated to the thin film is calculated, and the thin film is heated to a higher temperature than the substrate using the electromagnetic wave having the calculated frequency.
  • the annealing method according to the present application is characterized in that the substrate is made of an organic material.
  • the annealing method according to the present application is characterized in that the substrate is cooled.
  • the thin film substrate manufacturing system is provided with a film forming apparatus for forming a thin film on the surface of the substrate in the process of unwinding the flexible substrate wound around the unwinding roll and winding it on the winding roll.
  • the thin film substrate manufacturing system includes the above-described annealing apparatus that anneals the thin film formed by the film forming apparatus under arbitrary annealing conditions, and the physical property measuring apparatus that measures the physical properties of the thin film annealed by the annealing apparatus.
  • the thin film substrate manufacturing system includes a control device that receives a signal from the physical property measuring device and controls the operation of the film forming device, and the film forming device, the annealing device, and the physical property measuring device include the unwinding roll.
  • the physical property measuring device includes a transmission unit that transmits a predetermined signal to the control device, and the control device includes a transmission unit of the physical property measurement device. It has a means for stopping the operation of the film forming apparatus when the transmitted predetermined signal is received.
  • the control device sets an annealing condition of the annealing device, and when the predetermined signal transmitted by the transmission unit of the physical property measuring device is received, the annealing device Means for changing the annealing conditions.
  • the thin film substrate manufacturing system includes substrate transfer means for unwinding and transferring the substrate from an unwinding roll at an arbitrary transfer speed, and winding the thin film substrate having a thin film formed on the substrate surface on a winding roll.
  • the control device controls the transfer speed of the substrate transfer means, and changes the transfer speed of the substrate transfer means when receiving the predetermined signal transmitted by the transmission means of the physical property measuring apparatus. It has the means to do.
  • the calculating means calculates the frequency of the electromagnetic wave applied to the substrate and the thin film formed on the surface of the substrate based on the given thin film thickness and thin film resistivity.
  • the electromagnetic wave supply means irradiates the substrate and the thin film with electromagnetic waves having the calculated frequency.
  • the calculation means is based on the film thickness of the thin film and the resistivity of the thin film so that the penetration depth of the electromagnetic wave with respect to the thin film formed on the substrate surface corresponds to the film thickness of the thin film. Calculate the frequency of the electromagnetic wave.
  • the electromagnetic wave supply means irradiates the substrate and the thin film with electromagnetic waves of the calculated frequency, and heats the thin film to a higher temperature than the substrate.
  • the cooling means cools the substrate.
  • the frequency of electromagnetic waves applied to the substrate and the thin film is calculated based on the film thickness and resistivity of the thin film formed on the substrate surface.
  • the substrate and the thin film are irradiated with an electromagnetic wave having the calculated frequency, and the thin film is heated to a higher temperature than the substrate.
  • the substrate irradiated with electromagnetic waves is made of an organic material.
  • the substrate and the thin film are irradiated with electromagnetic waves while the substrate is cooled.
  • the thin film substrate manufacturing system includes a film forming apparatus, an annealing apparatus, and a physical property measuring apparatus.
  • the film forming apparatus forms a thin film on a flexible substrate surface.
  • the annealing apparatus is the above-described annealing apparatus that anneals the thin film formed by the film forming apparatus under an arbitrary annealing condition.
  • the physical property measuring device measures the physical properties of the thin film annealed by the annealing device.
  • the thin film substrate manufacturing system includes a control device that receives a signal from the physical property measuring device and controls the operation of the film forming device.
  • the film forming apparatus, the annealing apparatus, and the physical property measuring apparatus are arranged along a transfer path between the unwinding roll and the winding roll.
  • the physical property measuring device transmits a predetermined signal to the control device.
  • the control device stops the operation of the film forming device when receiving a predetermined signal transmitted from the physical property measuring device.
  • the control device sets the annealing conditions of the annealing device.
  • the control device changes the annealing condition of the annealing device when receiving a predetermined signal transmitted from the physical property measuring device.
  • the thin film substrate manufacturing system includes substrate transfer means for transferring the substrate.
  • the control device for controlling the transfer speed of the substrate transfer means changes the transfer speed of the substrate transfer means when receiving a predetermined signal transmitted from the physical property measuring apparatus.
  • the thin film can be heated to a higher temperature.
  • FIG. 1 is a block diagram of an annealing apparatus according to a first embodiment.
  • 1 is a block diagram of a computer according to Embodiment 1.
  • 3 is a flowchart showing a procedure of annealing treatment of the annealing apparatus according to the first embodiment.
  • 3 is a flowchart showing a procedure of annealing treatment of the annealing apparatus according to the first embodiment.
  • 6 is a block diagram of a thin film substrate manufacturing system according to Embodiment 2.
  • FIG. FIG. 6 is a block diagram of an annealing apparatus according to a second embodiment.
  • FIG. 6 is a block diagram of a computer according to a second embodiment.
  • 10 is a flowchart illustrating a procedure of processing executed by a control unit of a computer according to Embodiment 2.
  • FIG. 6 is a block diagram of an annealing apparatus according to
  • Embodiment 1 The first embodiment relates to an annealing apparatus that anneals a thin film formed on a substrate surface by induction heating of electromagnetic waves.
  • the frequency for selectively heating the thin film on the substrate surface is calculated as the frequency of the electromagnetic wave applied to the sample. Then, the thin film is annealed using the electromagnetic wave having the calculated frequency.
  • FIG. 1 is a block diagram of an annealing apparatus 1 according to the first embodiment.
  • An annealing apparatus 1 according to Embodiment 1 includes a processing container 2, a gas introduction mechanism 3, an exhaust mechanism 4, a mounting table 5, a radiation thermometer 6, a thermoelectric conversion element control unit 7, an electromagnetic wave supply unit 8, and a computer 9.
  • the annealing apparatus 1 may not include the computer 9 by externally attaching the computer 9.
  • the processing container 2 is formed in a rectangular parallelepiped shape with aluminum, for example, and is grounded. A ceiling portion of the processing container 2 is opened, and a top plate 22 is airtightly provided in the opening portion via a seal member 21.
  • the material of the top plate 22 is, for example, quartz, aluminum nitride or the like.
  • the shape of the processing container 2 is not limited to a rectangular parallelepiped shape whose upper portion is opened, and may be a columnar shape or a box shape.
  • An opening 23 is provided on the side wall of the processing container 2, and a gate valve 24 that opens and closes the opening 23 when the substrate K and the thin film H of the sample S are carried into and out of the processing container 2 is provided.
  • An exhaust port 25 connected to the exhaust mechanism 4 is provided at the peripheral edge of the bottom of the processing container 2.
  • the gas introduction mechanism 3 includes two gas nozzles 31 ⁇ / b> A and 31 ⁇ / b> B that penetrate the side wall of the processing container 2, and supplies a gas necessary for processing to the processing container 2 from a gas supply source (not shown).
  • the gas here is, for example, an inert gas such as argon or helium, nitrogen, or the like.
  • the number of gas nozzles 31A and 31B is not limited to two, and may be increased or decreased as appropriate.
  • the exhaust mechanism 4 includes an exhaust passage 41 through which exhaust flows, a pressure control valve 42 that controls the exhaust pressure, and an exhaust pump 43 that exhausts the atmosphere inside the processing container 2.
  • the exhaust pump 43 can exhaust the atmosphere inside the processing container 2 to a reduced pressure level including a vacuum via the exhaust passage 41 and the pressure control valve 42.
  • the mounting table 5 is airtightly attached to an opening formed at the bottom of the processing container 2 with a seal member 26 interposed therebetween.
  • the mounting table 5 is grounded.
  • the mounting table 5 includes a mounting table main body 51, a thermoelectric conversion element 52, and a mounting plate 53.
  • a thermoelectric conversion element 52 is disposed on the mounting table main body 51, and a mounting plate 53 is disposed on the thermoelectric conversion element 52.
  • On the mounting plate 53 the substrate K on which the thin film H to be annealed is formed is mounted.
  • the radiation thermometer 6 includes a radiation thermometer main body 61 and an optical fiber 62 and measures the temperature of the mounting plate 53.
  • the temperature of the mounting plate 53 measured by the radiation thermometer 6 is transmitted to the computer 9.
  • the computer 9 that has received the temperature of the mounting plate 53 converts the temperature of the mounting plate 53 into the temperature of the thin film H in consideration of the temperature gradient between the mounting plate 53 and the thin film H.
  • a through hole 511 is formed in the mounting table main body 51 so as to vertically penetrate from the upper surface to the lower surface, and the optical fiber 62 is inserted in the through hole 511 in an airtight manner.
  • the optical fiber 62 penetrates the lower surface of the mounting table main body 51 from directly below the lower surface of the mounting plate 53 and extends downward, and is connected to a radiation thermometer main body 61 provided outside the processing container 2.
  • the radiation thermometer 6 is configured to be able to measure the temperature of the mounting plate 53 by incorporating the radiation light from the mounting plate 53 into the optical fiber 62.
  • the through-hole which penetrates the side wall of the processing container 2 may be provided, and the radiant light from the direct thin film H inserted airtightly through the through-hole may be taken into the optical fiber. Thereby, the temperature of the thin film H can be directly measured.
  • the thermoelectric conversion element 52 is a plate-like cooling means for cooling the substrate K, and for example, a Peltier element is used.
  • the Peltier element is a plate-like semiconductor element that utilizes the Peltier effect, and generates heat on one side and absorbs heat on the other side when a direct current is applied.
  • heat is absorbed on the upper surface of the thermoelectric conversion element 52 close to the substrate K, and the substrate K is cooled.
  • heat is generated on the lower surface of the thermoelectric conversion element 52.
  • thermoelectric conversion element 52 is electrically connected to the thermoelectric conversion element control unit 7 provided outside the processing container 2 via a lead wire 71.
  • the thermoelectric conversion element control unit 7 controls the direction and magnitude of the current supplied to the thermoelectric conversion element 52 during annealing.
  • the thermoelectric conversion element 52 can also serve as a heating means for heating the substrate K by reversing the direction of the current flowing through the thermoelectric conversion element 52 by the thermoelectric conversion element control unit 7.
  • a coolant channel 512 is formed along a surface substantially parallel to the upper surface of the mounting table main body 51 in the upper portion of the mounting table main body 51 facing the lower surface of the thermoelectric conversion element 52.
  • the refrigerant channel 512 is connected to a refrigerant circulator 515 that supplies a refrigerant via a refrigerant introduction pipe 513 and a refrigerant discharge pipe 514.
  • the refrigerant circulator 515 operates, the refrigerant circulates and circulates through the refrigerant flow path 512 at the time of annealing, and the refrigerant takes heat generated at the lower surface of the thermoelectric conversion element 52. Thereby, the cooling efficiency of the thermoelectric conversion element 52 improves.
  • the cooling means for cooling the substrate K may be only the refrigerant circulation by the refrigerant circulator 515.
  • the cooling means for cooling the substrate K may be a radiator. It is also possible to circulate and circulate a high-temperature heating medium in the refrigerant flow path 512.
  • the mounting plate 53 is manufactured from a material such as silicon oxide, aluminum nitride, silicon carbide, germanium, or silicon.
  • the mounting table 53 may not be provided on the mounting table 5, and the substrate K may be directly mounted on the thermoelectric conversion element 52.
  • the electromagnetic wave supply unit 8 is provided above the top plate 22 of the processing container 2.
  • the electromagnetic wave supply unit 8 includes an electromagnetic wave generation source 81, a waveguide 82, and an incident antenna 83.
  • One end of the waveguide 82 is connected to the electromagnetic wave generation source 81, and the other end of the waveguide 82 is connected to the incident antenna 83.
  • the electromagnetic wave generation source 81 for example, a gyrotron or a magnetron can be used.
  • the gyrotron generally generates electromagnetic waves from millimeter waves to submillimeter waves.
  • a magnetron generates a centimeter wave electromagnetic wave.
  • the electromagnetic wave generation source 81 outputs the generated electromagnetic wave to the waveguide 82.
  • the waveguide 82 is a metal tube that propagates the electromagnetic wave generated by the electromagnetic wave generation source 81 to the incident antenna 83, and has a circular or rectangular cross-sectional shape.
  • the incident antenna 83 is a plate provided on the top surface of the top plate 22 and is, for example, a copper plate or an aluminum plate whose surface is silver-plated.
  • the incident antenna 83 is provided with a plurality of specular reflection lenses and reflection mirrors (not shown), and is configured to reflect and introduce the electromagnetic wave guided from the waveguide 82 toward the processing space of the processing container 2. ing.
  • the incident antenna 83 may be provided on the side surface of the processing container 2.
  • FIG. 2 is a block diagram of the computer 9 according to the first embodiment.
  • the computer 9 includes a control unit 91, a ROM (Read Only Memory) 92, a RAM (Random Access Memory) 93, a communication unit 94, an operation unit 95, a display unit 96, an external interface 97, and a timer 98.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Various programs are stored in the ROM 92.
  • One of these programs causes the control unit 91 to calculate the most appropriate frequency as the frequency of the electromagnetic wave applied to the thin film H, for example.
  • the control unit 91 reads a program from the ROM 92 and executes various processes. For example, the control unit 91 controls the supply of gas introduced into the processing container 2 by the gas introduction mechanism 3 and the gas flow rate. The control unit 91 controls the electromagnetic wave generated by the electromagnetic wave supply unit 8 and the power supplied to the electromagnetic wave supply unit 8. The control unit 91 controls the annealing temperature based on the signal from the radiation thermometer 6.
  • the RAM 93 temporarily records work variables, measurement data, and the like.
  • the communication unit 94 receives signals or data transmitted from each component of the annealing apparatus 1. In addition, the communication unit 94 transmits a command from the control unit 91 to each component of the annealing apparatus 1.
  • the operation unit 95 includes input devices such as a keyboard and a mouse, and the user operates the computer 9 via the operation unit 95 and the communication unit 94. A user can operate the annealing apparatus 1 via the operation unit 95.
  • the display unit 96 displays data input via the communication unit 94 and the operation unit 95, calculation results executed by the control unit 91, and the like.
  • the external interface 97 is an interface for exchanging information with a portable recording medium 1A such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc-Read Only Memory).
  • a portable recording medium 1A such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc-Read Only Memory).
  • the external interface 97 is also an interface that can be connected to a communication network N such as the Internet.
  • the timer 98 transmits the time count to the control unit 91 as a signal.
  • Various programs for operating the annealing apparatus 1 according to the first embodiment may be recorded in the RAM 93 by causing the external interface 97 to read the portable recording medium 1A.
  • the various programs can also be downloaded from another server computer (not shown) connected via the external interface 97 and a communication network N such as the Internet.
  • the program for calculating the frequency of the electromagnetic wave applied to the thin film H is to calculate the frequency of the electromagnetic wave using the thickness of the thin film H to be annealed as the penetration depth.
  • the penetration depth means that when electromagnetic waves are incident on a conductive homogeneous medium vertically and propagate while exponentially decaying in the medium, the electromagnetic wave intensity is attenuated to 1 / e (about 37%) of the incident intensity. It is the depth of time.
  • the penetration depth is expressed by equation (1).
  • is the penetration depth
  • is the resistivity
  • is the relative permeability
  • f is the frequency of the electromagnetic wave.
  • the substrate K targeted in the first embodiment is, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), or the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • the glass transition points of these plastic substrate materials are 100, 155, and 145 ° C., respectively.
  • a PET substrate is used.
  • the thin film H targeted in the first embodiment is, for example, PEDOT: PSS.
  • the annealing temperature of PEDOT: PSS is about 200 ° C., which is higher than the glass transition point of PET. Therefore, when the PEDOT: PSS thin film H is annealed by a conventional annealing method using a lamp or the like, the PET substrate is deformed.
  • the penetration depth of the PET substrate with respect to electromagnetic waves of centimeter waves, millimeter waves, and submillimeter waves is much deeper than the penetration depth of the thin film H. Therefore, the frequency of the electromagnetic wave that almost passes through the PET substrate and passes through the thin film H of PEDOT: PSS only to the depth of the film thickness is calculated. Specifically, the frequency is calculated by substituting the film thickness into the penetration depth of the equation (1) and the resistivity of the thin film H into the resistivity.
  • the electromagnetic wave having the obtained frequency is a millimeter wave or a submillimeter wave
  • the annealing apparatus 1 in which a gyroton is mounted on the electromagnetic wave generation source 81 is used.
  • the electromagnetic wave having the obtained frequency is a centimeter wave
  • the annealing apparatus 1 having a magnetron mounted on the electromagnetic wave generation source 81 is used.
  • the film thickness of the thin film H and the penetration depth were assumed to be equal.
  • the thickness of the thin film H may be changed as appropriate, such as 90% or 110% of the penetration depth, and the thickness of the thin film H and the penetration depth are not limited to the same.
  • Table 1 is an example of calculating the frequency for two types of PEDOT: PSS films.
  • A is an example when 11247 nm is selected as the film thickness and the resistivity is 5.0 ⁇ 10 ⁇ 3 ⁇ cm, and the frequency is 1.0 ⁇ 10 11 Hz.
  • B is an example in the case where 1125 nm and a resistivity of 5.0 ⁇ 10 ⁇ 3 ⁇ cm are selected as the film thickness, and the frequency is 1.0 ⁇ 10 13 Hz.
  • the thickness and resistivity of the thin film H are substituted into the computer 9 from the operation unit 95.
  • the control unit 91 calculates 100 GHz (gigahertz) as a preferable frequency for measurement. Since 100 GHz corresponds to the frequency of the millimeter wave, the user uses the annealing apparatus 1 in which the gyrotron is mounted on the electromagnetic wave generation source 81 from the approximate frequency calculated in advance.
  • the control unit 91 calculates 10 THz (terahertz) as a preferable frequency for measurement. Since 10 THz corresponds to the frequency of the submillimeter wave, the user uses the annealing apparatus 1 in which the gyrotron is mounted on the electromagnetic wave generation source 81 from the approximate frequency calculated in advance.
  • FIG. 3 is an explanatory diagram showing frequency characteristics of dielectric loss of PEDOT: PSS.
  • the vertical axis represents dielectric loss, and the horizontal axis represents frequency.
  • the absorbed energy of electromagnetic waves is proportional to the dielectric loss that is the product of the relative dielectric constant and the dielectric loss tangent.
  • the maximum value of the dielectric loss is around 100 GHz. Therefore, as in the case of A in Table 1, when the thickness of the PEDOT: PSS thin film is set to 11 ⁇ m, the calculated frequency is 100 GHz, and the most efficient annealing can be performed.
  • the PET substrate is irradiated with an electromagnetic wave of around 100 GHz, it is hardly heated because the penetration depth is deep, and the temperature of the PET substrate does not exceed the glass transition point.
  • the gate valve 24 is opened, and the PET substrate on which the PEDOT: PSS thin film H is formed is placed on the placement plate 53 by a conveying means (not shown).
  • the gate valve 24 is closed and the processing container 2 is sealed.
  • the thickness and resistivity of the thin film H to be annealed are input from the operation unit 95 to the computer 9.
  • the controller 91 calculates the frequency of the electromagnetic wave based on the thickness and resistivity of the thin film H.
  • the control unit 91 sets the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 to 100 GHz based on the calculated value.
  • the controller 91 sets the intensity of the electromagnetic wave generated by the electromagnetic wave generation source 81.
  • the controller 91 sets the annealing time and the processing pressure.
  • the control unit 91 exhausts the inside of the processing container 2 by the exhaust mechanism 4 and introduces an inert gas or the like into the processing container 2 from the gas nozzles 31 ⁇ / b> A and 31 ⁇ / b> B of the gas introduction mechanism 3.
  • the control unit 91 starts the annealing process. That is, the control unit 91 generates an electromagnetic wave having a frequency set in the electromagnetic wave generation source 81.
  • the control unit 91 operates the refrigerant circulator 515 to cool the mounting table body 51 and cools the substrate K by the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7.
  • the controller 91 starts controlling the annealing temperature via the radiation thermometer 6.
  • the annealing temperature is controlled by adjusting the intensity of electromagnetic waves.
  • the electromagnetic wave generated by the electromagnetic wave generation source 81 is guided to the incident antenna 83 through the waveguide 82.
  • the electromagnetic wave guided to the incident antenna 83 is reflected by the incident antenna 83 and supplied into the processing container 2.
  • the electromagnetic wave supplied into the processing container 2 is applied to the thin film H and the substrate K.
  • the controller 91 stops driving the electromagnetic wave generation source 81.
  • the controller 91 stops the control of the annealing temperature.
  • the controller 91 waits for the thin film H to cool down and stops the introduction of the inert gas or the like by the gas introduction mechanism 3.
  • the controller 91 stops the exhaust by the exhaust mechanism 4.
  • the control unit 91 stops supplying current to the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7.
  • the controller 91 stops the refrigerant circulator 515. That is, the controller 91 stops cooling the substrate K.
  • the gate valve 24 is opened, and the sample on the mounting plate 53 is taken out of the processing container 2 by a conveying means (not shown).
  • the gate valve 24 is closed and the processing container 2 is sealed.
  • the controller 91 receives the film thickness of the thin film H and the resistivity of the thin film H (step S101).
  • the control unit 91 calculates the frequency of the electromagnetic wave applied to the sample from the equation (1) based on the received thickness of the thin film H and the resistivity of the thin film H (step S102).
  • the control unit 91 sets the calculated frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 (step S103).
  • the controller 91 sets the intensity of the electromagnetic wave generated by the electromagnetic wave generation source 81 (step S104).
  • the controller 91 sets an annealing time (step S105).
  • the controller 91 sets a processing pressure (step S106).
  • the control unit 91 exhausts the inside of the processing container 2 (step S107).
  • the controller 91 introduces an inert gas or the like from the gas nozzles 31A and 31B into the processing container 2 (step S108).
  • the controller 91 causes the electromagnetic wave generation source 81 to generate an electromagnetic wave (step S109).
  • the control unit 91 operates the refrigerant circulator 515 to cool the mounting table main body 51 and starts cooling the substrate K by the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7 (step S110).
  • the controller 91 starts controlling the annealing temperature (step S111).
  • the control unit 91 determines whether the annealing time has elapsed based on the timer 98 (step S112). When it is determined that the annealing time has not elapsed (step S112: NO), the controller 91 returns the control to step S112. When the controller 91 determines that the annealing time has elapsed (step S112: YES), the controller 91 stops the generation of electromagnetic waves by the electromagnetic wave generation source 81 (step S113). The controller 91 stops the control of the annealing temperature (step S114). The controller 91 stops the introduction of an inert gas or the like by the gas introduction mechanism 3 (Step S115). The controller 91 stops the exhaust by the exhaust mechanism 4 (step S116). The controller 91 stops the cooling of the substrate K (step S117) and ends the process.
  • step S101 the control unit 91 receives the resistivity of the thin film H.
  • the resistivity of various materials may be recorded in the ROM 92 in advance, and the control unit 91 may read the resistivity of the thin film H from the ROM 92.
  • the control unit 91 receives the material of the thin film H in step S101, and reads the resistivity of the thin film H from the ROM 92 based on the received material of the thin film H.
  • step S102 the control unit 91 calculates the frequency of the electromagnetic wave applied to the sample from Equation (1) based on the received film thickness of the thin film H and the resistivity of the thin film H.
  • the user may calculate the frequency of the electromagnetic wave applied to the sample from Equation (1) based on the film thickness of the thin film H and the resistivity of the thin film H, and the control unit 91 may receive the frequency input from the user.
  • the processing of the control unit 91 in step S101 and step S102 is processing for receiving a frequency.
  • step S103 the control unit 91 sets the received frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81.
  • Table 2 is an example in which the penetration depth was estimated for the inorganic conductive material and the semiconductor material.
  • the silver of C is an example when a film thickness of 1948 nm and a resistivity of 1.5 ⁇ 10 ⁇ 6 ⁇ cm is selected, and the frequency is 1.0 ⁇ 10 9 Hz.
  • Silver of D is an example in which a film thickness of 195 nm and a resistivity of 1.5 ⁇ 10 ⁇ 6 ⁇ cm are selected, and the frequency is 1.0 ⁇ 10 11 Hz.
  • the copper E is an example in which a film thickness of 2012 nm and a resistivity of 1.6 ⁇ 10 ⁇ 6 ⁇ cm is selected, and the frequency is 1.0 ⁇ 10 9 Hz.
  • the copper of F is an example when the film thickness is 201 nm and the resistivity is 1.6 ⁇ 10 ⁇ 6 ⁇ cm, and the frequency is 1.0 ⁇ 10 11 Hz.
  • the aluminum of G is an example in which a film thickness of 2515 nm and a resistivity of 2.5 ⁇ 10 ⁇ 6 ⁇ cm are selected, and the frequency is 1.0 ⁇ 10 9 Hz.
  • the aluminum of H is an example when the film thickness is 252 nm and the resistivity is 2.5 ⁇ 10 ⁇ 6 ⁇ cm, and the frequency is 1.0 ⁇ 10 11 Hz.
  • the silicon of J is an example when the film thickness is 5030 nm and the resistivity is 1.0 ⁇ 10 ⁇ 1 ⁇ cm, and the frequency is 1.0 ⁇ 10 13 Hz.
  • the annealing apparatus 1 equipped with a magnetron that irradiates the electromagnetic wave generation source 81 with a centimeter wave electromagnetic wave is used.
  • the annealing apparatus 1 equipped with a gyrotron that irradiates the electromagnetic wave generation source 81 with millimeter wave and submillimeter wave electromagnetic waves is used.
  • the electromagnetic wave of the frequency shown in Table 2 is selected, and it anneals.
  • the thin film H can be selectively heated without making the temperature of the substrate K higher than the glass transition point.
  • the thin film H can be selectively heated at a higher temperature among the substrate K and the thin film H.
  • the substrate K is almost heated.
  • the thin film H can be selectively heated.
  • Many inexpensive organic material substrates have a glass transition point below the annealing temperature of the organic conductive film material. Therefore, according to the annealing apparatus 1 according to the first embodiment, the thin film H of the organic conductive film material can be annealed without causing deformation of the organic material substrate, and the manufacturing cost of the organic device can be reduced. it can.
  • thermoelectric conversion element 52 and refrigerant circulator 515 temperature increase of substrate K can be suppressed by thermoelectric conversion element 52 and refrigerant circulator 515. Even when electromagnetic waves are hardly absorbed by the substrate K, as the annealing time is prolonged, heat flows from the thin film H to the substrate K, and the temperature of the substrate K increases. However, by cooling the substrate K by the thermoelectric conversion element 52 and the refrigerant circulator 515, the transient state of thermal equilibrium can be prolonged. Film characteristics such as electrical conductivity are improved as the annealing temperature is higher and the annealing time is longer. Therefore, the cooling of the substrate K contributes to the improvement of the film characteristics.
  • Embodiment 2 relates to a thin film substrate manufacturing system in which a film forming apparatus, an annealing apparatus, and a physical property measuring apparatus are incorporated in a roll-to-roll manufacturing line for forming a thin film H on a flexible substrate K.
  • substrate K made into object in Embodiment 2 is a film-like PET board
  • the target thin film H in the second embodiment is a thin film H such as PEDOT: PSS, silylethyne-substituted pentacene, or poly (3-alkylthiophene).
  • FIG. 6 is a block diagram of the thin film substrate manufacturing system 100 according to the second embodiment.
  • the thin film substrate manufacturing system 100 includes a substrate transfer unit 11, a film forming device 12, an annealing device 10, a physical property measuring device 13, and a computer 90.
  • the film forming apparatus 12, the annealing apparatus 10 and the physical property measuring apparatus 13 are arranged in this order from the upstream to the downstream of the transfer line by the substrate transfer unit 11.
  • the substrate transfer unit 11 includes an unwinding roll 111, a take-up roll 112, and transfer rolls 113 and 114 that transfer the substrate K.
  • the substrate transfer unit 11 unwinds the substrate K wound on the unwinding roll 111 at an appropriate tension and speed, and winds the thin film substrate formed by the film forming apparatus 12 and the annealing apparatus 10 on the winding roll 112.
  • the transfer rolls 113 and 114 transfer the substrate K from upstream to downstream by rotational driving.
  • the operation of the substrate transfer unit 11 is continuous or discontinuous.
  • the substrate transfer unit 11 may not include the unwinding roll 111 and the winding roll 112. In such a case, a rotation driving unit that rotates the unwinding roll 111 and the winding roll 112 is separately prepared.
  • the substrate transfer unit 11 may include a plurality of pressing rolls that sandwich the substrate K between the transfer rolls 113 and 114 in order to improve the transfer efficiency of the substrate K.
  • the substrate transfer unit 11 holds the width direction of the substrate K in the horizontal direction and transfers the substrate K in the horizontal direction.
  • the substrate transfer unit 11 may transfer the substrate K in the vertical direction while holding the width direction of the substrate K in the vertical direction.
  • the film forming apparatus 12 is a pattern forming apparatus that forms a film pattern on the surface of the substrate K by printing, for example.
  • the target of pattern formation by printing includes source / drain printing, semiconductor printing, gate printing, and the like.
  • the film forming apparatus 12 may be a CVD apparatus, a PVD apparatus, or the like that deposits a material on a substrate K from a gas.
  • Annealing apparatus 10 is different from annealing apparatus 1 according to the first embodiment in that it corresponds to a roll-to-roll system.
  • FIG. 7 is a block diagram of annealing apparatus 10 according to the second embodiment. Here, parts of annealing apparatus 10 that are different from annealing apparatus 1 according to the first embodiment will be described.
  • the annealing apparatus 10 does not include the opening 23 and the gate valve 24.
  • a carry-in port 27 for carrying in the substrate K and the thin film H before annealing and a carry-out port 28 for carrying out the substrate K and the thin film H after annealing are opened.
  • the carry-in port 27 and the carry-out port 28 each have a slit shape longer than the width of the substrate K, and are provided at substantially the same height.
  • Shutters 27A and 28A are provided at the carry-in port 27 and the carry-out port 28, respectively.
  • the shutters 27 ⁇ / b> A and 28 ⁇ / b> A shield the electromagnetic wave and gas inside the processing container 2 from leaking outside when the substrate transfer unit 11 stops transferring the substrate K and the substrate K and the thin film H are irradiated with electromagnetic waves.
  • the shutters 27A and 28A are each made of a soft metal, such as indium or copper, and press the substrate K when the substrate transfer unit 11 stops the transfer of the substrate K.
  • the physical property measuring device 13 includes a terahertz spectroscopic device, a film thickness measuring device, and an infrared spectroscopic device.
  • the terahertz spectrometer measures the transmittance or reflectance of the terahertz wave with respect to the thin film H.
  • the film thickness measuring device measures the thickness of the thin film H and transmits the measured thickness of the thin film H to the terahertz spectrometer.
  • the terahertz spectrometer receives the thickness of the thin film H from the film thickness measuring device.
  • the infrared spectrometer measures the reflectance of the infrared region with respect to the thin film H, and transmits the measured reflectance of the infrared region to the terahertz spectrometer.
  • the terahertz spectrometer receives the infrared reflectance of the thin film H from the infrared spectrometer.
  • the terahertz spectrometer is based on the transmittance or reflectance of the terahertz wave, the thickness of the thin film H, the reflectance in the infrared region, and the like, such as the complex refractive index, complex dielectric constant, complex electrical conductivity, carrier mobility, etc. Calculate physical properties.
  • the physical property measuring device 13 or the terahertz spectrometer transmits the calculated physical property value of the thin film H to the computer 90.
  • FIG. 8 is a block diagram of a computer 90 according to the second embodiment.
  • the configuration of the computer 90 is the same as the configuration of the computer 9 included in the annealing apparatus 1 according to the first embodiment. Note that the computer 90 may be substituted by the computer 9 included in the annealing apparatus 10.
  • the computer 90 is electrically connected to the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13, and controls these apparatuses.
  • the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 of the annealing apparatus 10 is set in the computer 90 in advance.
  • the resistivity and film thickness of the thin film H are input to the computer 90 from the operation unit 950.
  • the control unit 910 of the computer 90 transmits the acquired resistivity and film thickness of the thin film H to the computer 9 of the annealing apparatus 10.
  • the computer 9 receives the resistivity and film thickness of the thin film H, and calculates the frequency of electromagnetic waves suitable for annealing.
  • the computer 90 sets the calculated frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81.
  • the substrate K roll is attached to the unwinding roll 111, and the operation of the thin film substrate manufacturing system 100 is started.
  • FIG. 9 is a flowchart illustrating a procedure of processing executed by the control unit 910 of the computer 90 according to the second embodiment.
  • the control unit 910 starts the operations of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 (Step S201).
  • the specific contents are as follows.
  • the control unit 910 operates the substrate transfer unit 11 to unwind the substrate K to the roll-to-roll production line.
  • the control unit 910 operates the film forming apparatus 12 to print a pattern on the surface of the substrate K.
  • the controller 910 causes the annealing apparatus 10 to anneal the thin film H formed by the film forming apparatus 12 via the computer 9.
  • the control unit 910 causes the physical property measuring device 13 to measure the physical properties of the thin film H annealed by the annealing device 10.
  • the controller 910 causes the manufactured thin film substrate to be taken up by the take-up roll 112.
  • the physical property measuring device 13 transmits the measured physical property value to the computer 90.
  • the control unit 910 acquires the physical property value of the thin film H from the physical property measuring device 13 (step S202).
  • the control unit 910 determines whether the physical property value of the thin film H is within the range of the manufacturing standard (step S203).
  • the control unit 910 determines that the physical property value of the thin film H is within the range of the manufacturing standard (step S203: YES)
  • the control unit 910 returns the control to step S201.
  • the control unit 910 determines that the physical property value of the thin film H is not within the range of the manufacturing standard (step S203: NO)
  • the operation of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 is performed.
  • step S204 The control unit 910 executes the above steps continuously in multitasking.
  • the control unit 910 executes the above steps continuously in multitasking.
  • the user removes the non-manufacturing thin film substrate from the winding roll 112.
  • the control unit 910 waits for an instruction from the user.
  • the user instructs the computer 90 whether or not to resume manufacturing the thin film substrate.
  • the control unit 910 receives an instruction from the user, and determines whether or not to resume the operations of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 (step S205).
  • the control unit 910 causes the film forming apparatus 12 to change the film forming conditions or causes the annealing apparatus 10 to change the annealing conditions (step S206), and performs processing in step S201.
  • the change of the film forming conditions here is to change pattern forming conditions such as resist conditions and printing speed, for example.
  • the change of the annealing conditions here is, for example, to set the intensity of the electromagnetic wave to a value that is larger by a predetermined value.
  • the annealing condition is changed by changing the annealing time.
  • the thin film substrate can be continuously manufactured by the roll-to-roll method.
  • the production line can be stopped when the quality of the thin film substrate being produced is out of the production standard. Thereby, the yield can be improved.
  • the manufacturing conditions of the thin film substrate are optimized in a short time, and then the manufacturing is resumed. Can do. Optimizing the manufacturing conditions of the thin film substrate is, for example, changing the intensity of electromagnetic waves. Since the thin film substrate manufacturing system 100 according to the second embodiment has such a feedback function, the production efficiency of the thin film substrate can be improved.
  • the second embodiment is as described above, and the other parts are the same as those of the first embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Embodiment 3 relates to a mode in which the annealing apparatus 10 of the thin film substrate manufacturing system 100 according to the second embodiment is replaced with another annealing apparatus.
  • FIG. 10 is a block diagram of annealing apparatus 20 according to the third embodiment.
  • the annealing apparatus 20 according to the third embodiment does not include the mounting table 5 of the annealing apparatus 10 according to the second embodiment, but includes a mounting roll 50 instead. Further, the annealing apparatus 20 according to the third embodiment is different from the annealing apparatus 10 according to the second embodiment in that the optical fiber 62 of the radiation thermometer 6 receives radiation light from the substrate K.
  • the mounting roll 50 has a cylindrical shape or an elliptical column shape, and is attached so as to be partially inserted into an opening formed in the bottom of the processing container 2.
  • the mounting roll 50 is grounded in a manner not shown.
  • the mounting roll 50 is configured to rotate around an axis, and has a function of transferring the substrate K in contact with the side surface and a function of cooling the substrate K.
  • a shutter (not shown) is configured to close the gap between the mounting roll 50 and the bottom of the processing container 2. Has been.
  • the shutter is made of a soft metal such as indium or copper, and when the substrate transfer unit 11 stops transferring the substrate K, it presses a part of the mounting roll 50 and a part of the bottom of the processing container 2. The shutter opens a gap between the placement roll 50 and the bottom of the processing container 2 when the substrate transfer unit 11 resumes the transfer of the substrate K.
  • the mounting roll 50 includes a mounting roll body 510, a thermoelectric conversion element 520, and a mounting roll plate 530.
  • a plurality of thermoelectric conversion elements 520 are disposed on the outer surface of the columnar mounting roll body 510, and a cylindrical mounting roll plate 530 is disposed on the outer surface of the thermoelectric conversion element 520.
  • the substrate K is placed at the uppermost position of the placement roll plate 530.
  • a coolant channel 512 is formed along the cylindrical surface substantially parallel to the outer surface of the mounting table main body 510 at the edge of the mounting table main body 510 facing the inner surface of the thermoelectric conversion element 520.
  • the refrigerant channel 512 is connected to a refrigerant circulator 515 that supplies a refrigerant via a refrigerant introduction pipe 513 and a refrigerant discharge pipe 514.
  • the refrigerant circulator 515 By operating the refrigerant circulator 515, the refrigerant circulates through the refrigerant flow path 512 during annealing, and the refrigerant takes away heat generated on the inner surface of the thermoelectric conversion element 520. Thereby, the cooling efficiency of the thermoelectric conversion element 520 improves. Note that it is also possible to circulate and circulate the heating medium through the refrigerant flow path 512.
  • the mounting roll plate 530 is made of a material such as silicon oxide, aluminum nitride, silicon carbide, germanium, or silicon.
  • the mounting roll plate 530 may not be provided on the mounting roll 50, and the substrate K may be directly mounted on the outer surface of the thermoelectric conversion element 520.
  • a through hole 29 is formed at the bottom of the processing container 2, and an optical fiber 62 is inserted into the through hole 29 in an airtight manner.
  • the optical fiber 62 penetrates the bottom through the through hole 29, and one end thereof is connected to the radiation thermometer main body 61.
  • the other end of the optical fiber 62 extends upward to just below the substrate K, and takes in the radiated light from the substrate K.
  • the radiation thermometer 6 of the annealing apparatus 20 measures the temperature of the substrate K.
  • the temperature of the substrate K measured by the radiation thermometer 6 is transmitted as a signal to the computer 9 of the annealing apparatus 20.
  • the computer 9 receives the signal from the radiation thermometer 6 and converts the temperature of the substrate K into the temperature of the thin film H.
  • the mounting roll 50 since the mounting roll 50 has a roll shape and rotates to transfer the substrate K, the substrate K can be smoothly moved corresponding to the roll-to-roll method. It is. Thereby, the thin film substrate manufacturing system 100 can efficiently and continuously produce thin film substrates. Since the mounting roll 50 includes the thermoelectric conversion element 520 that cools the substrate K and the coolant channel 512, the mounting roll 50 contributes to selective heating of the thin film H by cooling the substrate K.
  • the third embodiment is as described above, and the other parts are the same as those in the first or second embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.

Abstract

Disclosed is an annealing device (1) that uses electromagnetic radiation to irradiate a substrate (K) and a thin film (H) formed on the surface of the substrate (K), thereby causing heating and annealing the thin film (H). Said annealing device is provided with: a computation means that uses the thickness and resistivity of the thin film (H), which are given, to compute the frequency of the electromagnetic radiation with which to irradiate the substrate (K) and the thin film (H); and an electromagnetic radiation supply means that irradiates the substrate (K) and the thin film (H) with electromagnetic radiation at the frequency computed by the computation means.

Description

アニール装置、アニール方法及び薄膜基板製造システムAnnealing apparatus, annealing method, and thin film substrate manufacturing system
 本発明は、基板表面の薄膜をアニールするアニール装置、アニール方法及び薄膜基板製造システムに関する。 The present invention relates to an annealing apparatus, an annealing method, and a thin film substrate manufacturing system for annealing a thin film on a substrate surface.
 基板上に薄膜を形成した後、電気伝導度等の膜特性向上のために、薄膜はアニールされる。例えば、特許文献1には、メンテナンス性を低下させずに効率的に発光素子を冷却することができるアニール装置が開示されている。 After forming a thin film on the substrate, the thin film is annealed to improve film properties such as electrical conductivity. For example, Patent Document 1 discloses an annealing apparatus that can efficiently cool a light emitting element without degrading maintainability.
特開2009-295953号公報JP 2009-295953 A
 ところで、基板材料によっては、基板のガラス転移点が薄膜のアニール温度よりも低い場合があり、かかる場合基板に変形が生じ、薄膜が基板から剥離してしまうことがある。そのため、基板材料は薄膜のアニール温度よりも高いガラス転移点を有するものに限定される。 By the way, depending on the substrate material, the glass transition point of the substrate may be lower than the annealing temperature of the thin film. In such a case, the substrate may be deformed and the thin film may be peeled off from the substrate. Therefore, the substrate material is limited to those having a glass transition point higher than the annealing temperature of the thin film.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、基板及び基板表面に形成された薄膜のうち、薄膜をより高温に加熱することができるアニール装置、アニール方法及び薄膜基板製造システムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an annealing apparatus and an annealing apparatus capable of heating the thin film to a higher temperature among the thin film formed on the substrate and the substrate surface. A method and a thin film substrate manufacturing system are provided.
 本願に係るアニール装置は、基板及び該基板表面に形成された薄膜に電磁波を照射して加熱し、該薄膜をアニールするアニール装置において、所与の前記薄膜の膜厚及び抵抗率に基づいて、前記基板及び薄膜に照射する電磁波の周波数を算出する算出手段と、該算出手段が算出した周波数の電磁波を前記基板及び薄膜に照射する電磁波供給手段とを備えることを特徴とする。 In the annealing apparatus according to the present application, the substrate and the thin film formed on the surface of the substrate are irradiated with electromagnetic waves and heated, and in the annealing apparatus for annealing the thin film, based on the film thickness and resistivity of the given thin film, It is characterized by comprising calculation means for calculating the frequency of the electromagnetic wave applied to the substrate and the thin film, and electromagnetic wave supply means for applying the electromagnetic wave having the frequency calculated by the calculation means to the substrate and the thin film.
 本願に係るアニール装置は、前記算出手段は、前記薄膜に対する電磁波の浸透深さが該薄膜の膜厚に対応するように、電磁波の周波数を算出するようにしてあることを特徴とする。 The annealing apparatus according to the present application is characterized in that the calculation means calculates the frequency of the electromagnetic wave so that the penetration depth of the electromagnetic wave into the thin film corresponds to the film thickness of the thin film.
 本願に係るアニール装置は、前記電磁波供給手段は、前記基板よりも薄膜をより高温に加熱するようにしてあることを特徴とする。 The annealing apparatus according to the present application is characterized in that the electromagnetic wave supply means heats the thin film to a higher temperature than the substrate.
 本願に係るアニール装置は、前記基板を冷却する冷却手段を備えることを特徴とする。 The annealing apparatus according to the present application includes a cooling means for cooling the substrate.
 本願に係るアニール方法は、基板及び該基板表面に形成された薄膜に電磁波を照射して加熱し、該薄膜をアニールするアニール方法において、前記薄膜の膜厚及び抵抗率に基づいて、前記基板及び薄膜に照射する電磁波の周波数を算出し、算出した周波数の電磁波を用いて、前記基板よりも薄膜をより高温に加熱することを特徴とする。 In the annealing method according to the present application, in the annealing method in which the substrate and the thin film formed on the substrate surface are irradiated with electromagnetic waves and heated, and the thin film is annealed, the substrate and the thin film formed on the basis of the thickness and resistivity of the thin film The frequency of the electromagnetic wave irradiated to the thin film is calculated, and the thin film is heated to a higher temperature than the substrate using the electromagnetic wave having the calculated frequency.
 本願に係るアニール方法は、前記基板は有機材料からなることを特徴とする。 The annealing method according to the present application is characterized in that the substrate is made of an organic material.
 本願に係るアニール方法は、前記基板を冷却することを特徴とする。 The annealing method according to the present application is characterized in that the substrate is cooled.
 本願に係る薄膜基板製造システムは、巻き出しロールに巻かれた可撓性を有する基板を巻き出し、巻き取りロールに巻き取る移送の過程で、該基板表面に薄膜を形成する成膜装置を設けた薄膜基板製造システムにおいて、前記成膜装置が形成した薄膜を任意のアニール条件でアニールする前述のアニール装置と、該アニール装置がアニールした薄膜の物性を測定する物性測定装置とを含むことを特徴とする。 The thin film substrate manufacturing system according to the present application is provided with a film forming apparatus for forming a thin film on the surface of the substrate in the process of unwinding the flexible substrate wound around the unwinding roll and winding it on the winding roll. The thin film substrate manufacturing system includes the above-described annealing apparatus that anneals the thin film formed by the film forming apparatus under arbitrary annealing conditions, and the physical property measuring apparatus that measures the physical properties of the thin film annealed by the annealing apparatus. And
 本願に係る薄膜基板製造システムは、前記物性測定装置から信号を受信し、前記成膜装置の動作を制御する制御装置を含み、前記成膜装置、アニール装置及び物性測定装置は、前記巻き出しロール及び巻き取りロールの間の移送路に沿って配置され、前記物性測定装置は、所定の信号を前記制御装置に送信する送信手段を有し、前記制御装置は、前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記成膜装置の動作を停止する手段を有することを特徴とする。 The thin film substrate manufacturing system according to the present application includes a control device that receives a signal from the physical property measuring device and controls the operation of the film forming device, and the film forming device, the annealing device, and the physical property measuring device include the unwinding roll. And the physical property measuring device includes a transmission unit that transmits a predetermined signal to the control device, and the control device includes a transmission unit of the physical property measurement device. It has a means for stopping the operation of the film forming apparatus when the transmitted predetermined signal is received.
 本願に係る薄膜基板製造システムは、前記制御装置は、前記アニール装置のアニール条件を設定するようにしてあり、前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記アニール装置のアニール条件を変更する手段を有することを特徴とする。 In the thin film substrate manufacturing system according to the present application, the control device sets an annealing condition of the annealing device, and when the predetermined signal transmitted by the transmission unit of the physical property measuring device is received, the annealing device Means for changing the annealing conditions.
 本願に係る薄膜基板製造システムは、任意の移送速度で、前記基板を巻き出しロールから巻き出して移送し、該基板表面に薄膜が形成された薄膜基板を巻き取りロールに巻き取る基板移送手段を含み、前記制御装置は、前記基板移送手段の移送速度を制御するようにしてあり、前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記基板移送手段の移送速度を変更する手段を有することを特徴とする。 The thin film substrate manufacturing system according to the present application includes substrate transfer means for unwinding and transferring the substrate from an unwinding roll at an arbitrary transfer speed, and winding the thin film substrate having a thin film formed on the substrate surface on a winding roll. And the control device controls the transfer speed of the substrate transfer means, and changes the transfer speed of the substrate transfer means when receiving the predetermined signal transmitted by the transmission means of the physical property measuring apparatus. It has the means to do.
 本願に係るアニール装置にあっては、算出手段は与えられた薄膜の膜厚及び薄膜の抵抗率に基づいて、基板及び基板表面に形成された薄膜に照射する電磁波の周波数を算出する。電磁波供給手段は、算出した周波数の電磁波を基板及び薄膜に照射する。 In the annealing apparatus according to the present application, the calculating means calculates the frequency of the electromagnetic wave applied to the substrate and the thin film formed on the surface of the substrate based on the given thin film thickness and thin film resistivity. The electromagnetic wave supply means irradiates the substrate and the thin film with electromagnetic waves having the calculated frequency.
 本願に係るアニール装置にあっては、算出手段は基板表面に形成された薄膜に対する電磁波の浸透深さが薄膜の膜厚に対応するように、薄膜の膜厚及び薄膜の抵抗率に基づいて、電磁波の周波数を算出する。 In the annealing apparatus according to the present application, the calculation means is based on the film thickness of the thin film and the resistivity of the thin film so that the penetration depth of the electromagnetic wave with respect to the thin film formed on the substrate surface corresponds to the film thickness of the thin film. Calculate the frequency of the electromagnetic wave.
 本願に係るアニール装置にあっては、電磁波供給手段は、算出した周波数の電磁波を基板及び薄膜に照射し、基板よりも薄膜をより高温に加熱する。 In the annealing apparatus according to the present application, the electromagnetic wave supply means irradiates the substrate and the thin film with electromagnetic waves of the calculated frequency, and heats the thin film to a higher temperature than the substrate.
 本願に係るアニール装置にあっては、冷却手段は基板を冷却する。 In the annealing apparatus according to the present application, the cooling means cools the substrate.
 本願に係るアニール方法にあっては、基板表面に形成された薄膜の膜厚及び抵抗率に基づいて、基板及び薄膜に照射する電磁波の周波数を算出する。算出した周波数の電磁波を基板及び薄膜に照射して、基板よりも薄膜をより高温に加熱する。 In the annealing method according to the present application, the frequency of electromagnetic waves applied to the substrate and the thin film is calculated based on the film thickness and resistivity of the thin film formed on the substrate surface. The substrate and the thin film are irradiated with an electromagnetic wave having the calculated frequency, and the thin film is heated to a higher temperature than the substrate.
 本願に係るアニール方法にあっては、電磁波が照射される基板は有機材料からなる。 In the annealing method according to the present application, the substrate irradiated with electromagnetic waves is made of an organic material.
 本願に係るアニール方法にあっては、基板を冷却しながら、基板及び薄膜に電磁波を照射する。 In the annealing method according to the present application, the substrate and the thin film are irradiated with electromagnetic waves while the substrate is cooled.
 本願に係る薄膜基板製造システムにあっては、成膜装置、アニール装置及び物性測定装置を含む。成膜装置は可撓性を有する基板表面に薄膜を形成する。アニール装置は、成膜装置が形成した薄膜を任意のアニール条件でアニールする前述のアニール装置である。物性測定装置は、アニール装置がアニールした薄膜の物性を測定する。 The thin film substrate manufacturing system according to the present application includes a film forming apparatus, an annealing apparatus, and a physical property measuring apparatus. The film forming apparatus forms a thin film on a flexible substrate surface. The annealing apparatus is the above-described annealing apparatus that anneals the thin film formed by the film forming apparatus under an arbitrary annealing condition. The physical property measuring device measures the physical properties of the thin film annealed by the annealing device.
 本願に係る薄膜基板製造システムにあっては、物性測定装置から信号を受信し、成膜装置の動作を制御する制御装置を含む。成膜装置、アニール装置及び物性測定装置は、巻き出しロールと巻き取りロールとの間の移送路に沿って配置される。物性測定装置は、所定の信号を制御装置へ送信する。制御装置は、物性測定装置が送信した所定の信号を受信した場合、成膜装置の動作を停止する。 The thin film substrate manufacturing system according to the present application includes a control device that receives a signal from the physical property measuring device and controls the operation of the film forming device. The film forming apparatus, the annealing apparatus, and the physical property measuring apparatus are arranged along a transfer path between the unwinding roll and the winding roll. The physical property measuring device transmits a predetermined signal to the control device. The control device stops the operation of the film forming device when receiving a predetermined signal transmitted from the physical property measuring device.
 本願に係る薄膜基板製造システムにあっては、制御装置は、アニール装置のアニール条件を設定する。制御装置は、物性測定装置が送信した所定の信号を受信した場合、アニール装置のアニール条件を変更する。 In the thin film substrate manufacturing system according to the present application, the control device sets the annealing conditions of the annealing device. The control device changes the annealing condition of the annealing device when receiving a predetermined signal transmitted from the physical property measuring device.
 本願に係る薄膜基板製造システムにあっては、基板を移送する基板移送手段を含む。基板移送手段の移送速度を制御する制御装置は、物性測定装置が送信した所定の信号を受信した場合、基板移送手段の移送速度を変更する。 The thin film substrate manufacturing system according to the present application includes substrate transfer means for transferring the substrate. The control device for controlling the transfer speed of the substrate transfer means changes the transfer speed of the substrate transfer means when receiving a predetermined signal transmitted from the physical property measuring apparatus.
 本発明によれば、基板及び基板表面に形成された薄膜のうち、薄膜をより高温に加熱することができる。 According to the present invention, among the thin films formed on the substrate and the substrate surface, the thin film can be heated to a higher temperature.
実施の形態1に係るアニール装置のブロック図である。1 is a block diagram of an annealing apparatus according to a first embodiment. 実施の形態1に係るコンピュータのブロック図である。1 is a block diagram of a computer according to Embodiment 1. FIG. PEDOT:PSSの誘電損の周波数特性を示す説明図である。It is explanatory drawing which shows the frequency characteristic of the dielectric loss of PEDOT: PSS. 実施の形態1に係るアニール装置のアニール処理の手順を示すフローチャートである。3 is a flowchart showing a procedure of annealing treatment of the annealing apparatus according to the first embodiment. 実施の形態1に係るアニール装置のアニール処理の手順を示すフローチャートである。3 is a flowchart showing a procedure of annealing treatment of the annealing apparatus according to the first embodiment. 実施の形態2に係る薄膜基板製造システムのブロック図である。6 is a block diagram of a thin film substrate manufacturing system according to Embodiment 2. FIG. 実施の形態2に係るアニール装置のブロック図である。FIG. 6 is a block diagram of an annealing apparatus according to a second embodiment. 実施の形態2に係るコンピュータのブロック図である。FIG. 6 is a block diagram of a computer according to a second embodiment. 実施の形態2に係るコンピュータの制御部が実行する処理の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of processing executed by a control unit of a computer according to Embodiment 2. 実施の形態3に係るアニール装置のブロック図である。FIG. 6 is a block diagram of an annealing apparatus according to a third embodiment.
 以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。なお、本発明は、以下の実施の形態に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. Note that the present invention is not limited to the following embodiments.
 実施の形態1
 実施の形態1は、基板表面に形成された薄膜を電磁波の誘導加熱によりアニールするアニール装置に関する。試料に照射する電磁波の周波数として、基板表面の薄膜を選択的に加熱する周波数を算出する。そして、算出した周波数の電磁波を用いて、薄膜のアニールが行われる。
Embodiment 1
The first embodiment relates to an annealing apparatus that anneals a thin film formed on a substrate surface by induction heating of electromagnetic waves. The frequency for selectively heating the thin film on the substrate surface is calculated as the frequency of the electromagnetic wave applied to the sample. Then, the thin film is annealed using the electromagnetic wave having the calculated frequency.
 図1は、実施の形態1に係るアニール装置1のブロック図である。実施の形態1に係るアニール装置1は、処理容器2、ガス導入機構3、排気機構4、載置台5、放射温度計6、熱電変換素子制御部7、電磁波供給部8及びコンピュータ9を含む。なお、アニール装置1は、コンピュータ9を外付けにすることにより、コンピュータ9を含まなくてもよい。 FIG. 1 is a block diagram of an annealing apparatus 1 according to the first embodiment. An annealing apparatus 1 according to Embodiment 1 includes a processing container 2, a gas introduction mechanism 3, an exhaust mechanism 4, a mounting table 5, a radiation thermometer 6, a thermoelectric conversion element control unit 7, an electromagnetic wave supply unit 8, and a computer 9. The annealing apparatus 1 may not include the computer 9 by externally attaching the computer 9.
 処理容器2は、例えばアルミニウムにより直方体状に形成されており、接地されている。処理容器2の天井部は開口されており、この開口部にはシール部材21を介して、天板22が気密に設けられている。天板22の材料は、例えば石英、窒化アルミニウム等である。
 なお、処理容器2の形状は、上部が開口された直方体状に限らず、円柱状又は箱状であってもよい。
The processing container 2 is formed in a rectangular parallelepiped shape with aluminum, for example, and is grounded. A ceiling portion of the processing container 2 is opened, and a top plate 22 is airtightly provided in the opening portion via a seal member 21. The material of the top plate 22 is, for example, quartz, aluminum nitride or the like.
In addition, the shape of the processing container 2 is not limited to a rectangular parallelepiped shape whose upper portion is opened, and may be a columnar shape or a box shape.
 処理容器2の側壁には、開口23が設けられると共に、試料Sの基板K及び薄膜Hを処理容器2内部に搬入出する際に開口23を開閉するゲートバルブ24が設けられている。
 処理容器2底部の周縁部には、排気機構4と接続される排気口25が設けられている。
An opening 23 is provided on the side wall of the processing container 2, and a gate valve 24 that opens and closes the opening 23 when the substrate K and the thin film H of the sample S are carried into and out of the processing container 2 is provided.
An exhaust port 25 connected to the exhaust mechanism 4 is provided at the peripheral edge of the bottom of the processing container 2.
 ガス導入機構3は、処理容器2の側壁を貫通する2本のガスノズル31A、31Bからなり、図示しないガス供給源から処理に必要なガスを処理容器2に供給する。ここでのガスは、例えばアルゴン、ヘリウム等の不活性ガスや窒素等である。
 なお、ガスノズル31A、31Bの本数は、2本に限るものではなく、適宜増減してもよい。
The gas introduction mechanism 3 includes two gas nozzles 31 </ b> A and 31 </ b> B that penetrate the side wall of the processing container 2, and supplies a gas necessary for processing to the processing container 2 from a gas supply source (not shown). The gas here is, for example, an inert gas such as argon or helium, nitrogen, or the like.
The number of gas nozzles 31A and 31B is not limited to two, and may be increased or decreased as appropriate.
 排気機構4は、排気が流通する排気通路41、排気圧力を制御する圧力制御弁42及び処理容器2内部の雰囲気を排出する排気ポンプ43を含む。排気ポンプ43は、排気通路41、圧力制御弁42を介して、処理容器2内部の雰囲気を、真空を含む減圧程度まで排気することができる。 The exhaust mechanism 4 includes an exhaust passage 41 through which exhaust flows, a pressure control valve 42 that controls the exhaust pressure, and an exhaust pump 43 that exhausts the atmosphere inside the processing container 2. The exhaust pump 43 can exhaust the atmosphere inside the processing container 2 to a reduced pressure level including a vacuum via the exhaust passage 41 and the pressure control valve 42.
 載置台5は、処理容器2の底部に形成された開口に、シール部材26を介在させて気密に取り付けられている。載置台5は接地されている。
 載置台5は、載置台本体51、熱電変換素子52及び載置板53を含む。載置台本体51の上に熱電変換素子52が、熱電変換素子52の上に載置板53が配置される。載置板53の上には、アニール対象の薄膜Hが形成された基板Kが載置するように構成されている。
The mounting table 5 is airtightly attached to an opening formed at the bottom of the processing container 2 with a seal member 26 interposed therebetween. The mounting table 5 is grounded.
The mounting table 5 includes a mounting table main body 51, a thermoelectric conversion element 52, and a mounting plate 53. A thermoelectric conversion element 52 is disposed on the mounting table main body 51, and a mounting plate 53 is disposed on the thermoelectric conversion element 52. On the mounting plate 53, the substrate K on which the thin film H to be annealed is formed is mounted.
 放射温度計6は、放射温度計本体61と光ファイバ62とを含み、載置板53の温度を測定する。放射温度計6が測定した載置板53の温度は、コンピュータ9に送信される。載置板53の温度を受信したコンピュータ9は、載置板53及び薄膜Hの間の温度勾配を考慮して、載置板53の温度を薄膜Hの温度に変換する。 The radiation thermometer 6 includes a radiation thermometer main body 61 and an optical fiber 62 and measures the temperature of the mounting plate 53. The temperature of the mounting plate 53 measured by the radiation thermometer 6 is transmitted to the computer 9. The computer 9 that has received the temperature of the mounting plate 53 converts the temperature of the mounting plate 53 into the temperature of the thin film H in consideration of the temperature gradient between the mounting plate 53 and the thin film H.
 載置台本体51には、上面から下面までを上下方向に貫通する貫通孔511が形成されており、貫通孔511には光ファイバ62が気密に挿通されている。光ファイバ62は、載置板53の下面直下から載置台本体51の下面を突き抜けて下方へ延び、処理容器2外部に設けられた放射温度計本体61と接続されている。光ファイバ62に載置板53からの輻射光を取り入れることにより、放射温度計6は、載置板53の温度を測定することができるように構成されている。
 なお、処理容器2の側壁を貫通する貫通孔を設け、貫通孔に気密に挿通された直接薄膜Hからの輻射光を光ファイバに取り入れてもよい。これにより、薄膜Hの温度の直接測定が可能となる。
A through hole 511 is formed in the mounting table main body 51 so as to vertically penetrate from the upper surface to the lower surface, and the optical fiber 62 is inserted in the through hole 511 in an airtight manner. The optical fiber 62 penetrates the lower surface of the mounting table main body 51 from directly below the lower surface of the mounting plate 53 and extends downward, and is connected to a radiation thermometer main body 61 provided outside the processing container 2. The radiation thermometer 6 is configured to be able to measure the temperature of the mounting plate 53 by incorporating the radiation light from the mounting plate 53 into the optical fiber 62.
In addition, the through-hole which penetrates the side wall of the processing container 2 may be provided, and the radiant light from the direct thin film H inserted airtightly through the through-hole may be taken into the optical fiber. Thereby, the temperature of the thin film H can be directly measured.
 熱電変換素子52は、基板Kを冷却する板状の冷却手段であり、例えばペルチェ素子が用いられる。ペルチェ素子は、ペルチェ効果を利用した板状の半導体素子であり、直流電流を流すことにより一面で発熱が起こり、他面で吸熱が起こる。ここでは、基板Kに近い熱電変換素子52の上側面で吸熱を起こし、基板Kを冷却する。他方、熱電変換素子52の下側面では発熱が起こる。 The thermoelectric conversion element 52 is a plate-like cooling means for cooling the substrate K, and for example, a Peltier element is used. The Peltier element is a plate-like semiconductor element that utilizes the Peltier effect, and generates heat on one side and absorbs heat on the other side when a direct current is applied. Here, heat is absorbed on the upper surface of the thermoelectric conversion element 52 close to the substrate K, and the substrate K is cooled. On the other hand, heat is generated on the lower surface of the thermoelectric conversion element 52.
 熱電変換素子52は、処理容器2の外部に設けられた熱電変換素子制御部7とリード線71を介して電気的に接続されている。熱電変換素子制御部7は、アニール時に熱電変換素子52に供給する電流の方向と大きさとを制御する。熱電変換素子制御部7が熱電変換素子52に流す電流の方向を逆にすることにより、熱電変換素子52は基板Kを加熱する加熱手段にもなり得る。 The thermoelectric conversion element 52 is electrically connected to the thermoelectric conversion element control unit 7 provided outside the processing container 2 via a lead wire 71. The thermoelectric conversion element control unit 7 controls the direction and magnitude of the current supplied to the thermoelectric conversion element 52 during annealing. The thermoelectric conversion element 52 can also serve as a heating means for heating the substrate K by reversing the direction of the current flowing through the thermoelectric conversion element 52 by the thermoelectric conversion element control unit 7.
 熱電変換素子52の下側面と対向する載置台本体51の上部には、冷媒流路512が載置台本体51上面と略平行な面に沿って形成されている。冷媒流路512は、冷媒導入管513と冷媒排出管514とを介して、冷媒を供給する冷媒循環器515に接続されている。冷媒循環器515が動作することにより、アニール時に冷媒が冷媒流路512を流通循環し、熱電変換素子52の下側面で発熱した熱を冷媒が奪うように構成されている。これにより、熱電変換素子52の冷却効率が向上する。
 なお、熱電変換素子52を除き、基板Kを冷却する冷却手段は、冷媒循環器515による冷媒循環だけでもよい。また、基板Kを冷却する冷却手段は、放熱器でもよい。
 なお、冷媒流路512に高温の温媒を流通循環させることも可能である。
A coolant channel 512 is formed along a surface substantially parallel to the upper surface of the mounting table main body 51 in the upper portion of the mounting table main body 51 facing the lower surface of the thermoelectric conversion element 52. The refrigerant channel 512 is connected to a refrigerant circulator 515 that supplies a refrigerant via a refrigerant introduction pipe 513 and a refrigerant discharge pipe 514. When the refrigerant circulator 515 operates, the refrigerant circulates and circulates through the refrigerant flow path 512 at the time of annealing, and the refrigerant takes heat generated at the lower surface of the thermoelectric conversion element 52. Thereby, the cooling efficiency of the thermoelectric conversion element 52 improves.
Except for the thermoelectric conversion element 52, the cooling means for cooling the substrate K may be only the refrigerant circulation by the refrigerant circulator 515. The cooling means for cooling the substrate K may be a radiator.
It is also possible to circulate and circulate a high-temperature heating medium in the refrigerant flow path 512.
 載置板53は、例えば酸化ケイ素、窒化アルミニウム、炭化ケイ素、ゲルマニウム、シリコン等の材料から製作される。
 なお、載置台5に載置板53を設けず、熱電変換素子52の上に、直接基板Kが載置するように構成してもよい。
The mounting plate 53 is manufactured from a material such as silicon oxide, aluminum nitride, silicon carbide, germanium, or silicon.
The mounting table 53 may not be provided on the mounting table 5, and the substrate K may be directly mounted on the thermoelectric conversion element 52.
 電磁波供給部8は、処理容器2の天板22の上方に設けられている。
 電磁波供給部8は、電磁波発生源81、導波管82及び入射アンテナ83を含む。導波管82の一端は電磁波発生源81と接続され、導波管82の他端は入射アンテナ83と接続されている。
The electromagnetic wave supply unit 8 is provided above the top plate 22 of the processing container 2.
The electromagnetic wave supply unit 8 includes an electromagnetic wave generation source 81, a waveguide 82, and an incident antenna 83. One end of the waveguide 82 is connected to the electromagnetic wave generation source 81, and the other end of the waveguide 82 is connected to the incident antenna 83.
 電磁波発生源81は、例えばジャイロトロン又はマグネトロンを用いることができる。ジャイロトロンは概ねミリ波からサブミリ波にかけての電磁波を発生する。マグネトロンは概ねセンチ波の電磁波を発生する。電磁波発生源81は、発生した電磁波を導波管82に出力する。 As the electromagnetic wave generation source 81, for example, a gyrotron or a magnetron can be used. The gyrotron generally generates electromagnetic waves from millimeter waves to submillimeter waves. A magnetron generates a centimeter wave electromagnetic wave. The electromagnetic wave generation source 81 outputs the generated electromagnetic wave to the waveguide 82.
 導波管82は、電磁波発生源81で発生した電磁波を入射アンテナ83に伝搬させる金属製の管であり、円形又は矩形の断面形状を有す。 The waveguide 82 is a metal tube that propagates the electromagnetic wave generated by the electromagnetic wave generation source 81 to the incident antenna 83, and has a circular or rectangular cross-sectional shape.
 入射アンテナ83は、天板22の上面に設けられた板であり、例えば表面が銀メッキされた銅板又はアルミニウム板である。入射アンテナ83には、図示しない複数の鏡面反射レンズや反射ミラーが設けられており、導波管82から導かれた電磁波を処理容器2の処理空間に向けて反射して導入できるように構成されている。
 なお、入射アンテナ83は、処理容器2の側面に設けられていてもよい。
The incident antenna 83 is a plate provided on the top surface of the top plate 22 and is, for example, a copper plate or an aluminum plate whose surface is silver-plated. The incident antenna 83 is provided with a plurality of specular reflection lenses and reflection mirrors (not shown), and is configured to reflect and introduce the electromagnetic wave guided from the waveguide 82 toward the processing space of the processing container 2. ing.
The incident antenna 83 may be provided on the side surface of the processing container 2.
 コンピュータ9は、アニール装置1全体の動作を制御する。
 図2は、実施の形態1に係るコンピュータ9のブロック図である。
 コンピュータ9は、制御部91、ROM(Read Only Memory)92、RAM(Random Access Memory)93、通信部94、操作部95、表示部96、外部インタフェース97及びタイマ98を含む。
The computer 9 controls the operation of the annealing apparatus 1 as a whole.
FIG. 2 is a block diagram of the computer 9 according to the first embodiment.
The computer 9 includes a control unit 91, a ROM (Read Only Memory) 92, a RAM (Random Access Memory) 93, a communication unit 94, an operation unit 95, a display unit 96, an external interface 97, and a timer 98.
 ROM92の内部には、各種プログラムが記憶されている。これらのプログラムの1つは、例えば制御部91に、薄膜Hに対して照射する電磁波の周波数として、最も適切な周波数を算出させる。 Various programs are stored in the ROM 92. One of these programs causes the control unit 91 to calculate the most appropriate frequency as the frequency of the electromagnetic wave applied to the thin film H, for example.
 制御部91は、ROM92からプログラムを読み込み、各種処理を実行する。例えば、制御部91は、ガス導入機構3が処理容器2に導入するガスの供給及びガスの流量を制御する。制御部91は、電磁波供給部8が発生する電磁波及び電磁波供給部8への供給電力を制御する。また、制御部91は、放射温度計6からの信号に基づき、アニール温度を制御する。 The control unit 91 reads a program from the ROM 92 and executes various processes. For example, the control unit 91 controls the supply of gas introduced into the processing container 2 by the gas introduction mechanism 3 and the gas flow rate. The control unit 91 controls the electromagnetic wave generated by the electromagnetic wave supply unit 8 and the power supplied to the electromagnetic wave supply unit 8. The control unit 91 controls the annealing temperature based on the signal from the radiation thermometer 6.
 RAM93は、作業用の変数、測定データ等を一時的に記録する。
 通信部94は、アニール装置1の各構成部から送信される信号又はデータを受信する。また、通信部94は、制御部91の命令をアニール装置1の各構成部へ送信する。
The RAM 93 temporarily records work variables, measurement data, and the like.
The communication unit 94 receives signals or data transmitted from each component of the annealing apparatus 1. In addition, the communication unit 94 transmits a command from the control unit 91 to each component of the annealing apparatus 1.
 操作部95は、キーボード、マウス等の入力機器を含み、ユーザは操作部95及び通信部94を介してコンピュータ9を操作する。ユーザは操作部95を介してアニール装置1を操作することができる。表示部96は、通信部94及び操作部95を介して入力されたデータ、制御部91が実行した計算結果等を表示する。 The operation unit 95 includes input devices such as a keyboard and a mouse, and the user operates the computer 9 via the operation unit 95 and the communication unit 94. A user can operate the annealing apparatus 1 via the operation unit 95. The display unit 96 displays data input via the communication unit 94 and the operation unit 95, calculation results executed by the control unit 91, and the like.
 外部インタフェース97は、USB(Universal Serial Bus)メモリ、CD-ROM(Compact Disc-Read Only Memory)等の可搬型記録媒体1Aと情報のやり取りをするインタフェースである。また、外部インタフェース97はインターネット等の通信網Nに接続することができるインタフェースでもある。
 タイマ98は、計時を信号として制御部91に送信する。
The external interface 97 is an interface for exchanging information with a portable recording medium 1A such as a USB (Universal Serial Bus) memory or a CD-ROM (Compact Disc-Read Only Memory). The external interface 97 is also an interface that can be connected to a communication network N such as the Internet.
The timer 98 transmits the time count to the control unit 91 as a signal.
 実施の形態1に係るアニール装置1を動作させるための各種プログラムは、外部インタフェース97に可搬型記録媒体1Aを読み取らせて、RAM93に記録してもよい。また、当該各種プログラムは、外部インタフェース97及びインターネット等の通信網Nを介して接続される他のサーバコンピュータ(図示せず)からダウンロードすることも可能である。 Various programs for operating the annealing apparatus 1 according to the first embodiment may be recorded in the RAM 93 by causing the external interface 97 to read the portable recording medium 1A. The various programs can also be downloaded from another server computer (not shown) connected via the external interface 97 and a communication network N such as the Internet.
 薄膜Hに対して照射する電磁波の周波数を算出するプログラムは、アニール対象の薄膜Hの厚さを浸透深さとして電磁波の周波数を算出するものである。浸透深さとは、電磁波が垂直に導電性の均質媒質に入射し、当該媒質内を指数関数的に減衰しながら伝搬する場合、電磁波強度が入射強度の1/e(約37%)に減衰するときの深度のことである。
 浸透深さは式(1)で示される。
The program for calculating the frequency of the electromagnetic wave applied to the thin film H is to calculate the frequency of the electromagnetic wave using the thickness of the thin film H to be annealed as the penetration depth. The penetration depth means that when electromagnetic waves are incident on a conductive homogeneous medium vertically and propagate while exponentially decaying in the medium, the electromagnetic wave intensity is attenuated to 1 / e (about 37%) of the incident intensity. It is the depth of time.
The penetration depth is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、δは浸透深さ、ρは抵抗率、μは比透磁率、fは電磁波の周波数である。
 μは非磁性材の場合、μ=1となる。実施の形態1で扱う膜材料は非磁性材なので、μは1に固定される。
Where δ is the penetration depth, ρ is the resistivity, μ is the relative permeability, and f is the frequency of the electromagnetic wave.
When μ is a non-magnetic material, μ = 1. Since the film material handled in the first embodiment is a non-magnetic material, μ is fixed to 1.
 実施の形態1で対象とする基板Kは、例えばPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PC(ポリカーボネート)等である。これらのプラスチック基板材料のガラス転移点は、夫々100、155、145℃である。ここでは、PET基板を用いる。 The substrate K targeted in the first embodiment is, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PC (polycarbonate), or the like. The glass transition points of these plastic substrate materials are 100, 155, and 145 ° C., respectively. Here, a PET substrate is used.
 実施の形態1で対象とする薄膜Hは、例えばPEDOT:PSSである。PEDOT:PSSのアニール温度は約200℃であり、PETのガラス転移点よりも高い。そのため、従来のランプ等によるアニール方法でPEDOT:PSSの薄膜Hをアニールした場合、PET基板に変形が生じる。 The thin film H targeted in the first embodiment is, for example, PEDOT: PSS. The annealing temperature of PEDOT: PSS is about 200 ° C., which is higher than the glass transition point of PET. Therefore, when the PEDOT: PSS thin film H is annealed by a conventional annealing method using a lamp or the like, the PET substrate is deformed.
 しかしながら、センチ波、ミリ波、サブミリ波の電磁波に対するPET基板の浸透深さは、薄膜Hの浸透深さに比べて遙かに深い。そこで、PET基板をほとんど透過し、PEDOT:PSSの薄膜Hを膜厚の深さまでしか透過しない電磁波の周波数を算出する。具体的には、式(1)の浸透深さに膜厚を、抵抗率に薄膜Hの抵抗率を代入して周波数を算出する。得られた周波数の電磁波がミリ波又はサブミリ波である場合、電磁波発生源81にジャイロトンを搭載したアニール装置1を使用する。得られた周波数の電磁波がセンチ波である場合、電磁波発生源81にマグネトロンを搭載したアニール装置1を使用する。 However, the penetration depth of the PET substrate with respect to electromagnetic waves of centimeter waves, millimeter waves, and submillimeter waves is much deeper than the penetration depth of the thin film H. Therefore, the frequency of the electromagnetic wave that almost passes through the PET substrate and passes through the thin film H of PEDOT: PSS only to the depth of the film thickness is calculated. Specifically, the frequency is calculated by substituting the film thickness into the penetration depth of the equation (1) and the resistivity of the thin film H into the resistivity. When the electromagnetic wave having the obtained frequency is a millimeter wave or a submillimeter wave, the annealing apparatus 1 in which a gyroton is mounted on the electromagnetic wave generation source 81 is used. When the electromagnetic wave having the obtained frequency is a centimeter wave, the annealing apparatus 1 having a magnetron mounted on the electromagnetic wave generation source 81 is used.
 なお、電磁波の周波数を算出するに際し、薄膜Hの膜厚と浸透深さとを等しいものと想定した。しかし例えば、薄膜Hの厚さを浸透深さの90%、110%等、適宜変更してもよく、薄膜Hの厚さと浸透深さとは等しい場合に限られない。 In calculating the frequency of electromagnetic waves, the film thickness of the thin film H and the penetration depth were assumed to be equal. However, for example, the thickness of the thin film H may be changed as appropriate, such as 90% or 110% of the penetration depth, and the thickness of the thin film H and the penetration depth are not limited to the same.
 次に、実施の形態1に係るアニール装置1の動作について、説明する。
 表1は、2種類のPEDOT:PSS膜について、周波数を算出した一例である。
Next, the operation of the annealing apparatus 1 according to the first embodiment will be described.
Table 1 is an example of calculating the frequency for two types of PEDOT: PSS films.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Aは、膜厚として11247nm、抵抗率5.0×10-3Ωcmを選択した場合の例であり、周波数は1.0×1011Hzである。Bは、膜厚として1125nm、抵抗率5.0×10-3Ωcmを選択した場合の例であり、周波数は1.0×1013Hzである。 A is an example when 11247 nm is selected as the film thickness and the resistivity is 5.0 × 10 −3 Ωcm, and the frequency is 1.0 × 10 11 Hz. B is an example in the case where 1125 nm and a resistivity of 5.0 × 10 −3 Ωcm are selected as the film thickness, and the frequency is 1.0 × 10 13 Hz.
 コンピュータ9に、操作部95から薄膜Hの膜厚及び抵抗率を代入する。
 表1のAの場合、制御部91は、測定に好ましい周波数として、100GHz(ギガヘルツ)を算出する。100GHzはミリ波の周波数に該当するため、ユーザは予め算出しておいた概算の周波数から、電磁波発生源81にジャイロトロンを搭載したアニール装置1を使用する。
 表1のBの場合、制御部91は、測定に好ましい周波数として、10THz(テラヘルツ)を算出する。10THzはサブミリ波の周波数に該当するため、ユーザは予め算出しておいた概算の周波数から、電磁波発生源81にジャイロトロンを搭載したアニール装置1を使用する。
The thickness and resistivity of the thin film H are substituted into the computer 9 from the operation unit 95.
In the case of A in Table 1, the control unit 91 calculates 100 GHz (gigahertz) as a preferable frequency for measurement. Since 100 GHz corresponds to the frequency of the millimeter wave, the user uses the annealing apparatus 1 in which the gyrotron is mounted on the electromagnetic wave generation source 81 from the approximate frequency calculated in advance.
In the case of B in Table 1, the control unit 91 calculates 10 THz (terahertz) as a preferable frequency for measurement. Since 10 THz corresponds to the frequency of the submillimeter wave, the user uses the annealing apparatus 1 in which the gyrotron is mounted on the electromagnetic wave generation source 81 from the approximate frequency calculated in advance.
 図3は、PEDOT:PSSの誘電損の周波数特性を示す説明図である。縦軸は誘電損であり、横軸は周波数である。電磁波の吸収エネルギーは、比誘電率と誘電正接との積である誘電損に比例する。図3に示すようにPEDOT:PSSの場合、誘電損の極大値は100GHz前後にある。従って、表1のAの場合のように、PEDOT:PSS薄膜の厚さを11μmに設定した場合、算出される周波数は100GHzとなり、最も効率のよいアニール処理を施すことができる。一方で、PET基板は、100GHz前後の電磁波が照射されても、浸透深さが深いためにほとんど加熱されず、PET基板の温度はガラス転移点を超えない。 FIG. 3 is an explanatory diagram showing frequency characteristics of dielectric loss of PEDOT: PSS. The vertical axis represents dielectric loss, and the horizontal axis represents frequency. The absorbed energy of electromagnetic waves is proportional to the dielectric loss that is the product of the relative dielectric constant and the dielectric loss tangent. As shown in FIG. 3, in the case of PEDOT: PSS, the maximum value of the dielectric loss is around 100 GHz. Therefore, as in the case of A in Table 1, when the thickness of the PEDOT: PSS thin film is set to 11 μm, the calculated frequency is 100 GHz, and the most efficient annealing can be performed. On the other hand, even if the PET substrate is irradiated with an electromagnetic wave of around 100 GHz, it is hardly heated because the penetration depth is deep, and the temperature of the PET substrate does not exceed the glass transition point.
 以下、表1のAの場合について説明する。
 ゲートバルブ24を開き、PEDOT:PSSの薄膜Hが形成されたPET基板を、図示しない搬送手段により載置板53上に載置する。ゲートバルブ24を閉じ、処理容器2を密閉する。操作部95からアニール対象の薄膜Hの厚さ及び抵抗率をコンピュータ9に入力する。制御部91は、薄膜Hの厚さ及び抵抗率に基づいて、電磁波の周波数を算出する。
Hereinafter, the case of A in Table 1 will be described.
The gate valve 24 is opened, and the PET substrate on which the PEDOT: PSS thin film H is formed is placed on the placement plate 53 by a conveying means (not shown). The gate valve 24 is closed and the processing container 2 is sealed. The thickness and resistivity of the thin film H to be annealed are input from the operation unit 95 to the computer 9. The controller 91 calculates the frequency of the electromagnetic wave based on the thickness and resistivity of the thin film H.
 制御部91は、算出値に基づいて、電磁波発生源81が発生する電磁波の周波数を100GHzに設定する。制御部91は、電磁波発生源81が発生する電磁波の強度を設定する。制御部91は、アニール時間及び処理圧力を設定する。制御部91は、排気機構4により処理容器2内部を排気すると共に、ガス導入機構3のガスノズル31A、31Bから不活性ガス等を処理容器2内部へ導入する。 The control unit 91 sets the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 to 100 GHz based on the calculated value. The controller 91 sets the intensity of the electromagnetic wave generated by the electromagnetic wave generation source 81. The controller 91 sets the annealing time and the processing pressure. The control unit 91 exhausts the inside of the processing container 2 by the exhaust mechanism 4 and introduces an inert gas or the like into the processing container 2 from the gas nozzles 31 </ b> A and 31 </ b> B of the gas introduction mechanism 3.
 制御部91は、アニール処理を開始する。すなわち、制御部91は、電磁波発生源81に設定した周波数の電磁波を発生させる。制御部91は、冷媒循環器515を作動させ、載置台本体51を冷却すると共に、熱電変換素子制御部7を介して熱電変換素子52により基板Kを冷却する。制御部91は、放射温度計6を介してアニール温度の制御を開始する。アニール温度の制御は、電磁波の強度を調整することにより行われる。 The control unit 91 starts the annealing process. That is, the control unit 91 generates an electromagnetic wave having a frequency set in the electromagnetic wave generation source 81. The control unit 91 operates the refrigerant circulator 515 to cool the mounting table body 51 and cools the substrate K by the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7. The controller 91 starts controlling the annealing temperature via the radiation thermometer 6. The annealing temperature is controlled by adjusting the intensity of electromagnetic waves.
 電磁波発生源81が発生した電磁波は、導波管82を介して入射アンテナ83に導かれる。入射アンテナ83に導かれた電磁波は、入射アンテナ83により反射されて処理容器2内に供給される。処理容器2内に供給された電磁波は、薄膜H及び基板Kに照射される。 The electromagnetic wave generated by the electromagnetic wave generation source 81 is guided to the incident antenna 83 through the waveguide 82. The electromagnetic wave guided to the incident antenna 83 is reflected by the incident antenna 83 and supplied into the processing container 2. The electromagnetic wave supplied into the processing container 2 is applied to the thin film H and the substrate K.
 制御部91は、アニール時間が終了したと判断した場合、電磁波発生源81の駆動を停止する。制御部91は、アニール温度の制御を停止する。制御部91は、薄膜Hの冷却を待って、ガス導入機構3による不活性ガス等の導入を停止する。制御部91は、排気機構4による排気を停止する。制御部91は、熱電変換素子制御部7を介して熱電変換素子52への電流供給を停止する。制御部91は、冷媒循環器515を停止する。すなわち、制御部91は、基板Kの冷却を停止する。 When the controller 91 determines that the annealing time has ended, the controller 91 stops driving the electromagnetic wave generation source 81. The controller 91 stops the control of the annealing temperature. The controller 91 waits for the thin film H to cool down and stops the introduction of the inert gas or the like by the gas introduction mechanism 3. The controller 91 stops the exhaust by the exhaust mechanism 4. The control unit 91 stops supplying current to the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7. The controller 91 stops the refrigerant circulator 515. That is, the controller 91 stops cooling the substrate K.
 ゲートバルブ24を開き、図示しない搬送手段により載置板53上の試料を処理容器2外部へ取り出す。ゲートバルブ24を閉じ、処理容器2を密閉する。 The gate valve 24 is opened, and the sample on the mounting plate 53 is taken out of the processing container 2 by a conveying means (not shown). The gate valve 24 is closed and the processing container 2 is sealed.
 図4及び図5は、実施の形態1に係るアニール装置1のアニール処理の手順を示すフローチャートである。
 制御部91は、薄膜Hの膜厚及び薄膜Hの抵抗率を受け付ける(ステップS101)。制御部91は、受け付けた薄膜Hの膜厚及び薄膜Hの抵抗率に基づいて、式(1)より試料に照射する電磁波の周波数を算出する(ステップS102)。制御部91は、算出した周波数を電磁波発生源81が発生する電磁波の周波数に設定する(ステップS103)。制御部91は、電磁波発生源81が発生する電磁波の強度を設定する(ステップS104)。制御部91は、アニール時間を設定する(ステップS105)。制御部91は、処理圧力を設定する(ステップS106)。
4 and 5 are flowcharts showing the procedure of the annealing process of the annealing apparatus 1 according to the first embodiment.
The controller 91 receives the film thickness of the thin film H and the resistivity of the thin film H (step S101). The control unit 91 calculates the frequency of the electromagnetic wave applied to the sample from the equation (1) based on the received thickness of the thin film H and the resistivity of the thin film H (step S102). The control unit 91 sets the calculated frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 (step S103). The controller 91 sets the intensity of the electromagnetic wave generated by the electromagnetic wave generation source 81 (step S104). The controller 91 sets an annealing time (step S105). The controller 91 sets a processing pressure (step S106).
 制御部91は、処理容器2内部を排気する(ステップS107)。制御部91は、ガスノズル31A、31Bから不活性ガス等を処理容器2内部へ導入する(ステップS108)。制御部91は、電磁波発生源81に電磁波を発生させる(ステップS109)。制御部91は、冷媒循環器515を作動させ、載置台本体51を冷却すると共に、熱電変換素子制御部7を介して熱電変換素子52により基板Kの冷却を開始する(ステップS110)。制御部91は、アニール温度の制御を開始する(ステップS111)。 The control unit 91 exhausts the inside of the processing container 2 (step S107). The controller 91 introduces an inert gas or the like from the gas nozzles 31A and 31B into the processing container 2 (step S108). The controller 91 causes the electromagnetic wave generation source 81 to generate an electromagnetic wave (step S109). The control unit 91 operates the refrigerant circulator 515 to cool the mounting table main body 51 and starts cooling the substrate K by the thermoelectric conversion element 52 via the thermoelectric conversion element control unit 7 (step S110). The controller 91 starts controlling the annealing temperature (step S111).
 制御部91は、アニール時間が経過したか否かタイマ98に基づいて判断する(ステップS112)。制御部91は、アニール時間が経過していないと判断した場合(ステップS112:NO)、制御をステップS112へ戻す。制御部91は、アニール時間が経過したと判断した場合(ステップS112:YES)、電磁波発生源81による電磁波の発生を停止する(ステップS113)。制御部91は、アニール温度の制御を停止する(ステップS114)。制御部91は、ガス導入機構3による不活性ガス等の導入を停止する(ステップS115)。制御部91は、排気機構4による排気を停止する(ステップS116)。制御部91は、基板Kの冷却を停止し(ステップS117)、処理を終了する。 The control unit 91 determines whether the annealing time has elapsed based on the timer 98 (step S112). When it is determined that the annealing time has not elapsed (step S112: NO), the controller 91 returns the control to step S112. When the controller 91 determines that the annealing time has elapsed (step S112: YES), the controller 91 stops the generation of electromagnetic waves by the electromagnetic wave generation source 81 (step S113). The controller 91 stops the control of the annealing temperature (step S114). The controller 91 stops the introduction of an inert gas or the like by the gas introduction mechanism 3 (Step S115). The controller 91 stops the exhaust by the exhaust mechanism 4 (step S116). The controller 91 stops the cooling of the substrate K (step S117) and ends the process.
 なお、ステップS101では、制御部91は、薄膜Hの抵抗率を受け付ける。しかし、各種材料の抵抗率を予めROM92に記録しておき、制御部91はROM92から薄膜Hの抵抗率を読み込んでもよい。かかる場合、制御部91は、ステップS101で薄膜Hの材料を受け付け、受け付けた薄膜Hの材料に基づいてROM92から薄膜Hの抵抗率を読み込む。 In step S101, the control unit 91 receives the resistivity of the thin film H. However, the resistivity of various materials may be recorded in the ROM 92 in advance, and the control unit 91 may read the resistivity of the thin film H from the ROM 92. In such a case, the control unit 91 receives the material of the thin film H in step S101, and reads the resistivity of the thin film H from the ROM 92 based on the received material of the thin film H.
 なお、ステップS102では、制御部91は、受け付けた薄膜Hの膜厚及び薄膜Hの抵抗率に基づいて、式(1)より試料に照射する電磁波の周波数を算出する。しかし、ユーザが薄膜Hの膜厚及び薄膜Hの抵抗率に基づいて、式(1)より試料に照射する電磁波の周波数を算出し、制御部91はユーザから周波数の入力を受け付ける形態でもよい。かかる場合、ステップS101及びステップS102における制御部91の処理は、周波数を受け付ける処理になる。ステップS103では、制御部91は、受け付けた周波数を電磁波発生源81が発生する電磁波の周波数に設定する。 In step S102, the control unit 91 calculates the frequency of the electromagnetic wave applied to the sample from Equation (1) based on the received film thickness of the thin film H and the resistivity of the thin film H. However, the user may calculate the frequency of the electromagnetic wave applied to the sample from Equation (1) based on the film thickness of the thin film H and the resistivity of the thin film H, and the control unit 91 may receive the frequency input from the user. In such a case, the processing of the control unit 91 in step S101 and step S102 is processing for receiving a frequency. In step S103, the control unit 91 sets the received frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81.
 表2は、無機導電性材料及び半導体材料について、浸透深さを試算した一例である。 Table 2 is an example in which the penetration depth was estimated for the inorganic conductive material and the semiconductor material.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 Cの銀は、膜厚として1948nm、抵抗率1.5×10-6Ωcmを選択した場合の例であり、周波数は1.0×10 9Hzである。Dの銀は、膜厚として195nm、抵抗率1.5×10-6Ωcmを選択した場合の例であり、周波数は1.0×1011Hzである。
 Eの銅は、膜厚として2012nm、抵抗率1.6×10-6Ωcmを選択した場合の例であり、周波数は1.0×10 9Hzである。Fの銅は、膜厚として201nm、抵抗率1.6×10-6Ωcmを選択した場合の例であり、周波数は1.0×1011Hzである。
 Gのアルミニウムは、膜厚として2515nm、抵抗率2.5×10-6Ωcmを選択した場合の例であり、周波数は1.0×10 9Hzである。Hのアルミニウムは、膜厚として252nm、抵抗率2.5×10-6Ωcmを選択した場合の例であり、周波数は1.0×1011Hzである。
 Jのシリコンは、膜厚として5030nm、抵抗率1.0×10-1Ωcmを選択した場合の例であり、周波数は1.0×1013Hzである。
The silver of C is an example when a film thickness of 1948 nm and a resistivity of 1.5 × 10 −6 Ωcm is selected, and the frequency is 1.0 × 10 9 Hz. Silver of D is an example in which a film thickness of 195 nm and a resistivity of 1.5 × 10 −6 Ωcm are selected, and the frequency is 1.0 × 10 11 Hz.
The copper E is an example in which a film thickness of 2012 nm and a resistivity of 1.6 × 10 −6 Ωcm is selected, and the frequency is 1.0 × 10 9 Hz. The copper of F is an example when the film thickness is 201 nm and the resistivity is 1.6 × 10 −6 Ωcm, and the frequency is 1.0 × 10 11 Hz.
The aluminum of G is an example in which a film thickness of 2515 nm and a resistivity of 2.5 × 10 −6 Ωcm are selected, and the frequency is 1.0 × 10 9 Hz. The aluminum of H is an example when the film thickness is 252 nm and the resistivity is 2.5 × 10 −6 Ωcm, and the frequency is 1.0 × 10 11 Hz.
The silicon of J is an example when the film thickness is 5030 nm and the resistivity is 1.0 × 10 −1 Ωcm, and the frequency is 1.0 × 10 13 Hz.
 表2のC、E、Gの場合、電磁波発生源81にセンチ波の電磁波を照射するマグネトロンを搭載したアニール装置1を使用する。表2のD、F、H、Jの場合、電磁波発生源81にミリ波及びサブミリ波の電磁波を照射するジャイロトロンを搭載したアニール装置1を使用する。
 また、夫々の薄膜Hの膜厚及び抵抗率に応じて、表2に示した周波数の電磁波を選択してアニール処理を施す。このように、膜材料の違いに応じた電磁波の周波数を選択することで、基板Kの温度をガラス転移点以上の温度にすることなく、薄膜Hを選択的に加熱することができる。
In the case of C, E, and G in Table 2, the annealing apparatus 1 equipped with a magnetron that irradiates the electromagnetic wave generation source 81 with a centimeter wave electromagnetic wave is used. In the case of D, F, H, and J in Table 2, the annealing apparatus 1 equipped with a gyrotron that irradiates the electromagnetic wave generation source 81 with millimeter wave and submillimeter wave electromagnetic waves is used.
Moreover, according to the film thickness and resistivity of each thin film H, the electromagnetic wave of the frequency shown in Table 2 is selected, and it anneals. Thus, by selecting the frequency of the electromagnetic wave according to the difference in the film material, the thin film H can be selectively heated without making the temperature of the substrate K higher than the glass transition point.
 実施の形態1に係るアニール装置1によれば、基板K及び薄膜Hのうち、薄膜Hをより高温で選択的に加熱することができる。
 薄膜Hの厚さが電磁波の浸透深さに該当する周波数のセンチ波、ミリ波又はサブミリ波(周波数は3GHz~50THzに該当)を基板K及び薄膜Hに照射することにより、基板Kをほとんど加熱することなく、薄膜Hを選択的に加熱することができる。
 廉価な多くの有機材料基板は、有機導電性膜材料のアニール温度よりも低いガラス転移点を有す。そのため、実施の形態1に係るアニール装置1によれば、有機材料基板の変形を起こさずに有機導電性膜材料の薄膜Hのアニール処理が可能となり、有機デバイスの製造コストの低減を図ることができる。
According to the annealing apparatus 1 according to the first embodiment, the thin film H can be selectively heated at a higher temperature among the substrate K and the thin film H.
By irradiating the substrate K and the thin film H with centimeter waves, millimeter waves, or submillimeter waves having a frequency corresponding to the penetration depth of the electromagnetic wave to the substrate K and the thin film H, the substrate K is almost heated. Without this, the thin film H can be selectively heated.
Many inexpensive organic material substrates have a glass transition point below the annealing temperature of the organic conductive film material. Therefore, according to the annealing apparatus 1 according to the first embodiment, the thin film H of the organic conductive film material can be annealed without causing deformation of the organic material substrate, and the manufacturing cost of the organic device can be reduced. it can.
 実施の形態1に係るアニール装置1によれば、熱電変換素子52及び冷媒循環器515により基板Kの温度上昇を抑えることができる。
 電磁波が基板Kにほとんど吸収されない場合であっても、アニール時間が長引くほど、薄膜Hから基板Kへ熱が流れ、基板Kの温度は上昇する。しかし、熱電変換素子52及び冷媒循環器515により基板Kを冷却することにより、熱平衡の過渡状態を長引かせることができる。電気伝導度等の膜特性はアニール温度が高く、アニール時間が長いほど向上するので、基板Kの冷却は膜特性向上に寄与する。
According to annealing apparatus 1 according to the first embodiment, temperature increase of substrate K can be suppressed by thermoelectric conversion element 52 and refrigerant circulator 515.
Even when electromagnetic waves are hardly absorbed by the substrate K, as the annealing time is prolonged, heat flows from the thin film H to the substrate K, and the temperature of the substrate K increases. However, by cooling the substrate K by the thermoelectric conversion element 52 and the refrigerant circulator 515, the transient state of thermal equilibrium can be prolonged. Film characteristics such as electrical conductivity are improved as the annealing temperature is higher and the annealing time is longer. Therefore, the cooling of the substrate K contributes to the improvement of the film characteristics.
 実施の形態2
 実施の形態2は、可撓性を有す基板Kの上に薄膜Hを形成するロールツーロール製造ラインに、成膜装置、アニール装置及び物性測定装置を組み込んだ薄膜基板製造システムに関する。
Embodiment 2
The second embodiment relates to a thin film substrate manufacturing system in which a film forming apparatus, an annealing apparatus, and a physical property measuring apparatus are incorporated in a roll-to-roll manufacturing line for forming a thin film H on a flexible substrate K.
 実施の形態2で対象とする基板Kは、例えばフィルム状のPET基板、PEN基板等である。
 実施の形態2で対象とする薄膜Hは、例えばPEDOT:PSS、シリルエチン置換ペンタセン、ポリ(3-アルキルチオフェン)等の薄膜Hである。
The board | substrate K made into object in Embodiment 2 is a film-like PET board | substrate, a PEN board | substrate, etc., for example.
The target thin film H in the second embodiment is a thin film H such as PEDOT: PSS, silylethyne-substituted pentacene, or poly (3-alkylthiophene).
 図6は、実施の形態2に係る薄膜基板製造システム100のブロック図である。
 薄膜基板製造システム100は、基板移送部11、成膜装置12、アニール装置10、物性測定装置13及びコンピュータ90を含む。
 成膜装置12、アニール装置10及び物性測定装置13は、この順に基板移送部11による移送ラインの上流から下流へ配置されている。
FIG. 6 is a block diagram of the thin film substrate manufacturing system 100 according to the second embodiment.
The thin film substrate manufacturing system 100 includes a substrate transfer unit 11, a film forming device 12, an annealing device 10, a physical property measuring device 13, and a computer 90.
The film forming apparatus 12, the annealing apparatus 10 and the physical property measuring apparatus 13 are arranged in this order from the upstream to the downstream of the transfer line by the substrate transfer unit 11.
 基板移送部11は、巻き出しロール111、巻き取りロール112及び基板Kを移送する移送ロール113、114を含む。基板移送部11は、巻き出しロール111に巻かれた基板Kを、適切な張力及び速度で巻き出し、成膜装置12及びアニール装置10により形成された薄膜基板を巻き取りロール112に巻き取る。移送ロール113、114は、回転駆動により基板Kを上流から下流へ移送する。基板移送部11の動作は、連続的又は不連続的である。
 なお、基板移送部11は、巻き出しロール111及び巻き取りロール112を含まなくてもよい。かかる場合、巻き出しロール111及び巻き取りロール112を回転する回転駆動部を別途用意する。
The substrate transfer unit 11 includes an unwinding roll 111, a take-up roll 112, and transfer rolls 113 and 114 that transfer the substrate K. The substrate transfer unit 11 unwinds the substrate K wound on the unwinding roll 111 at an appropriate tension and speed, and winds the thin film substrate formed by the film forming apparatus 12 and the annealing apparatus 10 on the winding roll 112. The transfer rolls 113 and 114 transfer the substrate K from upstream to downstream by rotational driving. The operation of the substrate transfer unit 11 is continuous or discontinuous.
The substrate transfer unit 11 may not include the unwinding roll 111 and the winding roll 112. In such a case, a rotation driving unit that rotates the unwinding roll 111 and the winding roll 112 is separately prepared.
 図6には、移送ロール113、114が2本描かれているが、移送ロール113、114の数は一例であり、適宜増減することができる。なお、基板移送部11は、基板Kの移送能率を向上するために、基板Kを移送ロール113、114との間で夫々挟む複数の押さえロールを含んでもよい。
 図6では、基板移送部11は基板Kの幅方向を水平方向に保持して、基板Kを水平方向に移送している。しかし、基板移送部11は基板Kの幅方向を鉛直方向に保持して、基板Kを鉛直方向に移送してもよい。
Although two transfer rolls 113 and 114 are illustrated in FIG. 6, the number of transfer rolls 113 and 114 is an example, and can be increased or decreased as appropriate. The substrate transfer unit 11 may include a plurality of pressing rolls that sandwich the substrate K between the transfer rolls 113 and 114 in order to improve the transfer efficiency of the substrate K.
In FIG. 6, the substrate transfer unit 11 holds the width direction of the substrate K in the horizontal direction and transfers the substrate K in the horizontal direction. However, the substrate transfer unit 11 may transfer the substrate K in the vertical direction while holding the width direction of the substrate K in the vertical direction.
 成膜装置12は、例えば印刷により基板K表面に膜パターンを形成するパターン形成装置である。印刷によるパターン形成の対象は、ソース・ドレイン印刷、半導体印刷、ゲート印刷等を含む。なお、成膜装置12は、ガスから材料を基板K上に堆積させるCVD装置、PVD装置等であってもよい。 The film forming apparatus 12 is a pattern forming apparatus that forms a film pattern on the surface of the substrate K by printing, for example. The target of pattern formation by printing includes source / drain printing, semiconductor printing, gate printing, and the like. The film forming apparatus 12 may be a CVD apparatus, a PVD apparatus, or the like that deposits a material on a substrate K from a gas.
 アニール装置10は、ロールツーロール方式に対応している点が実施の形態1に係るアニール装置1と異なる。
 図7は、実施の形態2に係るアニール装置10のブロック図である。ここでは、アニール装置10について、実施の形態1に係るアニール装置1と異なる部分について説明する。
Annealing apparatus 10 is different from annealing apparatus 1 according to the first embodiment in that it corresponds to a roll-to-roll system.
FIG. 7 is a block diagram of annealing apparatus 10 according to the second embodiment. Here, parts of annealing apparatus 10 that are different from annealing apparatus 1 according to the first embodiment will be described.
 アニール装置10は、開口23及びゲートバルブ24を含まない。
 処理容器2の側壁の対向位置には、アニール前の基板K及び薄膜Hを搬入する搬入口27と、アニール後の基板K及び薄膜Hを搬出する搬出口28とが開口されている。搬入口27及び搬出口28は、夫々基板Kの幅よりも長いスリット状をなし、略同じ高さに設けられている。
 搬入口27及び搬出口28には、夫々シャッタ27A、28Aが設けられている。シャッタ27A、28Aは、基板移送部11が基板Kの移送を停止し、基板K及び薄膜Hに電磁波が照射される場合、処理容器2内部の電磁波及びガスが外部へ漏れないようにシールドする。シャッタ27A、28Aは、夫々軟らかい金属、例えばインジウム、銅等から形成されており、基板移送部11が基板Kの移送を停止した場合、基板Kを圧接する。
The annealing apparatus 10 does not include the opening 23 and the gate valve 24.
At the opposite position of the side wall of the processing vessel 2, a carry-in port 27 for carrying in the substrate K and the thin film H before annealing and a carry-out port 28 for carrying out the substrate K and the thin film H after annealing are opened. The carry-in port 27 and the carry-out port 28 each have a slit shape longer than the width of the substrate K, and are provided at substantially the same height.
Shutters 27A and 28A are provided at the carry-in port 27 and the carry-out port 28, respectively. The shutters 27 </ b> A and 28 </ b> A shield the electromagnetic wave and gas inside the processing container 2 from leaking outside when the substrate transfer unit 11 stops transferring the substrate K and the substrate K and the thin film H are irradiated with electromagnetic waves. The shutters 27A and 28A are each made of a soft metal, such as indium or copper, and press the substrate K when the substrate transfer unit 11 stops the transfer of the substrate K.
 物性測定装置13は、テラヘルツ分光装置、膜厚測定装置及び赤外分光装置を含む。テラヘルツ分光装置は、薄膜Hに対するテラヘルツ波の透過率又は反射率を測定する。膜厚測定装置は、薄膜Hの厚さを測定し、測定した薄膜Hの厚さをテラヘルツ分光装置に送信する。テラヘルツ分光装置は、膜厚測定装置から薄膜Hの厚さを受信する。赤外分光装置は、薄膜Hに対する赤外域の反射率を測定し、測定した赤外域の反射率をテラヘルツ分光装置に送信する。テラヘルツ分光装置は、赤外分光装置から薄膜Hに対する赤外域の反射率を受信する。 The physical property measuring device 13 includes a terahertz spectroscopic device, a film thickness measuring device, and an infrared spectroscopic device. The terahertz spectrometer measures the transmittance or reflectance of the terahertz wave with respect to the thin film H. The film thickness measuring device measures the thickness of the thin film H and transmits the measured thickness of the thin film H to the terahertz spectrometer. The terahertz spectrometer receives the thickness of the thin film H from the film thickness measuring device. The infrared spectrometer measures the reflectance of the infrared region with respect to the thin film H, and transmits the measured reflectance of the infrared region to the terahertz spectrometer. The terahertz spectrometer receives the infrared reflectance of the thin film H from the infrared spectrometer.
 テラヘルツ分光装置は、テラヘルツ波の透過率又は反射率、薄膜Hの厚さ、赤外域の反射率に基づいて、薄膜Hの複素屈折率、複素誘電率、複素電気伝導度、キャリア移動度等の物性値を算出する。物性測定装置13又はテラヘルツ分光装置は、算出された薄膜Hの物性値をコンピュータ90に送信する。 The terahertz spectrometer is based on the transmittance or reflectance of the terahertz wave, the thickness of the thin film H, the reflectance in the infrared region, and the like, such as the complex refractive index, complex dielectric constant, complex electrical conductivity, carrier mobility, etc. Calculate physical properties. The physical property measuring device 13 or the terahertz spectrometer transmits the calculated physical property value of the thin film H to the computer 90.
 図8は、実施の形態2に係るコンピュータ90のブロック図である。
 コンピュータ90の構成は、実施の形態1に係るアニール装置1に含まれるコンピュータ9の構成と同様である。なお、コンピュータ90は、アニール装置10に含まれるコンピュータ9で代用してもよい。
 コンピュータ90は、基板移送部11、成膜装置12、アニール装置10及び物性測定装置13と電気的に接続されており、これら装置を制御する。
FIG. 8 is a block diagram of a computer 90 according to the second embodiment.
The configuration of the computer 90 is the same as the configuration of the computer 9 included in the annealing apparatus 1 according to the first embodiment. Note that the computer 90 may be substituted by the computer 9 included in the annealing apparatus 10.
The computer 90 is electrically connected to the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13, and controls these apparatuses.
 次に、実施の形態2に係る薄膜基板製造システム100の動作について説明する。
 まず、薄膜基板製造システム100を動作させる準備として、予めアニール装置10の電磁波発生源81が発生する電磁波の周波数をコンピュータ90に設定する。
Next, the operation of the thin film substrate manufacturing system 100 according to Embodiment 2 will be described.
First, in preparation for operating the thin film substrate manufacturing system 100, the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81 of the annealing apparatus 10 is set in the computer 90 in advance.
 コンピュータ90に、操作部950から薄膜Hの抵抗率及び膜厚を入力する。コンピュータ90の制御部910は、取得した薄膜Hの抵抗率及び膜厚をアニール装置10のコンピュータ9に送信する。コンピュータ9は、薄膜Hの抵抗率及び膜厚を受信し、アニールに好適な電磁波の周波数を算出する。コンピュータ90は、算出した周波数を電磁波発生源81が発生する電磁波の周波数に設定する。 The resistivity and film thickness of the thin film H are input to the computer 90 from the operation unit 950. The control unit 910 of the computer 90 transmits the acquired resistivity and film thickness of the thin film H to the computer 9 of the annealing apparatus 10. The computer 9 receives the resistivity and film thickness of the thin film H, and calculates the frequency of electromagnetic waves suitable for annealing. The computer 90 sets the calculated frequency to the frequency of the electromagnetic wave generated by the electromagnetic wave generation source 81.
 基板Kのロールを巻き出しロール111に取り付け、薄膜基板製造システム100の動作を開始させる。 The substrate K roll is attached to the unwinding roll 111, and the operation of the thin film substrate manufacturing system 100 is started.
 図9は、実施の形態2に係るコンピュータ90の制御部910が実行する処理の手順を示すフローチャートである。
 制御部910は、基板移送部11、成膜装置12、アニール装置10及び物性測定装置13の動作を開始する(ステップS201)。その具体的な内容は、以下の通りである。
 制御部910は、基板移送部11を動作させ、基板Kをロールツーロール生産ラインに巻き出す。制御部910は、成膜装置12を動作させて、基板K表面にパターンを印刷させる。制御部910は、コンピュータ9を介して、アニール装置10に成膜装置12が形成した薄膜Hをアニールさせる。制御部910は、物性測定装置13にアニール装置10がアニールした薄膜Hの物性を測定させる。制御部910は、製造した薄膜基板を巻き取りロール112に巻き取らせる。
FIG. 9 is a flowchart illustrating a procedure of processing executed by the control unit 910 of the computer 90 according to the second embodiment.
The control unit 910 starts the operations of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 (Step S201). The specific contents are as follows.
The control unit 910 operates the substrate transfer unit 11 to unwind the substrate K to the roll-to-roll production line. The control unit 910 operates the film forming apparatus 12 to print a pattern on the surface of the substrate K. The controller 910 causes the annealing apparatus 10 to anneal the thin film H formed by the film forming apparatus 12 via the computer 9. The control unit 910 causes the physical property measuring device 13 to measure the physical properties of the thin film H annealed by the annealing device 10. The controller 910 causes the manufactured thin film substrate to be taken up by the take-up roll 112.
 物性測定装置13は、測定した物性値をコンピュータ90に送信する。
 制御部910は、物性測定装置13から薄膜Hの物性値を取得する(ステップS202)。制御部910は、薄膜Hの物性値が製造規格の範囲内か否か判断する(ステップS203)。制御部910は、薄膜Hの物性値が製造規格の範囲内であると判断した場合(ステップS203:YES)、ステップS201に制御を戻す。制御部910は、薄膜Hの物性値が製造規格の範囲内にないと判断した場合(ステップS203:NO)、基板移送部11、成膜装置12、アニール装置10及び物性測定装置13の動作を停止する(ステップS204)。
 制御部910は、以上のステップをマルチタスクで連続的に実行する。
 基板移送部11、成膜装置12、アニール装置10及び物性測定装置13の動作を停止した場合、ユーザは巻き取りロール112から製造規格外の薄膜基板を取り外す。
The physical property measuring device 13 transmits the measured physical property value to the computer 90.
The control unit 910 acquires the physical property value of the thin film H from the physical property measuring device 13 (step S202). The control unit 910 determines whether the physical property value of the thin film H is within the range of the manufacturing standard (step S203). When the control unit 910 determines that the physical property value of the thin film H is within the range of the manufacturing standard (step S203: YES), the control unit 910 returns the control to step S201. When the control unit 910 determines that the physical property value of the thin film H is not within the range of the manufacturing standard (step S203: NO), the operation of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 is performed. Stop (step S204).
The control unit 910 executes the above steps continuously in multitasking.
When the operations of the substrate transfer unit 11, the film forming device 12, the annealing device 10, and the physical property measuring device 13 are stopped, the user removes the non-manufacturing thin film substrate from the winding roll 112.
 制御部910は、ユーザからの指示待ち状態となる。ユーザは薄膜基板の製造を再開するか否かをコンピュータ90に指示する。制御部910は、ユーザからの指示を受け付け、基板移送部11、成膜装置12、アニール装置10及び物性測定装置13の動作を再開するか否か判断する(ステップS205)。制御部910は、動作を再開する場合(ステップS205:YES)、成膜装置12に成膜条件を変更させるか、又はアニール装置10にアニール条件を変更させ(ステップS206)、ステップS201に処理を戻す。ここでの成膜条件の変更は、例えばレジスト条件、プリント速度等のパターン形成条件を変更することである。ここでのアニール条件の変更は、例えば電磁波の強度を所定値だけ大きい値に設定することである。あるいは、アニール条件の変更は、アニール時間を変更することである。制御部910は、動作を再開しない場合(ステップS205:NO)、処理を終了する。 The control unit 910 waits for an instruction from the user. The user instructs the computer 90 whether or not to resume manufacturing the thin film substrate. The control unit 910 receives an instruction from the user, and determines whether or not to resume the operations of the substrate transfer unit 11, the film forming apparatus 12, the annealing apparatus 10, and the physical property measuring apparatus 13 (step S205). When the operation is resumed (step S205: YES), the control unit 910 causes the film forming apparatus 12 to change the film forming conditions or causes the annealing apparatus 10 to change the annealing conditions (step S206), and performs processing in step S201. return. The change of the film forming conditions here is to change pattern forming conditions such as resist conditions and printing speed, for example. The change of the annealing conditions here is, for example, to set the intensity of the electromagnetic wave to a value that is larger by a predetermined value. Alternatively, the annealing condition is changed by changing the annealing time. When the operation is not resumed (step S205: NO), the control unit 910 ends the process.
 実施の形態2に係る薄膜基板製造システム100によれば、ロールツーロール方式により薄膜基板を連続的に製造することができる。また、ロールツーロール製造ラインに物性測定装置13を組み込むことにより、製造中の薄膜基板の品質が製造規格から外れている場合、製造ラインを停止することができる。これにより、歩留りの向上を図ることができる。 According to the thin film substrate manufacturing system 100 according to the second embodiment, the thin film substrate can be continuously manufactured by the roll-to-roll method. In addition, by incorporating the physical property measuring device 13 in the roll-to-roll production line, the production line can be stopped when the quality of the thin film substrate being produced is out of the production standard. Thereby, the yield can be improved.
 実施の形態2に係る薄膜基板製造システム100によれば、製造中の薄膜基板の品質が製造規格から外れている場合、短時間で薄膜基板の製造条件を最適化した後、製造を再開することができる。薄膜基板の製造条件を最適化することは、例えば電磁波の強度を変更することである。実施の形態2に係る薄膜基板製造システム100は、かかるフィードバック機能を有しているため、薄膜基板の生産効率を向上させることができる。 According to the thin film substrate manufacturing system 100 according to the second embodiment, when the quality of the thin film substrate being manufactured is out of the manufacturing standards, the manufacturing conditions of the thin film substrate are optimized in a short time, and then the manufacturing is resumed. Can do. Optimizing the manufacturing conditions of the thin film substrate is, for example, changing the intensity of electromagnetic waves. Since the thin film substrate manufacturing system 100 according to the second embodiment has such a feedback function, the production efficiency of the thin film substrate can be improved.
 本実施の形態2は以上の如きであり、その他は実施の形態1と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。 The second embodiment is as described above, and the other parts are the same as those of the first embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
 実施の形態3
 実施の形態3は、実施の形態2に係る薄膜基板製造システム100のアニール装置10を、他のアニール装置に置き換えた形態に関する。
Embodiment 3
The third embodiment relates to a mode in which the annealing apparatus 10 of the thin film substrate manufacturing system 100 according to the second embodiment is replaced with another annealing apparatus.
 図10は、実施の形態3に係るアニール装置20のブロック図である。
 実施の形態3に係るアニール装置20は、実施の形態2に係るアニール装置10の載置台5を含まず、代わりに載置ロール50を含む。
 また、実施の形態3に係るアニール装置20は、放射温度計6の光ファイバ62が基板Kからの輻射光を受ける点で、実施の形態2のアニール装置10と異なる。
FIG. 10 is a block diagram of annealing apparatus 20 according to the third embodiment.
The annealing apparatus 20 according to the third embodiment does not include the mounting table 5 of the annealing apparatus 10 according to the second embodiment, but includes a mounting roll 50 instead.
Further, the annealing apparatus 20 according to the third embodiment is different from the annealing apparatus 10 according to the second embodiment in that the optical fiber 62 of the radiation thermometer 6 receives radiation light from the substrate K.
 載置ロール50は、円柱状又は楕円柱状をなし、処理容器2の底部に形成された開口に、一部嵌入するように取り付けられている。載置ロール50は、図示しない様式で接地されている。載置ロール50は、軸の周りを回転するように構成されており、側面と接する基板Kを移送する機能と基板Kを冷却する機能とがある。
 基板移送部11が基板Kの移送を停止し、基板K及び薄膜Hに電磁波が照射される場合、図示しないシャッタが載置ロール50と処理容器2底部との間の隙間を閉鎖するように構成されている。当該シャッタは、軟らかい金属、例えばインジウム、銅等から形成され、基板移送部11が基板Kの移送を停止した場合、載置ロール50の一部及び処理容器2底部の一部を圧接する。当該シャッタは、基板移送部11が基板Kの移送を再開した場合、載置ロール50と処理容器2底部との間の隙間を開放する。
The mounting roll 50 has a cylindrical shape or an elliptical column shape, and is attached so as to be partially inserted into an opening formed in the bottom of the processing container 2. The mounting roll 50 is grounded in a manner not shown. The mounting roll 50 is configured to rotate around an axis, and has a function of transferring the substrate K in contact with the side surface and a function of cooling the substrate K.
When the substrate transfer unit 11 stops the transfer of the substrate K and the substrate K and the thin film H are irradiated with electromagnetic waves, a shutter (not shown) is configured to close the gap between the mounting roll 50 and the bottom of the processing container 2. Has been. The shutter is made of a soft metal such as indium or copper, and when the substrate transfer unit 11 stops transferring the substrate K, it presses a part of the mounting roll 50 and a part of the bottom of the processing container 2. The shutter opens a gap between the placement roll 50 and the bottom of the processing container 2 when the substrate transfer unit 11 resumes the transfer of the substrate K.
 載置ロール50は、載置ロール本体510、熱電変換素子520及び載置ロール板530を含む。円柱状の載置ロール本体510の外側面に複数の熱電変換素子520が、熱電変換素子520の外側面に円筒状の載置ロール板530が、夫々取り巻くように配置されている。基板Kは、載置ロール板530の最上位の位置に載置する。 The mounting roll 50 includes a mounting roll body 510, a thermoelectric conversion element 520, and a mounting roll plate 530. A plurality of thermoelectric conversion elements 520 are disposed on the outer surface of the columnar mounting roll body 510, and a cylindrical mounting roll plate 530 is disposed on the outer surface of the thermoelectric conversion element 520. The substrate K is placed at the uppermost position of the placement roll plate 530.
 熱電変換素子520の内側面と対向する載置台本体510の縁部には、冷媒流路512が載置台本体510外側面と略平行な円筒状の面に沿って形成されている。冷媒流路512は、冷媒導入管513と冷媒排出管514とを介して、冷媒を供給する冷媒循環器515に接続されている。冷媒循環器515が動作することにより、アニール時に冷媒が冷媒流路512を流通循環し、熱電変換素子520の内側面で発熱した熱を冷媒が奪うように構成されている。これにより、熱電変換素子520の冷却効率が向上する。
 なお、冷媒流路512に温媒を流通循環させることも可能である。
A coolant channel 512 is formed along the cylindrical surface substantially parallel to the outer surface of the mounting table main body 510 at the edge of the mounting table main body 510 facing the inner surface of the thermoelectric conversion element 520. The refrigerant channel 512 is connected to a refrigerant circulator 515 that supplies a refrigerant via a refrigerant introduction pipe 513 and a refrigerant discharge pipe 514. By operating the refrigerant circulator 515, the refrigerant circulates through the refrigerant flow path 512 during annealing, and the refrigerant takes away heat generated on the inner surface of the thermoelectric conversion element 520. Thereby, the cooling efficiency of the thermoelectric conversion element 520 improves.
Note that it is also possible to circulate and circulate the heating medium through the refrigerant flow path 512.
 載置ロール板530は、例えば酸化ケイ素、窒化アルミニウム、炭化ケイ素、ゲルマニウム、シリコン等の材料から製作される。
 なお、載置ロール50に載置ロール板530を設けず、熱電変換素子520の外側面上に、直接基板Kが載置するように構成してもよい。
The mounting roll plate 530 is made of a material such as silicon oxide, aluminum nitride, silicon carbide, germanium, or silicon.
In addition, the mounting roll plate 530 may not be provided on the mounting roll 50, and the substrate K may be directly mounted on the outer surface of the thermoelectric conversion element 520.
 処理容器2の底部には、貫通孔29が形成されており、貫通孔29には光ファイバ62が気密に挿通されている。光ファイバ62は貫通孔29を介して底部を貫通し、その一端は放射温度計本体61と接続されている。光ファイバ62の他端は基板Kの直下まで上方へ延び、基板Kからの輻射光を取り入れる。
 このように、アニール装置20の放射温度計6は、基板Kの温度を測定する。放射温度計6が測定した基板Kの温度は、アニール装置20のコンピュータ9に信号として送信される。コンピュータ9は、放射温度計6からの信号を受信し、基板Kの温度を薄膜Hの温度に換算する。
A through hole 29 is formed at the bottom of the processing container 2, and an optical fiber 62 is inserted into the through hole 29 in an airtight manner. The optical fiber 62 penetrates the bottom through the through hole 29, and one end thereof is connected to the radiation thermometer main body 61. The other end of the optical fiber 62 extends upward to just below the substrate K, and takes in the radiated light from the substrate K.
Thus, the radiation thermometer 6 of the annealing apparatus 20 measures the temperature of the substrate K. The temperature of the substrate K measured by the radiation thermometer 6 is transmitted as a signal to the computer 9 of the annealing apparatus 20. The computer 9 receives the signal from the radiation thermometer 6 and converts the temperature of the substrate K into the temperature of the thin film H.
 実施の形態3に係るアニール装置20によれば、載置ロール50がロール状の形状をなし、回転して基板Kを移送するため、ロールツーロール方式に対応したスムーズな基板Kの移動が可能である。これにより、薄膜基板製造システム100は薄膜基板を効率的に連続生産することができる。載置ロール50は、基板Kを冷却する熱電変換素子520及び冷媒流路512を備えているため、基板Kを冷却することにより、薄膜Hの選択的加熱に寄与する。 According to the annealing apparatus 20 according to the third embodiment, since the mounting roll 50 has a roll shape and rotates to transfer the substrate K, the substrate K can be smoothly moved corresponding to the roll-to-roll method. It is. Thereby, the thin film substrate manufacturing system 100 can efficiently and continuously produce thin film substrates. Since the mounting roll 50 includes the thermoelectric conversion element 520 that cools the substrate K and the coolant channel 512, the mounting roll 50 contributes to selective heating of the thin film H by cooling the substrate K.
 本実施の形態3は以上の如きであり、その他は実施の形態1又は実施の形態2と同様であるので、対応する部分には同一の参照番号を付してその詳細な説明を省略する。 The third embodiment is as described above, and the other parts are the same as those in the first or second embodiment. Therefore, the corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
 1  アニール装置
 8  電磁波供給部
 81 電磁波発生源
 82 導波管
 83 入射アンテナ
 91 制御部
 K  基板
 H  薄膜
 S  試料
 
DESCRIPTION OF SYMBOLS 1 Annealing apparatus 8 Electromagnetic wave supply part 81 Electromagnetic wave generation source 82 Waveguide 83 Incident antenna 91 Control part K Substrate H Thin film S Sample

Claims (11)

  1.  基板及び該基板表面に形成された薄膜に電磁波を照射して加熱し、該薄膜をアニールするアニール装置において、
     所与の前記薄膜の膜厚及び抵抗率に基づいて、前記基板及び薄膜に照射する電磁波の周波数を算出する算出手段と、
     該算出手段が算出した周波数の電磁波を前記基板及び薄膜に照射する電磁波供給手段と
     を備える
     ことを特徴とするアニール装置。
    In an annealing apparatus that heats the substrate and the thin film formed on the surface of the substrate by irradiating with electromagnetic waves, and annealing the thin film,
    Calculating means for calculating the frequency of electromagnetic waves applied to the substrate and the thin film based on the film thickness and resistivity of the given thin film;
    An annealing apparatus comprising: an electromagnetic wave supplying unit that irradiates the substrate and the thin film with an electromagnetic wave having a frequency calculated by the calculating unit.
  2.  前記算出手段は、
     前記薄膜に対する電磁波の浸透深さが該薄膜の膜厚に対応するように、電磁波の周波数を算出するようにしてある
     ことを特徴とする請求項1に記載のアニール装置。
    The calculating means includes
    The annealing apparatus according to claim 1, wherein the frequency of the electromagnetic wave is calculated so that a penetration depth of the electromagnetic wave with respect to the thin film corresponds to a film thickness of the thin film.
  3.  前記電磁波供給手段は、
     前記基板よりも薄膜をより高温に加熱するようにしてある
     ことを特徴とする請求項1又は請求項2に記載のアニール装置。
    The electromagnetic wave supply means includes
    The annealing apparatus according to claim 1, wherein the thin film is heated to a higher temperature than the substrate.
  4.  前記基板を冷却する冷却手段
     を備える
     ことを特徴とする請求項1から請求項3までのいずれか一項に記載のアニール装置。
    The annealing apparatus according to any one of claims 1 to 3, further comprising a cooling unit that cools the substrate.
  5.  基板及び該基板表面に形成された薄膜に電磁波を照射して加熱し、該薄膜をアニールするアニール方法において、
     前記薄膜の膜厚及び抵抗率に基づいて、前記基板及び薄膜に照射する電磁波の周波数を算出し、
     算出した周波数の電磁波を用いて、前記基板よりも薄膜をより高温に加熱する
     ことを特徴とするアニール方法。
    In the annealing method of annealing the thin film by heating the substrate and the thin film formed on the substrate surface by irradiating with electromagnetic waves,
    Based on the film thickness and resistivity of the thin film, calculate the frequency of the electromagnetic wave irradiated to the substrate and the thin film,
    An annealing method, wherein an electromagnetic wave having a calculated frequency is used to heat a thin film to a higher temperature than the substrate.
  6.  前記基板は有機材料からなる
     ことを特徴とする請求項5に記載のアニール方法。
    The annealing method according to claim 5, wherein the substrate is made of an organic material.
  7.  前記基板を冷却する
     ことを特徴とする請求項5又は請求項6に記載のアニール方法。
    The annealing method according to claim 5 or 6, wherein the substrate is cooled.
  8.  巻き出しロールに巻かれた可撓性を有する基板を巻き出し、巻き取りロールに巻き取る移送の過程で、該基板表面に薄膜を形成する成膜装置を設けた薄膜基板製造システムにおいて、
     前記成膜装置が形成した薄膜を任意のアニール条件でアニールする請求項1から請求項4までのいずれか一項に記載のアニール装置と、
     該アニール装置がアニールした薄膜の物性を測定する物性測定装置と
     を含むことを特徴とする薄膜基板製造システム。
    In the thin film substrate manufacturing system provided with a film forming apparatus for forming a thin film on the surface of the substrate in the process of unwinding the flexible substrate wound on the unwinding roll and winding it on the winding roll,
    The annealing apparatus according to any one of claims 1 to 4, wherein the thin film formed by the film forming apparatus is annealed under an arbitrary annealing condition;
    A thin film substrate manufacturing system comprising: a physical property measuring device for measuring physical properties of the annealed thin film.
  9.  前記物性測定装置から信号を受信し、前記成膜装置の動作を制御する制御装置
     を含み、
     前記成膜装置、アニール装置及び物性測定装置は、前記巻き出しロール及び巻き取りロールの間の移送路に沿って配置され、
     前記物性測定装置は、
     所定の信号を前記制御装置に送信する送信手段
     を有し、
     前記制御装置は、
     前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記成膜装置の動作を停止する手段
     を有する
     ことを特徴とする請求項8に記載の薄膜基板製造システム。
    A control device that receives a signal from the physical property measuring device and controls the operation of the film forming device;
    The film forming apparatus, the annealing apparatus, and the physical property measuring apparatus are disposed along a transfer path between the unwinding roll and the winding roll,
    The physical property measuring apparatus is:
    Transmission means for transmitting a predetermined signal to the control device;
    The control device includes:
    The thin film substrate manufacturing system according to claim 8, further comprising means for stopping the operation of the film forming apparatus when the predetermined signal transmitted by the transmitting means of the physical property measuring apparatus is received.
  10.  前記制御装置は、
     前記アニール装置のアニール条件を設定するようにしてあり、
     前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記アニール装置のアニール条件を変更する手段
     を有する
     ことを特徴とする請求項9に記載の薄膜基板製造システム。
    The control device includes:
    Annealing conditions of the annealing apparatus are set,
    The thin film substrate manufacturing system according to claim 9, further comprising means for changing an annealing condition of the annealing apparatus when the predetermined signal transmitted by the transmitting means of the physical property measuring apparatus is received.
  11.  任意の移送速度で、前記基板を巻き出しロールから巻き出して移送し、該基板表面に薄膜が形成された薄膜基板を巻き取りロールに巻き取る基板移送手段
     を含み、
     前記制御装置は、
     前記基板移送手段の移送速度を制御するようにしてあり、
     前記物性測定装置の送信手段が送信した前記所定の信号を受信した場合、前記基板移送手段の移送速度を変更する手段
     を有する
     ことを特徴とする請求項9又は請求項10に記載の薄膜基板製造システム。
     
    Substrate transfer means for unwinding and transferring the substrate from an unwinding roll at an arbitrary transfer speed, and winding the thin film substrate having a thin film formed on the surface of the substrate on a winding roll;
    The control device includes:
    The transfer speed of the substrate transfer means is controlled,
    11. The thin film substrate manufacturing method according to claim 9, further comprising means for changing a transfer speed of the substrate transfer unit when the predetermined signal transmitted by the transmission unit of the physical property measuring apparatus is received. system.
PCT/JP2011/054328 2010-03-01 2011-02-25 Annealing device, annealing method, and thin-film substrate manufacturing system WO2011108463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-044547 2010-03-01
JP2010044547A JP2011181689A (en) 2010-03-01 2010-03-01 Annealing device, annealing method and thin film substrate manufacturing system

Publications (1)

Publication Number Publication Date
WO2011108463A1 true WO2011108463A1 (en) 2011-09-09

Family

ID=44542116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054328 WO2011108463A1 (en) 2010-03-01 2011-02-25 Annealing device, annealing method, and thin-film substrate manufacturing system

Country Status (2)

Country Link
JP (1) JP2011181689A (en)
WO (1) WO2011108463A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070008A (en) * 2011-09-26 2013-04-18 Toshiba Corp Semiconductor device and manufacturing method of the same
WO2015049205A1 (en) * 2013-10-01 2015-04-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for the continuous production of porous silicon layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717598B2 (en) * 2011-09-27 2015-05-13 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221209A (en) * 1985-07-19 1987-01-29 Nec Corp High-frequency annealing method
JPH01280311A (en) * 1988-05-06 1989-11-10 Matsushita Electron Corp Heating furnace
JPH07235504A (en) * 1993-12-28 1995-09-05 Canon Inc Deposited film forming method and device therefor
JPH1070130A (en) * 1996-08-26 1998-03-10 Sanyo Electric Co Ltd Heat-treating conductive thin film using a-c magnetic field
JP2003068669A (en) * 2001-08-27 2003-03-07 Denso Corp Method and device for heat treatment to semiconductor wafer
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material
JP2005139498A (en) * 2003-11-05 2005-06-02 Bridgestone Corp Method for treating thin film, crystalline thin film, film with crystalline titanium oxide, photocatalytic film, semiconductor electrode for dye-sensitization type solar cell and apparatus for treating thin film
JP2007258286A (en) * 2006-03-22 2007-10-04 Tokyo Electron Ltd Heat treatment apparatus and method, and storage medium
JP2009270133A (en) * 2008-04-30 2009-11-19 Fujifilm Corp Method and apparatus for manufacturing functional film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221209A (en) * 1985-07-19 1987-01-29 Nec Corp High-frequency annealing method
JPH01280311A (en) * 1988-05-06 1989-11-10 Matsushita Electron Corp Heating furnace
JPH07235504A (en) * 1993-12-28 1995-09-05 Canon Inc Deposited film forming method and device therefor
JPH1070130A (en) * 1996-08-26 1998-03-10 Sanyo Electric Co Ltd Heat-treating conductive thin film using a-c magnetic field
JP2003068669A (en) * 2001-08-27 2003-03-07 Denso Corp Method and device for heat treatment to semiconductor wafer
JP2003096556A (en) * 2001-09-20 2003-04-03 Fuji Xerox Co Ltd Method and apparatus for depositing thin film of crystalline compound on sheet base material
JP2005139498A (en) * 2003-11-05 2005-06-02 Bridgestone Corp Method for treating thin film, crystalline thin film, film with crystalline titanium oxide, photocatalytic film, semiconductor electrode for dye-sensitization type solar cell and apparatus for treating thin film
JP2007258286A (en) * 2006-03-22 2007-10-04 Tokyo Electron Ltd Heat treatment apparatus and method, and storage medium
JP2009270133A (en) * 2008-04-30 2009-11-19 Fujifilm Corp Method and apparatus for manufacturing functional film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070008A (en) * 2011-09-26 2013-04-18 Toshiba Corp Semiconductor device and manufacturing method of the same
WO2015049205A1 (en) * 2013-10-01 2015-04-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for the continuous production of porous silicon layers
US10790170B2 (en) 2013-10-01 2020-09-29 Fraunhofer-Gesellscahft zur Foerderung der angewandten Forschung e.V. Device and method for continuous production of porous silicon layers

Also Published As

Publication number Publication date
JP2011181689A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
WO2014103633A1 (en) Electromagnetic heating device and electromagnetic heating method
EP2576860B1 (en) Method for providing lateral thermal processing of thin films on low-temperature substrates
US8521013B2 (en) Temperature sensing device and heating device
US20070224839A1 (en) Heat treating apparatus, heat treating method and storage medium
KR20010075716A (en) Fast heating and cooling apparatus for semiconductor wafers
WO2012115165A1 (en) Film forming method and film forming device
US20150147894A1 (en) Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-Transitory Computer-Readable Recording Medium
WO2011108463A1 (en) Annealing device, annealing method, and thin-film substrate manufacturing system
JP2014056927A (en) Microwave annealing apparatus and method of manufacturing semiconductor device
JP2012124456A (en) Substrate processing apparatus and manufacturing method of semiconductor device
US11127608B2 (en) Heating element, substrate processing apparatus, and method of manufacturing semiconductor device
US6736930B1 (en) Microwave plasma processing apparatus for controlling a temperature of a wavelength reducing member
US20140034636A1 (en) Microwave irradiation apparatus
US20140038430A1 (en) Method for processing object
CN112437975A (en) System and method for heat treatment and temperature measurement of workpieces at low temperatures
CN107475681B (en) Method for uniformly controlling temperature of large-area flexible substrate
Sameshima et al. Carbon heating tube used for rapid heating system
Herskowits et al. Silicon heating by a microwave-drill applicator with optical thermometry
WO2012115108A1 (en) Wiring formation method and device
JP2004315861A (en) Thin film forming system and thin film forming method
KR20140118853A (en) Microwave heating apparatus
TWI433253B (en) Semiconductor apparatus and the movable susceptor therein
CN115410949A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and storage medium
CN203456424U (en) Temperature measuring device for rapid heat treatment equipment
Hebb et al. Furnace-based rapid thermal processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750573

Country of ref document: EP

Kind code of ref document: A1