WO2011108316A1 - Sprocket support structure - Google Patents

Sprocket support structure Download PDF

Info

Publication number
WO2011108316A1
WO2011108316A1 PCT/JP2011/051810 JP2011051810W WO2011108316A1 WO 2011108316 A1 WO2011108316 A1 WO 2011108316A1 JP 2011051810 W JP2011051810 W JP 2011051810W WO 2011108316 A1 WO2011108316 A1 WO 2011108316A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprocket
torque converter
annular groove
converter case
ball bearing
Prior art date
Application number
PCT/JP2011/051810
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 野老
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2011108316A1 publication Critical patent/WO2011108316A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • F16H41/28Details with respect to manufacture, e.g. blade attachment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing

Definitions

  • the present invention relates to a sprocket support structure in which a sprocket fixed to the pump impeller side of a torque converter and rotating about a central axis is rotatably supported with respect to a torque converter case.
  • an automatic transmission including a conventional torque converter for example, as shown in Patent Document 1, an automatic transmission including an oil pump disposed radially away from an input shaft to which rotation of the torque converter is transmitted is provided. is there.
  • a mechanism for driving such an oil pump a drive side sprocket to which the rotation of the pump impeller of the torque converter is transmitted and a driven side sprocket installed on the oil pump side are connected by a chain.
  • the drive-side sprocket is fixed to the outer periphery of a sleeve (torque converter sleeve) attached to the impeller shell of the torque converter, and rotates integrally with the sleeve around the input shaft.
  • the axial end surface of the sprocket flange and the axial direction of the torque converter case are provided.
  • Thrust needle bearing installed between the end face and receiving thrust load, and press fit into the radial gap between the inner peripheral surface of the opening formed in the torque converter case and the outer peripheral surface of the sprocket to apply the radial load.
  • a receiving bush (bearing cylinder) is installed. The sprocket is rotatably supported with respect to the torque converter case by both the thrust needle bearing and the bush.
  • the conventional sprocket support structure shown in Patent Document 1 has the following problems.
  • (1) The thrust needle bearing installed in the axial clearance between the sprocket flange and the torque converter case makes it difficult to reduce the axial dimensions of the sprocket and its support structure.
  • the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the radial gap between the inner peripheral surface of the opening of the torque converter case and the outer peripheral surface of the sprocket. Therefore, it is difficult to reduce the size in the radial direction of the sprocket and its support structure.
  • the support flange has a bag structure (concave shape) that opens to the outer surface of the torque converter case. For this reason, both the annular groove for press-fitting the bush and the inner surface of the support flange are usually processed from the outer surface side of the torque converter case. Then, the annular groove into which the oil seal is press-fitted must be processed in a separate process from the opposite side (the inner surface side of the torque converter case).
  • the present invention has been made in view of the above-mentioned points, and an object of the present invention is to reduce the size of the sprocket and its support structure, to reduce the friction loss associated with the rotation of the sprocket, and to process the torque converter case. It is an object of the present invention to provide a sprocket support structure capable of simplifying the above.
  • a sprocket support structure includes a torque converter case (11) that houses a torque converter (TC), and a sleeve that rotates integrally with an impeller shell (48) of the torque converter (TC) ( 20), a sprocket (30) attached to the sleeve (20) and rotating about the central axis of the torque converter (TC), and a bearing for rotatably supporting the sprocket (30) with respect to the torque converter case (11) (40) and a seal member (39) for sealing a radial gap between the torque converter case (11) and the sleeve (20), wherein the bearing (40)
  • the inner peripheral surface (35a) of the opening (35) formed in the converter case (11) and the sprocket ( 0) is a ball bearing (40) interposed in a radial gap between the outer peripheral surface (31a) and the ball bearing (35a) on the inner peripheral surface (35a) of the opening (35) of the torque converter
  • a first annular groove (36) for fitting (40) and a second annular groove (37) for fitting the seal member (39) are formed, and the first annular groove (36) is formed. Is set to have a diameter equal to or larger than that of the second annular groove (37).
  • the first annular groove (36) and the second annular groove (37) are provided on the outer surface (11a) side and the inner surface (11b) side of the torque converter case (11), respectively.
  • a transmission mechanism (4) having a plurality of rotating shafts (10, 12, 8b) is installed outside the outer surface (11a) of the torque converter case (11), and the torque converter case (11)
  • a support flange (57, 58, 59) for supporting the rotating shaft (10, 12, 8b) is formed on the outer surface (11a) of the shaft, and the support flange (57, 58, 59) has a torque.
  • It may be a bag structure that opens to the outer surface (11a) of the converter case (11).
  • the ball bearing is used as the bearing that rotatably supports the sprocket, so that the axial dimension and the radial dimension of the sprocket and its support structure can be reduced compared to the conventional structure. Can be achieved. That is, in the conventional structure shown in Patent Document 1, the axial length of the sprocket and its supporting structure is set by the thrust needle bearing installed between the axial end face of the sprocket and the axial end face of the torque converter case.
  • the axial dimension of the sprocket support structure can be shortened by installing a ball bearing in the radial gap between the inner peripheral surface of the opening of the torque converter case and the outer peripheral surface of the sprocket.
  • the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the gap between the inner peripheral surface of the torque converter case and the outer peripheral surface of the sprocket.
  • the radial dimensions of the sprocket and its support structure have increased, but in this embodiment, the installation of the bush is omitted and the sprocket teeth are arranged in the axial direction with respect to the ball bearing. Therefore, the radial dimension of the sprocket support structure can be shortened. Accordingly, it is possible to reduce the axial dimension and the radial dimension of the sprocket support structure.
  • the sprocket support structure of the present invention since the sprocket is configured to be supported by a ball bearing, even in an environment where sufficient lubrication oil cannot be supplied compared to the conventional sprocket support structure using a bush, Fretting wear can be reduced by using a ball bearing with strong toughness against wear.
  • the first annular groove for fitting the ball bearing formed in the torque converter case is set to have a diameter that is the same as or larger than the second annular groove for fitting the seal member.
  • the second annular groove can be processed from the same side as the first annular groove. Therefore, the processing direction of a 2nd annular groove can be united with the processing direction of a 1st annular groove and another part. Therefore, the processing steps of the torque converter case can be reduced, and work efficiency can be improved.
  • a support flange for supporting the rotating shaft of the transmission mechanism portion is formed on the outer surface of the torque converter case, and the support flange has a bag structure that opens to the outer surface of the torque converter case. Since the machining directions of the first annular groove and the second annular groove can be matched with the machining directions of the inner surfaces of these support flanges, the machining process of the torque converter case can be effectively reduced.
  • the processing accuracy such as the degree of position of each part of the torque converter case can be improved, so that the life of the needle bearing press-fitted into the torque converter case can be improved and the gear of the transmission mechanism can be rotated. Reduction of generated noise can be expected.
  • the conventional sprocket support structure with bushes includes, as an assembly process, a step of processing an annular groove for press-fitting the bush into the torque converter case, a step of press-fitting the bush into the annular groove, and an inner peripheral surface of the press-fitted bush.
  • the sprocket support structure of the present invention includes a ball bearing instead of the bush, so that the step of press-fitting the bush and the step of processing the inner peripheral surface of the bush are performed. Can be omitted. Thereby, the assembly process of a sprocket support structure can be simplified.
  • the movement of the ball bearing (40) in the thrust direction relative to the first annular groove (36) is restricted between the ball bearing (40) and the first annular groove (36).
  • the first locking member (73) is installed between the ball bearing (40) and the sprocket (30) to restrict the movement of the sprocket (30) in the thrust direction relative to the ball bearing (40).
  • the second locking member (75) may be installed.
  • the ball bearing can be prevented from sliding in the thrust direction with respect to the torque converter case, and the sprocket can be prevented from sliding in the thrust direction with respect to the ball bearing. Therefore, it is possible to fit the sprocket and the ball bearing in a non-slidable state by press fitting or the like. Thereby, the clearance between a sprocket and a ball bearing can be made small, and the play of a sprocket can be suppressed few.
  • the ball bearing can be fitted in a state in which the movement in the thrust direction is restricted with respect to the first annular groove. It is possible to set the groove to the same diameter.
  • first annular groove and the second annular groove can be set to have the same diameter as described above, the first annular groove and the second annular groove can be processed in one step from the same direction. It becomes possible to reduce.
  • symbol in said parenthesis shows the code
  • the sprocket and the support structure can be downsized, the friction loss associated with the rotation of the sprocket can be reduced, the torque converter case processing process and the sprocket support structure assembly process can be efficiently performed, and the torque converter.
  • the processing accuracy of each part of the case can be improved.
  • FIG. 1 is a cross-sectional view showing a part of a transmission including a sprocket support structure according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing the sprocket support structure of the first embodiment.
  • FIG. 3 is a main cross-sectional view showing an example of the overall configuration of the transmission. In FIG. 3, only the torque converter case 11 and the bearings 60, 61, 62 described later are shaded for convenience of explanation.
  • the transmission 1 shown in FIGS. 1 to 3 includes a torque converter TC and a speed change mechanism 4 that changes the rotation input from the torque converter TC.
  • a metal V-belt 14 is stretched between a drive pulley 10 a fixed to the drive pulley shaft 10 and a driven pulley 12 a fixed to the driven pulley shaft 12.
  • a belt type continuously variable transmission mechanism 5 is provided.
  • the transmission 1 also includes a main shaft 2 to which a driving force of a driving source (not shown) such as an engine is transmitted via a torque converter TC.
  • a forward clutch 6 is provided on the main shaft 2. It is arranged.
  • a reverse clutch 7 is disposed on the drive pulley shaft 10. Between the main shaft 2 and the drive pulley shaft 10, the gear mechanism 6 a that transmits the driving force from the main shaft 2 to the drive pulley shaft 10 by the engagement of the forward clutch 6 and the reverse clutch 7 is engaged. Is provided with a gear mechanism 7 a for transmitting the driving force from the main shaft 2 to the driving pulley shaft 10.
  • the driving pulley shaft 10 of the belt type continuously variable transmission mechanism 5 is rotated by the driving force transmitted from the main shaft 2.
  • the driving force from the driven pulley shaft 12 is transmitted to the left and right wheels (not shown) via the differential mechanism 8 and the left and right axle shafts 8a and 8b.
  • description is abbreviate
  • the specific configuration of the speed change mechanism 4 to which the driving force of the main shaft 2 is transmitted is not limited to the belt type continuously variable speed change mechanism 5 described above. It may be a type transmission mechanism.
  • the torque converter TC is housed in a bottomed container-shaped torque converter case 11. Further, a transmission case 19 that accommodates components of the speed change mechanism section 4 such as the belt-type continuously variable transmission mechanism 5 is attached to the outer surface (bottom face) 11 a in the axial direction of the torque converter case 11. Further, on the outer surface 11a of the torque converter case 11, a support flange 57 for supporting bearings 60, 61, 62 attached to the drive pulley shaft 10, the driven pulley shaft 12, the axle shaft 8b and the like provided in the speed change mechanism unit 4, 58 and 59 are formed. These support flanges 57, 58 and 59 will be described later.
  • the torque converter TC includes a pump impeller 41 driven by the crankshaft 3, a turbine runner 42 coupled to the main shaft 2 in a state of facing the pump impeller 41, a pump impeller 41, and a turbine runner And a one-way clutch 44 provided between the stator 43 and the stator shaft 13.
  • a lockup clutch piston 46 with a damper is disposed between the turbine runner 42 and the engine drive plate 45.
  • An impeller shell 48 is connected to the end of the converter cover 47 opposite to the crankshaft 3, and a torque converter sleeve (hereinafter simply referred to as “sleeve”) is connected to the inner peripheral side of the impeller shell 48. 20 is connected.
  • the outside of the turbine runner 42 is covered with a turbine shell 52.
  • An inner peripheral portion of the turbine shell 52 is fixed to the main shaft 2 via a hub 53.
  • a one-way clutch 44 that supports the stator 43 is splined to the stator shaft 13.
  • the stator shaft 13 includes a hollow cylindrical portion 13a through which the main shaft 2 passes, and a substantially flat flange portion 13b extending radially outward from an end portion of the cylindrical portion 13a on the transmission mechanism portion 4 side.
  • a protruding portion 15 for supporting the outer diameter side of the sprocket 30 is formed on the side surface of the flange portion 13b on the torque converter TC side.
  • a gear-type oil pump (driven device) 16 is installed at a position spaced radially outward from the main shaft 2.
  • the oil pump 16 is driven by the rotation of the oil pump drive shaft 16a.
  • the oil pump drive shaft 16a extends in parallel with the main shaft 2 from the oil pump 16, and a driven sprocket 17 is attached to the tip of the oil pump drive shaft 16a.
  • a drive-side sprocket 30 is fitted on the outer peripheral side of the sleeve 20 around the main shaft 2.
  • a chain 18 is stretched between the drive-side sprocket 30 and the driven-side sprocket 17.
  • the oil pump 16 is operated by transmitting the rotation of the drive-side sprocket 30 to the driven-side sprocket 17 via the chain 18.
  • the sleeve 20 installed on the inner side of the sprocket 30 extends from the center of the torque converter TC toward the speed change mechanism portion 4, and has a substantially cylindrical shape surrounding the outer side of the cylindrical portion 13 a of the stator shaft 13.
  • the cylindrical portion 21 is provided.
  • the cylindrical portion 21 has a diameter dimension that can be fitted to the inner peripheral side of the sprocket 30.
  • An O-ring (seal member) 23 is installed at a position on the torque converter TC side on the outer peripheral surface 21 a of the cylindrical portion 21.
  • the sprocket 30 has a substantially cylindrical main body 31.
  • Sprocket teeth 32 for engaging the chain 18 are formed near the center in the axial direction on the outer peripheral surface 31 a of the main body 31.
  • a ball bearing 40 described later is fitted to a position on the torque converter TC side on the outer peripheral surface 31 a of the main body 31.
  • the speed change mechanism portion 4 side on the outer peripheral surface 31 a of the main body portion 31 faces the protruding portion 15 provided on the flange portion 13 b of the stator shaft 13 with a slight gap in the radial direction.
  • an O-ring 33 for sealing a gap with the protruding portion 15 is installed.
  • the end of the inner peripheral surface 30 a of the sprocket 30 on the transmission mechanism portion 4 side is spline-fitted to the outer peripheral surface 21 a of the cylindrical portion 21.
  • the sprocket 30 is rotatably supported by a ball bearing 40 with respect to the torque converter case 11.
  • the ball bearing 40 includes an outer ring 40 a that is fitted to the inner circumferential surface 35 a of the opening 35 formed in the torque converter case 11, and an inner ring 40 b that is fitted to the outer circumferential surface 31 a of the sprocket 30.
  • An oil seal (seal member) 39 is press-fitted between the inner peripheral surface 35 a of the opening 35 of the torque converter case 11 and the outer peripheral surface 20 a of the sleeve 20.
  • the oil seal 39 is disposed adjacent to the ball bearing 40 on the torque converter TC side.
  • an oil passage 38 surrounded by the ball bearing 40 and the oil seal 39 is defined in the gap between the inner peripheral surface 35a of the opening 35 of the torque converter case 11 and the outer peripheral surface 20a of the sleeve 20. Lubricating oil is supplied to the ball bearing 40 through the oil passage 38.
  • a first annular groove 36 for fitting the ball bearing 40 and a second annular groove 37 for fitting the oil seal 39 are formed on the inner peripheral surface 35 a of the opening 35 of the torque converter case 11. Is formed.
  • the ball bearing 40 is press-fitted into the clearance with the outer peripheral surface 31 a of the sprocket 30 in the first annular groove 36, and the oil seal 39 is connected to the outer peripheral surface 20 a of the sleeve 20 in the second annular groove 37. It is press-fitted into the gap.
  • the mounting state of the ball bearing 40 will be described in detail.
  • the outer ring 40a of the ball bearing 40 is press-fitted and fitted into the inner peripheral surface 35a of the first annular groove 36.
  • the inner ring 40b is fitted in a so-called loose state (relatively movable state) to the outer peripheral surface 31a of the sprocket 30, so that the inner ring 40b and the sprocket 30 slide with each other.
  • the reason why the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b are fitted in a loose state is that the outer periphery of the sprocket 30 that is a fitting portion between the iron members due to a temperature change inside the transmission 1. This is to prevent the clearance of the sliding surface between the surface 31a and the inner ring 40b from fluctuating.
  • the sprocket 30 is supported while being slidable in the thrust direction by fitting the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b in a loose state. Yes.
  • the sprocket 30 is in a state of being pushed toward the torque converter TC by the hydraulic pressure of the hydraulic oil in the gap with the flange portion 13 b of the stator shaft 13. Therefore, the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b do not slide during steady operation of the transmission 1.
  • first annular groove 36 and the second annular groove 37 are arranged coaxially on the outer surface 11a side and the inner surface 11b side of the torque converter case 11, and are in communication with each other.
  • the diameter of the first annular groove 36 is set to be larger than the diameter of the second annular groove 37.
  • the bearing for rotatably supporting the sprocket 30 is the ball bearing 40, so that the sprocket 30 and its support structure can be downsized compared to the conventional structure. That is, in the conventional structure shown in Patent Document 1, the axial dimension of the sprocket and its support structure can be reduced by the thrust needle bearing installed between the axial end face of the sprocket and the axial end face of the torque converter case.
  • the ball bearing 40 is installed in the radial gap between the inner peripheral surface 35a of the opening 35 of the torque converter case 11 and the outer peripheral surface 31a of the sprocket 30 in the present embodiment.
  • the axial dimension of the sprocket support structure can be shortened.
  • the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the gap between the inner peripheral surface of the torque converter case and the outer peripheral surface of the sprocket.
  • the sprocket teeth 32 are arranged side by side in the axial direction with respect to the ball bearing 40.
  • the sprocket 30 is configured to be supported by the ball bearing 40, thereby reducing the friction loss associated with the rotation of the sprocket 30 compared to the support structure using the conventional bush. it can. That is, since the periphery of the sprocket 30 is a place where it is difficult to form a lubricating oil introduction path, it is difficult to effectively guide the lubricating oil to the bearing that supports the sprocket 30. Therefore, the conventional support structure using bushes has a problem that fretting wear is likely to occur because sufficient lubricating oil cannot be supplied to the bushes.
  • the sprocket 30 is configured to be supported by the ball bearing 40, even if sufficient lubricating oil cannot be supplied to the ball bearing 40, In comparison, fretting wear can be reduced by using a ball bearing that is tough against wear. Further, unlike the conventional configuration, it is not necessary to derive a part of the hydraulic oil in the torque converter and guide it to the periphery of the sprocket, so that it is not necessary to reduce the hydraulic pressure in the torque converter TC. As a result, it is possible to prevent the responsiveness of the lock-up clutch and the lock-up clutch capacity from being lowered, and the torque converter can be controlled satisfactorily. In addition, the configuration around the sprocket 30 can be simplified.
  • the conventional sprocket support structure with bushes includes, as an assembling process, a step of processing an annular groove for press-fitting the bush into the torque converter case, a step of press-fitting the bush into the annular groove, and a process for processing the inner diameter surface of the press-fitted bush.
  • the ball bearing 40 is installed instead of the bush, so that the step of press-fitting the bush and the step of processing the inner diameter surface of the bush are performed. Can be omitted. Therefore, the assembly process of the sprocket support structure can be simplified.
  • the torque converter case 11 includes a support flange for supporting a bearing 60 attached to the drive pulley shaft 10 in addition to the first annular groove 36 and the second annular groove 37 provided in the opening 35.
  • a support flange 59 for supporting the bearing 62 attached to the axle shaft 8b, and the like are formed.
  • These support flanges 57, 58, 59 are open to the outer surface 11 a of the torque converter case so that the hydraulic oil (lubricating oil) in the transmission case 19 can be held therein and the bearings 60, 61, 62 can be lubricated.
  • the diameter dimension of the first annular groove 36 is set to be larger than the diameter dimension of the second annular groove 37.
  • the second annular groove 37 can be processed from the first annular groove 36 side. Therefore, the processing direction of the second annular groove 37 can be matched with the processing direction of the first annular groove 36. it can. Therefore, both the first annular groove 36 and the second annular groove 37 can be processed from the outer surface 11 a side of the torque converter case 11.
  • FIG. 4 is a partially enlarged cross-sectional view showing a sprocket support structure according to a second embodiment of the present invention.
  • the sprocket support structure of the present embodiment includes a circlip (first locking member) 73 installed between the outer ring 40 a of the ball bearing 40 and the inner peripheral surface 35 a of the opening 35, the inner ring 40 b of the ball bearing 40, and the sprocket 30.
  • the circlip (second locking member) 75 installed between the outer peripheral surface 31a of the ball bearing 40 and the sprocket 30 in the thrust direction is moved by the circlips 73 and 75 with respect to the torque converter case 11. It is configured to regulate.
  • the circlip 73 installed between the outer ring 40a of the ball bearing 40 and the inner peripheral surface 35a of the opening 35 is a locking member made of a substantially C-shaped strip made of elastic metal, for example. It is fitted between an annular locking groove 73b provided on the outer peripheral surface of the outer ring 40a and an annular locking groove 73a formed on the inner peripheral surface 35a of the opening 35.
  • the circlip 73 restricts the ball bearing 40 from moving in the thrust direction with respect to the inner peripheral surface 35 a of the opening 35.
  • the circlip 75 installed between the inner ring 40b of the ball bearing 40 and the outer peripheral surface 31a of the sprocket 30 is a locking member made of, for example, a substantially C-shaped strip made of elastic metal, like the circlip 73. And is fitted into an annular locking groove 75a provided on the outer peripheral surface 31a of the sprocket 30.
  • the circlip 75 restricts the movement of the ball bearing 40 in the thrust direction by sandwiching the inner ring 40b of the ball bearing 40 between the circlip 75 and the step portion 31b provided on the outer peripheral surface 31a of the sprocket 30. This restricts the sprocket 30 from moving in the thrust direction with respect to the ball bearing 40.
  • the circlip 73 installed between the outer ring 40 a of the ball bearing 40 and the inner peripheral surface 35 a of the opening 35, the inner ring 40 b of the ball bearing 40, and the outer peripheral surface 31 a of the sprocket 30.
  • the movement of the ball bearing 40 and the sprocket 30 in the thrust direction with respect to the torque converter case 11 is restricted by the circlip 75 installed therebetween.
  • the outer ring 40a of the ball bearing 40 is press-fitted into the inner peripheral surface 35a of the first annular groove 36, so that the ball against the first annular groove 36 is obtained.
  • the movement of the bearing 40 in the thrust direction was restricted.
  • the circlip 73 is installed, so that the movement of the ball bearing 40 in the thrust direction with respect to the first annular groove 36 can be restricted. Therefore, the inner peripheral surface 35a of the first annular groove 36 and the outer ring 40a of the ball bearing 40 can be fitted in a so-called loose state.
  • a circlip 73 for locking the ball bearing 40 to the first annular groove 36 is provided as in the present embodiment, the circlip 73 causes a thrust to the first annular groove 36.
  • the ball bearing 40 can be fitted in a state in which the movement in the direction is restricted. Thereby, although detailed illustration is omitted, even if the first annular groove 36 and the second annular groove 37 are set to have the same diameter, there is no possibility that the ball bearing 40 is shifted to the oil seal 39 side.
  • the 1st annular groove 36 and the 2nd annular groove 37 can be set to the same diameter size as mentioned above, since the 1st annular groove 36 and the 2nd annular groove 37 can be processed only by one process from the same direction, Further reduction in the number of processing steps of the torque converter case 11 is possible.
  • the diameter of the oil seal 39 can be kept small. The manufacturing cost can be reduced. Further, since the pressure receiving area of the oil seal 39 is reduced, durability against the oil seal 39 can be improved.
  • a transmission to which the present invention is applied includes a sprocket that is attached to a sleeve (torque converter sleeve) and rotates around the center axis of the torque converter, and a bearing that rotatably supports the sprocket with respect to the torque converter case.
  • the other specific configuration is not limited to the transmission provided with the belt-type continuously variable transmission mechanism shown in the above embodiment, but the transmission provided with other mechanisms such as a planetary gear mechanism. It may be.
  • the driven device driven by the rotation of the sprocket according to the present invention is not limited to the oil pump 16 shown in the above embodiment, and may be other types of devices.

Abstract

The disclosed sprocket support structure is compact, reduces friction loss accompanying sprocket rotation, and simplifies the process of machining a torque converter case. The sprocket support structure is provided with a bearing (40) for supporting the sprocket (30) so as to allow free rotation relative to the torque converter case (11), and an oil seal (39) which seals the gap between the torque converter case (11) and a sleeve (20). The bearing (40) is a ball bearing disposed in the radial gap between the inner surface (35a) of an opening (35) formed in the torque converter case (11) and the outer surface (31a) of the sprocket. Further, a first annular groove (36) for fitting the ball bearing (40) provided in the torque converter case (11) has a larger radius than that of a second annular groove (37) for fitting the oil seal (39). By this means, the machining direction of the second annular groove (37) can be identical to that of the first annular groove (36).

Description

スプロケット支持構造Sprocket support structure
 本発明は、トルクコンバータのポンプインペラ側に固定されて中心軸回りに回転するスプロケットをトルクコンバータケースに対して回転自在に支持してなるスプロケット支持構造に関する。 The present invention relates to a sprocket support structure in which a sprocket fixed to the pump impeller side of a torque converter and rotating about a central axis is rotatably supported with respect to a torque converter case.
 従来のトルクコンバータを備えた自動変速機では、例えば、特許文献1に示すように、トルクコンバータの回転が伝達される入力軸に対して径方向に離間して配置したオイルポンプを備えたものがある。このようなオイルポンプを駆動するための機構として、トルクコンバータのポンプインペラの回転が伝達される駆動側のスプロケットと、オイルポンプ側に設置した従動側のスプロケットとの間をチェーンで連結してなる駆動機構がある。このような駆動機構では、駆動側のスプロケットは、トルクコンバータのインペラシェルに取り付けたスリーブ(トルクコンバータスリーブ)の外周に固定されており、入力軸の周りでスリーブと一体に回転するようになっている。 In an automatic transmission including a conventional torque converter, for example, as shown in Patent Document 1, an automatic transmission including an oil pump disposed radially away from an input shaft to which rotation of the torque converter is transmitted is provided. is there. As a mechanism for driving such an oil pump, a drive side sprocket to which the rotation of the pump impeller of the torque converter is transmitted and a driven side sprocket installed on the oil pump side are connected by a chain. There is a drive mechanism. In such a drive mechanism, the drive-side sprocket is fixed to the outer periphery of a sleeve (torque converter sleeve) attached to the impeller shell of the torque converter, and rotates integrally with the sleeve around the input shaft. Yes.
 特許文献1の駆動機構では、駆動側のスプロケット(第1スプロケット)をトルクコンバータケースに対して回転自在に支持する支持構造として、スプロケットのフランジ部における軸方向の端面とトルクコンバータケースにおける軸方向の端面との間に設置したスラスト方向の荷重を受けるスラストニードルベアリングと、トルクコンバータケースに形成した開口部の内周面とスプロケットの外周面との径方向の隙間に圧入されてラジアル方向の荷重を受けるブッシュ(軸受筒)とが設置されている。スプロケットは、これらスラストニードルベアリングとブッシュとの両方でトルクコンバータケースに対して回転自在に支持されている。 In the drive mechanism of Patent Document 1, as a support structure that rotatably supports the drive-side sprocket (first sprocket) with respect to the torque converter case, the axial end surface of the sprocket flange and the axial direction of the torque converter case are provided. Thrust needle bearing installed between the end face and receiving thrust load, and press fit into the radial gap between the inner peripheral surface of the opening formed in the torque converter case and the outer peripheral surface of the sprocket to apply the radial load. A receiving bush (bearing cylinder) is installed. The sprocket is rotatably supported with respect to the torque converter case by both the thrust needle bearing and the bush.
特開2006-64009号公報JP 2006-64009 A
 しかしながら、特許文献1に示す従来のスプロケット支持構造には、下記の課題がある。
 (1)スプロケットのフランジ部とトルクコンバータケースとの軸方向の隙間に設置したスラストニードルベアリングによって、スプロケット及びその支持構造の軸方向寸法の小型化が難くなっている。また、スラストニードルベアリングをスプロケット歯の内径側の側面で支持していることと、トルクコンバータケースの開口部の内周面とスプロケットの外周面との径方向の隙間にブッシュを設置していることで、スプロケット及びその支持構造の径方向寸法の小型化が難くなっている。
However, the conventional sprocket support structure shown in Patent Document 1 has the following problems.
(1) The thrust needle bearing installed in the axial clearance between the sprocket flange and the torque converter case makes it difficult to reduce the axial dimensions of the sprocket and its support structure. In addition, the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the radial gap between the inner peripheral surface of the opening of the torque converter case and the outer peripheral surface of the sprocket. Therefore, it is difficult to reduce the size in the radial direction of the sprocket and its support structure.
 (2)スプロケットの周辺は、潤滑油の導入路を形成し難い箇所であるため、スプロケットを支持するブッシュに対して潤滑油を効果的に導くことが難しい。そのため、ブッシュに対する潤滑油の供給が不十分となり、フレッティング磨耗が発生し易くなるという問題がある。また、スプロケットを支持するブッシュの周辺に潤滑油を導くための対策として、トルクコンバータ内の作動油の一部を導出してブッシュに導く潤滑穴を設けることも行われている。しかしながら、トルクコンバータ内の作動油を導出してブッシュに導くと、トルクコンバータ内の油圧が低下するおそれがある。これにより、ロックアップクラッチの応答性やロックアップクラッチ容量が低下し、トルクコンバータの制御に影響が出ることが懸念される。 (2) Since the periphery of the sprocket is difficult to form a lubricating oil introduction path, it is difficult to effectively guide the lubricating oil to the bush supporting the sprocket. Therefore, there is a problem that the supply of lubricating oil to the bush becomes insufficient and fretting wear is likely to occur. In addition, as a countermeasure for guiding the lubricating oil to the periphery of the bush supporting the sprocket, providing a lubricating hole for leading a part of the hydraulic oil in the torque converter to the bush is also performed. However, if the hydraulic oil in the torque converter is led out to the bush, the hydraulic pressure in the torque converter may be reduced. As a result, the responsiveness of the lockup clutch and the lockup clutch capacity are reduced, and there is a concern that the control of the torque converter will be affected.
 (3)特許文献1に示す従来構造では、トルクコンバータケースのスプロケットを支持する部分には、ブッシュを圧入するための環状溝と、オイルシールを圧入するための環状溝とが形成されている。そして、ブッシュを圧入する環状溝よりも、オイルシールを圧入する環状溝の方が大きな径寸法に設定されている(特許文献1の図1参照)。しかしながら、この構成では、トルクコンバータケースの加工を行う際、オイルシールを圧入する環状溝の加工方向が、ブッシュを圧入する環状溝を含めたトルクコンバータケースの他の部分の加工方向に対して逆方向になってしまうという問題がある。その理由は、トルクコンバータケースの外面(変速機構部側の面)には、ブッシュを圧入する環状溝と共に、変速機が備える回転軸(プーリ軸やディファレンシャル軸など)の軸受を支持する支持フランジが形成されている。支持フランジは、トルクコンバータケースの外面に開口する袋構造(凹形状)になっている。そのため、ブッシュを圧入する環状溝と支持フランジの内面はいずれもトルクコンバータケースの外面側から加工するのが通常である。そうすると、オイルシールを圧入する環状溝は、それらと反対側(トルクコンバータケースの内面側)から別工程で加工しなければならない。これにより、トルクコンバータケースの加工に要する工程が多くなり、作業の煩雑化を招くおそれがある。また、ブッシュを圧入する環状溝とオイルシールを圧入する環状溝の加工方向が逆であると、オイルシールとブッシュの位置度などの精度を高めることができず、オイル漏れに対する品質が低下するおそれがある。 (3) In the conventional structure shown in Patent Document 1, an annular groove for press-fitting a bush and an annular groove for press-fitting an oil seal are formed in the portion of the torque converter case that supports the sprocket. And the annular groove which press-fits an oil seal is set to the larger diameter dimension than the annular groove which press-fits a bush (refer FIG. 1 of patent document 1). However, in this configuration, when processing the torque converter case, the processing direction of the annular groove for press-fitting the oil seal is opposite to the processing direction of the other parts of the torque converter case including the annular groove for press-fitting the bush. There is a problem of becoming a direction. The reason is that on the outer surface of the torque converter case (surface on the transmission mechanism side), there is a support flange that supports the bearing of the rotary shaft (pulley shaft, differential shaft, etc.) provided in the transmission together with the annular groove for press-fitting the bush. Is formed. The support flange has a bag structure (concave shape) that opens to the outer surface of the torque converter case. For this reason, both the annular groove for press-fitting the bush and the inner surface of the support flange are usually processed from the outer surface side of the torque converter case. Then, the annular groove into which the oil seal is press-fitted must be processed in a separate process from the opposite side (the inner surface side of the torque converter case). As a result, the number of steps required to process the torque converter case increases, which may lead to complicated operations. Also, if the processing direction of the annular groove that press-fits the bush and the annular groove that press-fits the oil seal is reversed, the accuracy of the position of the oil seal and the bush cannot be increased, and the quality against oil leakage may be reduced. There is.
 本発明は上述の点に鑑みてなされたものであり、その目的は、スプロケット及びその支持構造の小型化を図ることができ、スプロケットの回転に伴うフリクションロスを低減でき、トルクコンバータケースの加工工程の簡素化を図ることができるスプロケット支持構造を提供することにある。 The present invention has been made in view of the above-mentioned points, and an object of the present invention is to reduce the size of the sprocket and its support structure, to reduce the friction loss associated with the rotation of the sprocket, and to process the torque converter case. It is an object of the present invention to provide a sprocket support structure capable of simplifying the above.
 上記課題を解決するため、本発明にかかるスプロケット支持構造は、トルクコンバータ(TC)を収容したトルクコンバータケース(11)と、トルクコンバータ(TC)のインペラシェル(48)と一体に回転するスリーブ(20)と、スリーブ(20)に取り付けられてトルクコンバータ(TC)の中心軸回りに回転するスプロケット(30)と、スプロケット(30)をトルクコンバータケース(11)に対して回転自在に支持するベアリング(40)と、トルクコンバータケース(11)とスリーブ(20)との径方向の隙間を封するシール部材(39)と、を備えるスプロケット支持構造であって、上記のベアリング(40)は、トルクコンバータケース(11)に形成した開口部(35)の内周面(35a)とスプロケット(30)の外周面(31a)との径方向の隙間に介在するボールベアリング(40)であって、トルクコンバータケース(11)の開口部(35)の内周面(35a)には、ボールベアリング(40)を嵌合するための第1環状溝(36)と、シール部材(39)を嵌合するための第2環状溝(37)とが形成されており、第1環状溝(36)を第2環状溝(37)と同一かそれよりも大きな径寸法に設定したことを特徴とする。 In order to solve the above problems, a sprocket support structure according to the present invention includes a torque converter case (11) that houses a torque converter (TC), and a sleeve that rotates integrally with an impeller shell (48) of the torque converter (TC) ( 20), a sprocket (30) attached to the sleeve (20) and rotating about the central axis of the torque converter (TC), and a bearing for rotatably supporting the sprocket (30) with respect to the torque converter case (11) (40) and a seal member (39) for sealing a radial gap between the torque converter case (11) and the sleeve (20), wherein the bearing (40) The inner peripheral surface (35a) of the opening (35) formed in the converter case (11) and the sprocket ( 0) is a ball bearing (40) interposed in a radial gap between the outer peripheral surface (31a) and the ball bearing (35a) on the inner peripheral surface (35a) of the opening (35) of the torque converter case (11). A first annular groove (36) for fitting (40) and a second annular groove (37) for fitting the seal member (39) are formed, and the first annular groove (36) is formed. Is set to have a diameter equal to or larger than that of the second annular groove (37).
 また、上記構成のスプロケット支持構造では、第1環状溝(36)と第2環状溝(37)はそれぞれ、トルクコンバータケース(11)の外面(11a)側と内面(11b)側とに設けられており、トルクコンバータケース(11)の外面(11a)の外側には、複数の回転軸(10,12,8b)を有する変速機構部(4)が設置されており、トルクコンバータケース(11)の外面(11a)には、回転軸(10,12,8b)を支持するための支持フランジ(57,58,59)が形成されており、該支持フランジ(57,58,59)は、トルクコンバータケース(11)の外面(11a)に開口する袋構造になっていてよい。 In the sprocket support structure configured as described above, the first annular groove (36) and the second annular groove (37) are provided on the outer surface (11a) side and the inner surface (11b) side of the torque converter case (11), respectively. A transmission mechanism (4) having a plurality of rotating shafts (10, 12, 8b) is installed outside the outer surface (11a) of the torque converter case (11), and the torque converter case (11) A support flange (57, 58, 59) for supporting the rotating shaft (10, 12, 8b) is formed on the outer surface (11a) of the shaft, and the support flange (57, 58, 59) has a torque. It may be a bag structure that opens to the outer surface (11a) of the converter case (11).
 本発明にかかるスプロケット支持構造によれば、スプロケットを回転自在に支持するベアリングをボールベアリングとしたことで、従来構造と比較して、スプロケット及びその支持構造の軸方向寸法及び径方向寸法の小型化を図ることができる。すなわち、特許文献1に示す従来構造では、スプロケットの軸方向の端面とトルクコンバータケースの軸方向の端面との間に設置したスラストニードルベアリングによって、スプロケット及びその支持構造の軸方向の長さ寸法が大きくなっていたが、本発明では、トルクコンバータケースの開口部の内周面とスプロケットの外周面との径方向の隙間にボールベアリングを設置したことで、スプロケット支持構造の軸方向寸法を短縮できる。また、特許文献1に示す従来構造では、スラストニードルベアリングをスプロケット歯の内径側の側面で支持しており、かつ、トルクコンバータケースの内周面とスプロケットの外周面との隙間にブッシュを設置していたことにより、スプロケット及びその支持構造の径方向寸法が大きくなっていたが、本実施形態では、ブッシュの設置を省略し、かつ、スプロケット歯をボールベアリングに対して軸方向に並べて配置することが可能となるので、スプロケット支持構造の径方向寸法を短縮できる。これらによって、スプロケット支持構造の軸方向寸法及び径方向寸法の小型化を図ることができる。 According to the sprocket support structure of the present invention, the ball bearing is used as the bearing that rotatably supports the sprocket, so that the axial dimension and the radial dimension of the sprocket and its support structure can be reduced compared to the conventional structure. Can be achieved. That is, in the conventional structure shown in Patent Document 1, the axial length of the sprocket and its supporting structure is set by the thrust needle bearing installed between the axial end face of the sprocket and the axial end face of the torque converter case. In the present invention, the axial dimension of the sprocket support structure can be shortened by installing a ball bearing in the radial gap between the inner peripheral surface of the opening of the torque converter case and the outer peripheral surface of the sprocket. . Further, in the conventional structure shown in Patent Document 1, the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the gap between the inner peripheral surface of the torque converter case and the outer peripheral surface of the sprocket. As a result, the radial dimensions of the sprocket and its support structure have increased, but in this embodiment, the installation of the bush is omitted and the sprocket teeth are arranged in the axial direction with respect to the ball bearing. Therefore, the radial dimension of the sprocket support structure can be shortened. Accordingly, it is possible to reduce the axial dimension and the radial dimension of the sprocket support structure.
 また、本発明のスプロケット支持構造では、スプロケットをボールベアリングで支持するように構成したことで、従来のブッシュによるスプロケット支持構造と比べて、十分な潤滑油の供給が行えない環境であっても、磨耗に対するタフネスの強いボールベアリングにすることで、フレッティング磨耗を低減することができる。 Further, in the sprocket support structure of the present invention, since the sprocket is configured to be supported by a ball bearing, even in an environment where sufficient lubrication oil cannot be supplied compared to the conventional sprocket support structure using a bush, Fretting wear can be reduced by using a ball bearing with strong toughness against wear.
 また、本発明のスプロケット支持構造では、トルクコンバータケースに形成したボールベアリングを嵌合する第1環状溝を、シール部材を嵌合する第2環状溝と同一かそれよりも大きな径寸法に設定したことで、トルクコンバータケースの加工において、第2環状溝を第1環状溝と同じ側から加工することが可能となる。これにより、第2環状溝の加工方向を第1環状溝及び他の部分の加工方向と合わせることができる。したがって、トルクコンバータケースの加工工程を少なくすることができ、作業の効率化を図ることができる。 In the sprocket support structure of the present invention, the first annular groove for fitting the ball bearing formed in the torque converter case is set to have a diameter that is the same as or larger than the second annular groove for fitting the seal member. Thus, in processing the torque converter case, the second annular groove can be processed from the same side as the first annular groove. Thereby, the processing direction of a 2nd annular groove can be united with the processing direction of a 1st annular groove and another part. Therefore, the processing steps of the torque converter case can be reduced, and work efficiency can be improved.
 特に、トルクコンバータケースの外面に、変速機構部の回転軸を支持するための支持フランジが形成されており、該支持フランジがトルクコンバータケースの外面に開口する袋構造になっている場合は、第1環状溝及び第2環状溝の加工方向をこれら支持フランジの内面の加工方向と合わせることができるので、トルクコンバータケースの加工工程を効果的に減らすことができる。 In particular, a support flange for supporting the rotating shaft of the transmission mechanism portion is formed on the outer surface of the torque converter case, and the support flange has a bag structure that opens to the outer surface of the torque converter case. Since the machining directions of the first annular groove and the second annular groove can be matched with the machining directions of the inner surfaces of these support flanges, the machining process of the torque converter case can be effectively reduced.
また、本発明の支持構造では、トルクコンバータケース各部の位置度等の加工精度を向上させることができるので、トルクコンバータケースに圧入したニードルベアリングなどの寿命向上や変速機構部のギヤなどの回転で発生する騒音の低減が期待できる。 Further, in the support structure of the present invention, the processing accuracy such as the degree of position of each part of the torque converter case can be improved, so that the life of the needle bearing press-fitted into the torque converter case can be improved and the gear of the transmission mechanism can be rotated. Reduction of generated noise can be expected.
 さらに、従来のブッシュによるスプロケット支持構造は、その組立工程として、トルクコンバータケースにブッシュ圧入用の環状溝を加工する工程と、環状溝にブッシュを圧入する工程と、圧入したブッシュの内周面を加工する工程とが必要であったのに対して、本発明のスプロケット支持構造では、ブッシュに代えてボールベアリングを備えたことで、ブッシュを圧入する工程とブッシュの内周面を加工する工程を省略できる。これにより、スプロケット支持構造の組立工程の簡素化を図ることができる。 Furthermore, the conventional sprocket support structure with bushes includes, as an assembly process, a step of processing an annular groove for press-fitting the bush into the torque converter case, a step of press-fitting the bush into the annular groove, and an inner peripheral surface of the press-fitted bush. In contrast, the sprocket support structure of the present invention includes a ball bearing instead of the bush, so that the step of press-fitting the bush and the step of processing the inner peripheral surface of the bush are performed. Can be omitted. Thereby, the assembly process of a sprocket support structure can be simplified.
 また、上記のスプロケット支持構造では、ボールベアリング(40)と第1環状溝(36)との間には、第1環状溝(36)に対するボールベアリング(40)のスラスト方向の移動を規制するための第1係止部材(73)が設置されており、ボールベアリング(40)とスプロケット(30)との間には、ボールベアリング(40)に対するスプロケット(30)のスラスト方向の移動を規制するための第2係止部材(75)が設置されているとよい。 Further, in the sprocket support structure described above, the movement of the ball bearing (40) in the thrust direction relative to the first annular groove (36) is restricted between the ball bearing (40) and the first annular groove (36). The first locking member (73) is installed between the ball bearing (40) and the sprocket (30) to restrict the movement of the sprocket (30) in the thrust direction relative to the ball bearing (40). The second locking member (75) may be installed.
 この構成によれば、ボールベアリングがトルクコンバータケースに対してスラスト方向に摺動することを防止できると共に、スプロケットがボールベアリングに対してスラスト方向に摺動することを防止できる。したがって、スプロケットとボールベアリングとの間を圧入などによって摺動不能な状態で嵌合することが可能となる。これにより、スプロケットとボールベアリングとの間のクリアランスを小さくすることができ、スプロケットのガタを少なく抑えることができる。また、上記の第1係止部材を設けていれば、第1環状溝に対してスラスト方向の移動を規制した状態でボールベアリングを嵌合することができるので、第1環状溝と第2環状溝を同一の径寸法に設定することが可能となる。このように第1環状溝と第2環状溝を同一の径寸法に設定できれば、第1環状溝と第2環状溝を同一方向からの一工程で加工できるので、トルクコンバータケースの加工工数をさらに削減することが可能となる。
 なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本発明の一例として示したものである。
According to this configuration, the ball bearing can be prevented from sliding in the thrust direction with respect to the torque converter case, and the sprocket can be prevented from sliding in the thrust direction with respect to the ball bearing. Therefore, it is possible to fit the sprocket and the ball bearing in a non-slidable state by press fitting or the like. Thereby, the clearance between a sprocket and a ball bearing can be made small, and the play of a sprocket can be suppressed few. In addition, if the first locking member is provided, the ball bearing can be fitted in a state in which the movement in the thrust direction is restricted with respect to the first annular groove. It is possible to set the groove to the same diameter. If the first annular groove and the second annular groove can be set to have the same diameter as described above, the first annular groove and the second annular groove can be processed in one step from the same direction. It becomes possible to reduce.
In addition, the code | symbol in said parenthesis shows the code | symbol of the component in embodiment mentioned later as an example of this invention.
 本発明にかかるスプロケット支持構造によれば、スプロケット及びその支持構造の小型化、スプロケットの回転に伴うフリクションロスの低減、トルクコンバータケースの加工工程及びスプロケット支持構造の組立工程の効率化、及びトルクコンバータケース各部の加工精度の向上などを図ることができる。 According to the sprocket support structure of the present invention, the sprocket and the support structure can be downsized, the friction loss associated with the rotation of the sprocket can be reduced, the torque converter case processing process and the sprocket support structure assembly process can be efficiently performed, and the torque converter. The processing accuracy of each part of the case can be improved.
本発明の第1実施形態にかかるスプロケット支持構造を備えた変速機の一部を示す断面図である。It is sectional drawing which shows a part of transmission with the sprocket support structure concerning 1st Embodiment of this invention. 第1実施形態にかかるスプロケット支持構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the sprocket support structure concerning 1st Embodiment. 変速機の全体構成例を示す主断面図である。It is a main sectional view showing an example of the entire configuration of a transmission. 本発明の第2実施形態にかかるスプロケット支持構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the sprocket support structure concerning 2nd Embodiment of this invention.
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。
 〔第1実施形態〕
 図1は、本発明の第1実施形態にかかるスプロケット支持構造を備えた変速機の一部を示す断面図である。図2は、第1実施形態のスプロケット支持構造を示す部分拡大断面図である。図3は、変速機の全体構成例を示す主断面図である。なお、図3では、説明の都合上、後述するトルクコンバータケース11及びベアリング60,61,62のみに網掛けを施している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 is a cross-sectional view showing a part of a transmission including a sprocket support structure according to a first embodiment of the present invention. FIG. 2 is a partially enlarged cross-sectional view showing the sprocket support structure of the first embodiment. FIG. 3 is a main cross-sectional view showing an example of the overall configuration of the transmission. In FIG. 3, only the torque converter case 11 and the bearings 60, 61, 62 described later are shaded for convenience of explanation.
 図1乃至図3に示す変速機1は、トルクコンバータTCと、トルクコンバータTCから入力された回転を変速する変速機構部4とを備えている。変速機構部4は、図3に示すように、駆動プーリ軸10に固定された駆動プーリ10aと、従動プーリ軸12に固定された従動プーリ12aとの間に金属Vベルト14が掛け渡されたベルト式無段変速機構5を備えている。 The transmission 1 shown in FIGS. 1 to 3 includes a torque converter TC and a speed change mechanism 4 that changes the rotation input from the torque converter TC. As shown in FIG. 3, in the speed change mechanism unit 4, a metal V-belt 14 is stretched between a drive pulley 10 a fixed to the drive pulley shaft 10 and a driven pulley 12 a fixed to the driven pulley shaft 12. A belt type continuously variable transmission mechanism 5 is provided.
 また、変速機1は、トルクコンバータTCを介してエンジンなどの駆動源(図示せず)の駆動力が伝達されるメインシャフト2を備えており、メインシャフト2上には、前進用クラッチ6が配設されている。一方、駆動プーリ軸10上には、後進用クラッチ7が配設されている。そして、メインシャフト2と駆動プーリ軸10の間には、前進用クラッチ6の係合によってメインシャフト2からの駆動力を駆動プーリ軸10に伝達するギヤ機構6aと、後進用クラッチ7の係合によってメインシャフト2からの駆動力を駆動プーリ軸10に伝達するギヤ機構7aとが設けられている。 The transmission 1 also includes a main shaft 2 to which a driving force of a driving source (not shown) such as an engine is transmitted via a torque converter TC. A forward clutch 6 is provided on the main shaft 2. It is arranged. On the other hand, a reverse clutch 7 is disposed on the drive pulley shaft 10. Between the main shaft 2 and the drive pulley shaft 10, the gear mechanism 6 a that transmits the driving force from the main shaft 2 to the drive pulley shaft 10 by the engagement of the forward clutch 6 and the reverse clutch 7 is engaged. Is provided with a gear mechanism 7 a for transmitting the driving force from the main shaft 2 to the driving pulley shaft 10.
 これにより、ベルト式無段変速機構5の駆動プーリ軸10は、メインシャフト2からの駆動力が伝達されて回転するようになっている。一方、従動プーリ軸12からの駆動力は、ディファレンシャル機構8及び左右のアクスルシャフト8a,8bを介して左右の車輪(図示せず)に伝達されるようになっている。なお、ここでは、ベルト式無段変速機構5の詳細な構成及び動作については説明を省略する。また、メインシャフト2の駆動力が伝達される変速機構部4の具体的な構成としては、上記のベルト式無段変速機構5には限らず、それ以外にも、遊星歯車機構などの有段式変速機構であってもよい。 Thereby, the driving pulley shaft 10 of the belt type continuously variable transmission mechanism 5 is rotated by the driving force transmitted from the main shaft 2. On the other hand, the driving force from the driven pulley shaft 12 is transmitted to the left and right wheels (not shown) via the differential mechanism 8 and the left and right axle shafts 8a and 8b. In addition, description is abbreviate | omitted about the detailed structure and operation | movement of the belt-type continuously variable transmission mechanism 5 here. Further, the specific configuration of the speed change mechanism 4 to which the driving force of the main shaft 2 is transmitted is not limited to the belt type continuously variable speed change mechanism 5 described above. It may be a type transmission mechanism.
 トルクコンバータTCは、有底容器状のトルクコンバータケース11に収容されている。また、トルクコンバータケース11の軸方向の外面(底面)11aには、ベルト式無段変速機構5など変速機構部4の構成部品を収容してなるトランスミッションケース19が取り付けられている。また、トルクコンバータケース11の外面11aには、変速機構部4が備える駆動プーリ軸10、従動プーリ軸12、アクスルシャフト8bなどに取り付けたベアリング60,61,62を支持するための支持フランジ57,58,59が形成されている。これら支持フランジ57,58,59については、後述する。 The torque converter TC is housed in a bottomed container-shaped torque converter case 11. Further, a transmission case 19 that accommodates components of the speed change mechanism section 4 such as the belt-type continuously variable transmission mechanism 5 is attached to the outer surface (bottom face) 11 a in the axial direction of the torque converter case 11. Further, on the outer surface 11a of the torque converter case 11, a support flange 57 for supporting bearings 60, 61, 62 attached to the drive pulley shaft 10, the driven pulley shaft 12, the axle shaft 8b and the like provided in the speed change mechanism unit 4, 58 and 59 are formed. These support flanges 57, 58 and 59 will be described later.
 トルクコンバータTCは、図1に示すように、クランクシャフト3で駆動されるポンプインペラ41と、ポンプインペラ41に対向した状態でメインシャフト2に連結されたタービンランナ42と、ポンプインペラ41とタービンランナ42との間に設けたステータ43と、ステータ43とステータシャフト13との間に設けたワンウェイクラッチ44とを備えている。なお、タービンランナ42とエンジンドライブプレート45との間には、ダンパ付きのロックアップクラッチピストン46が配置されている。また、コンバータカバー47のクランクシャフト3と反対側の端部には、インペラシェル48が接続されており、インペラシェル48の内周側には、トルクコンバータスリーブ(以下、単に「スリーブ」という。)20が接続されている。 As shown in FIG. 1, the torque converter TC includes a pump impeller 41 driven by the crankshaft 3, a turbine runner 42 coupled to the main shaft 2 in a state of facing the pump impeller 41, a pump impeller 41, and a turbine runner And a one-way clutch 44 provided between the stator 43 and the stator shaft 13. A lockup clutch piston 46 with a damper is disposed between the turbine runner 42 and the engine drive plate 45. An impeller shell 48 is connected to the end of the converter cover 47 opposite to the crankshaft 3, and a torque converter sleeve (hereinafter simply referred to as “sleeve”) is connected to the inner peripheral side of the impeller shell 48. 20 is connected.
 タービンランナ42の外側は、タービンシェル52で覆われている。タービンシェル52は、その内周部がハブ53を介してメインシャフト2に固定されている。ステータ43を支持するワンウェイクラッチ44は、ステータシャフト13にスプライン嵌合している。ステータシャフト13は、内部をメインシャフト2が貫通する中空の筒状部13aと、筒状部13aの変速機構部4側の端部から半径方向の外側に延びる略平板状のフランジ部13bとを有している。また、フランジ部13bのトルクコンバータTC側の側面には、スプロケット30の外径側を支持するための突出部15が形成されている。 The outside of the turbine runner 42 is covered with a turbine shell 52. An inner peripheral portion of the turbine shell 52 is fixed to the main shaft 2 via a hub 53. A one-way clutch 44 that supports the stator 43 is splined to the stator shaft 13. The stator shaft 13 includes a hollow cylindrical portion 13a through which the main shaft 2 passes, and a substantially flat flange portion 13b extending radially outward from an end portion of the cylindrical portion 13a on the transmission mechanism portion 4 side. Have. Further, a protruding portion 15 for supporting the outer diameter side of the sprocket 30 is formed on the side surface of the flange portion 13b on the torque converter TC side.
 また、メインシャフト2に対して径方向の外側に離間した位置には、ギヤ式のオイルポンプ(被駆動装置)16が設置されている。オイルポンプ16は、オイルポンプ駆動軸16aの回転で駆動される。オイルポンプ駆動軸16aは、オイルポンプ16からメインシャフト2と平行に延びており、その先端には、従動側のスプロケット17が取り付けられている。一方、メインシャフト2周りのスリーブ20の外周側には、駆動側のスプロケット30が嵌合している。そして、駆動側のスプロケット30と従動側のスプロケット17との間には、チェーン18が掛け渡されている。チェーン18を介して駆動側のスプロケット30の回転が従動側のスプロケット17に伝達されることで、オイルポンプ16が稼動するようになっている。 Further, a gear-type oil pump (driven device) 16 is installed at a position spaced radially outward from the main shaft 2. The oil pump 16 is driven by the rotation of the oil pump drive shaft 16a. The oil pump drive shaft 16a extends in parallel with the main shaft 2 from the oil pump 16, and a driven sprocket 17 is attached to the tip of the oil pump drive shaft 16a. On the other hand, a drive-side sprocket 30 is fitted on the outer peripheral side of the sleeve 20 around the main shaft 2. A chain 18 is stretched between the drive-side sprocket 30 and the driven-side sprocket 17. The oil pump 16 is operated by transmitting the rotation of the drive-side sprocket 30 to the driven-side sprocket 17 via the chain 18.
 スプロケット30の内側に設置されたスリーブ20は、図2に示すように、トルクコンバータTCの中心から変速機構部4側に延びており、ステータシャフト13の筒状部13aの外側を囲む略円筒型の筒状部21を有している。筒状部21は、スプロケット30の内周側に嵌合可能な径寸法を有している。筒状部21の外周面21aにおけるトルクコンバータTC側の位置には、Oリング(シール部材)23が設置されている。 As shown in FIG. 2, the sleeve 20 installed on the inner side of the sprocket 30 extends from the center of the torque converter TC toward the speed change mechanism portion 4, and has a substantially cylindrical shape surrounding the outer side of the cylindrical portion 13 a of the stator shaft 13. The cylindrical portion 21 is provided. The cylindrical portion 21 has a diameter dimension that can be fitted to the inner peripheral side of the sprocket 30. An O-ring (seal member) 23 is installed at a position on the torque converter TC side on the outer peripheral surface 21 a of the cylindrical portion 21.
 スプロケット30は、略円筒状の本体部31を有している。本体部31の外周面31aにおける軸方向の中央付近には、チェーン18を噛合させるスプロケット歯32が形成されている。また、本体部31の外周面31aにおけるトルクコンバータTC側の位置には、後述するボールベアリング40が嵌合している。また、本体部31の外周面31aにおける変速機構部4側は、ステータシャフト13のフランジ部13bに設けた突出部15に対して径方向で若干の隙間を有して対向している。この部分には、突出部15との隙間をシールするためのOリング33が設置されている。なお、スプロケット30の内周面30aおける変速機構部4側の端部は、筒状部21の外周面21aにスプライン嵌合している。 The sprocket 30 has a substantially cylindrical main body 31. Sprocket teeth 32 for engaging the chain 18 are formed near the center in the axial direction on the outer peripheral surface 31 a of the main body 31. A ball bearing 40 described later is fitted to a position on the torque converter TC side on the outer peripheral surface 31 a of the main body 31. Further, the speed change mechanism portion 4 side on the outer peripheral surface 31 a of the main body portion 31 faces the protruding portion 15 provided on the flange portion 13 b of the stator shaft 13 with a slight gap in the radial direction. In this portion, an O-ring 33 for sealing a gap with the protruding portion 15 is installed. Note that the end of the inner peripheral surface 30 a of the sprocket 30 on the transmission mechanism portion 4 side is spline-fitted to the outer peripheral surface 21 a of the cylindrical portion 21.
 スプロケット30は、トルクコンバータケース11に対してボールベアリング40で回転自在に支持されている。ボールベアリング40は、トルクコンバータケース11に形成した開口部35の内周面35aに嵌合する外輪40aと、スプロケット30の外周面31aに嵌合する内輪40bとを備えている。また、トルクコンバータケース11の開口部35の内周面35aとスリーブ20の外周面20aとの間には、オイルシール(シール部材)39が圧入されている。オイルシール39は、ボールベアリング40に対してトルクコンバータTC側に隣接して配置されている。これにより、トルクコンバータケース11の開口部35の内周面35aとスリーブ20の外周面20aとの隙間には、ボールベアリング40とオイルシール39で囲まれた油路38が画成されている。この油路38を介してボールベアリング40に潤滑油が供給されるようになっている。 The sprocket 30 is rotatably supported by a ball bearing 40 with respect to the torque converter case 11. The ball bearing 40 includes an outer ring 40 a that is fitted to the inner circumferential surface 35 a of the opening 35 formed in the torque converter case 11, and an inner ring 40 b that is fitted to the outer circumferential surface 31 a of the sprocket 30. An oil seal (seal member) 39 is press-fitted between the inner peripheral surface 35 a of the opening 35 of the torque converter case 11 and the outer peripheral surface 20 a of the sleeve 20. The oil seal 39 is disposed adjacent to the ball bearing 40 on the torque converter TC side. Thus, an oil passage 38 surrounded by the ball bearing 40 and the oil seal 39 is defined in the gap between the inner peripheral surface 35a of the opening 35 of the torque converter case 11 and the outer peripheral surface 20a of the sleeve 20. Lubricating oil is supplied to the ball bearing 40 through the oil passage 38.
 そして、トルクコンバータケース11の開口部35の内周面35aには、ボールベアリング40を嵌合するための第1環状溝36と、オイルシール39を嵌合するための第2環状溝37とが形成されている。ボールベアリング40は、第1環状溝36内でスプロケット30の外周面31aとの隙間に圧入されて嵌合しており、オイルシール39は、第2環状溝37内でスリーブ20の外周面20aとの隙間に圧入されて嵌合している。 A first annular groove 36 for fitting the ball bearing 40 and a second annular groove 37 for fitting the oil seal 39 are formed on the inner peripheral surface 35 a of the opening 35 of the torque converter case 11. Is formed. The ball bearing 40 is press-fitted into the clearance with the outer peripheral surface 31 a of the sprocket 30 in the first annular groove 36, and the oil seal 39 is connected to the outer peripheral surface 20 a of the sleeve 20 in the second annular groove 37. It is press-fitted into the gap.
 ボールベアリング40の取付状態を詳細に説明すると、ボールベアリング40の外輪40aは、第1環状溝36の内周面35aに圧入されて嵌合している。一方、内輪40bは、スプロケット30の外周面31aに対していわゆるルーズ状態(相対移動可能な状態)で嵌合しており、内輪40bとスプロケット30は、互いが摺動するようになっている。ここで、スプロケット30の外周面31aと内輪40bとの間をルーズ状態で嵌合させているのは、変速機1の内部の温度変化によって、鉄部材同士の嵌合箇所であるスプロケット30の外周面31aと内輪40bとの摺動面のクリアランスが変動することを防止するためである。 The mounting state of the ball bearing 40 will be described in detail. The outer ring 40a of the ball bearing 40 is press-fitted and fitted into the inner peripheral surface 35a of the first annular groove 36. On the other hand, the inner ring 40b is fitted in a so-called loose state (relatively movable state) to the outer peripheral surface 31a of the sprocket 30, so that the inner ring 40b and the sprocket 30 slide with each other. Here, the reason why the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b are fitted in a loose state is that the outer periphery of the sprocket 30 that is a fitting portion between the iron members due to a temperature change inside the transmission 1. This is to prevent the clearance of the sliding surface between the surface 31a and the inner ring 40b from fluctuating.
 本実施形態では、上記のように、スプロケット30の外周面31aと内輪40bとの間をルーズ状態で嵌合させていることで、スプロケット30は、スラスト方向に摺動可能な状態で支持されている。このスプロケット30は、ステータシャフト13のフランジ部13bとの隙間にある作動油の油圧でトルクコンバータTC側に押された状態になっている。そのため、変速機1の定常運転時には、スプロケット30の外周面31aと内輪40bとが摺動することはない。しかしながら、変速機1の運転開始直後など、スプロケット30がステータシャフト13のフランジ部13b側に寄っているときは、フランジ部13bとスプロケット30との間の油圧が上昇するまでの僅かな時間、スプロケット30の外周面31aがボールベアリング40の内輪40bに対して摺動する場合がある。 In the present embodiment, as described above, the sprocket 30 is supported while being slidable in the thrust direction by fitting the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b in a loose state. Yes. The sprocket 30 is in a state of being pushed toward the torque converter TC by the hydraulic pressure of the hydraulic oil in the gap with the flange portion 13 b of the stator shaft 13. Therefore, the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b do not slide during steady operation of the transmission 1. However, when the sprocket 30 is close to the flange portion 13b side of the stator shaft 13 such as immediately after the operation of the transmission 1 is started, a short time is required until the hydraulic pressure between the flange portion 13b and the sprocket 30 increases. The outer peripheral surface 31a of 30 may slide with respect to the inner ring 40b of the ball bearing 40.
 また、第1環状溝36と第2環状溝37は、トルクコンバータケース11の外面11a側と内面11b側とで互いに同軸上に並べて配置されており、互いが連通している。そしてここでは、第1環状溝36の径寸法の方が第2環状溝37の径寸法よりも大きな寸法に設定されている。 Also, the first annular groove 36 and the second annular groove 37 are arranged coaxially on the outer surface 11a side and the inner surface 11b side of the torque converter case 11, and are in communication with each other. Here, the diameter of the first annular groove 36 is set to be larger than the diameter of the second annular groove 37.
 本実施形態のスプロケット支持構造では、スプロケット30を回転自在に支持するベアリングをボールベアリング40としたことで、従来構造と比較して、スプロケット30及びその支持構造の小型化を図ることができる。すなわち、特許文献1に示す従来構造では、スプロケットの軸方向の端面とトルクコンバータケースの軸方向の端面との間に設置したスラストニードルベアリングによって、スプロケット及びその支持構造の軸方向寸法の小型化が容易でなかったのに対して、本実施形態では、トルクコンバータケース11の開口部35の内周面35aとスプロケット30の外周面31aとの径方向の隙間にボールベアリング40を設置したことで、スプロケット支持構造の軸方向寸法を短縮できる。また、特許文献1に示す従来構造では、スラストニードルベアリングをスプロケット歯の内径側の側面で支持しており、かつ、トルクコンバータケースの内周面とスプロケットの外周面との隙間にブッシュを設置していることで、スプロケット及びその支持構造の径方向寸法の小型化が容易でなかったのに対して、本実施形態では、スプロケット歯32をボールベアリング40に対して軸方向に並べて配置し、かつ、ブッシュの設置を省略したことで、スプロケット支持構造の径方向寸法を短縮できる。これらによって、スプロケット支持構造の軸方向寸法及び径方向寸法の小型化を図ることができる。 In the sprocket support structure of the present embodiment, the bearing for rotatably supporting the sprocket 30 is the ball bearing 40, so that the sprocket 30 and its support structure can be downsized compared to the conventional structure. That is, in the conventional structure shown in Patent Document 1, the axial dimension of the sprocket and its support structure can be reduced by the thrust needle bearing installed between the axial end face of the sprocket and the axial end face of the torque converter case. On the other hand, in this embodiment, the ball bearing 40 is installed in the radial gap between the inner peripheral surface 35a of the opening 35 of the torque converter case 11 and the outer peripheral surface 31a of the sprocket 30 in the present embodiment. The axial dimension of the sprocket support structure can be shortened. Further, in the conventional structure shown in Patent Document 1, the thrust needle bearing is supported by the side surface on the inner diameter side of the sprocket teeth, and a bush is installed in the gap between the inner peripheral surface of the torque converter case and the outer peripheral surface of the sprocket. In this embodiment, the sprocket teeth 32 are arranged side by side in the axial direction with respect to the ball bearing 40. By omitting the installation of the bush, the radial dimension of the sprocket support structure can be shortened. Accordingly, it is possible to reduce the axial dimension and the radial dimension of the sprocket support structure.
 また、本実施形態のスプロケット支持構造によれば、スプロケット30をボールベアリング40で支持するように構成したことで、従来のブッシュによる支持構造と比較して、スプロケット30の回転に伴うフリクションロスを低減できる。すなわち、スプロケット30の周辺は、潤滑油の導入路を形成し難い箇所であるため、スプロケット30を支持するベアリングに対して潤滑油を効果的に導くことが難しい。そのため、従来のブッシュによる支持構造では、ブッシュに十分な潤滑油を供給できないことで、フレッティング磨耗が発生し易いという問題があった。これに対して、本実施形態では、スプロケット30をボールベアリング40で支持するように構成したことで、たとえボールベアリング40に十分な潤滑油を供給できなくても、ブッシュによる従来のスプロケット支持構造と比べて、磨耗に対するタフネスの強いボールベアリングにすることで、フレッティング磨耗を低減できる。また、従来構成のようにトルクコンバータ内の作動油の一部を導出してスプロケットの周辺に導く必要が無いので、トルクコンバータTC内の油圧を低下させずに済む。これにより、ロックアップクラッチの応答性やロックアップクラッチ容量の低下を防止でき、トルクコンバータの良好な制御が可能となる。また、スプロケット30周りの構成の簡素化を図ることができる。 Further, according to the sprocket support structure of the present embodiment, the sprocket 30 is configured to be supported by the ball bearing 40, thereby reducing the friction loss associated with the rotation of the sprocket 30 compared to the support structure using the conventional bush. it can. That is, since the periphery of the sprocket 30 is a place where it is difficult to form a lubricating oil introduction path, it is difficult to effectively guide the lubricating oil to the bearing that supports the sprocket 30. Therefore, the conventional support structure using bushes has a problem that fretting wear is likely to occur because sufficient lubricating oil cannot be supplied to the bushes. On the other hand, in the present embodiment, since the sprocket 30 is configured to be supported by the ball bearing 40, even if sufficient lubricating oil cannot be supplied to the ball bearing 40, In comparison, fretting wear can be reduced by using a ball bearing that is tough against wear. Further, unlike the conventional configuration, it is not necessary to derive a part of the hydraulic oil in the torque converter and guide it to the periphery of the sprocket, so that it is not necessary to reduce the hydraulic pressure in the torque converter TC. As a result, it is possible to prevent the responsiveness of the lock-up clutch and the lock-up clutch capacity from being lowered, and the torque converter can be controlled satisfactorily. In addition, the configuration around the sprocket 30 can be simplified.
 また、従来のブッシュによるスプロケット支持構造は、その組立工程として、トルクコンバータケースにブッシュ圧入用の環状溝を加工する工程と、環状溝にブッシュを圧入する工程と、圧入したブッシュの内径面を加工する工程とが必要であったのに対して、本実施形態のスプロケット支持構造では、ブッシュに代えてボールベアリング40を設置したことで、ブッシュを圧入する工程とブッシュの内径面を加工する工程を省略できる。したがって、スプロケット支持構造の組立工程の簡略化を図ることができる。 In addition, the conventional sprocket support structure with bushes includes, as an assembling process, a step of processing an annular groove for press-fitting the bush into the torque converter case, a step of press-fitting the bush into the annular groove, and a process for processing the inner diameter surface of the press-fitted bush. However, in the sprocket support structure of this embodiment, the ball bearing 40 is installed instead of the bush, so that the step of press-fitting the bush and the step of processing the inner diameter surface of the bush are performed. Can be omitted. Therefore, the assembly process of the sprocket support structure can be simplified.
 次に、トルクコンバータケース11の加工工程について説明する。図3に示すように、トルクコンバータケース11には、開口部35に設けた第1環状溝36と第2環状溝37のほか、駆動プーリ軸10に取り付けたベアリング60を支持するための支持フランジ57、従動プーリ軸12に取り付けたベアリング61を支持するための支持フランジ58、アクスルシャフト8bに取り付けたベアリング62を支持するための支持フランジ59などが形成されている。これら支持フランジ57,58、59は、その内部にトランスミッションケース19内の作動油(潤滑油)を保持してベアリング60,61,62を潤滑できるように、トルクコンバータケースの外面11aに開口する有底の凹部を有する袋構造になっている。そのため、これら支持フランジ57,58、59の内面は、トルクコンバータケース11の外面11a側からの加工(図3の矢印Xに示す向きの加工)を行う必要がある。また、ボールベアリング40を圧入するための第1環状溝36もトルクコンバータケース11の外面11a側からの加工を行う必要がある。 Next, the machining process of the torque converter case 11 will be described. As shown in FIG. 3, the torque converter case 11 includes a support flange for supporting a bearing 60 attached to the drive pulley shaft 10 in addition to the first annular groove 36 and the second annular groove 37 provided in the opening 35. 57, a support flange 58 for supporting the bearing 61 attached to the driven pulley shaft 12, a support flange 59 for supporting the bearing 62 attached to the axle shaft 8b, and the like are formed. These support flanges 57, 58, 59 are open to the outer surface 11 a of the torque converter case so that the hydraulic oil (lubricating oil) in the transmission case 19 can be held therein and the bearings 60, 61, 62 can be lubricated. It has a bag structure having a recess at the bottom. Therefore, it is necessary to process the inner surfaces of these support flanges 57, 58, 59 from the outer surface 11a side of the torque converter case 11 (processing in the direction indicated by the arrow X in FIG. 3). The first annular groove 36 for press-fitting the ball bearing 40 also needs to be processed from the outer surface 11a side of the torque converter case 11.
 ここで、本実施形態のスプロケット支持構造では、既述のように、第1環状溝36の径寸法を第2環状溝37の径寸法よりも大きな寸法に設定している。これにより、トルクコンバータケース11の加工において、第2環状溝37を第1環状溝36側から加工できるので、第2環状溝37の加工方向を第1環状溝36の加工方向に一致させることができる。したがって、第1環状溝36と第2環状溝37とをいずれもトルクコンバータケース11の外面11a側から加工することができる。これにより、第1環状溝36及び第2環状溝37と各支持フランジ57,58、59の内面の加工方向を統一できるので、第1、第2環状溝36,37や支持フランジ57,58、59の内面の加工に要する工程を少なくすることができる。また、ボールベアリング40を圧入する第1環状溝36とオイルシール39を圧入する第2環状溝37の加工方向を統一できることで、ボールベアリング40とオイルシール39の位置度の精度を高めることができる。したがって、オイル漏れに対する品質を向上させることができる。さらに、トルクコンバータケース11の各部の位置度が向上することも期待できる。したがって、トルクコンバータケース11に圧入したニードルベアリングなどの寿命向上や変速機構部4が備えるギヤなどの回転で発生する騒音の低減を図ることができる。 Here, in the sprocket support structure of the present embodiment, as described above, the diameter dimension of the first annular groove 36 is set to be larger than the diameter dimension of the second annular groove 37. Thereby, in processing the torque converter case 11, the second annular groove 37 can be processed from the first annular groove 36 side. Therefore, the processing direction of the second annular groove 37 can be matched with the processing direction of the first annular groove 36. it can. Therefore, both the first annular groove 36 and the second annular groove 37 can be processed from the outer surface 11 a side of the torque converter case 11. Thereby, since the processing direction of the 1st annular groove 36 and the 2nd annular groove 37 and each support flange 57,58,59 can be unified, the 1st, 2nd annular groove 36,37 and the support flanges 57,58, The number of steps required for processing the inner surface of 59 can be reduced. Further, since the processing directions of the first annular groove 36 for press-fitting the ball bearing 40 and the second annular groove 37 for press-fitting the oil seal 39 can be unified, the accuracy of the positional degree of the ball bearing 40 and the oil seal 39 can be increased. . Therefore, quality against oil leakage can be improved. Furthermore, it can be expected that the position of each part of the torque converter case 11 is improved. Therefore, it is possible to improve the life of a needle bearing or the like press-fitted into the torque converter case 11 and to reduce noise generated by rotation of a gear or the like provided in the transmission mechanism unit 4.
 〔第2実施形態〕
 次に、本発明の第2実施形態について説明する。なお、第2実施形態の説明及び対応する図面においては、第1実施形態と同一又は相当する構成部分には同一の符号を付し、以下ではその部分の詳細な説明は省略する。また、以下で説明する事項以外の事項については、第1実施形態と同じである。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In the description of the second embodiment and the corresponding drawings, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted below. In addition, matters other than those described below are the same as those in the first embodiment.
 図4は、本発明の第2実施形態にかかるスプロケット支持構造を示す部分拡大断面図である。本実施形態のスプロケット支持構造は、ボールベアリング40の外輪40aと開口部35の内周面35aと間に設置したサークリップ(第1係止部材)73と、ボールベアリング40の内輪40bとスプロケット30の外周面31aとの間に設置したサークリップ(第2係止部材)75とを備えており、これらサークリップ73,75によって、トルクコンバータケース11に対するボールベアリング40及びスプロケット30のスラスト方向の移動を規制するように構成している。 FIG. 4 is a partially enlarged cross-sectional view showing a sprocket support structure according to a second embodiment of the present invention. The sprocket support structure of the present embodiment includes a circlip (first locking member) 73 installed between the outer ring 40 a of the ball bearing 40 and the inner peripheral surface 35 a of the opening 35, the inner ring 40 b of the ball bearing 40, and the sprocket 30. The circlip (second locking member) 75 installed between the outer peripheral surface 31a of the ball bearing 40 and the sprocket 30 in the thrust direction is moved by the circlips 73 and 75 with respect to the torque converter case 11. It is configured to regulate.
 ボールベアリング40の外輪40aと開口部35の内周面35aと間に設置したサークリップ73は、例えば、弾性金属製の略C字型の細片からなる係止部材であり、ボールベアリング40の外輪40aの外周面に設けた環状の係止溝73bと、開口部35の内周面35aに形成した環状の係止溝73aと間に嵌め込まれている。このサークリップ73によって、ボールベアリング40が開口部35の内周面35aに対してスラスト方向に移動することが規制されている。また、ボールベアリング40の内輪40bとスプロケット30の外周面31aとの間に設置したサークリップ75は、サークリップ73と同様、例えば、弾性金属製の略C字型の細片からなる係止部材であり、スプロケット30の外周面31aに設けた環状の係止溝75aに嵌め込まれている。このサークリップ75は、スプロケット30の外周面31aに設けた段部31bとの間にボールベアリング40の内輪40bを挟み込んでいることで、ボールベアリング40のスラスト方向の移動を規制している。これにより、スプロケット30がボールベアリング40に対してスラスト方向に移動することが規制されている。 The circlip 73 installed between the outer ring 40a of the ball bearing 40 and the inner peripheral surface 35a of the opening 35 is a locking member made of a substantially C-shaped strip made of elastic metal, for example. It is fitted between an annular locking groove 73b provided on the outer peripheral surface of the outer ring 40a and an annular locking groove 73a formed on the inner peripheral surface 35a of the opening 35. The circlip 73 restricts the ball bearing 40 from moving in the thrust direction with respect to the inner peripheral surface 35 a of the opening 35. The circlip 75 installed between the inner ring 40b of the ball bearing 40 and the outer peripheral surface 31a of the sprocket 30 is a locking member made of, for example, a substantially C-shaped strip made of elastic metal, like the circlip 73. And is fitted into an annular locking groove 75a provided on the outer peripheral surface 31a of the sprocket 30. The circlip 75 restricts the movement of the ball bearing 40 in the thrust direction by sandwiching the inner ring 40b of the ball bearing 40 between the circlip 75 and the step portion 31b provided on the outer peripheral surface 31a of the sprocket 30. This restricts the sprocket 30 from moving in the thrust direction with respect to the ball bearing 40.
 本実施形態では、上記のように、ボールベアリング40の外輪40aと開口部35の内周面35aと間に設置したサークリップ73と、ボールベアリング40の内輪40bとスプロケット30の外周面31aとの間に設置したサークリップ75とによって、トルクコンバータケース11に対するボールベアリング40及びスプロケット30のスラスト方向の移動を規制している。これにより、フランジ部13bとスプロケット30の間にある作動油の油圧が変動する場合でも、スプロケット30がボールベアリング40に対してスラスト方向に摺動することを防止できる。 In the present embodiment, as described above, the circlip 73 installed between the outer ring 40 a of the ball bearing 40 and the inner peripheral surface 35 a of the opening 35, the inner ring 40 b of the ball bearing 40, and the outer peripheral surface 31 a of the sprocket 30. The movement of the ball bearing 40 and the sprocket 30 in the thrust direction with respect to the torque converter case 11 is restricted by the circlip 75 installed therebetween. Thereby, even when the hydraulic pressure of the hydraulic oil between the flange portion 13b and the sprocket 30 varies, the sprocket 30 can be prevented from sliding in the thrust direction with respect to the ball bearing 40.
 そして、第1実施形態では、スプロケット30の外周面31aとボールベアリング40の内輪40bとの間が摺動するため、それらの間をルーズ状態で嵌合させることで、通常のベアリング取付部よりも広いクリアランスを確保する必要があったのに対して、本実施形態では、サークリップ75を設置したことで、スプロケット30の外周面31aと内輪40bとの間が摺動しない。したがって、スプロケット30の外周面31aをボールベアリングの内輪40bに対して圧入により嵌合することができる。これにより、スプロケット30の外周面31aと内輪40bとのクリアランスを小さくできるので、ボールベアリング40に対するスプロケット30のガタを少なく抑えることができる。 And in 1st Embodiment, since it slides between the outer peripheral surface 31a of the sprocket 30 and the inner ring | wheel 40b of the ball bearing 40, by making these fit in a loose state, rather than a normal bearing attachment part. While it was necessary to ensure a wide clearance, in the present embodiment, the circlip 75 is installed, so that the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b do not slide. Therefore, the outer peripheral surface 31a of the sprocket 30 can be fitted into the inner ring 40b of the ball bearing by press fitting. Thereby, since the clearance between the outer peripheral surface 31a of the sprocket 30 and the inner ring 40b can be reduced, the backlash of the sprocket 30 with respect to the ball bearing 40 can be reduced.
 また、第1実施形態では、サークリップ73を設けていなかったため、ボールベアリング40の外輪40aを第1環状溝36の内周面35aに圧入で嵌合することで、第1環状溝36に対するボールベアリング40のスラスト方向の移動を規制していた。これに対して、本実施形態では、サークリップ73を設置したことで、第1環状溝36に対するボールベアリング40のスラスト方向の移動を規制できる。したがって、第1環状溝36の内周面35aとボールベアリング40の外輪40aとの間をいわゆるルーズ状態で嵌合することが可能となる。 In the first embodiment, since the circlip 73 is not provided, the outer ring 40a of the ball bearing 40 is press-fitted into the inner peripheral surface 35a of the first annular groove 36, so that the ball against the first annular groove 36 is obtained. The movement of the bearing 40 in the thrust direction was restricted. On the other hand, in this embodiment, the circlip 73 is installed, so that the movement of the ball bearing 40 in the thrust direction with respect to the first annular groove 36 can be restricted. Therefore, the inner peripheral surface 35a of the first annular groove 36 and the outer ring 40a of the ball bearing 40 can be fitted in a so-called loose state.
 また、本実施形態のように、第1環状溝36に対してボールベアリング40を係止するためのサークリップ73を設けていれば、当該サークリップ73によって、第1環状溝36に対してスラスト方向の移動を規制した状態でボールベアリング40を嵌合することが可能となる。これにより、詳細な図示は省略するが、第1環状溝36と第2環状溝37を同一の径寸法に設定しても、ボールベアリング40がオイルシール39側にずれるおそれがない。そして、上記のように第1環状溝36と第2環状溝37を同一の径寸法に設定できれば、第1環状溝36と第2環状溝37を同一方向からの一工程のみで加工できるので、トルクコンバータケース11の加工工数のさらなる削減が可能となる。 Further, if a circlip 73 for locking the ball bearing 40 to the first annular groove 36 is provided as in the present embodiment, the circlip 73 causes a thrust to the first annular groove 36. The ball bearing 40 can be fitted in a state in which the movement in the direction is restricted. Thereby, although detailed illustration is omitted, even if the first annular groove 36 and the second annular groove 37 are set to have the same diameter, there is no possibility that the ball bearing 40 is shifted to the oil seal 39 side. And if the 1st annular groove 36 and the 2nd annular groove 37 can be set to the same diameter size as mentioned above, since the 1st annular groove 36 and the 2nd annular groove 37 can be processed only by one process from the same direction, Further reduction in the number of processing steps of the torque converter case 11 is possible.
 その一方で、図4に示すように、第1環状溝36を第2環状溝37よりも大きな径寸法に設定する場合は、オイルシール39の径寸法を小さく抑えることができるので、オイルシール39の製造コストの削減が可能となる。また、オイルシール39の受圧面積が減少することで、オイルシール39の抜けに対する耐久性を向上させることができる。 On the other hand, as shown in FIG. 4, when the first annular groove 36 is set to have a larger diameter than the second annular groove 37, the diameter of the oil seal 39 can be kept small. The manufacturing cost can be reduced. Further, since the pressure receiving area of the oil seal 39 is reduced, durability against the oil seal 39 can be improved.
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、本発明を適用する変速機は、スリーブ(トルクコンバータスリーブ)に取り付けられてトルクコンバータの中心軸回りに回転するスプロケットと、該スプロケットをトルクコンバータケースに対して回転自在に支持するベアリングとを備えた変速機であれば、その他の具体的な構成としては、上記実施形態に示すベルト式無段変速機構を備えた変速機には限らず、遊星歯車機構など他の機構を備えた変速機であってもよい。また、本発明にかかるスプロケットの回転で駆動される被駆動装置は、上記実施形態に示すオイルポンプ16には限らず、他の種類の装置であってもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. For example, a transmission to which the present invention is applied includes a sprocket that is attached to a sleeve (torque converter sleeve) and rotates around the center axis of the torque converter, and a bearing that rotatably supports the sprocket with respect to the torque converter case. As long as the transmission is provided, the other specific configuration is not limited to the transmission provided with the belt-type continuously variable transmission mechanism shown in the above embodiment, but the transmission provided with other mechanisms such as a planetary gear mechanism. It may be. In addition, the driven device driven by the rotation of the sprocket according to the present invention is not limited to the oil pump 16 shown in the above embodiment, and may be other types of devices.

Claims (3)

  1.  トルクコンバータを収容したトルクコンバータケースと、
     前記トルクコンバータのインペラシェルと一体に回転するスリーブと、
     前記スリーブに取り付けられて前記トルクコンバータの中心軸回りに回転するスプロケットと、
     前記スプロケットを前記トルクコンバータケースに対して回転自在に支持するベアリングと、
     前記トルクコンバータケースと前記スリーブとの径方向の隙間を封するシール部材と、を備えるスプロケット支持構造であって、
     前記ベアリングは、前記トルクコンバータケースに形成した開口部の内周面と前記スプロケットの外周面との径方向の隙間に介在するボールベアリングであり、
     前記トルクコンバータケースの前記開口部の前記内周面には、前記ボールベアリングを嵌合するための第1環状溝と、前記シール部材を嵌合するための第2環状溝とが形成されており、
     前記第1環状溝を前記第2環状溝と同一かそれよりも大きな径寸法に設定した
    ことを特徴とするスプロケット支持構造。
    A torque converter case containing the torque converter;
    A sleeve that rotates integrally with the impeller shell of the torque converter;
    A sprocket attached to the sleeve and rotating about a central axis of the torque converter;
    A bearing that rotatably supports the sprocket with respect to the torque converter case;
    A sprocket support structure comprising: a seal member that seals a radial gap between the torque converter case and the sleeve;
    The bearing is a ball bearing interposed in a radial gap between an inner peripheral surface of an opening formed in the torque converter case and an outer peripheral surface of the sprocket,
    A first annular groove for fitting the ball bearing and a second annular groove for fitting the seal member are formed on the inner peripheral surface of the opening of the torque converter case. ,
    A sprocket support structure, wherein the first annular groove has a diameter equal to or larger than that of the second annular groove.
  2.  前記第1環状溝と前記第2環状溝はそれぞれ、前記トルクコンバータケースの外面側と内面側とに並べて設けられており、
     前記トルクコンバータケースの外面の外側には、複数の回転軸を有する変速機構部が設置されており、
     前記トルクコンバータケースの前記外面には、前記回転軸を支持するための支持フランジが形成されており、
     該支持フランジは、前記トルクコンバータケースの前記外面に開口する袋構造になっている
    ことを特徴とする請求項1に記載のスプロケット支持構造。
    The first annular groove and the second annular groove are provided side by side on the outer surface side and the inner surface side of the torque converter case, respectively.
    A transmission mechanism having a plurality of rotating shafts is installed outside the outer surface of the torque converter case,
    A support flange for supporting the rotating shaft is formed on the outer surface of the torque converter case,
    The sprocket support structure according to claim 1, wherein the support flange has a bag structure that opens to the outer surface of the torque converter case.
  3.  前記ボールベアリングと前記第1環状溝との間には、前記第1環状溝に対する前記ボールベアリングのスラスト方向の移動を規制するための第1係止部材が設置されており、
     前記ボールベアリングと前記スプロケットとの間には、前記ボールベアリングに対する前記スプロケットのスラスト方向の移動を規制するための第2係止部材が設置されている
    ことを特徴とする請求項1又は2に記載のスプロケット支持構造。
    Between the ball bearing and the first annular groove, a first locking member for restricting the movement of the ball bearing in the thrust direction with respect to the first annular groove is installed,
    The second locking member for restricting movement of the sprocket in the thrust direction with respect to the ball bearing is installed between the ball bearing and the sprocket. Sprocket support structure.
PCT/JP2011/051810 2010-03-02 2011-01-28 Sprocket support structure WO2011108316A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010045995 2010-03-02
JP2010-045995 2010-03-02
JP2010-124840 2010-05-31
JP2010124840 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011108316A1 true WO2011108316A1 (en) 2011-09-09

Family

ID=44541984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051810 WO2011108316A1 (en) 2010-03-02 2011-01-28 Sprocket support structure

Country Status (1)

Country Link
WO (1) WO2011108316A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011086276A1 (en) * 2011-11-14 2013-05-16 Zf Friedrichshafen Ag Arrangement for lubricating oil supply of the chain drive for driving an off-axis to the torque converter arranged transmission oil pump in a motor vehicle with a torque converter
DE102013010041A1 (en) * 2013-06-17 2014-12-18 Daimler Ag Drive train device for a drive train of a motor vehicle
WO2015005492A1 (en) * 2013-07-12 2015-01-15 アイシン・エィ・ダブリュ株式会社 Power transmission device
WO2015033729A1 (en) * 2013-09-04 2015-03-12 本田技研工業株式会社 Structure for securing transmission stator shaft
WO2016129346A1 (en) * 2015-02-13 2016-08-18 アイシン・エィ・ダブリュ株式会社 Power transmission device
JP2016205533A (en) * 2015-04-23 2016-12-08 本田技研工業株式会社 Transmission
US10895285B2 (en) 2015-07-27 2021-01-19 Ford Global Technologies, Llc Torque converter installation assist
CN112696483A (en) * 2020-12-23 2021-04-23 东风越野车有限公司 Special vehicle power switching transmission integrated device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355640A (en) * 2000-06-14 2001-12-26 Honda Motor Co Ltd Bearing structure
JP2006090367A (en) * 2004-09-21 2006-04-06 Toyota Motor Corp Accessory drive device
JP2007100716A (en) * 2005-09-30 2007-04-19 Fuji Heavy Ind Ltd Drive sprocket support structure
JP2008175338A (en) * 2007-01-22 2008-07-31 Honda Motor Co Ltd Hydraulic transmission apparatus
JP2009197914A (en) * 2008-02-21 2009-09-03 Fuji Heavy Ind Ltd Sprocket support structure for driving oil pump of vehicle transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355640A (en) * 2000-06-14 2001-12-26 Honda Motor Co Ltd Bearing structure
JP2006090367A (en) * 2004-09-21 2006-04-06 Toyota Motor Corp Accessory drive device
JP2007100716A (en) * 2005-09-30 2007-04-19 Fuji Heavy Ind Ltd Drive sprocket support structure
JP2008175338A (en) * 2007-01-22 2008-07-31 Honda Motor Co Ltd Hydraulic transmission apparatus
JP2009197914A (en) * 2008-02-21 2009-09-03 Fuji Heavy Ind Ltd Sprocket support structure for driving oil pump of vehicle transmission

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017195B2 (en) 2011-11-14 2015-04-28 Zf Friedrichshafen Ag Arrangement for lube oil supply a chain drive driving a transmission oil pump arranged offset the axis of a torque converter
DE102011086276A1 (en) * 2011-11-14 2013-05-16 Zf Friedrichshafen Ag Arrangement for lubricating oil supply of the chain drive for driving an off-axis to the torque converter arranged transmission oil pump in a motor vehicle with a torque converter
DE102013010041A1 (en) * 2013-06-17 2014-12-18 Daimler Ag Drive train device for a drive train of a motor vehicle
JP6037015B2 (en) * 2013-07-12 2016-11-30 アイシン・エィ・ダブリュ株式会社 Power transmission device
WO2015005492A1 (en) * 2013-07-12 2015-01-15 アイシン・エィ・ダブリュ株式会社 Power transmission device
US9885404B2 (en) 2013-07-12 2018-02-06 Aisin Aw Co., Ltd. Power transfer device
CN105324595A (en) * 2013-07-12 2016-02-10 爱信艾达株式会社 Power transmission device
CN105492801A (en) * 2013-09-04 2016-04-13 本田技研工业株式会社 Structure for securing transmission stator shaft
JP6072925B2 (en) * 2013-09-04 2017-02-01 本田技研工業株式会社 Stator shaft fixing structure of transmission
WO2015033729A1 (en) * 2013-09-04 2015-03-12 本田技研工業株式会社 Structure for securing transmission stator shaft
WO2016129346A1 (en) * 2015-02-13 2016-08-18 アイシン・エィ・ダブリュ株式会社 Power transmission device
JP2016205533A (en) * 2015-04-23 2016-12-08 本田技研工業株式会社 Transmission
US10895285B2 (en) 2015-07-27 2021-01-19 Ford Global Technologies, Llc Torque converter installation assist
CN112696483A (en) * 2020-12-23 2021-04-23 东风越野车有限公司 Special vehicle power switching transmission integrated device

Similar Documents

Publication Publication Date Title
WO2011108316A1 (en) Sprocket support structure
JP5012912B2 (en) Oil path structure of chain drive type oil pump
JP5401821B2 (en) Starting device
JP5171822B2 (en) Automatic transmission pump drive unit
EP1598576B1 (en) Apparatus for driving an oil pump for automatic transmission
US9885404B2 (en) Power transfer device
WO2013069595A1 (en) Drive force transmission device
JP4933764B2 (en) Drive sprocket support structure
JP5337755B2 (en) Lubricating oil passage structure of automatic transmission
JP5269750B2 (en) transmission
JP5072672B2 (en) Lubricating structure of planetary gear unit
EP2700846A1 (en) Vehicle torque converter
JP3584791B2 (en) Lubrication structure of planetary gear mechanism
JP4583139B2 (en) Assembling structure and assembling method of continuously variable transmission
US11525488B2 (en) Automatic transmission
JP5761090B2 (en) Transmission
JPS5947182B2 (en) Lubricating oil supply mechanism for automatic transmissions for automobiles
JP4606124B2 (en) Continuously variable transmission
JP5237920B2 (en) transmission
JP6351566B2 (en) Oil supply structure
JP2010249244A (en) Belt type continuously variable transmission
WO2015133272A1 (en) Power transmission device
JP2011117508A (en) Fixing structure for member to be fixed
JP2006105245A (en) Belt type continuously variable transmission
JP2008051177A (en) Torque cam device and belt-driven continuously variable transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP