WO2011108037A1 - 静電容量式タッチパネル - Google Patents

静電容量式タッチパネル Download PDF

Info

Publication number
WO2011108037A1
WO2011108037A1 PCT/JP2010/004707 JP2010004707W WO2011108037A1 WO 2011108037 A1 WO2011108037 A1 WO 2011108037A1 JP 2010004707 W JP2010004707 W JP 2010004707W WO 2011108037 A1 WO2011108037 A1 WO 2011108037A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
time
detection electrode
charge
stray capacitance
Prior art date
Application number
PCT/JP2010/004707
Other languages
English (en)
French (fr)
Inventor
吉川治
Original Assignee
Smk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smk株式会社 filed Critical Smk株式会社
Priority to CN201080045039.5A priority Critical patent/CN102576271B/zh
Priority to EP10846945A priority patent/EP2434378A4/en
Priority to KR1020117016929A priority patent/KR101527440B1/ko
Publication of WO2011108037A1 publication Critical patent/WO2011108037A1/ja
Priority to US13/251,299 priority patent/US8547113B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard

Definitions

  • the present invention relates to a capacitive touch panel that detects an input operation to a detection electrode arranged on an insulating panel in a non-contact manner from an increase in floating capacitance of the detection electrode.
  • the capacitance of the capacitance is changed by using the phenomenon that the capacitance near the input operation surface changes when the input operation body such as a finger approaches the input operation surface.
  • a capacitive touch panel that can detect an input operation in a non-contact manner even if it is arranged on the back side of the display from a change.
  • a conventional capacitive touch panel is formed in a matrix so that a large number of X electrodes and Y electrodes intersect with each other on the input operation surface, and crosses near the input operation body such as a finger. Since the capacitance between each X electrode and Y electrode to be changed changes the input operation to the arrangement position of the X electrode and Y electrode where the capacitance has changed (Patent Document 1).
  • scanning is performed by sequentially applying a predetermined pulse voltage to a large number of Y electrodes, and the voltage of each X electrode that intersects the Y electrode to which the pulse voltage is applied is detected.
  • the capacitance between the X electrode and the Y electrode intersecting at the position where the input operation body approaches changes, and the X electrode whose voltage has changed due to the change in capacitance
  • the operation position to the insulation panel of the input operation body is detected from the arrangement position of the Y electrode to which the pulse voltage is applied at that time.
  • a CR time constant circuit is formed in which a detection resistor R is connected in series or in parallel with a capacitor C having an unknown capacitance, and a predetermined voltage Vdd is applied to one side of the detection resistor R or One side is grounded, and the potential of the capacitor C that rises or falls depending on the time constant rc determined by the capacitance c of the capacitor C and the resistance value r of the detection resistor R is compared with a predetermined threshold potential.
  • the magnitude of the capacitance is determined from the charging time or discharging time until the threshold potential is reached.
  • the stray capacitance (capacitance between the detection electrode and the ground) of the detection electrode arranged on the insulating panel increases when an input operation body such as a finger approaches, and the charge / discharge time becomes longer. Therefore, it is possible to detect the presence or absence of an input operation approaching the detection electrode as compared with the charge / discharge time when the input operation is not performed by measuring the charge / discharge time until the potential of the detection electrode reaches a predetermined threshold potential. .
  • the detection method using the CR time constant circuit detects, for example, a capacitance increasing by 1 pF. Even if a 10 M ⁇ detection resistor is connected in series, the time constant only changes by 10 ⁇ sec, and the input operation to the detection electrode can be detected directly by comparing the charge time and discharge time until the threshold potential is reached. Was extremely difficult. In order to solve this problem, a method of further increasing the resistance value of the detection resistor is conceivable. However, the detection current flows to a microcomputer or the like that applies a detection voltage because of a high impedance close to the insulation state, and cannot be detected.
  • a capacitor C1 shown in FIG. 5 is a small-capacitance c1 capacitor that attempts to detect a change in capacitance.
  • the capacitor C1 has a minute stray capacitance generated between an operator's finger and a pattern.
  • One side of the capacitor C1 is grounded via an operator, and is charged with the charging voltage Vdd while the other side SW1 is ON.
  • a capacitor C2 having a capacity c2 that is sufficiently larger than the capacitance of the capacitor C1 is connected in parallel with the capacitor C1 through SW2.
  • SW1 is turned on and SW2 is turned off in the first step, the capacitor C1 is charged with the charging voltage Vdd, and after charging, both SW1 and SW2 are turned off in the second step. .
  • the voltage V1 of the capacitor C1 is Vdd.
  • SW1 is turned off and SW2 is turned on, and a part of the charge of the capacitor C1 is transferred to the capacitor C2.
  • both SW1 and SW2 are turned off again.
  • the voltage V1 of the capacitor C1 is equal to the voltage V2 of the capacitor C2.
  • V2 Vdd ⁇ (1 ⁇ c2 / (c1 + c2) N ), and the charging voltage Vdd and the capacitance of the capacitor C2 Since c2 is known, if the number N of times that the voltage V2 of the capacitor C2 is achieved up to the threshold potential Vref set to 1 ⁇ 2 of the charging voltage Vdd shown in FIG. c1 is obtained.
  • SW1 and SW2 must be controlled 1000 times or more in order to detect a change in capacitance once, and eventually the detection electrode is approached from the change in stray capacitance in a short time. An input operation could not be detected.
  • the present invention has been made in consideration of such a conventional problem, and can detect a change in the stray capacitance of a large number of detection electrodes at the same time. It is an object of the present invention to provide a capacitive touch panel that can detect an input operation to a detection electrode from a charge / discharge time until reaching a threshold potential.
  • the capacitive touch panel according to claim 1 is arranged on an insulating panel and has a detection electrode whose floating capacitance increases as the input operation body approaches, and a value of the floating capacitance of the detection electrode.
  • the CR time constant circuit is connected to a switching terminal that is at a predetermined charging potential or ground potential from the reference time, and a resistance element that forms a CR time constant circuit between the reference terminal and the common terminal on one side of the resistance element.
  • a charge / discharge switch that charges or discharges the stray capacitance with a constant, raises the potential of the detection electrode from the ground potential to the charge potential, or lowers the charge potential from the charge potential to the ground potential, and charges or discharges the stray capacitance from the reference time.
  • Measuring means for measuring the elapsed time until the potential of the detection electrode at the potential or the ground potential reaches a predetermined threshold potential set between the charging potential and the ground potential; For example, a capacitive touch panel for detecting an input operation to the arrangement position of the detection electrode from the elapsed time increases with increasing the stray capacitance,
  • the charge / discharge switch is switch-controlled by a PWM modulation signal obtained by pulse-width-modulating a fixed-frequency rectangular wave pulse signal with a predetermined modulation value, and the common terminal on one side of the resistance element is set according to the binary signal value of the PWM modulation signal. It is characterized in that it contacts and separates from the switching terminal.
  • the duty ratio of the binary signal value for switching and controlling the charge / discharge switch changes according to the modulation value
  • one side of the resistance element has a modulation value between the charging potential or the ground potential and the open potential. It can be switched alternately at a fixed time interval ratio. While one side of the resistance element is at the charging potential or the ground potential, the potential of the detection electrode at the ground potential or the charging potential rises or falls according to a time constant determined by the resistance value of the resistance and the stray capacitance, but the open potential During this period, the potential of the detection electrode does not change, and its rise or fall stops.
  • the charge / discharge switch may be any one of a first switching terminal at a charging potential, a second switching terminal at a ground potential, and a third switching terminal opened by a PWM modulation signal.
  • the connection of the common terminal is controlled to be switched, and the connection of the common terminal is switched between the first switching terminal and the third switching terminal in accordance with the binary signal value of the PWM modulation signal to float the detection electrode.
  • the capacitor is charged and / or switched between the second switching terminal and the third switching terminal to discharge the stray capacitance of the detection electrode.
  • the connection of the common terminal is switched between the first switching terminal and the third switching terminal, and in the case of discharge control, the connection of the common terminal is switched to the second switching terminal and the third switching terminal.
  • the elapsed time from the reference time until the potential of the detection electrode reaches the threshold potential can be extended according to the modulation value by switching connection between the terminals and using a common charge / discharge switch.
  • the stray capacitance of each detection electrode is charged or discharged at the same time, and input to any detection electrode in a short time. Can detect operations.
  • the first aspect of the present invention it is possible to detect an input operation to the detection electrode using the CR time constant circuit even if the increase in the stray capacitance of the detection electrode due to the input operation is very small.
  • the second aspect of the present invention it is possible to use a common charge / discharge switch to perform the reference time whether the change is detected by charging the stray capacitance or the change is detected by discharging. Since the elapsed time until the potential of the detection electrode reaches the threshold potential is extended according to the modulation value, the stray capacitance that slightly changes can be reliably detected.
  • the slope at which the detection potential changes depending on the elapsed time from the reference time differs between charging and discharging the stray capacitance, so the slope of the potential of the detection electrode near the threshold potential matches the threshold potential.
  • the charge control or the discharge control of the stray capacitance can be selected in which the stray capacitance changes and the elapsed time appears with a larger elapsed time.
  • the third aspect of the present invention it is possible to detect a change in each of the stray capacitances of a large number of detection electrodes arranged on the insulating panel and detect an input operation position in a short time within one cycle in which the stray capacitance is charged and discharged. .
  • FIG. 1 is a circuit diagram showing a plurality of detection electrodes 3 and a capacitance-time conversion circuit 2 of a capacitive touch panel 1 according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of an input position detection circuit that detects an input operation of the capacitive touch panel 1.
  • FIG. It is a wave form diagram explaining the method to detect the detection electrode 3 which the input operation body approached. It is a wave form diagram which compares each waveform of a, b, and c of Drawing 1 with waveforms a 'and b' of a conventional method. It is a block diagram which shows the capacitance detection method of the conventional charge transfer system.
  • FIG. 6 is a waveform diagram showing the relationship between the number of times of charging N and the voltage V2 of the capacitor C2 by the capacitance detection method shown in FIG.
  • Capacitive Touch Panel 2 Capacitance-Time Conversion Circuit 3 Detection Electrode 4 Charge / Discharge Switch 5
  • Microcomputer 8 Register Value Comparison Circuit 10
  • Counter 20 PWM modulation circuit 21 Frequency divider circuit
  • a capacitive touch panel (hereinafter referred to as a touch panel) 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • a touch panel 1 a plurality of detection electrodes 3 1 , 3 2 , 3 3 , 3 4 are arranged on an insulating panel (not shown) so as to be insulated from each other at intervals of, for example, several mm.
  • the stray capacitance Cs of each detection electrode 3 is represented by the sum of the capacitance formed between the surrounding conductive pattern, the shield case that shields the device, and the ground, but the other capacitance is substantially constant. Thus, it increases when an input operation body such as an operator's finger approaches.
  • the stray capacitances Cs 1 , Cs 2 , Cs 3 , and Cs 4 of each detection electrode 3 are compared, and the input operation body of the input operation approaches the detection electrode 3 having the maximum stray capacitance Cs compared to the others. As a result, an input operation that approaches the arrangement position of the detection electrode 3 is detected.
  • the touch panel 1 detects the input operation by comparing the stray capacitances Cs 1 , Cs 2 , Cs 3 , Cs 4 of the four detection electrodes 3 1 , 3 2 , 3 3 , 3 4. Will be described.
  • each detection electrode 3 has a stray capacitance Cs in the time width of the binary signal c.
  • a capacity-time conversion circuit 2 for outputting the data is connected.
  • the detection resistor R2 is a resistance of the detection electrode 3, and a CR time constant circuit is formed by the detection resistors R1 and R2 connected in series with the capacitor of the stray capacitance Cs of the detection electrode 3.
  • the threshold potential V SH is a potential that is arbitrarily set between the reference charging voltage Vdd and the ground potential GND.
  • the threshold potential V SH is 70% of Vdd, whereby the common terminal 4c of the charge / discharge switch 4 is connected to the ground potential.
  • the stray capacitance of the detection resistor R1, R2 of the resistance value r and the stray capacitance Cs cs (explanation, the stray capacitance Cs of the capacitance of the capacitor, the stray capacitance Cs is charged by the constant csr time determined from) that stray capacitance cs, when the potential of the detecting electrode 3 rises from the ground potential GND exceeds the threshold potential V SH, the output c of the comparator 5 Is reversed.
  • the charge / discharge switch 4 is always controlled to be switched by the switching control signal a ′ at the “H” level during the charging control period Tc from the microcomputer 5, it is at the ground potential GND at the reference time t0.
  • the rising speed of the potential Vc of the detection electrode 3 when the stray capacitance Cs is charged with the reference charge voltage Vdd during the charge control period Tc is obtained by multiplying the resistance value r of the detection resistors R1 and R2 by the stray capacitance cs. Although it is determined by the time constant, it depends exclusively on the stray capacitance cs, and as the stray capacitance cs increases, the voltage rises more slowly and the elapsed time from the reference time t0 until the output c of the comparator 5 inverts also increases. .
  • the stray capacitance cs for the detection electrode 3 is about 10 pF, and the amount of change in the stray capacitance cs that changes due to the approach of the input operation body such as a finger is about 1 to 3 pF.
  • the difference in elapsed time until c is inverted is a minute time of 10 to 30 ⁇ sec even if the resistance value r of the detection resistors R1 and R2 is increased to 10 M ⁇ , and is difficult to discriminate.
  • the switching control signal a is obtained by PWM-modulating a square wave pulse signal having a fixed frequency with a predetermined modulation value in a PWM modulation circuit 20 described later of the microcomputer 5, and a PWM modulation signal having a duty ratio D corresponding to the modulation value and It has become.
  • a 2.5 MHz rectangular wave pulse signal is PWM-modulated, and a PWM modulation signal a having a duty ratio of 0.4 with a pulse width of “H” level of 0.16 ⁇ sec and a period of 0.4 ⁇ sec is output from the microcomputer 5. Is output from.
  • Discharge switch 4 while the switching control signal (PWM modulation signal) a is "H" level, and connected to the first switching terminal 4 1 with a common terminal 4c to reference charge voltage Vdd, while the "L” level, connecting to the opened third switch terminal 4 3.
  • the potential Vc of the detection electrode during the charging control period Tc rises according to the above equation (1) while the switching control signal a is at the “H” level, as shown in the enlarged waveform b in FIG.
  • the “L” level the potential is maintained and this is repeated.
  • the switching control signal a is at the “L” level
  • the potential Vc of the detection electrode does not increase, so that the increasing gradient decreases at a ratio corresponding to the duty ratio D, and gradually increases as shown by the waveform b in the figure. To do.
  • the change in the stray capacitance cs of about 1 to 3 pF due to the input operation is from the reference time t0 until the threshold potential V SH is reached. Even if the difference in elapsed time expands to 25 to 75 ⁇ sec, which is 2.5 times larger, and the resolution of the means for measuring the elapsed time described later is low, the input operation can be sufficiently detected from the difference.
  • the resistance values r of the detection resistors R1 and R2 of the capacitance-time conversion circuit 2, the circuit constants of the comparator 5, etc., and the threshold potential V SH are the detection electrodes 3 1 , 3 2 , 3 3. 3 and 4 and the charge / discharge switches 4 are simultaneously switched by the same switching control signal a from the microcomputer 5 shown in FIG. 2, so that the first switching terminal 4 is synchronized with the reference time t0. It is switched connection between the first and third switching terminal 4 3.
  • the change in the stray capacitance cs of the detection electrode 3 due to the input operation can be detected in the same manner during the discharge control period Td after the switching time tg.
  • the charge / discharge switch 4 is controlled to be switched by the switching control signal a or a ′, and the potential Vc of the detection electrode at the charge voltage Vdd at the switching time tg is the second switching with the common terminal 4c of the charge / discharge switch 4 being the ground potential GND.
  • the stray capacitance Cs at the constant csr is discharged when by connecting the terminal 4 2.
  • the potential Vc of the detection electrode is t ′ when the elapsed time from the switching time tg, which is the charging voltage Vdd.
  • To detect stray capacitance cs varying minutely during this discharge control period Td includes a switching control signal charging and discharging switch common terminal 4c of the 4 second switch terminal 4 2 by a outputted from the microcomputer 5 3 to switch connection between the switching terminal 4 3.
  • the switching control signal a is the same as the switching control signal a described in the charging control period Tc
  • the second switching in which the common terminal 4c is at the ground potential GND while the switching control signal a is at the “H” level. connected to a terminal 4 2 connect the "L" level during, the opened third switch terminal 4 3.
  • the potential Vc of the detection electrode during the discharge control period Td drops according to the above equation (2) while the switching control signal a is at the “H” level, and maintains the potential during the “L” level. repeat. Therefore, the inclination of potential Vc of the sensing electrode is lowered even course of becomes moderate at a ratio corresponding to the duty ratio from D, switching time tg caused by small changes in the stray capacitance cs by an input operation to reach the threshold potential V SH The time difference expands to 2.5 times the reciprocal of the duty ratio D, and the input operation can be sufficiently detected from the difference even during the discharge control period Td.
  • the elapsed time is close to the transient period in the vicinity of the threshold potential V SH.
  • the resolution of the comparison circuit that compares the threshold potential VSH and the potential Vc of the detection electrode is low, the latter discharge control is desirable, and when the resolution of the measurement circuit that measures the elapsed time t is low, the former The charge control is desirable.
  • the resolution of the comparison circuit that compares the threshold potential VSH and the potential Vc of the detection electrode is low, the former charging control is desirable, and when the resolution of the measurement circuit that measures the elapsed time t is low, the latter discharge control is desired, it can be selected without changing the circuit configuration of any suitable control by the resolution of the level and the detection circuit of the threshold potential V SH.
  • the outputs c1, c2, c3, and c4 of the comparator 5 of each capacitance-time conversion circuit 2 are supplied to a first register (T) 6 that is a 4-bit PIPO (parallel input parallel output type) register. It is input in parallel as 4-bit parallel data. Each bit data of the parallel data corresponds to a binary signal value of each output c1, c2, c3, c4, and is “1” when the output is “H”, and “0” when the output is “L”. Is remembered as Similarly, the parallel output of the first register (T) 6 is connected to the parallel input of the second register (T-1) 7 which is a 4-bit PIPO register.
  • the first register (T) 6 and the second register (T-1) 7 are connected to a common shift clock terminal (SFT) and reset output terminal (RESET) of the microcomputer 5, and a shift clock is received from the clock terminal (SFT).
  • a 4-bit register value to be stored is input / output each time it is input, and when a reset signal is input from the reset output terminal (RESET), the stored 4-bit register value is reset. That is, the first register (T) 6 stores the binary data of the outputs c1, c2, c3, and c4 stored as 4-bit register values when the shift clock is input until the next shift clock is input.
  • the second register (T-1) 7 stores the 4-bit register value output from the first register (T) 6 until the next shift clock is input. Further, when a trigger signal is input from a register value comparison circuit 8 described later, the first register (T) 6 stores the register value stored at that time in the RAM 10.
  • a trigger signal is output from the register value comparison circuit 8 to the first register (T) 6 and a counter 11 described later.
  • a trigger signal is output from the register value comparison circuit 8 in order to store a count value and a register value, which will be described later, in association with the RAM 10 also at a reference time t0 when an input operation is detected.
  • the register value stored in the second register (T-1) 7 is the register value stored in the first register (T) 6 immediately before the latest shift clock is input. It is output when at least one of binary data of outputs c1, c2, c3, and c4 changes in addition to t0.
  • the microcomputer 5 receives the clock signal from the clock transmission circuit 9, and here outputs a frequency dividing circuit 21 that divides the frequency of the clock signal of 20 MHz by 8 to a frequency of 2.5 MHz and the frequency dividing circuit 21.
  • a PWM modulation circuit 20 that performs pulse width modulation of a 2.5 MHz square wave pulse signal with a predetermined modulation value is built in, and the 2.5 MHz clock signal output from the frequency divider circuit 21 is used as the shift clock for the registers 6 and 7.
  • the charge / discharge switch 4 of each capacity-time conversion circuit 2 is switched and controlled using the PWM modulation signal output from the PWM modulation circuit 20 as a switching control signal a.
  • the PWM modulation signal is modulated into a pulse signal having a duty ratio of 0.4, and the charge / discharge switches 4 are switched and controlled simultaneously.
  • the frequency of the shift clock is at least 1 MHz or more in order to reliably detect the time difference.
  • the frequency (the cycle is 1 ⁇ sec or less), and here, the frequency is 2.5 MHz at which one cycle is 0.4 ⁇ sec.
  • microcomputer 5 specifies the detection electrode 3 to which the input operation body approaches from the combination of the count value and the register value stored in association with the RAM 10 for each detection cycle Tp in FIG. A detection process for detecting an input operation to the position is executed.
  • the counter 11 counts up the count value at a frequency obtained from the clock signal output from the clock oscillation circuit 9 at least at a frequency equal to or higher than the frequency of the shift clock.
  • the count value of the counter 11 is reset by a reset signal output from the microcomputer 5, and when a trigger signal is input from the register value comparison circuit 8, the count value at that time is output to the RAM 10 as shown in FIG. .
  • the RAM 10 which is a temporary storage device, is stored in the count value of the counter 11 and the first register (T) 6 each time a trigger signal is output from the register value comparison circuit 8, as shown in FIG.
  • the register values are stored in association with each other, and each combination associated with the count value is stored until a register value in which all bit data is “1” is input.
  • the data of each combination stored in the RAM 10 is cleared by the control from the microcomputer 5 before the reference time t0 every detection cycle Tp.
  • the microcomputer 5 is an operation mode for detecting an input operation, and as shown in FIG. 4, the charging time Tc for charging / discharging the stray capacitance Cs of each detection electrode 3 and the detection cycle Tp obtained by adding the pause time Tr to the discharging time Td. , Repeat the input operation detection.
  • the description will be made assuming that the input operation to the detection electrode 3 is detected during the charging time Tc for controlling the charge of the stray capacitance Cs.
  • Charging time Tc has a first switching terminal 4 1 in the charge and discharge switch 4 the reference charging voltage Vdd, is the time from the reference time t0 of switching between the third switch terminal 4 3 which is open to the switching time tg, switching time tg, with or without an input operation, it is set when the subsequent potential of all the detection electrodes 3 reaches the reference charge voltage Vdd exceeds the threshold potential V SH.
  • the maximum value of the stray capacitance Cs is about 10 pF
  • the time constant composed of the detection resistors R1 and R2 connected in series of 10 M ⁇ is 100 ⁇ sec
  • the stray capacitance Cs is determined by the switching control signal a having a duty ratio of 0.4.
  • the elapsed time until the potential of the charged detection electrode 3 substantially reaches the reference charging voltage Vdd is 2.5 msec, and the charging time Tc until switching tg is 3 msec.
  • the switching control signal a after the switching time tg is “L” level, and the common terminal 4c of the charge / discharge switch 4 is set to the ground potential GND as shown in FIG. is connected to a second switch terminal 4 2, the potential of all the detection electrodes 3 discharge time Td has elapsed from the switching time tg is the ground potential GND. Since the stray capacitance Cs is always discharged during the discharge time Td, the elapsed time from the switching time tg to the ground potential GND is 0.5 msec, and the discharge time Td is set to 1 msec shorter than the charge time Tc. ing.
  • the time when the discharge time Td has passed is set as the reference time t0, and the pause time Tr is not necessarily provided in the detection cycle Tp.
  • the pause time Tr is not necessarily provided in the detection cycle Tp.
  • the microcomputer 5 performs a detection process for calculating the input operation position from the data stored in the RAM 10 from the discharge time Td to the rest time Tr.
  • the stray capacitance Cs of a large number of capacitance-time conversion circuits 2 is charged / discharged at the same time. Therefore, depending on the number of capacitance-time conversion circuits 2, the charging time Tc and the discharge time Td Even if the pause time Tr is provided, the input operation can be detected with a short detection cycle Tp. Therefore, even when the microcomputer 5 is in an operation mode in which an input operation is detected, the power consumption is small, and when used for an input device of a portable device in which power cannot be obtained from the outside such as a remote control transmitter or a mobile phone, It can be used without replacing the battery for a long time.
  • the microcomputer 5 outputs a reset signal from the reset output terminal (RESET) at the reference time t0, and resets the register values of the first register (T) 6 and the second register (T-1) 7 and the count value of the counter 11. At the same time, the data stored in the RAM 10 is cleared. However, since the register values of the first register (T) 6 and the second register (T-1) 7 are “0” when the detection cycle Tp elapses, it is not always necessary to reset.
  • the microcomputer 5 outputs a switching control signal a for switching the charge / discharge switch 4 of each capacitance-time conversion circuit 2 between the reference charge voltage Vdd and the open potential at the same reference time t0, and the stray capacitance Cs of the detection electrode 3 is output. Is charged at a duty ratio of 0.4. Since the charge and discharge switches 4 to the reference time t0, the potential of the sensing electrode 3 which has been switched to the ground potential GND are the following ground potential GND threshold potential V SH, the output of the comparator 5 of the reference time t0 c1, c2 , C3, and c4 are all “L”, and the 4-bit “0000” parallel data of the first register (T) 6 is stored.
  • the register value comparison circuit 8 outputs a trigger signal to the counter 11 and the first register (T) 6 at the reference time t0, and as shown in FIG. 2, the RAM 10 receives the count value C (t0) representing the reference time t0.
  • the register value “0000” stored in the first register (T) 6 is stored in association with the reference time t0.
  • the stray capacitance Cs 4 of the detection electrode 3 4 not affected by the input operation member is minimal since, as shown in FIG. 3, the potential of the sensing electrode 3 4 rising stepwise with a time constant of the resistance value of the detection resistor R1, R2 exceeds the threshold potential V SH at the earliest time t1.
  • the output c4 of the comparator 5 is inverted from “L” to “H”, and the first register (T) 6 stores the parallel data “0001” in which the least significant bit is “1”.
  • the register value comparison circuit 8 outputs a trigger signal to the counter 11 and the first register (T) 6 because the register value is different from the register value “0000” stored in the second register (T ⁇ 1) 7.
  • the RAM 10 stores the count value C (t1) representing the time t1 and the register value “0001” newly stored in the first register (T) 6 in association with each other.
  • the register value comparison circuit 8 is different from the register value “0001” stored in the second register (T ⁇ 1) 7 because the first bit and the third bit of the register value are different from the counter 11 and the first register (T ) 6, a trigger signal is output, and the register value “1011” newly stored in the first register (T) 6 is stored in the RAM 10 in association with the count value C (t 2) representing the time t 2.
  • the microcomputer 5 switches each charge / discharge switch 4 to the ground potential GND at the switching time tg when the charging time Tc has elapsed from the reference time t0, and discharges the charge accumulated in each stray capacitance Cs during the discharging time Td.
  • the potential of the detection electrode 3 is set to the ground potential GND.
  • the register value “1111” stored in the first register (T) 6 does not change until the switching time tg.
  • the microcomputer 5 reads the combination of each count value C (t) and the register value stored in the RAM 10 at the time of switching tg.
  • the count value C (t) represents an elapsed time from the reference time t0 when charging is started, and the register value indicates a bit whose bit data has changed compared to the register value of the immediately preceding combination.
  • the microcomputer 5 stores each combination stored in the RAM 10. From this data, the magnitude of the stray capacitance Cs of the detection electrode 3 can be compared.
  • the bit data of 4 bits changes in the order of the fourth bit (LSB), the first bit (MSB), the third bit, and the second bit
  • the stray capacitance Cs is Cs 4 , Cs 1 , Cs 3 , and Cs 2 are detected to increase in this order.
  • the microcomputer 5, the stray capacitance Cs 2 can be determined that the maximum of the detection electrode 3 2 input operation member to the position of the approaches, an input operation to input position the arrangement position of the detection electrode 3 2 To detect.
  • the microcomputer 5 outputs the input operation position thus detected to an external control circuit that controls the cursor movement control on the display screen and the operation of the electronic device, and executes a predetermined process corresponding to the input operation position.
  • the microcomputer 5 performs the input operation position and input operation detection process between the discharge time Td and the subsequent rest time Tr, and after the input operation is detected, is stored in the RAM 10 before the next reference time t0. Clear data.
  • the input operation position is detected by comparing the stray capacitances Cs of the plurality of detection electrodes 3 and inputting the positions between the arrangement positions of the plurality of detection electrodes 3 obtained from a ratio obtained by dividing the plurality of stray capacitances Cs. It may be an operation position.
  • each capacitance of a plurality of capacitors is compared with each stray capacitance of a plurality of detection electrodes, and the capacitance touch panel that detects an input operation to the detection electrode having the largest stray capacitance has been described.
  • the capacitance of the capacitor can be converted into a time that can be measured by the count value of the counter, the present invention can be applied not only to the stray capacitance but also to a capacitance determination device that compares the capacitance of other types of capacitors.
  • circuit elements such as the register value comparison circuit 8, the first register (T) 6, and the second register (T-1) 7 may be incorporated in the microcomputer 5.
  • the charge and discharge switch 4, the first switching terminal 4 1 that the potential of the reference charge voltage Vdd, and the second switching terminal 4 2 which is the ground potential GND, 3 kinds of the third switch terminal 4 3 obtained by opening of the has been described in the switch for switching between the switching terminal, when detecting an input operation on only one of the charge and discharge control can omit one first switching terminal 4 1 and the second switching terminal 4 2.
  • the present invention is suitable for a capacitive touch panel that detects an input operation in a non-contact manner from a capacitance that changes minutely by the input operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 多数の検出電極の浮遊容量の変化を同時に検出可能で、また、浮遊容量の変化が微小であっても、検出電極の電位がしきい電位に達するまでの経過時間から検出電極への入力操作を検出できる。 検出電極の浮遊容量と検出電極の抵抗とでCR時定数回路を形成し、検出電極の浮遊容量を、一定の時間比の休止期間をおいて充電若しくは放電制御する。検出電極に接近する入力操作により微小に増加する浮遊容量は、検出電極の電位がしきい電位に達するまでの経過時間を拡大させて検出することにより検出できる。

Description

静電容量式タッチパネル
 本発明は、絶縁パネル上に配置される検出電極への入力操作を、検出電極の浮遊容量の増加から非接触で検出する静電容量式タッチパネルに関する。
 電子機器のディスプレーに表示されたアイコンなどを指示入力するポインティングデバイスとして、指などの入力操作体が入力操作面に接近するとその付近での静電容量が変化する現象を利用し、静電容量の変化からディスプレーの背面側に配置しても非接触で入力操作を検出可能な静電容量式タッチパネルが知られている。
 従来の静電容量式タッチパネルは、多数のX電極とY電極を入力操作面上に互いに絶縁させて交差するようにマトリックス状に形成し、指などの入力操作体を接近させた付近で、交差する各X電極とY電極間の静電容量が変化することから、静電容量が変化したX電極とY電極の配置位置への入力操作を検出している(特許文献1)。
 この特許文献1に記載の静電容量式タッチパネルでは、多数のY電極に順次、所定のパルス電圧を印加して走査し、パルス電圧が印加されたY電極と交差する各X電極の電圧を検出する。指などの入力操作体を絶縁パネルへ接近させると、入力操作体が接近する位置で交差するX電極とY電極間の静電容量が変化し、静電容量の変化で電圧が変化したX電極と、その時にパルス電圧を印加したY電極の配置位置から、入力操作体の絶縁パネルへの操作位置を検出している。
 しかしながら、絶縁パネルの入力操作面が大面積となると、その入力面積の増加に応じて静電容量の変化を検出するX電極とY電極の数が増大し、各電極の交差位置について走査する走査周期が長くなり、短時間で入力操作位置を検出できないという問題がある。更に、パルス電圧を印加する手段を設ける必要がある他、マトリックス状に配線する多数のX電極とY電極を走査する為に、相当する本数に対応するマルチプレクサを用いなければならず、回路構成が複雑、大型化するという問題があった
 そこで、より簡易な回路構成で検出電極についての静電容量(浮遊容量)の変化を検出する手段として、入力操作位置での未知の静電容量を、静電容量と既知の抵抗値との時定数から検出する方法が知られている。この検出方法は、未知の容量である静電容量のコンデンサCに対し直列若しくは並列に検出抵抗Rを接続したCR時定数回路を形成し、検出抵抗Rの一側に所定の電圧Vddを加え若しくは一側を接地し、コンデンサCの静電容量cと検出抵抗Rの抵抗値rとで定まる時定数rcに依存して上昇若しくは下降するコンデンサCの電位を、所定のしきい電位と比較し、しきい電位に達するまでの充電時間若しくは放電時間から静電容量の大きさを判別するものである。この検出方法を利用すれば、絶縁パネル上に配置した検出電極の浮遊容量(検出電極と接地間の静電容量)は、指などの入力操作体が接近すると増大して充放電時間が長くなるので、検出電極の電位が所定のしきい電位となるまでの充放電時間を計時し、入力操作を行わない場合の充放電時間と比較して、検出電極に接近する入力操作の有無を検出できる。
 しかしながら、指を検出電極へ接近させた際の浮遊容量cは10pF程度からわずかに数pF増加するだけなので、CR時定数回路を用いた検出方法は、例えば1pF増加する静電容量を検出する為に10MΩの検出抵抗を直列に接続したとしても、時定数は、10μsec変化するだけであり、しきい電位に達するまでの充電時間や放電時間の比較から直接検出電極への入力操作を検出することが極めて困難であった。この問題を解決するために、検出抵抗の抵抗値を更に大きくする方法が考えられるが、絶縁状態に近い高いインピーダンスとなって検出電圧を印加するマイコン等に検出電流が流れ、検出できないものであった。そこで、より大きな容量のコンデンサを用意しておき、浮遊容量の充電電荷を繰り返しこのコンデンサへ移し、コンデンサの充電時間を比較するチャージトランスファー方式の静電容量検出方法が提案されている(特許文献2)。
 以下、チャージトランスファー方式の静電容量検出方法を、図5、図6を用いて説明する。図5に示すコンデンサC1は、容量の変化を検出しようとする小容量c1のコンデンサであり、例えば、操作者の指とパターンとの間に生じる微小浮遊容量のコンデンサである。コンデンサC1の一側は、操作者を介して接地され、他側のSW1がON動作している間、充電電圧Vddで充電される。また、コンデンサC1と並列に、SW2を介してコンデンサC1の静電容量に対して充分に大きい容量c2のコンデンサC2が接続されている。
 このように構成された検出回路について、第1ステップで、SW1をON、SW2をOFFとして、コンデンサC1を充電電圧Vddで充電し、充電後、第2ステップで、SW1とSW2をともにOFFとする。この第2ステップでは、コンデンサC1の電圧V1は、Vddである。続いて、第3ステップで、SW1をOFF、SW2をONとし、コンデンサC1の充電電荷の一部をコンデンサC2へ移し、その後、第4ステップで、SW1とSW2を再びともにOFFとする。この第4ステップでは、コンデンサC1の電圧V1とコンデンサC2の電圧V2は等しくなる。
 第1ステップから第4ステップまでの処理をN回繰り返したときのコンデンサC2の電圧V2は、V2=Vdd×(1-c2/(c1+c2))で表され、充電電圧Vdd、コンデンサC2の容量c2が既知であるので、図6に示す充電電圧Vddの1/2に設定したしきい電位VrefまでコンデンサC2の電圧V2が達成する回数Nを求めれば、検出しようとするコンデンサC1の静電容量c1が得られる。
 図6に示すように、静電容量c1が増加する程、Vrefに達する繰り返し回数Nは短くなるので、検出電極への入力操作体の接近のみを検知できれば充分な静電容量方式タッチパネルでは、繰り返し回数のしきい値Nrefを例えば図中の1100に設定し、このしきい値Nrefより短い繰り返し回数でVrefに達した場合に、入力操作の指が接近し10pF以上の浮遊容量が生じたものとして、検出電極への入力操作を検出する。
特開2005-337773号公報(明細書の項目0017乃至項目0031、図1) 特開2009-70004号公報(明細書の項目0014乃至項目0020、図2)
 特許文献1に記載の従来の静電容量式タッチパネルでは、全ての検出電極毎にパルス電圧を印加する必要があるので、同時に全ての検出電極の浮遊容量を充放電し、より短時間に静電容量の変化を検出できるCR時定数回路を用いた検出方法が望まれるが、入力操作による浮遊容量の変化が微小であるため、しきい電位に達するまでの充放電時間の差からこれを検出することが困難であり、特許文献2に記載のチャージトランスファー方式でこれを拡大させて検出するほかなかった。
 しかしながら、このチャージトランスファー方式は、一度の静電容量の変化を検出するために、SW1とSW2を1000回以上動作制御しなければならず、結局短時間に浮遊容量の変化から検出電極に接近する入力操作を検出することはできなかった。
 本発明は、このような従来の問題点を考慮してなされたものであり、多数の検出電極の浮遊容量の変化を同時に検出可能で、また、浮遊容量の変化が微小であっても、しきい電位に達するまでの充放電時間から検出電極への入力操作を検出できる静電容量式タッチパネルを提供することを目的とする。
 また、充電電圧Vddや検出電極の電位Vcと比較するしきい電位に応じて、より検出精度が高い電圧制御方法を選択可能な静電容量式タッチパネルを提供することを目的とする。
 上述の目的を達成するため、請求項1の静電容量式タッチパネルは、絶縁パネル上に配置され、入力操作体の接近に応じて浮遊容量が増加する検出電極と、検出電極の浮遊容量の値との間でCR時定数回路を形成する抵抗素子と、抵抗素子の一側のコモン端子を、基準時から所定の充電電位若しくは接地電位にある切り替え端子に接続して前記CR時定数回路の時定数で浮遊容量を充電若しくは放電し、検出電極の電位を接地電位から前記充電電位まで引き上げ若しくは前記充電電位から接地電位まで引き下げる充放電スイッチと、基準時から浮遊容量を充電若しくは放電し、前記充電電位若しくは接地電位にある検出電極の電位が、前記充電電位と接地電位の間に設定する所定のしきい電位に達するまでの経過時間を計測する計時手段とを備え、浮遊容量の増加に伴い増加する経過時間から検出電極の配置位置への入力操作を検出する静電容量方式タッチパネルであって、
 充放電スイッチは、固定周波数の矩形波パルス信号を所定の変調値でパルス幅変調したPWM変調信号によって切り替え制御され、PWM変調信号の二値信号値に応じて抵抗素子の一側のコモン端子が前記切り替え端子に接離することを特徴とする。
 PWM変調信号は、変調値に応じて充放電スイッチを切り替え制御する二値信号値のデューティ比が変化し、抵抗素子の一側は、充電電位若しくは接地電位と開放電位との間で変調値で定まる時間間隔比で交互に切り替えられる。抵抗素子の一側は、充電電位若しくは接地電位にある間、接地電位若しくは充電電位にある検出電極の電位は、抵抗の抵抗値と浮遊容量とで定まる時定数に従って上昇若しくは下降するが、開放電位にある間、検出電極の電位は変化せず、その上昇若しくは下降が停止する。従って、浮遊容量を充放電する際に検出電極の電位が変化する傾きを下げて、基準時から検出電極の電位がしきい電位に達するまでの経過時間を、変調値に応じて引き延ばすことができるので、入力操作による浮遊容量が微小な増加であっても、拡大させた経過時間の増加から検出できる。
 請求項2の静電容量式タッチパネルは、充放電スイッチが、PWM変調信号によって、充電電位にある第1切り替え端子と、接地電位にある第2切り替え端子と、開放された第3切り替え端子のいずれかに前記コモン端子の接続が切り替え制御され、PWM変調信号の二値信号値に応じて、前記コモン端子の接続を、第1切り替え端子と第3切り替え端子間で切り替え接続して検出電極の浮遊容量を充電し、及び/又は、第2切り替え端子と第3切り替え端子間で切り替え接続して検出電極の浮遊容量を放電することを特徴とする。
 浮遊容量の充電制御の際には、コモン端子の接続を第1切り替え端子と第3切り替え端子間で切り替え接続し、放電制御の際には、コモン端子の接続を第2切り替え端子と第3切り替え端子間で切り替え接続し、共通する充放電スイッチで、いずれの場合にも、基準時から検出電極の電位がしきい電位に達するまでの経過時間を、変調値に応じて引き延ばすことができる。
  請求項3の静電容量式タッチパネルは、抵抗素子と充放電スイッチが、絶縁パネル上に互いに絶縁して配置される複数の検出電極毎に備えられ、各検出電極について計時手段が計測した経過時間を比較し、経過時間が増加した検出電極の配置位置から入力操作位置を検出することを特徴とする。
 多数の検出電極についてCR時定数回路を用いて各検出電極の浮遊容量の変化を検出するので、多数の検出電極の浮遊容量を同時に充電若しくは放電し、短時間にいずれかの検出電極への入力操作を検出できる。
 請求項1の発明によれば、CR時定数回路を用いて、入力操作による検出電極の浮遊容量の増加が微小であっても、検出電極への入力操作を検出できる。
 請求項2の発明によれば、浮遊容量を充電してその変化を検出する場合と、放電してその変化を検出するいずれの場合であっても、共通する充放電スイッチを用いて、基準時から検出電極の電位がしきい電位に達するまでの経過時間を、変調値に応じて引き延ばし、微小に変化する浮遊容量を確実に検出できる。
 また、浮遊容量を充電する間と放電する間では、基準時からの経過時間により検出電位が変化する傾きが異なるので、しきい電位に合わせて、しきい電位の近傍で検出電極の電位の傾きが小さくなり、浮遊容量の変化が経過時間がより拡大して現れる浮遊容量の充電制御若しくは放電制御を選択できる。
 請求項3の発明よれば、浮遊容量を充放電制御する一周期内に、絶縁パネル上に配置された多数の検出電極の各浮遊容量の変化を検出し、短期間に入力操作位置を検出できる。
本発明の一実施の形態に係る静電容量式タッチパネル1の複数の検出電極3と容量-時間変換回路2を示す回路図である。 静電容量式タッチパネル1の入力操作を検出する入力位置検出回路のブロック図である。 入力操作体が接近した検出電極3を検出する方法を説明する波形図である。 図1のa、b、cの各波形を従来方法の波形a´、b´と比較して示す波形図である。 従来のチャージトランスファー方式の静電容量検出方法を示すブロック図である。 図5に示す静電容量検出方法による充電回数NとコンデンサC2の電圧V2との関係を示す波形図である。
 1   静電容量式タッチパネル
 2   容量-時間変換回路
 3   検出電極
 4   充放電スイッチ
 5   マイコン
 8   レジスタ値比較回路
 10  RAM
 11  カウンタ
 20  PWM変調回路
 21  分周回路
 以下、本発明の一実施の形態に係る静電容量式タッチパネル(以下、タッチパネルという)1を、図1乃至図4を用いて説明する。このタッチパネル1は、図示しない絶縁パネル上に例えば数mmの間隔で互いに絶縁して複数の検出電極3、3、3、3が配置される。各検出電極3の浮遊容量Csは、その周囲の導電パターン、機器を遮蔽するシールドケース、大地との間に形成される容量の総和で表されるが、他の容量が略一定であるの対して、操作者の指等の入力操作体が接近すると増大する。そこで、各検出電極3の浮遊容量Cs、Cs、Cs、Csを比較し、他と比較して浮遊容量Csが最大となる検出電極3に対して入力操作の入力操作体が接近したものとして、その検出電極3の配置位置に接近する入力操作を検出する。
 ここでは、説明の都合上、タッチパネル1が4つの検出電極3、3、3、3の浮遊容量Cs、Cs、Cs、Csを比較して入力操作を検出するものとして説明する。各検出電極3の浮遊容量Cs、Cs、Cs、Csを比較するため、図1に示すように、各検出電極3には、それぞれ浮遊容量Csを二値信号cの時間幅で表して出力する容量-時間変換回路2が接続されている。
 各容量-時間変換回路2は、コモン端子4cを、基準充電電圧Vddの電位とした第1切り替え端子4と、接地電位GNDとした第2切り替え端子4と、開放させた第3切り替え端子4との間で切り替える充放電スイッチ4と、充放電スイッチ4のコモン端子4cと検出電極3間の検出抵抗R1、R2と、非反転入力を検出抵抗R1、R2の接続点に接続し、反転入力をしきい電位VSHとしたコンパレータ5とを備えている。検出抵抗R2は、検出電極3の抵抗であり、検出電極3の浮遊容量Csのコンデンサと直列に接続された検出抵抗R1、R2とでCR時定数回路が形成される。
 しきい電位VSHは、基準充電電圧Vddと接地電位GNDの間で任意に設定される電位で、ここではVddの70%の電位とし、これにより、充放電スイッチ4のコモン端子4cが接地電位GNDの第2切り替え端子4から基準充電電圧Vddの第1切り替え端子4側に切り替えられると、検出抵抗R1、R2の抵抗値rと浮遊容量Csの浮遊容量cs(説明上、浮遊容量Csのコンデンサの容量を、浮遊容量csという)から定まる時定数csrで浮遊容量Csが充電され、接地電位GNDから上昇する検出電極3の電位がしきい電位VSHを越えると、コンパレータ5の出力cが反転する。
 図4に示すように、マイコン5から充電制御期間Tc中に、充放電スイッチ4が常時「H」レベルの切り替え制御信号a´により切り替え制御されるとすると、基準時t0に接地電位GNDにある検出電極の電位Vcは、充電電圧Vddを印加する基準時t0からの経過時間をt、自然対数をεとすれば、
Vc=Vdd(1-ε-t/csr)・・・(1)式
で表され、図中b´に示すように上昇して、t=5csrの過渡期間が経過した際にほぼ充電電圧Vddに達する(以下、本明細書では、説明の便宜上これを充電電圧Vddに達したという)。
 ここで、充電制御期間Tc中に浮遊容量Csが基準充電電圧Vddで充電される際の検出電極3の電位Vcの上昇速度は、検出抵抗R1、R2の抵抗値rに浮遊容量csを乗じた時定数で決定されるが、専ら浮遊容量csに依存し、浮遊容量csが大きくなるほど、電圧の上昇が緩やかになり、基準時t0からコンパレータ5の出力cが反転するまでの経過時間も長くなる。しかしながら、一般に、検出電極3についての浮遊容量csは、約10pFであり、指などの入力操作体の接近により変化する浮遊容量csの変化量は、1乃至3pF程度であるので、その変化を出力cが反転するまでの経過時間の差は、検出抵抗R1、R2の抵抗値rを10MΩと大きくしても、10乃至30μsecと微小な時間であり判別しにくい。
 そこで本実施の形態では、充電制御期間Tc中に、マイコン5から出力される切り替え制御信号aにより充放電スイッチ4のコモン端子4cを第1切り替え端子4と第3切り替え端子4との間で切り替え接続する。切り替え制御信号aは、マイコン5の後述するPWM変調回路20において固定周波数の方形波パルス信号を所定の変調値でPWM変調したものであり、変調値に応じたデューティ比DからなるPWM変調信号となっている。ここでは、2.5MHzの矩形波パルス信号をPWM変調し、0.4μsecの一周期に対して「H」レベルのパルス幅が0.16μsecのデューティ比0.4のPWM変調信号aがマイコン5から出力される。
 充放電スイッチ4は、切り替え制御信号(PWM変調信号)aが「H」レベルの間、コモン端子4cを基準充電電圧Vddにある第1切り替え端子4に接続し、「L」レベルの間、開放された第3切り替え端子4へ接続する。その結果、充電制御期間Tc中の検出電極の電位Vcは、図4の波形bを拡大して示すように、切り替え制御信号aが「H」レベルの間、上記(1)式に従って上昇し、「L」レベルの間、その電位を維持し、これを繰り返す。つまり、切り替え制御信号aが「L」レベルの間、検出電極の電位Vcが上昇しないので、上昇する傾きはデューティ比Dに相当する比で低下し、図中波形bに示すように緩やかに上昇する。
 b´に比べて緩やかな傾斜の検出電極3の電位Vcの波形bによれば、入力操作による1乃至3pF程度の浮遊容量csの変化は、基準時t0からしきい電位VSHに達するまでの経過時間の差が2.5倍の25乃至75μsecと拡大し、後述する経過時間を計測する手段の分解能が低くても、充分にその差分から入力操作を検出できる。
 本実施の形態では、容量-時間変換回路2の検出抵抗R1、R2の抵抗値r、コンパレータ5等の回路定数、しきい電位VSHの電位は、各検出電極3、3、3、3について同一であり、又、各充放電スイッチ4は、図2に示すマイコン5から同一の切り替え制御信号aにより同時に切り替え制御されるので、基準時t0から同期して第1切り替え端子4と第3切り替え端子4との間で切り替え接続される。
 入力操作による検出電極3の浮遊容量csの変化は、切り換え時tg後の放電制御期間Td中にも同様の方法で検出できる。充放電スイッチ4を切り替え制御信号a若しくはa´で切り替え制御し、切り換え時tgに充電電圧Vddにある検出電極の電位Vcは、充放電スイッチ4のコモン端子4cを接地電位GNDとした第2切り替え端子4に接続することにより時定数csrで浮遊容量Csが放電される。検出電極の電位Vcは、充電電圧Vddとした切り換え時tgからの経過時間をt´とすれば、
Vc=Vddxε-t´/csr・・・(2)式
で表され、t´=5csrの過渡期間が経過した際に検出電極の電位Vcは、ほぼ接地電位に達する(以下、本明細書では、説明の便宜上これを接地電位に達したという)。
 この放電制御期間Td中に微小に変化する浮遊容量csを検出する為には、マイコン5から出力される切り替え制御信号aにより充放電スイッチ4のコモン端子4cを第2切り替え端子4と第3切り替え端子4との間で切り替え接続する。ここで、切り替え制御信号aは、充電制御期間Tcにおいて説明した切り替え制御信号aと同一であるとして、切り替え制御信号aが「H」レベルの間、コモン端子4cを接地電位GNDにある第2切り替え端子4に接続し、「L」レベルの間、開放された第3切り替え端子4へ接続する。その結果、放電制御期間Tdの検出電極の電位Vcは、切り替え制御信号aが「H」レベルの間、上記(2)式に従って下降し、「L」レベルの間、その電位を維持し、これを繰り返す。従って、検出電極の電位Vcが下降する傾きも、デューティ比Dに相当する比で緩やかになり、入力操作による浮遊容量csの微小変化で生じる切り換え時tgからしきい電位VSHに達するまでの経過時間の差は、デューティ比Dの逆数の2.5倍に拡大し、放電制御期間Td中であっても、充分にその差分から入力操作を検出できる。
 ここで、検出電極の電位Vcと比較するしきい電位VSHが充電電圧Vdd近くである場合には、前者の充電制御によれば、しきい電位VSHの近傍で過渡期間に近いので経過時間に対して検出電極の電位Vcの上昇が少なく、後者の放電制御によれば、しきい電位VSHの近傍で検出電極の電位Vcの下降が大きい。従って、しきい電位VSHと検出電極の電位Vcを比較する比較回路の分解能が低い場合には、後者の放電制御が望ましく、経過時間tを計測する計測回路の分解能が低い場合には、前者の充電制御が望ましい。
 逆に、検出電極の電位Vcと比較するしきい電位VSHが接地電位GND近くである場合には、前者の充電制御によれば、しきい電位VSHの近傍で検出電極の電位Vcの上昇が大きく、後者の放電制御によれば、しきい電位VSHの近傍で過渡期間に近いので検出電極の電位Vcの下降が小さい。従って、しきい電位VSHと検出電極の電位Vcを比較する比較回路の分解能が低い場合には、前者の充電制御が望ましく、経過時間tを計測する計測回路の分解能が低い場合には、後者の放電制御が望ましく、しきい電位VSHのレベルや検出回路の分解能によっていずれか好適な制御を回路構成を変更することなく選択できる。
 図2に示すように、各容量-時間変換回路2のコンパレータ5の出力c1、c2、c3、c4は、4ビットのPIPO(並列入力並列出力形)レジスタである第1レジスタ(T)6に4ビットのパラレルデータとして並列入力される。パラレルデータの各ビットデータは、各出力c1、c2、c3、c4の2値信号の値に対応し、出力が「H」であるときに「1」、「L」であるときに「0」として記憶される。また、第1レジスタ(T)6の並列出力は、同様に、4ビットのPIPOレジスタである第2レジスタ(T-1)7の並列入力に接続している。第1レジスタ(T)6と第2レジスタ(T-1)7は、マイコン5の共通するシフトクロック端子(SFT)とリセット出力端子(RESET)に接続し、クロック端子(SFT)からシフトクロックが入力される毎に記憶する4ビットのレジスタ値の入出力を行うとともに、リセット出力端子(RESET)からリセット信号が入力されると、記憶している4ビットのレジスタ値をリセットする。すなわち、第1レジスタ(T)6は、シフトクロックが入力された際に4ビットのレジスタ値として記憶した各出力c1、c2、c3、c4の二値データを次にシフトクロックが入力されるまで記憶し、同様に第2レジスタ(T-1)7は、第1レジスタ(T)6から出力される4ビットのレジスタ値を次にシフトクロックが入力されるまで記憶する。また、第1レジスタ(T)6は、後述するレジスタ値比較回路8からトリガー信号が入力されると、そのときに記憶しているレジスタ値をRAM10へ記憶する。
 第1レジスタ(T)6に出力c1、c2、c3、c4の新たな4ビットのレジスタ値が記憶される毎に、レジスタ値比較回路8において、そのレジスタ値と第2レジスタ(T-1)7に記憶されるレジスタ値とが比較され、少なくとも4ビットのいずれかのビットデータが異なる場合にレジスタ値比較回路8から第1レジスタ(T)6と後述するカンウター11にトリガー信号が出力される。また、本実施の形態では、入力操作を検出する基準時t0にも後述するカウント値とレジスタ値をRAM10に関連づけて記憶させるために、レジスタ値比較回路8からトリガー信号が出力される。第2レジスタ(T-1)7に記憶されるレジスタ値は、最新のシフトクロックが入力される直前に第1レジスタ(T)6に記憶されたレジスタ値であるので、トリガー信号は、基準時t0の他、出力c1、c2、c3、c4の少なくともいずれかの二値データが変化した場合に出力される。
 マイコン5は、クロック発信回路9からクロック信号を入力し、ここでは20MHzのクロック信号の周波数を8分周して2.5MHzの周波数とする分周回路21と、分周回路21から出力される2.5MHzの方形波パルス信号を所定の変調値でパルス幅変調するPWM変調回路20を内蔵し、分周回路21から出力される2.5MHzのクロック信号を上記シフトクロックとしてレジスタ6、7の動作を制御すると共に、PWM変調回路20から出力されるPWM変調信号を切り替え制御信号aとして各容量-時間変換回路2の充放電スイッチ4を切り替え制御する。
 本実施の形態では、上述のように、PWM変調信号がデューティ比が0.4のパルス信号に変調され、各充放電スイッチ4を同時に切り替え制御する。また、シフトクロックの周波数は、上述のように入力操作によって出力cの二値データが反転するまでの時間差が25乃至75μsec程度であるので、その時間差を確実に検出するために、少なくとも1MHz以上の周波数(周期1μsec以下)とし、ここでは1周期が0.4μsecとなる2.5MHzの周波数としている。
 また、マイコン5は、図4の検出周期Tp毎にRAM10に関連づけて記憶されたカウント値とレジスタ値との組合せから、入力操作体が接近する検出電極3を特定し、その検出電極3の配置位置への入力操作を検出する検出処理を実行する。
 カウンタ11は、少なくともシフトクロックの周波数以上の周波数で、クロック発振回路9から出力されるクロック信号から得る周波数でカウント値をカウントアップする。カウンター11のカウント値は、マイコン5から出力されるリセット信号でリセットされ、レジスタ値比較回路8からトリガー信号が入力されると、図2に示すように、その時のカウント値がRAM10に出力される。
 一時記憶装置であるRAM10は、図2に示すように、レジスタ値比較回路8からトリガー信号が出力される毎に、その時のカンウタ11のカウント値と第1レジスタ(T)6に記憶されているレジスタ値とを関連付けて記憶し、全てのビットデータが「1」となるレジスタ値が入力されるまで、カウント値と関連づけた各組合せを記憶する。RAM10に記憶されたこれらの各組合せのデータは、検出周期Tp毎に基準時t0前にマイコン5からの制御によりクリアされる。
 以下、このように構成されたタッチパネル1の入力操作を検出する動作を説明する。マイコン5は、入力操作を検出する動作モードで、図4に示すように、各検出電極3の浮遊容量Csを充放電する充電時間Tcと放電時間Tdに休止時間Trを加えた検出周期Tpで、入力操作の検出を繰り返す。ここでは、浮遊容量Csを充電制御する充電時間Tcに検出電極3への入力操作を検出するものとして説明する。充電時間Tcは、充放電スイッチ4を基準充電電圧Vddにある第1切り替え端子4と、開放された第3切り替え端子4の間で切り替える基準時t0から切り換え時tgまでの時間であり、切り換え時tgは、入力操作の有無に関わらず、全ての検出電極3の電位がしきい電位VSHを越えて基準充電電圧Vddに達する以降の時に設定される。浮遊容量Csの最大値は10pF程度であり、10MΩの直列に接続した検出抵抗R1、R2とからなる時定数は、100μsecであり、デューティ比が0.4の切り替え制御信号aで浮遊容量Csが充電される検出電極3の電位がほぼ基準充電電圧Vddに達するまでの経過時間は、2.5msecであり、切り換え時tgまでの充電時間Tcを、3msecとしている。
 また、放電時間Td中に入力操作は検出しないので、図4に示すように、切り換え時tg後の切り替え制御信号aは「L」レベルで、充放電スイッチ4のコモン端子4cは接地電位GNDにある第2切り替え端子4に接続され、切り換え時tgから放電時間Tdが経過した全ての検出電極3の電位が接地電位GNDとなる。放電時間Td中は、浮遊容量Csが常に放電されるので、切り換え時tgから接地電位GNDに達するまでの経過時間は、0.5msecであり、放電時間Tdを充電時間Tcより短い1msecに設定している。より入力操作の検出頻度を上げるためには、放電時間Tdが経過した時を基準時t0として、必ずしも検出周期Tpに休止時間Trを設けなくてもよいが、本実施の形態では、0.5msecの休止時間Trを設けて、検出周期Tpを4msecとしている。マイコン5は、この放電時間Tdから休止時間Trにかけて、RAM10に記憶されたデータから入力操作位置を算出する検出処理を行う。
 このように、本実施の形態によれば、多数の容量-時間変換回路2の浮遊容量Csに対して同時に充放電を行うので、容量-時間変換回路2の数によって充電時間Tcと放電時間Tdが増加せず、休止時間Trを設けても、短い検出周期Tpで入力操作を検出できる。従って、マイコン5が入力操作を検出する動作モードであっても、電力消費量が少なく、リモートコントロール送信機や携帯電話機などの外部から電源が得られない携帯機器の入力装置に用いた場合に、長時間バッテリーを交換するとなく使用できる。
 マイコン5は、基準時t0に、リセット出力端子(RESET)からリセット信号を出力し、第1レジスタ(T)6と第2レジスタ(T-1)7のレジスタ値とカウンター11のカウント値をリセットするとともに、RAM10に記憶されているデータをクリアする。しかしながら検出周期Tpが経過した時点で第1レジスタ(T)6と第2レジスタ(T-1)7の各レジスタ値は、「0」となっているので、必ずしもリセットする必要はない。
 また、マイコン5は、同一の基準時t0に各容量-時間変換回路2の充放電スイッチ4を基準充電電圧Vddと開放電位間で切り替える切り替え制御信号aを出力し、検出電極3の浮遊容量Csをデューティ比0.4の時間比で充電する。基準時t0まで充放電スイッチ4が接地電位GNDに切り替えられていた検出電極3の電位は、しきい電位VSH以下の接地電位GNDであるので、基準時t0の各コンパレータ5の出力c1、c2、c3、c4は、いずれも「L」であり、第1レジスタ(T)6の4ビットの「0000」のパラレルデータが記憶される。
 レジスタ値比較回路8は、基準時t0にカンウター11と第1レジスタ(T)6へトリガー信号を出力し、図2に示すように、RAM10は、基準時t0を表すカウント値C(t0)と、基準時t0に第1レジスタ(T)6に記憶されるレジスタ値「0000」を関連づけて記憶する。
 入力操作による指などの入力操作体が検出電極3の配置位置に接近したとすると、入力操作体から離れ、入力操作体による影響を受けない検出電極3の浮遊容量Csが最小であるので、図3に示すように、検出抵抗R1、R2の抵抗値との時定数で階段状に上昇する検出電極3の電位が最も早い時刻t1でしきい電位VSHを越える。その結果、コンパレータ5の出力c4が「L」から「H」に反転し、第1レジスタ(T)6に、最下位ビットが「1」となったパラレルデータ「0001」が記憶される。レジスタ値比較回路8は、このレジスタ値が、第2レジスタ(T-1)7に記憶されたレジスタ値「0000」と異なることからカンウター11と第1レジスタ(T)6へトリガー信号を出力し、RAM10に、時刻t1を表すカウント値C(t1)と、新たに第1レジスタ(T)6に記憶されたレジスタ値「0001」を関連づけて記憶される。
 続いて検出電極3の両側に配置され、検出電極3に接近する入力操作体に対してほぼ等距離に配置された検出電極3と検出電極3の浮遊容量Cs、Csが浮遊容量Csより大きく、検出電極3、3の電位が時刻t2でしきい電位VSHを越え、コンパレータ5の出力c1、c3が「L」から「H」に反転し、第1レジスタ(T)6にパラレルデータ「1011」が記憶される。レジスタ値比較回路8は、このレジスタ値の1ビット目と3ビット目が、第2レジスタ(T-1)7に記憶されたレジスタ値「0001」と異なることからカンウター11と第1レジスタ(T)6へトリガー信号を出力し、RAM10に、時刻t2を表すカウント値C(t2)と関連づけて新たに第1レジスタ(T)6に記憶されたレジスタ値「1011」が記憶される。
 入力操作位置に最も近い検出電極3の浮遊容量Csは他と比較して最大となるので、図3に示すように、その検出電極3の電位は、時刻tの最後にしきい電位VSHを越え、コンパレータ5の出力c3が「L」から「H」に反転する。その結果、第1レジスタ(T)6には、時刻tにパラレルデータ「1111」が記憶され、レジスタ値比較回路8は、このレジスタ値が、第2レジスタ(T-1)7に記憶されたレジスタ値「1011」と異なることからカンウター11と第1レジスタ(T)6へトリガー信号を出力し、図2に示すように、RAM10に、時刻t3を表すカウント値C(t3)と、第1レジスタ(T)6に記憶されたレジスタ値「1111」が関連づけて記憶される。
 マイコン5は、基準時t0から充電時間Tcが経過した切り換え時tgに、各充放電スイッチ4を接地電位GNDへ切り替え、放電時間Td中に各浮遊容量Csに蓄積された電荷を放電し、全ての検出電極3の電位を接地電位GNDとする。
 切り換え時tgには、全ての検出電極3の電位がしきい電位VSHを越えているので、第1レジスタ(T)6に記憶されるレジスタ値「1111」は、切り換え時tgまで変化せず、マイコン5は、切り換え時tgにRAM10に記憶されている各カウント値C(t)とレジスタ値との組合せを読み出す。カウント値C(t)は、充電を開始した基準時t0からの経過時間を表し、レジスタ値は、その直前の組合せのレジスタ値と比較してビットデータが変化したビットを示している。また、各レジスタ値のビットは、各検出電極3の浮遊容量Csに対応し浮遊容量Csの大きさによって基準時t0からの経過時間が長くなるので、マイコン5は、RAM10に記憶された各組合せのデータから、検出電極3の浮遊容量Csの大きさを比較できる。ここでは、図2に示すように、第4ビット(LSB)、第1ビット(MSB)と第3ビット、第2ビットの順に4ビットのビットデータが変化するので、浮遊容量Csは、Cs、CsとCs、Csの順に大きくなることが検出される。これにより、マイコン5は、浮遊容量Csが最大の検出電極3の配置位置に入力操作体が接近したものと判定でき、その検出電極3の配置位置を入力操作位置とする入力操作を検出する。
 マイコン5は、このようにして検出した入力操作位置を、表示画面上のカーソル移動制御や電子機器の動作を制御する外部制御回路へ出力し、入力操作位置に応じた所定の処理を実行させる。
 マイコン5は、放電時間Tdとその後の休止時間Trの間に、上記入力操作位置と入力操作の検出処理を実行し、入力操作を検出した後、次の基準時t0前に、RAM10に記憶されているデータをクリアする。
 尚、入力操作位置の検出は、複数の検出電極3の浮遊容量Csの大きさを比較し、複数の浮遊容量Csを按分した比から得る複数の検出電極3の配置位置間の位置を、入力操作位置としてもよい。
 上記実施の形態では、複数のコンデンサの各容量を、複数の検出電極の各浮遊容量として比較し、浮遊容量が最も大きい検出電極への入力操作を検出する静電容量式タッチパネルで説明したが、コンデンサの容量が、カンウターのカウント値で計測可能な時間に変換できれば、浮遊容量に限らず、他の種類のコンデンサの容量を比較する容量判別装置にも適用できる。
 また、レジスタ値比較回路8、第1レジスタ(T)6、第2レジスタ(T-1)7等の回路素子は、マイコン5に内蔵するものであってもよい。
 また、充放電スイッチ4は、基準充電電圧Vddの電位とした第1切り替え端子4と、接地電位GNDとした第2切り替え端子4と、開放させた第3切り替え端子4の3種類の切り替え端子間を切り替えるスイッチで説明したが、充放電制御の一方のみで入力操作を検出する場合には、第1切り替え端子4と第2切り替え端子4の一方を省略できる。更に、充電制御中にコモン端子が第1切り替え端子4と接離し、若しくは放電制御級にコモン端子が第2切り替え端子4と接離するように、所定のデューティ比で制御可能ではあれば、開放させた第3切り替え端子4を必ずしも設ける必要はない。
 本発明は、入力操作によって微小に変化する静電容量から非接触で入力操作を検出する静電容量式タッチパネルに適している。

Claims (3)

  1. 絶縁パネル上に配置され、入力操作体の接近に応じて浮遊容量が増加する検出電極と、
     検出電極の浮遊容量の値との間でCR時定数回路を形成する抵抗素子と、
     抵抗素子の一側のコモン端子を、基準時から所定の充電電位若しくは接地電位にある切り替え端子に接続して前記CR時定数回路の時定数で浮遊容量を充電若しくは放電し、検出電極の電位を接地電位から前記充電電位まで引き上げ若しくは前記充電電位から接地電位まで引き下げる充放電スイッチと、
     基準時から浮遊容量を充電若しくは放電し、前記充電電位若しくは接地電位にある検出電極の電位が、前記充電電位と接地電位の間に設定する所定のしきい電位に達するまでの経過時間を計測する計時手段とを備え、
     浮遊容量の増加に伴い増加する経過時間から検出電極の配置位置への入力操作を検出する静電容量方式タッチパネルであって、
     充放電スイッチは、固定周波数の矩形波パルス信号を所定の変調値でパルス幅変調したPWM変調信号によって切り替え制御され、PWM変調信号の二値信号値に応じて抵抗素子の一側のコモン端子が前記切り替え端子に接離することを特徴とする静電容量式タッチパネル。
  2. 充放電スイッチは、PWM変調信号によって、前記充電電位にある第1切り替え端子と、接地電位にある第2切り替え端子と、開放された第3切り替え端子のいずれかに前記コモン端子の接続が切り替え制御され、
     PWM変調信号の二値信号値に応じて、前記コモン端子の接続を、第1切り替え端子と第3切り替え端子間で切り替え接続して検出電極の浮遊容量を充電し、及び/又は、第2切り替え端子と第3切り替え端子間で切り替え接続して検出電極の浮遊容量を放電することを特徴とする請求項1に記載の静電容量式タッチパネル。
  3. 抵抗素子と充放電スイッチは、絶縁パネル上に互いに絶縁して配置される複数の検出電極毎に備えられ、
     各検出電極について計時手段が計測した経過時間を比較し、経過時間が増加した検出電極の配置位置から入力操作位置を検出することを特徴とする請求項1又は2のいずれか1項に記載の静電容量式タッチパネル。
PCT/JP2010/004707 2010-03-04 2010-07-23 静電容量式タッチパネル WO2011108037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080045039.5A CN102576271B (zh) 2010-03-04 2010-07-23 静电电容式触控面板
EP10846945A EP2434378A4 (en) 2010-03-04 2010-07-23 CAPACITIVE TOUCH SCREEN
KR1020117016929A KR101527440B1 (ko) 2010-03-04 2010-07-23 정전용량식 터치패널
US13/251,299 US8547113B2 (en) 2010-03-04 2011-10-03 Capacitive touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010047642A JP4727754B1 (ja) 2010-03-04 2010-03-04 静電容量式タッチパネル
JP2010-047642 2010-03-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/251,299 Continuation US8547113B2 (en) 2010-03-04 2011-10-03 Capacitive touch panel

Publications (1)

Publication Number Publication Date
WO2011108037A1 true WO2011108037A1 (ja) 2011-09-09

Family

ID=44461670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004707 WO2011108037A1 (ja) 2010-03-04 2010-07-23 静電容量式タッチパネル

Country Status (6)

Country Link
US (1) US8547113B2 (ja)
EP (1) EP2434378A4 (ja)
JP (1) JP4727754B1 (ja)
KR (1) KR101527440B1 (ja)
CN (1) CN102576271B (ja)
WO (1) WO2011108037A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242699A (ja) * 2012-05-21 2013-12-05 Renesas Electronics Corp 半導体装置
CN103440073B (zh) * 2013-07-08 2016-08-24 安沛科技股份有限公司 排除寄生电容影响的电容感测电路
KR101500400B1 (ko) * 2013-12-10 2015-03-09 현대자동차 주식회사 정전 용량 검출 장치
KR101603698B1 (ko) * 2014-10-23 2016-03-15 현대모비스 주식회사 차량용 도어 핸들 모듈 및 이 모듈을 구비한 차량 도어 개폐 장치
EP3057235B1 (en) * 2015-02-10 2020-07-08 Nxp B.V. Touch sensor
CN104880609B (zh) * 2015-06-12 2018-04-27 上海华岭集成电路技术股份有限公司 利用ate测量线路上寄生电容的方法
JP2017078828A (ja) * 2015-10-22 2017-04-27 株式会社 オルタステクノロジー 液晶駆動装置及び液晶駆動方法
KR102656854B1 (ko) * 2016-04-15 2024-04-15 엘지디스플레이 주식회사 터치 센싱 방법, 터치 센싱 회로 및 터치 표시 장치
SE1650548A1 (en) * 2016-04-22 2017-10-23 Fingerprint Cards Ab Fingerprint sensing system with sensing reference potential providing circuitry
KR102543477B1 (ko) * 2016-06-10 2023-06-16 삼성디스플레이 주식회사 센서 및 이를 포함하는 표시 장치
FR3077449B1 (fr) * 2018-01-29 2021-01-08 Continental Automotive France Procede et dispositif de detection de presence a multiples zones de detection pour vehicule automobile
JP7334606B2 (ja) * 2019-12-13 2023-08-29 Smk株式会社 浮遊容量の変化検出回路と浮遊容量の変化検出回路を用いた静電容量式タッチパネル
WO2024063329A1 (ko) * 2022-09-19 2024-03-28 삼성전자 주식회사 터치 입력 감도를 개선하는 전자 장치 및 그의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124256A (ja) * 1996-10-23 1998-05-15 Sharp Corp 表示一体型タブレット装置
JP2005337773A (ja) 2004-05-25 2005-12-08 Alps Electric Co Ltd 静電容量式の検出装置
US20070170931A1 (en) * 2006-01-20 2007-07-26 Snyder Warren S Successive approximate capacitance measurement circuit
JP2009070004A (ja) 2007-09-11 2009-04-02 Wacom Co Ltd 位置指示器
JP2010015262A (ja) * 2008-07-01 2010-01-21 Seiko Instruments Inc 静電検出装置及び静電検出方法
JP2010044470A (ja) * 2008-08-08 2010-02-25 Sony Corp 静電容量型センサーデバイスの容量変化測定回路、静電容量型センサーモジュール、静電容量型センサーデバイスの容量変化測定方法及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073757A (en) * 1988-09-23 1991-12-17 John Fluke Mfg. Co., Inc. Apparatus for and method of measuring capacitance of a capacitive element
US7075523B2 (en) * 2002-10-28 2006-07-11 Semtech New York Corporation Data acquisition from capacitive touch pad
US8207944B2 (en) * 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
US8058937B2 (en) * 2007-01-30 2011-11-15 Cypress Semiconductor Corporation Setting a discharge rate and a charge rate of a relaxation oscillator circuit
KR101427586B1 (ko) * 2007-12-26 2014-08-07 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP5445438B2 (ja) * 2010-12-15 2014-03-19 Smk株式会社 静電容量式タッチパネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124256A (ja) * 1996-10-23 1998-05-15 Sharp Corp 表示一体型タブレット装置
JP2005337773A (ja) 2004-05-25 2005-12-08 Alps Electric Co Ltd 静電容量式の検出装置
US20070170931A1 (en) * 2006-01-20 2007-07-26 Snyder Warren S Successive approximate capacitance measurement circuit
JP2009070004A (ja) 2007-09-11 2009-04-02 Wacom Co Ltd 位置指示器
JP2010015262A (ja) * 2008-07-01 2010-01-21 Seiko Instruments Inc 静電検出装置及び静電検出方法
JP2010044470A (ja) * 2008-08-08 2010-02-25 Sony Corp 静電容量型センサーデバイスの容量変化測定回路、静電容量型センサーモジュール、静電容量型センサーデバイスの容量変化測定方法及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434378A4 *

Also Published As

Publication number Publication date
EP2434378A1 (en) 2012-03-28
KR20130044123A (ko) 2013-05-02
US20120019265A1 (en) 2012-01-26
EP2434378A4 (en) 2012-10-17
US8547113B2 (en) 2013-10-01
CN102576271A (zh) 2012-07-11
CN102576271B (zh) 2015-07-15
JP4727754B1 (ja) 2011-07-20
KR101527440B1 (ko) 2015-06-09
JP2011186509A (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
JP4727754B1 (ja) 静電容量式タッチパネル
US8363031B2 (en) Mutual capacitance measuring circuits and methods
US9702914B2 (en) Capacitance measurement device and electronic device thereof
KR101667978B1 (ko) 아날로그 디지털 컨버터의 내부 커패시터와 기준 전압을 이용한 정전용량형 터치 센싱
US8547117B2 (en) Capacitive touch panel
US10466286B2 (en) Capacitive sensing
JP4846834B2 (ja) 静電容量式タッチパネル
TWI507951B (zh) 靜電電容式觸控面板
JP4920728B2 (ja) 容量判別装置及び静電容量式タッチパネル
JP2015219703A (ja) 静電検出装置
JP7334606B2 (ja) 浮遊容量の変化検出回路と浮遊容量の変化検出回路を用いた静電容量式タッチパネル
EP2722985B1 (en) Method of differential measurement of voltage levels of capacitive change.
CN113311965A (zh) 用于触摸感应的设备和方法
KR20140066069A (ko) 터치 인식시스템 및 터치 인식방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045039.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117016929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010846945

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE