WO2011105881A2 - Système de fourniture de chaleur et d'eau chaude centralisé - Google Patents

Système de fourniture de chaleur et d'eau chaude centralisé Download PDF

Info

Publication number
WO2011105881A2
WO2011105881A2 PCT/LT2011/000003 LT2011000003W WO2011105881A2 WO 2011105881 A2 WO2011105881 A2 WO 2011105881A2 LT 2011000003 W LT2011000003 W LT 2011000003W WO 2011105881 A2 WO2011105881 A2 WO 2011105881A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hot water
supply system
centralized
heat pump
Prior art date
Application number
PCT/LT2011/000003
Other languages
English (en)
Other versions
WO2011105881A3 (fr
Inventor
Genadij Pavlovskij
Dmitrijus Maratkanovas
Artūras JUCHNEVIČIUS
Tomas Glumbakas
Original Assignee
Genadij Pavlovskij
Dmitrijus Maratkanovas
Juchnevicius Arturas
Tomas Glumbakas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genadij Pavlovskij, Dmitrijus Maratkanovas, Juchnevicius Arturas, Tomas Glumbakas filed Critical Genadij Pavlovskij
Publication of WO2011105881A2 publication Critical patent/WO2011105881A2/fr
Publication of WO2011105881A3 publication Critical patent/WO2011105881A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D10/00District heating systems
    • F24D10/006Direct domestic delivery stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0207Central heating systems using heat accumulated in storage masses using heat pumps district heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1081Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D1/00Steam central heating systems
    • F24D1/005Steam central heating systems in combination with systems for domestic water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/13Heat from a district heating network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/17District heating

Definitions

  • the invention relates to the heating technology field and can be applied as a supplemental heat and hot water supply system for buildings connected to centralized heat supply.
  • a heat pump As an autonomous heat generator in a centralized system for delivering heat to buildings there may be employed a heat pump, the general operational principle and design of which are known and widely applied, a flow-type electrode boiler and other autonomous heat generators, the common feature of which is the ability to convert energy from a primary source into heat energy at a coefficient of performance (COP) of at least, 1.5.
  • COP coefficient of performance
  • a heat pump can draw heat from various outer sources: air, water bodies, soil, industrial waste and heat leakage (heat pollution resulting from the operation of various machines and mechanisms), rock, i.e. various massive low temperature sources.
  • a heat pump is a device that moves heat from a lower temperature heat source (mostly, environmental) to a higher temperature heat receiver. It is the used energy that works. The processes going on inside the pump are similar to those in the refrigerator, though the latter produces cold while the heat pump produces heat.
  • Normally a heat pump uses an intermediary fluid with a low boiling point (Freon, ammonia).
  • the heat pump heat receiver also receives heat drawn from an external heat source, e.g. stream water.
  • the main heat pump efficiency index applied in heating technology is the coefficient of heating performance (COP) equal to the ratio of the heat pump heat output to the compressor power input.
  • COP coefficient of heating performance
  • EER energy efficiency ratio
  • EER QC/N, where QR is energy released by a heater
  • Prior art describes systems for heating buildings that employ heat pumps.
  • United States patent No. US4190199 describes a heating system for buildings comprising, in combination: a conventional furnace (liquid fuel, gas or electric), a heat pump, a solar energy subsystem and a control mechanism for controlling the operation thereof.
  • a heating system for buildings comprising, in combination: a conventional furnace (liquid fuel, gas or electric), a heat pump, a solar energy subsystem and a control mechanism for controlling the operation thereof.
  • supply air delivered to the enclosure is heated by a condenser, or outer coil, of the heat pump, or a heating coil of the solar energy subsystem, or both.
  • the fossil, gas or electric furnace is only activated when the heat pump and solar energy subsystem cannot meet the heating demand within the enclosure.
  • the described heat pump equipment for autonomous use lacks efficiency and cannot be widely used under various climate conditions.
  • European patent application No. 0041352 describes a central heating system utilizing a heat pump as a heat source which upgrades the heat of the return water flow from radiators. A proportion of the return flow passes through a tank containing the evaporator of the heat pump and then enters a main tank containing the compressor and condenser of the heat pump.
  • the heat pump utilized in such a system lacks efficiency, while the heating media transported to the centralized heat supply system suffers losses due to the main circuit pipeline.
  • United Kingdom patent application No. GB2076957 describes a heating system for a dwelling located generally adjacent a barn where heat is accumulated.
  • This system comprises a fan within a duct for evacuating heated air from the barn to the heated dwelling and conducting it to the evaporator of a heat pump.
  • the heat pump condenser is located within a water tank which is in a circuit including a radiator within the dwelling.
  • the described heat pump equipment employed for autonomous heating lacks efficiency and has got limitations due to the specific features of the outer heat source.
  • United States patent US 5259445 describes a control device for dual heating system.
  • the control device is programmed to operate the fossil fuel furnace when the outside temperature is below a preselected temperature range, and to operate the heat pump when the outside temperature is above the preselected temperature range. This technical solution cannot be accommodated for centralized hot water and heat supply system.
  • the thermal store is located within the ground and is provided with two sets of pipes, one containing glycol anti-freeze solution and the other containing water.
  • the system is designed in such a way that the thermal store provides a higher source temperature to the heat pump than that available from the ambient environment.
  • the heat pump employed in this system lacks efficiency while heat media transported to centralized heat supply system suffers losses due to the main circuit pipeline.
  • Heating medium in an electric water heater occurs due to ionization, i.e. splitting of heating medium molecules into positive and negative ions which move accordingly to a negative and positive electrode; the electrodes change polarity 50 times per second, ions oscillate releasing energy, i.e. the process of heating the heating medium goes on directly without a supplemental intermediary (e.g., tubular electro-heater).
  • a supplemental intermediary e.g., tubular electro-heater
  • an autonomous heat generator there can also be employed both a heat pump and an electrode boiler. Since COP of such a boiler is within the range from 2.5 to 3, the economic performance of an electrode boiler can be high only at low temperatures and sufficiently high centralized heat supply prices. As an autonomous heat generator there can also be employed, in combination with the above ones or separately, various other autonomous heat generators possessing a sufficient efficiency and being more attractive than central heat supply with regard to price, environmental protection and renovation considerations. Summary of Invention
  • the proposed technical solution envisages employing a heat pump or another autonomous heat generator in a centralized heat and hot water supply system. Adjoining a heat pump or another autonomous heat generator equipment to the centralized heat supply system scheme of the building ensures a general increase in heat energy production due to alternate transfer of heat to the building from the operating centralized heat supply system or a heat pump and (or) another autonomous heat generator.
  • the novelty of a centralized hot water and heat supply system comprising the main circuit heat supply network, a set of pipes and equipment of a heat node, as well as the indoor hot water and heat supply system, consists in that a heat pump and (or) another autonomous heat generator comprises an independent module being connected to the main circuit pipeline supplying heat to the building and through a heat exchanger to hot water supply system of the building.
  • an independent module may comprise a heat pump and an electrode boiler - jointly or apart from each other.
  • control unit designed to evaluate at preset time intervals the heat pump or electrode boiler coefficient of heating performance (COP) based on the system data available at the evaluation moment, to compare the defined COP value with the predetermined one and depending on the result to connect or disconnect the module and also to process other parameters impacting maximal efficiency of the system operation.
  • COP heat pump or electrode boiler coefficient of heating performance
  • the essence of the invention consists in combined use of two heat energy sources in systems supplying heat and hot water to buildings:
  • heat energy generated during autonomous operation of a heat generator or heat pump by way of accumulation and conversion of energy from a natural heat source (renewable heating medium) or from an utilizable (technogenic) source by means of installation inside the building of equipment required for a combined use;
  • temperature gages installed on pipeworks of an autonomous heat generator of any type (all having a common feature to transform the primary source energy into heat energy at a COP (coefficient of performance) of at least, 1.5, e.g., a heat pump, a flow-type electrode boiler);
  • control unit evaluates COP. Having compared the resulting value with the predetermined one (COP can be preselected individually with regard to current heat and electricity prices) the control unit sets up either disconnection and transfer to an alternate heat source or further operation of a heat pump or another autonomous heat generator.
  • COP can be preselected individually with regard to current heat and electricity prices
  • the control unit sets up either disconnection and transfer to an alternate heat source or further operation of a heat pump or another autonomous heat generator.
  • its connection moment may be set up by the control unit after a preset period of time or depending on the data on ambient conditions change (e.g., the temperature has raised above the predetermined value).
  • Such an operation algorithm can be updated depending on the heating system operation conditions and it allows employing a heat pump or another autonomous heat generator only during such time intervals when its operation is most effective. During other time intervals alternate heat sources are employed, which ensures a considerable economic effect by diminishing the building and room heating costs.
  • the proposed solution offers an opportunity to choose the mode of supplying heat from heating medium to the building by an individual programme, controlling preselected indoor temperature by an individual programme and automatically regulating the necessity to connect or disconnect a heat pump or another autonomous heat generator depending on the outdoor temperature. Without a considerable decrease of COP currently existing heat pump designs are not effective at outdoor temperature below - 8 °C. Consequently, given factors should be taken into account while programming timely disconnection of a heat pump. Fulfilment of individual programme tasks is regulated with regard to preselected indoor temperature parameters and factual outdoor temperature. Another important factor for air heat pumps is humidity of the air from which the heat pump draws heat. High air humidity (higher than normal) decreases COP of an air heat pump at an outdoor temperature below 0 °C.
  • the heat pump in the described scheme can absorb heat from various outer sources: air, water bodies, soil, heat leakage (heat pollution resulting from operation of various machines and mechanisms) and heat loss, i.e. various massive low temperature sources.
  • the main circuit heat supply network - 1 As a basic scheme there has been applied a typical heating system scheme used for centralized heat supply. The following elements are shown and indicated in the scheme: the main circuit heat supply network - 1 ; a set of pipes and equipment of a heat node - 2; the indoor heating system - 3; the indoor hot water supply system - 4; the indoor heat supply station equipment - 5; a heat pump or another autonomous heat generator - 6; a heat exchanger - 7; three-way mixing valve - 8. Also indicated in the scheme are closing valves, meters, thermometers and other elements.
  • the heating medium movement direction and distribution are indicated accordingly: T1 - heating medium (water, steam, etc.) delivered from the heat supply network; T2 - heating medium (water, steam, etc.) returning to the heat supply network T3 - water delivered to the consumer hot water system; T4 - water returning from the consumer hot water system; T5 - heating medium (water, steam, etc.) delivered to the consumer heating system; T6 - heating medium (water, steam, etc.) returning from the consumer heating system.
  • connection of a heat pump or another autonomous heat generator 6 is provided beyond the network belonging to the heat supplier and as much as possible closer to the heat supply station equipment 5, to the main circuit pipeline delivering heat to the heating system of the building.
  • a complex operation algorithm is set up by automatic devices as well as closing and controlling valves in such a manner that a heat pump or another autonomous heat generator would produce heat only at such atmospheric (and other) parameters that ensure its most effective operation.
  • heat is drawn from the centralized heat supply system.
  • the control unit (not shown in the drawing) gives a command to close through electrically driven closing and regulating valves heat delivery from the heat supply station equipment 5 and to disconnect circulation pump in the heat supply station.
  • a heat pump or another autonomous heat generator 6 is provided with a separate circulation pump which turns on after actuation of a heat pump or another autonomous heat generator 6 and functions continuously while the heat pump or another autonomous heat generator 6 is operating.
  • Heat pump 6 operation time is determined by the above described algorithm. After the heat pump or another autonomous heat generator 6 is disconnected the above mentioned closing and regulating valves open and connect the circulation pump of heat supply station 5, disconnect the circulation pump of the heat pump.
  • the scheme also demonstrates a possibility in principle to upgrade the temperature of water for indoor hot water supply.
  • a water heater is connected to the main pipeline delivering heat from a heat pump or another autonomous heat generator three-way mixing valves 8 regulates distribution of the amount of heat delivered to heating and hot water supply systems of the building.
  • the above description is a general heat pump or another autonomous heat generator 6 connection scheme and functioning principle description, while in each particular case during the design stage there should be found an individual solution. Calculation of the invention profitability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

L'invention concerne le domaine des technologies de chauffage et peut être appliquée comme système de fourniture de chaleur et d'eau chaude supplémentaire pour des bâtiments reliés à un dispositif de fourniture de chaleur centralisé. La solution technique selon l'invention prévoit l'utilisation d'une pompe à chaleur ou d'un autre générateur de chaleur autonome dans un système de fourniture de chaleur et d'eau chaude centralisé. La conjonction d'un équipement de pompe à chaleur ou d'un autre générateur de chaleur autonome avec le système de fourniture de chaleur d'intérieur centralisé existant garantit une augmentation générale de la génération d'énergie thermique du système en raison de la fourniture de chaleur alternée au bâtiment en provenance d'un système de fourniture de chaleur centralisé opérationnel et d'une pompe à chaleur ou d'un autre générateur de chaleur autonome. Selon la présente invention, l'innovation d'un tel système de fourniture de chaleur et d'eau chaude centralisé, comprenant le réseau de fourniture de chaleur de circuit principal, l'ensemble de conduites et l'équipement d'un nœud de chaleur, ainsi que le système de fourniture de chaleur et d'eau chaude d'intérieur, est caractérisé en ce qu'une pompe à chaleur et/ou un autre générateur de chaleur autonome comprennent/comprend un module indépendant qui est relié au pipeline de circuit principal fournissant de la chaleur au bâtiment, et, par le biais d'un échangeur de chaleur, au système de fourniture d'eau chaude du bâtiment.
PCT/LT2011/000003 2010-02-24 2011-02-18 Système de fourniture de chaleur et d'eau chaude centralisé WO2011105881A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LT2010018 2010-02-24
LT2010018A LT5778B (lt) 2010-02-24 2010-02-24 Centralizuota šilumos ir karšto vandens tiekimo sistema

Publications (2)

Publication Number Publication Date
WO2011105881A2 true WO2011105881A2 (fr) 2011-09-01
WO2011105881A3 WO2011105881A3 (fr) 2013-06-20

Family

ID=44475155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/LT2011/000003 WO2011105881A2 (fr) 2010-02-24 2011-02-18 Système de fourniture de chaleur et d'eau chaude centralisé

Country Status (2)

Country Link
LT (1) LT5778B (fr)
WO (1) WO2011105881A2 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679432A (zh) * 2012-05-04 2012-09-19 上海岭北冷暖设备工程有限公司 一种空气源混合动力地暖系统
CN102705889A (zh) * 2012-06-15 2012-10-03 苏州张扬能源科技有限公司 热能转换供热系统
CN102878611A (zh) * 2012-11-05 2013-01-16 北京大龙供热中心 供热管网精细调节系统及方法
CN103020481A (zh) * 2012-12-29 2013-04-03 杭州电子科技大学 一种基于节能的确定空气源热泵地暖最佳运行工况的方法
CN103292383A (zh) * 2013-05-24 2013-09-11 华电国际电力股份有限公司山东分公司 一种循环水供热机组的运行控制操作方法
CN104121622A (zh) * 2013-04-28 2014-10-29 株式会社日立制作所 供热控制装置和方法
EP2770264A3 (fr) * 2013-02-26 2014-11-26 Wolfgang Moises Dispositif de restitution de chauffage à distance pour un bâtiment et système de chauffage à distance pour l'approvisionnement de bâtiments en énergie thermique
CN104180418A (zh) * 2014-08-13 2014-12-03 华电电力科学研究院 一种应用于热网的直接蓄热系统及其蓄放热方法
CN104807074A (zh) * 2015-05-15 2015-07-29 唐山现代工控技术有限公司 一种热力管网失水防护方法及装置
CN105807633A (zh) * 2016-05-10 2016-07-27 大连理工大学 基于集中供热管网和建筑物储能消纳风电的热电联合系统调度方法
ES2644162A1 (es) * 2016-05-25 2017-11-27 Universidade Da Coruña Sistema híbrido con bomba de calor colectiva y calderas individuales de gas
CN109405059A (zh) * 2018-11-14 2019-03-01 天津市热电有限公司 一次管网动态负荷智能调压差节能调控系统及调控方法
CN109716031A (zh) * 2016-09-20 2019-05-03 瑞典意昂公司 能量分配系统
PL424938A1 (pl) * 2018-03-19 2019-09-23 N-Ergia Spółka Z Ograniczoną Odpowiedzialnością Sposób ogrzewania i chłodzenia z centralnego źródła ciepła, zwłaszcza ze zdalnymi węzłami cieplnymi
EP3569936A1 (fr) * 2018-05-17 2019-11-20 Danfoss A/S Réchauffage de l'eau domestique
EP3683508A1 (fr) * 2019-01-15 2020-07-22 HögforsGST Oy Système de chauffage hybride contenant une unité de pompe à chaleur
EP3693672A1 (fr) * 2019-02-08 2020-08-12 HögforsGST Oy Système de chauffage hybride utilisant un chauffage primaire
EP3933280A1 (fr) * 2020-07-03 2022-01-05 E.ON Sverige AB Ensemble local d'extraction de chaleur
CN114294642A (zh) * 2022-01-05 2022-04-08 福建晋江热电有限公司 一种供热控制方法、控制装置以及控制系统
NL2026341B1 (en) * 2020-08-25 2022-04-29 Sdg Bv Heating assembly, method of heating a building
CN115017666A (zh) * 2022-08-08 2022-09-06 廊坊市清泉供水有限责任公司 地下水源地智能化运行方法及系统
CN115127138A (zh) * 2022-06-29 2022-09-30 山东澳信供热有限公司 一种空气源和燃气源结合的供热系统的供热方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT6009B (lt) 2012-05-10 2014-03-25 Tomas Glumbakas Šildymo sistema

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190199A (en) 1978-01-06 1980-02-26 Lennox Industries Inc. Combination heating system including a conventional furnace, heat pump and solar energy subsystem
GB2076957A (en) 1980-06-03 1981-12-09 Ventiheat Ltd A heating system employing a heat pump
EP0041352A1 (fr) 1980-05-27 1981-12-09 Thermotropic Limited Système de chauffage utilisant une pompe à chaleur
US5259445A (en) 1992-07-13 1993-11-09 The Detroit Edison Company Control for dual heating system including a heat pump and furnace
GB2455395A (en) 2007-11-15 2009-06-10 Francis Bernard Welch Heating system comprising a heat pump and a thermal store
WO2009113905A1 (fr) 2008-03-11 2009-09-17 Kiosov Anatoliy Dmitrievich Système et procédé de transport centralisé de chaleur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3103955A1 (de) * 1981-02-05 1982-08-12 Battelle-Institut E.V., 6000 Frankfurt "verfahren zur nutzung diskontinuierlicher energiequellen mit schwankenden temperaturen fuer fernheizungssysteme"
US4971136A (en) * 1989-11-28 1990-11-20 Electric Power Research Institute Dual fuel heat pump controller
FI103149B1 (fi) * 1995-10-17 1999-04-30 Abb Installaatiot Oy Menetelmä ja sovitelma jäähdytystehon ja lämmitystehon tuottamiseksi
AT6001U1 (de) * 2001-10-02 2003-02-25 Zortea Rembert Heizanlage oder kühlanlage mit mindestens einer wärmequelle
DE102008062600A1 (de) * 2007-12-21 2009-07-02 Traugott Albert Niedertemperatur-Wärmenetz

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190199A (en) 1978-01-06 1980-02-26 Lennox Industries Inc. Combination heating system including a conventional furnace, heat pump and solar energy subsystem
EP0041352A1 (fr) 1980-05-27 1981-12-09 Thermotropic Limited Système de chauffage utilisant une pompe à chaleur
GB2076957A (en) 1980-06-03 1981-12-09 Ventiheat Ltd A heating system employing a heat pump
US5259445A (en) 1992-07-13 1993-11-09 The Detroit Edison Company Control for dual heating system including a heat pump and furnace
GB2455395A (en) 2007-11-15 2009-06-10 Francis Bernard Welch Heating system comprising a heat pump and a thermal store
WO2009113905A1 (fr) 2008-03-11 2009-09-17 Kiosov Anatoliy Dmitrievich Système et procédé de transport centralisé de chaleur

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679432B (zh) * 2012-05-04 2016-09-14 上海岭北冷暖设备工程有限公司 一种空气源混合动力地暖系统
CN102679432A (zh) * 2012-05-04 2012-09-19 上海岭北冷暖设备工程有限公司 一种空气源混合动力地暖系统
CN102705889A (zh) * 2012-06-15 2012-10-03 苏州张扬能源科技有限公司 热能转换供热系统
CN102878611A (zh) * 2012-11-05 2013-01-16 北京大龙供热中心 供热管网精细调节系统及方法
CN103020481A (zh) * 2012-12-29 2013-04-03 杭州电子科技大学 一种基于节能的确定空气源热泵地暖最佳运行工况的方法
EP2770264A3 (fr) * 2013-02-26 2014-11-26 Wolfgang Moises Dispositif de restitution de chauffage à distance pour un bâtiment et système de chauffage à distance pour l'approvisionnement de bâtiments en énergie thermique
CN104121622A (zh) * 2013-04-28 2014-10-29 株式会社日立制作所 供热控制装置和方法
CN103292383A (zh) * 2013-05-24 2013-09-11 华电国际电力股份有限公司山东分公司 一种循环水供热机组的运行控制操作方法
CN103292383B (zh) * 2013-05-24 2016-03-23 华电国际电力股份有限公司山东分公司 一种循环水供热机组的运行控制操作方法
CN104180418A (zh) * 2014-08-13 2014-12-03 华电电力科学研究院 一种应用于热网的直接蓄热系统及其蓄放热方法
CN104807074A (zh) * 2015-05-15 2015-07-29 唐山现代工控技术有限公司 一种热力管网失水防护方法及装置
CN105807633A (zh) * 2016-05-10 2016-07-27 大连理工大学 基于集中供热管网和建筑物储能消纳风电的热电联合系统调度方法
CN105807633B (zh) * 2016-05-10 2019-01-11 大连理工大学 基于集中供热管网和建筑物储能消纳风电的热电联合系统调度方法
ES2644162A1 (es) * 2016-05-25 2017-11-27 Universidade Da Coruña Sistema híbrido con bomba de calor colectiva y calderas individuales de gas
CN109716031A (zh) * 2016-09-20 2019-05-03 瑞典意昂公司 能量分配系统
PL424938A1 (pl) * 2018-03-19 2019-09-23 N-Ergia Spółka Z Ograniczoną Odpowiedzialnością Sposób ogrzewania i chłodzenia z centralnego źródła ciepła, zwłaszcza ze zdalnymi węzłami cieplnymi
RU2713247C1 (ru) * 2018-05-17 2020-02-04 Данфосс А/С Повторное нагревание хозяйственно-питьевой воды
EP3569936A1 (fr) * 2018-05-17 2019-11-20 Danfoss A/S Réchauffage de l'eau domestique
CN109405059A (zh) * 2018-11-14 2019-03-01 天津市热电有限公司 一次管网动态负荷智能调压差节能调控系统及调控方法
CN109405059B (zh) * 2018-11-14 2023-12-19 天津市热电有限公司 一次管网动态负荷智能调压差节能调控系统及调控方法
EP3683508A1 (fr) * 2019-01-15 2020-07-22 HögforsGST Oy Système de chauffage hybride contenant une unité de pompe à chaleur
EP3693672A1 (fr) * 2019-02-08 2020-08-12 HögforsGST Oy Système de chauffage hybride utilisant un chauffage primaire
EP3933280A1 (fr) * 2020-07-03 2022-01-05 E.ON Sverige AB Ensemble local d'extraction de chaleur
NL2026341B1 (en) * 2020-08-25 2022-04-29 Sdg Bv Heating assembly, method of heating a building
CN114294642A (zh) * 2022-01-05 2022-04-08 福建晋江热电有限公司 一种供热控制方法、控制装置以及控制系统
CN114294642B (zh) * 2022-01-05 2024-03-22 福建晋江热电有限公司 一种供热控制方法、控制装置以及控制系统
CN115127138A (zh) * 2022-06-29 2022-09-30 山东澳信供热有限公司 一种空气源和燃气源结合的供热系统的供热方法
CN115127138B (zh) * 2022-06-29 2023-12-26 山东澳信供热有限公司 一种空气源和燃气源结合的供热系统的供热方法
CN115017666A (zh) * 2022-08-08 2022-09-06 廊坊市清泉供水有限责任公司 地下水源地智能化运行方法及系统

Also Published As

Publication number Publication date
WO2011105881A3 (fr) 2013-06-20
LT2010018A (lt) 2011-08-25
LT5778B (lt) 2011-10-25

Similar Documents

Publication Publication Date Title
WO2011105881A2 (fr) Système de fourniture de chaleur et d'eau chaude centralisé
Hirmiz et al. Performance of heat pump integrated phase change material thermal storage for electric load shifting in building demand side management
Mammoli et al. Energetic, economic and environmental performance of a solar-thermal-assisted HVAC system
US9677809B1 (en) Plural heat pump and thermal storage system for facilitating power shaping services on the electrical power grid at consumer premises
EP2420747B1 (fr) Pompe à chaleur
KR101170981B1 (ko) 냉,난방 및 급탕에 필요한 열을 공급하는 신재생 하이브리드 열 공급장치 및 이에 따른 제어방법
KR101790294B1 (ko) 복수개의 축열조와 태양열 집열기를 구비한 히트 펌프 구동 지역난방 열공급 시스템
EP3482137B1 (fr) Système de chauffage et de refroidissement combiné
CN104864449A (zh) 一种具有太阳能、低谷电加热蓄能的热水供热装置及应用
Demirel et al. Energy conservation
CN105674449A (zh) 一种基于节能型太阳能空气源热泵三联供系统
WO2019204943A1 (fr) Système énergétique de bâtiment
CN101776352A (zh) 一种应用系统热回收的地源热泵系统及控制方法
Farzan The study of thermostat impact on energy consumption in a residential building by using TRNSYS
EP3732400B1 (fr) Procédé permettant d'améliorer l'utilisation de réseaux d'énergie
Van der Veken et al. Economy, energy and ecology based comparison of heating systems in dwellings
CN108224537A (zh) 风光互补型智能供热供电系统
CN205090466U (zh) 低谷电加热蓄能的热水供热装置
KR20100004436A (ko) 태양열 집열장치와 이를 이용한 온수 겸용 난방시스템
KR101166858B1 (ko) 지열원 냉난방 히트펌프용 냉난방 및 급탕 시스템
CN203657048U (zh) 分户空气能地暖集中供热系统
Nielsen Building integrated system design for sustainable heating and cooling
CN111637509B (zh) 一种新型组合散热末端系统
KR101445266B1 (ko) 냉난방을 위한 신재생에너지 중앙제어 연동관리시스템
Glanville et al. Demonstration and Simulation of Gas Heat Pump-Driven Residential Combination Space and Water Heating System Performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11707227

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 11707227

Country of ref document: EP

Kind code of ref document: A2