WO2011105448A1 - Printing plate, thin film manufacturing method using the same, and organic el element manufacturing method - Google Patents

Printing plate, thin film manufacturing method using the same, and organic el element manufacturing method Download PDF

Info

Publication number
WO2011105448A1
WO2011105448A1 PCT/JP2011/054026 JP2011054026W WO2011105448A1 WO 2011105448 A1 WO2011105448 A1 WO 2011105448A1 JP 2011054026 W JP2011054026 W JP 2011054026W WO 2011105448 A1 WO2011105448 A1 WO 2011105448A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
film
printing plate
printing
Prior art date
Application number
PCT/JP2011/054026
Other languages
French (fr)
Japanese (ja)
Inventor
行一 六原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011105448A1 publication Critical patent/WO2011105448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to a printing plate, a method for producing a thin film using the printing plate, and a method for producing an organic EL (Electro Luminescence) element using the printing plate.
  • a plate printing method capable of applying a pattern of ink to a printing medium a relief printing method and an intaglio printing method are known. On the surface of the printing plate used in the plate printing method, irregularities of a predetermined pattern corresponding to the printing pattern are formed. At the time of printing, first, ink is held on the convex portion or concave portion of the printing plate, and this is pressed against the printing material, whereby the ink is applied in a pattern (see, for example, Patent Document 1).
  • each pixel is arranged in a fine pattern, it is difficult to selectively apply ink to all the pixels only by slightly changing the dimensions of the printing plate. For example, when the printing plate is aligned with reference to the pixel located at the center in the row direction, the position of the reference pixel and the printing plate match, but the size of the printing plate slightly changes. As a result, the pixel located at the end in the row direction may not match the printing plate. Then, for example, the ink to be applied to the adjacent pixel may be applied to an unintended pixel. Particularly in the case of manufacturing a display device with a large screen, since the area to be printed becomes large, it becomes more difficult to accurately apply ink to all the pixels.
  • an object of the present invention is to provide a printing plate capable of applying a highly accurate pattern.
  • the printing plate of the present invention includes a glass plate and a convex portion provided on the glass plate.
  • the printing plate of the present invention further includes a first film exhibiting higher flexibility than the glass plate, and the glass plate is covered with the first film.
  • the first film is provided between the glass plate and the convex portion, and the convex portion is provided in contact with the first film.
  • the printing plate of the present invention further includes a second film exhibiting higher flexibility than the glass plate, and the glass plate is provided between the first film and the second film,
  • the convex portion is preferably provided on the first film.
  • the first film and the second film are made of the same material.
  • the printing plate is used to print ink on a printing material and solidify the ink to form a thin film.
  • the manufacturing method of the organic EL element of this invention is a manufacturing method of an organic EL element provided with a pair of electrodes and the organic EL layer provided between the electrodes, and forms one electrode of the pair of electrodes.
  • a step of printing an organic EL ink containing a material to be the organic EL layer on the one electrode using the printing plate, and solidifying the organic EL ink, and an organic EL ink is formed on the one electrode.
  • a printing plate capable of applying a highly accurate pattern can be obtained.
  • FIG. 1 is a diagram schematically showing a printing plate according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a printing plate according to another embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a printing plate according to still another embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a printing plate according to still another embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a printing apparatus 41 including a printing plate.
  • FIG. 6 is a longitudinal sectional view of a display device including an organic EL element.
  • FIG. 7 is a longitudinal sectional view of the organic EL element.
  • FIG. 8 is a longitudinal sectional view of the organic EL element.
  • FIG. 9 is a longitudinal sectional view of the organic EL element.
  • FIG. 6 is a longitudinal sectional view of a display device including an organic EL element.
  • FIG. 7 is a longitudinal sectional view of the organic EL element.
  • FIG. 8 is
  • FIG. 10 is a longitudinal sectional view of the organic EL element.
  • FIG. 11 is a longitudinal sectional view of the organic EL element.
  • FIG. 12 is a longitudinal sectional view of the organic EL element.
  • FIG. 13 is a longitudinal sectional view of the organic EL element.
  • FIG. 14 is a longitudinal sectional view of the organic EL element.
  • the printing plate of the present invention has a glass plate and a convex portion provided on the glass plate.
  • FIG. 1 is a diagram schematically showing a printing plate according to an embodiment of the present invention.
  • the printing plate of the present invention can be applied to both a relief printing plate and an intaglio printing plate.
  • the relief printing plate will be described.
  • this printing plate can also function as an intaglio printing plate.
  • the printing plate 101 includes a glass plate 102 and a convex portion 103.
  • the convex portion 103 is provided in contact with the glass plate 102.
  • a convex portion 103 having a pattern corresponding to the pattern of the thin film of ink to be formed on the printing medium is formed.
  • a plurality of strip-shaped thin films are formed on a printing medium, a plurality of protrusions extending in a predetermined direction with a predetermined distance from each other so as to correspond to the pattern of the strip-shaped thin film Is provided on the printing plate.
  • a plurality of thin films arranged in a matrix that is, a plurality of thin films arranged at predetermined intervals in a predetermined row direction and at predetermined intervals in a predetermined column direction.
  • the printing plate is provided with a plurality of convex portions arranged in a matrix so as to correspond to the patterns of the plurality of thin films.
  • the glass plate is less likely to change dimensions when used.
  • the convex portions By forming the convex portions on such a glass plate, the interval between the convex portions is hardly changed, and as a result, highly accurate pattern application is possible. Since the printing plate is pressed against the printing medium at the time of printing, the printing plate is deformed by the stress at that time, and the dimensions are changed.
  • Printing plates that are frequently used today, such as flexographic printing plates have large dimensional changes due to stress, but glass plates are less likely to change dimensions when used, so that it is possible to apply patterns with higher accuracy than conventional printing plates. Become.
  • a glass plate has a lower coefficient of thermal expansion than a metal plate, so that even if the temperature differs between when the printing plate is prepared and when the printing plate is used, the printing plate caused by the temperature difference The change in dimensions is small. Further, the change in the size of the printing plate is small even with respect to the temperature change in the printing process. Therefore, highly accurate pattern application is possible.
  • the convex part 103 is directly provided in contact with the glass plate 2 with a small dimensional change, the space
  • the printing plate is usually used by being wound around a cylindrical plate cylinder (see FIG. 5). Therefore, it is necessary to bend the printing plate along the surface of the plate cylinder. Although depending on the curvature of the plate cylinder surface, if the glass plate is too thick, it is difficult to bend the printing plate along the plate cylinder surface. Therefore, the glass plate is preferably thin.
  • the thickness of the glass plate is usually 10 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 30 ⁇ m.
  • the glass plate is made of, for example, soda-lime glass, borosilicate glass, or Vycor (registered trademark) glass.
  • Vycor glass is produced by removing B 2 O 3 from borosilicate glass (main component: B 2 O 3 / SiO 2 ), and is a product of Corning Corp., USA, where 96% of the component is silica glass. is there.
  • These glasses are inorganic glasses made of an inorganic material.
  • the linear expansion coefficient of the glass plate used for the printing plate is usually 0.5 ⁇ 10 ⁇ 6 to 10 ⁇ 10 ⁇ 6 / K, preferably 0.5 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 6 / K. .
  • the convex part 103 provided on the glass plate 102 is comprised by resin, such as acrylate resin and a polyimide, for example.
  • resin such as acrylate resin and a polyimide, for example.
  • the convex portion 103 is formed in a predetermined pattern by photolithography using, for example, a photosensitive resin.
  • FIG. 2 is a diagram schematically showing a printing plate according to another embodiment of the present invention.
  • the printing plate 11 of the present embodiment further includes a first film 14 that exhibits higher flexibility than the glass plate 12.
  • the flexural modulus of the film 14 is lower than that of the glass plate 12, and when a force is applied between both ends spaced apart along the surface direction by a unit distance, and each is bent, the distance and the force are the same. If so, the amount of bending of the first film 14 is larger than the amount of bending of the glass plate 12.
  • the back surface of the glass plate 12 is covered with the first film 14.
  • the 1st film 14, the glass plate 12, and the convex part 13 are laminated
  • the first film 14 and the glass plate 12 are bonded together via a predetermined adhesive layer AD.
  • the first film 14 is made of, for example, polyethylene terephthalate or polyethylene naphthalate.
  • the thickness of the first film 14 is usually about 10 to 100 ⁇ m, and preferably 10 to 30 ⁇ m.
  • the 1st film 14 shows the flexibility higher than the glass plate 12, and the tensile elasticity modulus is lower than a glass plate.
  • the tensile elastic modulus of quartz glass is 70 GPa
  • the tensile elastic modulus of the first film 14 is about 2 to 5 GPa.
  • the adhesive layer AD is made of, for example, an epoxy resin system, a polyimide resin system, a silicone resin system, a phenol resin system, a silicone resin system, or an acrylic resin system.
  • a printing plate consisting only of a glass plate and a convex portion may be broken when mounted on a plate cylinder or moved, and the operability may not be good, but it is the first that exhibits higher flexibility than a glass plate.
  • the film 14 By providing the film 14, the generation of cracks can be suppressed and the operability of the printing plate can be improved.
  • the material of the glass plate 12 and the convex portion 13 is the same as the material of the glass plate 102 and the convex portion 103 in the embodiment of FIG. 1, and this embodiment is structurally different from the embodiment of FIG. Differ only in that the first film 14 is further provided.
  • FIG. 3 is a diagram schematically showing a printing plate according to still another embodiment of the present invention.
  • the printing plate 21 of the present embodiment is different from the printing plate of the embodiment shown in FIG. That is, in the embodiment shown in FIG. 2, the convex portion is provided on the glass plate, whereas the printing plate 21 of the present embodiment has the convex portion 23 provided in contact with the first film 24.
  • the first film 24 is provided between the glass plate 22 and the convex portion 23.
  • the glass plate may not have high adhesion to other members.
  • the adhesion between the convex portion and the glass plate may not be high, but by forming the convex portion 23 in contact with the first film 24 having higher adhesion than the glass plate 22, the adhesion of the convex portion can be improved. Can be improved. Thereby, durability of the printing plate can be improved.
  • an adhesive layer AD can be interposed between the first film 24 and the glass plate 22 in order to firmly fix them.
  • the materials of the first film 24, the glass plate 22, the convex portion 23, and the adhesive layer AD are the same as the materials of the first film 14, the glass plate 12, the convex portion 13, and the adhesive layer AD of the above-described embodiment, respectively.
  • FIG. 4 is a diagram schematically showing a printing plate according to still another embodiment of the present invention.
  • the printing plate 31 further includes a second film 35 that exhibits higher flexibility than the glass plate 32.
  • the glass plate 32 is provided between the first film 34 and the second film 35, and the convex portion 33 is provided on the first film 34. That is, the printing plate 31 is configured by laminating the second film 35, the glass plate 32, the first film 34, and the convex portion 33 in this order.
  • the first film 34 and the glass plate 32 are laminated via the adhesive layer AD1, and the glass plate 32 and the second film 35 are laminated via the adhesive layer AD2.
  • first film 34 and the second film 35 are made of the same material. By forming the first film 34 and the second film 35 with the same material in this way, the first stress and the second stress cancel each other out, so that the occurrence of warpage is further suppressed.
  • the first film 34 and the second film 35 are made of the same material and have the same thickness.
  • the materials of the first film 34, the glass plate 32, the convex portion 33, and the adhesive layers AD1 and AD2 are the same as those of the first film 24, the glass plate 22, the convex portion 23, and the adhesive layer AD in the embodiment of FIG.
  • the materials and thicknesses of the first film 34 and the second film 35 in the present embodiment are preferably the same, and the present embodiment is structurally compared to the embodiment of FIG. Is different only in that it further comprises a second film so 35.
  • FIG. 5 is a diagram schematically illustrating a printing apparatus 41 including the above-described printing plate.
  • the printing apparatus 41 mainly includes an ink supply source 42, a transfer roll 43 to which ink is supplied from the ink supply source 42, and the printing plate (PP) to which the ink supplied to the surface of the transfer roll 43 is transferred.
  • PP printing plate
  • the printing plate PP is usually wound around the plate cylinder 44 and used.
  • the printing plate PP extends such that the extending direction of the convex portions coincides with the circumferential direction of the plate cylinder 44 or the convex portions extend. It is wound around the plate cylinder so that the direction coincides with the axial direction of the plate cylinder 44.
  • the plate cylinder 44 is rotatably supported around an axis CR1 and is rotated by a driving force from the rotation drive mechanism DRV1. In FIG. 5, the plate cylinder 44 rotates clockwise as indicated by an arrow, and the printing plate rotates as the plate cylinder 44 rotates.
  • the transfer roll 43 is rotatably supported so that its axis CR2 is parallel to the axis CR1 of the plate cylinder 44, and rotates by the driving force from the rotation driving mechanism DRV2. In FIG. 5, it rotates counterclockwise as shown by the arrow.
  • the transfer roll 43 is made of, for example, chromium, chromium oxide, aluminum, aluminum oxide, or the like.
  • the transfer roll 43 may be a so-called anilox roll having irregularities formed on the surface, or may be a transfer roll having a flat surface.
  • the ink supply source 42 contains ink and supplies it to the transfer roll 43.
  • the slit nozzle 45 is used to supply ink to the transfer roll 43.
  • the printing apparatus 41 further includes a cleaning mechanism 46.
  • the cleaning mechanism 46 cleans the ink remaining on the transfer roll 43 after the ink is transferred from the transfer roll 43 to the printing plate.
  • the cleaning mechanism 46 includes a doctor blade, and presses the doctor blade against the transfer roll 43 to scrape off ink remaining on the transfer roll 43.
  • the transfer roll 43 may be cleaned using a predetermined rinse liquid.
  • the printing apparatus 41 further includes a transport table 48 that transports the printing material 47.
  • the transport table 48 holds the printing material 47 and translates in the tangential direction of the printing plate at the same speed as the tangential speed of the printing plate.
  • the transfer table 48 normally moves horizontally. As the transport table 48 moves, the printing medium also moves in parallel.
  • the ink supplied from the ink supply source 42 is supplied onto the transfer roll 43 through the slit nozzle 45.
  • the ink roll is rotated while the ink is supplied from the slit nozzle 45, whereby an ink thin film is formed on the surface of the transfer roll 43.
  • the ink supplied to the transfer roll 43 is sequentially transferred onto the surface of the convex portion of the printing plate PP.
  • the printing plate PP to which the ink is transferred in this way rotates while being pressed against the printing material 47 as well. Since the printing material 47 moves in parallel with the rotation of the printing plate PP, the ink held on the convex portions of the printing plate PP is sequentially printed on the printing material 47.
  • the ink remaining on the transfer roll 43 without being transferred to the printing plate PP is removed from the transfer roll 43 by the cleaning mechanism 46.
  • a step of printing ink on the printing medium 47 using the printing plate PP is performed. Furthermore, an ink thin film can be formed by solidifying the printed ink.
  • the ink can be solidified by removing the solvent.
  • the removal of the solvent is performed by, for example, natural drying, heat drying, vacuum drying, or the like.
  • the ink may be solidified by irradiating light or applying heat after the ink is printed on the printing material 47. Good.
  • the printing plate PP has little change in dimensions, there is little printing deviation, and ink can be applied in a pattern as intended.
  • various types of thin films can be formed on the printing material PP.
  • a conductive thin film functioning as an electrode or a wiring, an active layer of an organic photoelectric conversion element, a semiconductor layer of an organic thin film transistor, and an organic EL layer of an organic EL element described later can be formed. it can.
  • the manufacturing method of the organic EL element of the present embodiment is a manufacturing method of an organic EL element including a pair of electrodes and an organic EL layer provided between the electrodes.
  • the step of forming, the step of printing the organic EL ink containing the material to be the organic EL layer on the one electrode using the printing plate described above, the solidifying the organic EL ink, and on the one electrode It is a manufacturing method of an organic EL element including the process of forming an organic EL layer, and the process of forming the other electrode of a pair of electrodes on the said organic EL layer.
  • An organic EL element is used as a pixel of a display device, for example.
  • a plurality of organic EL elements 1 are arranged on a support substrate 6 in a predetermined arrangement.
  • the plurality of organic EL elements 1 are arranged in a matrix on the support substrate 6. That is, the plurality of organic EL elements 1 are arranged in a line with a predetermined interval in a predetermined row direction and with a predetermined interval in a predetermined column direction.
  • a partition wall IW for separating the plurality of organic EL elements 1 is usually provided on the support substrate 6.
  • the plurality of organic EL elements 1 are respectively formed in regions divided by the partition walls IW.
  • the partition wall IW is provided in a stripe shape or a lattice shape, for example.
  • a plurality of partition walls IW extending in a predetermined direction are provided on the substrate at a predetermined interval.
  • Each organic EL element 1 is provided between the partition walls IW and IW, and is disposed between the partition walls IW and IW with a predetermined interval along the direction in which the partition wall IW extends.
  • each organic EL element 1 is provided in a region divided by the grid-like partition wall IW.
  • one electrode 2 of each organic EL element 1 is formed on the support substrate 6. That is, one electrode 2 having a number corresponding to the number of organic EL elements 1 is formed on the support substrate 6.
  • the plurality of one electrodes 2 are arranged in a matrix in a plan view.
  • the stripe-shaped partition wall IW is formed between the adjacent one electrodes 2 and 2.
  • the partition wall IW can be formed by a photolithography method using, for example, a photosensitive resin.
  • the organic EL layer 10 is formed.
  • an organic EL ink containing a material that becomes the organic EL layer 10 is supplied between the stripe-shaped partition walls IW and IW, and further solidified, whereby a strip-shaped partition wall IW and IW are formed between the strip-shaped partition walls IW and IW.
  • the organic EL layer 10 is formed.
  • the organic EL ink is supplied between the stripe-shaped partition walls IW and IW by the printing method using the printing plate PP described above.
  • an organic EL ink containing a material that becomes the organic EL layer 10 is used as the ink, and a stripe-shaped convex portion corresponding to the pattern between the partition walls IW and IW is formed as the printing plate PP.
  • the printed printing plate PP is used.
  • the solvent or dispersion medium of the organic EL ink may be any solvent that uniformly dissolves or disperses the material that becomes the organic EL layer.
  • chlorinated solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, and ethyl cellosolve
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethyl acetate ethyl acetate
  • butyl acetate ethyl cellosolve
  • An ester solvent such as acetate and water can be appropriately used as a solvent or a dispersion medium.
  • the film thickness of the organic EL layer is usually about 30 nm to 120 nm.
  • the organic EL layer 10 means all layers provided between the pair of electrodes 2 and 5. Between the pair of electrodes, at least one light emitting layer is provided as an organic EL layer.
  • at least one organic EL layer is formed by a printing method using the above-described printing plate.
  • the organic EL layer that can be formed by a coating method is preferably formed by a printing method using the printing plate described above.
  • the organic EL ink of each color can be applied separately by forming the pattern of the convex portion of the printing plate so as to correspond to the pattern to which the organic EL ink of each color is supplied.
  • the other electrode is formed on the organic EL layer.
  • a plurality of organic EL layers are formed on the substrate.
  • the method of forming the plurality of organic EL elements 1 on the substrate 6 on which the stripe-shaped partition walls IW are formed has been described.
  • the plurality of organic EL elements are formed on the substrate on which the lattice-shaped partition walls are formed.
  • the organic EL layer of each organic EL element can be formed by the printing method mentioned above.
  • a printing plate on which a plurality of convex portions arranged in a matrix is formed so as to correspond to the matrix pattern divided by the grid-like partition walls may be used.
  • the organic EL element can have various layer configurations.
  • the layer structure of the organic EL element, the configuration of each layer, and the method for forming each layer will be described in more detail below.
  • the organic EL element includes a pair of electrodes 2 and 5 and one or a plurality of organic EL layers 10 provided between the electrodes 2 and 5, and at least one layer of light emission as one or a plurality of organic EL layers. Has a layer.
  • the organic EL element may include a layer containing an inorganic substance and an organic substance, an inorganic layer, or the like.
  • the organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound.
  • the organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the organic EL layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer close to the cathode is called an electron injection layer
  • the layer close to the light emitting layer is called an electron transport layer.
  • Examples of the organic EL layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the organic EL element can include a predetermined layer in addition to the light emitting layer between the pair of electrodes as described above.
  • Examples of the organic layer 10 formed between the electrode (anode) 2 and the electrode (cathode) 5 formed on the support substrate 6 include the following structures.
  • the organic EL element has an organic layer Y between the electrode (anode) 2 and the light emitting layer 4 and an organic layer between the electrode (cathode) 5 and the light emitting layer 4. It can be set as the structure where the layer X interposes.
  • the organic EL element has a structure in which an organic layer Y is interposed between the electrode (anode) 2 and the light emitting layer 4, and the electrode 5 is formed directly on the light emitting layer 4. It can be set as a structure.
  • the organic layer X is interposed between the electrode (cathode) 5 and the light emitting layer 4, and the light emitting layer 4 is in direct contact with the electrode 2. It can be.
  • the organic layer X may be composed of two or more kinds of organic layers X1 and X2 as shown in FIG. 10, and the organic layer Y is composed of two or more kinds of organic layers Y1 and Y2 as shown in FIG. It may be.
  • only the light emitting layer 4 may be formed between the anode 2 and the cathode 5 as shown in FIG.
  • Examples of the layer X provided between the cathode 5 and the light emitting layer 4 include an electron injection layer, an electron transport layer, and a hole blocking layer. As shown in FIG. 10, when both the electron injection layer X1 and the electron transport layer X2 are provided between the cathode 5 and the light emitting layer 4, the layer in contact with the cathode 5 is referred to as the electron injection layer X1, The layer excluding the electron injection layer X1 is referred to as an electron transport layer X2.
  • the electron injection layer has a function of improving the electron injection efficiency from the cathode.
  • the electron transport layer has a function of improving electron injection from the layer in contact with the surface on the cathode side.
  • the hole blocking layer has a function of blocking hole transport. In the case where the electron injection layer and / or the electron transport layer have a function of blocking hole transport, these layers may also serve as the hole blocking layer.
  • the hole blocking layer has a function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
  • Examples of the layer Y provided between the anode 2 and the light emitting layer 4 include a hole injection layer, a hole transport layer, and an electron block layer. As shown in FIG. 11, when both the hole injection layer Y1 and the hole transport layer Y2 are provided between the anode 2 and the light emitting layer 4, the layer in contact with the anode 2 is the hole injection layer.
  • the layer excluding the hole injection layer Y1 is referred to as Y1, and is referred to as a hole transport layer Y2.
  • the hole injection layer has a function of improving the hole injection efficiency from the anode.
  • the hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side.
  • the electron blocking layer has a function of blocking electron transport. In the case where the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
  • the electron blocking layer has a function of blocking electron transport makes it possible, for example, to produce an element that allows only electron current to flow, and confirm the blocking effect by reducing the current value.
  • the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
  • a) Anode 2 / light emitting layer 4 / cathode 5 see FIG. 14
  • Anode 2 / hole injection layer Y / light emitting layer 4 / cathode 5 see FIG. 8
  • Anode 2 / hole injection layer Y / light emitting layer 4 / electron injection layer X / cathode 5 see FIG. 7)
  • Anode 2 / hole injection layer Y / light emitting layer 4 / electron transport layer X / cathode 5 see FIG.
  • the organic EL element of the present embodiment may have two or more light emitting layers.
  • the configuration of the organic EL device having two light emitting layers is as follows. And the layer structure shown in the following q).
  • the two (structural unit A) layer structures may be the same or different.
  • Anode 2 / (structural unit A) / charge generation layer Z / (structural unit A) / cathode 5 see FIG. 12
  • examples of the configuration of the organic EL device having three or more light emitting layers include the layer configuration shown in the following r).
  • Anode 2 / (structural unit B) x / (structural unit A) / cathode 5 see FIG. 13
  • the symbol “x” represents an integer of 2 or more
  • (structural unit B) x represents a stacked body in which the structural unit B is stacked in x stages.
  • a plurality of (structural units B) may have the same or different layer structure.
  • the charge generation layer Z is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer Z include a thin film made of vanadium oxide, indium tin oxide (IndiumInTin Oxide: abbreviated as ITO), molybdenum oxide, or the like.
  • Organic EL element is usually provided on a support substrate.
  • the organic EL element may be provided on the support substrate with the anode of the pair of electrodes including the anode and the cathode disposed closer to the support substrate than the cathode, and the cathode is disposed closer to the support substrate than the anode. May be provided on the support substrate.
  • an organic EL element having a structure in which each layer is stacked on the support substrate in order from the right side or an organic EL element having a structure in which each layer is stacked on the support substrate from the left side may be used. .
  • the order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set in consideration of light emission efficiency and element lifetime.
  • an electrode exhibiting optical transparency is used for the anode.
  • the electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferably used. Specifically, it includes indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like.
  • a thin film is used, and among these, a thin film made of ITO, IZO, or tin oxide is preferably used.
  • a method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • the film thickness of the anode is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • ⁇ Hole injection layer As the hole injection material constituting the hole injection layer, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine type, starburst type amine type, phthalocyanine type, amorphous carbon, polyaniline, And polythiophene derivatives.
  • oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine type, starburst type amine type, phthalocyanine type, amorphous carbon, polyaniline, And polythiophene derivatives.
  • Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material.
  • a hole injection layer can be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
  • coating methods spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset A printing method, an inkjet printing method, etc. can be mentioned, It is preferable to form by the printing method using the printing plate mentioned above as one Embodiment.
  • the film thickness of the hole injection layer is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
  • ⁇ Hole transport layer> As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) or Examples thereof include derivatives thereof.
  • hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Preferred is a polymeric hole transport material such as arylamine or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof, more preferably polyvinyl carbazole or a derivative thereof. , Polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
  • the method for forming the hole transport layer is not particularly limited, but in the case of a low molecular hole transport material, film formation from a mixed solution containing a polymer binder and a hole transport material can be exemplified.
  • molecular hole transport materials include film formation from a solution containing a hole transport material.
  • polystyrene examples include vinyl chloride and polysiloxane.
  • the film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
  • the light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength.
  • the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply
  • the number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 .
  • the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, etc. as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline.
  • Examples include metal complexes having a structure as a ligand, for example, iridium complexes, platinum complexes and other metal complexes having light emission from a triplet excited state, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc A complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a phenanthroline europium complex, and the like can be given.
  • metal complexes having a structure as a ligand for example, iridium complexes, platinum complexes and other metal complexes having light emission from a triplet excited state, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc A complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a phenanthroline europium complex, and the
  • Polymer material As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. The thing etc. can be mentioned.
  • materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives and the like are preferable.
  • Dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squarylium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is usually about 2 nm to 200 nm.
  • Examples of the method for forming the light emitting layer include a method of forming a film from a solution, a vacuum deposition method, and a transfer method.
  • Electrode transport material constituting the electron transport layer
  • known materials can be used, such as oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
  • electron transport materials include oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorenes Or a derivative thereof, preferably 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline. preferable.
  • the method for forming the electron transport layer there are no particular restrictions on the method for forming the electron transport layer, but for low molecular weight electron transport materials, vacuum deposition from powder or film formation from a solution or a molten state can be exemplified.
  • the material include film formation from a solution or a molten state.
  • a polymer binder may be used in combination.
  • the method for forming an electron transport layer from a solution include the same film formation method as the method for forming a hole injection layer from a solution described above.
  • the film thickness of the electron transport layer is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
  • Electrode injection layer As a material constituting the electron injection layer, an optimal material is appropriately selected according to the type of the light emitting layer, and an alloy containing one or more of alkali metals, alkaline earth metals, alkali metals and alkaline earth metals, Alkali metal or alkaline earth metal oxides, halides, carbonates, mixtures of these substances, and the like can be given.
  • alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like.
  • alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate.
  • the electron injection layer may be composed of a laminate in which two or more layers are laminated, and examples thereof include LiF / Ca.
  • the electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity.
  • the material with a high visible light reflectance is preferable as a material of a cathode.
  • the cathode for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • cathode material examples include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
  • An alloy, graphite, or a graphite intercalation compound is used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO
  • examples of the conductive organic substance include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • the thickness of the cathode is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • a glass with ribs manufactured by Micro Engineering Laboratory was used.
  • a PEN (polyethylene naphthalate) film is bonded to the back surface of the glass plate with an adhesive, and a polyester resin is used as a photosensitive resin on the surface of the glass plate.
  • Ribs were formed on the glass plate by photolithography.
  • the PEN film has a thickness of 125 ⁇ m
  • the glass plate has a thickness of 150 ⁇ m
  • the adhesive layer has a thickness of 25 ⁇ m.
  • the glass material is soda glass.
  • On the glass plate a plurality of convex portions extending in parallel with each other were arranged with a certain interval.
  • each convex portion was 60 ⁇ m
  • the height was 50 ⁇ m
  • the interval between adjacent convex portions was 240 ⁇ m (that is, the pitch was 300 ⁇ m).
  • a transparent glass plate having a size of 200 mm (length) ⁇ 200 mm (width) ⁇ 0.7 mm (thickness) was prepared as an object to be coated.
  • a mixed solvent comprising 90 parts by weight of anisole and 10 parts by weight of cyclohexylbenzene was prepared, and an organic light emitting material was dissolved in the mixed solvent at a concentration of 1% by weight to prepare an organic EL ink.
  • an organic light emitting material a polymer light emitting material (trade name “Green 1300” manufactured by Sumation Co., Ltd.) was used.
  • the viscosity of the prepared organic EL ink was 25 cP (0.025 Pa ⁇ S).
  • Printing was performed using a “printed printing experimental apparatus” manufactured by Dainippon Screen Mfg. Co., Ltd., which operates in the same manner as the printing apparatus schematically shown in FIG.
  • the printing plate prepared above was used for the printing plate.
  • the printing plate was installed on the plate cylinder so that the extending direction of the convex portion coincided with the circumferential direction of the plate cylinder.
  • a slit nozzle slit width 220 mm, slit gap 50 ⁇ m
  • the organic EL ink was supplied to a transfer roll whose surface was made of chromium oxide, and a thin film of organic EL ink was formed on the surface of the transfer roll. .
  • the printing plate was pressed against the transfer roll so that the convex part of the printing plate was pressed into the transfer roll by 20 ⁇ m, and the organic EL ink was transferred from the transfer roll to the convex part of the printing plate.
  • the printing plate was pressed against the glass substrate so that the convex portion of the printing plate was pressed into the glass substrate by 20 ⁇ m.
  • the organic EL ink was dried to obtain a plurality of strip-shaped thin films.
  • the length of each thin film in the extending direction was 80 mm.
  • the distance between the center position in the width direction of one thin film located at one end and the center position in the width direction of one thin film located at the other end (hereinafter, distance between centers) Measured).
  • a length measuring machine (AMIC-300 manufactured by Sokkia) was used for the measurement.
  • a printing plate designed to have a center-to-center distance of 145 mm was used.
  • the center-to-center distance of the formed thin film was within the range of 145 ⁇ m to ⁇ 3 ⁇ m over the extending direction of the thin film, and good results were obtained.
  • Example 2 A plurality of strip-shaped thin films were formed in the same manner as in Example 1 except that only the printing plate was different from that in the example.
  • a flexographic printing plate material: polyester resin
  • the design of the convex pattern is the same as in the embodiment.
  • the center-to-center distance was measured in the same manner as in the example.
  • the center-to-center distance was 20 ⁇ m wider than the set value 145 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Printing Methods (AREA)

Abstract

The disclosed printing plate is further provided with a first film more flexible than the glass plate, which is covered by the first film. The first film is disposed between the glass plate and protrusions, which are disposed so as to contact the first film. The printing plate is further provided with a second film which is more flexible than the glass plate, which is disposed between the first film and the second film, and protrusions are provided on the first film. Optimally, both the first film and the second film are configured from the same material.

Description

印刷版、これを用いた薄膜の製造方法、及び有機EL素子の製造方法Printing plate, method for producing thin film using the same, and method for producing organic EL element
 本発明は印刷版、この印刷版を使用した薄膜の製造方法、および印刷版を使用した有機EL(Electro Luminescence)素子の製造方法に関する。 The present invention relates to a printing plate, a method for producing a thin film using the printing plate, and a method for producing an organic EL (Electro Luminescence) element using the printing plate.
 被印刷体にインキをパターン塗布することが可能な有版印刷法として、凸版印刷法や凹版印刷法などが知られている。有版印刷法に使用される印刷版の表面には、印刷パターンに対応する所定のパターンの凹凸が形成されている。印刷の際にはまず印刷版の凸部または凹部にインキを保持させ、これを被印刷体に押圧することで、インキがパターン塗布される(たとえば特許文献1参照)。 As a plate printing method capable of applying a pattern of ink to a printing medium, a relief printing method and an intaglio printing method are known. On the surface of the printing plate used in the plate printing method, irregularities of a predetermined pattern corresponding to the printing pattern are formed. At the time of printing, first, ink is held on the convex portion or concave portion of the printing plate, and this is pressed against the printing material, whereby the ink is applied in a pattern (see, for example, Patent Document 1).
特開2006-252787号公報JP 2006-252787 A
 現在、有版印刷法には、樹脂やゴムから構成される印刷版が多用されているが、この印刷版は使用に際してわずかに変形し、その寸法が変化する。そのため、たとえ高精度に凹凸パターンが形成された印刷版を使用したとしても、印刷パターンが、意図したパターンからわずかにずれることがある。 At present, printing plates made of resin or rubber are frequently used in the plate printing method, but this printing plate is slightly deformed and changes its dimensions when used. Therefore, even if a printing plate on which a concavo-convex pattern is formed with high accuracy is used, the printing pattern may slightly deviate from the intended pattern.
 とくに微細なパターン塗布が必要とされる印刷分野ではわずかな印刷パターンのずれであっても、そのずれが許されないことがある。たとえば有機EL素子を画素の光源として利用する表示装置の分野では高精度なパターン塗布が必要とされる。表示装置では多数の有機EL素子が、それぞれ行方向、列方向にわずかに間隔をあけて、マトリクス状に配置されている。有機EL素子の一部を構成する有機EL層は塗布法によって形成することが可能であり、この有機EL層を有版印刷法によって形成することが検討されている。この場合、有機EL層となる材料を含むインキを、画素に対応する位置にパターン塗布する必要がある。各画素は微細なパターンで配置されているため、印刷版の寸法がわずかに変化するだけで、全ての画素に、インキを選択的にそれぞれ塗布することが困難となる。たとえば行方向の中心に位置する画素を基準にして印刷版の位置合わせをした場合、基準とした画素と印刷版との位置は一致するが、その一方で、印刷版の寸法がわずかに変化することによって、行方向の端部に位置する画素と印刷版とが一致しないことがある。そうすると、たとえば隣の画素に塗布されるべきインキが、意図しない画素に塗布されることがある。とくに大画面の表示装置を作製する場合、印刷すべき領域が大きくなるため、全ての画素に、正確にインキをそれぞれ塗布することは、より困難になる。 Especially in the printing field where fine pattern coating is required, even a slight misalignment of the print pattern may not be allowed. For example, in the field of display devices that use organic EL elements as light sources for pixels, highly precise pattern coating is required. In the display device, a large number of organic EL elements are arranged in a matrix with slight intervals in the row direction and the column direction, respectively. An organic EL layer constituting a part of the organic EL element can be formed by a coating method, and it has been studied to form this organic EL layer by a plate printing method. In this case, it is necessary to pattern-apply ink containing the material used as an organic EL layer in the position corresponding to a pixel. Since each pixel is arranged in a fine pattern, it is difficult to selectively apply ink to all the pixels only by slightly changing the dimensions of the printing plate. For example, when the printing plate is aligned with reference to the pixel located at the center in the row direction, the position of the reference pixel and the printing plate match, but the size of the printing plate slightly changes. As a result, the pixel located at the end in the row direction may not match the printing plate. Then, for example, the ink to be applied to the adjacent pixel may be applied to an unintended pixel. Particularly in the case of manufacturing a display device with a large screen, since the area to be printed becomes large, it becomes more difficult to accurately apply ink to all the pixels.
 従って本発明の目的は、高精度なパターン塗布が可能な印刷版を提供することである。 Therefore, an object of the present invention is to provide a printing plate capable of applying a highly accurate pattern.
 本発明の印刷版は、ガラス板と、前記ガラス板上に設けられる凸部とを備えている。 The printing plate of the present invention includes a glass plate and a convex portion provided on the glass plate.
 また本発明の印刷版は、前記ガラス板よりも高い可撓性を示す第1のフィルムをさらに備え、前記第1のフィルムによって前記ガラス板は被覆されていることが好ましい。 Moreover, it is preferable that the printing plate of the present invention further includes a first film exhibiting higher flexibility than the glass plate, and the glass plate is covered with the first film.
 また本発明の印刷版では、前記第1のフィルムは、前記ガラス板と前記凸部との間に設けられ、前記凸部は、前記第1のフィルムに接して設けられていることが好ましい。 In the printing plate of the present invention, it is preferable that the first film is provided between the glass plate and the convex portion, and the convex portion is provided in contact with the first film.
 また本発明の印刷版は、ガラス板よりも高い可撓性を示す第2のフィルムをさらに備え、前記ガラス板は、前記第1のフィルムと前記第2のフィルムとの間に設けられ、前記凸部は、前記第1のフィルム上に設けられることが好ましい。 The printing plate of the present invention further includes a second film exhibiting higher flexibility than the glass plate, and the glass plate is provided between the first film and the second film, The convex portion is preferably provided on the first film.
 また本発明の印刷版では、前記第1のフィルムと前記第2のフィルムとが同じ材料から構成されることが好ましい。 In the printing plate of the present invention, it is preferable that the first film and the second film are made of the same material.
 また本発明の薄膜の製造方法は、前記印刷版を用いてインキを被印刷体に印刷し、これを固化して薄膜を形成することが好ましい。 In the method for producing a thin film of the present invention, it is preferable that the printing plate is used to print ink on a printing material and solidify the ink to form a thin film.
 また本発明の有機EL素子の製造方法は、一対の電極と、該電極間に設けられる有機EL層とを備える有機EL素子の製造方法であって、一対の電極のうちの一方の電極を形成する工程と、前記有機EL層となる材料を含む有機ELインキを、前記印刷版を用いて前記一方の電極上に印刷する工程と、前記有機ELインキを固化し、一方の電極上に有機EL層を形成する工程と、前記有機EL層上に一対の電極のうちの他方の電極を形成する工程とを備えている。 Moreover, the manufacturing method of the organic EL element of this invention is a manufacturing method of an organic EL element provided with a pair of electrodes and the organic EL layer provided between the electrodes, and forms one electrode of the pair of electrodes. A step of printing an organic EL ink containing a material to be the organic EL layer on the one electrode using the printing plate, and solidifying the organic EL ink, and an organic EL ink is formed on the one electrode. A step of forming a layer, and a step of forming the other of the pair of electrodes on the organic EL layer.
 本発明によれば、高精度なパターン塗布が可能な印刷版を得ることができる。 According to the present invention, a printing plate capable of applying a highly accurate pattern can be obtained.
図1は、本実施の一形態の印刷版を模式的に示す図である。FIG. 1 is a diagram schematically showing a printing plate according to an embodiment of the present invention. 図2は、本発明の他の実施形態の印刷版を模式的に示す図である。FIG. 2 is a diagram schematically showing a printing plate according to another embodiment of the present invention. 図3は、本発明のさらに他の実施形態の印刷版を模式的に示す図である。FIG. 3 is a diagram schematically showing a printing plate according to still another embodiment of the present invention. 図4は、本発明のさらに他の実施形態の印刷版を模式的に示す図である。FIG. 4 is a diagram schematically showing a printing plate according to still another embodiment of the present invention. 図5は、印刷版を備える印刷装置41を模式的に示す図である。FIG. 5 is a diagram schematically illustrating a printing apparatus 41 including a printing plate. 図6は、有機EL素子を備える表示装置の縦断面図である。FIG. 6 is a longitudinal sectional view of a display device including an organic EL element. 図7は、有機EL素子の縦断面図である。FIG. 7 is a longitudinal sectional view of the organic EL element. 図8は、有機EL素子の縦断面図である。FIG. 8 is a longitudinal sectional view of the organic EL element. 図9は、有機EL素子の縦断面図である。FIG. 9 is a longitudinal sectional view of the organic EL element. 図10は、有機EL素子の縦断面図である。FIG. 10 is a longitudinal sectional view of the organic EL element. 図11は、有機EL素子の縦断面図である。FIG. 11 is a longitudinal sectional view of the organic EL element. 図12は、有機EL素子の縦断面図である。FIG. 12 is a longitudinal sectional view of the organic EL element. 図13は、有機EL素子の縦断面図である。FIG. 13 is a longitudinal sectional view of the organic EL element. 図14は、有機EL素子の縦断面図である。FIG. 14 is a longitudinal sectional view of the organic EL element.
 本発明の印刷版は、ガラス板と、前記ガラス板上に設けられる凸部とを有する。図1は本実施の一形態の印刷版を模式的に示す図である。本発明の印刷版は、凸版印刷版にも、凹版印刷版にも適用可能であるが、以下では凸版印刷版について説明する。なお、凸部間の凹部内のみにインキが残留するように凸部上のインキをドクターブレードなどで除去してから印刷を行う場合、この印刷版は、凹版印刷版として機能させることもできる。 The printing plate of the present invention has a glass plate and a convex portion provided on the glass plate. FIG. 1 is a diagram schematically showing a printing plate according to an embodiment of the present invention. The printing plate of the present invention can be applied to both a relief printing plate and an intaglio printing plate. Hereinafter, the relief printing plate will be described. When printing is performed after removing the ink on the convex portions with a doctor blade or the like so that the ink remains only in the concave portions between the convex portions, this printing plate can also function as an intaglio printing plate.
 図1に示すように、印刷版101は、ガラス板102と凸部103とを備える。本実施形態では凸部103がガラス板102に接して設けられている。 As shown in FIG. 1, the printing plate 101 includes a glass plate 102 and a convex portion 103. In the present embodiment, the convex portion 103 is provided in contact with the glass plate 102.
 ガラス板102上には、被印刷体に形成すべきインキの薄膜のパターンに対応するパターンの凸部103が形成される。たとえば複数本の帯状の薄膜を被印刷体に形成する場合には、この帯状の薄膜のパターンに対応するように、互いに所定の間隔をあけて、所定の方向に延在する複数本の凸部が印刷版に設けられる。また、たとえばマトリクス状に配置される複数枚の薄膜を形成する場合、すなわち所定の行方向に所定の間隔をあけるとともに、所定の列方向に所定の間隔をあけて配置される複数枚の薄膜を形成する場合には、この複数枚の薄膜のパターンに対応するようにマトリクス状に配置される複数個の凸部が印刷版に設けられる。 On the glass plate 102, a convex portion 103 having a pattern corresponding to the pattern of the thin film of ink to be formed on the printing medium is formed. For example, when a plurality of strip-shaped thin films are formed on a printing medium, a plurality of protrusions extending in a predetermined direction with a predetermined distance from each other so as to correspond to the pattern of the strip-shaped thin film Is provided on the printing plate. Further, for example, when forming a plurality of thin films arranged in a matrix, that is, a plurality of thin films arranged at predetermined intervals in a predetermined row direction and at predetermined intervals in a predetermined column direction. In the case of forming, the printing plate is provided with a plurality of convex portions arranged in a matrix so as to correspond to the patterns of the plurality of thin films.
 ガラス板は使用に際して寸法が変化しにくい。このようなガラス板上に凸部を形成することにより、凸部間の間隔が変化しにくくなり、結果として高精度なパターン塗布が可能となる。印刷版は印刷時に被印刷体に押圧されるため、その際の応力によって変形し、寸法が変化する。フレキソ印刷版のように現在多用されている印刷版は、応力による寸法変化が大きいが、ガラス板は使用に際して寸法が変化しにくいため、従来の印刷版と比べて高精度なパターン塗布が可能となる。また、たとえばガラス板は金属板などに比べて熱膨張率が低いため、印刷版を作製したときと、印刷版を使用するときとで温度が異なっていたとしても、温度差に起因する印刷版の寸法の変化が小さい。また印刷工程における温度変化に対しても印刷版の寸法の変化は小さい。そのため高精度なパターン塗布が可能となる。とくに本実施形態では寸法変化の小さいガラス板2に接して、直接、凸部103が設けられているため、凸部103間の間隔が変化しにくく、より高精度なパターン塗布が可能となる。 The glass plate is less likely to change dimensions when used. By forming the convex portions on such a glass plate, the interval between the convex portions is hardly changed, and as a result, highly accurate pattern application is possible. Since the printing plate is pressed against the printing medium at the time of printing, the printing plate is deformed by the stress at that time, and the dimensions are changed. Printing plates that are frequently used today, such as flexographic printing plates, have large dimensional changes due to stress, but glass plates are less likely to change dimensions when used, so that it is possible to apply patterns with higher accuracy than conventional printing plates. Become. In addition, for example, a glass plate has a lower coefficient of thermal expansion than a metal plate, so that even if the temperature differs between when the printing plate is prepared and when the printing plate is used, the printing plate caused by the temperature difference The change in dimensions is small. Further, the change in the size of the printing plate is small even with respect to the temperature change in the printing process. Therefore, highly accurate pattern application is possible. In particular, in this embodiment, since the convex part 103 is directly provided in contact with the glass plate 2 with a small dimensional change, the space | interval between the convex parts 103 does not change easily, and more highly accurate pattern application | coating is attained.
 後述するように印刷版は通常、円柱形状の版胴に巻き回されて使用される(図5参照)。そのため版胴の表面に沿って印刷版を撓ませる必要がある。版胴表面の曲率にもよるが、ガラス板が厚すぎると版胴表面に沿って印刷版を撓ませることが難しくなるため、ガラス板の厚さは薄いほうが好ましい。ガラス板の厚さは通常10μm~200μmであり、10μm~30μmが好ましい。 As will be described later, the printing plate is usually used by being wound around a cylindrical plate cylinder (see FIG. 5). Therefore, it is necessary to bend the printing plate along the surface of the plate cylinder. Although depending on the curvature of the plate cylinder surface, if the glass plate is too thick, it is difficult to bend the printing plate along the plate cylinder surface. Therefore, the glass plate is preferably thin. The thickness of the glass plate is usually 10 μm to 200 μm, preferably 10 μm to 30 μm.
 ガラス板はたとえばソーダライムガラス(soda-lime glass)、ホウケイ酸ガラス(bolosilicate glass)、又はバイコール(登録商標)ガラスによって構成される。バイコールガラス(Vycor glass)は、ホウケイ酸ガラス(主成分:B/SiO)からBを除去して作製し、成分の96%がシリカガラスからなる米国コーニング社の製品である。これらのガラスは無機材料からなる無機ガラスである。また印刷版に用いられるガラス板の線膨張率は、通常0.5×10-6~10×10-6/Kであり、0.5×10-6~3×10-6/Kが好ましい。 The glass plate is made of, for example, soda-lime glass, borosilicate glass, or Vycor (registered trademark) glass. Vycor glass is produced by removing B 2 O 3 from borosilicate glass (main component: B 2 O 3 / SiO 2 ), and is a product of Corning Corp., USA, where 96% of the component is silica glass. is there. These glasses are inorganic glasses made of an inorganic material. The linear expansion coefficient of the glass plate used for the printing plate is usually 0.5 × 10 −6 to 10 × 10 −6 / K, preferably 0.5 × 10 −6 to 3 × 10 −6 / K. .
 ガラス板102上に設けられる凸部103は、たとえばアクリレート樹脂、ポリイミドなどの樹脂によって構成される。凸部103はたとえば感光性樹脂を用いて、フォトリソグラフィ法によって、所定のパターンに形成される。 The convex part 103 provided on the glass plate 102 is comprised by resin, such as acrylate resin and a polyimide, for example. The convex portion 103 is formed in a predetermined pattern by photolithography using, for example, a photosensitive resin.
 図2は本発明の他の実施形態の印刷版を模式的に示す図である。本実施形態の印刷版11は、ガラス板12よりも高い可撓性を示す第1のフィルム14をさらに備える。曲げ弾性率は、フィルム14の方がガラス板12よりも低く、単位距離だけ面方向に沿って離間した両端間に、力を加えて、それぞれを曲げた場合には、距離及び力が同じであれば、第1のフィルム14の湾曲量の方が、ガラス板12の湾曲量よりも大きくなる。第1のフィルム14によってガラス板12の裏面は被覆されている。本実施形態では第1のフィルム14、ガラス板12、凸部13がこの順で積層されている。なお第1のフィルム14とガラス板12とは所定の接着剤層ADを介して貼り合わされている。 FIG. 2 is a diagram schematically showing a printing plate according to another embodiment of the present invention. The printing plate 11 of the present embodiment further includes a first film 14 that exhibits higher flexibility than the glass plate 12. The flexural modulus of the film 14 is lower than that of the glass plate 12, and when a force is applied between both ends spaced apart along the surface direction by a unit distance, and each is bent, the distance and the force are the same. If so, the amount of bending of the first film 14 is larger than the amount of bending of the glass plate 12. The back surface of the glass plate 12 is covered with the first film 14. In this embodiment, the 1st film 14, the glass plate 12, and the convex part 13 are laminated | stacked in this order. The first film 14 and the glass plate 12 are bonded together via a predetermined adhesive layer AD.
 第1のフィルム14はたとえばポリエチレンテレフタレートまたはポリエチレンナフタレートなどから構成される。このような第1のフィルム14の厚さは通常10~100μm程度であり、10~30μmが好ましい。また第1のフィルム14は、ガラス板12よりも高い可撓性を示し、その引張弾性率は、ガラス板よりも低い。たとえば石英ガラスの引張弾性率が70GPaであるのに対して、第1のフィルム14の引張弾性率は、2~5GPa程度である。 The first film 14 is made of, for example, polyethylene terephthalate or polyethylene naphthalate. The thickness of the first film 14 is usually about 10 to 100 μm, and preferably 10 to 30 μm. Moreover, the 1st film 14 shows the flexibility higher than the glass plate 12, and the tensile elasticity modulus is lower than a glass plate. For example, the tensile elastic modulus of quartz glass is 70 GPa, whereas the tensile elastic modulus of the first film 14 is about 2 to 5 GPa.
 接着剤層ADはたとえばエポキシ樹脂系、ポリイミド樹脂系、シリコーン樹脂系、フェノール樹脂系、シリコーン樹脂系、又はアクリル樹脂系から構成される。 The adhesive layer AD is made of, for example, an epoxy resin system, a polyimide resin system, a silicone resin system, a phenol resin system, a silicone resin system, or an acrylic resin system.
 ガラス板および凸部のみからなる印刷版は、版胴への装着や、移動の際に割れることがあり、操作性がよくないこともあるが、ガラス板よりも高い可撓性を示す第1のフィルム14を設けることにより、割れの発生を抑制することができ、印刷版の操作性を向上することができる。なお、ガラス板12、凸部13の材料は、図1の実施形態のガラス板102、凸部103の材料と同一であり、本実施形態は図1の実施形態と比較して、構造的には第1のフィルム14を更に備えている点のみが異なる。 A printing plate consisting only of a glass plate and a convex portion may be broken when mounted on a plate cylinder or moved, and the operability may not be good, but it is the first that exhibits higher flexibility than a glass plate. By providing the film 14, the generation of cracks can be suppressed and the operability of the printing plate can be improved. The material of the glass plate 12 and the convex portion 13 is the same as the material of the glass plate 102 and the convex portion 103 in the embodiment of FIG. 1, and this embodiment is structurally different from the embodiment of FIG. Differ only in that the first film 14 is further provided.
 図3は本発明のさらに他の実施形態の印刷版を模式的に示す図である。本実施形態の印刷版21は、凸部の設けられる位置が、前述の図2に示す実施形態の印刷版とは異なる。すなわち図2に示す実施形態では凸部がガラス板上に設けられているのに対して、本実施形態の印刷版21は、前記凸部23が、第1のフィルム24に接して設けられており、第1のフィルム24が、ガラス板22と凸部23との間に設けられている。 FIG. 3 is a diagram schematically showing a printing plate according to still another embodiment of the present invention. The printing plate 21 of the present embodiment is different from the printing plate of the embodiment shown in FIG. That is, in the embodiment shown in FIG. 2, the convex portion is provided on the glass plate, whereas the printing plate 21 of the present embodiment has the convex portion 23 provided in contact with the first film 24. The first film 24 is provided between the glass plate 22 and the convex portion 23.
 ガラス板は他の部材との密着性が高くないことがある。たとえば凸部とガラス板との密着性が高くないこともあるが、ガラス板22よりも密着性の高い第1のフィルム24に接して凸部23を形成することにより、凸部の密着性を向上することができる。これによって印刷版の耐久性を向上することができる。また、第1のフィルム24とガラス板22との間には、これらの強固な固定のために、接着剤層ADを介在させることができる。第1のフィルム24、ガラス板22、凸部23、接着剤層ADの材料は、それぞれ上述の実施形態の第1のフィルム14、ガラス板12、凸部13、接着剤層ADの材料と同一であり、本実施形態は図2の実施形態と比較して、構造的には積層の順番のみが異なる。
 図4は本発明のさらに他の実施形態の印刷版を模式的に示す図である。印刷版31はガラス板32よりも高い可撓性を示す第2のフィルム35をさらに備える。ガラス板32は、第1のフィルム34と第2のフィルム35との間に設けられ、凸部33は、第1のフィルム34上に設けられる。すなわち印刷版31は、第2のフィルム35、ガラス板32、第1のフィルム34、凸部33の順に積層されて構成される。なお第1のフィルム34とガラス板32とは接着剤層AD1を介して積層され、ガラス板32と第2のフィルム35とは接着剤層AD2を介して積層されている。
The glass plate may not have high adhesion to other members. For example, the adhesion between the convex portion and the glass plate may not be high, but by forming the convex portion 23 in contact with the first film 24 having higher adhesion than the glass plate 22, the adhesion of the convex portion can be improved. Can be improved. Thereby, durability of the printing plate can be improved. Further, an adhesive layer AD can be interposed between the first film 24 and the glass plate 22 in order to firmly fix them. The materials of the first film 24, the glass plate 22, the convex portion 23, and the adhesive layer AD are the same as the materials of the first film 14, the glass plate 12, the convex portion 13, and the adhesive layer AD of the above-described embodiment, respectively. Thus, the present embodiment is structurally different only in the stacking order as compared with the embodiment of FIG.
FIG. 4 is a diagram schematically showing a printing plate according to still another embodiment of the present invention. The printing plate 31 further includes a second film 35 that exhibits higher flexibility than the glass plate 32. The glass plate 32 is provided between the first film 34 and the second film 35, and the convex portion 33 is provided on the first film 34. That is, the printing plate 31 is configured by laminating the second film 35, the glass plate 32, the first film 34, and the convex portion 33 in this order. The first film 34 and the glass plate 32 are laminated via the adhesive layer AD1, and the glass plate 32 and the second film 35 are laminated via the adhesive layer AD2.
 熱膨張率の異なる2枚の板を積層した場合、一方の板の伸張と、他方の板の伸張とが異なることによって応力が発生し、反りが生じる。とくに一方の板として熱膨張率の低いガラス板を用いる場合、伸張差が大きくなるため、反りも大きくなる。本実施形態では、熱膨張率の低いガラス板を2枚のフィルムで挟持することによって、第1のフィルム34とガラス板32との間に生じる第1の応力と、第2のフィルム35とガラス板32との間に生じる第2の応力とが、打ち消し合う。そのために反りの発生が抑制される。 When two plates having different coefficients of thermal expansion are laminated, stress is generated due to the difference between the extension of one plate and the extension of the other plate, causing warpage. In particular, when a glass plate having a low coefficient of thermal expansion is used as one of the plates, the difference in elongation becomes large, so that the warpage also increases. In the present embodiment, a first stress generated between the first film 34 and the glass plate 32 by sandwiching a glass plate having a low coefficient of thermal expansion between the two films, the second film 35 and the glass The second stress generated between the plates 32 cancels out. Therefore, generation | occurrence | production of curvature is suppressed.
 第1のフィルム34と第2のフィルム35とは同じ材料から構成されることが好ましい。このように同じ材料によって第1のフィルム34と第2のフィルム35とを構成することによって、第1の応力と第2の応力とがより打ち消し合うため、反りの発生がより抑制される。 It is preferable that the first film 34 and the second film 35 are made of the same material. By forming the first film 34 and the second film 35 with the same material in this way, the first stress and the second stress cancel each other out, so that the occurrence of warpage is further suppressed.
 さらに第1のフィルム34と第2のフィルム35とは同じ材料から構成され、かつ厚みが同じであることが好ましい。このように互いに同じ構成の第1のフィルム34と第2のフィルム35と用いることで、第1の応力と第2の応力とがさらにより打ち消し合うため、反りの発生がより抑制される。第1のフィルム34、ガラス板32、凸部33、接着剤層AD1,AD2の材料は、それぞれ図3の実施形態の第1のフィルム24、ガラス板22、凸部23、接着剤層ADの材料と同一であり、好ましくは、本実施形態における第1のフィルム34と第2のフィルム35の材料及び厚みは同一であり、本実施形態は図3の実施形態と比較して、構造的には第2のフィルムそう35を更に備えている点のみが異なる。 Furthermore, it is preferable that the first film 34 and the second film 35 are made of the same material and have the same thickness. Thus, by using the 1st film 34 and the 2nd film 35 of the mutually same structure, since 1st stress and 2nd stress cancel each other more, generation | occurrence | production of curvature is suppressed more. The materials of the first film 34, the glass plate 32, the convex portion 33, and the adhesive layers AD1 and AD2 are the same as those of the first film 24, the glass plate 22, the convex portion 23, and the adhesive layer AD in the embodiment of FIG. The materials and thicknesses of the first film 34 and the second film 35 in the present embodiment are preferably the same, and the present embodiment is structurally compared to the embodiment of FIG. Is different only in that it further comprises a second film so 35.
 次に上述した印刷版を用いて薄膜を製造する方法について説明する。図5は、上述した印刷版を備える印刷装置41を模式的に示す図である。印刷装置41は主に、インキ供給源42と、前記インキ供給源42からインキが供給される転写ロール43と、前記転写ロール43の表面に供給されたインキが転写される上述の印刷版(PPとする。図1~図4の実施形態のいずれかの印刷版を示す)とを備える。なお以下では印刷版PPを備える特定の印刷装置について説明するが、上述の各実施形態の印刷版を使用する限りにおいては印刷装置の構成はとくに限定されず、上述の各実施形態の印刷版は種々の印刷装置に組み込まれて使用される。 Next, a method for producing a thin film using the printing plate described above will be described. FIG. 5 is a diagram schematically illustrating a printing apparatus 41 including the above-described printing plate. The printing apparatus 41 mainly includes an ink supply source 42, a transfer roll 43 to which ink is supplied from the ink supply source 42, and the printing plate (PP) to which the ink supplied to the surface of the transfer roll 43 is transferred. (A printing plate according to any of the embodiments of FIGS. 1 to 4 is shown). Hereinafter, a specific printing apparatus provided with the printing plate PP will be described. However, the configuration of the printing apparatus is not particularly limited as long as the printing plate of each of the above-described embodiments is used, and the printing plate of each of the above-described embodiments Used by being incorporated into various printing apparatuses.
 上述したように印刷版PPは通常版胴44に巻き回されて使用される。たとえばストライプ状の凸部が設けられた印刷版PPを使用する場合、印刷版PPは、凸部の延在する方向が版胴44の周方向に一致するように、または凸部の延在する方向が版胴44の軸線方向に一致するように版胴に巻き回される。本実施形態では版胴44は軸心CR1を中心に回転可能に軸支され、回転駆動機構DRV1からの駆動力によって回転する。図5では版胴44は矢印で示すように時計回りに回転し、この版胴44の回転にともなって印刷版も回転する。 As described above, the printing plate PP is usually wound around the plate cylinder 44 and used. For example, when a printing plate PP provided with stripe-shaped convex portions is used, the printing plate PP extends such that the extending direction of the convex portions coincides with the circumferential direction of the plate cylinder 44 or the convex portions extend. It is wound around the plate cylinder so that the direction coincides with the axial direction of the plate cylinder 44. In the present embodiment, the plate cylinder 44 is rotatably supported around an axis CR1 and is rotated by a driving force from the rotation drive mechanism DRV1. In FIG. 5, the plate cylinder 44 rotates clockwise as indicated by an arrow, and the printing plate rotates as the plate cylinder 44 rotates.
 転写ロール43はその軸心CR2が版胴44の軸心CR1と平行になるように回転可能に軸支され、回転駆動機構DRV2からの駆動力によって回転する。図5では矢印で示すように反時計回りに回転する。転写ロール43はたとえばクロム、酸化クロム、アルミニウムおよび酸化アルミニウムなどによって構成される。転写ロール43は、表面に凹凸が形成されたいわゆるアニロックスロールであってもよく、また表面が平坦な転写ロールであってもよい。 The transfer roll 43 is rotatably supported so that its axis CR2 is parallel to the axis CR1 of the plate cylinder 44, and rotates by the driving force from the rotation driving mechanism DRV2. In FIG. 5, it rotates counterclockwise as shown by the arrow. The transfer roll 43 is made of, for example, chromium, chromium oxide, aluminum, aluminum oxide, or the like. The transfer roll 43 may be a so-called anilox roll having irregularities formed on the surface, or may be a transfer roll having a flat surface.
 インキ供給源42は、インキを収容し、さらにこれを転写ロール43に供給する。本実施形態ではスリットノズル45を用いて、転写ロール43にインキを供給する。 The ink supply source 42 contains ink and supplies it to the transfer roll 43. In this embodiment, the slit nozzle 45 is used to supply ink to the transfer roll 43.
 さらに本実施形態では印刷装置41は洗浄機構46をさらに備える。洗浄機構46は、転写ロール43から印刷版にインキが転写された後に、転写ロール43上に残存するインキを洗浄する。たとえば洗浄機構46はドクターブレードを備え、このドクターブレードを転写ロール43に押し当てることによって、転写ロール43上に残存するインキを掻き落とす。なお所定のリンス液を用いて転写ロール43を洗浄してもよい。 In the present embodiment, the printing apparatus 41 further includes a cleaning mechanism 46. The cleaning mechanism 46 cleans the ink remaining on the transfer roll 43 after the ink is transferred from the transfer roll 43 to the printing plate. For example, the cleaning mechanism 46 includes a doctor blade, and presses the doctor blade against the transfer roll 43 to scrape off ink remaining on the transfer roll 43. The transfer roll 43 may be cleaned using a predetermined rinse liquid.
 印刷装置41は被印刷体47を搬送する搬送テーブル48をさらに備える。この搬送テーブル48は被印刷体47を保持し、印刷版の接線速度と同じ速度で、印刷版の接線方向に平行移動する。搬送テーブル48は通常、水平移動する。この搬送テーブル48の移動にともなって被印刷体も平行移動する。 The printing apparatus 41 further includes a transport table 48 that transports the printing material 47. The transport table 48 holds the printing material 47 and translates in the tangential direction of the printing plate at the same speed as the tangential speed of the printing plate. The transfer table 48 normally moves horizontally. As the transport table 48 moves, the printing medium also moves in parallel.
 インキ供給源42から供給されるインキはスリットノズル45を通って転写ロール43上に供給される。このようにスリットノズル45からインキが供給されつつ、転写ロール43が回転することにより、転写ロール43の表面上にインキの薄膜が形成される。 The ink supplied from the ink supply source 42 is supplied onto the transfer roll 43 through the slit nozzle 45. Thus, the ink roll is rotated while the ink is supplied from the slit nozzle 45, whereby an ink thin film is formed on the surface of the transfer roll 43.
 印刷版PPは転写ロール43に当接した状態で回転するため、転写ロール43に供給されたインキが、印刷版PPの凸部の表面に順次転写される。 Since the printing plate PP rotates while being in contact with the transfer roll 43, the ink supplied to the transfer roll 43 is sequentially transferred onto the surface of the convex portion of the printing plate PP.
 このようにインキが転写された印刷版PPは、被印刷体47にも押圧された状態で回転する。被印刷体47は印刷版PPの回転とともに平行移動するため、被印刷体47には、印刷版PPの凸部に保持されたインキが順次印刷される。 The printing plate PP to which the ink is transferred in this way rotates while being pressed against the printing material 47 as well. Since the printing material 47 moves in parallel with the rotation of the printing plate PP, the ink held on the convex portions of the printing plate PP is sequentially printed on the printing material 47.
 なお印刷版PPに転写されずに転写ロール43に残存したインキは、洗浄機構46によって転写ロール43から除去される。 The ink remaining on the transfer roll 43 without being transferred to the printing plate PP is removed from the transfer roll 43 by the cleaning mechanism 46.
 以上の工程によって、印刷版PPを用いてインキを被印刷体47に印刷する工程が行われる。さらに印刷されたインキを固化することによってインキの薄膜を形成することができる。 Through the above steps, a step of printing ink on the printing medium 47 using the printing plate PP is performed. Furthermore, an ink thin film can be formed by solidifying the printed ink.
 インキの固化は、溶媒を除去することによって行うことができる。溶媒の除去はたとえば自然乾燥、加熱乾燥、真空乾燥などによって行われる。またインキが、光や熱を加えることによって硬化する材料を含む場合は、被印刷体47にインキが印刷された後に、光を照射したり、熱を加えたりすることによってインキを固化してもよい。 The ink can be solidified by removing the solvent. The removal of the solvent is performed by, for example, natural drying, heat drying, vacuum drying, or the like. In addition, when the ink contains a material that is cured by applying light or heat, the ink may be solidified by irradiating light or applying heat after the ink is printed on the printing material 47. Good.
 上述したように印刷版PPは寸法の変化が小さいので、印刷ずれが少なく、意図した通りにインキをパターン塗布することができる。 As described above, since the printing plate PP has little change in dimensions, there is little printing deviation, and ink can be applied in a pattern as intended.
 上述した印刷装置を用いることにより、被印刷体PP上に様々な種類の薄膜を形成することができる。たとえば用いるインキを適宜調整することによって、電極や配線として機能する導電性薄膜、有機光電変換素子の活性層、有機薄膜トランジスタの半導体層、および後述する有機EL素子の有機EL層などを形成することができる。 By using the printing apparatus described above, various types of thin films can be formed on the printing material PP. For example, by appropriately adjusting the ink to be used, a conductive thin film functioning as an electrode or a wiring, an active layer of an organic photoelectric conversion element, a semiconductor layer of an organic thin film transistor, and an organic EL layer of an organic EL element described later can be formed. it can.
 上述した各実施形態の印刷版PPを用いて有機EL素子を形成することができる。すなわち本実施形態の有機EL素子の製造方法は、一対の電極と、該電極間に設けられる有機EL層とを備える有機EL素子の製造方法であって、一対の電極のうちの一方の電極を形成する工程と、前記有機EL層となる材料を含む有機ELインキを、上述した印刷版を用いて前記一方の電極上に印刷する工程と、前記有機ELインキを固化し、一方の電極上に有機EL層を形成する工程と、前記有機EL層上に一対の電極のうちの他方の電極を形成する工程とを含む、有機EL素子の製造方法である。 An organic EL element can be formed using the printing plate PP of each embodiment described above. That is, the manufacturing method of the organic EL element of the present embodiment is a manufacturing method of an organic EL element including a pair of electrodes and an organic EL layer provided between the electrodes. The step of forming, the step of printing the organic EL ink containing the material to be the organic EL layer on the one electrode using the printing plate described above, the solidifying the organic EL ink, and on the one electrode It is a manufacturing method of an organic EL element including the process of forming an organic EL layer, and the process of forming the other electrode of a pair of electrodes on the said organic EL layer.
 有機EL素子はたとえば表示装置の画素として用いられる。このような表示装置では、図6に示すように、支持基板6上に複数の有機EL素子1が所定の配列で整列して設けられる。たとえば複数の有機EL素子1は、支持基板6上においてマトリクス状に配置される。すなわち複数の有機EL素子1は、所定の行方向に所定の間隔をあけるとともに、所定の列方向に所定の間隔をあけて、整列して配置される。 An organic EL element is used as a pixel of a display device, for example. In such a display device, as shown in FIG. 6, a plurality of organic EL elements 1 are arranged on a support substrate 6 in a predetermined arrangement. For example, the plurality of organic EL elements 1 are arranged in a matrix on the support substrate 6. That is, the plurality of organic EL elements 1 are arranged in a line with a predetermined interval in a predetermined row direction and with a predetermined interval in a predetermined column direction.
 支持基板6上には通常複数の有機EL素子1を区分けするための隔壁IWが設けられる。そして複数の有機EL素子1は隔壁IWによって区分けされた領域にそれぞれ形成される。 A partition wall IW for separating the plurality of organic EL elements 1 is usually provided on the support substrate 6. The plurality of organic EL elements 1 are respectively formed in regions divided by the partition walls IW.
 隔壁IWは、たとえばストライプ状、または格子状に設けられる。ストライプ状の隔壁IWが設けられる場合、所定の方向に延在する複数本の隔壁IWが、互いに所定の間隔をあけて基板上に設けられる。そして各有機EL素子1は、各隔壁IW,IW間に設けられ、この隔壁IW,IW間において、隔壁IWの延在する方向に沿って所定の間隔をあけて配置される。また格子状の隔壁IWが設けられる場合、各有機EL素子1は、それぞれ格子状の隔壁IWによって区分けされた領域にそれぞれ設けられる。 The partition wall IW is provided in a stripe shape or a lattice shape, for example. When the stripe-shaped partition wall IW is provided, a plurality of partition walls IW extending in a predetermined direction are provided on the substrate at a predetermined interval. Each organic EL element 1 is provided between the partition walls IW and IW, and is disposed between the partition walls IW and IW with a predetermined interval along the direction in which the partition wall IW extends. When the grid-like partition wall IW is provided, each organic EL element 1 is provided in a region divided by the grid-like partition wall IW.
 本実施形態ではストライプ状の隔壁IWが設けられる基板6に、上述の印刷版PPを用いて複数の有機EL素子1を作製する方法について説明する。 In the present embodiment, a method for producing a plurality of organic EL elements 1 using the above-described printing plate PP on the substrate 6 provided with the stripe-shaped partition walls IW will be described.
 まず支持基板6上に各有機EL素子1の一方の電極2をそれぞれ形成する。すなわち有機EL素子1の数に対応する数の一方の電極2を支持基板6上に形成する。複数の一方の電極2は、平面視において、マトリクス状に配置される。 First, one electrode 2 of each organic EL element 1 is formed on the support substrate 6. That is, one electrode 2 having a number corresponding to the number of organic EL elements 1 is formed on the support substrate 6. The plurality of one electrodes 2 are arranged in a matrix in a plan view.
 次にストライプ状の隔壁IWを形成する。ストライプ状の隔壁IWは、隣り合う一方の電極2,2間に形成される。この隔壁IWはたとえば感光性樹脂を用いて、フォトリソグラフィ法によって形成することができる。 Next, a stripe-shaped partition wall IW is formed. The stripe-shaped partition wall IW is formed between the adjacent one electrodes 2 and 2. The partition wall IW can be formed by a photolithography method using, for example, a photosensitive resin.
 つぎに有機EL層10を形成する。本実施形態では、ストライプ状の隔壁IW,IW間に、有機EL層10となる材料を含む有機ELインキを供給し、さらにこれを固化することによって、ストライプ状の隔壁IW,IW間に、帯状の有機EL層10を形成する。なおストライプ状の隔壁IW,IW間への有機ELインキの供給は、上述した印刷版PPを用いた印刷法によって行われる。すなわち上述の印刷法において、インキとして、有機EL層10となる材料を含む有機ELインキを使用し、さらに、印刷版PPとして、隔壁IW,IW間のパターンに対応するストライプ状の凸部が形成された印刷版PPを使用する。上述した印刷法によって隔壁IW,IW間に有機ELインキを供給し、さらにこれを固化することによって、帯状の有機EL層10を各隔壁IW,IW間に形成することができる。 Next, the organic EL layer 10 is formed. In the present embodiment, an organic EL ink containing a material that becomes the organic EL layer 10 is supplied between the stripe-shaped partition walls IW and IW, and further solidified, whereby a strip-shaped partition wall IW and IW are formed between the strip-shaped partition walls IW and IW. The organic EL layer 10 is formed. The organic EL ink is supplied between the stripe-shaped partition walls IW and IW by the printing method using the printing plate PP described above. That is, in the above-described printing method, an organic EL ink containing a material that becomes the organic EL layer 10 is used as the ink, and a stripe-shaped convex portion corresponding to the pattern between the partition walls IW and IW is formed as the printing plate PP. The printed printing plate PP is used. By supplying the organic EL ink between the partition walls IW and IW by the printing method described above and further solidifying it, the strip-shaped organic EL layer 10 can be formed between the partition walls IW and IW.
 有機EL層10を形成する際に用いられる有機ELインキは、その固形分濃度が通常0.5重量%~3重量%程度であり、その粘度が通常5~100Cp程度である。1cP(センチポアズ)=0.001Pa・s(パスカル秒)であるから、5cP~100cPは、0.005Pa・s~0.1Pa・sである。有機ELインキの溶媒または分散媒は、有機EL層となる材料を均一に溶解または分散するものであればよい。たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水などを溶媒または分散媒として適宜使用することができる。有機EL層の膜厚は通常30nm~120nm程度である。 The organic EL ink used for forming the organic EL layer 10 has a solid content concentration of usually about 0.5 to 3% by weight and a viscosity of usually about 5 to 100 Cp. Since 1 cP (centipoise) = 0.001 Pa · s (Pascal second), 5 cP to 100 cP is 0.005 Pa · s to 0.1 Pa · s. The solvent or dispersion medium of the organic EL ink may be any solvent that uniformly dissolves or disperses the material that becomes the organic EL layer. For example, chlorinated solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate, and ethyl cellosolve An ester solvent such as acetate and water can be appropriately used as a solvent or a dispersion medium. The film thickness of the organic EL layer is usually about 30 nm to 120 nm.
 一対の電極2,5間には、1層の有機EL層に限らず、複数の有機EL層が必要に応じて設けられる。なお有機EL層10とは一対の電極2,5間に設けられる全ての層を意味する。一対の電極間には少なくとも1層の発光層が有機EL層として設けられる。複数の有機EL層が設けられる場合には、少なくとも1層の有機EL層が上述の印刷版を使用した印刷法によって形成される。なお複数の有機EL層のうち、塗布法によって形成することが可能な有機EL層は、上述した印刷版を使用した印刷法によって形成することが好ましい。なおカラー表示装置の場合には、赤色、緑色、青色をそれぞれ発光する有機ELインキを所定の隔壁間に塗り分ける必要がある。この場合、各色の有機ELインキが供給されるパターンに対応するように、印刷版の凸部のパターンを形成することによって、各色の有機ELインキを塗り分けることができる。 Between the pair of electrodes 2 and 5, not only one organic EL layer but also a plurality of organic EL layers are provided as necessary. The organic EL layer 10 means all layers provided between the pair of electrodes 2 and 5. Between the pair of electrodes, at least one light emitting layer is provided as an organic EL layer. When a plurality of organic EL layers are provided, at least one organic EL layer is formed by a printing method using the above-described printing plate. Of the plurality of organic EL layers, the organic EL layer that can be formed by a coating method is preferably formed by a printing method using the printing plate described above. In the case of a color display device, it is necessary to coat organic EL inks that emit red, green, and blue colors between predetermined partitions. In this case, the organic EL ink of each color can be applied separately by forming the pattern of the convex portion of the printing plate so as to correspond to the pattern to which the organic EL ink of each color is supplied.
 有機EL層を形成した後に、有機EL層上に他方の電極を形成する。これによって複数の有機EL層が基板上に形成される。 After forming the organic EL layer, the other electrode is formed on the organic EL layer. As a result, a plurality of organic EL layers are formed on the substrate.
 なお本実施形態ではストライプ状の隔壁IWが形成される基板6上に複数の有機EL素子1を形成する方法について説明したが、格子状の隔壁が形成された基板上に複数の有機EL素子を形成する方法であっても、上述した印刷法によって、各有機EL素子の有機EL層を形成することができる。この場合、格子状の隔壁によって区分けされるマトリクス状のパターンに対応するように、マトリクス状に配置される複数の凸部が形成された印刷版を使用すればよい。 In the present embodiment, the method of forming the plurality of organic EL elements 1 on the substrate 6 on which the stripe-shaped partition walls IW are formed has been described. However, the plurality of organic EL elements are formed on the substrate on which the lattice-shaped partition walls are formed. Even if it is the method of forming, the organic EL layer of each organic EL element can be formed by the printing method mentioned above. In this case, a printing plate on which a plurality of convex portions arranged in a matrix is formed so as to correspond to the matrix pattern divided by the grid-like partition walls may be used.
 <有機EL素子の構成>
 有機EL素子は種々の層構成をとりうるが、以下では有機EL素子の層構造、各層の構成、および各層の形成方法についてさらに詳しく説明する。
<Configuration of organic EL element>
The organic EL element can have various layer configurations. The layer structure of the organic EL element, the configuration of each layer, and the method for forming each layer will be described in more detail below.
 有機EL素子は、一対の電極2,5と、該電極2,5間に設けられる1または複数の有機EL層10とを含んで構成され、1または複数の有機EL層として少なくとも1層の発光層を有する。なお有機EL素子は、無機物と有機物とを含む層や無機層などを含んでいてもよい。有機層を構成する有機物としては、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましく、ポリスチレン換算の数平均分子量が10~10である高分子化合物を含むことが好ましい。 The organic EL element includes a pair of electrodes 2 and 5 and one or a plurality of organic EL layers 10 provided between the electrodes 2 and 5, and at least one layer of light emission as one or a plurality of organic EL layers. Has a layer. Note that the organic EL element may include a layer containing an inorganic substance and an organic substance, an inorganic layer, or the like. The organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or a mixture of a low molecular compound and a high molecular compound. The organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
 陰極と発光層との間に設けられる有機EL層としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層を電子注入層といい、発光層に近い層を電子輸送層という。陽極と発光層との間に設けられる有機EL層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層を正孔注入層といい、発光層に近い層を正孔輸送層という。 Examples of the organic EL layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer. When both the electron injection layer and the electron transport layer are provided between the cathode and the light emitting layer, the layer close to the cathode is called an electron injection layer, and the layer close to the light emitting layer is called an electron transport layer. Examples of the organic EL layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. When both the hole injection layer and the hole transport layer are provided, a layer close to the anode is referred to as a hole injection layer, and a layer close to the light emitting layer is referred to as a hole transport layer.
 有機EL素子は前述したように一対の電極間に発光層以外にも所定の層を備えうる。支持基板6上に形成された電極(陽極)2と電極(陰極)5との間に形成される有機層10としては、以下の構造が挙げられる。 The organic EL element can include a predetermined layer in addition to the light emitting layer between the pair of electrodes as described above. Examples of the organic layer 10 formed between the electrode (anode) 2 and the electrode (cathode) 5 formed on the support substrate 6 include the following structures.
 有機EL素子の構造としては、図7に示すように、電極(陽極)2と発光層4との間に有機層Yが介在すると共に、電極(陰極)5と発光層4との間に有機層Xが介在する構造とすることができる。 As shown in FIG. 7, the organic EL element has an organic layer Y between the electrode (anode) 2 and the light emitting layer 4 and an organic layer between the electrode (cathode) 5 and the light emitting layer 4. It can be set as the structure where the layer X interposes.
 有機EL素子の構造としては、図8に示すように、電極(陽極)2と発光層4との間に有機層Yが介在し、発光層4上には直接的に電極5が形成されている構造とすることができる。 As shown in FIG. 8, the organic EL element has a structure in which an organic layer Y is interposed between the electrode (anode) 2 and the light emitting layer 4, and the electrode 5 is formed directly on the light emitting layer 4. It can be set as a structure.
 有機EL素子の構造としては、図9に示すように、電極(陰極)5と発光層4との間に有機層Xが介在し、発光層4が直接的に電極2に接触している構造とすることができる。 As the structure of the organic EL element, as shown in FIG. 9, the organic layer X is interposed between the electrode (cathode) 5 and the light emitting layer 4, and the light emitting layer 4 is in direct contact with the electrode 2. It can be.
 有機層Xは、図10に示すように、2種類以上の有機層X1,X2からなることとしてもよく、有機層Yは、図11に示すように、2種類以上の有機層Y1,Y2からなることとしてもよい。 The organic layer X may be composed of two or more kinds of organic layers X1 and X2 as shown in FIG. 10, and the organic layer Y is composed of two or more kinds of organic layers Y1 and Y2 as shown in FIG. It may be.
 有機EL素子の構造としては、図14に示すように、陽極2と陰極5との間に発光層4のみが形成されていてもよい。 As the structure of the organic EL element, only the light emitting layer 4 may be formed between the anode 2 and the cathode 5 as shown in FIG.
 陰極5と発光層4との間に設けられる層Xとしては、電子注入層、電子輸送層、正孔ブロック層などをあげることができる。図10に示したように、陰極5と発光層4との間に電子注入層X1と電子輸送層X2との両方の層が設けられる場合、陰極5に接する層を電子注入層X1といい、この電子注入層X1を除く層を電子輸送層X2という。 Examples of the layer X provided between the cathode 5 and the light emitting layer 4 include an electron injection layer, an electron transport layer, and a hole blocking layer. As shown in FIG. 10, when both the electron injection layer X1 and the electron transport layer X2 are provided between the cathode 5 and the light emitting layer 4, the layer in contact with the cathode 5 is referred to as the electron injection layer X1, The layer excluding the electron injection layer X1 is referred to as an electron transport layer X2.
 電子注入層は、陰極からの電子注入効率を改善する機能を有する。電子輸送層は陰極側の表面に接する層からの電子注入を改善する機能を有する。正孔ブロック層は、正孔の輸送を堰き止める機能を有する。なお電子注入層、及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。 The electron injection layer has a function of improving the electron injection efficiency from the cathode. The electron transport layer has a function of improving electron injection from the layer in contact with the surface on the cathode side. The hole blocking layer has a function of blocking hole transport. In the case where the electron injection layer and / or the electron transport layer have a function of blocking hole transport, these layers may also serve as the hole blocking layer.
 正孔ブロック層が正孔の輸送を堰き止める機能を有することは、例えばホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。 The fact that the hole blocking layer has a function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
 陽極2と発光層4との間に設けられる層Yとしては、正孔注入層、正孔輸送層、電子ブロック層などをあげることができる。図11に示したように、陽極2と発光層4との間に、正孔注入層Y1と正孔輸送層Y2との両方の層が設けられる場合、陽極2に接する層を正孔注入層Y1といい、この正孔注入層Y1を除く層を正孔輸送層Y2という。 Examples of the layer Y provided between the anode 2 and the light emitting layer 4 include a hole injection layer, a hole transport layer, and an electron block layer. As shown in FIG. 11, when both the hole injection layer Y1 and the hole transport layer Y2 are provided between the anode 2 and the light emitting layer 4, the layer in contact with the anode 2 is the hole injection layer. The layer excluding the hole injection layer Y1 is referred to as Y1, and is referred to as a hole transport layer Y2.
 正孔注入層は、陽極からの正孔注入効率を改善する機能を有する。正孔輸送層は陽極側の表面に接する層からの正孔注入を改善する機能を有する。電子ブロック層は、電子の輸送を堰き止める機能を有する。なお正孔注入層、及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。 The hole injection layer has a function of improving the hole injection efficiency from the anode. The hole transport layer has a function of improving hole injection from a layer in contact with the surface on the anode side. The electron blocking layer has a function of blocking electron transport. In the case where the hole injection layer and / or the hole transport layer has a function of blocking electron transport, these layers may also serve as an electron blocking layer.
 電子ブロック層が電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。 The fact that the electron blocking layer has a function of blocking electron transport makes it possible, for example, to produce an element that allows only electron current to flow, and confirm the blocking effect by reducing the current value.
 なお、電子注入層および正孔注入層を総称して電荷注入層ということがあり、電子輸送層および正孔輸送層を総称して電荷輸送層ということがある。 Note that the electron injection layer and the hole injection layer may be collectively referred to as a charge injection layer, and the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
 本実施の形態の有機EL素子のとりうる層構成の一例を以下に示す。
a)陽極2/発光層4/陰極5(図14参照)
b)陽極2/正孔注入層Y/発光層4/陰極5(図8参照)
c)陽極2/正孔注入層Y/発光層4/電子注入層X/陰極5(図7参照)
d)陽極2/正孔注入層Y/発光層4/電子輸送層X/陰極5(図7参照)
e)陽極2/正孔注入層Y/発光層4/電子輸送層X2/電子注入層X1/陰極5(図7及び図10参照)
f)陽極2/正孔輸送層Y/発光層4/陰極5(図8参照)
g)陽極2/正孔輸送層Y/発光層4/電子注入層X/陰極5(図7参照)
h)陽極2/正孔輸送層Y/発光層4/電子輸送層X/陰極5(図7参照)
i)陽極2/正孔輸送層Y/発光層4/電子輸送層X2/電子注入層X1/陰極5(図7及び図10参照)
j)陽極2/正孔注入層Y1/正孔輸送層Y2/発光層4/陰極5(図8及び図11参照)
k)陽極2/正孔注入層Y1/正孔輸送層Y2/発光層4/電子注入層X/陰極5(図7及び図11参照)
l)陽極2/正孔注入層Y1/正孔輸送層Y2/発光層4/電子輸送層X/陰極5(図7及び図11参照)
m)陽極2/正孔注入層Y1/正孔輸送層Y2/発光層4/電子輸送層X2/電子注入層X1/陰極5(図7、図10及び図11参照)
n)陽極2/発光層4/電子注入層X/陰極5(図9参照)
o)陽極2/発光層4/電子輸送層X/陰極5(図9参照)
p)陽極2/発光層4/電子輸送層X2/電子注入層X1/陰極5(図9及び図10参照)
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。
以下同じ。)
 本実施の形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)~p)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構造単位A」とすると、2層の発光層を有する有機EL素子の構成として、下記q)に示す層構成を挙げることができる。なお2つある(構造単位A)の層構成は互いに同じでも、異なっていてもよい。
q)陽極2/(構造単位A)/電荷発生層Z/(構造単位A)/陰極5(図12参照)
 また「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記r)に示す層構成を挙げることができる。
r)陽極2/(構造単位B)x/(構造単位A)/陰極5(図13参照)
 なお記号「x」は、2以上の整数を表し、(構造単位B)xは、構造単位Bがx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
a) Anode 2 / light emitting layer 4 / cathode 5 (see FIG. 14)
b) Anode 2 / hole injection layer Y / light emitting layer 4 / cathode 5 (see FIG. 8)
c) Anode 2 / hole injection layer Y / light emitting layer 4 / electron injection layer X / cathode 5 (see FIG. 7)
d) Anode 2 / hole injection layer Y / light emitting layer 4 / electron transport layer X / cathode 5 (see FIG. 7)
e) Anode 2 / hole injection layer Y / light emitting layer 4 / electron transport layer X2 / electron injection layer X1 / cathode 5 (see FIGS. 7 and 10)
f) Anode 2 / hole transport layer Y / light emitting layer 4 / cathode 5 (see FIG. 8)
g) Anode 2 / hole transport layer Y / light emitting layer 4 / electron injection layer X / cathode 5 (see FIG. 7)
h) Anode 2 / hole transport layer Y / light emitting layer 4 / electron transport layer X / cathode 5 (see FIG. 7)
i) Anode 2 / hole transport layer Y / light emitting layer 4 / electron transport layer X2 / electron injection layer X1 / cathode 5 (see FIGS. 7 and 10)
j) Anode 2 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 4 / cathode 5 (see FIGS. 8 and 11)
k) Anode 2 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 4 / electron injection layer X / cathode 5 (see FIGS. 7 and 11)
l) Anode 2 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 4 / electron transport layer X / cathode 5 (see FIGS. 7 and 11)
m) Anode 2 / hole injection layer Y1 / hole transport layer Y2 / light emitting layer 4 / electron transport layer X2 / electron injection layer X1 / cathode 5 (see FIGS. 7, 10 and 11)
n) Anode 2 / light emitting layer 4 / electron injection layer X / cathode 5 (see FIG. 9)
o) Anode 2 / light emitting layer 4 / electron transport layer X / cathode 5 (see FIG. 9)
p) Anode 2 / light emitting layer 4 / electron transport layer X2 / electron injection layer X1 / cathode 5 (see FIGS. 9 and 10)
(Here, the symbol “/” indicates that the layers sandwiching the symbol “/” are adjacently stacked.
same as below. )
The organic EL element of the present embodiment may have two or more light emitting layers. In any one of the layer configurations of a) to p) above, when the laminate sandwiched between the anode and the cathode is referred to as “structural unit A”, the configuration of the organic EL device having two light emitting layers is as follows. And the layer structure shown in the following q). Note that the two (structural unit A) layer structures may be the same or different.
q) Anode 2 / (structural unit A) / charge generation layer Z / (structural unit A) / cathode 5 (see FIG. 12)
Further, when “(structural unit A) / charge generation layer” is “structural unit B”, examples of the configuration of the organic EL device having three or more light emitting layers include the layer configuration shown in the following r).
r) Anode 2 / (structural unit B) x / (structural unit A) / cathode 5 (see FIG. 13)
The symbol “x” represents an integer of 2 or more, and (structural unit B) x represents a stacked body in which the structural unit B is stacked in x stages. A plurality of (structural units B) may have the same or different layer structure.
 ここで、電荷発生層Zとは電界を印加することにより正孔と電子を発生する層である。電荷発生層Zとしては、たとえば酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。 Here, the charge generation layer Z is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer Z include a thin film made of vanadium oxide, indium tin oxide (IndiumInTin Oxide: abbreviated as ITO), molybdenum oxide, or the like.
 有機EL素子は通常支持基板上に設けられる。有機EL素子は、陽極および陰極から構成される一対の電極のうちの陽極を陰極よりも支持基板寄りに配して支持基板に設けてもよく、また陰極を陽極よりも支持基板寄りに配して支持基板に設けてもよい。たとえば上記a)~r)の構成において、右側から順に支持基板上に各層を積層した構成の有機EL素子でも、左側から順に支持基板上に各層を積層した構成の有機EL素子であってもよい。 Organic EL element is usually provided on a support substrate. The organic EL element may be provided on the support substrate with the anode of the pair of electrodes including the anode and the cathode disposed closer to the support substrate than the cathode, and the cathode is disposed closer to the support substrate than the anode. May be provided on the support substrate. For example, in the above-described configurations a) to r), an organic EL element having a structure in which each layer is stacked on the support substrate in order from the right side or an organic EL element having a structure in which each layer is stacked on the support substrate from the left side may be used. .
 積層する層の順序、層数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜設定することができる。 The order of the layers to be laminated, the number of layers, and the thickness of each layer can be appropriately set in consideration of light emission efficiency and element lifetime.
 次に有機EL素子を構成する各層の材料および形成方法についてより具体的に説明する。 Next, the material and forming method of each layer constituting the organic EL element will be described more specifically.
 <陽極>
 発光層から放たれる光が陽極を通って素子外に出射する構成の有機EL素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、金属酸化物、金属硫化物および金属などの薄膜を用いることができ、電気伝導度および光透過率の高いものが好適に用いられる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
<Anode>
In the case of an organic EL element having a configuration in which light emitted from the light emitting layer is emitted outside the element through the anode, an electrode exhibiting optical transparency is used for the anode. As the electrode exhibiting light transmittance, a thin film of metal oxide, metal sulfide, metal or the like can be used, and an electrode having high electrical conductivity and light transmittance is preferably used. Specifically, it includes indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like. A thin film is used, and among these, a thin film made of ITO, IZO, or tin oxide is preferably used. Examples of a method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
 陽極の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定され、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The film thickness of the anode is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 <正孔注入層>
 正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物や、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
<Hole injection layer>
As the hole injection material constituting the hole injection layer, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine type, starburst type amine type, phthalocyanine type, amorphous carbon, polyaniline, And polythiophene derivatives.
 正孔注入層の成膜方法としては、正孔注入材料を含む溶液からの成膜を挙げることができる。例えば正孔注入材料を含む溶液を所定の塗布法によって塗布成膜し、さらにこれを固化することによって正孔注入層を形成することができる。 Examples of the method for forming the hole injection layer include film formation from a solution containing a hole injection material. For example, a hole injection layer can be formed by coating a film containing a hole injection material by a predetermined coating method and solidifying the solution.
 塗布法としてはスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法などを挙げることができ、実施の一形態として前述した印刷版を用いた印刷法によって形成することが好ましい。 As coating methods, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset A printing method, an inkjet printing method, etc. can be mentioned, It is preferable to form by the printing method using the printing plate mentioned above as one Embodiment.
 正孔注入層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して適宜設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole injection layer is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
 <正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
<Hole transport layer>
As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) or Examples thereof include derivatives thereof.
 これらの中で正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。 Among these, hole transport materials include polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, polysiloxane derivatives having aromatic amine compound groups in the side chain or main chain, polyaniline or derivatives thereof, polythiophene or derivatives thereof, poly Preferred is a polymeric hole transport material such as arylamine or a derivative thereof, poly (p-phenylene vinylene) or a derivative thereof, or poly (2,5-thienylene vinylene) or a derivative thereof, more preferably polyvinyl carbazole or a derivative thereof. , Polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
 正孔輸送層の成膜方法としては、特に制限はないが、低分子の正孔輸送材料では、高分子バインダーと正孔輸送材料とを含む混合液からの成膜を挙げることができ、高分子の正孔輸送材料では、正孔輸送材料を含む溶液からの成膜を挙げることができる。 The method for forming the hole transport layer is not particularly limited, but in the case of a low molecular hole transport material, film formation from a mixed solution containing a polymer binder and a hole transport material can be exemplified. Examples of molecular hole transport materials include film formation from a solution containing a hole transport material.
 溶液からの成膜方法としては、前述した正孔注入層の成膜法と同様の塗布法を挙げることができる。 As a film formation method from a solution, the same coating method as the above-described film formation method of the hole injection layer can be exemplified.
 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられ、例えばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。 As the polymer binder to be mixed, those that do not extremely inhibit charge transport are preferable, and those that weakly absorb visible light are preferably used. For example, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, poly Examples thereof include vinyl chloride and polysiloxane.
 正孔輸送層の膜厚は、求められる特性および成膜工程の簡易さなどを考慮して設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the hole transport layer is set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
 <発光層>
 発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。ドーパントは、例えば発光効率の向上や、発光波長を変化させるために加えられる。なお発光層を構成する有機物は、低分子化合物でも高分子化合物でもよく、塗布法によって発光層を形成する場合には、発光層は高分子化合物を含むことが好ましい。発光層を構成する高分子化合物のポリスチレン換算の数平均分子量はたとえば10~10程度である。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
<Light emitting layer>
The light emitting layer is usually formed of an organic substance that mainly emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance. The dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength. In addition, the organic substance which comprises a light emitting layer may be a low molecular compound or a high molecular compound, and when forming a light emitting layer by the apply | coating method, it is preferable that a light emitting layer contains a high molecular compound. The number average molecular weight in terms of polystyrene of the polymer compound constituting the light emitting layer is, for example, about 10 3 to 10 8 . Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 (色素系材料)
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
(Dye material)
Examples of dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
 (金属錯体系材料)
 金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができ、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
(Metal complex materials)
Examples of metal complex materials include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, etc. as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline. Examples include metal complexes having a structure as a ligand, for example, iridium complexes, platinum complexes and other metal complexes having light emission from a triplet excited state, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc A complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a phenanthroline europium complex, and the like can be given.
 (高分子系材料)
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
(Polymer material)
As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. The thing etc. can be mentioned.
 上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。 Among the luminescent materials described above, materials that emit blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
 また、緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。 In addition, examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
 また、赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
(ドーパント材料)
 ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約2nm~200nmである。
Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives and the like are preferable.
(Dopant material)
Examples of the dopant material include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squarylium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is usually about 2 nm to 200 nm.
 発光層の成膜方法としては、溶液から成膜する方法、真空蒸着法、転写法などを挙げることができる。 Examples of the method for forming the light emitting layer include a method of forming a film from a solution, a vacuum deposition method, and a transfer method.
 溶液からの成膜において溶液を塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法およびノズルプリンティング法などのコート法、並びにグラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法などの塗布法を挙げることができ、実施の一形態として前述した印刷版を用いた印刷法によって形成することが好ましい。 As a method of applying a solution in film formation from a solution, a spin coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a dip coating method, a slit coating method Coating methods such as capillary coating method, spray coating method and nozzle printing method, and coating methods such as gravure printing method, screen printing method, flexographic printing method, offset printing method, reverse printing method, inkjet printing method, etc. It is preferable to form by the printing method using the printing plate described above as one embodiment.
 <電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知のものを使用でき、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
<Electron transport layer>
As the electron transport material constituting the electron transport layer, known materials can be used, such as oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
 これらのうち、電子輸送材料としては、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。 Among these, electron transport materials include oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorenes Or a derivative thereof, preferably 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline. preferable.
 電子輸送層の成膜法としては特に制限はないが、低分子の電子輸送材料では、粉末からの真空蒸着法、または溶液若しくは溶融状態からの成膜を挙げることができ、高分子の電子輸送材料では溶液または溶融状態からの成膜を挙げることができる。なお溶液または溶融状態からの成膜する場合には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔注入層を成膜する方法と同様の成膜法を挙げることができる。 There are no particular restrictions on the method for forming the electron transport layer, but for low molecular weight electron transport materials, vacuum deposition from powder or film formation from a solution or a molten state can be exemplified. Examples of the material include film formation from a solution or a molten state. In the case of forming a film from a solution or a molten state, a polymer binder may be used in combination. Examples of the method for forming an electron transport layer from a solution include the same film formation method as the method for forming a hole injection layer from a solution described above.
 電子輸送層の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。 The film thickness of the electron transport layer is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. .
 <電子注入層>
 電子注入層を構成する材料としては、発光層の種類に応じて最適な材料が適宜選択され、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸塩、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸塩の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸塩の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよく、例えばLiF/Caなどを挙げることができる。電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。電子注入層の膜厚としては、1nm~1μm程度が好ましい。
<Electron injection layer>
As a material constituting the electron injection layer, an optimal material is appropriately selected according to the type of the light emitting layer, and an alloy containing one or more of alkali metals, alkaline earth metals, alkali metals and alkaline earth metals, Alkali metal or alkaline earth metal oxides, halides, carbonates, mixtures of these substances, and the like can be given. Examples of alkali metals, alkali metal oxides, halides, and carbonates include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride , Rubidium oxide, rubidium fluoride, cesium oxide, cesium fluoride, lithium carbonate, and the like. Examples of alkaline earth metals, alkaline earth metal oxides, halides and carbonates include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, barium oxide, Examples thereof include barium fluoride, strontium oxide, strontium fluoride, and magnesium carbonate. The electron injection layer may be composed of a laminate in which two or more layers are laminated, and examples thereof include LiF / Ca. The electron injection layer is formed by vapor deposition, sputtering, printing, or the like. The thickness of the electron injection layer is preferably about 1 nm to 1 μm.
 <陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。また陽極側から光を取出す構成の有機EL素子では、発光層から放たれる光を陰極で陽極側に反射するために、陰極の材料としては可視光反射率の高い材料が好ましい。陰極には、例えばアルカリ金属、アルカリ土類金属、遷移金属および周期表の13族金属などを用いることができる。陰極の材料としては、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などを挙げることができる。また、陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができ、導電性有機物としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお陰極は、2層以上を積層した積層体で構成されていてもよい。なお電子注入層が陰極として用いられる場合もある。
<Cathode>
A material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity. Moreover, in the organic EL element of the structure which takes out light from an anode side, in order to reflect the light emitted from a light emitting layer to an anode side with a cathode, the material with a high visible light reflectance is preferable as a material of a cathode. As the cathode, for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used. Examples of the cathode material include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like. A metal, two or more alloys of the metals, one or more of the metals, and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy, graphite, or a graphite intercalation compound is used. Examples of alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like. it can. As the cathode, a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used. Specifically, examples of the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO, and examples of the conductive organic substance include polyaniline or a derivative thereof, polythiophene or a derivative thereof, and the like. The cathode may be composed of a laminate in which two or more layers are laminated. The electron injection layer may be used as a cathode.
 陰極の膜厚は、求められる特性や成膜工程の簡易さなどを考慮して適宜設定され、例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The thickness of the cathode is appropriately set in consideration of the required characteristics and the simplicity of the film forming process, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。 Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
 (凸版印刷版)
 凸版印刷版として、ミクロ技術研究所製のリブ付曲がるガラスを使用した。このリブ付曲がるガラスでは、PEN(ポリエチレンナフタレート)フィルムをガラス板の裏面に接着剤で貼り合せ、さらにガラス板の表面に、ポリエステル系樹脂を感光性樹脂として使用し、これから凸部として機能するリブをフォトリソグラフィ法によってガラス板上に形成した。PENフィルムの厚さは125μmであり、ガラス板は厚みは150μmであり、接着剤層の厚みは25μmである。ガラス材料は、ソーダガラスである。ガラス板上には、互いに平行に延在する複数本の凸部を一定の間隔をあけて配置した。すなわちストライプ状の凸部を形成した。各凸部の幅は60μmとし、高さは50μmとし、隣り合う凸部間の間隔は240μm(すなわちピッチ300μm)とした。
(Letterpress printing plate)
As the relief printing plate, a glass with ribs manufactured by Micro Engineering Laboratory was used. In this bendable glass, a PEN (polyethylene naphthalate) film is bonded to the back surface of the glass plate with an adhesive, and a polyester resin is used as a photosensitive resin on the surface of the glass plate. Ribs were formed on the glass plate by photolithography. The PEN film has a thickness of 125 μm, the glass plate has a thickness of 150 μm, and the adhesive layer has a thickness of 25 μm. The glass material is soda glass. On the glass plate, a plurality of convex portions extending in parallel with each other were arranged with a certain interval. That is, a stripe-shaped convex portion was formed. The width of each convex portion was 60 μm, the height was 50 μm, and the interval between adjacent convex portions was 240 μm (that is, the pitch was 300 μm).
 (基板の準備)
 被塗布体として200mm(縦)×200mm(横)×0.7mm(厚み)の透明ガラス板を準備した。
(Preparation of substrate)
A transparent glass plate having a size of 200 mm (length) × 200 mm (width) × 0.7 mm (thickness) was prepared as an object to be coated.
 (有機ELインキの用意)
 アニソール90重量部、シクロヘキシルベンゼン10重量部からなる混合溶媒を用意し、この混合溶媒に有機発光材料を1重量%の濃度で溶解し、有機ELインキを用意した。有機発光材料には高分子発光材料(サメイション社製、商品名「Green1300」)を用いた。用意した有機ELインキの粘度は25cP(0.025Pa・S)であった。
(Preparation of organic EL ink)
A mixed solvent comprising 90 parts by weight of anisole and 10 parts by weight of cyclohexylbenzene was prepared, and an organic light emitting material was dissolved in the mixed solvent at a concentration of 1% by weight to prepare an organic EL ink. As the organic light emitting material, a polymer light emitting material (trade name “Green 1300” manufactured by Sumation Co., Ltd.) was used. The viscosity of the prepared organic EL ink was 25 cP (0.025 Pa · S).
 (印刷)
 図5に模式的に示す印刷装置と同様に動作する大日本スクリーン製造(株)製の「有版印刷実験装置」を用いて印刷を行った。印刷版には上記で用意した印刷版を使用した。印刷版は、凸部の延在する方向が版胴の周方向と一致するように、版胴に設置した。前述したように、まずスリットノズル(スリット幅220mm,スリット隙間50μm)を用いて、表面が酸化クロムから成る転写ロールに有機ELインキを供給し、転写ロールの表面に有機ELインキの薄膜を形成した。さらに印刷版の凸部が転写ロールに対して20μm押し込まれた状態となるように、印刷版を転写ロールに押し当て、転写ロールから印刷版の凸部に有機ELインキを転写した。次に印刷版の凸部がガラス基板に対して20μm押し込まれた状態となるように、印刷版をガラス基板に押し当てた。その後有機ELインキを乾燥し、複数本の帯状の薄膜を得た。なお各薄膜の延在する方向の長さは、80mmであった。
(printing)
Printing was performed using a “printed printing experimental apparatus” manufactured by Dainippon Screen Mfg. Co., Ltd., which operates in the same manner as the printing apparatus schematically shown in FIG. The printing plate prepared above was used for the printing plate. The printing plate was installed on the plate cylinder so that the extending direction of the convex portion coincided with the circumferential direction of the plate cylinder. As described above, first, using a slit nozzle (slit width 220 mm, slit gap 50 μm), the organic EL ink was supplied to a transfer roll whose surface was made of chromium oxide, and a thin film of organic EL ink was formed on the surface of the transfer roll. . Further, the printing plate was pressed against the transfer roll so that the convex part of the printing plate was pressed into the transfer roll by 20 μm, and the organic EL ink was transferred from the transfer roll to the convex part of the printing plate. Next, the printing plate was pressed against the glass substrate so that the convex portion of the printing plate was pressed into the glass substrate by 20 μm. Thereafter, the organic EL ink was dried to obtain a plurality of strip-shaped thin films. The length of each thin film in the extending direction was 80 mm.
 (寸法の測定)
 複数本の帯状の薄膜のうちの、一端に位置する1本の薄膜の幅方向の中心位置と、他端に位置する1本の薄膜の幅方向の中心位置との距離(以下、中心間距離という。)を測定した。測定には、測長機(ソキア製AMIC-300)を用いた。上記印刷では中心間距離が145mmとなるように設計した印刷版を用いた。形成された薄膜の中心間距離は、薄膜の延在する方向にわたって、145μmから±3μmの範囲内におさまり、良好な結果が得られた。
(Dimension measurement)
Of a plurality of strip-like thin films, the distance between the center position in the width direction of one thin film located at one end and the center position in the width direction of one thin film located at the other end (hereinafter, distance between centers) Measured). A length measuring machine (AMIC-300 manufactured by Sokkia) was used for the measurement. In the above printing, a printing plate designed to have a center-to-center distance of 145 mm was used. The center-to-center distance of the formed thin film was within the range of 145 μm to ± 3 μm over the extending direction of the thin film, and good results were obtained.
 (比較例)
 実施例とは印刷版のみを異ならせて、実施例1と同様にして複数本の帯状の薄膜を形成した。印刷版にはフレキソ印刷版(材質:ポリエステル系樹脂)を用いた。なお凸部のパターンの設計は実施例と同じである。
(Comparative example)
A plurality of strip-shaped thin films were formed in the same manner as in Example 1 except that only the printing plate was different from that in the example. A flexographic printing plate (material: polyester resin) was used as the printing plate. The design of the convex pattern is the same as in the embodiment.
 (寸法の測定)
 実施例と同様に中心間距離を測定した。中心間距離は、設定値145mmよりも20μmも幅広となった。
(Dimension measurement)
The center-to-center distance was measured in the same manner as in the example. The center-to-center distance was 20 μm wider than the set value 145 mm.
 101  印刷版
 102  ガラス板
 103  凸部
 11  印刷版
 12  ガラス板
 13  凸部
 14  フィルム
 21  印刷版
 22  ガラス板
 23  凸部
 24  フィルム
 31  印刷版
 32  ガラス板
 33  凸部
 34  フィルム
 35  フィルム
 41  印刷装置
 42  インキ供給源
 43  転写ロール
 44  版胴
 45  スリットノズル
 46  洗浄機構
 47  被印刷体
 48  テーブル
 
DESCRIPTION OF SYMBOLS 101 Printing plate 102 Glass plate 103 Convex part 11 Printing plate 12 Glass plate 13 Convex part 14 Film 21 Printing plate 22 Glass plate 23 Convex part 24 Film 31 Printing plate 32 Glass plate 33 Convex part 34 Film 35 Film 41 Printing apparatus 42 Ink supply Source 43 Transfer roll 44 Plate cylinder 45 Slit nozzle 46 Cleaning mechanism 47 Substrate 48 Table

Claims (7)

  1.  ガラス板と、
     前記ガラス板上に設けられる凸部と、
    を備える印刷版。
    A glass plate,
    A convex portion provided on the glass plate;
    Printing plate with.
  2.  前記ガラス板よりも高い可撓性を示す第1のフィルムをさらに備え、
     前記第1のフィルムによって前記ガラス板は被覆されている、
     請求項1記載の印刷版。
    A first film showing higher flexibility than the glass plate,
    The glass plate is covered with the first film,
    The printing plate according to claim 1.
  3.  前記第1のフィルムは、前記ガラス板と前記凸部との間に設けられ、
     前記凸部は、前記第1のフィルムに接して設けられている、
    請求項2記載の印刷版。
    The first film is provided between the glass plate and the convex portion,
    The convex portion is provided in contact with the first film,
    The printing plate according to claim 2.
  4.  前記ガラス板よりも高い可撓性を示す第2のフィルムをさらに備え、
     前記ガラス板は、前記第1のフィルムと前記第2のフィルムとの間に設けられ、
     前記凸部は、前記第1のフィルム上に設けられる、
    請求項2または3に記載の印刷版。
    A second film showing higher flexibility than the glass plate,
    The glass plate is provided between the first film and the second film,
    The convex portion is provided on the first film.
    The printing plate according to claim 2 or 3.
  5.  前記第1のフィルムと前記第2のフィルムとが同じ材料から構成される、
    請求項4記載の印刷版。
    The first film and the second film are made of the same material,
    The printing plate according to claim 4.
  6.  請求項1~5のいずれかに記載の印刷版を用いてインキを被印刷体に印刷し、これを固化して薄膜を形成する薄膜の製造方法。 A method for producing a thin film, in which an ink is printed on a printing medium using the printing plate according to any one of claims 1 to 5, and the film is solidified to form a thin film.
  7.  一対の電極と、該電極間に設けられる有機EL層とを備える有機EL素子の製造方法であって、
     前記一対の電極のうちの一方の電極を形成する工程と、
     前記有機EL層となる材料を含む有機ELインキを、請求項1~5のいずれか1つに記載の印刷版を用いて前記一方の電極上に印刷する工程と、
     前記有機ELインキを固化し、前記一方の電極上に有機EL層を形成する工程と、
     前記有機EL層上に前記一対の電極のうちの他方の電極を形成する工程と、
    を備える有機EL素子の製造方法。
     
    A method for producing an organic EL element comprising a pair of electrodes and an organic EL layer provided between the electrodes,
    Forming one of the pair of electrodes;
    Printing an organic EL ink containing a material to be the organic EL layer on the one electrode using the printing plate according to any one of claims 1 to 5;
    Solidifying the organic EL ink and forming an organic EL layer on the one electrode;
    Forming the other of the pair of electrodes on the organic EL layer;
    The manufacturing method of an organic EL element provided with.
PCT/JP2011/054026 2010-02-25 2011-02-23 Printing plate, thin film manufacturing method using the same, and organic el element manufacturing method WO2011105448A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-039993 2010-02-25
JP2010039993A JP2011173359A (en) 2010-02-25 2010-02-25 Printing plate

Publications (1)

Publication Number Publication Date
WO2011105448A1 true WO2011105448A1 (en) 2011-09-01

Family

ID=44506850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054026 WO2011105448A1 (en) 2010-02-25 2011-02-23 Printing plate, thin film manufacturing method using the same, and organic el element manufacturing method

Country Status (3)

Country Link
JP (1) JP2011173359A (en)
TW (1) TW201213160A (en)
WO (1) WO2011105448A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243459A (en) * 2010-05-19 2011-12-01 Toppan Printing Co Ltd Manufacturing method for printer and organic electroluminescence element, and organic electroluminescence element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106693A (en) * 1989-09-20 1991-05-07 Toppan Printing Co Ltd Printing plate
JPH06179257A (en) * 1992-12-14 1994-06-28 Dainippon Printing Co Ltd Intaglio printing form plate
JP2008100361A (en) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd Printing letterpress and organic el display
JP2009148901A (en) * 2007-12-18 2009-07-09 Asahi Kasei Corp Highly precise relief printing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106693A (en) * 1989-09-20 1991-05-07 Toppan Printing Co Ltd Printing plate
JPH06179257A (en) * 1992-12-14 1994-06-28 Dainippon Printing Co Ltd Intaglio printing form plate
JP2008100361A (en) * 2006-10-17 2008-05-01 Toppan Printing Co Ltd Printing letterpress and organic el display
JP2009148901A (en) * 2007-12-18 2009-07-09 Asahi Kasei Corp Highly precise relief printing plate

Also Published As

Publication number Publication date
JP2011173359A (en) 2011-09-08
TW201213160A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP4775493B2 (en) Light emitting device
JP5192828B2 (en) Organic electroluminescence display element and manufacturing method thereof
JP2009129681A (en) Organic electroluminescent device and its manufacturing method
JP4803321B2 (en) Organic electroluminescence display and manufacturing method thereof
WO2010029882A1 (en) Ink for manufacturing organic electroluminescent element, method for manufacturing organic electroluminescent element, and display device
JP5199772B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2010035643A1 (en) Substrate for pattern coating and organic el element
JP4849175B2 (en) Light emitting device and manufacturing method thereof
WO2010013641A1 (en) Method for manufacturing an organic electroluminescence element, light emitting device, and display device
JP4983940B2 (en) Method for manufacturing organic electroluminescence device
WO2011099391A1 (en) Method for producing light-emitting device
JP2009238709A (en) Method and apparatus for manufacturing organic electroluminescent element
WO2009122870A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element and display device
JP2011175910A (en) Method of manufacturing light-emitting device
WO2011105448A1 (en) Printing plate, thin film manufacturing method using the same, and organic el element manufacturing method
WO2011105455A1 (en) Relief printing plate, printing device using same, thin film manufacturing method, and organic el element manufacturing method
JP2010160946A (en) Method for manufacturing organic electroluminescence device
JP2010160945A (en) Method for manufacturing organic electroluminescence device
JP4893839B2 (en) Method for manufacturing light emitting device
WO2009122874A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element and display device
JP5184938B2 (en) Organic electroluminescence device and method for manufacturing the same
WO2011065288A1 (en) Manufacturing method of light emitting device
JP2012216309A (en) Organic electroluminescent display panel and manufacturing method therefor
JP2010205528A (en) Manufacturing method of organic electroluminescent device
WO2009122973A1 (en) Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747408

Country of ref document: EP

Kind code of ref document: A1