WO2009122973A1 - Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device - Google Patents

Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device Download PDF

Info

Publication number
WO2009122973A1
WO2009122973A1 PCT/JP2009/055861 JP2009055861W WO2009122973A1 WO 2009122973 A1 WO2009122973 A1 WO 2009122973A1 JP 2009055861 W JP2009055861 W JP 2009055861W WO 2009122973 A1 WO2009122973 A1 WO 2009122973A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light emitting
organic light
layer
anode
Prior art date
Application number
PCT/JP2009/055861
Other languages
French (fr)
Japanese (ja)
Inventor
行一 六原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2009122973A1 publication Critical patent/WO2009122973A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), an organic EL element obtained by using the production method, and a display device including the organic EL element. . More specifically, the present invention prevents printing misalignment when an organic light emitting ink is applied to a plurality of pixel areas defined by insulating partition walls by a relief printing method, and the organic light emitting layer formed in the pixel area
  • the present invention relates to a method for producing an organic EL element that does not cause color mixing, an organic EL element obtained by using the production method, and a display device including the organic EL element.
  • an organic EL element has, as a basic structure, a first electrode (one electrode of an anode and a cathode) and a second electrode (the other electrode of an anode and a cathode), and these And an organic light emitting layer provided between the electrodes.
  • the organic light emitting layer emits light by passing a current between electrodes facing each other across the organic light emitting layer.
  • a display device using organic EL elements uses a display panel in which a large number of organic EL elements each functioning as one pixel are arranged in a matrix.
  • the first electrode is formed in a fine stripe pattern, and a large number of pixel regions are formed on the patterned first electrode.
  • a grid-like partition is formed.
  • the partition walls are formed by forming a photoresist film on the first electrode pattern and patterning the photoresist film using a photolithography technique.
  • the first electrode is exposed in a region surrounded by the partition wall, and this region becomes a pixel region. That is, the pixel regions are arranged in a matrix at predetermined intervals in the row direction and the column direction.
  • an organic light-emitting ink containing an organic light-emitting material and a solvent is supplied into each partition using a relief printing plate having a plurality of convex portions arranged in a matrix corresponding to the arrangement of pixel regions.
  • an organic light emitting layer is formed (see, for example, Patent Document 1).
  • the present invention has been made in view of the above-described conventional circumstances, and the problem is that an organic light-emitting ink is applied to a plurality of pixel regions defined by insulating partition walls by a relief printing method without reducing manufacturing efficiency.
  • Manufacturing method of organic EL element which prevents printing misalignment at the time of application and does not cause color mixing in organic light emitting layer formed in pixel region, organic EL element obtained using the manufacturing method, and organic EL element
  • An object of the present invention is to provide a display device including an element.
  • the present invention provides a method for manufacturing an organic electroluminescence element adopting the following configuration, an organic electroluminescence element obtained by using the manufacturing method, and a display device including the organic electroluminescence element I will provide a.
  • the relief printing plate is cylindrical or columnar, and the plurality of protrusions are arranged so that a longitudinal direction of the plurality of protrusions coincides with a circumferential direction.
  • a display device comprising the organic electroluminescence element according to [4] above.
  • the organic light-emitting ink is continuously applied along the longitudinal direction of the partition wall (hereinafter, “the longitudinal direction of the partition wall” may be referred to as “the extending direction of the partition wall”). Since the organic light emitting layer is formed by supplying (coating), the alignment accuracy in the direction in which the partition wall extends can be relaxed, and the production efficiency can be improved while maintaining high-precision printing.
  • an organic EL element by preventing printing misalignment when applying organic light emitting ink by the relief printing method without reducing the production efficiency, and formed in the pixel region.
  • An organic EL element that does not cause color mixing in the organic light emitting layer and a display device having the organic EL element can be efficiently manufactured.
  • FIG. 1 is a plan view of a substrate on which a partition wall is formed.
  • FIG. 2 is a cross-sectional configuration diagram of the substrate as seen from the section line II-II in FIG.
  • FIG. 3 is a perspective view showing the structure of the relief printing plate used in the present invention and the positional relationship with the substrate during printing of the organic light emitting layer using the relief printing plate.
  • the substrate used for the organic EL element may be any substrate that does not change when the electrode is formed and the organic layer is formed.
  • glass, plastic, polymer film, silicon substrate, or a laminate of these is used. It is done. Further, a plastic, a polymer film or the like that has been subjected to a low water permeability treatment may be used.
  • a commercially available substrate can be used as the substrate, or it may be manufactured by a known method.
  • organic light emitting layer As a basic structure of the organic EL element, at least an anode, a cathode, and an organic light emitting layer (hereinafter, “organic light emitting layer” may be simply referred to as “light emitting layer”) positioned between the anode and the cathode. Are stacked. Further, at least one of the anode and the cathode is made of a transparent electrode having optical transparency. For the light emitting layer, a low molecular weight and / or high molecular weight organic light emitting material is used. In the present specification, the term “transparent” means a property showing light transmittance and means that all or a part of light incident on a predetermined member is transmitted.
  • a plurality of light emitting layers may be provided between the anode and the cathode, or layers other than the light emitting layer may be provided.
  • a layer provided between the cathode and the light-emitting layer may be referred to as a cathode-side interlayer
  • a layer provided between the anode and the light-emitting layer may be referred to as an anode-side interlayer.
  • Examples of the anode-side interlayer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the hole injection layer is a layer having a function of improving the efficiency of hole injection from the cathode
  • the hole transport layer is a positive hole from the hole injection layer or a layer closer to the anode (hole transport layer).
  • This layer has a function of improving hole injection.
  • these layers may be referred to as an electron block layer. Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection from the electron injection layer or a layer closer to the cathode (electron transport layer). It is a layer having.
  • the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer. Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
  • the layered structure of each layer provided between the anode and the cathode as described above includes a hole transport layer provided between the anode and the light emitting layer, and an electron transport layer provided between the cathode and the light emitting layer. And a structure in which an electron transport layer is provided between the cathode and the light emitting layer and a hole transport layer is provided between the anode and the light emitting layer.
  • the following laminated structures a) to d) are specifically exemplified.
  • Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (Here, / indicates that each layer is laminated adjacently. The same applies hereinafter.)
  • the light emitting layer is a layer having a function of emitting light
  • the hole transporting layer is a layer having a function of transporting holes
  • the electron transporting layer is a function of transporting electrons. It is a layer which has.
  • the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer.
  • Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers).
  • an electron injection layer Sometimes referred to as an electron injection layer).
  • the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode, and the adhesion at the interface is improved.
  • a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer.
  • an organic EL element provided with a charge injection layer (electron injection layer, hole injection layer)
  • an organic EL element provided with a charge injection layer adjacent to the cathode and a charge injection layer provided adjacent to the anode.
  • An organic EL element is mentioned.
  • the following structures e) to p) are specifically mentioned.
  • anode for example, a metal oxide, metal sulfide or metal thin film having high electrical conductivity can be used as a transparent electrode, and among them, those having a high transmittance can be suitably used. These are appropriately selected and used depending on the organic layer to be used. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like A thin film is used, and among these, ITO, IZO, and tin oxide are preferable.
  • an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • a thin film made of a mixture containing at least one selected from the group consisting of materials used for the organic transparent conductive film, metal oxides, metal sulfides, metals, and carbon materials such as carbon nanotubes is used as an anode. It may be used.
  • a material that reflects light may be used for the anode, and such a material is preferably a metal, metal oxide, or metal sulfide having a work function of 3.0 eV or more.
  • Examples of methods for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • the thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 5 nm to 10 ⁇ m, preferably 10 nm to 1 ⁇ m, and more preferably 20 nm to 500 nm. .
  • anode-side interlayer such as a hole injection layer and a hole transport layer is laminated between the anode and the light emitting layer as necessary.
  • the hole injection layer is provided between the anode and the hole transport layer or between the anode and the light emitting layer.
  • a known material can be appropriately used, and there is no particular limitation.
  • the thickness of such a hole injection layer is preferably about 5 to 300 nm. If the thickness is less than 5 nm, the production tends to be difficult. On the other hand, if the thickness exceeds 300 nm, the driving voltage and the voltage applied to the hole injection layer tend to increase.
  • the material constituting the hole transport layer is not particularly limited.
  • N, N′-diphenyl-N, N′-di (3-methylphenyl) 4,4′-diaminobiphenyl (TPD), 4 , 4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB), etc. polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, aromatic amines in the side chain or main chain Polysiloxane derivatives having pyrazole, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamine or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) Or its derivatives, or poly (2,5-thienylene vinylene) or a derivative thereof.
  • the hole transport material used for the hole transport layer polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof, Polymeric hole transport materials such as polythiophene or derivatives thereof, polyarylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and more preferred Is polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • the thickness of the hole transport layer is not particularly limited, but may be appropriately changed according to the intended design, and is preferably about 1 to 1000 nm. If the thickness is less than the lower limit, production tends to be difficult or the effect of hole transport is not sufficiently obtained. On the other hand, if the thickness exceeds the upper limit, the driving voltage and the hole transport layer are increased. There is a tendency that the voltage applied to is increased. Therefore, as described above, the thickness of the hole transport layer is preferably 1 to 1000 nm, more preferably 2 nm to 500 nm, and still more preferably 5 nm to 200 nm.
  • Organic light emitting layer usually contains organic substances (low molecular compounds and high molecular compounds) that mainly emit fluorescence or phosphorescence. Further, a dopant material may be further included. Examples of the material for forming the organic light emitting layer that may be used in the present invention include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • the dye material examples include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, quinacridone derivatives, coumarin derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives. Pyrrole derivatives, thiophene ring compounds, pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, and the like.
  • metal complex materials include metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, Examples thereof include metal complexes such as azomethyl zinc complex, porphyrin zinc complex, and europium complex. These metal complexes have Al, Zn, Be, Ir, Pt or the like as a central metal, or rare earth metals such as Tb, Eu, or Dy, and oxadiazole, thiadiazole, phenylpyridine, or phenylbenzimidazole as a ligand. And a metal complex having a quinoline structure and the like.
  • polymer material examples include a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyparaphenylene derivative, a polysilane derivative, a polyacetylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative, and the above-described dye bodies and metal complex light emitting materials. And the like.
  • Examples of materials that emit blue light among the organic light emitting layer forming materials include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. . Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
  • examples of the material that emits green light among the organic light emitting layer forming materials include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • examples of the material that emits red light among the above light emitting layer forming materials include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and the like.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • a dopant may be added to the organic light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength.
  • dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the thickness of the organic light emitting layer is usually 2 nm to 200 nm.
  • a cathode-side interlayer such as an electron injection layer and an electron transport layer is laminated between the light emitting layer and a cathode described later, if necessary.
  • Electrode transport layer As the material for forming the electron transport layer, known materials can be used. For example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
  • oxadiazole derivatives benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • the electron injection layer is provided between the electron transport layer and the cathode, or between the light emitting layer and the cathode.
  • the electron injection layer may be an alkali metal or alkaline earth metal, an alloy containing one or more of the above metals, an oxide, halide and carbonate of the metal, or a mixture of the substances. Etc.
  • alkali metal or its oxide, halide, carbonate examples include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, oxide
  • alkaline earth metals or oxides, halides and carbonates thereof include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, calcium fluoride, barium oxide, fluorine. Barium fluoride, strontium oxide, strontium fluoride, magnesium carbonate and the like.
  • a metal, a metal oxide, an organometallic compound doped with a metal salt, an organometallic complex compound, or a mixture thereof can also be used as a material for the electron injection layer.
  • This electron injection layer may have a stacked structure in which two or more layers are stacked. Specifically, Li / Ca etc. are mentioned.
  • This electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
  • the thickness of the electron injection layer is preferably about 1 nm to 1 ⁇ m.
  • cathode As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer and / or a material having a high electric conductivity and / or a material having a high visible light reflectance are preferable. Specific examples of such cathode materials include metals, metal oxides, alloys, graphite or graphite intercalation compounds, and inorganic semiconductors such as zinc oxide (ZnO).
  • alkali metal alkaline earth metal, transition metal, periodic table group 13 metal, or the like
  • these metals include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, and aluminum.
  • the alloy examples include an alloy containing at least one of the above metals, and specifically, a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium- Examples include a magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • the cathode is a transparent electrode as necessary.
  • the material include conductive oxides such as indium oxide, zinc oxide, tin oxide, ITO, and IZO; polyaniline or a derivative thereof, polythiophene or a derivative thereof.
  • conductive organic substances such as
  • the cathode may have a laminated structure of two or more layers. Moreover, an electron injection layer may be used as a cathode.
  • the thickness of the cathode may be appropriately selected in consideration of electric conductivity and durability, and is, for example, 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • an upper sealing film for sealing the light emitting function part is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • This upper sealing film usually has at least one inorganic layer and at least one organic layer. The number of stacked layers is determined as necessary. Basically, inorganic layers and organic layers are alternately stacked.
  • the plastic substrate has higher gas and liquid permeability than the glass substrate, and light emitting substances such as the organic light emitting layer are easily oxidized. Deteriorated easily by contact with water. Therefore, when a plastic substrate is used as the substrate, a lower sealing film having a high barrier property against gas and liquid is laminated on the plastic substrate, and then the light emitting function part is laminated on the lower sealing film. .
  • the lower sealing film is usually formed with the same configuration and the same material as the upper sealing film.
  • a substrate made of any of the aforementioned substrate materials is prepared.
  • a plastic substrate having high gas and liquid permeability is used, a lower sealing film is formed on the substrate as necessary.
  • an anode is patterned on the prepared substrate using any of the anode materials described above.
  • a plurality of anodes are formed, for example, on the substrate, and are formed in a pattern, for example, in the form of vertical stripes (or horizontal stripes) as viewed from the thickness direction of the substrate, substantially parallel to each other.
  • a pattern in which a plurality of members are arranged in a vertical stripe shape (or a horizontal stripe shape) so as to be substantially parallel to each other may be referred to as a “stripe shape”.
  • the anode pattern is not limited to the stripe shape, and for example, the anode may be provided electrically independently for each pixel.
  • the anode may be provided discretely in a matrix shape.
  • a transparent electrode material such as ITO, IZO, tin oxide, zinc oxide, indium oxide, and zinc aluminum composite oxide is used.
  • the electrode pattern is formed as a uniform deposited film on the substrate by a sputtering method, and then patterned into a line shape by photolithography.
  • FIG. 1 is a plan view of a substrate on which a partition wall is formed
  • FIG. 2 is a cross-sectional view of the substrate as seen from the section line II-II in FIG.
  • the anode 2 is formed on the substrate 1, and a plurality of partition walls 13a arranged in a stripe shape are formed on the electrode.
  • a plurality of anodes 2 are striped so that the longitudinal direction thereof coincides with the longitudinal direction of the partition wall 13a (hereinafter, the “longitudinal direction of the partition wall” may be referred to as “the extending direction of the partition wall 13a”).
  • a plurality of anodes 2 are arranged in stripes, and partition walls 13a are arranged so as to overlap the gaps between the anodes 2 when viewed from one side in the thickness direction of the substrate 1.
  • a plurality of pixel regions 14 in which pixels are formed may be set along the partition wall 13a between the partition walls 13a.
  • An electrical insulating layer 13b having a height from the substrate 1 lower than that of the partition wall 13a may be provided between the pixel regions 14 adjacent to each other in the longitudinal direction of the partition wall 13a.
  • the electrical insulating layers 13b are provided in a lattice shape. Specifically, the pixels adjacent to the longitudinal direction of the partition wall 13a when viewed from one side in the thickness direction of the substrate.
  • a grid-like electrical insulating layer 13b is provided which is composed of horizontal stripes extending between the regions 14 and vertical stripes extending between the anodes.
  • This electric insulating layer 13b is usually formed with an insulating film having a thickness of 0.1 to 0.2 ⁇ m made of an inorganic insulating material such as SiO 2 or SiN by a known method such as plasma CVD or sputtering, as will be described later. And then formed by performing photography and etching.
  • an insulating film is formed using an organic material such as an acrylic resin-based, novolak resin-based, polyimide resin-based positive or negative photosensitive material (photoresist composition), and photography and etching are performed on the insulating film.
  • the electrical insulating layer 13b may be formed by performing the above.
  • the region where the insulating film has been removed by the above patterning is a region corresponding to the pixel region 14, and the film remaining without being removed becomes the electrical insulating layer 13b.
  • the partition wall 13a is provided on the electrical insulating layer 13b. In the case where the electric insulating layer 13b is not provided, the anode 2 is exposed in a stripe shape between the partition walls 13a, and this stripe-shaped region becomes the pixel region 14.
  • the electrical insulating layer 13b can be made ink repellent simultaneously with the partition wall 13a by performing a process of selectively making the surface of a member made of an organic material ink repellent.
  • a process of selectively making the surface of a member made of an organic material ink repellent there is an advantage that you can.
  • the surfaces of the partition walls 13a and the electrical insulating layer 13b made of an organic material are changed to ink repellency. Even when the CF 4 plasma treatment is performed, the surface of the anode 2 made of an inorganic material maintains lyophilicity with respect to the organic light emitting ink.
  • the organic light emitting ink is repelled from the electrical insulating layer 13b even when the organic light emitting ink adheres to the electrical insulating layer 13b when the organic light emitting ink is applied to each pixel region.
  • the organic light emitting ink can be prevented from remaining in the electrical insulating layer 13b.
  • the main role of the partition wall 13a is to insulate adjacent pixels separated by the partition wall 13a and prevent color mixing between adjacent pixels. Therefore, the height dimension is set high.
  • the role of the electrical insulating layer 13b is to provide insulation between a plurality of pixels of the same color arranged along the partition wall 13a, and has no role in preventing color mixing. Therefore, the partition wall 13a may be formed somewhat thicker than the total thickness of the laminated films such as the interlayer and the organic light emitting layer formed on the pixel region 14. From this standard, the height of the partition wall 13a is preferably set to 2 to 3 ⁇ m.
  • the height dimension of the electrical insulating layer 13b is preferably set to 0.1 to 0.2 ⁇ m in the case of an electrical insulating layer made of an inorganic material, and 1 ⁇ m to 2 ⁇ m in the case of an electrical insulating layer made of an organic material. Note that the electrical insulating layer 13b can be omitted depending on the electrical conductivity of the organic material.
  • the electrical insulating layer 13b is formed before the partition wall 13a is formed.
  • the plurality of pixel regions are removed from the insulating film by photolithography and etching, and patterning is performed in a lattice shape, thereby forming the electrical insulating layer 13b.
  • the electrical insulating layer 13b is formed using an organic material
  • the above-described photosensitive material photoresist composition
  • a light shielding material may be contained in the photosensitive material.
  • the manufacturing method of the partition wall 13a having the above structure is not particularly limited, but for example, it can be manufactured as follows.
  • a photoresist layer having a thickness of 2 to 3 ⁇ m is formed on the grid-like electrical insulating layer 13b, and this photoresist layer is exposed through a stripe-shaped mask, so that a plurality of anodes 2 arranged in the stripe shape are formed. Development is performed so that the resist layer remains only in between, and heat curing is performed.
  • the resist layer patterned in the stripe form constitutes the partition wall 13a.
  • the photosensitive material can be applied by a coating method using a spin coater, bar coater, roll coater, die coater, gravure coater, slit coater or the like.
  • the insulating photosensitive material forming the partition wall 13a may be either a positive resist or a negative resist. It is important that the partition wall 13a is insulative. If the partition wall 13a is not insulative, current may flow between the anodes 2 defined by the partition wall, which may cause display defects. .
  • the insulating photosensitive material for constituting the partition wall 13a specifically, polyimide-based, acrylic resin-based, and novolak resin-based photosensitive compounds (photosensitive materials) can be used.
  • This photosensitive material may contain a light-shielding material for the purpose of improving the display quality of the organic EL element.
  • the partition wall 13a is subjected to an ink repellency treatment as necessary.
  • an ink repellant substance may be added to the photosensitive material for forming the partition wall.
  • the surface of the partition wall may be coated with an ink repellent material to impart ink repellency to the partition wall surface.
  • This ink repellency is preferably repellant both for the ink for an interlayer described later and for the ink for an organic light emitting layer.
  • a silicone compound or a fluorine-containing compound is used as a material used when an ink repellent material is added to the photosensitive material.
  • These ink repellent compounds exhibit ink repellency in both organic light-emitting ink (coating liquid) used for forming an organic light-emitting layer, which will be described later, and organic material ink (coating liquid) for an interlayer such as a hole transport layer. Therefore, it is preferable.
  • a method of forming an ink repellent film on the surface of the partition wall after forming the partition wall 13a for example, a method of applying a coating liquid containing an ink repellent component to the partition wall surface, vaporizing the ink repellent component, and Examples thereof include a deposition method and a method of modifying the surface by substituting a functional group of the organic material on the partition wall surface with fluorine.
  • a deposition method by the latter vapor phase method there is a method of imparting ink repellency to the partition wall surface by converting CF 4 gas into plasma using a vacuum plasma apparatus and causing a fluorine component to act on the partition wall surface.
  • the electrical insulating layer 13b is made of an organic material, as described above, the CF 4 gas is converted into plasma using a vacuum plasma apparatus and the fluorine component is allowed to act on the partition surface. Ink repellency can be simultaneously imparted to 13a and the electrical insulating layer 13b.
  • the partition wall and the anode are formed as described above. May be obtained from the market.
  • an organic material layer such as the above-described hole transport layer is formed as necessary.
  • the film formation method for the anode-side interlayer is not particularly limited, but for low molecular weight materials, a method by film formation from a mixed solution with a polymer binder is exemplified. In the case of a polymer material, a method by film formation from a solution is exemplified.
  • the solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-mentioned anode side interlayer material.
  • solvents include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and acetic acid.
  • ester solvents such as butyl and ethyl cellosolve acetate.
  • the film formation method from the above solution it is preferable to use a relief printing method.
  • the flexographic printing method is preferred.
  • the relief printing plate used in this case as shown in FIG. 3, it is preferable to use a relief printing plate having a plurality of projections arranged in parallel with each other so as to correspond to the recesses between the partition walls. .
  • the relief printing plate has a width corresponding to the width between the plurality of partition walls 13a, and is arranged in stripes at intervals corresponding to the intervals at which the plurality of partition walls 13a are disposed. It is preferable to use a relief printing plate 20 having a plurality of convex portions 21.
  • the plurality of convex portions 21 arranged in a stripe shape are arranged corresponding to the concave portions 15 (FIG. 2) arranged in a stripe shape defined by the partition walls 13a and the substrate 1 (anode).
  • the relief printing plate 20 is preferably cylindrical or columnar, and the plurality of convex portions 21 are preferably arranged along the circumferential direction.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used.
  • examples of such a polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
  • the organic light emitting layer forming step is characterized by the same relief printing as in the case of the anode side interlayer forming step, in which relief printing is provided with a plurality of convex portions disposed substantially parallel to each other corresponding to the concave portions between the partition walls.
  • the object is to apply an organic light-emitting ink containing an organic light-emitting material by a relief printing method using a plate. As the relief printing plate used in that case, as shown in FIG.
  • each of the plurality of partition walls 13a has a width corresponding to the width between the plurality of partition walls 13a (the width of the recess 15).
  • the relief printing plate 20 is preferably cylindrical or columnar, and the plurality of convex portions 21 are preferably arranged so that the longitudinal direction of the convex portions coincides with the circumferential direction.
  • each concave groove defined by the partition wall 13a is coated with the same color organic light-emitting ink attached to the convex portion 21 corresponding to the groove. The Therefore, even when performing multicolor printing, according to the above configuration, if the alignment of the convex portion 21 of the relief printing plate 20 with respect to the concave portion between the partition walls 13a is made accurate, the alignment accuracy in the printing direction is moderate, The application of the organic light-emitting ink of each color is performed accurately.
  • the organic light emitting ink is prepared by dissolving or stably dispersing an organic light emitting material in a solvent.
  • the solvent for dissolving or dispersing the organic light emitting material include toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or a mixed solvent thereof.
  • aromatic organic solvents such as toluene, xylene, and anisole are preferable because they have good solubility of the organic light emitting material.
  • organic luminescent ink may be added.
  • surfactant antioxidant, a viscosity modifier, a ultraviolet absorber, etc.
  • a cathode-side interlayer such as an electron transport layer or an electron injection layer is formed as necessary.
  • the method for forming the cathode side interlayer is not particularly limited in the case of the electron transport layer.
  • the low molecular electron transport material for example, a vacuum deposition method from powder or a film formation method from a solution or a molten state can be mentioned.
  • the polymer electron transport material for example, a method by film formation from a solution or a molten state can be mentioned.
  • a polymer binder may be used in combination.
  • an electron transport layer from a solution As a method for forming an electron transport layer from a solution, a film formation method similar to the method for forming a hole transport layer from a solution described above can be used. In the case of an electron injection layer, it is formed using a vapor deposition method, a sputtering method, a printing method, or the like.
  • the cathode is formed by using any of the materials described above by a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a laser ablation method, a laminating method for press-bonding a metal thin film, or the like.
  • an upper sealing film is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure.
  • the upper sealing film is composed of at least one inorganic layer and at least one organic layer as necessary. The number of these layers is determined as necessary. Basically, the inorganic layers and the organic layers are alternately stacked.
  • Example 1 (Preparation of substrate and formation of first electrode) First, an ITO thin film was formed on a transparent glass plate of 200 mm (vertical) ⁇ 200 mm (horizontal) ⁇ 0.7 mm (thickness), and further patterned to form a striped anode.
  • the thickness of the anode was 150 nm.
  • the pixel region where the pixel is formed when viewed from one side in the thickness direction of the substrate is set in an island shape on the ITO thin film extending in one direction with a predetermined interval in the one direction.
  • an insulating film made of SiO 2 is formed by plasma CVD, and then the insulating film in a region corresponding to a plurality of rectangular pixel regions having a width of 50 ⁇ m and a length of 150 ⁇ m is selectively removed by photography and etching. Then, an electrical insulating layer was formed.
  • a positive photoresist (trade name “OFPR-800”, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is used to form the shape shown in FIGS. 1 and 2 by conventional photolithography.
  • a partition wall 13a was formed.
  • the formed partition wall 13a had a width dimension of 30 ⁇ m and a height dimension of 2 ⁇ m. Further, the adjacent dimension between the partition walls 13a was set to 75 ⁇ m.
  • the partition wall 13a was subjected to an ink repellency treatment using a vacuum plasma apparatus (trade name “RIE-200L” manufactured by Samco International Co., Ltd.) using CF 4 gas.
  • RIE-200L vacuum plasma apparatus manufactured by Samco International Co., Ltd.
  • the convex portion 21 of the relief printing plate 20 had a height dimension of 100 ⁇ m, a width dimension of 30 ⁇ m, and a pitch width of 75 ⁇ m, and was formed in stripes in the circumferential direction perpendicular to the axial direction Y of the plate cylinder.
  • red organic light-emitting ink was printed on the corresponding pixel region on the substrate and dried to form a red organic light-emitting layer.
  • a green organic light emitting ink and a blue organic light emitting ink were sequentially printed and dried to form a green organic light emitting layer and a blue organic light emitting layer.
  • the thickness of the organic light emitting layer of each color was almost the same dimension of 100 nm.
  • “Angstromer SDR-0023 (trade name), plate drum diameter: 80 mm” manufactured by Nissha Printing Co., Ltd. was used as a printing machine. The printing speed was 50 mm / second. Printing was performed in a state in which the plate and the substrate were in contact with each other with a printing push amount of 0 ⁇ m, and the plate was pressed from that position by 50 ⁇ m (print push amount 50 ⁇ m).
  • each organic light emitting layer formed in each pixel region was observed with an optical microscope (manufactured by Nikon Corporation, trade name “Optiphoto 88”, objective lens magnification: 50 ⁇ ), each organic light emitting layer was separated from the pixel region. It was confirmed that the film was formed in the pixel region without deviation.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except for the following two points. (1) An electrically insulating layer is formed using a positive photoresist. (2) The plasma treatment using CF 4 gas was not performed. In Example 2, a grid-like electrical insulating layer was formed by conventional photolithography using a positive photoresist (trade name “OFPR-800” manufactured by Tokyo Ohka Kogyo Co., Ltd.). Further, since the plasma treatment using CF 4 gas is omitted, the ink repellency treatment is not performed on the partition wall 13a as in the first embodiment.
  • an organic EL element by preventing printing misalignment when applying an organic light-emitting ink by a relief printing method without reducing the production efficiency.
  • An organic EL element in which color mixture does not occur in the organic light emitting layer formed on the substrate and a display device having the organic EL element can be efficiently produced.

Abstract

A method of manufacturing an organic EL element which comprises a cathode, an anode, and an organic light-emitting layer positioned between the cathode and anode. The method is characterized by preparing a substrate provided with partition walls arranged opposing one another nearly in parallel, and provided with the anode; and including an organic light-emitting layer forming process wherein, by use of a letterpress printing plate provided with convex portions provided opposing one another nearly in parallel corresponding to concave portions between the partition walls, an organic light-emitting ink containing organic light-emitting material and a solvent is continuously supplied to the concave portions along the longitudinal direction of the partition walls, thereby forming the organic light-emitting layer. Using the method of manufacturing allows providing the organic EL element which avoids color mixture in the organic color-emitting layer formed in pixel areas by preventing printing deviation when applying the organic light-emitting ink to the pixel areas demarcated by the insulating partition walls by a letterpress printing method without degrading efficiency in manufacturing, and allows providing a display device including the organic EL element.

Description

有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子および表示装置Organic electroluminescent element manufacturing method, organic electroluminescent element, and display device
 本発明は、有機エレクトロルミネッセンス素子(以下、有機EL素子と記す場合もある)の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む表示装置に関するものである。さらに詳しくは、本発明は、絶縁性の隔壁で画成された複数の画素領域へ凸版印刷法により有機発光インキを塗布する際の印刷ずれを防止し、画素領域に形成される有機発光層に混色が生じることのない有機EL素子の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む表示装置に関するものである。 The present invention relates to a method for producing an organic electroluminescence element (hereinafter sometimes referred to as an organic EL element), an organic EL element obtained by using the production method, and a display device including the organic EL element. . More specifically, the present invention prevents printing misalignment when an organic light emitting ink is applied to a plurality of pixel areas defined by insulating partition walls by a relief printing method, and the organic light emitting layer formed in the pixel area The present invention relates to a method for producing an organic EL element that does not cause color mixing, an organic EL element obtained by using the production method, and a display device including the organic EL element.
 周知のように、有機EL素子は、基本的な構造として、第1の電極(陽極および陰極のうちの一方の電極)および第2の電極(陽極および陰極のうちの他方の電極)と、これらの電極間に設けられる有機発光層とを有している。かかる構造において、前記有機発光層を挟んで相対向する電極間に電流を流すことにより前記有機発光層が発光する。 As is well known, an organic EL element has, as a basic structure, a first electrode (one electrode of an anode and a cathode) and a second electrode (the other electrode of an anode and a cathode), and these And an organic light emitting layer provided between the electrodes. In such a structure, the organic light emitting layer emits light by passing a current between electrodes facing each other across the organic light emitting layer.
 通常、有機EL素子を用いた表示装置では、それぞれ1つの画素として機能する多数の有機EL素子がマトリクス状に配置された表示パネルが用いられる。かかる表示パネルでは、多数の画素を確保するために、前記第1の電極が微細なストライプ状のパターンに形成され、このパターン化された第1の電極上に多数の画素領域を形成するために格子状の隔壁が形成される。この隔壁は、前記第1の電極パターン上にフォトレジスト膜を形成し、このフォトレジスト膜をフォトリソグラフィー技術を用いてパターン化することにより形成される。隔壁により囲まれた領域には、第1の電極が露出しており、この領域が画素領域となる。すなわち画素領域は、行方向および列方向にそれぞれ所定の間隔で、マトリクス状に配置される。 Usually, a display device using organic EL elements uses a display panel in which a large number of organic EL elements each functioning as one pixel are arranged in a matrix. In such a display panel, in order to secure a large number of pixels, the first electrode is formed in a fine stripe pattern, and a large number of pixel regions are formed on the patterned first electrode. A grid-like partition is formed. The partition walls are formed by forming a photoresist film on the first electrode pattern and patterning the photoresist film using a photolithography technique. The first electrode is exposed in a region surrounded by the partition wall, and this region becomes a pixel region. That is, the pixel regions are arranged in a matrix at predetermined intervals in the row direction and the column direction.
 従来の技術では、画素領域の配置に対応させてマトリクス状に配置された複数の凸部を備える凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを各隔壁内に供給して、有機発光層を形成している(例えば特許文献1参照)。 In the conventional technology, an organic light-emitting ink containing an organic light-emitting material and a solvent is supplied into each partition using a relief printing plate having a plurality of convex portions arranged in a matrix corresponding to the arrangement of pixel regions. Thus, an organic light emitting layer is formed (see, for example, Patent Document 1).
特開2006-286243号公報JP 2006-286243 A
 特許文献1に記載のように、各種インキを各画素領域に凸版印刷法を用いて付着させる方法は、有機EL素子を効率的に製造するに適した方法であるが、本発明者らの検討によれば、以下のような解決すべき問題点があることが判明した。 As described in Patent Document 1, a method of attaching various inks to each pixel region using a relief printing method is a method suitable for efficiently producing an organic EL element. According to the results, it was found that there are problems to be solved as follows.
 隔壁により画成された画素領域に凸版印刷版を用いて印刷する場合に、凸版印刷版に設けられる複数の凸部と、複数の画素領域とをそれぞれ正確に位置合わせする必要があり、位置ずれ許容度が小さく、凸版印刷版の版胴方向、周方向の位置精度、基板の送り方向の角度精度が厳しくなり、効率的な製造が困難となっていた。 When printing on a pixel area defined by a partition using a relief printing plate, it is necessary to accurately align the plurality of convex portions provided on the relief printing plate and the plurality of pixel areas, respectively. The tolerance is small, and the plate cylinder direction of the relief printing plate, the positional accuracy in the circumferential direction, and the angular accuracy in the feeding direction of the substrate are strict, making it difficult to manufacture efficiently.
 本発明は、上記従来の事情に鑑みてなされたもので、その課題は、製造効率を低下させることなく、絶縁性の隔壁で画成された複数の画素領域へ凸版印刷法により有機発光インキを塗布する際の印刷ずれを防止し、画素領域に形成される有機発光層に混色が生じることのない有機EL素子の製造方法、該製造方法を用いて得られた有機EL素子、および前記有機EL素子を含む表示装置を提供することにある。 The present invention has been made in view of the above-described conventional circumstances, and the problem is that an organic light-emitting ink is applied to a plurality of pixel regions defined by insulating partition walls by a relief printing method without reducing manufacturing efficiency. Manufacturing method of organic EL element which prevents printing misalignment at the time of application and does not cause color mixing in organic light emitting layer formed in pixel region, organic EL element obtained using the manufacturing method, and organic EL element An object of the present invention is to provide a display device including an element.
 本発明は、上記課題を解決するために、下記の構成を採用した有機エレクトロルミネッセンス素子の製造方法、該製造方法を用いて得られた有機エレクトロルミネッセンス素子、および前記有機エレクトロルミネッセンス素子を含む表示装置を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for manufacturing an organic electroluminescence element adopting the following configuration, an organic electroluminescence element obtained by using the manufacturing method, and a display device including the organic electroluminescence element I will provide a.
[1] 陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とを有する有機エレクトロルミネッセンス素子の製造方法であって、互いに略平行に相対して配置される複数本の隔壁と、前記陽極とが設けられた基板を用意し、前記隔壁間の凹部に対応して略平行に相対して配設された複数本の凸部を備える凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを前記隔壁の長手方向に沿って前記凹部に連続的に供給することにより前記有機発光層を形成する有機発光層形成工程を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。 [1] A method of manufacturing an organic electroluminescence device having a cathode, an anode, and an organic light emitting layer positioned between the cathode and the anode, and a plurality of partition walls disposed substantially parallel to each other, A substrate provided with the anode, and using a relief printing plate having a plurality of convex portions disposed in a substantially parallel relationship corresponding to the concave portions between the partition walls, an organic light emitting material and An organic light-emitting layer forming step of forming the organic light-emitting layer by continuously supplying an organic light-emitting ink containing a solvent to the recess along the longitudinal direction of the partition wall. Production method.
[2] 前記基板には、前記隔壁間において、画素の形成される複数の画素領域が前記隔壁に沿って設定され、隣接する画素領域の間に、基板からの高さが前記隔壁よりも低い電気絶縁層が配置されていることを特徴とする、上記[1]に記載の有機エレクトロルミネッセンス素子の製造方法。 [2] In the substrate, a plurality of pixel regions in which pixels are formed are set along the partition between the partition walls, and the height from the substrate is lower than the partition between adjacent pixel regions. The method for producing an organic electroluminescent element according to the above [1], wherein an electrical insulating layer is disposed.
[3] 前記凸版印刷版が、円筒状または円柱状であり、前記複数本の凸部の長手方向が周方向と一致するように、該複数本の凸部を配列したことを特徴とする、上記[1]または[2]に記載の有機エレクトロルミネッセンス素子の製造方法。 [3] The relief printing plate is cylindrical or columnar, and the plurality of protrusions are arranged so that a longitudinal direction of the plurality of protrusions coincides with a circumferential direction. The manufacturing method of the organic electroluminescent element as described in said [1] or [2].
[4] 上記[1]~[3]のいずれか一つに記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。 [4] An organic electroluminescence device obtained by using the production method according to any one of [1] to [3] above.
[5] 上記[4]に記載の有機エレクトロルミネッセンス素子を含むことを特徴とする表示装置。 [5] A display device comprising the organic electroluminescence element according to [4] above.
 本発明にかかる有機EL素子の製造方法は、隔壁の長手方向(以下、「隔壁の長手方向」を「隔壁の伸びる向き」という場合がある。)に沿って、前記有機発光インキを連続的に供給(塗布)して、有機発光層を形成するので、隔壁の伸びる向き方向の位置合わせ精度を緩和することができ、精度の高い印刷を維持しつつ製造効率を向上することができる。 In the method for producing an organic EL element according to the present invention, the organic light-emitting ink is continuously applied along the longitudinal direction of the partition wall (hereinafter, “the longitudinal direction of the partition wall” may be referred to as “the extending direction of the partition wall”). Since the organic light emitting layer is formed by supplying (coating), the alignment accuracy in the direction in which the partition wall extends can be relaxed, and the production efficiency can be improved while maintaining high-precision printing.
 したがって、本発明によれば、製造効率を低下させることなく、凸版印刷法により有機発光インキを塗布する際の印刷ずれを防止して、有機EL素子を作製することができ、画素領域に形成される有機発光層に混色が生じることのない有機EL素子および該有機EL素子を有する表示装置を効率的に製造することができる。 Therefore, according to the present invention, it is possible to produce an organic EL element by preventing printing misalignment when applying organic light emitting ink by the relief printing method without reducing the production efficiency, and formed in the pixel region. An organic EL element that does not cause color mixing in the organic light emitting layer and a display device having the organic EL element can be efficiently manufactured.
図1は、隔壁の形成された基板の平面図である。FIG. 1 is a plan view of a substrate on which a partition wall is formed. 図2は、図1の切断面線II-IIから見た基板の断面構成図である。FIG. 2 is a cross-sectional configuration diagram of the substrate as seen from the section line II-II in FIG. 図3は、本発明に用いる凸版印刷版の構造および該凸版印刷版を用いた有機発光層の印刷時の基板との位置関係を示した斜視図である。FIG. 3 is a perspective view showing the structure of the relief printing plate used in the present invention and the positional relationship with the substrate during printing of the organic light emitting layer using the relief printing plate.
符号の説明Explanation of symbols
 1 基板
 2 陽極
 13a 隔壁
 13b 電気絶縁層
 14 画素領域
 15 凹部
 20 凸版印刷版
 21 凸版印刷版の凸部
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Anode 13a Partition 13b Electrical insulation layer 14 Pixel area 15 Concave part 20 Letterpress printing plate 21 Convex part of letterpress printing plate
 以下に、本発明方法が対象とする有機EL素子の構造について説明し、その後、本発明にかかる有機EL素子の製造方法について、さらに詳しく説明する。なお、以下の説明において示す図面における各部材の縮尺は実際と異なる場合がある。また、有機EL素子には電極のリード線などの部材も存在するが、本発明の説明として直接的に関係はないために記載および図示を省略している。また、以下の説明において、基板の厚み方向の一方を「上方」または「上」といい、基板の厚み方向の他方を「下方」または「下」という場合がある。この上下関係は説明の便宜上設定したもので、必ずしも実際に有機EL素子が製造される工程および使用される状況に適用されるものではない。 Hereinafter, the structure of the organic EL element targeted by the method of the present invention will be described, and then the method for manufacturing the organic EL element according to the present invention will be described in more detail. Note that the scale of each member in the drawings shown in the following description may differ from the actual scale. Moreover, although members, such as an electrode lead wire, also exist in an organic EL element, description and illustration are abbreviate | omitted since it is not directly related as description of this invention. In the following description, one of the substrate thickness directions may be referred to as “upper” or “upper”, and the other of the substrate thickness directions may be referred to as “lower” or “lower”. This vertical relationship is set for convenience of explanation, and is not necessarily applied to a process of actually manufacturing an organic EL element and a situation in which it is used.
(基板)
 有機EL素子に用いる基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、シリコン基板、これらを積層したものなどが用いられる。さらに、プラスチック、高分子フィルムなどに低透水化処理を施したものを用いてもよい。前記基板としては、市販のものが使用可能であり、または公知の方法により製造してもよい。
(substrate)
The substrate used for the organic EL element may be any substrate that does not change when the electrode is formed and the organic layer is formed. For example, glass, plastic, polymer film, silicon substrate, or a laminate of these is used. It is done. Further, a plastic, a polymer film or the like that has been subjected to a low water permeability treatment may be used. A commercially available substrate can be used as the substrate, or it may be manufactured by a known method.
(電極および有機発光層)
 有機EL素子の基本的構造としては、少なくとも陽極と、陰極と、前記陽極および陰極の間に位置する有機発光層(以下、「有機発光層」を単に「発光層」という場合がある。)とが積層されて構成される。また少なくとも陽極および陰極のうちのいずれか一方が光透過性を有する透明電極から成る。前記発光層には低分子および/または高分子の有機発光材料が用いられる。なお本明細書において「透明」とは、光透過性を示す性質をあらわし、所定の部材に入射する光の全部または一部が透過することを意味する。
(Electrode and organic light emitting layer)
As a basic structure of the organic EL element, at least an anode, a cathode, and an organic light emitting layer (hereinafter, “organic light emitting layer” may be simply referred to as “light emitting layer”) positioned between the anode and the cathode. Are stacked. Further, at least one of the anode and the cathode is made of a transparent electrode having optical transparency. For the light emitting layer, a low molecular weight and / or high molecular weight organic light emitting material is used. In the present specification, the term “transparent” means a property showing light transmittance and means that all or a part of light incident on a predetermined member is transmitted.
 有機EL素子において、陽極および陰極の間には、複数の発光層が設けられてもよく、また発光層以外の層が設けられてもよい。以下、陰極と発光層との間に設ける層を陰極側インターレイヤーといい、陽極と発光層との間に設ける層を陽極側インターレイヤーという場合がある。 In the organic EL element, a plurality of light emitting layers may be provided between the anode and the cathode, or layers other than the light emitting layer may be provided. Hereinafter, a layer provided between the cathode and the light-emitting layer may be referred to as a cathode-side interlayer, and a layer provided between the anode and the light-emitting layer may be referred to as an anode-side interlayer.
 陽極と発光層との間に設ける陽極側インターレイヤーとしては、正孔注入層、正孔輸送層、電子ブロック層等が挙げられる。 Examples of the anode-side interlayer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
 上記正孔注入層は、陰極からの正孔注入効率を改善する機能を有する層であり、上記正孔輸送層とは、正孔注入層または陽極により近い層(正孔輸送層)からの正孔注入を改善する機能を有する層である。また、正孔注入層または正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称することがある。電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。 The hole injection layer is a layer having a function of improving the efficiency of hole injection from the cathode, and the hole transport layer is a positive hole from the hole injection layer or a layer closer to the anode (hole transport layer). This layer has a function of improving hole injection. When the hole injection layer or the hole transport layer has a function of blocking electron transport, these layers may be referred to as an electron block layer. Having the function of blocking electron transport makes it possible, for example, to manufacture an element that allows only electron current to flow and to confirm the blocking effect by reducing the current value.
 上記電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、上記電子輸送層は、電子注入層または陰極により近い層(電子輸送層)からの電子注入を改善する機能を有する層である。また、電子注入層もしくは電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層を正孔ブロック層と称することがある。正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。 The electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection from the electron injection layer or a layer closer to the cathode (electron transport layer). It is a layer having. When the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer. Having the function of blocking hole transport makes it possible, for example, to produce an element that allows only hole current to flow, and confirm the blocking effect by reducing the current value.
 上記のような陽極と陰極との間に設けられる各層の積層構成としては、陽極と発光層との間に正孔輸送層を設けた構成、陰極と発光層との間に電子輸送層を設けた構成、陰極と発光層との間に電子輸送層を設け、かつ陽極と発光層との間に正孔輸送層を設けた構成等が挙げられる。例えば、具体的には以下のa)~d)の積層構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同様。)
The layered structure of each layer provided between the anode and the cathode as described above includes a hole transport layer provided between the anode and the light emitting layer, and an electron transport layer provided between the cathode and the light emitting layer. And a structure in which an electron transport layer is provided between the cathode and the light emitting layer and a hole transport layer is provided between the anode and the light emitting layer. For example, the following laminated structures a) to d) are specifically exemplified.
a) Anode / light emitting layer / cathode b) Anode / hole transport layer / light emitting layer / cathode c) Anode / light emitting layer / electron transport layer / cathode d) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (Here, / indicates that each layer is laminated adjacently. The same applies hereinafter.)
 上記構成において、先述のように、発光層とは発光する機能を有する層であり、正孔輸送層とは正孔を輸送する機能を有する層であり、電子輸送層とは電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ場合もある。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と呼ばれることがある。 In the above configuration, as described above, the light emitting layer is a layer having a function of emitting light, the hole transporting layer is a layer having a function of transporting holes, and the electron transporting layer is a function of transporting electrons. It is a layer which has. Note that the electron transport layer and the hole transport layer may be collectively referred to as a charge transport layer. Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently. Further, among the charge transport layers provided adjacent to the electrodes, those having a function of improving the charge injection efficiency from the electrodes and having the effect of lowering the driving voltage of the element are particularly charge injection layers (hole injection layers). , Sometimes referred to as an electron injection layer).
 さらに、電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記電荷注入層または膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。積層する層の順番や数および各層の厚さについては、発光効率や素子寿命を勘案して適宜に設定することができる。 Further, in order to improve the adhesion with the electrode and the charge injection from the electrode, the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode, and the adhesion at the interface is improved. In order to prevent mixing, a thin buffer layer may be inserted at the interface between the charge transport layer and the light emitting layer. The order and number of layers to be laminated and the thickness of each layer can be set as appropriate in consideration of light emission efficiency and element lifetime.
 また、電荷注入層(電子注入層、正孔注入層)を設けた有機EL素子としては、陰極に隣接して電荷注入層を設けた有機EL素子、陽極に隣接して電荷注入層を設けた有機EL素子が挙げられる。例えば、具体的には、以下のe)~p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電荷輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電荷輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
Moreover, as an organic EL element provided with a charge injection layer (electron injection layer, hole injection layer), an organic EL element provided with a charge injection layer adjacent to the cathode, and a charge injection layer provided adjacent to the anode. An organic EL element is mentioned. For example, the following structures e) to p) are specifically mentioned.
e) Anode / charge injection layer / light emitting layer / cathode f) Anode / light emitting layer / charge injection layer / cathode g) Anode / charge injection layer / light emitting layer / charge injection layer / cathode h) Anode / charge injection layer / hole Transport layer / light emitting layer / cathode i) anode / hole transport layer / light emitting layer / charge injection layer / cathode j) anode / charge injection layer / hole transport layer / light emitting layer / charge injection layer / cathode k) anode / charge Injection layer / light emitting layer / charge transport layer / cathode l) anode / light emitting layer / electron transport layer / charge injection layer / cathode m) anode / charge injection layer / light emitting layer / electron transport layer / charge injection layer / cathode n) anode / Charge injection layer / hole transport layer / light emitting layer / charge transport layer / cathode o) anode / hole transport layer / light emitting layer / electron transport layer / charge injection layer / cathode p) anode / charge injection layer / hole transport Layer / light emitting layer / electron transport layer / charge injection layer / cathode
(陽極)
 上記陽極には、たとえば透明電極として、電気伝導度の高い金属酸化物、金属硫化物や金属の薄膜を用いることができ、その内でも透過率が高いものが好適に利用できる。これらは用いる有機層により適宜、選択して用いる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、および銅等の薄膜が用いられ、これらのなかでも、ITO、IZO、酸化スズが好ましい。
(anode)
For the anode, for example, a metal oxide, metal sulfide or metal thin film having high electrical conductivity can be used as a transparent electrode, and among them, those having a high transmittance can be suitably used. These are appropriately selected and used depending on the organic layer to be used. Specifically, indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (abbreviated as IZO), gold, platinum, silver, copper, and the like A thin film is used, and among these, ITO, IZO, and tin oxide are preferable.
 また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。また、前記有機の透明導電膜に用いられる材料、金属酸化物、金属硫化物、金属、およびカーボンナノチューブなどの炭素材料からなる群から選ばれる少なくとも一種類以上を含む混合物からなる薄膜を、陽極に用いてもよい。 Also, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used as the anode. In addition, a thin film made of a mixture containing at least one selected from the group consisting of materials used for the organic transparent conductive film, metal oxides, metal sulfides, metals, and carbon materials such as carbon nanotubes is used as an anode. It may be used.
 さらに、該陽極に、光を反射させる材料を用いてもよく、かかる材料としては、仕事関数が3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。 Furthermore, a material that reflects light may be used for the anode, and such a material is preferably a metal, metal oxide, or metal sulfide having a work function of 3.0 eV or more.
 陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。 Examples of methods for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができ、例えば5nm~10μmであり、好ましくは10nm~1μmであり、さらに好ましくは20nm~500nmである。 The thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity, and is, for example, 5 nm to 10 μm, preferably 10 nm to 1 μm, and more preferably 20 nm to 500 nm. .
(陽極側インターレイヤー)
 上述のように、前記陽極と発光層との間に、必要に応じて、正孔注入層、正孔輸送層などの陽極側インターレイヤーが積層される。
(Anode side interlayer)
As described above, an anode-side interlayer such as a hole injection layer and a hole transport layer is laminated between the anode and the light emitting layer as necessary.
(正孔注入層)
 正孔注入層は、上述のように、陽極と正孔輸送層との間、または陽極と発光層との間に設けられる。正孔注入層を形成する材料としては、公知の材料を適宜用いることができ、特に制限はない。例えば、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、ヒドラゾン誘導体、カルバゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、アミノ基を有するオキサジアゾール誘導体、酸化バナジウム、酸化タンタル、酸化タングステン、酸化モリブデン、酸化ルテニウム、酸化アルミニウム等の酸化物、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が挙げられる。
(Hole injection layer)
As described above, the hole injection layer is provided between the anode and the hole transport layer or between the anode and the light emitting layer. As a material for forming the hole injection layer, a known material can be appropriately used, and there is no particular limitation. For example, phenylamine, starburst amine, phthalocyanine, hydrazone derivative, carbazole derivative, triazole derivative, imidazole derivative, oxadiazole derivative having amino group, vanadium oxide, tantalum oxide, tungsten oxide, molybdenum oxide, ruthenium oxide And oxides such as aluminum oxide, amorphous carbon, polyaniline, polythiophene derivatives, and the like.
 また、このような正孔注入層の厚みとしては、5~300nm程度であることが好ましい。この厚みが5nm未満では、製造が困難になる傾向があり、他方、300nmを超えると、駆動電圧、および正孔注入層に印加される電圧が大きくなる傾向となる。 The thickness of such a hole injection layer is preferably about 5 to 300 nm. If the thickness is less than 5 nm, the production tends to be difficult. On the other hand, if the thickness exceeds 300 nm, the driving voltage and the voltage applied to the hole injection layer tend to increase.
(正孔輸送層)
 正孔輸送層を構成する材料としては、特に制限はないが、例えば、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)4,4’-ジアミノビフェニル(TPD)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(NPB)等の芳香族アミン誘導体、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体などが挙げられる。
(Hole transport layer)
The material constituting the hole transport layer is not particularly limited. For example, N, N′-diphenyl-N, N′-di (3-methylphenyl) 4,4′-diaminobiphenyl (TPD), 4 , 4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPB), etc., polyvinyl carbazole or derivatives thereof, polysilane or derivatives thereof, aromatic amines in the side chain or main chain Polysiloxane derivatives having pyrazole, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamine or derivatives thereof, polypyrrole or derivatives thereof, poly (p-phenylene vinylene) Or its derivatives, or poly (2,5-thienylene vinylene) or a derivative thereof.
 これらの中でも、正孔輸送層に用いる正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリアリールアミンもしくはその誘導体、ポリ(p-フェニレンビニレン)もしくはその誘導体、またはポリ(2,5-チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。 Among these, as the hole transport material used for the hole transport layer, polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, polyaniline or a derivative thereof, Polymeric hole transport materials such as polythiophene or derivatives thereof, polyarylamine or derivatives thereof, poly (p-phenylene vinylene) or derivatives thereof, or poly (2,5-thienylene vinylene) or derivatives thereof are preferred, and more preferred Is polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by being dispersed in a polymer binder.
 正孔輸送層の厚みは、特に制限されないが、目的とする設計に応じて適宜変更してもよく、1~1000nm程度であることが好ましい。この厚みが前記下限値未満となると、製造が困難になる、または正孔輸送の効果が十分に得られないなどの傾向があり、他方、前記上限値を超えると、駆動電圧および正孔輸送層に印加される電圧が大きくなる傾向がある。したがって正孔輸送層の厚みは、上述のように、好ましくは、1~1000nmであるが、より好ましくは、2nm~500nmであり、さらに好ましくは、5nm~200nmである。 The thickness of the hole transport layer is not particularly limited, but may be appropriately changed according to the intended design, and is preferably about 1 to 1000 nm. If the thickness is less than the lower limit, production tends to be difficult or the effect of hole transport is not sufficiently obtained. On the other hand, if the thickness exceeds the upper limit, the driving voltage and the hole transport layer are increased. There is a tendency that the voltage applied to is increased. Therefore, as described above, the thickness of the hole transport layer is preferably 1 to 1000 nm, more preferably 2 nm to 500 nm, and still more preferably 5 nm to 200 nm.
(有機発光層)
 有機発光層は、通常、主として蛍光または燐光を発光する有機物(低分子化合物および高分子化合物)を含む。なお、さらにドーパント材料を含んでいてもよい。本発明において用いてもよい有機発光層を形成する材料としては、例えば、以下の色素系材料、金属錯体系材料、高分子系材料、およびドーパント材料などが挙げられる。
(Organic light emitting layer)
The organic light emitting layer usually contains organic substances (low molecular compounds and high molecular compounds) that mainly emit fluorescence or phosphorescence. Further, a dopant material may be further included. Examples of the material for forming the organic light emitting layer that may be used in the present invention include the following dye materials, metal complex materials, polymer materials, and dopant materials.
 上記色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、キナクリドン誘導体、クマリン誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマーなどが挙げられる。 Examples of the dye material include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, quinacridone derivatives, coumarin derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives. Pyrrole derivatives, thiophene ring compounds, pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, and the like.
 上記金属錯体系材料としては、例えば、イリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、ユーロピウム錯体などの金属錯体などが挙げられる。これらの金属錯体は、中心金属に、Al、Zn、Be、Ir、PtなどまたはTb、Eu、Dyなどの希土類金属を有し、配位子にオキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを有する構成の金属錯体である。 Examples of the metal complex materials include metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, Examples thereof include metal complexes such as azomethyl zinc complex, porphyrin zinc complex, and europium complex. These metal complexes have Al, Zn, Be, Ir, Pt or the like as a central metal, or rare earth metals such as Tb, Eu, or Dy, and oxadiazole, thiadiazole, phenylpyridine, or phenylbenzimidazole as a ligand. And a metal complex having a quinoline structure and the like.
 上記高分子系材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素体や金属錯体系発光材料を高分子化したものなどが挙げられる。 Examples of the polymer material include a polyparaphenylene vinylene derivative, a polythiophene derivative, a polyparaphenylene derivative, a polysilane derivative, a polyacetylene derivative, a polyfluorene derivative, a polyvinylcarbazole derivative, and the above-described dye bodies and metal complex light emitting materials. And the like.
 上記有機発光層形成材料のうち青色に発光する材料としては、例えば、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。 Examples of materials that emit blue light among the organic light emitting layer forming materials include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, polyfluorene derivatives, and the like. . Of these, polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferred.
 また、上記有機発光層形成材料のうち緑色に発光する材料としては、例えば、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。 In addition, examples of the material that emits green light among the organic light emitting layer forming materials include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
 また、上記発光層形成材料のうち赤色に発光する材料としては、例えば、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが挙げられる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。 In addition, examples of the material that emits red light among the above light emitting layer forming materials include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyfluorene derivatives, and the like. Among these, polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
 上記有機発光層中に発光効率の向上や発光波長を変化させるなどの目的で、ドーパントを添加してもよい。このようなドーパントとしては、例えば、ペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどが挙げられる。
 なお、かかる有機発光層の厚さは、通常、2nm~200nmである。
A dopant may be added to the organic light emitting layer for the purpose of improving the light emission efficiency or changing the light emission wavelength. Examples of such dopants include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
The thickness of the organic light emitting layer is usually 2 nm to 200 nm.
(陰極側インターレイヤー)
 上述のように、前記発光層と後述の陰極との間に、必要に応じて、電子注入層、電子輸送層などの陰極側インターレイヤーが積層される。
(Cathode side interlayer)
As described above, a cathode-side interlayer such as an electron injection layer and an electron transport layer is laminated between the light emitting layer and a cathode described later, if necessary.
(電子輸送層)
 電子輸送層を形成する材料としては、公知のものが使用でき、例えば、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等を挙げることができる。
(Electron transport layer)
As the material for forming the electron transport layer, known materials can be used. For example, oxadiazole derivatives, anthraquinodimethane or derivatives thereof, benzoquinone or derivatives thereof, naphthoquinone or derivatives thereof, anthraquinones or derivatives thereof, tetracyanoanthra Quinodimethane or derivatives thereof, fluorenone derivatives, diphenyldicyanoethylene or derivatives thereof, diphenoquinone derivatives, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof, etc. Can be mentioned.
 これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。 Of these, oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof are preferred, 2- (4-biphenylyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
(電子注入層)
 電子注入層は、先に述べたように、電子輸送層と陰極との間、または発光層と陰極との間に設けられる。電子注入層としては、発光層の種類に応じて、アルカリ金属やアルカリ土類金属、あるいは前記金属を一種類以上含む合金、あるいは前記金属の酸化物、ハロゲン化物および炭酸化物、あるいは前記物質の混合物などが挙げられる。
(Electron injection layer)
As described above, the electron injection layer is provided between the electron transport layer and the cathode, or between the light emitting layer and the cathode. Depending on the type of the light emitting layer, the electron injection layer may be an alkali metal or alkaline earth metal, an alloy containing one or more of the above metals, an oxide, halide and carbonate of the metal, or a mixture of the substances. Etc.
 前記アルカリ金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウム等が挙げられる。 Examples of the alkali metal or its oxide, halide, carbonate include lithium, sodium, potassium, rubidium, cesium, lithium oxide, lithium fluoride, sodium oxide, sodium fluoride, potassium oxide, potassium fluoride, oxide Examples include rubidium, rubidium fluoride, cesium oxide, cesium fluoride, and lithium carbonate.
 前記アルカリ土類金属またはその酸化物、ハロゲン化物、炭酸化物の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどが挙げられる。 Examples of the alkaline earth metals or oxides, halides and carbonates thereof include magnesium, calcium, barium, strontium, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, calcium fluoride, barium oxide, fluorine. Barium fluoride, strontium oxide, strontium fluoride, magnesium carbonate and the like.
 さらに、金属、金属酸化物、金属塩をドーピングした有機金属化合物、および有機金属錯体化合物、またはこれらの混合物も、電子注入層の材料として用いることができる。 Furthermore, a metal, a metal oxide, an organometallic compound doped with a metal salt, an organometallic complex compound, or a mixture thereof can also be used as a material for the electron injection layer.
 この電子注入層は、2層以上を積層した積層構造を有していてもよい。具体的には、Li/Caなどが挙げられる。この電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。
 この電子注入層の膜厚としては、1nm~1μm程度が好ましい。
This electron injection layer may have a stacked structure in which two or more layers are stacked. Specifically, Li / Ca etc. are mentioned. This electron injection layer is formed by vapor deposition, sputtering, printing, or the like.
The thickness of the electron injection layer is preferably about 1 nm to 1 μm.
(陰極)
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易な材料および/または電気伝導度が高い材料および/または可視光反射率の高い材料が好ましい。かかる陰極材料としては、具体的には、金属、金属酸化物、合金、グラファイトまたはグラファイト層間化合物、酸化亜鉛(ZnO)等の無機半導体などを挙げることができる。
(cathode)
As a material for the cathode, a material having a small work function and easy electron injection into the light emitting layer and / or a material having a high electric conductivity and / or a material having a high visible light reflectance are preferable. Specific examples of such cathode materials include metals, metal oxides, alloys, graphite or graphite intercalation compounds, and inorganic semiconductors such as zinc oxide (ZnO).
 上記金属としては、アルカリ金属やアルカリ土類金属、遷移金属や周期表13族金属等を用いることができる。これら金属の具体的例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等を挙げることができる。 As the metal, alkali metal, alkaline earth metal, transition metal, periodic table group 13 metal, or the like can be used. Specific examples of these metals include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, and aluminum. , Scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
 また、合金としては、上記金属の少なくとも一種を含む合金が挙げられ、具体的には、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等が挙げられる。 Examples of the alloy include an alloy containing at least one of the above metals, and specifically, a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium- Examples include a magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
 陰極は、必要に応じて透明電極とされるが、それらの材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、ITO、IZOなどの導電性酸化物;ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの導電性有機物が挙げられる。 The cathode is a transparent electrode as necessary. Examples of the material include conductive oxides such as indium oxide, zinc oxide, tin oxide, ITO, and IZO; polyaniline or a derivative thereof, polythiophene or a derivative thereof. And conductive organic substances such as
 なお、陰極を2層以上の積層構造としてもよい。また、電子注入層が陰極として用いられる場合もある。 The cathode may have a laminated structure of two or more layers. Moreover, an electron injection layer may be used as a cathode.
 陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択すればよく、例えば、10nm~10μmであり、好ましくは、20nm~1μmであり、さらに好ましくは、50nm~500nmである。 The thickness of the cathode may be appropriately selected in consideration of electric conductivity and durability, and is, for example, 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
(上部封止膜)
 上述のように陰極が形成された後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、該発光機能部を封止する上部封止膜が形成される。この上部封止膜は、通常、少なくとも一つの無機層と少なくとも一つの有機層を有する。積層数は、必要に応じて決定され、基本的には、無機層と有機層は交互に積層される。
(Upper sealing film)
After the cathode is formed as described above, an upper sealing film for sealing the light emitting function part is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure. . This upper sealing film usually has at least one inorganic layer and at least one organic layer. The number of stacked layers is determined as necessary. Basically, inorganic layers and organic layers are alternately stacked.
 なお、基板および上部封止膜により発光機能部が被包されていても、プラスチック基板はガラス基板に比べて、ガスおよび液体の透過性が高く、また有機発光層などの発光物質は酸化されやすく、水と接触することにより劣化しやすい。したがって、前記基板としてプラスチック基板が用いられる場合は、プラスチック基板上にガスおよび液体に対するバリア性の高い下部封止膜を積層し、その後、この下部封止膜の上に上記発光機能部を積層する。この下部封止膜は、通常、上記上部封止膜と同様の構成、同様の材料にて形成される。 Even if the light emitting function part is encapsulated by the substrate and the upper sealing film, the plastic substrate has higher gas and liquid permeability than the glass substrate, and light emitting substances such as the organic light emitting layer are easily oxidized. Deteriorated easily by contact with water. Therefore, when a plastic substrate is used as the substrate, a lower sealing film having a high barrier property against gas and liquid is laminated on the plastic substrate, and then the light emitting function part is laminated on the lower sealing film. . The lower sealing film is usually formed with the same configuration and the same material as the upper sealing film.
[有機EL素子の製造方法]
 以下、本発明の実施形態の有機EL素子の製造方法について、さらに詳しく説明する。
[Method of manufacturing organic EL element]
Hereinafter, the manufacturing method of the organic EL element of embodiment of this invention is demonstrated in detail.
(陽極形成工程)
 前述のいずれかの基板材料からなる基板を準備する。ガスおよび液体の透過性が高いプラスチック基板を用いる場合は、必要に応じて、基板上に下部封止膜を形成しておく。
(Anode formation process)
A substrate made of any of the aforementioned substrate materials is prepared. When a plastic substrate having high gas and liquid permeability is used, a lower sealing film is formed on the substrate as necessary.
 次に、準備した基板上に前述のいずれかの陽極材料を用いて、陽極をパターン形成する。陽極は、例えば基板上において複数本形成され、基板の厚み方向から見て例えば縦縞状(または横縞状)に、互いに略平行に相対してパターン形成される。以下、縦縞状(または横縞状)に、互いに略平行に相対して複数本の部材が配置されるパターンを「ストライプ状」という場合がある。なお陽極のパターンはストライプ状に限らず、例えば画素ごとに電気的に独立して陽極を設けてもよく、例えばマトリクス状に離散的に陽極を設けてもよい。この陽極を透明電極とする場合には、前述のように、ITO、IZO、酸化錫、酸化亜鉛、酸化インジウム、亜鉛アルミニウム複合酸化物等の透明電極材料を使用する。電極のパターン形成は、例えば、ITOを用いる場合、スパッタリング法により基板上に均一な堆積膜として形成され、続いて、フォトリソグラフィーによりライン状にパターニングされる。 Next, an anode is patterned on the prepared substrate using any of the anode materials described above. A plurality of anodes are formed, for example, on the substrate, and are formed in a pattern, for example, in the form of vertical stripes (or horizontal stripes) as viewed from the thickness direction of the substrate, substantially parallel to each other. Hereinafter, a pattern in which a plurality of members are arranged in a vertical stripe shape (or a horizontal stripe shape) so as to be substantially parallel to each other may be referred to as a “stripe shape”. The anode pattern is not limited to the stripe shape, and for example, the anode may be provided electrically independently for each pixel. For example, the anode may be provided discretely in a matrix shape. When this anode is used as a transparent electrode, as described above, a transparent electrode material such as ITO, IZO, tin oxide, zinc oxide, indium oxide, and zinc aluminum composite oxide is used. For example, in the case of using ITO, the electrode pattern is formed as a uniform deposited film on the substrate by a sputtering method, and then patterned into a line shape by photolithography.
(隔壁形成工程)
 図1は、隔壁の形成された基板の平面図であり、図2は、図1の切断面線II-IIから見た基板の断面図である。まず、基板1上に陽極2を形成し、該電極上に、ストライプ状に配置される複数本の隔壁13aを形成する。陽極2は、前述したように複数本が、隔壁13aの長手方向(以下、「隔壁の長手方向」を「隔壁13aの伸びる方向」という場合がある。)にその長手方向を一致させてストライプ状に配置されていてもよく、本実施の形態では、ストライプ状に複数の陽極2が配置され、基板1の厚み方向の一方から見て、陽極2間の間隙に重なるように隔壁13aが配置される。また隔壁13a間において、画素の形成される複数の画素領域14が隔壁13aに沿って設定されてもよい。
(Partition forming process)
FIG. 1 is a plan view of a substrate on which a partition wall is formed, and FIG. 2 is a cross-sectional view of the substrate as seen from the section line II-II in FIG. First, the anode 2 is formed on the substrate 1, and a plurality of partition walls 13a arranged in a stripe shape are formed on the electrode. As described above, a plurality of anodes 2 are striped so that the longitudinal direction thereof coincides with the longitudinal direction of the partition wall 13a (hereinafter, the “longitudinal direction of the partition wall” may be referred to as “the extending direction of the partition wall 13a”). In the present embodiment, a plurality of anodes 2 are arranged in stripes, and partition walls 13a are arranged so as to overlap the gaps between the anodes 2 when viewed from one side in the thickness direction of the substrate 1. The Further, a plurality of pixel regions 14 in which pixels are formed may be set along the partition wall 13a between the partition walls 13a.
 なお隔壁13aの長手方向に隣接する画素領域14の間に、基板1からの高さが前記隔壁13aよりも低い電気絶縁層13bを設けてもよい。本実施の形態では、陽極2が形成された基板1上において、電気絶縁層13bが格子状に設けられ、具体的には基板の厚み方向の一方から見て隔壁13aの長手方向に隣接する画素領域14間に延伸する横縞と、陽極間に延伸する縦縞とにより構成される格子状の電気絶縁層13bが設けられる。 An electrical insulating layer 13b having a height from the substrate 1 lower than that of the partition wall 13a may be provided between the pixel regions 14 adjacent to each other in the longitudinal direction of the partition wall 13a. In the present embodiment, on the substrate 1 on which the anode 2 is formed, the electrical insulating layers 13b are provided in a lattice shape. Specifically, the pixels adjacent to the longitudinal direction of the partition wall 13a when viewed from one side in the thickness direction of the substrate. A grid-like electrical insulating layer 13b is provided which is composed of horizontal stripes extending between the regions 14 and vertical stripes extending between the anodes.
 この電気絶縁層13bは、通常、後述のように、プラズマCVD法やスパッタ法等の公知の方法によりSiO、SiN等の無機絶縁材料からなる0.1~0.2μm厚の絶縁膜を形成し、次いでフォトグラフィーとエッチングを実施することにより形成される。あるいは、アクリル樹脂系、ノボラック樹脂系、ポリイミド樹脂系のポジ型またはネガ型の感光性材料(フォトレジスト組成物)などの有機材料を用いて絶縁膜を形成し、この絶縁膜にフォトグラフィーとエッチングを実施することにより、電気絶縁層13bを形成してもよい。 This electric insulating layer 13b is usually formed with an insulating film having a thickness of 0.1 to 0.2 μm made of an inorganic insulating material such as SiO 2 or SiN by a known method such as plasma CVD or sputtering, as will be described later. And then formed by performing photography and etching. Alternatively, an insulating film is formed using an organic material such as an acrylic resin-based, novolak resin-based, polyimide resin-based positive or negative photosensitive material (photoresist composition), and photography and etching are performed on the insulating film. The electrical insulating layer 13b may be formed by performing the above.
 上記のパターニングによって前記絶縁膜が除去された領域が画素領域14に相当する領域であり、除去されずに残った膜が電気絶縁層13bとなる。隔壁13aは、電気絶縁層13b上に設けられる。なお、電気絶縁層13bを設けない場合には、隔壁13a間において陽極2がストライプ状に露出することになるが、このストライプ状の領域が画素領域14となる。 The region where the insulating film has been removed by the above patterning is a region corresponding to the pixel region 14, and the film remaining without being removed becomes the electrical insulating layer 13b. The partition wall 13a is provided on the electrical insulating layer 13b. In the case where the electric insulating layer 13b is not provided, the anode 2 is exposed in a stripe shape between the partition walls 13a, and this stripe-shaped region becomes the pixel region 14.
 なお電気絶縁層13bを有機材料より形成する場合、有機物からなる部材の表面を選択的に撥インキ化処理する工程を行うことにより、隔壁13aと同時に電気絶縁層13bも撥インキ性にすることができるという利点がある。例えばCF4プラズマ処理を行うことにより、有機材料からなる隔壁13aおよび電気絶縁層13bの表面は撥インキ性に変更される。なおCF4プラズマ処理を行ったとしても、無機材料からなる陽極2の表面は有機発光インキに対して親液性を保持する。 In the case where the electrical insulating layer 13b is formed of an organic material, the electrical insulating layer 13b can be made ink repellent simultaneously with the partition wall 13a by performing a process of selectively making the surface of a member made of an organic material ink repellent. There is an advantage that you can. For example, by performing CF 4 plasma treatment, the surfaces of the partition walls 13a and the electrical insulating layer 13b made of an organic material are changed to ink repellency. Even when the CF 4 plasma treatment is performed, the surface of the anode 2 made of an inorganic material maintains lyophilicity with respect to the organic light emitting ink.
 電気絶縁層13bの表面が撥インキ性を持つと、各画素領域に有機発光インキを塗布した際に有機発光インクが電気絶縁層13bに付着した場合でも電気絶縁層13bから有機発光インキがはじかれ、電気絶縁層13bに有機発光インキが残存することを避けることができる。 When the surface of the electrical insulating layer 13b has ink repellency, the organic light emitting ink is repelled from the electrical insulating layer 13b even when the organic light emitting ink adheres to the electrical insulating layer 13b when the organic light emitting ink is applied to each pixel region. The organic light emitting ink can be prevented from remaining in the electrical insulating layer 13b.
 上記隔壁13aの主たる役割は、隔壁13aで区切られた隣接する画素間での絶縁を図るとともに、隣接画素間の混色を防止する点にある。そのために、その高さ寸法を高く設定する。一方、上記電気絶縁層13bの役割は、隔壁13aに沿って配置される同一色の複数の画素間の絶縁を行う点にあり、混色防止の役割はない。したがって、画素領域14上に形成されるインターレイヤーや有機発光層などの積層膜の合計厚さより、隔壁13aの厚さを幾分厚く形成すればよい。かかる基準から、上記隔壁13aの高さ寸法としては2~3μmに設定することが好ましい。また電気絶縁層13bの高さ寸法としては、無機物から成る電気絶縁層の場合、0.1~0.2μm、有機物から成る電気絶縁層の場合1μm~2μmに設定することが好ましい。なお有機材料の電気伝導性の大きさにより電気絶縁層13bは不要にすることもできる。 The main role of the partition wall 13a is to insulate adjacent pixels separated by the partition wall 13a and prevent color mixing between adjacent pixels. Therefore, the height dimension is set high. On the other hand, the role of the electrical insulating layer 13b is to provide insulation between a plurality of pixels of the same color arranged along the partition wall 13a, and has no role in preventing color mixing. Therefore, the partition wall 13a may be formed somewhat thicker than the total thickness of the laminated films such as the interlayer and the organic light emitting layer formed on the pixel region 14. From this standard, the height of the partition wall 13a is preferably set to 2 to 3 μm. The height dimension of the electrical insulating layer 13b is preferably set to 0.1 to 0.2 μm in the case of an electrical insulating layer made of an inorganic material, and 1 μm to 2 μm in the case of an electrical insulating layer made of an organic material. Note that the electrical insulating layer 13b can be omitted depending on the electrical conductivity of the organic material.
 電気絶縁層13bを設ける形態では、隔壁13aを形成する前に電気絶縁層13bを形成する。無機物を用いて電気絶縁層13bを形成する場合には、まずプラズマCVD法やスパッタ法等の公知の方法によりSiO、SiN等の無機絶縁材料からなる0.1~0.2μm厚の絶縁膜を形成する。次いで上記絶縁膜をフォトグラフィーとエッチングによって、複数の画素領域を除去し、格子状にパターニングすることで、電気絶縁層13bを形成する。また有機物を用いて電気絶縁層13bを形成する場合には、例えば前述した感光性材料(フォトレジスト組成物)を用いて、フォトリソグラフィーにより格子状にパターニングされた電気絶縁層13bを形成する。有機EL素子の表示品位を上げることを目的として、光遮光性の材料を感光性材料に含有させてもよい。 In the embodiment in which the electrical insulating layer 13b is provided, the electrical insulating layer 13b is formed before the partition wall 13a is formed. In the case of forming the electrical insulating layer 13b using an inorganic material, first, an insulating film having a thickness of 0.1 to 0.2 μm made of an inorganic insulating material such as SiO 2 or SiN by a known method such as a plasma CVD method or a sputtering method. Form. Next, the plurality of pixel regions are removed from the insulating film by photolithography and etching, and patterning is performed in a lattice shape, thereby forming the electrical insulating layer 13b. In the case where the electrical insulating layer 13b is formed using an organic material, for example, the above-described photosensitive material (photoresist composition) is used to form the electrical insulating layer 13b patterned in a lattice shape by photolithography. For the purpose of improving the display quality of the organic EL element, a light shielding material may be contained in the photosensitive material.
 前記構造の隔壁13aの作製方法は、特に限定されないが、例えば、以下のようにして作製することができる。 The manufacturing method of the partition wall 13a having the above structure is not particularly limited, but for example, it can be manufactured as follows.
 まず前記格子状の電気絶縁層13b上に2~3μm厚のフォトレジスト層を形成し、このフォトレジスト層をストライプ状のマスクを介して露光し、上記ストライプ状に配置される複数本の陽極2間にのみレジスト層が残るように現像し、熱硬化させる。このストライプ状にパターニングされたレジスト層が上記隔壁13aを構成する。 First, a photoresist layer having a thickness of 2 to 3 μm is formed on the grid-like electrical insulating layer 13b, and this photoresist layer is exposed through a stripe-shaped mask, so that a plurality of anodes 2 arranged in the stripe shape are formed. Development is performed so that the resist layer remains only in between, and heat curing is performed. The resist layer patterned in the stripe form constitutes the partition wall 13a.
 上記感光性材料(フォトレジスト組成物)の塗布は、スピンコーター、バーコーター、ロールコーター、ダイコーター、グラビアコーター、スリットコーター等を用いたコーティング法により行うことができる。 The photosensitive material (photoresist composition) can be applied by a coating method using a spin coater, bar coater, roll coater, die coater, gravure coater, slit coater or the like.
 上記隔壁13aを形成する絶縁性の感光性材料は、ポジ型レジスト、ネガ型レジストのどちらであってもよい。隔壁13aは、絶縁性であることが重要であり、絶縁性を有さない場合には、隔壁により画成されている陽極2間に電流が流れてしまい表示不良が発生してしまうおそれがある。 The insulating photosensitive material forming the partition wall 13a may be either a positive resist or a negative resist. It is important that the partition wall 13a is insulative. If the partition wall 13a is not insulative, current may flow between the anodes 2 defined by the partition wall, which may cause display defects. .
 隔壁13aを構成するための絶縁性の感光材料としては、具体的には、ポリイミド系、アクリル樹脂系、ノボラック樹脂系の各感光性化合物(感光性材料)を用いることができる。なお、この感光性材料には、有機EL素子の表示品位を上げる目的で、光遮光性の材料を含有させてもよい。 As the insulating photosensitive material for constituting the partition wall 13a, specifically, polyimide-based, acrylic resin-based, and novolak resin-based photosensitive compounds (photosensitive materials) can be used. This photosensitive material may contain a light-shielding material for the purpose of improving the display quality of the organic EL element.
 隔壁13aには必要に応じて撥インキ性処理が施される。
 隔壁13aの表面に撥インキ性を付与するために、隔壁形成用の感光材料に撥インキ性物質を加えてもよい。あるいは、隔壁13aを形成した後、その表面に撥インキ性物質を被覆させることにより、隔壁表面に撥インキ性を付与してもよい。この撥インク性は、後述のインターレイヤー用のインキに対しても、有機発光層用のインキに対しても、撥性であることが好ましい。
The partition wall 13a is subjected to an ink repellency treatment as necessary.
In order to impart ink repellency to the surface of the partition wall 13a, an ink repellant substance may be added to the photosensitive material for forming the partition wall. Alternatively, after the partition wall 13a is formed, the surface of the partition wall may be coated with an ink repellent material to impart ink repellency to the partition wall surface. This ink repellency is preferably repellant both for the ink for an interlayer described later and for the ink for an organic light emitting layer.
 前記感光性材料に撥インキ性物質を添加する場合に用いる物質としては、シリコーン系化合物またはフッ素含有化合物が用いられる。これらの撥インキ性化合物は、後述の有機発光層形成に用いる有機発光インキ(塗布液)と、正孔輸送層などのインターレイヤー用の有機材料インキ(塗布液)の両方に撥インキ性を示すため、好適である。 As a material used when an ink repellent material is added to the photosensitive material, a silicone compound or a fluorine-containing compound is used. These ink repellent compounds exhibit ink repellency in both organic light-emitting ink (coating liquid) used for forming an organic light-emitting layer, which will be described later, and organic material ink (coating liquid) for an interlayer such as a hole transport layer. Therefore, it is preferable.
 隔壁13aを形成した後に隔壁の表面に撥インキ性被膜を形成する方法としては、例えば、撥インキ性成分を含む塗布液を隔壁表面に塗布する方法、撥インキ性成分を気化させて隔壁表面に堆積させる方法、隔壁表面の有機材料の官能基をフッ素で置換することにより表面を改質する方法などが挙げられる。後者の気相法による堆積方法として、具体的には、CFガスを真空プラズマ装置を用いてプラズマ化してフッ素成分を隔壁表面に作用させることにより、隔壁表面に撥インキ性を付与する方法が挙げられる。 As a method of forming an ink repellent film on the surface of the partition wall after forming the partition wall 13a, for example, a method of applying a coating liquid containing an ink repellent component to the partition wall surface, vaporizing the ink repellent component, and Examples thereof include a deposition method and a method of modifying the surface by substituting a functional group of the organic material on the partition wall surface with fluorine. Specifically, as the deposition method by the latter vapor phase method, there is a method of imparting ink repellency to the partition wall surface by converting CF 4 gas into plasma using a vacuum plasma apparatus and causing a fluorine component to act on the partition wall surface. Can be mentioned.
 なお上記電気絶縁層13bを有機材料から構成する場合には、先にも述べたように、上記CFガスを真空プラズマ装置を用いてプラズマ化してフッ素成分を隔壁表面に作用させる方法によって、隔壁13aと電気絶縁層13bとに同時に撥インキ性を付与することができる。 In the case where the electrical insulating layer 13b is made of an organic material, as described above, the CF 4 gas is converted into plasma using a vacuum plasma apparatus and the fluorine component is allowed to act on the partition surface. Ink repellency can be simultaneously imparted to 13a and the electrical insulating layer 13b.
 なお互いに略平行に相対して配置される複数本の隔壁と、前記陽極とが設けられた基板を用意する工程では、上述したように隔壁および陽極をそれぞれ形成するとしたが、隔壁と陽極とが予め設けられた基板を市場から入手してきてもよい。 In the step of preparing a substrate provided with a plurality of partition walls arranged substantially parallel to each other and the anode, the partition wall and the anode are formed as described above. May be obtained from the market.
(陽極側インターレイヤー形成工程)
 隔壁形成後、必要に応じて、前述の正孔輸送層などの有機材料層(陽極側インターレイヤー)を形成する。
(Anode-side interlayer formation process)
After the barrier ribs are formed, an organic material layer (anode-side interlayer) such as the above-described hole transport layer is formed as necessary.
 陽極側インターレイヤーの成膜方法としては、特に制限はないが、低分子材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子材料では、溶液からの成膜による方法が例示される。 The film formation method for the anode-side interlayer is not particularly limited, but for low molecular weight materials, a method by film formation from a mixed solution with a polymer binder is exemplified. In the case of a polymer material, a method by film formation from a solution is exemplified.
 溶液からの成膜に用いる溶媒としては、前述の陽極側インターレイヤー用の材料を溶解させるものであれば、特に制限はない。かかる溶媒として、例えば、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が挙げられる。 The solvent used for film formation from a solution is not particularly limited as long as it dissolves the above-mentioned anode side interlayer material. Examples of such solvents include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and acetic acid. Examples include ester solvents such as butyl and ethyl cellosolve acetate.
 上記溶液からの成膜方法としては、凸版印刷法を用いることが好ましい。中でもフレキソ印刷法が好適である。この場合に用いる凸版印刷版としては、図3に示すように、隔壁間の凹部に対応して略平行に相対して配設された複数本の凸部を備える凸版印刷版を用いることが好ましい。かかる凸版印刷版として、具体的には前記複数本の隔壁13a間の幅にそれぞれ対応する幅を有し、前記複数本の隔壁13aの配置される間隔にそれぞれ対応する間隔でストライプ状に配置される複数本の凸部21を備える凸版印刷版20を用いることが好ましい。すなわちストライプ状に配置される複数本の凸部21は、隔壁13aと基板1(陽極)とにより画成されるストライプ状に配置された凹部15(図2)に対応して配置される。また、凸版印刷版20が、円筒状または円柱状であることが好ましく、前記複数本の凸部21を周方向に沿って配列することが好ましい。 As the film formation method from the above solution, it is preferable to use a relief printing method. Of these, the flexographic printing method is preferred. As the relief printing plate used in this case, as shown in FIG. 3, it is preferable to use a relief printing plate having a plurality of projections arranged in parallel with each other so as to correspond to the recesses between the partition walls. . Specifically, the relief printing plate has a width corresponding to the width between the plurality of partition walls 13a, and is arranged in stripes at intervals corresponding to the intervals at which the plurality of partition walls 13a are disposed. It is preferable to use a relief printing plate 20 having a plurality of convex portions 21. That is, the plurality of convex portions 21 arranged in a stripe shape are arranged corresponding to the concave portions 15 (FIG. 2) arranged in a stripe shape defined by the partition walls 13a and the substrate 1 (anode). The relief printing plate 20 is preferably cylindrical or columnar, and the plurality of convex portions 21 are preferably arranged along the circumferential direction.
 上記混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。かかる高分子バインダーとしては、例えば、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が挙げられる。 As the polymer binder to be mixed, those not extremely disturbing charge transport are preferable, and those that do not strongly absorb visible light are suitably used. Examples of such a polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane, and the like.
(有機発光層形成工程)
 上述の表面処理工程が終了した後、有機発光層の形成工程が実行される。この有機発光層形成工程の特徴は、上記陽極側インターレイヤー形成工程の場合と同様に、隔壁間の凹部に対応して略平行に相対して配設された複数本の凸部を備える凸版印刷版を用いる凸版印刷法により、有機発光材料を含む有機発光インキを塗布することにある。その場合に用いる凸版印刷版として、図3に示すように、前記複数本の隔壁13a間の幅(凹部15の幅)にそれぞれ対応する幅を有し、前記複数本の隔壁13aの配置される間隔にそれぞれ対応する間隔でストライプ状に配置される複数本の凸部21を備える凸版印刷版20を用いることである。さらに、凸版印刷版20が、円筒状または円柱状であることが好ましく、前記凸部の長手方向が周方向と一致するように、前記複数本の凸部21を配列することが好ましい。
(Organic light emitting layer formation process)
After the above-described surface treatment process is completed, an organic light emitting layer forming process is performed. The organic light emitting layer forming step is characterized by the same relief printing as in the case of the anode side interlayer forming step, in which relief printing is provided with a plurality of convex portions disposed substantially parallel to each other corresponding to the concave portions between the partition walls. The object is to apply an organic light-emitting ink containing an organic light-emitting material by a relief printing method using a plate. As the relief printing plate used in that case, as shown in FIG. 3, each of the plurality of partition walls 13a has a width corresponding to the width between the plurality of partition walls 13a (the width of the recess 15). The use of the relief printing plate 20 having a plurality of convex portions 21 arranged in stripes at intervals corresponding to the intervals, respectively. Furthermore, the relief printing plate 20 is preferably cylindrical or columnar, and the plurality of convex portions 21 are preferably arranged so that the longitudinal direction of the convex portions coincides with the circumferential direction.
 多色の発光の有機EL素子を製造する場合では、上記隔壁13aによって画成された各凹状の溝には、その溝に対応した凸部21に付着された同一色の有機発光インキが塗布される。したがって、多色印刷をする場合でも、上記構成によれば、隔壁13a間の凹部に対する、凸版印刷版20の凸部21の位置合わせを精度よくすれば、印刷方向の位置合わせ精度が緩やかでも、各色の有機発光インキの塗布は正確に行われる。 In the case of manufacturing a multi-color organic EL element, each concave groove defined by the partition wall 13a is coated with the same color organic light-emitting ink attached to the convex portion 21 corresponding to the groove. The Therefore, even when performing multicolor printing, according to the above configuration, if the alignment of the convex portion 21 of the relief printing plate 20 with respect to the concave portion between the partition walls 13a is made accurate, the alignment accuracy in the printing direction is moderate, The application of the organic light-emitting ink of each color is performed accurately.
 上記有機発光インキは、有機発光材料を溶剤に溶解または安定に分散させて調製する。この有機発光材料を溶解または分散する溶剤としては、例えば、トルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の単独またはこれらの混合溶剤が挙げられる。中でも、トルエン、キシレン、アニソールといった芳香族有機溶剤が、有機発光材料の良好な溶解性を有することから好ましい。 The organic light emitting ink is prepared by dissolving or stably dispersing an organic light emitting material in a solvent. Examples of the solvent for dissolving or dispersing the organic light emitting material include toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or a mixed solvent thereof. Among these, aromatic organic solvents such as toluene, xylene, and anisole are preferable because they have good solubility of the organic light emitting material.
 なお、有機発光インキには、必要に応じて、界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤等を添加してもよい。 In addition, you may add surfactant, antioxidant, a viscosity modifier, a ultraviolet absorber, etc. to organic luminescent ink as needed.
(陰極側インターレイヤー形成工程)
 上記有機発光層の形成後、必要に応じて、電子輸送層や電子注入層などの陰極側インターレイヤーを形成する。
 この陰極側インターレイヤーの形成方法は、電子輸送層の場合、特に制限はない。低分子電子輸送材料では、例えば、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が挙げられる。また、高分子電子輸送材料では、例えば、溶液または溶融状態からの成膜による方法が挙げられる。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。溶液から電子輸送層を成膜する方法としては、前述の溶液から正孔輸送層を成膜する方法と同様の成膜法を用いることができる。
 また、電子注入層の場合、蒸着法、スパッタリング法、印刷法等を用いて形成される。
(Cathode-side interlayer formation process)
After the formation of the organic light emitting layer, a cathode-side interlayer such as an electron transport layer or an electron injection layer is formed as necessary.
The method for forming the cathode side interlayer is not particularly limited in the case of the electron transport layer. As the low molecular electron transport material, for example, a vacuum deposition method from powder or a film formation method from a solution or a molten state can be mentioned. Moreover, in the polymer electron transport material, for example, a method by film formation from a solution or a molten state can be mentioned. In film formation from a solution or a molten state, a polymer binder may be used in combination. As a method for forming an electron transport layer from a solution, a film formation method similar to the method for forming a hole transport layer from a solution described above can be used.
In the case of an electron injection layer, it is formed using a vapor deposition method, a sputtering method, a printing method, or the like.
(陰極形成工程)
 陰極は、先述のいずれかの材料を用い、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、レーザーアブレーション法、および金属薄膜を圧着するラミネート法などにより形成する。
(Cathode formation process)
The cathode is formed by using any of the materials described above by a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a laser ablation method, a laminating method for press-bonding a metal thin film, or the like.
 前述のようにして、陰極を形成した後、基本構造として陽極-発光層-陰極を有してなる発光機能部を保護するために、上部封止膜を形成する。この上部封止膜は、必要に応じて、少なくとも一つの無機層と少なくとも一つの有機層とから構成する。これらの積層数は、必要に応じて決定し、基本的には、無機層と有機層は交互に積層する。 After forming the cathode as described above, an upper sealing film is formed in order to protect the light emitting function part having the anode-light emitting layer-cathode as a basic structure. The upper sealing film is composed of at least one inorganic layer and at least one organic layer as necessary. The number of these layers is determined as necessary. Basically, the inorganic layers and the organic layers are alternately stacked.
 以下、本発明の実施例を示すが、以下に示す実施例は、本発明を説明するための好適な例示であって、なんら本発明を限定するものではない。 Hereinafter, examples of the present invention will be shown. However, the examples shown below are preferable examples for explaining the present invention and do not limit the present invention.
(実施例1)
(基板の準備および第1電極の形成)
 まず、200mm(縦)×200mm(横)×0.7mm(厚み)の透明ガラス板上にITO薄膜を形成し、さらにパターニングを行ってストライプ状の陽極を形成した。陽極の繰り返し間隔(ピッチ)は、80μmで、陽極の幅(ライン幅)70μmに対して陽極間の間隔(スペース幅)は10μmであった(ライン/スペース=70μm/10μm)。陽極の厚みは、150nmであった。基板の厚み方向の一方から見て画素の形成される画素領域は、一方向に伸びるITO薄膜上において、前記一方向に所定の間隔をあけて島状に設定した。
Example 1
(Preparation of substrate and formation of first electrode)
First, an ITO thin film was formed on a transparent glass plate of 200 mm (vertical) × 200 mm (horizontal) × 0.7 mm (thickness), and further patterned to form a striped anode. The repetition interval (pitch) of the anode was 80 μm, and the interval (space width) between the anodes was 10 μm with respect to the anode width (line width) of 70 μm (line / space = 70 μm / 10 μm). The thickness of the anode was 150 nm. The pixel region where the pixel is formed when viewed from one side in the thickness direction of the substrate is set in an island shape on the ITO thin film extending in one direction with a predetermined interval in the one direction.
(電気絶縁層の形成)
 次に、プラズマCVD法によりSiOからなる絶縁膜を形成し、次いでフォトグラフィーとエッチングによって、幅50μm×長さ150μmの矩形形状の複数の画素領域に対応する領域の絶縁膜を選択的に除去し、電気絶縁層を形成した。
(Formation of electrical insulation layer)
Next, an insulating film made of SiO 2 is formed by plasma CVD, and then the insulating film in a region corresponding to a plurality of rectangular pixel regions having a width of 50 μm and a length of 150 μm is selectively removed by photography and etching. Then, an electrical insulating layer was formed.
(隔壁の形成)
 次に、上記基板上の全面に、ポジ型フォトレジスト(東京応化工業(株)製、商品名「OFPR-800」)を用いて、慣用のフォトリソグラフィーにより、図1および図2に示す形状の隔壁13aを形成した。形成した隔壁13aの幅寸法は30μm、高さ寸法は2μmとした。また、隔壁13a同士の隣接間寸法は75μmとした。
(Formation of partition walls)
Next, on the entire surface of the substrate, a positive photoresist (trade name “OFPR-800”, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is used to form the shape shown in FIGS. 1 and 2 by conventional photolithography. A partition wall 13a was formed. The formed partition wall 13a had a width dimension of 30 μm and a height dimension of 2 μm. Further, the adjacent dimension between the partition walls 13a was set to 75 μm.
 次に、CF4ガスを用いた真空プラズマ装置(サムコインターナショナル社製、商品名「RIE-200L」)を用いて、隔壁13aに撥インキ化処理を行った。 Next, the partition wall 13a was subjected to an ink repellency treatment using a vacuum plasma apparatus (trade name “RIE-200L” manufactured by Samco International Co., Ltd.) using CF 4 gas.
(凸版印刷版)
 上記隔壁に対応して、図3に示す構造のフレキソ印刷版(材質:ポリエステル系樹脂)を準備した。この凸版印刷版20の凸部21の高さ寸法は100μm、幅寸法は30μm、ピッチ幅は75μmで、版胴の軸心方向Yに直交する周方向にストライプ状に形成した。
(Letterpress printing plate)
A flexographic printing plate (material: polyester resin) having the structure shown in FIG. 3 was prepared corresponding to the partition. The convex portion 21 of the relief printing plate 20 had a height dimension of 100 μm, a width dimension of 30 μm, and a pitch width of 75 μm, and was formed in stripes in the circumferential direction perpendicular to the axial direction Y of the plate cylinder.
(陽極側インターレイヤーの形成)
 次に、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸(Bayer社製、商品名「BaytronP AI4083」)の懸濁液を調製し、この懸濁液を0.2μmメンブランフィルターで濾過した。この濾過液を上記凸版印刷版を用いて、上記画素領域に塗布した。続いて、この塗布層を200℃×20分間、加熱処理して、80nm厚の正孔注入層を形成した。
(Formation of anode side interlayer)
Next, a suspension of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid (manufactured by Bayer, trade name “BaytronP AI4083”) is prepared, and this suspension is filtered through a 0.2 μm membrane filter. did. This filtrate was applied to the pixel region using the relief printing plate. Subsequently, the coating layer was heat-treated at 200 ° C. for 20 minutes to form an 80 nm-thick hole injection layer.
(有機発光層の形成)
 有機発光材料として、赤、緑、青の3色の高分子発光材料(サメイション社製、商品名「RP158(赤)」、「GP1300(緑)」、「BP361(青)」)をそれぞれ溶媒(アニソール/シクロへキシルベンゼン=重量比1/1の混合溶媒)に溶解させた3色の有機発光インキ(濃度:1重量%)を準備した。
(Formation of organic light emitting layer)
As organic light emitting materials, polymer light emitting materials of three colors of red, green, and blue (trade names “RP158 (red)”, “GP1300 (green)”, “BP361 (blue)” manufactured by Summation Co., Ltd.)) are respectively used as solvents ( An organic light emitting ink of 3 colors (concentration: 1% by weight) dissolved in anisole / cyclohexylbenzene = a mixed solvent having a weight ratio of 1/1) was prepared.
 上記構造のストライプ状の凸部を有するフレキソ印刷版を用いて、赤色の有機発光インキを基板上の対応する画素領域に印刷し、乾燥させ、赤色の有機発光層を形成した。同様にして、緑色の有機発光インキおよび青色の有機発光インキを順次印刷し、乾燥させて、緑色の有機発光層および青色の有機発光層を形成した。各色の有機発光層の厚みは、100nmのほぼ同一寸法であった。 Using the flexographic printing plate having the stripe-shaped convex portion having the above structure, red organic light-emitting ink was printed on the corresponding pixel region on the substrate and dried to form a red organic light-emitting layer. Similarly, a green organic light emitting ink and a blue organic light emitting ink were sequentially printed and dried to form a green organic light emitting layer and a blue organic light emitting layer. The thickness of the organic light emitting layer of each color was almost the same dimension of 100 nm.
 なお、この時の印刷には、印刷機として、日本写真印刷(株)製の「オングストローマーSDR-0023(商品名)、版ドラム直径:80mm」を用いた。印刷速度は50mm/秒とした。版と基板とが接触する状態を印刷押し込み量0μmとして、その位置から版を50μm押し付けた状態(印刷押し込み量=50μm)で印刷した。 For printing at this time, “Angstromer SDR-0023 (trade name), plate drum diameter: 80 mm” manufactured by Nissha Printing Co., Ltd. was used as a printing machine. The printing speed was 50 mm / second. Printing was performed in a state in which the plate and the substrate were in contact with each other with a printing push amount of 0 μm, and the plate was pressed from that position by 50 μm (print push amount = 50 μm).
 各画素領域内に形成された有機発光層の形状を光学顕微鏡(ニコン社製、商品名「オプチフォト88」、対物レンズ倍率:50倍)にて観察したところ、各有機発光層は画素領域からずれることなく画素領域に成膜していることが確認された。 When the shape of the organic light emitting layer formed in each pixel region was observed with an optical microscope (manufactured by Nikon Corporation, trade name “Optiphoto 88”, objective lens magnification: 50 ×), each organic light emitting layer was separated from the pixel region. It was confirmed that the film was formed in the pixel region without deviation.
(陰極の形成)
 次に、上記有機発光層の上に、陰極として、カルシウムを100Åの厚さで蒸着し、さらに、酸化保護層としてアルミニウムを2000Åの厚さで蒸着した。これにより、ボトムエミッション構造の有機EL素子を作製した。
(Formation of cathode)
Next, on the organic light emitting layer, calcium was vapor-deposited with a thickness of 100 mm as a cathode, and aluminum was vapor-deposited with a thickness of 2000 mm as an oxidation protective layer. Thus, an organic EL element having a bottom emission structure was produced.
 上述のようにして得た有機EL素子を発光させたところ、多色発光に滲みは見られず、鮮明な多色表示が得られた。 When the organic EL device obtained as described above was caused to emit light, no blur was observed in the multicolor emission, and a clear multicolor display was obtained.
(実施例2)
 次の2点を除いては実施例1と同様にして有機EL素子を作製した。(1)ポジ型フォトレジストを用いて電気絶縁層を形成したこと。(2)CF4ガスを用いたプラズマ処理を行わなかったこと。
 実施例2では、ポジ型フォトレジスト(東京応化工業(株)製、商品名「OFPR-800」)を用いて慣用のフォトリソグラフィーにより、格子状の電気絶縁層を形成した。
 またCF4ガスを用いたプラズマ処理を省略したため、実施例1のようには隔壁13aに撥インキ化処理を行っていない。
(Example 2)
An organic EL device was produced in the same manner as in Example 1 except for the following two points. (1) An electrically insulating layer is formed using a positive photoresist. (2) The plasma treatment using CF 4 gas was not performed.
In Example 2, a grid-like electrical insulating layer was formed by conventional photolithography using a positive photoresist (trade name “OFPR-800” manufactured by Tokyo Ohka Kogyo Co., Ltd.).
Further, since the plasma treatment using CF 4 gas is omitted, the ink repellency treatment is not performed on the partition wall 13a as in the first embodiment.
 上述のようにして得た有機EL素子を発光させたところ、多色発光に滲みは見られず、鮮明な多色表示が得られた。 When the organic EL device obtained as described above was caused to emit light, no blur was observed in the multicolor emission, and a clear multicolor display was obtained.
(比較例)
 格子状に形成された隔壁を設けた基板と、前記隔壁により画成された画素領域に対応する凸部を有する凸版印刷版を用いて、上記実施例1と同様の印刷機および印刷条件にて、有機発光インキを印刷し、乾燥して有機発光層を形成した。それ以外は、上記実施例1と同様にして有機EL素子を製造した。形成した隔壁の寸法は、高さ2μm、隔壁に形成した開口の寸法は幅50μm、長さ150μmであった。
(Comparative example)
Using a printing plate and printing conditions similar to those in the first embodiment, using a substrate provided with partitions formed in a grid and a relief printing plate having projections corresponding to pixel regions defined by the partitions. The organic light emitting ink was printed and dried to form an organic light emitting layer. Other than that was carried out similarly to the said Example 1, and manufactured the organic EL element. The dimension of the formed partition was 2 μm in height, and the dimension of the opening formed in the partition was 50 μm in width and 150 μm in length.
 製造した有機EL素子を発光させたところ、発色に滲み(混色)があり、表示ムラが発生した。 When the manufactured organic EL device was allowed to emit light, there was bleeding (mixed color) in color development, and display unevenness occurred.
 以上のように、本発明によれば、製造効率を低下させることなく、凸版印刷法により有機発光インキを塗布する際の印刷ずれを防止して、有機EL素子を作製することができ、画素領域に形成される有機発光層に混色が生じることのない有機EL素子および該有機EL素子を有する表示装置を効率的に製造することができる。 As described above, according to the present invention, it is possible to produce an organic EL element by preventing printing misalignment when applying an organic light-emitting ink by a relief printing method without reducing the production efficiency. An organic EL element in which color mixture does not occur in the organic light emitting layer formed on the substrate and a display device having the organic EL element can be efficiently produced.

Claims (5)

  1.  陰極と、陽極と、前記陰極および陽極の間に位置する有機発光層とを有する有機エレクトロルミネッセンス素子の製造方法であって、
     互いに略平行に相対して配置される複数本の隔壁と、前記陽極とが設けられた基板を用意し、
     前記隔壁間の凹部に対応して略平行に相対して配設された複数本の凸部を備える凸版印刷版を用いて、有機発光材料と溶媒とを含む有機発光インキを前記隔壁の長手方向に沿って前記凹部に連続的に供給することにより前記有機発光層を形成する有機発光層形成工程を含むことを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    A method for producing an organic electroluminescent device comprising a cathode, an anode, and an organic light emitting layer located between the cathode and the anode,
    Preparing a substrate provided with a plurality of partition walls arranged substantially parallel to each other and the anode;
    Using a relief printing plate having a plurality of convex portions disposed substantially parallel and corresponding to the concave portions between the partition walls, an organic light emitting ink containing an organic light emitting material and a solvent is used in the longitudinal direction of the partition walls. A method for producing an organic electroluminescent element, comprising: an organic light emitting layer forming step of forming the organic light emitting layer by continuously supplying the concave portion along the concave portion.
  2.  前記基板には、前記隔壁間において、画素の形成される複数の画素領域が前記隔壁に沿って設定され、隣接する画素領域の間に、基板からの高さが前記隔壁よりも低い電気絶縁層が配置されていることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子の製造方法。 In the substrate, a plurality of pixel regions in which pixels are formed between the partition walls are set along the partition walls, and between the adjacent pixel regions, an electrical insulating layer whose height from the substrate is lower than the partition walls The organic electroluminescent element manufacturing method according to claim 1, wherein:
  3.  前記凸版印刷版が、円筒状または円柱状であり、前記複数本の凸部の長手方向が周方向と一致するように、該複数本の凸部を配列したことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. The convex printing plate according to claim 1, wherein the relief printing plate has a cylindrical shape or a columnar shape, and the plurality of convex portions are arranged so that a longitudinal direction of the plurality of convex portions coincides with a circumferential direction. The manufacturing method of the organic electroluminescent element of description.
  4.  請求項1に記載の製造方法を用いて得られた有機エレクトロルミネッセンス素子。 An organic electroluminescence device obtained by using the manufacturing method according to claim 1.
  5.  請求項4に記載の有機エレクトロルミネッセンス素子を含むことを特徴とする表示装置。 A display device comprising the organic electroluminescence element according to claim 4.
PCT/JP2009/055861 2008-03-31 2009-03-24 Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device WO2009122973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-091564 2008-03-31
JP2008091564 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009122973A1 true WO2009122973A1 (en) 2009-10-08

Family

ID=41135353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055861 WO2009122973A1 (en) 2008-03-31 2009-03-24 Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device

Country Status (3)

Country Link
JP (1) JP2009266805A (en)
TW (1) TW200952543A (en)
WO (1) WO2009122973A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087785A (en) * 2005-09-22 2007-04-05 Toppan Printing Co Ltd Manufacturing method of printing body, and printing body
JP2007090597A (en) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd Highly fine relief printing plate, manufacturing method of electron device employing the same and organic el element
JP2007273093A (en) * 2006-03-30 2007-10-18 Toppan Printing Co Ltd Manufacturing method of organic electroluminescent element and organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087785A (en) * 2005-09-22 2007-04-05 Toppan Printing Co Ltd Manufacturing method of printing body, and printing body
JP2007090597A (en) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd Highly fine relief printing plate, manufacturing method of electron device employing the same and organic el element
JP2007273093A (en) * 2006-03-30 2007-10-18 Toppan Printing Co Ltd Manufacturing method of organic electroluminescent element and organic electroluminescent element

Also Published As

Publication number Publication date
TW200952543A (en) 2009-12-16
JP2009266805A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5314393B2 (en) Organic electroluminescence device
JP5314314B2 (en) Method for manufacturing organic electroluminescent element, organic electroluminescent element and lighting device
WO2010061966A1 (en) Light emission device and method for manufacturing same
WO2010013641A1 (en) Method for manufacturing an organic electroluminescence element, light emitting device, and display device
WO2010035643A1 (en) Substrate for pattern coating and organic el element
JP2010108851A (en) Manufacturing method of organic electroluminescent element
JP4983940B2 (en) Method for manufacturing organic electroluminescence device
US20120309255A1 (en) Method for manufacturing a light-emitting device
WO2009122870A1 (en) Method for manufacturing organic electroluminescence element, organic electroluminescence element and display device
US20130017641A1 (en) Method for manufacturing a light-emitting device
JP2011210407A (en) Light-emitting device
JP2010073579A (en) Method of manufacturing organic el element, and coater
JP5036680B2 (en) Method for manufacturing organic electroluminescence device
US20110018433A1 (en) Method of producing organic electroluminescence element, organic electroluminescence element, and display device
JP2010160946A (en) Method for manufacturing organic electroluminescence device
JP2010160945A (en) Method for manufacturing organic electroluminescence device
WO2009122960A1 (en) Organic electroluminescence element, and method for production thereof
JP5672789B2 (en) Method for manufacturing light emitting device
WO2009122973A1 (en) Method of manufacturing organic electro luminescence element, organic electro luminescence element, and display device
WO2011065288A1 (en) Manufacturing method of light emitting device
JP2010129346A (en) Method of manufacturing organic electroluminescent device
JP2010277879A (en) Manufacturing method for organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727923

Country of ref document: EP

Kind code of ref document: A1