WO2011102616A2 - 소형 컴파운드 활 - Google Patents

소형 컴파운드 활 Download PDF

Info

Publication number
WO2011102616A2
WO2011102616A2 PCT/KR2011/000882 KR2011000882W WO2011102616A2 WO 2011102616 A2 WO2011102616 A2 WO 2011102616A2 KR 2011000882 W KR2011000882 W KR 2011000882W WO 2011102616 A2 WO2011102616 A2 WO 2011102616A2
Authority
WO
WIPO (PCT)
Prior art keywords
riser
cam
bow
compound
pair
Prior art date
Application number
PCT/KR2011/000882
Other languages
English (en)
French (fr)
Other versions
WO2011102616A3 (ko
Inventor
박경신
Original Assignee
Park Kyung Sin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100014042A external-priority patent/KR20100038336A/ko
Priority claimed from KR1020100015607A external-priority patent/KR20100039306A/ko
Priority claimed from KR1020100023200A external-priority patent/KR20100044150A/ko
Priority claimed from KR1020100035300A external-priority patent/KR101253209B1/ko
Priority claimed from KR1020100103749A external-priority patent/KR20100119852A/ko
Application filed by Park Kyung Sin filed Critical Park Kyung Sin
Priority to US13/578,076 priority Critical patent/US8833349B2/en
Priority to CN2011800070210A priority patent/CN102792122A/zh
Publication of WO2011102616A2 publication Critical patent/WO2011102616A2/ko
Publication of WO2011102616A3 publication Critical patent/WO2011102616A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B5/00Bows; Crossbows
    • F41B5/10Compound bows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B5/00Bows; Crossbows
    • F41B5/0094Non-traditional bows, e.g. having hinged limbs or non-stave geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41BWEAPONS FOR PROJECTING MISSILES WITHOUT USE OF EXPLOSIVE OR COMBUSTIBLE PROPELLANT CHARGE; WEAPONS NOT OTHERWISE PROVIDED FOR
    • F41B5/00Bows; Crossbows
    • F41B5/10Compound bows
    • F41B5/105Cams or pulleys for compound bows

Definitions

  • the present invention relates to an archery, and more particularly, to a small compound bow using a newly designed differential pulley and a differential cam.
  • cams play an important role in let-off and energy storage.
  • Riser is the part including grip and the part except limb and string.
  • a riser that extends outside the attachment portion of the rod is used, and the inside of the rod attachment portion is defined as 'Riser Propria', and the outside of the rod connection portion is defined as 'Riser Extended' (RE).
  • RE 'Riser Extended'
  • the parts supporting the expansion riser and the unique riser are used to reduce the weight of the riser by distributing the force applied to the expansion riser and the unique riser, which is defined as 'Riser Supportive (RS)'.
  • RS 'Riser Supportive
  • Circumference refers to the circumference of the circle as well as the circumference of the ellipse, cam, will be used in the same sense.
  • Differential pulleys (Differential Motion Pulley) is a pulley composite in which pulleys of different diameters are combined and are used for speed conversion and tension conversion.
  • a cam which will be referred to as a differential cam and will also include a differential pulley.
  • the small cam is defined as 'small lobe' and the larger cam is defined as 'large lobe'.
  • Y-shaped bus cables are already widely used as bus cables for compound bows.
  • a Y-shaped bus cable and a Y-shaped bow line are used, and a grooved cam is newly designed to be suitable for use thereof, hereinafter referred to as 'Y-Cam'.
  • 'Y-Cam' a grooved cam is newly designed to be suitable for use thereof.
  • 'Y-Pulley' In the case of a circle, it is called 'Y-Pulley' but is included in the Y-cam.
  • the Y-shape one strand before branching is expressed as 'Y-Body' and the two branched branches as 'Y-Limb'.
  • 1C is a compound bow with improved short interaxial distance.
  • the circumference of the cam was used to reduce the wheelbase.
  • the length of the unrolled bowline, which is wound around the cam plays a crucial role in determining the draw length.
  • the cam used in the conventional compound bow as shown in Figure 2, the amount of rotation of the cam before drawing and after drawing does not exceed 270 degrees. If the rotation amount of the cam is not increased, the shorter the interax distance (A to A; Axle to Axle), the larger the size of the cam to maintain the draw length. As a result, a large cam made of light metal is at the end of the limb, which is likely to be damaged.
  • the present invention devised a method of eliminating the large cam and miniaturizing the compound bow in three ways.
  • the cam used in the above methods has a large amount of rotation and can maintain the same draw length even if it is smaller than the cam of the conventional compound bow.
  • the size of the differential cams installed at both ends of the shaft according to the present invention is significantly smaller and thicker than the cams used in the compound bows of recent short shaft distances. Therefore, even if the distance between the shafts is the same, the size of the bow including the cam is small and the cam is less damaged. In addition, it is possible to produce a compound bow having a shorter interax distance than a conventional compound bow.
  • the armature In compound bows with no cam at the end of the armature, the armature is smooth. This has the effect of increasing the arrow speed and reducing the vibration when firing.
  • 1A is an early compound bow
  • B is a compound bow that is currently used a lot
  • C is a compound bow that is currently used short-axis spacing
  • D, E, F is a schematic diagram of the present invention
  • Figure 2 is a schematic diagram showing the amount of rotation of the cam and 'string releasable' (SR) in a conventional compound bow
  • Figure 3 is a compound bow using a large amount of rotation cam and idler pulley according to the present invention
  • Figure 4 is a side and rear view showing the relationship between the 360 degree rotating differential cam, synchronization pulley, bow, extension riser, bus cable used in the compound bow of Figure 3
  • FIG. 5 is a schematic side view before and after drawing in the compound bow of FIG. 3;
  • FIG. 6 is an idler pulley used in the compound bow of FIG.
  • FIG. 7 is a schematic view of the side cam, front and back of the differential cam, the synchronization pulley used in the compound bow of FIG.
  • FIG. 8 is a side view of the differential cam, which can be rotated 540 degrees, which can be used in the compound bow of FIG.
  • FIG. 9 is a schematic diagram of a synchronization pulley
  • Figure 11 is a compound bow using a differential cam rotates about 270 degrees according to the present invention and a Y-cam with a large amount of rotation
  • FIG. 12 is a schematic diagram before and after drawing of the compound bow of FIG.
  • 13 is a differential cam used for the compound bow of FIG.
  • FIG. 14 is a Y-pulle and side pulley used for the compound bow of FIG.
  • FIG. 15 shows another form of Y-pull and side pulleys that may be used in the compound bow of FIG.
  • Figure 16 is a compound bow using a combination of Y-cam with a large amount of rotation according to the present invention
  • FIG. 17 is a Y-cam and differential cam lobe used for the compound bow of FIG.
  • 19 is a schematic view after drawing of the compound bow of 16
  • FIG. 20 shows a Y-pulle and Y-camlobules that may be used in the compound bow of FIG.
  • FIG. 21 is a schematic view of the compound bow of the compound bow of FIG. 16 with the Y-pulle and the Y-cam lobe of FIG.
  • FIG. 22 is a schematic view of the compound bow of FIG. 16 after drawing in a compound bow with the Y-pulle and Y-cam lobe of FIG.
  • FIG. 23 shows two cams of symmetrical bisecting of the Y-cam lobe of FIG. 17A and the Y-cam lobe of FIG. 20B that may be used in the compound bow of FIG.
  • 24 is a schematic view of a reinforcement riser and a damper
  • 25 is a schematic diagram of a bus cable and a bow used in a Y-cam
  • DCSL Differential Cam Small Lobe
  • Bus cable 1 (BC1; Buss Cable1)
  • Bus cable 2 (BC2; Buss Cable2)
  • YCLL Y-Cam Large Lobe
  • the idler pulley (IP) provided at the end of the expansion riser (RE) is manufactured as shown in FIG. 6. Groove not to escape the bow (St), there is no limit of the radius, but do not make too large so as not to break.
  • the differential cam lobe (DCLL), the differential cam lobe (DCSL), the joint shaft (CS), and the synchronization pulley (SP), which rotate about 360 degrees, are manufactured as shown in FIG. 7, and although not shown, a part of the expansion riser (RE) is detachable. By making it easy to assemble to the expansion riser (RE).
  • the size of the outer diameter of the differential cam lobe depends on the distance between the desired draw length and the idler pulley (IP), and the energy storage characteristics and let-off vary according to the distance change from the axis Ax to the groove.
  • the outer diameter of the differential cam lobe (SLSL) is dependent on the distance the slide Li moves before and after drawing, and also the energy storage characteristics and let-off vary according to the distance change from the axis Ax to the groove.
  • Intrinsic riser (RP) and expansion riser (RE) is manufactured in one piece or separate type as shown in FIG.
  • Shade (Li) is coupled to the riser as shown in Figure 3, it can be used as a conventional pocket (Limb Pocket) and tension adjustment bolt (Tension adjustment bolt).
  • the reinforcement riser RS is manufactured and attached as shown in FIG. 24 so as to withstand the stress on the dynamic riser RP and the expansion riser RE dynamically. Produce a bent section so as not to disturb the progress of the arrow. Part of the reinforcing riser (RS) is attached to the shock absorbing product to act as a damper (Da) to catch the vibration of the bow (St) after launch.
  • the idler pulley IP is installed at the end of the expansion riser RE as shown in FIG. 3.
  • One end of the bow (St) passes through the idler pulley (IP), passes through the straight portion of the differential cam lobe (DCLL), and turns around the differential cam lobe (DCLL) one step to the fixed point (FP) of the differential cam lobe (DCLL) of FIG. Fix it.
  • the lanyard (LS) is fixed with a proper tension at the end of the liaison (Li) and the fixed point (FP) of the differential cam lobe (DCSL).
  • FIG. 9A shows the compound bow upper synchronization pulley (SP) when the bus cable 1 (BC1) is wound, the neighboring bus cable 2 (BC2) is loosened, and FIG. 9B shows the lower synchronization pulley (SP) as the upper bus cable 1 (BC1).
  • This winding causes the lower bus cable 1 (BC1) to be released so that it can be synchronized.
  • the pulley of FIG. 9 can rotate about 540 degrees, it can be used for synchronization when the rotation amount is less than that, and friction between bus cables does not occur. If more rotation is required, the groove of the pulley can be extended.
  • FIG. 4B is a view in the direction of the arrow shown in FIG. 4A.
  • the cable puller is not necessary because the synchronization pulley (SP) is at a certain distance from the outside of the rod so that the bus cable does not obstruct the progress of the arrow.
  • the upper part of the compound bow after setting is as shown in Fig. 5A.
  • the distance from the groove of the differential cam lobe (DCLL) to the center of the axis (Ax) is close to the beginning of the drawing and at the farthest point at the end of the drawing, which has the energy storage characteristics of the compound bow.
  • Differential cam lobe (DCSL) is also rotated clockwise to pull the lanyard (LS) and wound around the differential cam lobe (DCSL), the bow (Li) is bent.
  • the lanyard (LS) passes through a straight section closest to the axis (Ax) in the groove of the differential cam lobe (DCSL), which has a let-off characteristic, which significantly reduces the draw weight and is difficult to pull anymore. .
  • the compound bow can be aimed and fired in the usual way.
  • the differential cam lobe (DCLL) of FIG. 8A, the differential cam lobe (DCSL) of FIG. 8B, and the synchronization pulley (SP) of FIG. 8C are used as shown in FIG. 10A.
  • Compound bow can be configured to rotate 540 degrees, the position of the differential cam can also be provided at the end of the slide (Li), as shown in Figure 10B instead of the expansion riser (RE), the slide (Li) as shown in Figure 10C It can also be placed outside (RE).
  • compound bows of various shapes can be constructed in combination with the following Y-cam.
  • 11 is a compound bow using a differential cam and a Y-cam with a large amount of rotation.
  • Intrinsic riser (RP), expansion riser (RE), reinforcement riser (RS) and rod (Li) are similar to [best mode for carrying out the invention].
  • the differential cam manufactures a differential cam rotating about 270 degrees as shown in FIG. 13.
  • the outer diameter of the differential cam lobe (SLL) depends on the distance that the slide Li moves before and after drawing, and the energy storage characteristics and let-off vary according to the distance change from the axis Ax to the outer diameter.
  • the size of the outer diameter of the differential cam lobe (DCLL) depends on the amount of rotation of the Y- pulley (YP), and the energy storage characteristic varies according to the distance from the axis Ax to the groove.
  • the synchronization pulley SP rotating like the differential cam is shown in FIG. 9. Since it can rotate up to 540 degree
  • the synchronization pulley SP is positioned in a plane different from the direction in which the arrow moves, such as 4B.
  • the Y-pulle (YP) to be installed at the end of the expansion riser (RE) is manufactured as shown in FIG. 14.
  • Figure 14 is a Y- pulley (YP) having a groove for receiving only the Y-branch portion of the Y-shaped rope (St), after the connection of the two strands (St) corresponding to the Y-branch, Shown schematically from the front and the bottom.
  • YP Y- pulley
  • Starting from the two points of contact (CP) can be rotated two and a half times, that is, 900 degrees, there is no overlap of the bow (St) because it maintains a slightly open angle.
  • the actual number of revolutions to be used depends on the radius of the draw length and Y- pulley (YP), but the actual draw length can be achieved in one to two turns.
  • the side pulley (LP) is attached to the Y-pulle (YP), but since there is only one groove, the intermediate string (IS) overlaps the side pulley (LP) groove when it is rotated more than one turn. Since the overlapping of the middle line (IS) is allowed because there is no significant relationship with the accuracy of the hit rate, but if the durability of the middle line (IS) is a problem, the middle line (IS) is formed using only a part of the synchronization pulley (SP) of FIG. 9A. You can also make multiple turns without overlapping.
  • the radius of the side pulley LP is determined by the length of the middle string IS released from the intermediate differential cam and the amount of rotation of the Y-pulse YP.
  • the bow st is a Y-shaped shape that is split on both sides as shown in FIG. 25B, and the portion thereof is enlarged as shown in FIG. 25C.
  • the upper and lower Y-branches are pre-branched from the Y-body so that they enter the Y- pulley (YP). Connected to the Y-cam fixing point (FP) and wound half a turn along the groove and then moved to the opposite Y-cam and wound half a turn along the groove, and when connected to the fixed point (FP), it becomes vertically symmetrical Manufacture and install.
  • the middle line IS is fixed to the side pulley LP attached to the Y- pulley YP as shown in FIG. 12A, and one side passes the straight section of the differential cam lobe (DCLL) and gradually passes the section of increasing radius. Afterwards, fix the radius to the furthest part.
  • DCLL differential cam lobe
  • the sash line LS is connected to the fixed point FP located at the longest radius of the differential cam lobe DCSL, as shown in FIG. 12A.
  • the other side of the rod (LS) is connected to the rod (Li) with proper tension.
  • the middle line (IS) and the rod (LS) can be connected to one connected line when passing through the inside of the differential cam.
  • the bus cable When the synchronization pulley SP is positioned as shown in FIG. 4, the bus cable does not interfere with the progress of the arrow.
  • the bus cable is connected to allow the differential cam to be synchronized as shown in FIG. 9.
  • the middle row (IS) of the differential cam lobe (DCLL) is released and the middle row (IS) is located farthest from the differential cam axis (Ax), and is wound around the differential cam lobe (DCSL).
  • the lanyard (LS) has a let-off characteristic at the shortest distance from the differential cam lobe (DCSL) axis (Ax), which significantly reduces the draw weight and makes it more difficult to pull.
  • the middle row (IS) is pulled by the differential cam lobe (DCLL) while pulling the middle row (IS), and then the side pulley (LP) turns counterclockwise to unwind the middle row (IS).
  • DCLL differential cam lobe
  • LP side pulley
  • the slider Li may be disposed outside the expansion riser RE, and the Y-pulle YP shown in FIG. 15 may be used instead of the Y-cam of FIG. 14.
  • the Y-cam of FIG. 15 is a shape that can accommodate up to the bow (St) of the portion corresponding to the Y-branch as well as the Y-body.
  • 16 is a compound bow using a combination of Y-cams with a large amount of rotation.
  • the cam used the Y-cam lobe (YCLL) of FIG. 17A and the differential cam lobe (DCSL) of FIG. 17B, and was designed to rotate 650 degrees.
  • the bow st is a Y-shaped shape that is split on both sides as shown in FIG. 25B, and the portion thereof is enlarged as shown in FIG. 25C.
  • the upper and lower Y-branches are pre-branched from the Y-body so that they enter the Y- pulley (YP).
  • YP Y- pulley
  • YCLL Y-cam lobe
  • it goes up and rotates 650 degrees counterclockwise and gradually passes along the long groove, and the radius is fixed at the longest part.
  • the split Y-shaped strings (St) do not overlap and occupy their own grooves.
  • Bus cable 1 (BS1) is fixed to the longest radius of the differential cam lobe (DCSL), the other side is fixed to the lower base (Li).
  • Bus cable 2 (BS) is fixed to the longest part of the radius of the differential cam lobe (DCSL) at the bottom, the other side is fixed to the upper rod (Li).
  • 16 compound bows may be constructed from the Y-pulle (YP) of FIG. 20A and the Y-cam lobule (YCLL) of FIG. 20B.
  • the bow St uses the shape shown in FIG. 25B.
  • the compound bow configured as described above is shown in FIG. 21 before drawing.
  • the bow st corresponding to the Y-body starts at the contact point CP, rotates about 180 degrees along the grooves, then branches and continues along each groove to the Y-pulse up to 900 degrees. It is fixed after winding on (YP).
  • the Y-cam lobe (YCLL) is rotated at only 650 degrees, so the Y-pulle (YP) is rotated only at 650 degrees, and the extra bow (St) is unwound.
  • the bus cable uses the form shown in FIG. 25A. As shown in FIG. 21, the bus cable 1 (BS1) branched to the Y-shape is fixed to the longest radius of the Y-cam lobe YCSL.
  • the Y-shaped rope (St) is released only by 650 degrees and the rope is wound by 250 degrees, and the Y-shaped split bus cable 1 (BS1) occupies each groove without overlapping. It is wound around 650 degrees.
  • the Y-pulle (YP) only functions to provide the length of the bow (St), but does not affect the energy storage characteristics and the let-off, but the Y-cam leaf (YCLL) does not affect the energy storage characteristics and the let-off characteristics. Will have The rotation amount of the Y-cam leaf lobe (YCLL) may be increased to 900 degrees and combined.
  • FIG. 23A is a Y-cam that can rotate 650 degrees.
  • the path of the bow St corresponding to the Y-branch is indicated by two kinds of dotted lines from the contact point CP to the fixed point point FP.
  • FIG. 23B is a symmetrical bisecting form of the Y-cam lobules (YCSL) of FIG. 20B.
  • the bisected Y-cam lobe (YCSL) can be attached to both sides of Fig. 23A to construct a Y-cam.
  • the arrow proceeds to the surface formed by the bow line (St) and the bus cable is necessary cable guard. It can also be used with methods such as 'CABLE GUARD ELIMINATOR US2009 / 0165766 A1 John D.
  • the bisected Y-cam lobe may be used in combination with the Y-pulle (YP), and can also be used in compound bows of the form of FIGS. 3, 10A, 10B, and 10C.
  • a Y-pulle (YP) or Y-cam In order to use such a Y-pulle (YP) or Y-cam, a Y-shaped bow (St) or a bus cable as shown in FIG. 30 is required.
  • the reinforcing riser RS is used to reinforce the inherent riser RP and the expansion riser RE. 24 is an example of the reinforcement riser RS and the damper Da. If the unique riser (RP), extended riser (RE), and reinforcement riser (RS) form a honeycomb (early honeycomb) prematurely, it is expected to contribute to the weight reduction of the compound bow.
  • a small and light cam may be positioned at the end of the li (Li) that moves when firing as shown in FIG. 10B, but a cam with a weight sufficient to inhibit the movement of the li (Li) may be expanded as shown in FIG. 10A or 10C. It is located at RE), and the movement of the rod (Li) is smooth.
  • the cam located on the expansion riser is thick and stable, and its small radius is less affected by inertia during rotation.
  • the bus cable can be installed without a cable guide passing a certain distance away from the direction of the arrow as shown in Figure 4, it is installed on the cam in the expansion riser (RE) rather than the flexible slide (Li) knock travel ( Nock Travel) is low.
  • Used in compound bows, compound crossbows, can be used in hunting, sports, lifesaving rope launching, and the like.

Abstract

본 발명은 양궁에 관한 발명으로, 더욱 상세하게는 새롭게 고안한 차동도르래(Differential Motion Pulley)와 차동캠(Differential Motion Cam)이 연계되어, 종래의 성능을 유지하면서 짧은 활대(Li)와 작은 도르래, 작은 캠으로 구성되어 크기와 무게를 줄인 컴파운드 활에 관한 것이다. 본 발명에서는 세가지 방법으로 큰 캠을 없애고 컴파운드 활을 소형화하는 방법을 고안했다. 1. 도 3과 같은 회전량이 많은 차동캠과 아이들러도르래(IP)의 사용 2. 도 11과 같은 차동캠과 회전량이 많은 Y-캠(YC)을 함께 사용 3. 도 16과 같이 회전량이 많은 Y-캠(YC)을 조합해서 사용 이렇게 소형화 된 컴파운드 활은 사냥, 스포츠, 인명구조용 로프발사 등에 이용될 수 있다.

Description

소형 컴파운드 활
본 발명은 양궁에 관한 발명으로, 더욱 상세하게는 새롭게 고안한 차동도르래와 차동캠이 사용된 소형 컴파운드 활에 관한 것이다.
컴파운드 활(Compound Bow)은 1969년 발명이후 40년간 개량되어 소형화되었고, 관용도(Forgiveness)가 커졌으며, 화살의 속도가 빨라졌다.
이러한 개량은 신소재의 사용과 캠의 새로운 도안에 의한 것으로 볼 수 있다.
컴파운드 활에서 캠(Cam)은 렛-오프(Let-Off), 에너지축적(Energy Storage) 등에서 중요한 역할을 한다.
최초의 컴파운드 활에서는 한쪽 활대의 끝에 한 개의 편심캠만이 사용되었으나, 컴파운드 활이 개량되면서 캠의 형태가 복잡하게 발달하여 활대의 끝에 캠 두 개가 결합한 차동캠(Differential Motion Cam)이 많이 사용되고 있다.
초창기 컴파운드 활에서는 축간거리(A to A; Axle to Axle)가 길어 작은 캠과 비교적 약한 활대와 라이저(Riser)의 사용이 가능했으나, 컴파운드 활이 소형화되면서 캠의 외경은 커지고, 튼튼한 활대와 라이저가 필요하게 되어 신소재를 사용해도 컴파운드 활의 무게가 증가하였다.
라이저는 활대(Limb), 활줄(String)을 제외한 부분으로 그립(Grip)을 포함한 부분을 말한다. 본 발명에서는 활대의 부착부 바깥으로 이어진 라이저가 사용되는데, 활대부착부의 안쪽을 '고유라이저(RP, Riser Propria)'로, 활대연결부의 바깥을 '확장라이저(RE; Riser Extended)'라고 정의한다. 또한, 확장라이저와 고유라이저에 가해지는 힘을 분산시켜 라이저의 무게를 줄이기 위해 확장라이저와 고유라이저를 지탱하는 부품이 사용되는데, 이를 '보강라이저(RS; Riser Supportive)'로 정의한다.
외경(Circumference; 원주)은 원의 둘레는 물론 타원, 캠의 둘레를 칭하는 데, 이후 같은 의미로 사용하기로 한다.
활대의 운동거리가 크지 않은 컴파운드 활에서는 캠의 홈(Groove)에 감겨 있다가 풀려나오는 활줄의 길이와 축간거리가 드로우렝스를 결정하는데 큰 역할을 하며, 캠의 홈에 감겨 있다가 풀려나오는 활줄을 '풀려나오는 활줄(SR; String Releasable)'로 정의한다.
차동도르래(Differential Motion Pulley)는 지름이 다른 도르래가 결합하여 있는 도르래 복합체로서, 속도변환이나 장력변환에 이용되고 있다. 본 발명에서는 도르래 뿐만 아니라 캠도 사용되는데, 이후 차동캠(Differential Motion Cam)이라 칭하며 차동도르래도 포함한다. 차동캠에서 작은 캠을 '소엽(Small Lobe)', 큰 캠을 '대엽(Large Lobe)'으로 정의한다.
Y-자 형태의 버스케이블은 이미 컴파운드 활의 버스케이블(Buss Cable)로 많이 이용되고 있다. 본 발명에서는 Y-자 형태의 버스케이블과 Y-자 형태의 활줄이 사용되고, 이들을 사용하기에 적합하도록 홈이 파진 캠을 새로 고안하였는데, 이후 'Y-캠(Y-Cam)'이라 칭한다. 원형인 경우에는 'Y-도르래(Y-Pulley)'로 부르지만 Y-캠에 포함된다. Y-자 형태에서 분지하기 전의 한 가닥인 부분을 'Y-몸통(Y-Body)', 분지하고 난 두 개의 가지는 'Y-분지(Y-Limb)'로 표현하기로 한다.
연관된 이전의 기술을 살펴보면,
'US 7,143,757 B1 Cooper Dec. 5, 2006'는 활줄의 겹침 문제없이 캠모듈의 회전량을 거의 270도까지 가능하게 고안했다.
'US 7,047,958 B1 David E. Colley May 23,2006'는 유연성이 있는 활대 끝에는 아이들러도르래만 위치시키고, 캠은 유연성이 없는 라이저에 위치시켰으며, 상하 도르래의 동기화를 위한 도르래를 화살의 진행방향과 다른 평면에 위치시켜 케이블보호대(Cable Guard)의 부재가 가능하다.
'WO 2008/108766 AI PCT/US2007/005834 SIMS, Steven 1 March 2007'은 유연한 활대 끝에는 도르래나 캠이 없고, 유연성이 없는 라이저에 차동캠을 위치시켰다.
'대한민국 출원번호 10-2010-0023200 박경신'과 '대한민국 출원번호 10-2010-0036300 박경신'은 활줄의 겹침 문제를 해결하는 방법으로 고안된 발명인데, 캠의 축이 많은 단점이 있다.
컴파운드 활은 1969년 발명이후 지속적으로 소형화되어왔다.
도 1의 C는 개량된 축간거리가 짧은 컴파운드 활이다. 이 컴파운드 활의 경우 축간거리를 줄이기 위하여 캠의 원주를 크게 하는 방식이 사용되었다. 축간거리가 짧고 활대의 움직임이 작은 컴파운드 활에서는 캠에 감겨 있다가 '풀려나오는 활줄의 길이'가 드로우렝스(Draw Length)를 정하는데 결정적인 역할을 한다. 종래의 컴파운드 활에서 사용되는 캠은 도 2와 같이 드로잉 전과 드로잉 후의 캠의 회전양이 270도를 넘지 않는다. 캠의 회전량을 늘리지 않는다면 축간거리(A to A; Axle to Axle)가 짧으면 짧을수록 캠의 크기가 더 커져야 드로우렝스를 유지할 수 있다. 그로 인해 경금속으로 된 큰 캠이 활대(Limb)의 끝에 있어 손상의 가능성이 크다.
현재 사용되는 컴파운드 활은 초창기 컴파운드 활에 비해 소형화되었지만 무겁고, 캠이 얇으면서 외경이 커서 손상받기 쉽다.
본 발명에서는 세가지 방법으로 큰 캠을 없애고 컴파운드 활을 소형화하는 방법을 고안했다.
1. 도 3과 같은 회전량이 많은 차동캠과 아이들러도르래의 사용
2. 도 11과 같은 차동캠과 회전량이 많은 Y-캠을 함께 사용
3. 도 16과 같이 회전량이 많은 Y-캠을 조합해서 사용
종래의 컴파운드 활의 축간거리와 드로우렝스가 같다면, 위와 같은 방법들에 이용된 캠은 회전량이 많아 종래의 컴파운드 활이 가진 캠보다 작아도 같은 드로우렝스를 유지할 수 있다.
최근의 축간거리가 짧은 컴파운드 활에서 사용된 캠보다 본 발명에 따른 활대의 양 끝에 설치된 차동캠의 크기는 현저하게 작고 두껍다. 그러므로 축간거리를 같게 만들어도 캠을 포함한 활의 크기가 작고, 캠의 손상을 덜 받게 된다. 또한, 종래의 컴파운드 활보다 축간거리가 더 짧은 컴파운드 활의 제작이 가능하다.
활대 끝에 캠을 위치시키지 않은 컴파운드 활에서는 활대의 움직임이 원활하다. 이는 화살속도의 증가, 발사시 진동감소효과가 있다.
컴파운드 활의 크기를 현저하게 줄여 휴대성이 좋아지고, 장애물이 많은 숲 속에서의 화살발사가 용이해진다.
도 1의 A는 초창기 컴파운드 활, B는 현재 많이 사용되는 컴파운드 활, C는 현재 사용되는 축간거리가 짧은 컴파운드 활, D, E, F는 본 발명의 모식도
도 2는 종래의 컴파운드 활에서 캠의 회전량과 '풀려나오는 활줄(SR; String Releasable)'을 보여주는 모식도
도 3은 본 발명에 따른 회전량이 많은 차동캠과 아이들러도르래가 사용된 컴파운드 활
도 4는 도 3의 컴파운드 활에 사용된 약 360도 회전하는 차동캠, 동기화 도르래, 활줄, 확장라이저, 버스케이블과의 상관관계를 보여주는 측면도와 후면도
도 5는 도 3의 컴파운드 활에서 드로잉 전과 드로잉 후의 측면모식도
도 6은 도 3의 컴파운드 활에서 사용된 아이들러도르래
도 7은 도 3의 컴파운드 활에서 사용된 차동캠, 동기화 도르래의 측면과 앞, 뒤에서 보았을 때의 모식도
도 8은 도 3의 컴파운드 활에서 사용될 수 있는 540도 회전할 수 있는 차동캠, 동기화 도르래의 측면과 앞, 뒤에서 보았을 때의 모식도
도 9는 동기화도르래의 모식도
도 10은 회전량이 많은 차동캠과 아이들러도르래를 사용한 다양한 컴파운드 활
도 11은 본 발명에 따른 약 270도 회전하는 차동캠과 회전량이 많은 Y-캠을 함께 사용한 컴파운드 활
도 12는 도 11의 컴파운드 활의 드로잉 전과 드로잉 후의 모식도
도 13은 도 11의 컴파운드 활에 사용된 차동캠
도 14는 도 11의 컴파운드 활에 사용된 Y-도르래와 측면도르래
도 15는 도 11의 컴파운드 활에 사용될 수 있는 다른 형태의 Y-도르래와 측면도르래
도 16는 본 발명에 따른 회전량이 많은 Y-캠을 조합해서 사용한 컴파운드 활
도 17은 도 16의 컴파운드 활에 사용된 Y-캠과 차동캠소엽
도 18은 16의 컴파운드 활의 드로잉 전 모식도
도 19는 16의 컴파운드 활의 드로잉 후 모식도
도 20은 도 16의 컴파운드 활에 사용될 수 있는 Y-도르래와 Y-캠소엽
도 21은 도 16의 컴파운드 활에 도 20의 Y-도르래와 Y-캠소엽을 구비한 컴파운드 활에서 드로잉 전 모식도
도 22는 도 16의 컴파운드 활에 도 20의 Y-도르래와 Y-캠소엽을 구비한 컴파운드 활에서 드로잉 후 모식도
도 23은 도 15의 컴파운드 활에 사용될 수 있는 도 17A의 Y-캠대엽과 도 20B의 Y-캠소엽을 대칭으로 이등분한 형태의 두 개의 캠
도 24는 보강라이저와 댐퍼의 모식도
도 25는 Y-캠에 사용되는 버스케이블과 활줄의 모식도
활대(Li; Limb)
케이블보호대(CG; Cable Guard)
고유라이저(RP, Riser Propria)
확장라이저(RE; Riser Extended)
보강라이저(RS; Riser Support)
댐퍼(Da; Damper)
축(Ax; Axle)
이음축(CS; Connecting Shaft)
차동캠대엽(DCLL; Differential Cam Large Lobe)
차동캠소엽(DCSL; Differential Cam Small Lobe)
활줄(St; String)
중간줄(IS; Intermediate String)
활대줄(LS; Limb String)
버스케이블1(BC1; Buss Cable1)
버스케이블2(BC2; Buss Cable2)
고정점(FP; Fixing Point)
점점(CP; Contact Point)
Y-도르래(YP; Y-Pulley)
Y-캠(YC; Y-Cam)
Y-캠대엽(YCLL; Y-Cam Large Lobe)
Y-캠소엽(YCLL; Y-Cam Small Lobe)
측면도르래(LP; Lateral Pulley)
아이들러도르래(IP; Idler Pulley)
동기화도르래(SP; Synchronizing Pulley)
먼저 도 3과 같은 회전량이 많은 차동캠과 아이들러도르래(IP)의 사용한 컴파운드 활에 관해 설명하고, [발명의 실시를 위한 형태]에서는 다른 형태의 컴파운드 활과 기타 부분에 관해 설명한다.
확장라이저(RE) 끝에 구비되는 아이들러도르래(IP)는 도 6과 같이 제작한다. 활줄(St)이 벗어나지 않도록 홈을 파며, 반지름의 제한은 없으나 파손되지 않도록 지나치게 크게 만들지 않는다.
약 360도 회전하는 차동캠대엽(DCLL), 차동캠소엽(DCSL), 이음축(CS), 동기화도르래(SP)는 도 7과 같이 제작하며, 도시하지는 않았지만 확장라이저(RE)의 일부를 탈착식으로 제작하여 확장라이저(RE)에 조립이 용이하도록 한다.
차동캠대엽(DCLL)의 외경의 크기는 원하는 드로우렝스와 아이들러도르래(IP)간의 축간거리에 따라 달라지며, 축(Ax)으로부터 홈까지의 거리변화에 따라 에너지 저장특성과 렛-오프가 달라진다. 차동캠소엽(DCSL)의 외경은 드로잉 전과 후에 활대(Li)가 움직인 거리에 따라 달라지며, 역시 축(Ax)으로부터 홈까지의 거리변화에 따라 에너지 저장특성과 렛-오프가 달라진다.
고유라이저(RP)와 확장라이저(RE)는 도 3과 같이 일체형 또는 분리형으로 제작한다.
활대(Li)는 도 3과 같이 라이저에 결합하며, 종래의 방법처럼 활대포켓(Limb Pocket)과 텐젼조절볼트(Tension adjustment Bolt)를 이용할 수 있다.
보강라이저(RS)는 역학적으로 고유라이저(RP)와 확장라이저(RE)에 대한 스트레스를 잘 견딜 수 있도록 도 24와 같이 제작하여 부착한다. 화살의 진행을 방해하지 않도록 구부러진 구간을 포함하여 제작한다. 보강라이저(RS)의 일부분은 발사후 활줄(St)의 진동을 잡아주는 댐퍼(Da)역할을 할 수 있게 충격흡수제품을 부착한다.
아이들러도르래(IP)는 도 3과 같이 확장라이저(RE)의 끝에 설치한다.
활줄(St)의 한쪽은 아이들러도르래(IP)를 지나 차동캠대엽(DCLL)의 직선부분을 지나 차동캠대엽(DCLL)을 한바퀴 돌아 도 7의 차동캠대엽(DCLL)의 고정점(FP)에 고정한다.
활대줄(LS)은 활대(Li) 끝과 차동캠소엽(DCSL)의 고정점(FP)에 적절한 장력을 가진 채 고정한다.
도 9A는 컴파운드 활 윗쪽 동기화도르래(SP)로서 버스케이블1(BC1)이 감길 때 이웃한 버스케이블2(BC2)는 풀리며, 도 9B는 아랫쪽의 동기화도르래(SP)로서 위쪽 버스케이블1(BC1)이 감기면 아랫쪽 버스케이블1(BC1)은 풀리게 되어 동기화(Synchronization) 할 수 있다. 도 9의 동기화도르래는 약 540도 회전할 수 있으므로 그 이하의 회전량을 가진 경우에 동기화를 위해 사용할 수 있으며, 버스케이블간의 마찰이 발생하지 않는다. 더 많은 회전량이 필요하면 도르래의 홈을 연장할 수 있다. 도4B는 도 4A에 표시된 화살표 방향으로 봤을 때의 모습이다. 동기화도르래(SP)가 활대 밖 일정거리에 있어 버스케이블이 화살의 진행을 방해하지 않으므로 케이블보호대가 필요없다.
세팅이 끝난 컴파운드 활의 윗부분은 도 5A와 같다.
한손으로 그립을 잡고 반대쪽 손으로 릴리스(Release)를 이용하여 활줄(St)을 당겨 풀드로잉하면 도 5B와 같이 된다. 아이들러도르래(IP)는 시계방향으로 수회 회전을 한다. 차동캠대엽(DCLL), 이음축(CS), 동기화도르래(SP)와 함께 약 360도 시계방향으로 회전하면서 미리 감겨 있던 활줄(St)이 풀려 나오게 된다.
차동캠대엽(DCLL)의 홈부터 축(Ax)중심까지의 거리가 드로잉 초기에는 가까우며, 드로잉이 끝날 때 가장 먼 곳에 있게 되어 컴파운드 활의 에너지 저장특성을 갖는다.
차동캠소엽(DCSL) 역시 시계방향으로 돌면서 활대줄(LS)을 당겨 차동캠소엽(DCSL)에 감기며, 활대(Li)가 구부러지게 된다. 드로잉이 끝날 때는 활대줄(LS)은 차동캠소엽(DCSL)의 홈중에서 축(Ax)과 가장 가까운 직선구간을 지나게 되어 렛-오프 특성을 갖게 되어, 드로우웨이트가 현저하게 감소하게 되며 더이상 당기기 어렵다.
드로잉을 마친 컴파운드 활은 일반적인 방법에 따라 조준과 발사를 하면 된다.
도 3의 컴파운드 활에서 몇가지 변형이 가능하다. 도 7에 사용된 약 360도 회전하는 차동캠 대신에 도 8A의 차동캠대엽(DCLL), 도 8B의 차동캠소엽(DCSL), 도 8C의 동기화도르래(SP)를 사용하면 도 10A와 같이 약 540도 회전이 되는 컴파운드 활을 구성할 수 있으며, 차동캠의 위치도 확장라이저(RE)가 아닌 도 10B와 같이 활대(Li) 끝에 구비할 수도 있으며, 활대(Li)를 도 10C와 같이 확장라이저(RE) 밖에 위치시킬 수도 있다. 또한, 뒤에 나오는 Y-캠과 조합하여 다양한 모양의 컴파운드 활이 구성될 수 있다.
이상 도 3과 같은 형태의 컴파운드 활과 그 변형에 대해 설명했다.
도 11은 차동캠과 회전량이 많은 Y-캠을 함께 사용한 컴파운드 활이다.
고유라이저(RP), 확장라이저(RE), 보강라이저(RS), 활대(Li)는 [발명의 실시를 위한 최선의 형태]와 유사하다.
차동캠은 도 13과 같이 약 270도 회전하는 차동캠을 제작한다. 차동캠소엽(DCSL)의 외경은 드로잉 전과 후에 활대(Li)가 움직인 거리에 따라 달라지며, 축(Ax)으로부터 외경까지의 거리변화에 따라 에너지 저장특성과 렛-오프가 달라진다. 차동캠대엽(DCLL)의 외경의 크기는 Y-도르래(YP)의 회전량에 따라 달라지며, 축(Ax)으로부터 홈까지의 거리에 따라 에너지 저장특성이 달라진다.
차동캠과 같이 회전하는 동기화도르래(SP)는 도 9와 같다. 540도까지 회전할 수 있으므로 도 9와 같이 제작하여 사용해도 되며, 회전량이 270도를 약간 넘도록 작게 만들어도 된다. 동기화도르래(SP)는 4B와 같이 화살의 진행방향과 다른 평면에 위치시킨다. 확장라이저(RE) 끝에 설치할 Y-도르래(YP)는 도 14와 같이 제작한다. 도 14는 Y-자 모양의 활줄(St)중에서 Y-분지 부분만을 수용하는 홈을 가진 Y-도르래(YP)로서, Y-분지에 해당하는 활줄(St) 두가닥의 연결을 뒤, 위, 앞, 아래에서 볼 때를 모식적으로 보여준다. 두군데의 접점(CP)에서 시작하여 2회전 반, 즉 900도를 회전할수 있으며, 약간 벌어진 각도를 유지하므로 활줄(St)의 겹침이 없다. 실제 사용할 회전수는 드로우렝스와 Y-도르래(YP)의 반지름에 따라 달라지지만, 현실적으로 1 ~ 2회전 정도면 적절한 드로우렝스를 얻을 수 있다.
Y-도르래(YP)에 측면도르래(LP)가 부착되어 있는데 홈이 하나뿐이므로 1회전 이상 회전하면 중간줄(IS)이 측면도르래(LP) 홈에서 겹치게 된다. 명중률과 큰 관계가 없는 부분이라 중간줄(IS)의 겹침이 허용되나, 중간줄(IS)의 내구성 등이 문제가 된다면 도 9A의 동기화도르래(SP)의 일부만을 이용하여 중간줄(IS)이 겹치지 않으면서 여러바퀴 회전하게 할 수도 있다. 측면도르래(LP)의 반지름은 중간차동캠에서 풀려나오는 중간줄(IS)의 길이와 Y-도르래(YP)의 회전량에 의해 정해진다.
고유라이저(RP), 확장라이저(RE), 보강라이저(RS), 활대(Li)가 준비되면 도 11과 같이 차동캠과 Y-도르래(YP)를 설치한다.
활줄(St)은 도 25B와 같이 양쪽이 갈라져 있는 Y-자 모양이며, 그 부분을 확대해 보면 도 25C와 같다. 활줄(St)제작시에 상하의 Y-분지만 Y-도르래(YP) 속으로 들어가도록 Y-몸통으로부터 미리 분지시킨다. Y-캠 고정점(FP)에 연결되어 홈을 따라 2바퀴 반 감긴 후 반대쪽 Y-캠으로 넘어가 홈을 따라 2바퀴 반 감긴 후 고정점(FP)에 연결했을 때 팽팽한 길이가 되도록 상하 대칭이 되도록 제작하여 설치한다.
중간줄(IS)은 도 12A와 같이 한쪽은 Y-도르래(YP)에 붙은 측면도르래(LP)에 고정하고, 한쪽은 차동캠대엽(DCLL)의 직선구간을 지나 점차 반지름이 넓어지는 구간을 지난 후 반지름이 가장 먼 부분에 고정한다.
활대줄(LS)은 도 12A와 같이 차동캠소엽(DCSL)의 반지름이 가장 긴 부분에 위치한 고정점(FP)에 연결한다. 활대줄(LS)의 반대쪽은 활대(Li)에 적절한 장력을 가진 채 연결한다. 중간줄(IS)과 활대줄(LS)은 차동캠 내부를 통과시키면 하나의 연결된 줄로도 가능하다.
동기화도르래(SP)를 도 4와 같이 위치시키면 버스케이블이 화살의 진행을 방해하지 않는다. 버스케이블은 도 9와 같이 차동캠이 동기화(Synchronization) 할 수 있도록 연결한다.
세팅이 끝나면 컴파운드 활의 상부는 도 12A와 같이 된다.
릴리스를 이용하여 활줄(St)을 풀드로잉하면 도 12B와 같이 된다. Y-도르래(YP)에 감긴 활줄(St)이 풀려 나오면서 측면도르래(LP)를 시계방향으로 돌고, 차동캠대엽(DCLL)도 시계방향으로 회전하면서 중간줄(IS)이 풀려 나와 측면도르래(LP)에 감긴다. 차동캠대엽(DCLL)과 고정되어 있는 차동캠소엽(DCSL)도 시계방향으로 회전하게 되는데, 고정점(FP)에 활대줄(LS)이 연결되어 있으므로 활대줄(LS)이 차동캠소엽(DCSL)에 감기며 활대(Li)가 구부러진다. 차동캠이 270도 회전하면 차동캠대엽(DCLL)의 중간줄(IS)은 모두 풀려나가고 중간줄(IS)은 차동캠축(Ax)으로부터 가장 먼 거리에 있으며, 차동캠소엽(DCSL)으로 감겨들어간 활대줄(LS)은 차동캠소엽(DCSL) 축(Ax)과 가장 짧은 거리에 있어 렛-오프 특성을 갖게 되어, 드로우웨이트가 현저하게 감소하며 더이상 당기기 어렵게 된다.
화살을 걸어 발사하면 활대(Li)가 펴지면서 감겨 있던 활대줄(LS)을 당겨 차동캠소엽(DCSL)과 함께 차동캠대엽(DCLL)도 반시계방향으로 회전한다.
중간줄(IS)은 차동캠대엽(DCLL)으로 감기면서 중간줄(IS)을 당기고, 이어 측면도르래(LP)가 반시계방향으로 돌면서 감겨 있던 중간줄(IS)이 풀려 나온다.
동시에 Y-도르래(YP)가 반시계방향으로 회전하면서 활줄(St)을 당겨 화살이 발사된다.
도 11 컴파운드 활의 변형으로, 활대(Li)를 확장라이저(RE)의 밖에 배치할 수 있으며, 도 14의 Y-캠 대신에 도 15와 같은 Y-도르래(YP)를 사용해도 된다. 도 15의 Y-캠은 Y-분지는 물론 Y-몸통에 해당하는 부분의 활줄(St)까지 수용할 수 있는 형태이다.
도 16은 회전량이 많은 Y-캠을 조합해서 사용한 컴파운드 활이다.
캠은 도 17A의 Y-캠대엽(YCLL)과 도 17B의 차동캠소엽(DCSL)이 사용되었으며, 650도 회전할 수 있게 도안되었다.
도 18은 드로잉 전의 상태에서 측면 및 후면도이다. 활줄(St)은 도 25B와 같이 양쪽이 갈라져 있는 Y-자 모양이며, 그 부분을 확대해 보면 도 25C와 같다. 활줄(St)제작시에 상하의 Y-분지만 Y-도르래(YP) 속으로 들어가도록 Y-몸통으로부터 미리 분지시킨다. Y-캠대엽(YCLL)의 직선구간에 접하며 올라가 반시계방향으로 650도 회전하면서 점점 반지름이 긴 홈을 따라 지나다가 반지름이 가장 긴 부분에 고정되어 있다. 후면에서 볼 때 갈라져 있는 Y-자 모양의 활줄(St)은 겹치지 않고 각자 자기 홈을 차지한다. 버스케이블1(BS1)은 차동캠소엽(DCSL)의 반지름이 가장 긴 부분에 고정되어 있으며, 반대쪽은 아랫쪽 활대(Li)에 고정되어 있다. 버스케이블2(BS)는 아랫쪽에서 차동캠소엽(DCSL)의 반지름이 가장 긴 부분에 고정되어 있으며, 반대쪽은 윗쪽 활대(Li)에 고정되어 있다.
도 19는 드로잉 후 측면 및 후면도이다. Y-캠대엽(YCLL)에 감겨있던 활줄(St)은 풀려나왔고, Y-캠대엽(YCLL)은 650도가량 회전해 있으며, Y-분지형태의 활줄(St) 끝이 Y-캠대엽(YCLL)의 반지름이 가장 긴 부분을 당기고 있다. 후면에서 볼 때 Y-자 모양의 활줄(St)이 풀려나와 있으며, 겹침이 없다. 버스케이블1(BS1)은 차동캠소엽(DCSL)의 직선부분을 지나 650도만큼 감겨있으며, 차동캠소엽(DCSL)의 반지름이 가장 작은 부분을 당기고 있다.
활줄(St)과 버스케이블 모두 캠의 영향을 받으므로 컴파운드 활의 원하는 특성을 나타내기 쉽다.
도 20A의 Y-도르래(YP)와 도 20B의 Y-캠소엽(YCLL)으로 16의 컴파운드 활을 구성할 수 있다. 활줄(St)은 도 25B에 도시된 형태를 사용한다. 이렇게 구성된 컴파운드 활은 드로잉 전 모습은 도 21과 같다. 도20A와 같이 홈이 파져 있으므로 Y-몸통에 해당되는 활줄(St)이 접점(CP)에서 시작하여 홈을 따라 180도가량 회전한 후 분지되어 각각의 홈을 따라 계속 돌아 900도까지 Y-도르래(YP)에 감긴후 고정되어 있다. 실제 사용시에는 Y-캠소엽(YCLL)의 회전이 650도에 그치므로 Y-도르래(YP)도 650도만 회전하고, 여분의 활줄(St)는 풀리지 않은채 감겨있게 된다.
버스케이블은 도 25A에 도시된 형태를 사용한다. 도 21에서처럼 Y-자로 갈라진 버스케이블1(BS1)은 Y-캠소엽(YCSL)의 반지름이 가장 긴 부분에 각각 고정되어 있다.
도 22는 드로잉 후의 모습이다. Y-자 모양의 활줄(St)은 650도에 해당하는 만큼만 풀려나와 250도정도에 해당하는 만큼의 활줄은 감겨있고, Y-자로 갈라진 버스케이블1(BS1)은 겹침이 없이 각각의 홈을 차지하며 650도가량 감겨있다. Y-도르래(YP)는 활줄(St)의 길이를 제공하는 기능만 할 뿐 에너지 저장특성 및 렛-오프에는 영향이 없지만, Y-캠소엽(YCLL)으로 인하여 에너지 저장특성 및 렛-오프 특성을 갖게된다. Y-캠소엽(YCLL)의 회전량을 900도까지 늘려 조합해도 된다.
도23A는 650도 회전할 수 있는 Y-캠이다. Y-자 분지에 해당되는 활줄(St)의 경로가 두종류의 점선으로 접점(CP)부터 고정점(FP)까지 표시되어 있다. 도 23B는 도 20B의 Y-캠소엽(YCSL)을 대칭으로 이등분한 형태의 모습이다. 이렇게 이등분된 Y-캠소엽(YCSL)을 도23A의 양측에 붙여 Y-캠을 구성할 수 있다. 이때는 활줄(St)과 버스케이블이 이루는 면으로 화살이 진행하게 되어 케이블 가드 필요하다. 케이블보호대(CG)를 없앨 수 있는 'CABLE GUARD ELIMINATOR US2009/0165766 A1 John D. Evans Jul.2,2009'와 같은 방법과 함께 사용해도 좋다. 이등분된 Y-캠소엽(YCLL)은 Y-도르래(YP)와 조합을 이루어 사용해도 되며, 도 3, 도 10A, 도 10B, 도 10C 형태의 컴파운드 활에서도 사용할 수 있다.
이런 Y-도르래(YP) 또는 Y-캠을 사용하기 위해서는 도 30과 같은 Y자-모양의 활줄(St) 또는 버스케이블이 필요하며, 현재 길이만 다를 뿐 많이 이용되고 있으므로 제작이 용이하다.
본 발명에서는 고유라이저(RP)와 확장라이저(RE)를 보강하기 위해 보강라이저(RS)를 사용했다. 도 24는 보강라이저(RS)와 댐퍼(Da)의 한 예이다. 고유라이저(RP), 확장라이저(RE), 보강라이저(RS)가 전제적으로 벌집모양(Honey Comb Appearance)을 이루면 강성이 좋으므로 컴파운드 활의 경량화에 기여할 것으로 본다.
본 발명에서는 작고 가벼운 캠은 도 10B처럼 발사시 움직임이 있는 활대(Li) 끝에 위치시킬 수도 있지만, 활대(Li)의 움직임을 저해할 정도의 무게가 있는 캠은 도 10A나 도 10C처럼 확장라이저(RE)에 위치시켜 활대(Li)의 운동이 원활하다. 확장라이저에 위치한 캠은 두꺼워 안정적이며, 반지름이 작아 회전시 관성의 영향을 적게 받는다.
본 발명에서는 버스케이블은 도 4와 같이 화살의 진행방향에서 일정 거리 떨어진 곳을 지나 케이블 가이드 없이 설치가 가능하며, 유연한 활대(Li)가 아닌 확장라이저(RE)에 있는 캠에 설치되어 노크트래블(Nock Travel)이 적다.
컴파운드 활, 컴파운드 석궁에 사용되어, 사냥, 스포츠, 인명구조용 로프발사 등에 이용될 수 있다.

Claims (12)

  1. 라이저와, 라이저에 연장된 한쌍의 확장라이저(RE)와, 한 쌍의 활대(Li)와, 한쌍의 버스케이블과상기 확장라이저(RE)의 끝에 설치된 아이들러도르래(IP)와, 상기 확장라이저(RE)에 설치된 270도 이상 회전하는 차동캠대엽(DCLL)과, 상기 차동캠대엽(DCLL)과 함께 회전하는 차동캠소엽(DCSL)과, 상기 차동캠소엽(DCSL)과 함께 회전하는 동기화도르래(SP)를 포함하는 것을 특징으로 하는 컴파운드 활
  2. 라이저와, 라이저에 연장된 한쌍의 확장라이저(RE)와, 한 쌍의 활대(Li)와, 상기 확장라이저(RE)의 끝에 설치된 아이들러도르래(IP)와, 상기 활대(Li) 끝에 설치된 270도 이상 회전하는 차동캠대엽(DCLL)과, 상기 차동캠대엽(DCLL)과 함께 회전하는 차동캠소엽(DCSL)과, 상기 아이들러도르래(IP)와 함께 회전하는 동기화도르래(SP)를 포함하는 것을 특징으로 하는 컴파운드 활
  3. 라이저와, 라이저에 연장된 한쌍의 확장라이저(RE)와, 한 쌍의 활대(Li)와, 상기 확장라이저(RE)의 끝에 설치된 360도 이상 회전하는 Y-도르래(YP)와, 상기 Y-도르래(YP)의 측면에 부착된 측면도르래(LP)와, 상기 확장라이저(RE)에 설치된 차동캠과, 상기 차동캠과 함께 회전하는 동기화도르래(SP)를 포함하는 것을 특징으로 하는 컴파운드 활
  4. 라이저와, 한 쌍의 활대(Li)와, 상기 활대(Li)의 끝에 설치된 270도 이상 회전하는 Y-캠대엽(YCLL)과, 상기 Y-캠대엽(YCLL)에 부착된 차동캠소엽(DCSL)을 구비한 것을 특징으로 하는 컴파운드 활
  5. 제 4항에 있어서, 상기 차동캠소엽(DCSL) 대신에 Y-캠을 대칭으로 이등분한 형태의 두 개의 캠을 포함하는 것을 특징으로 하는 컴파운드 활
  6. 라이저와, 한 쌍의 활대(Li)와, 상기 활대(Li)의 끝에 설치된 270도 이상 회전하는 Y-도르래(YP)와, 상기 Y-도르래(YP)에 부착된 Y-캠소엽(YCSL)을 포함하는 것을 특징으로 하는 컴파운드 활
  7. 제 6항에 있어서, Y-캠소엽(YCSL) 대신에 차동캠소엽(DCSL)을 포함하는 것을 특징으로 하는 컴파운드 활
  8. 라이저와, 라이저에 연장된 한쌍의 확장라이저(RE)와, 한 쌍의 활대(Li)와, 상기 확장라이저(RE)와 상기 라이저를 보강하는 보강라이저(RS)가 포함하는 것을 특징으로 하는 컴파운드 활
  9. 제 9항에 있어서, 보강라이저(RS)에 댐퍼(Da)가 구비된 것을 특징으로 하는 컴파운드 활
  10. 라이저와, 라이저에 연장된 한쌍의 확장라이저(RE)와, 한 쌍의 활대(Li)와, 한 쌍의 버스케이블과, 상기 확장라이저(RE)에 축(Ax)을 가지고 있으며 270도 이상 회전하는 동기화도르래(SP)를 포함하는 것을 특징으로 하는 컴파운드 활
  11. 라이저와, 한 쌍의 활대(Li)와, 한 쌍의 버스케이블과, 활줄(St)과, 캠으로 구성된 컴파운드 활에 있어서, 상기 캠에 Y-자 모양의 홈을 구비한 것을 특징으로 하는 컴파운드 활
  12. 제 11항에 있어서, 상기 캠에 Y-자 분지모양의 홈을 구비한 것을 특징으로 하는 컴파운드 활
PCT/KR2011/000882 2010-02-17 2011-02-10 소형 컴파운드 활 WO2011102616A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/578,076 US8833349B2 (en) 2010-02-17 2011-02-10 Small-scale compound bow
CN2011800070210A CN102792122A (zh) 2010-02-17 2011-02-10 小型复合弓

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR1020100014042A KR20100038336A (ko) 2010-02-17 2010-02-17 컴팩트 컴파운드 활
KR10-2010-0014042 2010-02-17
KR1020100015607A KR20100039306A (ko) 2010-02-22 2010-02-22 소형 컴파운드 활
KR10-2010-0015607 2010-02-22
KR1020100023200A KR20100044150A (ko) 2010-03-16 2010-03-16 컴파운드 활
KR10-2010-0023200 2010-03-16
KR1020100035300A KR101253209B1 (ko) 2010-04-16 2010-04-16 컴파운드 활
KR10-2010-0035300 2010-04-16
KR1020100103749A KR20100119852A (ko) 2010-10-23 2010-10-23 소형 캠 컴파운드 활
KR10-2010-0103749 2010-10-23

Publications (2)

Publication Number Publication Date
WO2011102616A2 true WO2011102616A2 (ko) 2011-08-25
WO2011102616A3 WO2011102616A3 (ko) 2012-01-12

Family

ID=44483444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000882 WO2011102616A2 (ko) 2010-02-17 2011-02-10 소형 컴파운드 활

Country Status (3)

Country Link
US (1) US8833349B2 (ko)
CN (1) CN102792122A (ko)
WO (1) WO2011102616A2 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522762B2 (en) * 2008-07-03 2013-09-03 Mcp Ip, Llc Compound bow
US8851056B2 (en) * 2011-05-25 2014-10-07 Mcp Ip, Llc Dual inverted limb
US9310155B2 (en) * 2013-01-07 2016-04-12 Bear Archery, Inc. Compound bow system
US10254073B2 (en) * 2013-12-16 2019-04-09 Ravin Crossbows, Llc Crossbow
US10254075B2 (en) * 2013-12-16 2019-04-09 Ravin Crossbows, Llc Reduced length crossbow
US10175023B2 (en) 2013-12-16 2019-01-08 Ravin Crossbows, Llc Cocking system for a crossbow
US10126088B2 (en) * 2013-12-16 2018-11-13 Ravin Crossbows, Llc Crossbow
US10712118B2 (en) 2013-12-16 2020-07-14 Ravin Crossbows, Llc Crossbow
US10962322B2 (en) 2013-12-16 2021-03-30 Ravin Crossbows, Llc Bow string cam arrangement for a compound bow
US10209026B2 (en) 2013-12-16 2019-02-19 Ravin Crossbows, Llc Crossbow with pulleys that rotate around stationary axes
US10267589B1 (en) * 2014-05-15 2019-04-23 Nicholas Snook Riser cam bow
WO2016030829A2 (en) * 2014-08-25 2016-03-03 Kirilov Krasimir Nikolaev Archery bow simulator
US9377267B1 (en) * 2014-12-03 2016-06-28 James J. Kempf Shooting bow with transitional modules
US10386151B2 (en) * 2017-02-09 2019-08-20 Mcp Ip, Llc Archery bow with pass through cabling
US10048036B1 (en) * 2017-05-24 2018-08-14 Archery Innovators, Llc Projectile launching device with self-timing and without cam lean
US9829268B1 (en) * 2017-05-24 2017-11-28 Archery Innovators, Llc Projectile launching device with self-timing and without cam lean
US10126090B1 (en) * 2017-10-05 2018-11-13 Hoyt Archery, Inc. Multi-path archery string
US10634447B2 (en) 2018-01-05 2020-04-28 Hunter's Manufacturing Company, Inc. Interchangeable cam
IT201800006176A1 (it) * 2018-06-11 2019-12-11 Trasmissione di potenza per arcieria
US11098973B2 (en) * 2018-07-03 2021-08-24 Crosman Corporation Crossbow
US10989492B1 (en) * 2019-05-10 2021-04-27 Archery Innovators, Llc Archery cam shaft with integrated cable track
US10969192B1 (en) * 2019-05-14 2021-04-06 Barnett Outdoors, Llc Crossbow with crossing cable system
US11371795B1 (en) * 2019-06-20 2022-06-28 Archery Innovators, Llc Projectile launching device with self-timing and without cam lean
US11598601B2 (en) * 2021-06-09 2023-03-07 Grace Engineering Corp. Archery bow cam and related method of use
JP7313088B1 (ja) * 2022-03-22 2023-07-24 テルナーク株式会社

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457288A (en) * 1982-08-24 1984-07-03 Ricord Michael R Cam lever compound bow
US4461267A (en) * 1982-07-27 1984-07-24 Kidde Reaction Products, Inc. Compound bow
US4903677A (en) * 1988-11-02 1990-02-27 Colley David E Power spring bow
KR19980082317A (ko) * 1997-05-03 1998-12-05 박경래 컴파운드 활
US20090000606A1 (en) * 2007-06-28 2009-01-01 Hoyt Archery, Inc. Bowstring suppression device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812835A (en) * 1972-11-29 1974-05-28 G Smith Force multiplying type archery bow
US4338910A (en) * 1980-03-27 1982-07-13 Darlington Rex F Compound bow with center tension pulley
US5054463A (en) * 1988-11-02 1991-10-08 Colley David E Power spring bow
CN2330970Y (zh) * 1998-04-09 1999-07-28 梁瑞增 滑轮弓
US7047958B1 (en) * 2003-09-03 2006-05-23 Colley David E Compact archery compound bow with improved efficiency features
US6776148B1 (en) * 2003-10-10 2004-08-17 John J. Islas Bowstring cam arrangement for compound bow
CN2742374Y (zh) * 2004-06-01 2005-11-23 北京九州宏体育用品研发中心 结构均衡低噪音低阻力便于调整的精准复合弓
CN200952918Y (zh) * 2006-08-03 2007-09-26 王冀中 无扭力、箭居中、左右手通用的复合弓
US7971582B1 (en) * 2008-03-07 2011-07-05 Larson Archery Company Pulley assembly and axle for compound bows
US7913680B2 (en) 2008-05-27 2011-03-29 Evco Technology & Development Company, Ltd. Portable bow press and limb connector therefor
US8844508B2 (en) * 2009-12-23 2014-09-30 Sims Vibration Laboratory, Inc. Archery bows and archery bow components I

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461267A (en) * 1982-07-27 1984-07-24 Kidde Reaction Products, Inc. Compound bow
US4457288A (en) * 1982-08-24 1984-07-03 Ricord Michael R Cam lever compound bow
US4903677A (en) * 1988-11-02 1990-02-27 Colley David E Power spring bow
KR19980082317A (ko) * 1997-05-03 1998-12-05 박경래 컴파운드 활
US20090000606A1 (en) * 2007-06-28 2009-01-01 Hoyt Archery, Inc. Bowstring suppression device

Also Published As

Publication number Publication date
US8833349B2 (en) 2014-09-16
CN102792122A (zh) 2012-11-21
US20120312287A1 (en) 2012-12-13
WO2011102616A3 (ko) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2011102616A2 (ko) 소형 컴파운드 활
US10458742B1 (en) Projectile launching device with self-timing and without cam lean
US6371098B1 (en) Split limb compact archery bow
DK2342527T3 (en) Sports bow with power transmitting anchor
ES2297604T3 (es) Arrollamiento de acoplamiento para un tubo de proteccion y metodo para instalacion de un cable de fibras.
US10989492B1 (en) Archery cam shaft with integrated cable track
US11378350B1 (en) Projectile launching device with self-timing and without cam lean
KR20120023674A (ko) 변형 캠이 장착된 컴파운드 보우
US11371795B1 (en) Projectile launching device with self-timing and without cam lean
CN1053303A (zh) 胶卷暗盒
CN1134686C (zh) 光纤连接器套箍
CN1134687C (zh) 光缆的连接器套箍中的对准系统
US20190113300A1 (en) Composite string material
US20220136797A1 (en) Energy Storage System for a Bow
KR20110058756A (ko) 단순한 네거티브 렛-오프 캠을 가진 숏 보우
WO2020222409A1 (ko) 복합소재를 이용한 광섬유 복합가공지선
KR20110044841A (ko) 네거티브 렛-오프 캠을 가진 컴파운드 슬링보우
CN109581608A (zh) 一种老旧小区跨楼宇网络光纤线布线装置
EP2450728A1 (en) Optical fibre tray
EP3467425B1 (en) Multi-path archery string
CN202141467U (zh) 光纤环绕制用导纤压脚杆
CN112304301A (zh) 一种小口径圆柱形高精度光纤陀螺的光纤环实现方法
US20180292165A1 (en) Differential compound bow
US5385319A (en) Missile with inside payout optical fiber canister
WO2015080338A1 (ko) 가이드부를 포함하는 풍력발전기의 블레이드 경사각 조절장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007021.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744858

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13578076

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744858

Country of ref document: EP

Kind code of ref document: A2