WO2011102333A1 - 人工多能性幹細胞の製造方法 - Google Patents

人工多能性幹細胞の製造方法 Download PDF

Info

Publication number
WO2011102333A1
WO2011102333A1 PCT/JP2011/053110 JP2011053110W WO2011102333A1 WO 2011102333 A1 WO2011102333 A1 WO 2011102333A1 JP 2011053110 W JP2011053110 W JP 2011053110W WO 2011102333 A1 WO2011102333 A1 WO 2011102333A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
cells
cell
gene
day
Prior art date
Application number
PCT/JP2011/053110
Other languages
English (en)
French (fr)
Inventor
友昭 菱田
晶彦 奥田
英政 加藤
Original Assignee
学校法人埼玉医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人埼玉医科大学 filed Critical 学校法人埼玉医科大学
Priority to EP11744619.5A priority Critical patent/EP2537920A4/en
Priority to JP2012500593A priority patent/JP5843111B2/ja
Priority to US13/578,777 priority patent/US20130011921A1/en
Publication of WO2011102333A1 publication Critical patent/WO2011102333A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts

Definitions

  • the present invention relates to a method for producing true induced pluripotent stem cells.
  • pluripotent cells include embryonic stem cells (ES cells) obtained from early embryos. ES cells can be proliferated almost indefinitely while maintaining the pluripotency that theoretically differentiates into all tissues.
  • ES cells embryonic stem cells
  • pluripotency inducers such as Oct3 / 4, Sox2, Klf4, and c-Myc have been introduced into somatic cells to force them to express and have self-proliferation and differentiation pluripotency similar to those of ES cells.
  • Techniques for producing induced pluripotent stem cells induced pluripotent stem cells (induced pluripotent stem cells; iPS cells) have been developed (see, for example, Non-Patent Documents 1 to 3).
  • iPS cells induced pluripotent stem cells
  • Oct3 / 4 Sox2, c-Myc, and Klf4 are introduced as pluripotency inducers, and mouse embryonic fibroblasts and human mature skin are introduced.
  • IPS cells are obtained from cells.
  • Oct4, Sox2, Nanog, and Lin28 are introduced as pluripotency inducers to obtain iPS cells from human skin cells.
  • iPS cells can be prepared from the patient's own somatic cells, if necessary cells, tissues, and organs are produced by culturing the cells, they can be transplanted to the patient without causing the problem of immune rejection. In addition, it is expected that ethical problems that have hindered the practical application of ES cells can be solved.
  • iPS cells prepared by conventional methods contain many cell colonies (hereinafter referred to as “partial iPS cells”) that are judged to be insufficiently reprogrammed, in order to obtain true iPS cells. Need to be screened from numerous cell colonies.
  • partial iPS cells the efficiency of establishing not only true iPS cells but also partial iPS cells is extremely low, so it is difficult to obtain a large number of colonies for screening.
  • iPS cells obtained by this method have a high risk of tumor formation after transplantation because the p53 gene that works most suppressively on tumor production has been knocked down, and are difficult to put into practical use. it is conceivable that.
  • Non-Patent Documents 7 and 8 It has also been reported that various drugs such as Valproic acid increase the efficiency of iPS cell induction (see Non-Patent Documents 7 and 8). However, these drugs are expected to act on a very wide molecular group in cells, and in order to be used for transplantation, it is considered that detailed examinations such as side effects caused by using these drugs are necessary. .
  • the pluripotency inducer is introduced into cells using a viral vector.
  • the c-Myc gene which is a proto-oncogene, is likely to be reactivated in cells as a result of being incorporated into host DNA.
  • it has also been proposed to induce iPS cells by a method of introducing the c-Myc gene with a plasmid vector or a non-insertion-type recombinant viral vector, or a method of directly introducing a protein into the cell.
  • the c-Myc gene is not incorporated into the host genome, and carcinogenicity can be suppressed.
  • these methods have a problem that the efficiency of iPS cell induction is significantly reduced (see Non-Patent Documents 9 to 11).
  • An object of the present invention is to provide a method for efficiently producing iPS cells having a gene expression pattern similar to that of ES cells.
  • the present inventors have found that when somatic cells into which a pluripotency inducer has been introduced are cultured in the presence of nicotinamide, the induction efficiency is significantly increased; Obtained when the Myc family is included as a pluripotency inducer; nicotinamide increases the induction efficiency of iPS cells by suppressing the function of sirtuin or poly ADP ribose polymerase; It has been found that it is desirable to carry out the pluripotency inducer within a few days after introduction of the pluripotency inducer into the somatic cells, that is, at the initial induction. Furthermore, these methods are combined with the 2i method (Silva, J. et al.
  • the present invention [1] A step of introducing a pluripotency inducer containing at least a Myc family gene or Myc family protein into a somatic cell, and the somatic cell in the presence of a sirtuin inhibitor and / or a poly ADP ribose polymerase (PARP) inhibitor.
  • a method of producing an induced pluripotent stem cell (iPS cell) comprising a step of culturing; [2] The step of culturing the somatic cell in the presence of the sirtuin inhibitor and / or the PARP inhibitor is performed on the day 0 as the day when the step of introducing the pluripotency inducer into the somatic cell is performed.
  • the pluripotency inducer is one or more genes selected from the group consisting of Oct3 / 4 gene, Klf4 gene, Sox2 gene, c-Myc gene, L-Myc gene, Nanog gene, and Lin28 gene.
  • iPS cell induced pluripotent stem cell
  • iPS cell induced pluripotent stem cell
  • iPS cells Artificial pluripotent stem cells (iPS cells) produced by the method according to any one of [1] to [12] above; and [14] Sirtuin inhibitor or poly ADP ribose polymerase (PARP) inhibition
  • PARP poly ADP ribose polymerase
  • a true iPS cell having a gene expression pattern well similar to that of an ES cell can be efficiently obtained.
  • nicotinamide a kind of vitamin
  • iPS cells that have extremely low side effects on cells and that can be safely transplanted can be obtained.
  • nicotinamide is inexpensive and easy to put into practical use.
  • the production rate of true iPS cells can be further increased, and the necessity for screening can be reduced.
  • the induction speed is significantly improved, it is considered that the use of feeder cells derived from other species used for increasing the induction efficiency can be avoided, and the safety of iPS cells can be further enhanced.
  • FIG. 1 shows the results of inducing mouse iPS cells in the presence of nicotinamide.
  • the induction efficiency of iPS cells was remarkably increased (FIGS. 1A and B), except for c-Myc.
  • the induction efficiency was not improved (FIG. 1C).
  • FIG. 2 shows the results of GFP detection of mouse iPS cells induced in the presence and absence of nicotinamide. Before selection with puromycin (upper), the color is light green, indicating that there are many partial iPS cells.
  • FIG. 1 shows the results of GFP detection of mouse iPS cells induced in the presence and absence of nicotinamide. Before selection with puromycin (upper), the color is light green, indicating that there are many partial iPS cells.
  • FIG. 1 shows the results of GFP detection of mouse iPS cells induced in the presence and absence of nicotinamide. Before selection with puromycin (upper), the color is light green, indicating that there are many partial iPS cells.
  • FIG. 3 shows the results of confirming the influence on mouse iPS cell induction by changing the administration time of nicotinamide. It was confirmed that the induction efficiency was significantly increased by culturing in the presence of nicotinamide in the early stage of induction.
  • FIG. 4 is a photograph showing the state of the fourth day of induction when cultivated in the presence or absence of nicotinamide at the initial stage of induction. When cultured in the presence of nicotinamide, mouse iPS cell-like colonies were already observed on the 4th day.
  • FIG. 5 shows the results of measuring the number of cells and the number of AP positive colonies in each case of FIG.
  • FIG. 6 shows the results of inducing mouse iPS cells in the presence of resveratrol that activates sirtuins. When culturing in the presence of resveratrol at the beginning of induction, the induction efficiency was significantly reduced.
  • FIG. 7 shows the result of inducing mouse iPS cells by 2i method after nicotinamide treatment or non-treatment. It was confirmed that the induction efficiency of true iPS cells was significantly increased by combining the nicotinamide treatment and the 2i method (FIG. 7D).
  • FIG. 8 shows the results of confirming the influence on mouse iPS cell induction by changing the timing of starting the 2i method. It was found that the induction efficiency was highest when starting on day 13 after induction.
  • FIG. 9 shows the result of confirming the influence on iPS cell induction by performing 2i method after nicotinamide treatment. When the two methods were combined, it was found that the induction efficiency was about 10 times that of the conventional method. In addition, it was confirmed that the induction efficiency increased by a factor of 3 or more when nicotinamide was added from the first day compared with the case where it was added from the first day (FIGS. 9A and 9B).
  • FIG. 10 shows the results of inducing human iPS cells in the presence or absence of nicotinamide. When either c-Myc or L-Myc was used as the Myc family gene, the induction efficiency of iPS cells increased.
  • the first aspect of the method for producing iPS cells of the present invention comprises a step of introducing a pluripotency inducer containing at least a Myc family gene or Myc family protein into a somatic cell, the somatic cell as a sirtuin inhibitor and / or poly ADP. And culturing in the presence of a ribose polymerase (PARP) inhibitor.
  • PARP ribose polymerase
  • iPS cell Introduction process of pluripotency inducer, the term “iPS cell” is used in its broadest sense, and by acquiring a pluripotency inducer into a somatic cell, the ability to differentiate into a desired cell and a desired self-proliferation property have been acquired. It shall mean a cell. It is preferable that iPS cell differentiation pluripotency and self-proliferation are substantially the same as those of ES cells, but even if it is less than that, the present invention is not limited as long as it has the differentiation ability to desired cells and the desired self-proliferation. In iPS cells. In the present specification, all cells obtained by introducing a pluripotency inducer into somatic cells may be referred to as iPS cells.
  • the iPS cells include partial iPS cells that are insufficiently reprogrammed.
  • the latter may be referred to as "true iPS cells", but these are relative terms and are absolute It does not mean the state of.
  • IPS cells that are sufficiently reprogrammed to achieve a given purpose are considered true iPS cells.
  • the purpose is to differentiate into cells that constitute a predetermined organ
  • the iPS cells that have the ability to differentiate into the cells can be used even if they do not have the ability to differentiate into any other cells. In the invention, it is regarded as a true iPS cell.
  • Whether or not a certain cell is an iPS cell can be determined by a person skilled in the art according to a known method. For example, it can be determined that the cell is morphologically equivalent to an ES cell and can be determined as an iPS cell. Alternatively, a known differentiation induction method can be applied to culture the cell in vitro. The iPS cell may be determined after confirming that the cell can be differentiated. When the cell is a mouse cell, the cell may be injected into a fertilized egg to confirm that a chimeric mouse can be produced and determined to be an iPS cell.
  • the cells are transplanted subcutaneously in immunodeficient mice, and the tumor tissue formed after a lapse of a predetermined period is analyzed to confirm that the teratoma is a mixture of various tissues such as nerves, skin, and muscles. It can also be confirmed and determined to be iPS cells. It may be determined that the cell is an iPS cell by confirming that an undifferentiated marker such as a marker gene specifically expressed in the ES cell is expressed in the cell. Examples of marker genes specifically expressed in ES cells include Fbx15, Nanog, Fgf4, Rex1, Oct4 and the like.
  • Examples of the undifferentiation marker include alkaline phosphatase, and it can be determined that the cell is in an undifferentiated state by confirming that alkaline phosphatase staining is positive.
  • a gene-wide gene expression pattern may be detected by a microarray or the like, and an iPS cell having a high correlation with an ES cell expression pattern may be determined.
  • Cell surface antigen expression characteristics can be compared with ES cells, and those with high correlation can be determined as iPS cells.
  • DNA methylation in the cells may be detected and compared with ES cells to confirm similarity with ES cells. Whether or not iPS cells are determined can be determined by at least one of the above methods, but can also be determined by combining two or more.
  • iPS cells have the same morphology as ES cells, the presence of undifferentiated marker expression, the ability to differentiate in vitro, and the ability to form teratomas. Is preferably determined. In addition to these four, it is more preferable to confirm whether a chimeric mouse can be produced by direct injection into a blastocyst.
  • a specific example of selecting iPS cells closer to ES cells is a method using expression of Nanog gene as an index (Okita et al., (2007) Nature 448, doi: 10.1038 / nature05934).
  • Bacterial Artificial Chromosome (BAC) with Nanog gene placed in the center is isolated, green fluorescent protein (GFP) gene, internal ribosome entry site (IRES) And the puromycin resistance gene (Puro r ) is inserted into the 5 ′ untranslated region of the Nanog gene.
  • GFP green fluorescent protein
  • IVS internal ribosome entry site
  • Puro r puromycin resistance gene
  • Nanog gene-expressing cells i.e., fully reprogrammed iPS cells
  • GFP positive, puromycin Gain resistance iPS cells
  • iPS cells can be selected by adding puromycin to the medium. According to this method, iPS cells exhibiting the same proliferation ability, gene expression, and DNA methylation as ES cells can be obtained.
  • pluripotency inducer is a factor that can restore pluripotency to a somatic cell by introduction into the somatic cell.
  • pluripotency inducers include Oct3 / 4, Klf family genes (Klf1, Klf2, Klf4, Klf5, etc.), Myc family genes (c-Myc, N-Myc, L-Myc, etc.), Sox family genes ( Sox1, Sox2, Sox3 etc.), Nanog gene and Lin28 gene.
  • a Myc family gene or Myc family protein as a pluripotency inducer, but as other pluripotency inducers, Is preferably introduced with a combination comprising at least two of the three genes Oct3 / 4, Klf4 and Sox2.
  • Myc family it is also preferable to introduce a combination of four genes, Oct4, Sox2, Nanog, and Lin28.
  • pluripotency inducers include Fbx15, E-Ras, ECAT15-2, Tcl1, ⁇ -catenin, ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, ECAT15-1, Fthl17, Sal14, Rex1, UTF1, Stella
  • Pluripotency inducers are not limited to genes, but proteins expressed by the above genes (for example, Myc family proteins expressed by Myc family genes (c-Myc, N-Myc, L-Myc, etc.)) and other compounds Or a combination of genes, proteins and / or compounds.
  • the method for introducing a pluripotency inducer into a somatic cell is not particularly limited, but when the pluripotency inducer is a gene, a vector suitable for a somatic cell serving as a host can be used.
  • viral vectors such as retroviruses and lentiviruses, plasmid vectors, non-insertion-type recombinant virus vectors, artificial chromosome vectors (YAC, bacterial artificial chromosomes; BAC, P1-derived artificial chromosomes; PAC, etc.
  • a gene can be efficiently introduced by infecting a cell with a virus.
  • foreign genes may be reactivated as a result of random integration into host DNA. Accordingly, when a proto-oncogene or the like is introduced as a pluripotency inducer, a method of introducing a plasmid vector, a transposon, a non-insertion type recombinant virus vector, or a method of introducing a protein is preferable. These vectors and proteins can be introduced into cells by known methods.
  • a somatic cell is a general term for cells other than germ cells among all cells constituting a living body.
  • the type of somatic cell used in the method of the present invention is not particularly limited, and it may be a fetal somatic cell or an adult somatic cell.
  • Cells derived from tissues such as umbilical cord blood, umbilical cord, and placenta can also be used. These cells can be established by a known method in an appropriate medium after being collected from a living body. As the somatic cell, those derived from any mammal can be used, and those derived from humans, mice, rats, rabbits, hamsters, cattle, horses, sheep, etc. are preferable.
  • somatic cells collected from a patient For example, fibroblasts established from easily collected skin can be used.
  • Disease-specific iPS cells can also be established using somatic cells collected from patients with specific diseases. Disease-specific iPS cells are useful for studying the onset mechanism and developing therapeutic agents.
  • a Myc family gene or Myc family protein is introduced into a somatic cell as a pluripotency inducer.
  • Myc family genes c-Myc gene and N-Myc are transcriptional regulatory factors involved in cell differentiation and proliferation, and have been reported to be involved in maintaining pluripotency.
  • the c-Myc gene When the c-Myc gene is introduced into a cell as a pluripotency inducer, it may be incorporated into the host DNA and reactivated to form a tumor, but iPS cell induction efficiency without the c-Myc gene Is known to be significantly reduced (eg, Silva, J. et al, PLoS Biology 2008 Oct 21; 6 (10): e253).
  • Reactivation of the c-Myc gene can be prevented by using a method that does not integrate into the genomic DNA of the somatic cell when the c-Myc gene is introduced into the somatic cell.
  • a method that does not integrate into the genomic DNA of the somatic cell when the c-Myc gene is introduced into the somatic cell examples include a method using a plasmid vector, a transposon, a non-insertion-type recombinant virus vector, and the like as the vector.
  • the induction efficiency of iPS cells decreases.
  • iPS cells can be induced by introducing c-Myc protein instead of c-Myc gene, but this method also has low induction efficiency.
  • the reduced induction efficiency can be significantly increased, and safe and sufficiently reprogrammed iPS cells can be efficiently obtained.
  • an N-Myc or L-Myc gene as a Myc family gene can be introduced into a somatic cell as a pluripotency inducer.
  • the L-Myc gene has been reported to be less carcinogenic than the c-Myc gene, and in contrast to iPS cell induction by the introduction of the c-Myc gene, safe iPS cells with reduced carcinogenicity have been reported. Can be guided.
  • L-Myc gene has low carcinogenicity, it can be incorporated into host DNA by a method with high introduction efficiency. By adopting such a pluripotency inducer introduction method with high induction efficiency and carrying out the iPS cell induction method of the present invention, higher induction efficiency of iPS cells can be obtained.
  • the method for producing iPS cells according to the present invention includes a step of culturing somatic cells in the presence of a sirtuin inhibitor and / or a PARP inhibitor after the step of introducing a pluripotency inducer.
  • Sirtuins are a group of NAD-dependent deacetylases, such as SIRT1.
  • SIRT1 is an enzyme involved in DNA repair and transcription control, and uses histone, p53, NF ⁇ B, etc. as a substrate.
  • PARP is an enzyme that catalyzes the polyADP-ribosylation reaction that plays an important role in DNA repair and transcriptional control.
  • the sirtuin inhibitor and / or PARP inhibitor is preferably added at a relatively early stage after the introduction of the pluripotency inducer.
  • the day of introduction is defined as day 0, and is added to the medium daily for less than 10 days, preferably less than 8 days, more preferably less than 4 days after introduction.
  • the sirtuin inhibitor and / or the PARP inhibitor is preferably started on or after the first day, with the day on which the pluripotency inducer is introduced as day 0. By starting from the first day onward, the iPS cell induction efficiency can be remarkably increased.
  • examples of sirtuin inhibitors and / or PARP inhibitors include sirtuin inhibitors such as Sirtinol, Cambinol, AGK2, Splitomicin, PARP inhibitors 3-Aminobenzamide, DPQ, NU1025, sirtuins and PARP.
  • examples thereof include nicotinamide, which is an inhibitor, and nicotinamide is particularly preferably used. Nicotinamide is one of vitamin B3 and a precursor of nicotinamide adenine dinucleotide (NAD), a coenzyme for redox reaction. Since it is a substance that is originally used in vivo, it is considered that side effects on cells are extremely low, and iPS cells that are safe even after transplantation can be obtained. Moreover, since it is an inexpensive drug, it is suitable for mass production.
  • sirtuin inhibitors such as Sirtinol, Cambinol, AGK2, Splitomicin, PARP inhibitors 3-Aminobenzamide,
  • the sirtuin inhibitor and / or PARP inhibitor may be added to the cell culture medium into which the pluripotency inducer has been introduced.
  • the concentration of the sirtuin inhibitor and / or PARP inhibitor to be added is not particularly limited. For example, in the case of nicotinamide, it is about 1 mM to about 10 mM, preferably about 3 mM to about 5 mM, and most preferably about 4 mM.
  • the concentration of the sirtuin inhibitor and / or the PARP inhibitor can be appropriately selected by those skilled in the art.
  • the cells are further cultured in the presence of a GSK-3 inhibitor and a MEK inhibitor after the culturing step in the presence of a sirtuin inhibitor and / or a PARP inhibitor. .
  • a GSK-3 inhibitor refers to an inhibitor that targets one or more members of the glycogen synthase kinase 3 (GSK-3) family.
  • GSK-3 ⁇ and GSK-3 ⁇ are well known as members of the GSK3 family, but are not limited thereto.
  • an inhibitor of GSK-3 ⁇ is particularly preferable.
  • Examples of the GSK-3 inhibitor include CHIR98014, CHIR99021, AR-AO144-18, TDZD-8, SB216763, and SB415286.
  • CHIR99021 and CHIR98014 are particularly preferred because of their specificity for GSK-3.
  • the concentration of the GSK-3 inhibitor to be added is not particularly limited.For example, in the case of CHIR99021, it is preferably added to the medium at a concentration of 0.01 ⁇ M-100 ⁇ M, more preferably 0.1 ⁇ M-20 ⁇ M, still more preferably 0.3. ⁇ M-10 ⁇ M.
  • concentration of other GSK-3 inhibitors can also be appropriately selected by those skilled in the art.
  • nucleic acids such as siRNA, antisense, and ribozyme may be used. For example, if an siRNA containing an RNA strand complementary to a part of the GSK-3 gene is introduced into a cell, the GSK-3 mRNA can be degraded and the expression of the GSK-3 protein can be inhibited.
  • MEK inhibitors are MAP kinase kinase (mitogen activated protein) kinase / ERK kinase; An inhibitor that targets one or more members of the MEK family.
  • MEK family members include MEK1, MEK2 and MEK3.
  • Examples of MEK inhibitors include, but are not limited to, PD184352 and PD98059 that inhibit MEK1, PD0325901, U0126, and SL327 that inhibit MEK1 and MEK2. Of these, PD184352 and PD0325901 are particularly preferred because of their high specificity for MEK and high effects as inhibitors.
  • nucleic acids such as siRNA, antisense, and ribozyme may be used.
  • MEK mRNA can be degraded and MEK protein expression can be inhibited.
  • the MEK inhibitor is preferably added to the medium at a concentration of 0.1 ⁇ M to 25 ⁇ M, more preferably 0.1 ⁇ M to 5 ⁇ M, still more preferably 0.2 ⁇ M to 2 ⁇ M.
  • an antagonist of fibroblast growth factor receptor (fibroblast factor receptor, FGFR) (eg, SU5402, PD173074, etc.) is further added to 0.1 ⁇ M. It is also preferable to add to the medium at a concentration of -20 ⁇ M, preferably 0.5 ⁇ M-10 ⁇ M, more preferably 1-5 ⁇ M.
  • the step of culturing cells in the presence of a GSK-3 inhibitor and a MEK inhibitor is performed after the step of culturing somatic cells in the presence of the above-described sirtuin inhibitor and / or PARP inhibitor.
  • the step of culturing cells in the presence of a GSK-3 inhibitor and a MEK inhibitor is preferably after the 5th day, more preferably after the 7th day, after the step of introducing a pluripotency inducer into somatic cells. More preferably, after the 9th day, most preferably after the 11th day.
  • the addition of the GSK-3 inhibitor and MEK inhibitor is preferably started before the 15th day.
  • the second aspect of the iPS cell production method of the present invention includes a step of introducing a pluripotency inducer into a somatic cell, and a step of further culturing the somatic cell in the presence of a GSK-3 inhibitor and a MEK inhibitor. And the step of further culturing the somatic cell in the presence of the GSK-3 inhibitor and the MEK inhibitor starts after day 5 after the step of introducing the pluripotency inducer into the somatic cell.
  • the step of culturing cells in the presence of a GSK-3 inhibitor and a MEK inhibitor is preferably after the 5th day, more preferably after the 7th day, after the step of introducing a pluripotency inducer into somatic cells. More preferably, the treatment starts on the 10th day, and most preferably starts on the 12th day and before the 15th day.
  • culturing in the presence of a GSK-3 inhibitor and MEK inhibitor is a relatively harsh condition, so that the addition of GSK-3 inhibitor and MEK inhibitor in the early induction stage causes cell death. Conceivable.
  • the other term used about this aspect is synonymous with the 1st aspect mentioned above, and abbreviate
  • the iPS cell culture kit of the present invention contains at least a sirtuin inhibitor or a poly ADP ribose polymerase (PARP) inhibitor, a GSK-3 inhibitor, and a MEK inhibitor.
  • PARP poly ADP ribose polymerase
  • a GSK-3 inhibitor a GSK-3 inhibitor
  • MEK inhibitor a MEK inhibitor.
  • each reagent can be added in turn to the somatic cell culture medium into which the pluripotency-inducing factor has been introduced, and iPS cells can be cultured easily. be able to.
  • the kit preferably includes other components of the culture medium, a culture container, instructions for use, and the like.
  • the terms used in the present specification are used to describe specific embodiments, and are not intended to limit the invention.
  • Test 1 Induction of mouse iPS cells in the presence of nicotinamide Introducing retrovirus vectors expressing each pluripotency inducer (Oct-3 / 4, Sox2, KLF4, c-Myc) into PLAT -E cells (Kitamura T, et al. (2003) Exp Hematol 31: 1007-1014). Two days after the gene transfer, the culture supernatant of PLAT-E cells was collected and passed through a 0.45 ⁇ m cellulose acetate filter. Thereafter, polybrene was added to a final concentration of 4 mg / ml, each culture supernatant was mixed in an equal amount, and the mixture was mixed with Nanog-GFP MEF (Okita K, Ichisaka T, Yamanaka S.
  • Nanog-GFP MEF insert a GFP-IRES-Puro r cassette BAC with mouse Nanog gene, the BAC mouse embryonic fibroblasts; is a cell which has been introduced into (mouse embryonic fibroblast MEF). Nanog-GFP MEF expresses GFP in pluripotent cells but does not express GFP upon differentiation.
  • FIG. 1B shows the average number of Puro-resistant AP-positive colonies after 3 seeds in a 3.5 cm 2 dish. Error bars indicate standard deviation. In cells infected with 4F (c-Myc), administration of nicotinamide markedly increased the number of colonies that were resistant to puromycin.
  • FIG. 1C shows the average number of Puro-resistant AP-positive colonies after seeding 3 pieces of 7 ⁇ 10 4 3F-infected cells in a 3.5 cm 2 dish. Error bars indicate standard deviation. In cells infected with 3F, no increase in induction efficiency by nicotinamide was observed.
  • FIG. 2 the result of having observed Nanog-GFP MEF which infected 4F (c-Myc) with the fluorescence microscope is shown.
  • the experimental method is the same as in Test 1, but the upper GFP-observed photograph shows colonies that have not been selected by Puro, and the lower GFP-observed photograph shows colonies after Puro has been selected. Yes.
  • the cells after introduction of the pluripotency inducer showed slightly stronger color development when cultured in the presence of nicotinamide (Nam), but all showed weak color development.
  • Test 2 Optimization of nicotinamide treatment
  • nicotinamide up to 24 days after retrovirus infection (Nam0-24d), up to 4 days after retrovirus infection (Nam0-4d), 4 after retrovirus infection Nicotinamide was added under each condition from day 24 to day 24 (Nam4-24d), and iPS cell induction by 4F (c-Myc) was performed.
  • Experimental methods other than the nicotine treatment time were in accordance with Test 1. The results are shown in FIG.
  • nicotinamide Since the effects of nicotinamide are limited to the early stage of iPS cell induction, nicotine was examined from day 0 to day 4 after infection to investigate whether nicotinamide was affected on day 4 after retrovirus infection. Cells on day 4 after infection were observed in those treated with amide (Nam) and those not treated. As a result, iPS cell-like colonies were observed in the Nam treatment group (FIGS. 4 and 5A). Next, in order to examine the influence of nicotinamide on the 4th day after infection, the number of cells and AP staining were performed. As a result, an increase in the number of cells (FIG.
  • Test 3 Examination of mechanism of iPS cell induction effect by nicotinamide Nicotinamide is known to suppress PARP and sirtuin. Therefore, resveratrol that activates sirtuin (SIRT1) was added to the medium instead of nicotinamide, and the iPS cell induction effect was examined.
  • the experimental method conformed to Test 2. However, resveratrol (Res) was added to the medium to a final concentration of 10 mM. The results are shown in FIG.
  • Test 4 Induction of iPS cells in the presence of MEK inhibitor and GSK-3 inhibitor (2i method)
  • a method of culturing in the presence of MEK inhibitor and GSK-3 inhibitor (2i method) known to promote reprogramming of partial iPS cells was combined with culturing in the presence of nicotinamide.
  • 4F c-Myc
  • 4F was forcibly expressed by retrovirus.
  • the cells were seeded on feeder cells and cultured on mouse ES cell medium from the next day. From day 12 after infection, the medium was replaced with serum-free mouse ES cell medium (2i medium) containing PD0325901 (1 ⁇ M) and CHIR99021 (3 ⁇ M).
  • Test 5.2 Optimization of the conditions of the 2i method In order to optimize the effect of the 2i method, the timing of adding the MEK inhibitor and GSK-3 inhibitor to the medium was examined.
  • 4F c-Myc
  • 4F was forcibly expressed by retrovirus.
  • the cells On the 4th day after retrovirus infection, the cells were seeded on feeder cells, and cultured in mouse ES cell medium until the next day, when replaced with 2i medium.
  • Culture in 2i medium (1) 5 days after retrovirus infection, (2) 7 days, (3) 9 days, (4) 11 days, (5) 13 days, (6) 15 days And started until day 17 after infection.
  • Drug selection was performed by Puro for 8 days from the 17th day after infection, and then AP staining was performed. The results are shown in FIG. When the 2i method was performed from the 13th day ((5)) to the 17th day, the largest number of Puro resistant AP positive colonies was obtained (FIG. 8).
  • Test 6 Induction test of iPS cells by combination of nicotinamide and 2i method The 2i method is performed under the same conditions as in (1) of 5 and nicotinamide (final concentration 4 mM) is applied from day 0 to day 4 after retrovirus infection. In addition, when cultured, the proportion of true iPS cells was significantly increased (FIG. 9A). Next, in order to compare the case where the nicotinamide treatment was performed simultaneously with the retrovirus infection and the case where the nicotinamide treatment was performed one day after the infection, examination was performed according to the condition of Test 5 (1). As a result, as shown in FIG. 9B, the induction efficiency is more than three times higher when nicotinamide is added from day 1 to day 4 than from day 0 to day 4 after retrovirus infection. It was confirmed.
  • Test 7 Induction of human iPS cells in the presence of nicotinamide Introducing retrovirus vectors expressing each pluripotency inducer (Oct-3 / 4, Sox2, KLF4, c-Myc) into PLAT -Introduced into GP cells (Morita S, et al. (2000) Gene Therapy 7: 1063-1066). Two days after the gene introduction, the culture supernatant of PLAT-GP cells was collected and passed through a 0.45 ⁇ m cellulose acetate filter. Thereafter, polybrene was added to a final concentration of 4 mg / ml, each culture supernatant was mixed in an equal amount, and the mixture was added to human fibroblasts for virus infection.
  • each pluripotency inducer Oct-3 / 4, Sox2, KLF4, c-Myc
  • the cells were seeded on feeder cells (4F (c-Myc): 2.5 ⁇ 10 4 cells; 4F (L-Myc): 5.0 ⁇ 10 4 cells), and the next day human ES cell medium (Takahashi K, et al (2007) Cell 131: 861-872). Thereafter, the medium was changed every 2 days and cultured for up to 30 days after infection. Thereafter, alkaline phosphatase (AP) staining was performed, and the number of AP positive colonies was counted. Nicotinamide was added to a final concentration of 4 mM at the same time as retrovirus infection, and then added at the same concentration every time the medium was changed until the 6th day of infection.
  • AP alkaline phosphatase
  • the control group was cultured for 30 days after infection without adding nicotinamide.
  • the results are shown in FIG.
  • the number of AP-positive colonies increased in the group to which nicotinamide was added as compared to the group to which nicotinamide was not added.
  • the efficiency of AP positive colony induction could be improved by culturing in the presence of a sirtuin inhibitor and / or a PARP inhibitor (FIG. 10A).
  • the induction efficiency of AP positive colonies can be improved by culturing in the presence of a sirtuin inhibitor and / or a PARP inhibitor. (FIG. 10B).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Transplantation (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 【課題】本発明は、ES細胞と遺伝子発現パターンがよく類似したiPS細胞を効率的に製造する方法を提供することを目的とする。 【解決手段】本発明は、少なくともMycファミリー遺伝子又はMycファミリータンパク質を含む多能性誘導因子を体細胞に導入する工程と、サーチュイン阻害剤及び/又はポリADPリボースポリメラーゼ(PARP)阻害剤の存在下で前記体細胞を培養する工程と、を含む人工多能性幹細胞(iPS細胞)の製造方法を提供する。

Description

人工多能性幹細胞の製造方法
 本発明は、真の人工多能性幹細胞を製造する方法に関する。
 近年、再生医療等に供することを目的として、多能性、即ち個体を構成するあらゆる細胞に分化し得る能力を有する細胞の研究が進められている。多能性を有する細胞として、初期胚から得られる胚性幹細胞(ES細胞)がある。ES細胞は、理論上すべての組織に分化する多能性を維持したまま、ほぼ無限に増殖させることができる。
 しかしながら、ES細胞を再生医療に利用する場合、他人の受精卵から作られたものを患者に移植することになるため、拒絶反応が惹起され得る。また、ヒトの胚を破壊して樹立するため、倫理的な問題がある。そこで、いったん特定の細胞に分化した体細胞を脱分化させ、ES細胞に匹敵する多能性を獲得させるリプログラミング技術が求められていた。
 近年、Oct3/4、Sox2、Klf4、c-Mycなどの多能性誘導因子を体細胞に導入し強制的に発現させることにより、ES細胞とほぼ同等の自己増殖性と分化多能性を有する人工多能性幹細胞(induced pluripotent stem cell; iPS細胞)を作製する技術が開発された(例えば、非特許文献1~3を参照)。非特許文献1及び2に記載の方法では、多能性誘導因子として、Oct3/4、Sox2、c-Myc、及びKlf4の4つを導入し、マウス胚性繊維芽細胞及びヒトの成熟した皮膚細胞からiPS細胞を得ている。一方、非特許文献3の方法では、多能性誘導因子として、Oct4、Sox2、Nanog、及びLin28の4つを導入し、ヒトの皮膚細胞からiPS細胞を得ている。
 iPS細胞は、患者自身の体細胞から作製することができるので、これを培養して必要な細胞や組織、臓器を製造すれば、免疫拒絶の問題を生じることなく患者に移植できる。また、ES細胞の実用化において障害となっていた倫理的な問題も解消できるものと期待されている。
 iPS細胞がリプログラミングされたこと、即ち多能性を回復したことを判断する手段として、ES細胞特異的に発現する遺伝子が発現するか否か確認する方法がある。
 Silvaらが、比較的リプログラミングされやすい神経幹細胞に、Oct4、Sox2、c-Myc、Klf4の4つの多能性誘導因子をレトロウイルスによって導入したところ、3日後にはES細胞に似た外観を呈するようになり、さらに2日後には、ES細胞様の細胞でプレートがコンフルエントになり継代が必要となった。しかしながら、これらの細胞において、Fgf4、Rex1、Nanog、内因性Oct4の4つのES細胞マーカーの発現を転写レベルで確認したところ、いずれも発現はしていたものの、ES細胞に比較すると発現レベルは低いことを見出した。また、免疫染色により、Nanogタンパク質は一部の細胞でしか発現していないことを確認した(非特許文献4を参照)。
 このように、従来の方法で作製したiPS細胞は、リプログラミングが不十分と判断される細胞コロニー(以下、「partial iPS細胞」という。)が多く含まれるため、真のiPS細胞を得るためには、数多くの細胞コロニーからスクリーニングする必要がある。しかしながら、現在の技術水準では、真のiPS細胞のみならず、partial iPS細胞の樹立効率も極めて低いため、多数のコロニーを得てスクリーニングをすることも困難である。
 最近、複数の研究室から、Oct3/4、Sox2、Klf4、c-Mycの4つの多能性誘導因子を導入した細胞に、癌抑制遺伝子のp53に対するshRNAを導入することにより、iPS細胞の誘導効率が上昇することが報告された(非特許文献5及び6を参照)。しかしながら、この方法で得られるiPS細胞は、腫瘍産生に最も抑制的に働くp53遺伝子がノックダウンされていることから、移植後の腫瘍化の危険性が高い可能性が高く、実用化は難しいものと考えられる。
 また、Valproic acid等、様々な薬剤がiPS細胞誘導の効率を上昇させることも報告されている(非特許文献7及び8を参照)。しかしながら、これらの薬剤は、細胞内で極めて広い分子群に作用することが予想され、移植に用いるためには、これらの薬剤を用いたことによる副作用などについて詳細な検討が必要であると考えられる。
 一方、従来の方法では、上記多能性誘導因子はウイルスベクターを用いて細胞に導入される。当該方法では、癌原遺伝子であるc-Myc遺伝子が宿主DNAに取り込まれる結果、細胞内で再活性化される可能性が高い。そこで、c-Myc遺伝子をプラスミドベクターや非挿入型組換えウイルスベクターで導入する方法によって、あるいは、タンパク質を細胞に直接導入する方法によってiPS細胞を誘導することも提案されている。これらの方法によれば、c-Myc遺伝子が宿主のゲノムに取り込まれず、癌原性を抑制することができる。しかしながら、これらの方法では、iPS細胞誘導の効率が著しく低下するという問題があった(非特許文献9~11を参照)。
Takahashi K,Yamanaka S. (2006) Cell 126: 663-676. Takahashi K,Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. (2007) Cell131: 861-872. Yu J, et al.(2007) Science 318: 1917-1920. Silva J. et al.(2008) PLoS Biology 6(10): e253 Kawamura T, et al. (2009) nature 460: 1140-1144. Hong H, et al. (2009) nature 460: 1132-1135. Huangfu D, et al. (2008) Nat. Biotechnol.26:795-797. Shi Y, et al. (2008) Cell Stem Cell 3: 568-574. Okita K, et al. (2008) Science.322:949-953. Stadtfeld M, et al. (2008) Science 322: 945-949. Zhou H, et al. (2009) Cell Stem Cell 4: 381-384.
 本発明は、ES細胞と遺伝子発現パターンがよく類似したiPS細胞を効率的に製造する方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために研究を重ねた結果、多能性誘導因子を導入した体細胞をニコチンアミドの存在下で培養すると、誘導効率が著しく上昇すること;当該効果は、多能性誘導因子としてMycファミリーを含む場合に得られること;ニコチンアミドはサーチュイン又はポリADPリボースポリメラーゼの機能を抑制することによってiPS細胞の誘導効率を上昇させていること;ニコチンアミド処理は、多能性誘導因子を体細胞に導入してから数日以内、即ち誘導初期に行うことが望ましいこと、を見出した。
 さらに、これらの方法に、従来、partial iPS細胞を真のiPS細胞に転換することが知られる2i法(Silva, J. et al. (2008) PLoS Biology 6(10): e253)を組み合わせたところ、真のiPS細胞の誘導効率を飛躍的に上昇させることを見出した。
 また、2i法を行う場合、多能性誘導因子を体細胞に導入してから、MEK阻害剤及びGSK-3β阻害剤による処理を開始するまでの時間を、所定の日数より長くすることによって、真のiPS細胞への転換効率を上昇させられることを確認した。
 即ち、本発明は、
〔1〕少なくともMycファミリー遺伝子又はMycファミリータンパク質を含む多能性誘導因子を体細胞に導入する工程と、サーチュイン阻害剤及び/又はポリADPリボースポリメラーゼ(PARP)阻害剤の存在下で前記体細胞を培養する工程と、を含む人工多能性幹細胞(iPS細胞)の製造方法;
〔2〕前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、10日目未満で終了する、上記〔1〕に記載の方法;
〔3〕前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、1日目以降に開始する、上記〔1〕又は〔2〕に記載の方法;
〔4〕前記サーチュイン阻害剤及び/又はPARP阻害剤が、ニコチンアミドである、上記〔1〕から〔3〕のいずれか1項に記載の方法;
〔5〕前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記ニコチンアミドを1mM~10mMの濃度で前記体細胞の培地に添加することを含む、上記〔4〕に記載の方法;
〔6〕前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程の後、GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程を含む、上記〔1〕から〔5〕のいずれか1項に記載の方法;
〔7〕前記GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、5日目以降に開始する、上記〔6〕に記載の方法;
〔8〕前記Mycファミリー遺伝子又はMycファミリータンパク質が、c-Myc遺伝子若しくはL-Myc遺伝子、又はc-Mycタンパク質若しくはL-Mycタンパク質である、上記〔1〕~〔7〕に記載の方法;
〔9〕前記多能性誘導因子が、Oct3/4遺伝子、Klf4遺伝子、Sox2遺伝子、Nanog遺伝子及びLIN28遺伝子からなる群より選択される1以上の遺伝子をさらに含む、上記〔1〕から〔8〕のいずれか1項に記載の方法;
〔10〕多能性誘導因子を体細胞に導入する工程と、GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程と、を含み、前記GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、5日目以降に開始する、人工多能性幹細胞(iPS細胞)の製造方法;
〔11〕前記多能性誘導因子が、Oct3/4遺伝子、Klf4遺伝子、Sox2遺伝子、c-Myc遺伝子、L-Myc遺伝子、Nanog遺伝子、及びLin28遺伝子からなる群より選択される1以上の遺伝子である、上記〔10〕に記載の方法;
〔12〕前記人工多能性幹細胞(iPS細胞)が、マウス又はヒト由来の細胞である〔1〕~〔11〕に記載の方法;
〔13〕上記〔1〕から〔12〕のいずれか1項に記載の方法で製造された人工多能性幹細胞(iPS細胞);及び
〔14〕サーチュイン阻害剤又はポリADPリボースポリメラーゼ(PARP)阻害剤と、GSK-3阻害剤と、MEK阻害剤と、を含む人工多能性幹細胞(iPS細胞)の培養キット、
に関する。
 本発明のiPS細胞の製造方法によれば、ES細胞と遺伝子発現パターンがよく類似した真のiPS細胞を効率よく得ることができる。
 サーチュイン阻害剤及び/又はPARP1阻害剤としてビタミンの一種であるニコチンアミドを用いれば、細胞に対する副作用が極めて低く、移植しても安全なiPS細胞を得ることができる。また、ニコチンアミドは安価なので、実用化しやすい。
 さらに、ニコチンアミドと2i法を組み合わせた方法によると、真のiPS細胞の産生率をより一層上昇させることができ、スクリーニングの必要性を低下させることができる。また、誘導速度も著しく改善されるので、誘導効率を上昇させるために用いられる他種由来のフィーダー細胞の使用を控えることができ、iPS細胞の安全性をさらに高めることができるものと考えられる。
図1は、ニコチンアミド存在下でマウスiPS細胞を誘導した結果を示す。Oct3/4、Sox2、Klf4、c-Mycの4因子を導入した細胞(4F(c-Myc))では、iPS細胞の誘導効率が著しく上昇したが(図1A、B)、c-Mycを除く3因子を導入した細胞(3F)では、誘導効率の改善は見られなかった(図1C)。 図2は、ニコチンアミド存在下及び非存在下で誘導したマウスiPS細胞のGFP検出の結果を示す。ピューロマイシンによる選択の前(上段)は、緑色が薄く、partial iPS細胞が多く含まれることを示す。 図3は、ニコチンアミドの投与時期を変えて、マウスiPS細胞誘導への影響を確認した結果である。誘導効率は、誘導初期にニコチンアミド存在下で培養することによって著しく上昇することが確認された。 図4は、誘導初期にニコチンアミド存在下又は非存在下で培養したときの、誘導4日目の様子を示す写真である。ニコチンアミド存在下で培養すると、4日目で既にマウスiPS細胞様コロニーが観察された。 図5は、図4のそれぞれの場合において細胞数とAP陽性コロニー数を計測した結果である。ニコチンアミド処理群では、細胞数の増加、並びにAP陽性コロニー数の顕著な増加が認められた。 図6は、サーチュインを活性化するレズベラトロール存在下でマウスiPS細胞を誘導した結果を示す。誘導初期にレズベラトロール存在下で培養すると、誘導効率は著しく低下した。 図7は、ニコチンアミド処理後又は非処理後において、2i法を行ってマウスiPS細胞を誘導した結果を示す。ニコチンアミド処理と2i法を組み合わせることにより、真のiPS細胞の誘導効率が著しく上昇することが確認された(図7D)。 図8は、2i法を開始する時期を変えて、マウスiPS細胞誘導への影響を確認した結果である。誘導後13日目に開始した場合に最も誘導効率が高いことがわかった。 図9は、ニコチンアミド処理後に2i法を行って、iPS細胞誘導への影響を確認した結果である。2つの方法を組み合わせると、従来法に比較して約10倍の誘導効率が得られることがわかった。また、ニコチンアミドを誘導後0日目から加えた場合に比較して、1日目から加えると誘導効率が3倍以上増加することが確認された(図9Aおよび9B)。 図10は、ニコチンアミド存在下又は非存在下でヒトiPS細胞を誘導した結果を示す。Mycファミリー遺伝子として、c-MycおよびL-Mycのいずれを用いた際にも、iPS細胞の誘導効率が上昇した。
 以下、本発明の実施形態を説明する。
(iPS細胞の製造方法の第一の態様)
 本発明のiPS細胞の製造方法の第一の態様は、少なくともMycファミリー遺伝子又はMycファミリータンパク質を含む多能性誘導因子を体細胞に導入する工程と、体細胞をサーチュイン阻害剤及び/又はポリADPリボースポリメラーゼ(PARP)阻害剤の存在下で培養する工程とを含むことを特徴とする。
(多能性誘導因子の導入工程)
 本明細書において、用語「iPS細胞」は、その最も広い意味で用いられ、体細胞に多能性誘導因子を導入することにより、所望の細胞への分化能と所望の自己増殖性を獲得した細胞を意味するものとする。iPS細胞の分化多能性と自己増殖性はES細胞とほぼ同等であることが好ましいが、それ以下であっても、所望の細胞への分化能と所望の自己増殖性を有する限り、本発明においてはiPS細胞に含まれる。
 なお、本明細書においては、体細胞に多能性誘導因子を導入して得られたすべての細胞をiPS細胞と呼ぶ場合もある。この場合、iPS細胞には、リプログラミングが不十分なpartial iPS細胞が含まれる。partial iPS細胞と、リプログラミングが十分な状態のiPS細胞とを区別するために、後者を「真のiPS細胞」と呼ぶ場合があるが、これらは相対的な用語であって、絶対的な特定の状態を意味するものではない。
 所定の目的を達成するのに十分なリプログラミング状態にあるiPS細胞は、真のiPS細胞とみなされる。例えば、所定の臓器を構成する細胞に分化させることが目的である場合、当該細胞への分化能を有するiPS細胞である限り、他のあらゆる細胞への分化能を有するものでなくても、本発明においては真のiPS細胞とみなされる。
 ある細胞がiPS細胞であるか否かは、当業者が公知の方法に従って判定することができる。例えば、当該細胞が形態学的にES細胞に同等であることを確認してiPS細胞と判定することもできるし、公知の分化誘導方法を適用して当該細胞をin vitroで培養し、所望の細胞に分化できることを確認してiPS細胞と判定してもよい。
 当該細胞がマウス細胞の場合、受精卵に当該細胞を注入し、キメラマウスを作製できることを確認してiPS細胞であると判定してもよい。
 また、当該細胞を免疫不全マウスの皮下に移植し、所定の期間経過後に形成される腫瘍組織を解析して、神経、皮膚、筋肉等様々な組織が混在する奇形腫(テラトーマ)であることを確認して、iPS細胞であると判定することもできる。
 当該細胞においてES細胞で特異的に発現しているマーカー遺伝子等、未分化マーカーが発現していることを確認してiPS細胞であると判定してもよい。ES細胞で特異的に発現しているマーカー遺伝子としては、例えば、Fbx15、Nanog、Fgf4、Rex1、Oct4等が挙げられる。未分化マーカーとしては、アルカリフォスファターゼも挙げられ、アルカリフォスファターゼ染色が陽性となることを確認して、細胞が未分化状態であることを判定することもできる。
 また、ゲノムワイドな遺伝子の発現パターンをマイクロアレイ等で検出し、ES細胞の発現パターンと相関の高いものをiPS細胞と判定してもよい。
 細胞の表面抗原の発現特性をES細胞と比較し、相関の高いものをiPS細胞と判定することもできる。
 さらに、当該細胞におけるDNAのメチル化を検出してES細胞と比較し、ES細胞との類似性を確認してもよい。
 iPS細胞であるか否かの判定は、上記方法の少なくとも一つによって行うことができるが、2つ以上を組み合わせて判定することもできる。例えば、形態がES細胞と同様であること、未分化マーカーの発現が認められること、in vitroで分化する能力を有していること、及びテラトーマ形成能を有することの4つをもってiPS細胞であると判定することが好ましい。また、これら4つに加え、胚盤胞に直接注入してキメラマウスを作製できるか否かを確認することがより好ましい。
 ES細胞により近いiPS細胞を選択する具体的な例として、Nanog遺伝子の発現を指標とする方法が挙げられる(Okita et al., (2007) Nature 448, doi:10.1038/nature05934)。この方法では、Nanog遺伝子を中央に配置したバクテリア人工染色体(Bacterial Artificial Chromosome: BAC)を単離し、緑色蛍光タンパク質(Green Fluorescent Protein; GFP)遺伝子、配列内リボソーム進入部位(internal ribosome entry site; IRES)、及びピューロマイシン耐性遺伝子(Puror)を、Nanog遺伝子の5’非翻訳領域に挿入する。
 このような構築物をES細胞に導入するとGFPが発現するが、分化した細胞では発現しない。同様に、マウス胎児繊維芽細胞に多能性誘導因子を導入し、同時に当該構築物を導入すると、Nanog遺伝子が発現する細胞、即ち、十分にリプログラミングされたiPS細胞はGFP陽性を呈し、ピューロマイシン耐性を獲得する。従って、培地にピューロマイシンを添加することにより、iPS細胞を選択することができる。この方法によれば、ES細胞と同等の増殖能、遺伝子発現、DNAメチル化を示すiPS細胞を得ることができる。
 本明細書において、多能性誘導因子とは、体細胞に導入することにより、当該体細胞に多能性を回復させることができる因子である。多能性誘導因子としては、例えば、Oct3/4、Klfファミリー遺伝子(Klf1、Klf2、Klf4、Klf5等)、Mycファミリー遺伝子(c-Myc、N-Myc、L-Myc等)、Soxファミリー遺伝子(Sox1、Sox2、Sox3等)、Nanog遺伝子、Lin28遺伝子を挙げることができる。
 後述するとおり、本発明に係るiPS細胞の製造方法の第一の態様では、多能性誘導因子としてMycファミリー遺伝子又はMycファミリータンパク質を用いることが必須であるが、その他の多能性誘導因子としては、Oct3/4、Klf4、Sox2の3遺伝子のうち少なくとも2つを含む組み合わせを導入することが好ましい。
 また、Mycファミリー以外に、Oct4、Sox2、Nanog、Lin28の4遺伝子の組み合わせを導入することも好ましい。
 その他、多能性誘導因子として、Fbx15、E-Ras、ECAT15-2、Tcl1、β-catenin、ECAT1、Esg1、Dnmt3L、ECAT8、Gdf3、Sox15、ECAT15-1、Fthl17、Sal14、Rex1、UTF1、Stella、Stat3、Grb2からなる群より選択される1以上の遺伝子を導入してもよい。
 多能性誘導因子は遺伝子に限定されず、上記遺伝子が発現したタンパク質(例えば、Mycファミリー遺伝子(c-Myc、N-Myc、L-Myc等)が発現したMycファミリータンパク質)や、その他の化合物であってもよく、遺伝子、タンパク質及び/又は化合物を組み合わせて用いてもよい。
 本発明において、多能性誘導因子の体細胞への導入方法は特に限定されないが、多能性誘導因子が遺伝子の場合、宿主となる体細胞に適したベクターを使用することができる。例えばレトロウイルスやレンチウイルスなどのウイルスベクター、プラスミドベクター、非挿入型組換えウイルスベクター、人工染色体ベクター(Yeast artificial chromosome; YAC、bacterial artificial chromosome; BAC、P1-derived artificial chromosome; PAC等)が挙げられるが、これらに限定されない。
 ウイルスベクターによれば、ウイルスを細胞に感染させることにより、効率よく遺伝子を導入することができる。しかしながら、外来遺伝子がランダムに宿主DNAに組み込まれる結果、再活性化されることがある。従って、多能性誘導因子として癌原遺伝子等を導入する場合には、プラスミドベクター、トランスポゾン、非挿入型組換えウイルスベクターを用いて導入する方法や、タンパク質を導入する方法が好ましい。これらのベクターやタンパク質は、公知の方法によって細胞内に導入することができる。
 なお、本明細書において、体細胞とは、生体を構成している全細胞のうち生殖細胞以外の細胞の総称である。本発明の方法に用いられる体細胞の種類は特に限定されず、胎児期の体細胞であっても成人の体細胞であってもよい。上皮細胞、繊維芽細胞、軟骨細胞、筋細胞、心筋細胞、肝細胞等の分化した細胞であっても、造血幹細胞、神経幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、皮膚幹細胞、筋幹細胞、生殖管細胞等の成体幹細胞であってもよい。臍帯血や臍帯、胎盤等の組織由来の細胞を用いることもできる。これらの細胞は、生体から採取した後、適当な培地において、公知の方法で樹立することができる。
 体細胞は、あらゆる哺乳動物に由来するものを用いることができるが、例えば、ヒト、マウス、ラット、ウサギ、ハムスター、ウシ、ウマ、ヒツジ等に由来するものが好ましい。
 本発明の方法で得られるiPS細胞を疾患の治療に用いる場合、患者から採取した体細胞を用いることが好ましく、例えば、採取しやすい皮膚から樹立した繊維芽細胞を用いることができる。
 また、特定の疾患の患者から採取した体細胞を用いて、疾患特異的iPS細胞を樹立することもできる。疾患特異的iPS細胞は、発症のメカニズムの研究や治療薬の開発に有用である。
 本発明に係るiPS細胞の製造方法では、多能性誘導因子として、少なくともMycファミリー遺伝子又はMycファミリータンパク質を体細胞に導入する。Mycファミリー遺伝子のうち、c-Myc遺伝子およびN-Mycは、細胞の分化及び増殖に関与する転写制御因子であり、多能性維持に関与することが報告されている。
 c-Myc遺伝子を多能性誘導因子として細胞に導入すると、宿主DNAに組み込まれて再活性化され、腫瘍が形成されることがあるが、c-Myc遺伝子を用いないとiPS細胞の誘導効率が著しく低下することが知られている(例えば、Silva, J. et al, PLoS Biology 2008 Oct 21;6(10):e253)。
 c-Myc遺伝子の再活性化は、c-Myc遺伝子を体細胞に導入するときに、体細胞のゲノムDNAに組み込まれない方法を用いることによって防ぐことができる。かかる方法としては、ベクターとして、プラスミドベクター、トランスポゾン、非挿入型組換えウイルスベクター等を用いる方法が挙げられるが、これらのベクターを使用するとiPS細胞の誘導効率は低下する。また、c-Myc遺伝子ではなく、c-Mycタンパク質を導入してiPS細胞を誘導することもできるが、この方法も誘導効率は低い。
 しかしながら、本発明の方法によれば、低下した誘導効率を著しく上昇させることが可能であり、安全で十分にリプログラミングされたiPS細胞を効率よく得ることができる。
 または、Mycファミリー遺伝子として、N-MycもしくはL-Myc遺伝子を多能性誘導因子として体細胞に導入することもできる。特にL-Myc遺伝子は、c-Myc遺伝子に比べて発癌性を有さないと報告されており、c-Myc遺伝子の導入によるiPS細胞誘導に対して、発癌性を抑えた安全なiPS細胞を誘導することができる。さらに、L-Myc遺伝子は発癌性が低いことから、導入効率の高い方法で宿主DNAへ組み込ませることができ好ましい。このような、誘導効率の高い多能性誘導因子導入法を採用し、本発明のiPS細胞誘導法を実施すると、さらに高いiPS細胞の誘導効率を得ることができる。
(サーチュイン阻害剤及び/又はPARP阻害剤の存在下での培養工程)
 本発明に係るiPS細胞の製造方法は、多能性誘導因子の導入工程の後、体細胞をサーチュイン阻害剤及び/又はPARP阻害剤の存在下で培養する工程を含む。
 サーチュインはNAD依存性脱アセチル化酵素群であり、例えばSIRT1が挙げられる。SIRT1は、DNA修復や転写制御に関与する酵素であり、ヒストンやp53、NFκBなどを基質とする。また、PARPは、DNA修復や転写制御において重要な役割を果たすポリADPリボース化反応を触媒する酵素である。
 サーチュイン阻害剤及び/又はPARP阻害剤は、多能性誘導因子の導入後、比較的早い時期に添加することが好ましい。例えば、導入した日を0日として、導入後10日未満、好ましくは8日未満、さらに好ましくは4日未満、毎日培地に添加する。また、例えば、多能性誘導因子導入後、最初にコンフルエントになってトリプシン処理を行うまでの間、毎日サーチュイン阻害剤及び/又はPARP阻害剤を添加することも好ましい。
 一方で、サーチュイン阻害剤及び/又はPARP阻害剤は、多能性誘導因子を導入した日を0日として、1日目以降に開始することが好ましい。1日目以降に開始することにより、iPS細胞の誘導効率を著しく高くすることができる。
 本発明に係る方法において、サーチュイン阻害剤及び/又はPARP阻害剤としては、例えば、サーチュイン阻害剤であるSirtinol、Cambinol、AGK2、Splitomicin、PARP阻害剤である3-Aminobenzamide、DPQ、NU1025、サーチュイン及びPARP阻害剤であるニコチンアミドが挙げられ、特にニコチンアミドが好ましく用いられる。
 ニコチンアミドは、ビタミンB3の一つであり、酸化還元反応の補酵素であるニコチンアミドアデニンジヌクレオチド(NAD)の前駆物質である。本来生体内で利用される物質であるため、細胞に対する副作用が極めて低いと考えられ、移植しても安全なiPS細胞を得ることができる。また、安価な薬剤であるため、量産にも適する。
 サーチュイン阻害剤及び/又はPARP阻害剤は、多能性誘導因子を導入した細胞の培地に添加すればよい。添加するサーチュイン阻害剤及び/又はPARP阻害剤の濃度は特に限定されないが、例えば、ニコチンアミドであれば、約1mM~約10mM、好ましくは約3mM~約5mM、最も好ましくは4mM程度であり、その他のサーチュイン阻害剤及び/又はPARP阻害剤の濃度についても、当業者が適宜選択することができる。
 本工程におけるその他の培養条件(培地の組成、温度等)は、当業者が適宜選択することができる。
(GSK-3阻害剤及びMEK阻害剤の存在下での培養工程)
 本発明に係るiPS細胞の製造方法では、サーチュイン阻害剤及び/又はPARP阻害剤の存在下での培養工程後、GSK-3阻害剤及びMEK阻害剤の存在下で細胞をさらに培養することも好ましい。
 GSK-3阻害剤とは、グリコーゲンシンターゼキナーゼ3(glycogen synthase kinase 3; GSK-3)ファミリーの一以上のメンバーを対象とする阻害剤をいう。GSK3ファミリーのメンバーとしてはGSK-3α及びGSK-3βがよく知られているが、これらに限定されない。本発明に用いられるGSK-3阻害剤としては、GSK-3βの阻害剤が特に好ましい。
 GSK-3阻害剤としては、例えば、CHIR98014、CHIR99021、AR-AO144-18、TDZD-8、SB216763及びSB415286が挙げられる。GSK-3に対する特異性から、CHIR99021及びCHIR98014が特に好ましい。添加するGSK-3阻害剤の濃度は特に限定されないが、例えば、CHIR99021であれば、0.01μM-100μMの濃度で培地に添加することが好ましく、より好ましくは、0.1μM-20μM、さらに好ましくは0.3μM-10μMである。その他のGSK-3阻害剤の濃度についても、当業者が適宜選択することができる。
 GSK-3阻害剤として、siRNA、アンチセンス、リボザイム等の核酸を用いてもよい。例えば、GSK-3遺伝子の一部と相補的なRNA鎖を含むsiRNAを細胞に導入すれば、GSK-3のmRNAを分解し、GSK-3タンパク質の発現を阻害することができる。
 MEK阻害剤とは、MAPキナーゼキナーゼ(mitogen activated protein
kinase/ERK kinase; MEK)ファミリーの1以上のメンバーを対象とする阻害剤をいう。MEKファミリーのメンバーとしてはMEK1、MEK2及びMEK3が挙げられる。MEK阻害剤としては、例えば、MEK1を阻害するPD184352及びPD98059、MEK1及びMEK2を阻害するPD0325901、U0126及びSL327等が挙げられるがこれらに限定されない。この中で、PD184352及びPD0325901は、MEKに対する特異性が高く、阻害剤として効果も高いので特に好ましい。
 MEK阻害剤として、siRNA、アンチセンス、リボザイム等の核酸を用いてもよい。例えば、MEK遺伝子の一部と相補的なRNA鎖を含むsiRNAを細胞に導入すれば、MEKのmRNAを分解し、MEKタンパク質の発現を阻害することができる。
 MEK阻害剤は、0.1μM-25μMの濃度で培地に添加することが好ましく、より好ましくは、0.1μM-5μM、さらに好ましくは0.2μM-2μMである。
 GSK-3阻害剤及びMEK阻害剤の存在下で細胞を培養する工程では、さらに、繊維芽細胞成長因子レセプター(fibroblast growth factor receptor, FGFR)のアンタゴニスト(例えば、SU5402、PD173074等)を、0.1μM-20μM、好ましくは0.5μM-10μM、さらに好ましくは1-5μMの濃度で培地に添加することも好ましい。
 GSK-3阻害剤及びMEK阻害剤の存在下で細胞を培養する工程は、上述したサーチュイン阻害剤及び/又はPARP阻害剤の存在下で体細胞を培養する工程の後行われる。GSK-3阻害剤及びMEK阻害剤の存在下で細胞を培養する工程は、体細胞に多能性誘導因子を導入する工程の後、好ましくは5日目以降、より好ましくは7日目以降、さらに好ましくは9日目以降、最も好ましくは11日目以降である。
 一方で、GSK-3阻害剤及びMEK阻害剤の添加は、15日目より前に開始することが好ましい。
 本工程におけるその他の培養条件(培地の組成、温度等)は、当業者が適宜選択することができる。
(iPS細胞の製造方法の第二の態様)
 本発明のiPS細胞の製造方法の第二の態様は、多能性誘導因子を体細胞に導入する工程と、GSK-3阻害剤及びMEK阻害剤の存在下で体細胞をさらに培養する工程と、を含み、GSK-3阻害剤及びMEK阻害剤の存在下で体細胞をさらに培養する工程が、多能性誘導因子を体細胞に導入する工程の後、5日目以降に開始することを特徴とする。
 GSK-3阻害剤及びMEK阻害剤の存在下で細胞を培養する工程は、体細胞に多能性誘導因子を導入する工程の後、好ましくは5日目以降、より好ましくは7日目以降、さらに好ましくは10日目以降、最も好ましくは12日目以降で15日目より前に開始する。
 通常の細胞にとって、GSK-3阻害剤及びMEK阻害剤存在下での培養は比較的過酷な条件であるため、GSK-3阻害剤及びMEK阻害剤の誘導初期における添加は、細胞死を惹起すると考えられる。
 なお本態様について用いられる他の用語は、上述した第一の態様と同義であり、ここでは説明を省略する。
 本工程におけるその他の培養条件(培地の組成、温度等)は、当業者が適宜選択することができる。
(培養キット)
 本発明のiPS細胞培養キットは、少なくともサーチュイン阻害剤又はポリADPリボースポリメラーゼ(PARP)阻害剤と、GSK-3阻害剤と、MEK阻害剤と、を含む。これらを適当な濃度で個別の容器に収納したキットを用いれば、多能性誘導因子を導入した体細胞の培地に各試薬を順に添加していくことができ、iPS細胞の培養を簡便に行うことができる。
 当該キットは、培地の他の成分、培養容器、使用説明書等を備えることも好ましい。
 なお、本明細書において用いられる用語は、特定の実施態様を説明するために用いられるのであり、発明を限定する意図ではない。
 また、本明細書において用いられる「含む」との用語は、文脈上明らかに異なる理解をすべき場合を除き、記述された事項(部材、ステップ、要素、数字など)が存在することを意図するものであり、それ以外の事項(部材、ステップ、要素、数字など)が存在することを排除しない。
 異なる定義が無い限り、ここに用いられるすべての用語(技術用語及び科学用語を含む。)は、本発明が属する技術の当業者によって広く理解されるのと同じ意味を有する。ここに用いられる用語は、異なる定義が明示されていない限り、本明細書及び関連技術分野における意味と整合的な意味を有するものとして解釈されるべきであり、理想化され、又は、過度に形式的な意味において解釈されるべきではない。
 本発明の実施態様は模式図を参照しつつ説明される場合があるが、模式図である場合、説明を明確にするために、誇張されて表現されている場合がある。
 以下において、本発明を、実施例を参照してより詳細に説明する。しかしながら、本発明はいろいろな態様により具現化することができ、ここに記載される実施例に限定されるものとして解釈されてはならない。
試験1.ニコチンアミド存在下でのマウスiPS細胞の誘導
 レトロウィルス導入にあたり、各多能性誘導因子(Oct-3/4, Sox2, KLF4, c-Myc) を発現するレトロウィルスベクターをパッケージング細胞であるPLAT-E細胞 (Kitamura T, et al. (2003) Exp Hematol 31:1007-1014) に導入した。遺伝子導入より2日後にPLAT-E細胞の培養上清をそれぞれ回収し、0.45μmセルロースアセテートフィルターに通した。その後、終濃度4 mg/mlになるようにポリブレンを加え、各培養上清を等量混合し、その混合液をNanog-GFP MEF (Okita K, Ichisaka T, Yamanaka S. (2007) nature 448:313-317) に添加することで、ウィルス感染を行った。Nanog-GFP MEFは、マウスNanog遺伝子を有するBACにGFP-IRES-Purorカセットを挿入し、このBACをマウス胎仔線維芽細胞(mouse embryonic fibroblast;MEF)に導入した細胞である。Nanog-GFP MEFは、多能性を有する細胞においてはGFPを発現するが、分化するとGFPを発現しない。
 レトロウィルス感染後4日目にマイトマイシンC (SIGMA:M4287) 処理を行い増殖能を抑制したSTOフィーダー細胞上に播種し(4F(c-Myc)を感染させた細胞では2x103個/ml、3Fでは3.5x104個/mlとなるように播種)、翌日マウスES細胞培地 (Nishimoto M, et al. (1999) Mol Cell Biol 19:5453-5465) で培養した。その後、培地を2日毎に置換し、感染後17日目にピューロマイシン (Puro) 含有マウスES細胞培地(Puroは終濃度1.2 mg/ml)に置換し、さらに8日間培養した。その後、アルカリフォスファターゼ (AP) 染色を行った。ニコチンアミドについてはレトロウィルスの感染と同時に終濃度4mMとなるように添加し、その後培地交換毎に同濃度で添加した。
 図1Aに4F(c-Myc)を感染させた細胞2x104個を10cm2 dishに播種した際のPuro耐性AP陽性コロニーの結果を示し、図1Bに4F(c-Myc)感染細胞4x103個を3.5 cm2 dishに3枚播種した後のPuro耐性AP陽性コロニーの平均数を示す。エラーバーは標準偏差を示している。4F(c-Myc)を感染させた細胞では、ニコチンアミドの投与により、ピューロマイシンに耐性を示すコロニー数が著しく増加した。
 図1Cに3F感染細胞7x104個を3.5 cm2 dishに3枚播種した後のPuro耐性AP陽性コロニーの平均数を示す。エラーバーは標準偏差を示している。3Fを感染させた細胞では、ニコチンアミドによる誘導効率の上昇が見られなかった。
 以上より、ニコチンアミドによりiPS細胞の誘導効率が上昇すること、ニコチンアミドの効果を得るためにはc-Myc遺伝子の導入が必要であることを確認した。
 図2では、4F(c-Myc)を感染させたNanog-GFP MEFを蛍光顕微鏡で観察した結果を示す。実験方法については試験1に準ずるが、上段のGFPを観察した写真ではPuroによる薬剤選択をしていないコロニーを示しており、下段のGFPを観察した写真ではPuroによる薬剤選択後のコロニーを示している。図2上段に示すように、多能性誘導因子導入後の細胞は、ニコチンアミド存在下で培養したもの(Nam)のほうがわずかに強い発色を示したが、いずれも弱い発色であった。しかしながら、ピューロマイシンを加えるとニコチンアミド投与群において、非投与群よりも強い発色が観察された。このことから、ニコチンアミドを加えるとコロニー数が著しく増え、それにつれて真のiPS細胞も増加するものの、増えたコロニーの中には、不完全なリプログラミング状態であるpartial iPS細胞も含まれることがわかった。
試験2.ニコチンアミド処理の最適化
 ニコチンアミドの最適処理時間を検討するため、レトロウィルス感染後24日目まで (Nam0-24d)、レトロウィルス感染後4日目まで (Nam0-4d)、レトロウィルス感染後4日目から24日目まで(Nam4-24d) のそれぞれの条件でニコチンアミドを添加し、4F(c-Myc)によるiPS細胞誘導を行った。ニコチン処理時間以外の実験方法は試験1に準じた。
 結果を図3に示す。ニコチンアミドを多能性誘導因子導入後0日目から24日目まで添加した場合では、Puro耐性コロニーは著しく増加しており、また、0日目から4日目まで添加した場合においても、0日から24日目まで添加した場合と比べ、Puro耐性コロニーの数には大きな違いが見られず、同様に著しく増加していた。一方で、多能性誘導因子導入後4日目以降にニコチンアミドを添加した場合、ニコチンアミドによるPuro耐性コロニー数の増加効果はほとんど得られなかった。これらの結果から、iPS細胞の誘導初期にニコチンアミドを処理することにより、Puro耐性コロニー数増加の促進効果を得られることが明らかとなった。
 ニコチンアミドの影響がiPS細胞誘導初期に限局されることから、レトロウィルス感染後4日目にニコチンアミドの影響が認められるか否かを検討するため、感染後0日目から4日目までニコチンアミド(Nam)処理をしたものと、非処理のものとにおける、感染後4日目の細胞を観察した。その結果、Nam処理群においてiPS細胞様のコロニーが認められた(図4及び図5A)。
 次に感染後4日目におけるニコチンアミドの影響を検討するため、細胞数の計測とAP染色を行った。その結果、感染4日目の段階で無処理の細胞群と比較し、ニコチンアミド処理群では、細胞数の増加 (図5B)が認められ、AP陽性コロニー数においては、顕著な増加が認められた(図5C)。さらに、各種未分化マーカーの発現を検討した結果、ニコチンアミド処理により、未分化マーカーの発現が無処理に比べて上昇していることが明らかとなった (data not shown)。以上のことから、感染後4日目において、ニコチンアミド処理により、すでにiPS細胞誘導が促進されていることが明らかとなった。
試験3.ニコチンアミドによるiPS細胞誘導効果のメカニズムの検討
 ニコチンアミドはPARPやサーチュインを抑制することが知られている。そこで、サーチュイン(SIRT1)を活性化するレズベラトールをニコチンアミドの代わりに培地に添加して、iPS細胞の誘導効果を検討した。実験方法は、試験2に準じた。ただし、レズベラトロール (Res) は終濃度10 mMとなるように培地に添加した。
 結果を図6に示す。レズベラトールを多能性誘導因子導入後0日目から17日目まで添加した場合と、0日目から4日目まで添加した場合は、レズベラトロールの溶媒であるDMSOを等量加えたコントロールと比較してPuro耐性コロニーの数が著しく減少した。一方、多能性誘導因子導入後4日目に添加した場合は、比較的多くのPuro耐性コロニーが誘導された。このことから、ニコチンアミドによるiPS細胞の誘導促進効果は、サーチュインの抑制が関わっていることが強く示唆された。
試験4.MEK阻害剤及びGSK-3阻害剤の存在下でのiPS細胞の誘導(2i法)
 次に、partial iPS細胞のリプログラミングを促進することが知られるMEK阻害剤及びGSK-3阻害剤存在下で培養する方法(2i法)を、ニコチンアミド存在下での培養と組み合わせた。
 Nanog-GFP MEFに対して4F(c-Myc)をレトロウィルスにより強制発現させた。レトロウィルス感染後4日目にフィーダー細胞上に播種し、その翌日よりマウスES細胞培地で培養した。感染後12日目よりPD0325901 (1 μM) 及びCHIR99021(3 μM) を含む無血清マウスES細胞培地 (2i培地) に置換した。その後、4日間培養を継続し、培養後の細胞を、蛍光顕微鏡を用いて観察した。また、対照区として、感染後12日よりPD0325901及びCHIR99021を含まない無血清マウスES細胞培地で4日間培養させた。結果を図7に示す。2i法により、真のiPS細胞が増加することが確認された(図7Aおよび図7B)。また、ニコチンアミドで処理した後、2i法を行うと、まずpartial iPS細胞も含めたコロニー数がニコチンアミドにより増加し、ニコチンアミドと、MEK阻害剤及びGSK-3阻害剤とによりpartial iPSが真のiPS細胞に転換される結果、真のiPS細胞が飛躍的に増加することが確認された(図7Cおよび図7D)。
試験5.2i法の条件の最適化
 2i法による効果を最適化するため、MEK阻害剤及びGSK-3阻害剤を培地に添加する時期について検討した。
 Nanog-GFP MEFに対して4F(c-Myc)をレトロウィルスにより強制発現させた。レトロウィルス感染後4日目にフィーダー細胞上に播種し、その翌日より2i培地に置換するまでマウスES細胞培地で培養した。2i培地での培養(1)レトロウィルス感染後5日目、(2)7日目、(3)9日目、(4)11日目、(5)13日目、(6)15日目より開始し、感染後17日目まで行った。感染後17日目より8日間Puroにより薬剤選択を行い、その後AP染色を行った。結果を図8に示す。13日目((5))から17日目まで2i法を行ったときに、もっともPuro耐性AP陽性コロニー数が多く得られた(図8)。
試験6.ニコチンアミド及び2i法の組み合わせによるiPS細胞の誘導
 試験5の(1)と同様の条件で2i法を行い、且つレトロウィルスの感染後0日目から4日目までニコチンアミド (終濃度4mM) を加えて培養したところ、真のiPS細胞の割合が著しく増加した(図9A)。
 次にニコチンアミド処理をレトロウィルス感染と同時に行った場合と感染後1日後より行う場合と比較するため、試験5の(1)の条件に準じて検討を行った。その結果、図9Bに示すとおり、レトロウィルスの感染後0日目から4日目までニコチンアミドを添加するよりも、1日目から4日目まで添加したほうが、誘導効率が3倍以上高いことを確認した。
試験7.ニコチンアミド存在下でのヒトiPS細胞の誘導
 レトロウィルス導入にあたり、各多能性誘導因子(Oct-3/4, Sox2, KLF4, c-Myc) を発現するレトロウィルスベクターをパッケージング細胞であるPLAT-GP細胞 (Morita S, et al. (2000) Gene Therapy 7:1063-1066) に導入した。遺伝子導入より2日後にPLAT-GP細胞の培養上清をそれぞれ回収し、0.45μmセルロースアセテートフィルターに通した。その後、終濃度4 mg/mlになるようにポリブレンを加え、各培養上清を等量混合し、その混合液をヒト繊維芽細胞に添加することで、ウィルス感染を行った。レトロウィルス感染後6日目にフィーダー細胞上に播種し(4F(c-Myc): 2.5x104個; 4F(L-Myc):5.0x104個)、その翌日ヒトES細胞培地 (Takahashi K, et al (2007) Cell 131:861-872) で培養した。その後、培地を2日毎に交換し、感染後30日間まで培養した。その後、アルカリフォスファターゼ (AP) 染色を行い、AP陽性コロニー数を計測した。ニコチンアミドについてはレトロウィルスの感染と同時に終濃度4mMとなるように添加し、その後感染6日目まで、培地交換毎に同濃度で添加した。なお、対照区は、ニコチンアミドを添加せずに感染後30日まで培養した。結果を図10に示す。
 図10に示すように、ニコチンアミドを添加した区では、ニコチンアミドを添加していない区と比較して、AP陽性コロニー数が、増加した。
 このように、ヒト繊維芽細胞においても、マウス繊維芽細胞と同様に、サーチュイン阻害剤及び/又はPARP阻害剤の存在下における培養によりAP陽性コロニー誘導の効率を向上させることができた(図10A)。また、Mycファミリー遺伝子として、L-Myc遺伝子を多能性誘導因子として用いた場合にも、サーチュイン阻害剤及び/又はPARP阻害剤の存在下における培養によりAP陽性コロニーの誘導効率を向上させることができた(図10B)。

Claims (14)

  1.  少なくともMycファミリー遺伝子又はMycファミリータンパク質を含む多能性誘導因子を体細胞に導入する工程と、
     サーチュイン阻害剤及び/又はポリADPリボースポリメラーゼ(PARP)阻害剤の存在下で前記体細胞を培養する工程と、
    を含む人工多能性幹細胞(iPS細胞)の製造方法。
  2.  前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、10日目未満で終了する、請求項1に記載の方法。
  3.  前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、1日目以降に開始する、請求項1又は2に記載の方法。
  4.  前記サーチュイン阻害剤及び/又はPARP阻害剤が、ニコチンアミドである、請求項1から3のいずれか1項に記載の方法。
  5.  前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程は、前記ニコチンアミドを1mM~10mMの濃度で前記体細胞の培地に添加することを含む、請求項4に記載の方法。
  6.  前記サーチュイン阻害剤及び/又はPARP阻害剤の存在下で前記体細胞を培養する工程の後、
     GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程を含む、請求項1から5のいずれか1項に記載の方法。
  7.  前記GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、5日目以降に開始する、請求項6に記載の方法。
  8.  前記Mycファミリー遺伝子又はMycファミリータンパク質が、c-Myc遺伝子若しくはL-Myc遺伝子、又はc-Mycタンパク質若しくはL-Mycタンパク質である請求項1~7に記載の方法。
  9.  前記多能性誘導因子が、Oct3/4遺伝子、Klf4遺伝子、Sox2遺伝子、Nanog遺伝子及びLIN28遺伝子からなる群より選択される1以上の遺伝子をさらに含む、請求項1から8のいずれか1項に記載の方法。
  10.  多能性誘導因子を体細胞に導入する工程と、
     GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程と、
    を含み、
     前記GSK-3阻害剤及びMEK阻害剤の存在下で前記体細胞をさらに培養する工程は、前記多能性誘導因子を体細胞に導入する工程を行った日を0日目として、5日目以降に開始する、人工多能性幹細胞(iPS細胞)の製造方法。
  11.  前記多能性誘導因子が、Oct3/4遺伝子、Klf4遺伝子、Sox2遺伝子、c-Myc遺伝子、L-Myc遺伝子、Nanog遺伝子、及びLin28遺伝子からなる群より選択される1以上の遺伝子である、請求項10に記載の方法。
  12.  前記人工多能性幹細胞(iPS細胞)が、マウス又はヒト由来の細胞である請求項1~11に記載の方法。
  13.  請求項1から12のいずれか1項に記載の方法で製造された人工多能性幹細胞(iPS細胞)。
  14.  サーチュイン阻害剤又はポリADPリボースポリメラーゼ(PARP)阻害剤と、
     GSK-3阻害剤と、
     MEK阻害剤と、
    を含む人工多能性幹細胞(iPS細胞)の培養キット。
     
PCT/JP2011/053110 2010-02-16 2011-02-15 人工多能性幹細胞の製造方法 WO2011102333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11744619.5A EP2537920A4 (en) 2010-02-16 2011-02-15 METHOD FOR THE PRODUCTION OF ARTIFICIAL PLURIPOTENTAL STEM CELLS
JP2012500593A JP5843111B2 (ja) 2010-02-16 2011-02-15 人工多能性幹細胞の製造方法
US13/578,777 US20130011921A1 (en) 2010-02-16 2011-02-15 Method for production of artificial pluripotent stem cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-030830 2010-02-16
JP2010030830 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011102333A1 true WO2011102333A1 (ja) 2011-08-25

Family

ID=44482918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053110 WO2011102333A1 (ja) 2010-02-16 2011-02-15 人工多能性幹細胞の製造方法

Country Status (4)

Country Link
US (1) US20130011921A1 (ja)
EP (1) EP2537920A4 (ja)
JP (1) JP5843111B2 (ja)
WO (1) WO2011102333A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180395A1 (ko) * 2012-05-29 2013-12-05 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
WO2017025061A1 (en) * 2015-08-13 2017-02-16 Peking University Induced extended pluripotent stem cells, methods of making and using
WO2018143258A1 (ja) 2017-01-31 2018-08-09 オリエンタル酵母工業株式会社 多分化能性幹細胞増殖促進剤
KR20200133367A (ko) 2018-03-22 2020-11-27 오리엔탈고우보고오교가부시끼가이샤 다분화능성 줄기세포 분화 촉진제
EP3587556A4 (en) * 2017-02-24 2021-04-14 Koji Tanabe CELL TREATMENT DEVICE, SUSPENSION CULTURE VESSEL AND STEM CELL INDUCTION METHOD

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016142427A1 (en) 2015-03-10 2016-09-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Method ank kit for reprogramming somatic cells
CA3039884A1 (en) 2016-10-21 2018-04-26 National University Corporation Gunma University Method for manufacturing peripheral nerve cells

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2250252A2 (en) * 2008-02-11 2010-11-17 Cambridge Enterprise Limited Improved reprogramming of mammalian cells, and the cells obtained
WO2009102983A2 (en) * 2008-02-15 2009-08-20 President And Fellows Of Harvard College Efficient induction of pluripotent stem cells using small molecule compounds

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
ESTEBAN, MA ET AL.: "Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.", CELL STEM CELL., vol. 6, no. 1, 8 January 2010 (2010-01-08), pages 71 - 79, XP055079582 *
HONG H ET AL., NATURE, vol. 460, 2009, pages 1132 - 1135
HUANGFU D ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 795 - 797
KAWAMURA T ET AL., NATURE, vol. 460, 2009, pages 1140 - 1144
KITAMURA T ET AL., EXP HEMATOL, vol. 31, 2003, pages 1007 - 1014
LI, H ET AL.: "The Ink4/Arf locus is a barrier for iPS cell reprogramming.", NATURE., vol. 460, no. 7259, 27 August 2009 (2009-08-27), pages 1136 - 1139, XP002632651 *
LIN, T ET AL.: "A chemical platform for improved induction of human iPSCs.", NAT METHODS., vol. 6, no. 11, November 2009 (2009-11-01), pages 805 - 808, XP055013247 *
MAHERALI, N ET AL.: "A high-efficiency system for the generation and study of human induced pluripotent stem cells.", CELL STEM CELL., vol. 3, no. 3, 11 September 2008 (2008-09-11), pages 340 - 345, XP009166206 *
MARSON, A ET AL.: "Wnt signaling promotes reprogramming of somatic cells to pluripotency.", CELL STEM CELL., vol. 3, no. 2, 7 August 2008 (2008-08-07), pages 132 - 135, XP002523704 *
MORITA S ET AL., GENE THERAPY, vol. 7, 2000, pages 1063 - 1066
NISHIMOTO M ET AL., MOL CELL BIOL, vol. 19, 1999, pages 5453 - 5465
OKITA ET AL., NATURE, 2007, pages 448
OKITA K ET AL., SCIENCE, vol. 322, 2008, pages 949 - 953
OKITA K; ICHISAKA T; YAMANAKA S., NATURE, vol. 448, 2007, pages 313 - 317
See also references of EP2537920A4 *
SHI Y ET AL., CELL STEM CELL, vol. 3, 2008, pages 568 - 574
SILVA J. ET AL., PLOS BIOLOGY, vol. 6, no. 10, 2008, pages E253
SILVA, J ET AL.: "Promotion of reprogramming to ground state pluripotency by signal inhibition.", PLOS BIOL., vol. 6, no. 10, 21 October 2008 (2008-10-21), pages E253, XP002530551 *
SILVA, J. ET AL., PLOS BIOLOGY, vol. 6, no. 10, 2008, pages E253
SILVA, J. ET AL., PLOS BIOLOGY, vol. 6, no. 10, 21 October 2008 (2008-10-21), pages E253
STADTFELD M ET AL., SCIENCE, vol. 322, 2008, pages 945 - 949
TAKAHASHI K ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI K; TANABE K; OHNUKI M; NARITA M; ICHISAKA T; TOMODA K; YAMANAKA S., CE11131, 2007, pages 861 - 872
TAKAHASHI K; YAMANAKA S., CELL, vol. 126, 2006, pages 663 - 676
YU J ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
ZHOU H ET AL., CELL STEM CELL, vol. 4, 2009, pages 381 - 384

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180395A1 (ko) * 2012-05-29 2013-12-05 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
KR20130133703A (ko) * 2012-05-29 2013-12-09 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
KR101656388B1 (ko) * 2012-05-29 2016-09-09 한국생명공학연구원 다능성 줄기세포의 제작, 유지, 증식을 증진하는 대사산물 및 이를 포함하는 조성물과 배양방법
US11028369B2 (en) 2015-08-13 2021-06-08 Beihao Stem Cell And Regenerative Medicine Research Institute Co., Ltd. Induced extended pluripotent stem cells, method of making and using
CN108884436A (zh) * 2015-08-13 2018-11-23 北昊干细胞与再生医学研究院有限公司 诱导的扩展的多潜能干细胞、制备及使用方法
WO2017025061A1 (en) * 2015-08-13 2017-02-16 Peking University Induced extended pluripotent stem cells, methods of making and using
CN108884436B (zh) * 2015-08-13 2021-11-05 北昊干细胞与再生医学研究院有限公司 诱导的扩展的多潜能干细胞、制备及使用方法
WO2018143258A1 (ja) 2017-01-31 2018-08-09 オリエンタル酵母工業株式会社 多分化能性幹細胞増殖促進剤
KR20190112760A (ko) 2017-01-31 2019-10-07 오리엔탈고우보고오교가부시끼가이샤 다분화능성 줄기세포 증식 촉진제
US11634690B2 (en) 2017-01-31 2023-04-25 Oriental Yeast Co., Ltd. Agent for accelerating growth of pluripotent stem cells
EP3587556A4 (en) * 2017-02-24 2021-04-14 Koji Tanabe CELL TREATMENT DEVICE, SUSPENSION CULTURE VESSEL AND STEM CELL INDUCTION METHOD
KR20200133367A (ko) 2018-03-22 2020-11-27 오리엔탈고우보고오교가부시끼가이샤 다분화능성 줄기세포 분화 촉진제
US11814652B2 (en) 2018-03-22 2023-11-14 Oriental Yeast Co., Ltd. Pluripotent stem cell differentiation-promoting agent

Also Published As

Publication number Publication date
JPWO2011102333A1 (ja) 2013-06-17
EP2537920A1 (en) 2012-12-26
EP2537920A4 (en) 2013-11-13
US20130011921A1 (en) 2013-01-10
JP5843111B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
US20230282445A1 (en) Method of nuclear reprogramming
US9670463B2 (en) Inhibition and enhancement of reprogramming by chromatin modifying enzymes
JP6189384B2 (ja) 多能性細胞の誘導法
JP5843111B2 (ja) 人工多能性幹細胞の製造方法
CN103562376B (zh) 复壮细胞的方法
US8518700B2 (en) Composition for reprogramming somatic cells to generate induced pluripotent stem cells, comprising Bmi1 and low molecular weight substance, and method for generating induced pluripotent stem cells using the same
CN104694570B (zh) 用于产生诱导的多能干细胞的组合化学遗传方法
US20120034192A1 (en) Compositions and methods for enhancing cell reprogramming
JP5626619B2 (ja) 効率的な核初期化方法
KR102029391B1 (ko) 다능성 줄기세포의 제조방법
US20090246875A1 (en) Efficient method for nuclear reprogramming
Scheper et al. The molecular mechanism of induced pluripotency: a two-stage switch
CN102597221A (zh) 使用化学品的游离重编程
JP5751548B2 (ja) イヌiPS細胞及びその製造方法
Xi et al. Induced neural stem cells generated from rat fibroblasts
Takahashi Direct reprogramming 101
WO2015057015A1 (ko) 전자기장을 이용한 성체세포를 유도만능 줄기세포로 역분화시키는 방법
Meyers Stem Cells: From Biology to Therapy, 2 Volumes
Yin et al. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors
Elo Evaluation of the pluripotency of human induced pluripotent stem cells (hiPSCs) reprogrammed with integrative and non-integrative protocols and their differentiation into cardiomyocytes
Šarić et al. Alternative Embryonic Stem Cell Sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500593

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011744619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13578777

Country of ref document: US