WO2011102094A1 - マルチマイクロホローカソード光源および原子吸光分析装置 - Google Patents

マルチマイクロホローカソード光源および原子吸光分析装置 Download PDF

Info

Publication number
WO2011102094A1
WO2011102094A1 PCT/JP2011/000685 JP2011000685W WO2011102094A1 WO 2011102094 A1 WO2011102094 A1 WO 2011102094A1 JP 2011000685 W JP2011000685 W JP 2011000685W WO 2011102094 A1 WO2011102094 A1 WO 2011102094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
plate
micro hollow
cathode
hole
Prior art date
Application number
PCT/JP2011/000685
Other languages
English (en)
French (fr)
Inventor
勝 堀
昌文 伊藤
太田 貴之
加納 浩之
山川 晃司
Original Assignee
国立大学法人名古屋大学
学校法人名城大学
Nuエコ・エンジニアリング株式会社
株式会社片桐エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 学校法人名城大学, Nuエコ・エンジニアリング株式会社, 株式会社片桐エンジニアリング filed Critical 国立大学法人名古屋大学
Priority to US13/578,171 priority Critical patent/US8638034B2/en
Priority to CN201180010218.XA priority patent/CN102770938B/zh
Publication of WO2011102094A1 publication Critical patent/WO2011102094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the present invention relates to a multi-micro hollow cathode light source and an atomic absorption spectrometer that can be used for multi-element simultaneous absorption analysis and capable of simultaneous emission of multiple elements.
  • Atomic absorption spectrometry is known as a method for measuring the amount of trace metals contained in a sample with high accuracy. This is a method of analyzing the amount of trace metals contained in a sample by atomizing the sample at a high temperature and irradiating the atmosphere with light to measure an absorption spectrum.
  • the light source used in this analysis method requires a light source that emits the emission line spectrum of the element to be measured, and in order to simultaneously measure a plurality of elements, the light source that emits light having the emission line spectrum of those elements. Is required.
  • Patent Document 1 A multi-micro hollow cathode light source is described in Patent Document 1 as a light source that emits light having such multiple element emission line spectra.
  • an anode plate, an insulating plate, and a cathode plate made of copper or copper alloy are laminated, and a plurality of through holes having a diameter of 1 cm or less are provided to penetrate the anode plate, and a desired hole is formed in the opening of the through hole of the cathode plate
  • a light source that emits emission line spectra of a plurality of metal elements is realized by disposing each metal plate from which emission line spectra can be obtained. That is, the light source is composed of a point light source by a plurality of hollow cathode discharges for each desired metal element.
  • the multi-micro hollow cathode light source of Patent Document 1 is composed of a plurality of point light sources by hollow cathode discharge, it is difficult to control each discharge.
  • the light of the multi-micro hollow cathode light source disclosed in Patent Document 1 is used, it is necessary to construct an optical path for each point light source, which causes a problem that the construction of the optical path is complicated and expensive.
  • an object of the present invention is to realize a light source having emission line spectra of a plurality of elements while being a single point light source by hollow cathode discharge.
  • a multi-micro hollow cathode light source that generates micro hollow plasma in an atmospheric gas and uses a cathode plate made of a metal having a high secondary electron emission coefficient, an insulating plate, and a cathode plate. And an anode plate disposed with an insulating plate interposed therebetween, a cathode plate, an insulating plate, one hole having a diameter of 1 cm or less penetrating the anode plate, and different elements corresponding to a plurality of emission line spectra to be obtained.
  • the cathode plate has a plurality of metal pieces and an atmosphere gas.
  • the cathode plate has a plurality of grooves extending radially from the hole in the center, and the plurality of metal pieces are embedded in each groove. It is the multi micro hollow cathode light source characterized by the above-mentioned.
  • the amount of the metal piece may be changed for each material.
  • the amount of the metal piece can be easily changed depending on the thickness and the number of sheets, and the thickness and the number of pieces can be easily adjusted by changing the width of the groove of the cathode plate.
  • a plurality of metal pieces may be embedded in the groove, and the metal pieces may be made of different materials. Moreover, you may embed the metal piece of the same material in some among several groove
  • the spectral intensity of each metal element can be controlled by the amount of each metal piece.
  • the pattern of the plurality of grooves is arbitrary as long as it is a pattern extending radially around the hole, for example, a pattern in which four grooves extend in a cross shape.
  • the groove of the cathode plate desirably penetrates in a direction perpendicular to the main surface of the cathode plate.
  • the axial length of the hole of the metal piece embedded in the groove is increased, and the area of each metal piece exposed on the side surface of the hole can be increased, so that the efficiency with which the metal piece is sputtered is improved and the spectrum of the metal element is increased. This is because the strength increases.
  • the number of grooves is preferably about 2 to 8
  • the width of the groove is preferably about 0.1 to 0.9 times the diameter of the hole.
  • the diameter of the hole is more preferably 1 mm or less. This is because the plasma can be confined at high density in the hole. It is also desirable to obtain a point light source.
  • the light source of the present invention is assumed to be used at atmospheric pressure or a pressure slightly lower than this, but it is used under pressure when considering broad light emission such as excimer. It is also possible to do. In general, the higher the pressure of the atmospheric gas, the smaller the diameter of the hole. In consideration of the pressure used as described above, the diameter of the hole is preferably 10 ⁇ m or more.
  • the diameter of the holes in the insulating plate is desirably slightly larger than the diameters of the holes in the cathode plate and the anode plate. Specifically, the diameter is preferably 100 to 1000 ⁇ m larger than the diameter of the holes of the cathode plate and the anode plate. This is to prevent the insulating plate from being dissolved during discharge.
  • an inert gas such as He, Ne, Ar, Kr, or Xe as the atmospheric gas.
  • He or Ne is desirable to use He or Ne. This is because the efficiency of secondary electron emission from the metal is increased.
  • the metal having a high secondary electron emission coefficient that is a material of the cathode plate is, for example, copper, copper alloy, silver, silver alloy, molybdenum, molybdenum alloy, tungsten, tungsten alloy, or the like.
  • a metal having a secondary electron emission coefficient of 0.2 or more is more desirable, and a metal having 1.0 or more is more desirable.
  • copper or a copper alloy is desirable. This is because it is inexpensive and easily available and has a high secondary electron emission coefficient and high thermal conductivity.
  • the anode plate is also preferably copper or a copper alloy.
  • the second invention is the multi-micro hollow cathode light source according to the first invention, wherein the metal having a high secondary electron emission coefficient is copper or a copper alloy.
  • the third invention is a multi-micro hollow cathode light source according to the first or second invention, wherein the atmospheric gas is made of helium.
  • the fourth invention is a multi-micro hollow cathode light source according to the first to third inventions, wherein the hole has a diameter of 1 mm or less.
  • a fifth aspect of the invention is an atomic absorption spectrometer that simultaneously measures multielements, comprising the multi-micro hollow cathode light source according to the first to fourth aspects of the invention.
  • a plurality of metal pieces exposed on the side wall of the hole of the cathode plate can be efficiently sputtered simultaneously, and a high-density plasma can be generated by a plurality of metal elements.
  • the light of the bright line spectrum corresponding to a plurality of desired metal elements can be obtained.
  • the light source of the present invention is a single point light source. Therefore, the construction of an optical path for using light becomes very simple, and if an atomic absorption analyzer or the like is configured using the light source of the present invention, the cost of the apparatus can be reduced. Since the discharge is in one hole, the discharge control is easy. Further, the intensity of the emission line spectrum can be easily controlled by the number of metal pieces to be embedded.
  • FIG. 3 is a diagram illustrating a configuration of a multi-micro hollow cathode light source according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of the electrode plate 1. The top view which looked at the electrode plate 1 from the cathode plate 11 side. The graph which showed the emission spectrum.
  • FIG. 3 is a diagram showing a configuration of an atomic absorption analyzer of Example 2.
  • FIG. 1 is a diagram showing a configuration of a multi-micro hollow cathode light source according to the first embodiment.
  • the multi-micro hollow cathode light source includes an electrode plate 1, a housing 2, a lens 3, and an electrode plate fixing portion 4.
  • the housing 2 is made of glass, and the inside is a sealed cylindrical cavity.
  • An electrode plate fixing portion 4 is provided inside the housing 2.
  • the electrode plate fixing portion 4 fixes the electrode plate 1 inside the housing 2 so that the surface direction thereof is the axial direction of the cylinder.
  • Helium gas is sealed inside the housing 2.
  • the helium gas inside the housing 2 may be recirculated or the internal pressure may be adjusted.
  • the internal pressure is preferably 0.01 to 0.1 atm.
  • FIG. 2 is an enlarged cross-sectional view showing the configuration of the electrode plate 1.
  • the electrode plate 1 includes a cathode plate 11, an insulating plate 12, an anode plate 13, and a metal piece 14.
  • the insulating plate 12 is disposed so as to be sandwiched between the cathode plate 11 and the anode plate 13.
  • the cathode plate 11 and the anode plate 13 are made of copper, and the insulating plate 12 is made of ceramic. Wiring is connected to the cathode plate 11 and the anode plate 13, and is connected to a power supply device.
  • the cathode plate 11 is configured to be grounded and a positive voltage is applied to the anode plate 13 by the power supply device.
  • the anode plate 13 may be grounded and a negative voltage may be applied to the cathode plate 11.
  • the thickness of the cathode plate 11 is 1 mm, and the thickness of the insulating plate 12 and the anode plate 13 is 0.3 mm. Moreover, the cathode plate 11, the insulating plate 12, and the anode plate 13 are circular, and the diameter is 2 cm. Circular holes 15a, 15b, and 15c are provided at the centers of the cathode plate 11, the insulating plate 12, and the anode plate 13, respectively. The centers of these holes 15a to 15c are made to coincide with each other, and the holes 15 that pass through continuously are formed. It is composed.
  • the hole 15a of the cathode plate 11 and the hole 15c of the anode plate 13 have a diameter of 1 mm, and the hole 15b of the insulating plate 12 has a diameter of 1.2 mm.
  • the reason why the hole 15b of the insulating plate 12 is slightly larger than the hole 15a of the cathode plate 11 and the hole 15c of the anode plate 13 is to prevent the insulating plate 12 from being melted during discharge.
  • FIG. 3 is a plan view of the electrode plate 1 viewed from the cathode plate 11 side.
  • the cathode plate 11 is provided with four linear grooves 16 extending in a cross shape continuously from the hole 15a with the hole 15a as the center.
  • the groove 16 penetrates the cathode plate 11.
  • the width of the groove 16 is 0.2 mm and the length is 6 mm.
  • Four metal pieces 14 of different materials are inserted and embedded in the four grooves 16, respectively.
  • the four metal pieces 14 are made of Zn, Cd, Pb, and Cr, respectively.
  • the metal piece 14 has a rectangular plate shape of 1 mm ⁇ 5 mm and a thickness of 0.2 mm.
  • the helium gas sealed in the housing 2 is ionized, and plasma is generated inside the hole 15 and in the vicinity of the opening. Ions in the plasma are attracted to and collide with the cathode plate 11 by an electric field, and Cu and electrons constituting the cathode plate 11 are ejected by the ion bombardment.
  • the ejected electrons are called secondary electrons, and have the effect of promoting ionization of new atoms in the plasma, so that plasma can be generated efficiently.
  • the cathode plate 11 since copper having a high secondary electron emission coefficient is used for the cathode plate 11, plasma can be generated with high density inside the hole 15 and in the vicinity of the opening.
  • the high-density plasma generated in the hole 15 efficiently sputters the four metal pieces 14 exposed on the side wall of the hole 15a.
  • plasma of five metal elements of Zn, Cd, Pb, Cr, which are metal elements constituting each metal piece 14, and Cu, which is a material of the cathode plate 11 can be generated at high density.
  • the emission spectrum by the micro hollow cathode discharge has emission line spectra of five metal elements of Zn, Cd, Pb, Cr, and Cu.
  • Example 1 As described above, according to the multi-micro hollow cathode light source of Example 1, it is possible to obtain light having emission line spectra of a plurality of metal elements while being one point light source by micro hollow cathode discharge.
  • FIG. 4 is a graph showing the measurement results of the emission spectrum.
  • the current value was 25 mA, and the internal pressure was 0.05 atm. From this graph, the emission line spectra of Zn at a wavelength of 213 nm, Cr at a wavelength of 357 nm, Pb at a wavelength of 283.3 nm, Cu at a wavelength of 324 nm, and Cd at a wavelength of 228 nm can be confirmed. It can be seen that light having a light intensity was obtained from a multi-micro hollow cathode light source. The emission intensity from Pb and Cr is weak, and clear bright lines are not obtained as compared with Zn, Cu and Cd. However, the width of the groove 16 is increased to increase the number of metal pieces 14 made of Pb and Cr, or metal By making the piece 14 thicker, it is possible to increase the emission intensity of Pb and Cr, and to control so as to obtain a clearer emission line.
  • Example 2 is an example of an atomic absorption spectrometer using the multi-micro hollow cathode light source of Example 1.
  • the atomic absorption analyzer includes the multi-micro hollow cathode light source 100 of Example 1, a collimator lens 101, a sputtering device 102, a condenser lens 103, and a light receiving element array 104. ing.
  • the multi-micro hollow cathode light source 100 is a light source that emits light having emission line spectra of a plurality of metal elements to be measured.
  • the sputtering apparatus 102 is an apparatus that converts a sample into plasma.
  • the light having the emission line spectra of a plurality of metal elements from the multi-micro hollow cathode light source 100 is collimated by the collimating lens 101 and then irradiated to the plasma 105 in the sputtering apparatus 102.
  • the parallel light transmitted through the plasma 105 is collected by the condenser lens 103 and reaches the light receiving element array 104. Thereby, a plurality of metal elements to be measured in the plasma 105 can be identified, and the density of the plurality of metal elements can be simultaneously quantified by measuring the absorption rate of the elements.
  • this atomic absorption spectrometer uses the multi-micro hollow cathode light source 100 of Example 1 as the light source, there is one optical axis, and the construction of the optical path from the light source to the light receiving element array 104 is very simple. . Therefore, the atomic absorption spectrometer can be made small and low cost.
  • Example 2 as a method of atomizing the sample at a high temperature, a method of generating plasma by sputtering was used. However, methods conventionally used in atomic absorption analysis such as laser ablation, flame, and electric heating can also be used. Good.
  • the multi-micro hollow cathode light source of the present invention can be used for atomic absorption analysis and the like.
  • Electrode plate 2 Housing 3: Lens 4: Electrode plate fixing part 11: Cathode plate 12: Insulating plate 13: Anode plate 14: Metal piece 15: Hole 16: Groove 100: Multi-micro hollow cathode light source 101: Collimating lens 102: Sputtering device 103: Condensing lens 104: Light receiving element array

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】1ヶ所の点光源であるマルチマイクロホローカソード光源を実現すること。 【解決手段】マルチマイクロホローカソード光源は、カソード板(11)と、絶縁板(12)と、アノード板(13)と、金属片(14)と、を備えている。絶縁板(12)は、カソード板(11)とアノード板(13)との間に挟まれるように配置されている。カソード板(11)は銅からなる。カソード板(11)、絶縁板(12)、アノード板(13)の中心にはそれぞれ孔(15a、15b、15c)が設けられており、一続きに貫通した孔(15)を構成している。図3のように、カソード板(11)には、孔(15a)を中心とし、その孔(15a)に連続して十字型に伸びた4本の直線状の溝(16)が設けられている。この溝(16)は、カソード板(11)を貫通している。4つの溝(16)には、互いに材料の異なる4つの金属片(14)がそれぞれ挿入され、埋め込まれている。

Description

マルチマイクロホローカソード光源および原子吸光分析装置
 本発明は、多元素同時吸光分析に用いることができる多元同時発光可能なマルチマイクロホローカソード光源および原子吸光分析装置に関する。
 試料中に含まれる微量金属の量を高精度に測定する方法として、原子吸光分析法が知られている。これは、試料を高温で原子化させ、その雰囲気に光を照射して吸収スペクトルを測定することで、試料中に含まれる微量金属の量を分析する方法である。この分析方法に用いる光源には、測定対象の元素の輝線スペクトルを発光する光源が必要となり、複数の元素を同時に測定するためには、それらの複数の元素の輝線スペクトルを有する光を発光する光源が必要となる。
 そのような複数元素の輝線スペクトルを有する光を発光する光源として、特許文献1にマルチマイクロホローカソード光源が記載されている。特許文献1では、陽極板、絶縁板、銅製または銅合金製のカソード板とを積層し、これを貫通する直径1cm以下の貫通孔を複数設け、カソード板の貫通孔の開口部に、所望の輝線スペクトルが得られる金属板をそれぞれ配設することで、複数の金属元素の輝線スペクトルを発光する光源を実現している。つまり、所望の金属元素毎の複数のホローカソード放電による点光源で構成された光源である。
特開2007-257900
 しかし、特許文献1のマルチマイクロホローカソード光源では、ホローカソード放電による複数の点光源で構成されるため、各放電の制御が困難であった。また、特許文献1のマルチマイクロホローカソード光源の光を利用するとき、点光源ごとに光路を構築する必要があるため、光路の構築が複雑でコストがかかるという問題もあった。
 そこで本発明の目的は、ホローカソード放電による1つの点光源でありながら、複数の元素の輝線スペクトルを有した光源を実現することである。
 第1の発明は、雰囲気ガス中において、マイクロホロープラズマを生成して光源とするマルチマイクロホローカソード光源において、2次電子放出係数の高い金属からなるカソード板と、絶縁板と、カソード板に対して絶縁板を介在させて配設されたアノード板と、カソード板、絶縁板、アノード板を貫通する直径1cm以下の1つの孔と、得るべき複数の輝線スペクトルに対応した、それぞれ異なる元素を含む複数の金属片と、雰囲気ガスとを有し、カソード板は、孔を中心とし、その孔に連続して放射状に伸びた複数の溝を有し、複数の金属片は、各溝に埋め込まれている、ことを特徴とするマルチマイクロホローカソード光源である。
 金属片の量は、材料ごとに変えてもよい。金属片の量は、厚さや枚数などによって容易に変更でき、厚さや枚数はカソード板の溝の幅を変えることで容易に調整可能である。溝には複数枚の金属片を埋め込んでもよく、それらの金属片は材料が異なっていてもよい。また、複数の溝のうちいくつかに、同一材料の金属片を埋め込んでもよい。各金属片の量によって、各金属元素のスペクトル強度を制御することができる。
 複数の溝のパターンは、孔を中心に放射状に伸びるパターンであれば任意であり、たとえば十字型に4本の溝がのびるパターンなどである。カソード板の溝は、そのカソード板の主面に垂直な方向に貫通していることが望ましい。溝に埋め込まれる金属片の孔の軸方向の長さが増し、孔の側面に露出する各金属片の面積を増やすことができるため、金属片がスパッタされる効率が向上し、金属元素のスペクトル強度が増大するからである。また、カソード板の溝を貫通させた方が作製上も容易である。また、溝の数が多すぎたり、溝の幅が広すぎると、カソード板の孔の側壁に露出する2次電子放出係数の高い金属の面積が減少するため、金属片をスパッタする効率が低下して望ましくない。そのため、溝の数は2~8本程度、溝の幅は孔の直径の0.1~0.9倍程度とすることが望ましい。
 孔の直径は、1mm以下であることがより望ましい。孔内に高密度でプラズマを閉じ込めることができるためである。また、点光源を得る意味でも望ましい。また、本発明の光源は、雰囲気ガスの圧力を大気圧か、これよりも少し低い圧力での使用を想定しているが、エキシマなどのブロードな発光をさせることを考えれば、加圧下で使用することも考えられる。一般に雰囲気ガスの圧力が高いほど孔の直径を小さくすることができ、上記のように使用する圧力を考慮すれば、孔の直径は10μm以上とすることが望ましい。絶縁板の孔の直径は、カソード板、アノード板の孔の直径よりも少し大きくすることが望ましい。具体的には、カソード板、アノード板の孔の直径よりも100~1000μm大きくするのがよい。放電時に絶縁板が溶解してしまうのを防止するためである。
 雰囲気ガスには、He、Ne、Ar、Kr、Xeなどの不活性ガスを用いることが望ましい。特にHe、Neを用いるのが望ましい。金属からの2次電子放出効率が高くなるためである。
 カソード板の材料である2次電子放出係数の高い金属は、たとえば銅、銅合金、銀、銀合金、モリブデン、モリブデン合金、タングステン、タングステン合金などである。2次電子放出係数が0.2以上の金属がより望ましく、1.0以上の金属がさらに望ましい。特に、銅または銅合金が望ましい。安価で入手が容易であり、2次電子放出係数や熱伝導性が高いからである。アノード板もまた、銅または銅合金であることが望ましい。
 第2の発明は、第1の発明において、2次電子放出係数の高い金属は、銅または銅合金であることを特徴とするマルチマイクロホローカソード光源である。
 第3の発明は、第1の発明または第2の発明において、雰囲気ガスは、ヘリウムからなることを特徴とするマルチマイクロホローカソード光源である。
 第4の発明は、第1の発明から第3の発明において、孔の直径は、1mm以下であることを特徴とするマルチマイクロホローカソード光源である。
 第5の発明は、多元素を同時に測定する原子吸光分析装置において、第1の発明から第4の発明のマルチマイクロホローカソード光源を有することを特徴とする原子吸光分析装置である。
 本発明によると、カソード板の孔の側壁に露出した複数の金属片を同時に効率的にスパッタすることができ、複数の金属元素による高密度プラズマを生成することができる。これにより、複数の所望の金属元素に対応した輝線スペクトルの光を得ることができる。また、孔が1ヶ所であるから本発明の光源は1ヶ所の点光源である。そのため、光を利用するための光路構築が非常に簡便となり、本発明の光源を用いて原子吸光分析装置などを構成すれば、装置の低コスト化を図ることができる。一ヶ所の孔での放電であるから、放電制御も容易である。また、埋め込む金属片の枚数等によって、容易に輝線スペクトルの強度を制御することができる。
実施例1のマルチマイクロホローカソード光源の構成を示した図。 電極板1の構成を示した断面図。 電極板1をカソード板11側から見た平面図。 発光スペクトルを示したグラフ。 実施例2の原子吸光分析装置の構成を示した図。
 以下、本発明の具体的な実施例について図を参照に説明するが、本発明は実施例に限定されるものではない。
 図1は、実施例1のマルチマイクロホローカソード光源の構成を示した図である。このマルチマイクロホローカソード光源は、電極板1、筐体2、レンズ3、電極板固定部4、を備えている。筐体2はガラス製であり、内部は密閉された円筒状の空洞となっている。筐体2の内部には、電極板固定部4が設けられている。電極板固定部4は、筐体2の内部において、電極板1をその面方向が円筒の軸方向となるように固定する。筐体2内部にはヘリウムガスが封入されている。筐体2の円筒の軸方向の一方側には、筐体2の内部で発光した光を集光して外部に出力するレンズ3を備えている。
 なお、筐体2に配管を設けることで、筐体2内部のヘリウムガスを還流できるようにしたり、内圧を調整できるようにしてもよい。発光強度を高めるためには内圧は0.01~0.1atmとすることが望ましい。
 図2は、電極板1の構成を拡大して示した断面図である。電極板1は、図2に示すように、カソード板11と、絶縁板12と、アノード板13と、金属片14と、によって構成されている。絶縁板12は、カソード板11とアノード板13との間に挟まれるように配置されている。カソード板11およびアノード板13は銅、絶縁板12はセラミックからなる。カソード板11、アノード板13には配線が接続されており、電源装置に接続されている。そして、電源装置によってカソード板11はアース電位に、アノード板13には正電圧が印加されるよう構成されている。もちろん、逆にアノード板13をアースし、カソード板11に負電圧を印加する構成としてもよい。
 カソード板11の厚さは1mm、絶縁板12、アノード板13の厚さは0.3mmである。また、カソード板11、絶縁板12、アノード板13は円形であり、その直径は2cmである。カソード板11、絶縁板12、アノード板13の中心にはそれぞれ円形の孔15a、15b、15cが設けられており、これらの孔15a~15cの中心を一致させ、一続きに貫通した孔15を構成している。カソード板11の孔15aとアノード板13の孔15cは、直径1mmであり、絶縁板12の孔15bは、直径1.2mmである。絶縁板12の孔15bを、カソード板11の孔15a、アノード板13の孔15cよりも若干大きな径としているのは、放電時に絶縁板12が溶解しないようにするためである。
 図3は、電極板1をカソード板11側から見た平面図である。図3に示されているように、カソード板11には、孔15aを中心とし、その孔15aに連続して十字型に伸びた4本の直線状の溝16が設けられている。この溝16は、カソード板11を貫通している。溝16の幅は0.2mm、長さは6mmである。4つの溝16には、互いに材料の異なる4つの金属片14がそれぞれ挿入され、埋め込まれている。4つの金属片14は、それぞれZn、Cd、Pb、Crからなる。また、金属片14は、1mm×5mmの長方形の板状で、厚さは0.2mmである。
 次に、実施例1のマルチマイクロホローカソード光源の発光原理について説明する。
 カソード板11とアノード板13との間に電圧を印加すると、筐体2に封入されているヘリウムガスが電離して、孔15内部および開口部付近にプラズマが発生する。このプラズマ中のイオンは電界によってカソード板11に引きつけられて衝突し、このイオン衝撃によりカソード板11を構成するCuや電子がはじき出される。このはじき出された電子は2次電子と呼ばれ、プラズマ中で新たな原子の電離を促す作用を持っており、効率よくプラズマを生成することができる。
 ここで、カソード板11に2次電子放出係数が高い銅を用いているため、孔15の内部および開口部付近に高密度にプラズマを発生させることができる。そして、孔15内に発生した高密度プラズマが、孔15aの側壁に露出する4つの金属片14を効率的にスパッタする。これにより、各金属片14を構成する金属元素であるZn、Cd、Pb、Crと、カソード板11の材料であるCuとの5つの金属元素のプラズマを高密度で発生させることができる。その結果、マイクロホローカソード放電による発光スペクトルは、Zn、Cd、Pb、Cr、Cuの5つの金属元素の輝線スペクトルを有している。
 以上のように、実施例1のマルチマイクロホローカソード光源によると、マイクロホローカソード放電による1ヶ所の点光源でありながら、複数の金属元素の輝線スペクトルを有した光を得ることができる。
 図4は、発光スペクトルの測定結果を示したグラフである。電流値は25mA、内圧は0.05atmとした。このグラフから、波長213nmのZn、波長357nmのCr、波長283.3nmのPb、波長324nmのCu、波長228nmのCd、の輝線スペクトルをそれぞれ確認することができ、これら5つの金属元素の輝線スペクトルを有する光をマルチマイクロホローカソード光源から得られたことがわかる。Pb、Crからの発光強度が弱く、Zn、Cu、Cdに比べて明瞭な輝線が得られていないが、溝16の幅を広げてPbおよびCrからなる金属片14の枚数を増やす、もしくは金属片14をより厚くすることによって、Pb、Crの発光強度を高め、より明瞭な輝線が得られるように制御することは可能である。
 実施例2は、実施例1のマルチマイクロホローカソード光源を用いた原子吸光分析装置の例である。原子吸光分析装置は、図5に示すように、実施例1のマルチマイクロホローカソード光源100と、コリメートレンズ101と、スパッタ装置102と、集光レンズ103と、受光素子アレイ104と、によって構成されている。マルチマイクロホローカソード光源100は、測定対象とする複数の金属元素の輝線スペクトルを有した光を発光する光源である。スパッタ装置102は、試料をプラズマ化させる装置である。マルチマイクロホローカソード光源100からの複数の金属元素の輝線スペクトルを有した光は、コリメートレンズ101によって平行光にされたのち、スパッタ装置102内のプラズマ105に照射される。プラズマ105を透過した平行光は、集光レンズ103によって集光されて受光素子アレイ104に到達する。これにより、プラズマ105中の測定対象とする複数の金属元素を同定することができ、元素の吸収率を測定することによって複数の金属元素の密度を同時に定量することができる。
 この原子吸光分析装置は、光源として実施例1のマルチマイクロホローカソード光源100を用いているため、光軸は1つであり、光源から受光素子アレイ104に至る光路の構築が非常に簡便である。そのため、原子吸光分析装置を小型で低コストとすることができる。
 なお、実施例2では、試料を高温で原子化する方法として、スパッタによりプラズマを発生させる方法を用いたが、レーザーアブレーション、火炎、電気加熱など、従来より原子吸光分析で用いられている方法でもよい。
 本発明のマルチマイクロホローカソード光源は、原子吸光分析法などに用いることができる。
 1:電極板
 2:筐体
 3:レンズ
 4:電極板固定部
 11:カソード板
 12:絶縁板
 13:アノード板
 14:金属片
 15:孔
 16:溝
 100:マルチマイクロホローカソード光源
 101:コリメートレンズ
 102:スパッタ装置
 103:集光レンズ
 104:受光素子アレイ

Claims (5)

  1.  雰囲気ガス中において、マイクロホロープラズマを生成して光源とするマルチマイクロホローカソード光源において、
     2次電子放出係数の高い金属からなるカソード板と、
     絶縁板と、
     前記カソード板に対して前記絶縁板を介在させて配設されたアノード板と、
     前記カソード板、前記絶縁板、前記アノード板を貫通する直径1cm以下の1つの孔と、
     得るべき複数の輝線スペクトルに対応した、それぞれ異なる元素からなる複数の金属片と、
     雰囲気ガスと、
     を有し、
     前記カソード板は、前記孔を中心とし、その孔に連続して放射状に伸びた複数の溝を有し、
     複数の前記金属片は、各前記溝に埋め込まれている、
     ことを特徴とするマルチマイクロホローカソード光源。
  2.  前記2次電子放出係数の高い金属は、銅または銅合金であることを特徴とする請求項1に記載のマルチマイクロホローカソード光源。
  3.  前記雰囲気ガスは、ヘリウムからなることを特徴とする請求項1または請求項2に記載のマルチマイクロホローカソード光源。
  4.  前記孔の直径は、1mm以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のマルチマイクロホローカソード光源。
  5.  多元素を同時に測定する原子吸光分析装置において、
     請求項1ないし請求項4のいずれか1項に記載のマルチマイクロホローカソード光源を有することを特徴とする原子吸光分析装置。
PCT/JP2011/000685 2010-02-22 2011-02-08 マルチマイクロホローカソード光源および原子吸光分析装置 WO2011102094A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/578,171 US8638034B2 (en) 2010-02-22 2011-02-08 Multi-micro hollow cathode light source and atomic absorption sepctrometer
CN201180010218.XA CN102770938B (zh) 2010-02-22 2011-02-08 多微空心阴极光源和原子吸收光谱仪

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-036315 2010-02-22
JP2010036315A JP5305411B2 (ja) 2010-02-22 2010-02-22 マルチマイクロホローカソード光源および原子吸光分析装置

Publications (1)

Publication Number Publication Date
WO2011102094A1 true WO2011102094A1 (ja) 2011-08-25

Family

ID=44482702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000685 WO2011102094A1 (ja) 2010-02-22 2011-02-08 マルチマイクロホローカソード光源および原子吸光分析装置

Country Status (4)

Country Link
US (1) US8638034B2 (ja)
JP (1) JP5305411B2 (ja)
CN (1) CN102770938B (ja)
WO (1) WO2011102094A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3417478B1 (en) * 2016-02-17 2022-04-06 Accustrata, Inc. System and method for monitoring atomic absorption during a surface modification process
CN107036976A (zh) * 2016-12-01 2017-08-11 昆山书豪仪器科技有限公司 一种空心阴极光源
DE102019103035A1 (de) * 2019-02-07 2020-08-13 Analytik Jena Ag Atomabsorptionsspektrometer
CN114088690B (zh) * 2021-11-09 2023-07-21 哈尔滨工业大学 一种开放环境下气体杂质的分析检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107825A1 (ja) * 2003-05-30 2004-12-09 Tokyo Electron Limited プラズマ源及びプラズマ処理装置
JP2005285679A (ja) * 2004-03-30 2005-10-13 Toshio Goto アーク放電陰極、アーク放電電極及びアーク放電光源
JP2007257900A (ja) * 2006-03-21 2007-10-04 Univ Nagoya マルチマイクロホローカソード光源及び多元素同時吸光分析装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063631U (zh) * 1990-01-03 1990-10-10 北京有色金属研究总院 可见紫外分子吸收光谱空心阴极灯
CN2411468Y (zh) * 1999-12-29 2000-12-20 吴安林 多阴极元素空心阴极灯

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107825A1 (ja) * 2003-05-30 2004-12-09 Tokyo Electron Limited プラズマ源及びプラズマ処理装置
JP2005285679A (ja) * 2004-03-30 2005-10-13 Toshio Goto アーク放電陰極、アーク放電電極及びアーク放電光源
JP2007257900A (ja) * 2006-03-21 2007-10-04 Univ Nagoya マルチマイクロホローカソード光源及び多元素同時吸光分析装置

Also Published As

Publication number Publication date
US20130027697A1 (en) 2013-01-31
CN102770938A (zh) 2012-11-07
US8638034B2 (en) 2014-01-28
JP5305411B2 (ja) 2013-10-02
CN102770938B (zh) 2015-05-13
JP2011171251A (ja) 2011-09-01

Similar Documents

Publication Publication Date Title
US8288735B2 (en) Photoemission induced electron ionization
CA2738053C (en) Photoemission induced electron ionization
Compton et al. Resonantly enhanced multiphoton ionization of xenon: photoelectron enrgy analysis
JP4825028B2 (ja) イオン化装置
Pereiro et al. Present and future of glow discharge—Time of flight mass spectrometry in analytical chemistry
JP2008538646A (ja) Rf単独多重極におけるrf電界と軸方向dc電界との組合せの発生
JP5305411B2 (ja) マルチマイクロホローカソード光源および原子吸光分析装置
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
US20140264010A1 (en) Ionization within ion trap using photoionization and electron ionization
Hang Laser ionization time-of-flight mass spectrometer with an ion guide collision cell for elemental analysis of solids
US8304744B2 (en) Closed drift ion source
JP4974135B2 (ja) マルチマイクロホローカソード光源及び多元素同時吸光分析装置
Yotsombat et al. Optical emission spectra of a copper plasma produced by a metal vapour vacuum arc plasma source
Tabrizchi et al. Design, construction and calibration of a laser ionization time-of-flight mass spectrometer
WO2019082893A1 (ja) ガス分析器
Tusche et al. A low energy ion source for electron capture spectroscopy
US4367427A (en) Glow discharge lamp for qualitative and quantitative spectrum analysis
JP5224174B2 (ja) マグネトロン
Drewnick et al. A laser ablation electron impact ionization time-of-flight mass spectrometer for analysis of condensed materials
JP5368664B2 (ja) アーク放電陰極、アーク放電電極及びアーク放電光源
JP2011003316A (ja) 極端紫外光発生装置、光脱離質量分析装置、極端紫外分光測光装置および極端紫外光発生方法
Apollonov Multi charged ions and mass spectrometry
JP2010197067A (ja) グロー放電発光分光分析装置およびそれを用いる分析方法
JP2012079585A (ja) 光源
Rahman A Laser Ion Source for Thin Film Deposition: Characterization of Source and Growth Conditions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010218.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578171

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11744388

Country of ref document: EP

Kind code of ref document: A1