WO2011101602A1 - Nanoémulsion pour la délivrance d'au moins deux agents d'intérêt - Google Patents

Nanoémulsion pour la délivrance d'au moins deux agents d'intérêt Download PDF

Info

Publication number
WO2011101602A1
WO2011101602A1 PCT/FR2011/050343 FR2011050343W WO2011101602A1 WO 2011101602 A1 WO2011101602 A1 WO 2011101602A1 FR 2011050343 W FR2011050343 W FR 2011050343W WO 2011101602 A1 WO2011101602 A1 WO 2011101602A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoemulsion
agent
interest
lipophilic
hydrophilic
Prior art date
Application number
PCT/FR2011/050343
Other languages
English (en)
Inventor
Thomas Delmas
Anne-Claude Couffin
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to US13/883,915 priority Critical patent/US20130251629A1/en
Publication of WO2011101602A1 publication Critical patent/WO2011101602A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • A61K49/0034Indocyanine green, i.e. ICG, cardiogreen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0073Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form semi-solid, gel, hydrogel, ointment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • A61K49/0078Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion microemulsion, nanoemulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • the present invention relates to a nanoemulsion for the simultaneous administration of at least two agents of different solubility interest.
  • Nanomedicine is a new field created by the fusion of nanotechnology and medicine, and is today one of the most promising pathways for the development of effective targeted therapies, especially for oncology.
  • nanoparticles loaded with agents of interest are an ideal solution to overcome the low selectivity of drugs, including anticancer drugs, allowing through passive targeting and / or active targeting of cancerous tissues, and thus reduce severe side effects.
  • the application FR 08 55589 describes a formulation of a therapeutic agent in the form of a nanoemulsion, comprising a continuous aqueous phase and at least one dispersed oily phase, in which the aqueous phase comprises at least one polyalkoxylated cosurfactant and in which the oily phase comprises, in addition to the therapeutic agent, at least one amphiphilic lipid and at least one solubilising lipid consisting of a mixture of saturated fatty acid glycerides and its use for the administration of this therapeutic agent, in humans or in animals.
  • only one therapeutic agent is administered.
  • Some treatments require the administration of several agents of interest, sometimes of different solubilities, which then involves several administrations, an inconvenience and an increased loss of time for the patients.
  • the present invention relates to a formulation for delivery in a single application of at least one agent of hydrophilic interest and at least one agent of lipophilic interest.
  • the present invention relates to a nanoemulsion in the form of a gel comprising at least one agent of hydrophilic interest essentially present in the continuous aqueous phase and at least one agent of lipophilic interest essentially present in the dispersed oily phase of the nanoemulsion.
  • the invention relates to a nanoemulsion in the form of a gel comprising a continuous aqueous phase and at least one dispersed oily phase, in which:
  • the aqueous phase comprises:
  • the oily phase comprises:
  • At least one lipophilic agent of interest at least one lipophilic agent of interest.
  • the amphiphilic lipid is a phospholipid.
  • the solubilizing lipid comprises at least one glyceride of fatty acids, for example a glyceride of saturated fatty acids having 12 to 18 carbon atoms.
  • the oily phase may further comprise at least one oil, preferably an oil having a hydrophilic-lipophilic balance (HLB) of between 3 and 10, in particular a biocompatible natural origin oil, such as soybean oil.
  • HLB hydrophilic-lipophilic balance
  • the cosurfactant comprises at least one chain composed of ethylene oxide or ethylene oxide and propylene oxide units. It can be chosen in particular from the polyethylene glycol / phosphatidylethanolamine (PEG-PE) conjugate compounds, the polyethylene glycol fatty acid ethers, the polyethylene glycol fatty acid esters and the ethylene oxide block copolymers. and propylene oxide.
  • PEG-PE polyethylene glycol / phosphatidylethanolamine
  • the agents of interest may in particular be therapeutic agents, such as pharmaceutical active ingredients or photosensitizers.
  • the nanoemulsion according to the invention makes it possible to provide in a single application two agents of interest or more, generally at different release times. At least one hydrophilic benefit agent is released at a time t hy drophiie and at least one lipophilic interest agent is released at a time. ⁇ ⁇ ⁇ different from t hy drophiie- Indeed, the hydrophilic benefit agent is substantially located in the aqueous continuous phase of the nanoemulsion. He is trapped between the droplets of the phase oily dispersed.
  • the nanoemulsion comes into contact with physiological fluids (blood, plasma, etc.) and will then gradually disintegrate, that is to say that the three-dimensional network formed by the droplets of the dispersed phase disintegrates, the droplets moving away from each other, thereby releasing the hydrophilic agent of interest.
  • physiological fluids blood, plasma, etc.
  • the release time of the hydrophilic agent of hydrophilic interest is related to the disintegration time of the three-dimensional network of the nanoemulsion, that is to say the time of release of the droplets t g0 utteiette, but also to the diffusion time of the hydrophilic agent of interest through the nanoemulsion.
  • the lipophilic agent of interest is essentially located in the dispersed oily phase of the nanoemulsion, either inside the droplets or on the surface of the droplets.
  • the release time of the lipophilic agent of interest is linked to the transmission time of the lipophilic agent interest outwardly of the droplet, the degradation time of the droplets and sometimes at the time of release of droplets t gou tteiette-
  • e may also be different, especially when the disintegration of the nanoemulsion linked to the release of the hydrophilic agent of interest does not take place at the same place as the release of the agent of lipophilic interest from the droplets.
  • the hydrophilic agent of interest is then released at the administration site and the droplets released from the nanoemulsion are carried away by the physiological fluid (blood, plasma), to another location of the subject, where the lipophilic therapeutic agent will be released.
  • composition of the nanoemulsion according to the invention (nature of the constituents, mass fraction of the constituents, size of the droplets, etc.) as a function of the physicochemical properties of the agents, as explained hereinafter, it is advantageously possible to modify these times of release t hy drophy and t
  • e it is advantageously possible to modify these times of release t hy drophy and t
  • the nanoemulsion comprises more than one hydrophilic agent of interest and / or more than one agent of lipophilic interest
  • lipophilic interest) for t hy drophiie 1 differs from thydrophiie 2 and / or tiipoph ⁇ ie 1 differs from t
  • the different locations of agent releases can also be influenced and differ from each other. Thanks to its formulation, the nanoemulsion according to the invention is stable.
  • the nanoemulsions have the advantage, in particular, of excellent storage stability (> 3 months or even 8 months).
  • the invention relates to a process for preparing this nanoemulsion, comprising the steps of:
  • the shearing action is exerted by sonication.
  • the manufacturing method according to the invention makes it possible to obtain nanoemulsions comprising a dispersed phase whose droplets are very small and monodisperse in a simple, fast and inexpensive manner.
  • the process can easily be carried out on an industrial scale.
  • it uses no or very few organic solvents and can be implemented with products authorized for use in humans.
  • moderate heating means heating at a temperature below 80 ° C, and preferably below 70 ° C or 60 ° C.
  • the invention relates to a nanoemulsion in which the hydrophilic agent of interest is a hydrophilic therapeutic agent and the lipophilic agent of interest is a lipophilic therapeutic agent for its use for the administration of at least one hydrophilic therapeutic agent and at least one lipophilic therapeutic agent in humans or animals for treating or preventing a disease.
  • the nanoemulsion according to the invention is in gel form.
  • gel is usually understood to mean a thermodynamically stable two-phase solid-liquid system consisting of a continuous three-dimensional continuous interpenetrating network, one solid and the second liquid.
  • a gel is a two-phase liquid-solid system whose solid network retains a liquid phase.
  • the gels can be considered as solid, they have properties specific to solids (structural stiffness, elasticity to deformation) and liquids (vapor pressure, compressibility and electrical conductivity).
  • the three-dimensional network is formed by the droplets interstices between droplets being filled with continuous phase.
  • the links between the network units, namely the droplets are generally based on non-covalent interactions such as hydrogen bonding, Van der Waals interactions or even electrostatic interactions (ion pairs). These interactions exist mainly between the co-surfactants of adjacent droplets.
  • a nanoemulsion in gel form thus shows a resistance to pressure and is able to maintain a defined shape.
  • nanoemulsion is in the form of a gel
  • rheological studies to evaluate the viscoelastic properties, and / or more structural studies showing the bonds between the droplets forming the three-dimensional network (X-ray diffraction, neutrons ).
  • a nanoemulsion in gel form has a viscosity and a coefficient of elasticity greater than a liquid nanoemulsion.
  • the nanoemulsion in gel form can, depending on the concentration of droplets and therefore the mass fraction dispersed phase, be in the form of viscous liquid, viscoelastic solid or elastic solid.
  • the nanoemulsion Compared to the aqueous dispersing phase, whose viscosity is close to that of water (1 mPa.s at 25 ° C), the nanoemulsion is considered a viscous liquid when its viscosity is 10 times higher than that of water. or> 10 mPa.s at 25 ° C.
  • the nanoemulsion is in the form of a viscous liquid when G">G'.
  • the nanoemulsion is in the state of viscoelastic solid
  • G" ⁇ G' it is in the state of elastic solid.
  • the nanoemulsion is preferably in the viscous liquid state or viscoelastic solid, because the viscosity is sufficiently moderate in these states to allow applications involving administration by injection.
  • Emulsions in the form of viscous solid, viscoelastic solid and elastic solid are characterized by the presence of an increasing number of droplets and their resulting progressive interaction.
  • the different states are distinguished in particular by their rheological behavior, especially in terms of viscosity, but also at the level of the deformation of the stressed material (conservation module G 'and loss modules G ").
  • the viscosity and the coefficient of elasticity can be measured by a cone-plane rheometer or a Couette rheometer.
  • the viscosity of a liquid nanoemulsion is generally less than 1 poise, or even often less than 0.01 poise.
  • the nanoemulsion according to the invention generally has a viscosity greater than 1 poise, and may have a viscosity up to that of a solid (more than 1000 poise).
  • the nanoemulsion of the present invention generally has a viscosity of 1 to 1000 poises, preferably 1 to 500 poise and even more preferably between 1 and 200, these values being given at 25 ' ⁇ .
  • a viscosity greater than 1 poise is indeed adapted so that the droplets of the dispersed phase form a three-dimensional network inside the continuous phase. Indeed, it has been found that below 1 poise, the droplets are generally not close enough to each other, the hydrophilic agent of interest is not sufficiently trapped between the droplets and its release out of the nanoemulsion is too fast Above 1000 poises, a quasi-solid system is obtained. The nanoemulsion is then too viscous which makes its use difficult. Similarly, while the coefficient of elasticity is generally less than 10 in the case of a liquid nanoemulsion, the elasticity coefficient of a nanoemulsion in gel form is generally greater than 10.
  • the nanoemulsion according to the invention is advantageously in the form of a dispersible gel, that is to say that the droplets forming the three-dimensional network may be released in the continuous phase under certain conditions by "degelling" of the gel system, also called “disintegration”. In this application. Disintegration is observed by adding continuous phase to the gel or by increasing the temperature.
  • adding the continuous phase causes a difference in osmotic pressure between the inside of the gel and the continuous phase.
  • the system will therefore tend to decrease, to cancel, this osmotic pressure difference by releasing the droplets in the continuous phase excess, until a homogeneous droplet concentration is obtained throughout the continuous phase volume.
  • sol-gel transition temperatures nanoemulsion passage in gel form to a liquid nanoemulsion
  • these temperatures depend on the composition of the gel and more particularly on the size of the droplets and the length of the polyalkoxylated chains of the co-surfactant.
  • the disintegration of the nanoemulsion in gel form can be followed by X-ray diffraction, differential scanning calorimetry (DSC) or nuclear magnetic resonance (NMR).
  • Disintegration can also be followed by DSC.
  • a peak appears on the thermogram during the nanoemulsion transition in the form of a gel / liquid nanoemulsion while rising in temperature.
  • an NMR study can also make it possible to follow the disaggregation by measuring the diffusion coefficient associated with each droplet by distinguishing a liquid nanoemulsion from a nanoemulsion in gel form.
  • the diffusion coefficient is very significantly decreased in the case of a nanoemulsion in gel form (it is then generally less than 0.0 ⁇ m 2 / s), where the system is frozen.
  • the dispersed oily phase of the nanoemulsion (optional oil / solubilizing lipid / amphiphilic lipid / co-surfactant / lipophilic agent of interest) represents between 30 and 90% by weight relative to the total weight of the nanoemulsion, that is to say in terms of the weight of the continuous and oily aqueous dispersed phases.
  • droplet includes both liquid oil droplets themselves as well as solid particles from oil-in-water emulsions in which the oily phase is solid.
  • the droplets of the nanoemulsion are advantageously monodisperse.
  • the standard deviation between the minimum and maximum diameters of the droplets relative to the average diameter is generally less than or equal to 30%, preferably 15%.
  • the average diameter of the droplets of the dispersed phase is preferably from 20 to 200 nm, in particular from 40 to 150 nm and in particular from 50 to 120 nm. These diameters are measured by light scattering.
  • the droplet size can also be obtained by transmission electron microscopy (TEM), transmission electron cryomicroscopy (cryoTEM) or atomic force microscopy (AFM). Diameters less than 20 nm and greater than 200 nm are difficult to achieve in practice. Indeed, the smaller the droplet diameter, the higher the surface area of the droplets, the more the hydrophilic agent of interest between the droplets is trapped in the three-dimensional network of the nanoemulsion and the longer the release time of the Hydrophilic agent of interest increases.
  • the nanoemulsion therefore allows an excellent release of the lipophilic agent of interest in the cells, in particular due to the small average diameter of the droplets of the dispersed phase comprising the lipophilic therapeutic agent, which easily penetrate the cell membranes.
  • the nanoemulsion can be formulated so that the surface of the dispersed phase has a low zeta potential, ideally between -25 mV and + 25 mV, or even zero.
  • the polyalkoxylated chains of the co-surfactant, hydrated and uncharged, covering the surface of the droplets screen the charges provided by the amphiphilic lipids to the solid surface of the droplets ( Figure 2).
  • Nanoparticles with a very positive surface charge, that is, greater than 25 mV, are generally more cytotoxic than nanoparticles with negative zeta potential. neutral.
  • the term "lipid” in this presentation refers to all the fatty substances or substances containing fatty acids present in fats of animal origin and in vegetable oils. They are hydrophobic or amphiphilic molecules mainly composed of carbon, hydrogen and oxygen and having a density lower than that of water. The lipids can be in the solid state at room temperature (25%), as in waxes, or liquid, as in oils.
  • amphiphile refers to a molecule having a hydrophobic portion and a hydrophilic portion, for example a hydrophobic apolar portion and a hydrophilic polar portion.
  • phospholipid refers to lipids having a phosphate group, especially phosphoglycerides. Most often, the phospholipids comprise a hydrophilic end formed by the optionally substituted phosphate group and two hydrophobic ends formed by fatty acid chains. Among the phospholipids, mention will in particular be made of phosphatidylcholine, phosphatidylethanolamine, phophatidylinositol, phosphatidyl serine and sphingomyelin.
  • lecithin refers to phosphatidylcholine, i.e. a lipid formed from choline, phosphate, glycerol and two fatty acids. It covers more widely phospholipids extracted from living, of plant or animal origin, insofar as they consist mainly of phosphatidylcholine. These lecithins generally constitute mixtures of lecithins carrying different fatty acids.
  • fatty acid refers to aliphatic carboxylic acids having a carbon chain of at least 4 carbon atoms. Natural fatty acids have a carbon chain of 4 to 28 carbon atoms (usually an even number). Long-chain fatty acids with a length of 14 to 22 carbons and a very long chain are called if there are more than 22 carbons.
  • surfactant is understood to mean compounds with an amphiphilic structure which gives them a particular affinity for the interfaces of the oil / water and water / oil type, which gives them the capacity to lower the free energy of these interfaces and to stabilize dispersed systems.
  • co-surfactant a surfactant acting in addition to a surfactant to further lower the energy of the interface.
  • agent of interest is understood to mean an organic or inorganic molecule, an organic or inorganic macromolecule, an organic or inorganic metal compound or an organic or inorganic nanocrystal of diameter less than or equal to 10 nm having a property: - therapeutic (therapeutic agent),
  • bactericidal such as an antibiotic, an antimicrobial, an antiseptic, an antiparasitic agent, for example metals Cu, Zn, Ag in particulate or molecular form, or organic molecules such as quinolones, aminoglycosides or betalactamides.
  • optics such as a dye, a chromophore, a fluorophore, for example perchlorate 1, 1'-dioctadecyl 3,3,3 ', 3'-tetramethylindodicarbocyanine (DiD), iodide 1,1'-dioctadecyl 3,3 , 3 ', 3'-tetramethylindotricarbocyanine (DiR), indocyanine green (ICG), or components with optoelectronic properties, such as saturators or optical absorbers.
  • DiD 1, 1'-dioctadecyl 3,3,3 ', 3'-tetramethylindodicarbocyanine
  • DIR iodide 1,1'-dioctadecyl 3,3 , 3 ', 3'-tetramethylindotricarbocyanine
  • ICG indocyanine green
  • phytosanitary such as a mineral substance (ex: copper sulphate) or organic (eg carbofuran carbamate, furadan ...), natural (ex: Bt) or from synthetic chemistry (eg glyphosate) .
  • a mineral substance ex: copper sulphate
  • organic eg carbofuran carbamate, furadan
  • natural ex: Bt
  • synthetic chemistry eg glyphosate
  • a taste and / or odor masking such as a taste and / or odor substance, such as menthol or cinnamaldehyde, for pharmaceutical use
  • catalysis such as a metal or organometallic catalyst.
  • therapeutic agent is intended to mean any compound that is useful for the treatment of a pathology, whether it acts chemically, such as pharmaceutical active principles, physically or biologically, but with the exception of diagnostic.
  • lipophilic agent of interest an agent of interest which is predominantly, preferably totally, in the dispersed oily phase, inside or on the surface of the droplets.
  • a lipophilic agent of interest has affinities for oily compounds (fats, oils, waxes, etc.) and apolar solvents (toluene, hexane, etc.).
  • the forces allowing solubilization of the lipophilic agent of interest are mainly London forces (Van der Waals interactions).
  • a lipophilic agent of interest has a high oil / water partition coefficient.
  • hydrophilic agent of interest an agent of interest which is predominantly, preferably totally, in the continuous aqueous phase. Its solubility in water is generally greater than 1% by weight. The solubilization in water of the agents of hydrophilic interest generally comes from hydrogen and / or ionic bonds between the agents of hydrophilic interest and water.
  • biological ligand any molecule that specifically recognizes a receptor generally located on the surface of cells.
  • the invention relates to a nanoemulsion in the form of a gel comprising a continuous aqueous phase and at least one dispersed oily phase, in which:
  • the aqueous phase comprises:
  • the oily phase comprises:
  • At least one lipophilic agent of interest at least one lipophilic agent of interest.
  • the nanoemulsion is therefore an oil-type emulsion in water. It can be simple or multiple, in particular having in the dispersed phase a second aqueous phase.
  • the agents of interest are therapeutic agents.
  • the therapeutic agents capable of being encapsulated in the nanoemulsion according to the invention comprise in particular the active ingredients acting chemically, biologically or physically.
  • it may be pharmaceutical active principles or biological agents such as DNA, proteins, peptides or antibodies, still agents that are useful for physical therapies such as compounds that are useful for thermotherapy, compounds that release singlet oxygen when excited by light useful for phototherapy and radioactive agents.
  • these are active principles to be administered by injection.
  • the at least one hydrophilic agent of interest is located in the continuous aqueous phase.
  • the at least one lipophilic agent of interest is located in the dispersed oily phase. It can in particular be encapsulated in the droplets of the dispersed phase or be located at the interface of the aqueous and oily phases on the surface of the droplets, according to its lipophilic or amphiphilic affinity.
  • the nature of the agents of interest in the nanoemulsion is not particularly limited.
  • the hydrophilic and / or lipophilic agent of interest of the nanoemulsion is typically a hydrophilic and / or lipophilic therapeutic agent, such as a pharmaceutical active ingredient or a photosensitizer. Due to the mild conditions of the process of preparation, the nanoemulsion described is particularly interesting for agents of interest which degrade at high temperature.
  • agents used in the treatment of AIDS agents used in the treatment of heart diseases, analgesics, anesthetics, anorectics, anthelmintics, antiallergics, Anti-anginal drugs, antiarrhythmic agents, anticholinergics, anticoagulants, antidepressants, antidiabetics, antidiuretics, antiemetics, anticonvulsants, antifungals, antihistamines, antihypertensives, anti-inflammatories, anti-migraine drugs, antimuscarinics, antimycobacterials, anti-cancer drugs including antiparkinson drugs, antithyroid drugs, antivirals, astringents, blocking agents, blood products, blood substitutes, cardiac inotropic agents, cardiovascular agents, central nervous system agents, chelators, chemotin agents therapy, hematopoietic growth factors, corticosteroids, antitussives, dermatological agents, diuretics, dopamine
  • radioactive isotopes and photo-sensitizers.
  • photosensitizers mention may in particular be made of those belonging to the class of tetrapyrroles such as porphyrins, bacteriochlorins, phthalocyanines, chlorines, purpurins, porphycenes, pheophorbides, or those belonging to the class of texaphyrins or hypericins.
  • tetrapyrroles such as porphyrins, bacteriochlorins, phthalocyanines, chlorines, purpurins, porphycenes, pheophorbides, or those belonging to the class of texaphyrins or hypericins.
  • derivatives of 5-aminolevulic acid and its ester derivatives these components being known as metabolic precursors of Protoporphyrin IX.
  • first generation photosensitizers include the blood-porphyrin derivatives and a mixture of blood-porphyrin (HpD) (sold under the trademark Photofrin ® Axcan Pharma).
  • HpD blood-porphyrin
  • photosensitizers second generation there may be mentioned meta-tetra-hydroxyphenyl chlorine (mTHPC; trade name Foscan ®, Biolitec AG) and mono cycle A benzoporphyrin derivative (BPD-MA sold under the trade name Visudyne ® by QLT and Novartis Opthalmics).
  • mTHPC meta-tetra-hydroxyphenyl chlorine
  • BPD-MA mono cycle A benzoporphyrin derivative
  • the second-generation photosensitizer formulations which associate with these photosensitizers a molecule (lipid, peptide, sugar, etc.) described as a carrier which allows their selective delivery to the tumor tissue are called third-generation photosensitizers.
  • oligonucleotides DNA, RNA, SiRNAs, microRNAs, peptides and proteins.
  • the therapeutic agents can be formulated directly in their active form or in prodrug form.
  • the quantities of the agent of interest depend on the intended application as well as the nature of the agents. However, when the agents of interest are therapeutic agents, it will generally be sought to formulate the nanoemulsion with a maximum concentration of agent of interest, in order to limit the volume and / or the duration of application, especially the volume and / or the duration of administration to the patient.
  • solubilizing lipid indeed facilitates the incorporation into the heart of the droplets of liposoluble agents of interest.
  • the amphiphilic agents of interest are mainly incorporated in the droplet membrane.
  • the formulation according to the invention will most often contain an amount of 0.001 to 30% by weight, preferably 0.01 to 20% by weight, and more preferably 0.1 to 10% by weight of agents of interest.
  • the oily phase of the nanoemulsion comprises at least one amphiphilic lipid and at least one solubilizing lipid.
  • amphiphilic lipids comprise a hydrophilic part and a lipophilic part. They are generally chosen from compounds whose lipophilic part comprises a saturated or unsaturated, linear or branched chain having from 8 to 30 carbon atoms.
  • They may be chosen from phospholipids, cholesterols, lysolipids, sphingomyelins, tocopherols (non-esterified), glucolipids, stearylamines, cardiolipins of natural or synthetic origin; molecules composed of a fatty acid coupled to a hydrophilic group by an ether or ester function, such as sorbitan esters such as sorbitan monooleate and sorbitan monolaurate sold under the Span ® names by Sigma; polymerized lipids; lipids conjugated to short chains of polyethylene oxide (PEG) such as nonionic surfactants sold under the trade names Tween ® by ICI Americas, Inc. and Triton ® by Union Carbide Corp .; sugar esters such as mono- and di-laurate, mono- and di-palmitate, mono- and distearate sucrose; said surfactants can be used alone or in mixtures.
  • PEG polyethylene oxide
  • the phospholipids are particularly preferred amphiphilic lipids, in particular the phospholipids chosen from phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, phosphatidylphosphatic acid which is not hydrogenated or hydrogenated, in particular sold by the company Lipoid.
  • Lecithin is the preferred amphiphilic lipid.
  • the oily phase will comprise from 0.01 to 99% by weight, preferably from 5 to 75% by weight, in particular from 10 to 60% and most preferably from 20 to 45% by weight of amphiphilic lipid.
  • the amount of amphiphilic lipid advantageously contributes to controlling the size of the dispersed phase of the nanoemulsion obtained.
  • the emulsion according to the invention also comprises a solubilizing lipid.
  • This compound has the main mission of solubilizing the agent of lipophilic interest.
  • the use of a solubilizing lipid also makes it possible to increase the physicochemical stability of the nanoemulsion and to improve the control of the release of the lipophilic agents of interest encapsulated in the droplets.
  • the solubilizing lipid is solid at room temperature (20 ° C).
  • the solubilizing liquid may in particular be composed of glycerol derivatives, and in particular of glycerides obtained by esterification of glycerol with fatty acids, especially in the case where the amphiphilic lipid is a phospholipid.
  • the preferred solubilizing lipids are glycerides of fatty acids, in particular of saturated fatty acids, and in particular of fatty acids. saturated having 8 to 18 carbon atoms, more preferably 12 to 18 carbon atoms.
  • the solubilizing lipid consists of a complex mixture of different glycerides.
  • “Complex mixture” means a mixture of mono-, di- and triglycerides, comprising fatty chains of different lengths, the lengths preferably ranging from C8 to C18, for example, in combination with C8, C10 chains, C12, C14, C16 and C18, or C10 to C18, comprising for example in combination, C10, C12, C14, C16 and C18 chains.
  • said fatty chains may contain one or more unsaturations.
  • the solubilizing lipid consists of a mixture of saturated fatty acid glycerides comprising at least 10% by weight of C12 fatty acids, at least 5% by weight of C14 fatty acids, and at least 5% by weight. by weight of C16 fatty acids and at least 5% by weight of C18 fatty acids.
  • the solubilizing lipid consists of a mixture of saturated fatty acid glycerides having 0% to 20% by weight of C8 fatty acids, 0% to 20% by weight of C10 fatty acids, 10% at 70% by weight of C12 fatty acids, 5% to 30% by weight of C14 fatty acids, 5% to 30% by weight of C16 fatty acids and 5% to 30% by weight of acids fat in C18.
  • N-type Suppocire ® is obtained by direct esterification of fatty acids and glycerol. These are hemi-synthetic glycerides of saturated C8 to C18 fatty acids, so the qualitative-quantitative composition is shown in the table below.
  • the aforementioned solubilizing lipids make it possible to obtain an advantageously stable nanoemulsion.
  • the aforementioned solubilizing lipids make it possible to obtain droplets in the nanoemulsion having an amorphous heart.
  • the core thus obtained has a high internal viscosity without showing crystallinity.
  • the crystallization is detrimental to the stability of the nanoemulsion because it generally leads to an aggregation of the droplets and / or an expulsion of the lipophilic agent of interest outside the droplets. These physical properties promote the physical stability of the nanoemulsion.
  • solubilizing lipid can vary widely depending on the nature and amount of amphiphilic lipid present in the oily phase.
  • the oily phase will comprise from 1 to 99% by weight, preferably from 5 to 80% by weight and most preferably from 30 to 75% by weight of solubilizing lipid.
  • the oily phase may also comprise one or more other oils.
  • the oils used preferably have a hydrophilic-lipophilic balance (HLB) of less than 10 and even more preferentially of between 3 and 9.
  • HLB hydrophilic-lipophilic balance
  • the oils are used without chemical or physical modification prior to the formation of the emulsion.
  • the oils may be chosen from biocompatible oils, and in particular from oils of natural origin (vegetable or animal) or synthetic oils.
  • oils of natural plant origin including among others oils including soybean, flax, palm, peanut, olives, sesame, grape seed and sunflower; synthetic oils among which include triglycerides, glycerides and mono glycerides. These oils can be first expressions, refined or inter-esterified.
  • the preferred oil is soybean oil.
  • the oil will be contained in the oily phase in a proportion ranging from 1 to 80% by weight, preferably between 5 and 50% by weight and most preferably 10 to 30% by weight relative to the total weight of the oily phase.
  • the oily phase may also comprise imaging agents, in particular for MRI (magnetic resonance imaging), PET (in English Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomography), ultrasound Ultrasound, radiography, X-ray tomography and optical imaging (fluorescence, bioluminescence, diffusion ).
  • imaging agents in particular for MRI (magnetic resonance imaging), PET (in English Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomography), ultrasound Ultrasound, radiography, X-ray tomography and optical imaging (fluorescence, bioluminescence, diffusion ).
  • the aqueous phase used in the process according to the invention is preferably composed of water and / or a buffer such as a phosphate buffer such as for example PBS ("Phosphate Buffer Saline”) or a solution saline, especially sodium chloride.
  • a buffer such as a phosphate buffer such as for example PBS ("Phosphate Buffer Saline") or a solution saline, especially sodium chloride.
  • PBS Phosphate Buffer Saline
  • solution saline especially sodium chloride.
  • the pH of the aqueous phase is of the order of physiological pH.
  • the aqueous phase comprises at least one hydrophilic agent of interest and at least one polyalkoxylated cosurfactant. This co-surfactant makes it possible to stabilize the nanoemulsion.
  • co-surfactants that can be used in the nanoemulsions according to the present invention are preferably hydrophilic co-surfactants.
  • the co-surfactants preferably comprise at least one polyalkoxylated chain composed of ethylene oxide units (PEO or PEG) or of ethylene oxide and propylene oxide.
  • the polyalkoxylated chains of the co-surfactant are located mainly on the surface of the droplets and are oriented towards the outside of the droplet. Hydrogen bond interactions exist:
  • the polyalkoxylated chain of the cosurfactant of the nanoemulsion generally comprises from 10 to 200, typically from 10 to 150, especially from 20 to 100, preferably from 30 to 80, ethylene oxide / propylene oxide units.
  • the nanoemulsion is inhomogeneous because the dispersed phase comprises polydisperse droplets, not allowing the control of the release time of the lipophilic agent of interest.
  • the nanoemulsion is inhomogeneous because the dispersed phase comprises polydisperse droplets, not allowing the control of the release time of the agent of lipophilic interest, on the other hand the release time the lipophilic agent of interest is very short and the administration of such a nanoemulsion is therefore not interesting.
  • co-surfactants examples include polyethylene glycol / phosphatidylethanolamine (PEG-PE) conjugates, fatty acid ethers and polyethylene glycol ethers such as the products sold under the trade names.
  • PEG-PE polyethylene glycol / phosphatidylethanolamine
  • fatty acid ethers examples include fatty acid esters of polyethylene glycol such as the products sold under the trademarks Myrj ® by ICI Americas Inc. (e.g.
  • Myrj ® s20, s40 or s100, antemnent named 49, 52 or 59) and copolymers of ethylene oxide and propylene oxide such as the products sold under the trade names Pluronic ® by BASF AG (eg Pluronic ® F68, F127, L64, L61, 10R4, 17R2, 17R4, 25R2 and 25R4) or the products sold under the Synperonic ® trade name by Unichema Chemie BV (eg Synperonic ® PE / F68, PE / L61 or PE / L64).
  • the aqueous phase comprises from 0.01 to 50% by weight, preferably from 1 to 30% by weight and very particularly from 5 to 20% by weight of co-surfactant.
  • the mass fraction of the [co-surfactant / amphiphilic lipid] group relative to the total weight of the droplet core is less than or equal to 2, preferably less than or equal to 1. This makes it possible to obtain a physically stable system that does not undergo the effects of destabilization due to Ostwald ripening or coalescence (separation of the aqueous and oily phases).
  • the mass fraction of amphiphilic lipid relative to the weight of cosurfactant is from 0.005% to 10%, especially from 0.01% to 2%, preferably from 0.1% to 0.6%. Indeed, below 0.005% and beyond 10%, the droplets of the dispersed phase are often not sufficiently stable and coalesce in a few hours and it is often difficult to obtain droplets with a diameter of less than 200 nm.
  • the nanoemulsion does not comprise additional surfactants: the only surfactants of the nanoemulsion are the amphiphilic lipid and the co-surfactant. Likewise, the viscosity of the system is conferred directly by the components of the nanoemulsion, and additional rheo-thickening agents are generally not required in the continuous phase.
  • the polyalkoxylated cosurfactant comprises an end group capable of forming non-covalent bonds, for example a hydrogen, hydrophobic (Van der Waals interaction) or electrostatic, in particular ionic, bonding.
  • the polyalkoxylated cosurfactant has a terminal group capable of forming hydrogen bonds.
  • terminal is meant that the group is at one end of the polyalkoxylated chain (s) of the co-surfactant.
  • the group capable of forming hydrogen bonds with water is a group comprising one or more acidic hydrogen, for example the hydrogens of an amine or alcohol function, and / or a plurality of acidic hydrogen acceptor groups, such as a atom of fluorine, oxygen, sulfur or nitrogen.
  • the terminal group of the polyalkoxylated chain of the co-surfactant is a hydroxyl group.
  • a polyalkoxylated co-surfactant having another terminal group, such as N-hydroxysuccinimide, maleimide, -NH 2 , -COOH or -SH may be used.
  • DSPE-PEG-X wherein DSPE is distearylphosphatidylethanolamine, PEG is a poly (ethylene oxide) chain, generally having from 10 to 200 oxyethylene units, preferably from 20 to 100 oxyethylene units, and X represents a group selected from an N-hydroxysuccinimide group, maleimide, -OH, -NH 2 , -COOH or -SH, preferably N-hydroxysuccinimide or maleimide ( Figure 2).
  • This group capable of forming hydrogen bonds favors the interactions by hydrogen bonding between polyalkoxylated chains co-surfactants of adjacent droplets, and promotes the cohesion of the nanoemulsion. The release times of the hydrophilic and lipophilic agents of interest are thus increased.
  • the polyalkoxylated cosurfactant comprises a grafted compound of interest.
  • the compound of interest has been grafted by chemical bond, generally covalent, to the co-surfactant as defined above.
  • the grafting can be carried out before or after the formation of the nanoemulsion. The last case can be recommended when the chemical reactions used are compatible with the stability of the nanoemulsion, especially in terms of pH. Preferably, the pH during the grafting reaction is between 5 and 1 1.
  • this grafting has been carried out at one end of the polyalkoxylated chain (s) of the co-surfactant, and the compound of interest is thus located on the surface of the droplets of the dispersed oily phase of the nanoemulsion.
  • the compounds of interest can be for example:
  • this biological ligand will be specifically recognized by certain cells (for example tumor cells as described for example in the article by S. Achilefu, Technology in Cancer Research & Treatment, 2004, 3 , 393-408) or certain organs that it is desired to target, which makes it possible to control the location of the release of the agent of lipophilic interest;
  • a stealth agent an entity added in order to confer on the nanoemulsion a stealthiness vis-à-vis the immune system, to increase its circulation time in the body, and to slow down its elimination.
  • the continuous phase also comprises a thickening agent such as a glycerol, a saccharide, oligosaccharide or polysaccharide, a gum or a protein, preferably glycerol.
  • a thickening agent such as a glycerol, a saccharide, oligosaccharide or polysaccharide, a gum or a protein, preferably glycerol.
  • the aqueous phase advantageously comprises 0 to 50% by weight, preferably 1 to 30% by weight and most preferably 5 to 20% by weight of thickening agent.
  • the aqueous phase may further contain other additives such as dyes, stabilizers and preservatives in an appropriate amount.
  • the dispersed oily phase of the nanoemulsion (optional oil / solubilizing lipid / amphiphilic lipid / co-surfactant / agent of lipophilic interest) represents between 30 and 90% by weight, in particular between 35 and 65% by weight, preferably between 45 and 64% by weight relative to the total weight of the nanoemulsion, that is to say with respect to the weight of the continuous and oily aqueous dispersed phases.
  • the formation of a nanoemulsion depends of course on the composition of the aqueous and oily phases. However, for most aqueous / oily phase compositions (but not all), it is difficult to obtain a nanoemulsion in gel form when the dispersed oily phase is less than 30% by weight.
  • the more the dispersed oily phase mass fraction increases the more the viscosity of the nanoemulsion increases. It has indeed been found that increasing the mass fraction of dispersed phase amounts to increasing the density of the droplets, thus promoting the approximation between droplets and therefore the interactions between them. Mass fractions in the oily phase of less than 90%, or even less than 65%, are preferred. Generally, an increase in the dispersed oil phase mass fraction is correlated with an increase in the droplet diameter of the dispersed phase.
  • the nanoemulsion as described can be readily prepared by dispersing appropriate amounts of oil phase and aqueous phase by shearing.
  • the invention relates to a method for preparing the aforementioned nanoemulsion, comprising the steps of:
  • This process advantageously allows the direct manufacture of a nanoemulsion in gel form without requiring, following the dispersion step described in step (iii) above, an intermediate step of concentrating or adding rheo-thickening agent
  • the various oily constituents and the lipophilic agent of interest are first mixed to prepare an oily premix for the dispersed phase of the nanoemulsion.
  • the mixture of the various oily constituents and the lipophilic agent of interest may optionally be facilitated by dissolving one of the constituents or the complete mixture in an appropriate organic solvent and subsequent evaporation of the solvent, to obtain an oily premix. homogeneous for the dispersed phase.
  • the choice of the organic solvent depends on the solubility of each agent of lipophilic interest.
  • the solvents employed can be, for example, methanol, ethanol, chloroform, dichloromethane, hexane, cyclohexane, DMSO, DMF or else toluene.
  • it is preferably volatile organic solvents and / or non-toxic to humans.
  • the oily phase is dispersed in the aqueous phase in the liquid state. If one of the phases solidifies at room temperature, it is preferable to carry out the mixing with one or preferably the two phases heated to a temperature greater than or equal to the melting temperature, the two phases being heated to a temperature preferably less than 80 ° C, and still more preferably less than 70 ° C, and still more preferably less than 60 ° C.
  • the emulsification under the shearing effect is preferably carried out using a sonifier or a microfluidizer.
  • the aqueous phase and then the oily phase are introduced in the desired proportions in a suitable cylindrical container and the sonifier is immersed in the medium and started for a sufficient time to obtain a nanoemulsion, usually a few minutes.
  • a homogeneous nanoemulsion is then obtained in which the mean diameter of the droplets is greater than 20 nm and less than 200 nm, especially 50 to 120 nm.
  • the zeta potential of the nanoemulsion is less than 25 mV in absolute value, that is to say between ⁇ 25mV and 25 mV.
  • the emulsion Before conditioning, the emulsion can be diluted and / or sterilized, for example by filtration or dialysis. This step eliminates any aggregates that may have formed during the preparation of the emulsion.
  • the nanoemulsion thus obtained is ready for use, optionally after dilution. [Use of the nanoemulsion]
  • the invention relates to the aforementioned nanoemulsion in which the hydrophilic agent of interest is a hydrophilic therapeutic agent and the lipophilic agent of interest is a lipophilic therapeutic agent, for its use for the administration of at least one hydrophilic therapeutic agent and at least one lipophilic therapeutic agent to the human or animal for treating or preventing a disease.
  • nanoemulsion can be prepared exclusively from human-approved components, it is particularly useful for parenteral administration. However, it is also possible to envisage administration by other routes, especially orally or topically.
  • ip ophiie are related to the time of release of droplets droplet, which corresponds to the disintegration time of the three-dimensional network of the nanoemulsion.
  • the release time of the hydrophilic therapeutic agent t hy drophiie is related to the time of disintegration of the three-dimensional network of the nanoemulsion, that is to say the droplets of release time tisseiette but also the diffusion time of the hydrophilic therapeutic agent through the nanoemulsion.
  • the hydrophilic therapeutic agent release time t hy drophiie depends on the composition of the nanoemulsion, in particular:
  • the release time of the lipophilic therapeutic agent is linked to the transmission time of the lipophilic therapeutic agent towards the outside of the droplet and the droplet release time t drop iette-
  • the release time of the lipophilic therapeutic agent ⁇ ⁇ ⁇ 0 ⁇ ⁇ depends:
  • the droplets of the nanoemulsion according to the invention are advantageously monodisperse to allow a homogeneous release over time of the lipophilic therapeutic agent.
  • the nature of the components of the oily phase especially the solubilizing lipid, the physicochemical characteristics of the lipophilic therapeutic agent (Nel, AE et al Nature Materials 8 (2009) pp543-557), in particular of its log P, which influences on the location of the lipophilic therapeutic agent inside or on the surface of the droplet.
  • a very lipophilic therapeutic agent remains in the droplet and is released only when the latter is degraded by chemical degradation (by hydrolysis of the droplet components following a significant increase or decrease in the medium, for example if the droplets are internalized at the same time. lysosomes) or by enzymatic degradation by lipases (Olbrich, C. et al., International Journal of Pharmaceutics 237 (2002) pp. 19-128 and Olbrich, C. International Journal of Pharmaceutics 180 (1999). ) pp31 -39).
  • the time of the hydrophilic therapeutic agent t hy drophiie is less than the time for release of the lipophilic therapeutic agent
  • the location of the release of the hydrophilic therapeutic agent is generally L hy drophiie the administrative location of the nanoemulsion.
  • ip ophiie is either the localization of administration (in this case, the hy phophy and L
  • the localization of the release of the lipophilic therapeutic agent also depends on the physicochemical properties
  • the zone of administration of the nanoemulsion in particular the density of the tissues and the presence or absence of physiological barriers, and
  • each lipophilic therapeutic agent has a localization of the release that is specific to it.
  • a polyalkoxylated cosurfactant comprises a graft targeting biological ligand, which will allow the droplets, and thus the lipophilic therapeutic agent, to be directed to the desired target.
  • the nanoemulsion according to the invention therefore has many applications.
  • one of the therapeutic agents may be a pharmaceutical active ingredient for the treatment of the targeted disease, and the other may be a therapeutic agent to reduce side effects, particularly those associated with said pharmaceutical active ingredient.
  • a nanoemulsion according to the invention wherein the hydrophilic therapeutic agent is a healing, antibacterial or anti-inflammatory agent and the lipophilic therapeutic agent is an anti-cancer agent may in particular be used for the post-exeresis treatment of a tumor. This nanoemulsion is applied following a tumor excision operation at the tumor excision site.
  • the healing, antibacterial or hydrophilic anti-inflammatory therapeutic agent is released rapidly to reduce the side effects of the excision and promote healing.
  • the lipophilic anti-cancer therapeutic agent is released later, usually during the first hours following application of the nanoemulsion, and treats the remaining tumor cell clumps that have not been excised. It is indeed often difficult to completely clean the entire tumor during the excision.
  • the nanoemulsion thus allows a complete treatment of the tumor zone.
  • the droplets comprising the lipophilic anticancer agent of the dispersed phase can also join the lymphatic and blood circulation and treat any cancer cells circulating in the circulatory system and causing metastases.
  • the co-surfactant of the nanoemulsion may include a biological ligand for targeting cancer cells to more effectively target cancer cells.
  • a nanoemulsion according to the invention wherein the hydrophilic therapeutic agent is an immune system stimulating agent and the lipophilic therapeutic agent is an anti-cancer agent may especially be used for the post-cryogenesis treatment of a tumor.
  • Tumor cryogenesis involves the injection of a cryogenic liquid into a tumor using a syringe.
  • the tumor cells are killed by this treatment, and remain inside the body of the treated subject.
  • the aforementioned nanoemulsion can increase the effectiveness of the treatment.
  • the hydrophilic stimulating agent of the immune system is released rapidly to activate the immune system and the lipophilic anti-cancer agent is released later, and eliminates the still alive tumor cells.
  • the droplets comprising the lipophilic anticancer agent of the dispersed phase can join the lymphatic and blood circulation and treat any cancerous cells circulating in the circulatory system and causing metastases.
  • the co-surfactant of the nanoemulsion may include a biological ligand for targeting cancer cells to more effectively target cancer cells.
  • the administration of the nanoemulsion can be carried out according to any known method.
  • the nanoemulsion can be administered via a syringe or a transdermal patch ("patch" in English), this formulation being particularly suitable because the nanoemulsion has a tacky character.
  • the nanoemulsion loses this character and the transdermal patch comprising the nanoemulsion comes off alone at the end of the treatment.
  • a method of therapeutic treatment comprising administering to a mammal, preferably a human, that needs a therapeutically effective amount of the nanoemulsion as defined above is also an object of the present invention.
  • Figure 1 Schematic diagram of the release of a hydrophilic agent of interest (3) and a hydrophilic agent of interest (4). (1): release of the droplets of the dispersed oily phase of the nanoemulsion, linked to the release of the hydrophilic agents of interest (3) -
  • Figure 2 Representative diagram of a droplet of the dispersed phase.
  • 1 solubilizing lipid and optional oil - 2: amphiphilic lipid - 3: co-surfactant - 4: polyalkoxylated chain of the co-surfactant - 5: group capable of forming hydrogen bonds.
  • FIG. 3 Fluorescence intensity (in AU) as a function of time (in minutes) of an aqueous solution placed in contact with the nanoemulsion of Example 1.
  • the curve with the squares corresponds to the release of the fluorescein hydrophilic molecule.
  • the curve with the diamonds corresponds to the release of the dispersed phase droplets comprising the lipophilic molecule Nile Red.
  • FIG. 4 Release time of the droplets of the dispersed phase of the nanoemulsions of Example 2a in minutes as a function of the mass fraction in disperse phase relative to the total weight of the nanoemulsion.
  • the curve with the triangles corresponds to a nanoemulsion comprising a co-surfactant Myrj ® s20.
  • the curve with the square corresponds to a nanoemulsion comprising a co-surfactant Myrj ® s100.
  • the curve with the diamonds corresponds to a nanoemulsion comprising a co-surfactant Myrj ® s40.
  • FIG. 5 Release time of the droplets of the dispersed phase of the nanoemulsions of Example 2b in minutes as a function of the mass fraction in disperse phase relative to the total weight of the nanoemulsion.
  • the curve with the triangles corresponds to a nanoemulsion comprising droplets with a diameter of 120 nm when the mass fraction in dispersed phase is 40%.
  • the curve with the squares corresponds to a nanoemulsion comprising droplets with a diameter of 80 nm when the mass fraction in dispersed phase is 40%.
  • the curve with the diamonds corresponds to a nanoemulsion comprising droplets with a diameter of 50 nm when the mass fraction in dispersed phase is 40%.
  • Figure 6 droplets of the release time of the dispersed phase of the nanoemulsions of Example 3 minutes depending on the mass fraction of cosurfactant having a maleimide terminal group with respect to the mass of co-surfactant Myrj ® s40.
  • FIG 8 Thermogram (heat flow (W / g) as a function of temperature (in 'C) obtained by Differential Scanning Calorimetry (DSC) of nanoemulsions after manufacture with a Universal V3.8B device TA (Example 4).
  • FIG. 9 Thermogram (heat flow (W / g) as a function of the temperature (in 'C) obtained by Differential Scanning Calorimetry (DSC) of the nanoemulsions after 4 months of storage at ambient temperature ( b) with a Universal V3.8B TA device (example 4).
  • Figure 10 The evolution of the size of the droplets (in nm) of the nanoemulsion as a function of time (in days) for three nanoemulsions at 40 ° C.
  • the diamonds represent a nanoemulsion free of solubilizing lipid and comprising oil
  • the triangles represent a nanoemulsion comprising a 50/50 mixture of solubilizing lipid and oil
  • the rounds represent an oil-free nanoemulsion comprising solubilizing lipid ( example 4).
  • Figure 1 1 Viscosity (in Pa s) of the nanoemulsions E1 to E4 of Example 5 as a function of the mass fraction (% m / m) of the dispersed oily phase.
  • the oil phase was prepared by dissolving the co-surfactant phosphate buffer at 60 ° C, then adding fluorescein.
  • the oil phase was prepared by dissolving the Lipoid S75 and Nile Red in the oil / Suppocire ® NC / chloroform at 60 ° C. The resulting mixture was then evaporated under reduced pressure and dried at 60 ° C to evaporate the chloroform.
  • the oily phase obtained was in the form of a viscous oil which solidifies on cooling.
  • the oily phase was then emulsified in the aqueous phase by ultrasonification for 20 min, alternating periods of 10 s of sonication and 30 s of rest (ie 5 min of total sonication in total over 20 min) at a power of 25% on AV505 sonicator equipped with a 3mm conical probe (Sonics, Newtown).
  • the nanoemulsion obtained was taken hot (T> 40 q C) using a syringe 1 ml surmounted by a needle (1, 2 x 40mm).
  • the fluorescence intensity increases until reaching a maximum plateau. This plateau shows that the system (nanoemulsion / aqueous solution) has reached an equilibrium: the nanoemulsion has been completely disintegrated in the aqueous buffer.
  • the curve with the squares corresponds to the release of the fluorescein hydrophilic molecule.
  • the release time of fluorescein esceenine is 25 minutes.
  • the diamond curve corresponds to the release of the dispersed phase droplets comprising the lipophilic molecule Nile Red (and not to the release of Nile Red).
  • the time of release of droplets droplets is 75 min.
  • nanoemulsions according to Example 1 were prepared by varying the nature and concentration of co-surfactant.
  • a nanoemulsion comprising 40% of dispersed phase relative to the total weight of the nanoemulsion comprises droplets with a mean diameter of 120 nm.
  • Table 1 compositions of nanoemulsions Ai
  • the nanoemulsion B1 comprising 40% of dispersed phase relative to the total weight of the nanoemulsion comprises droplets with an average diameter of 80 nm.
  • the nanoemulsion C1 comprising 40% of dispersed phase compared the total weight of the nanoemulsion comprises droplets of average diameter of 50 nm.
  • the co-surfactant Myrj ® s20, s40 and s100 used in the nanoemulsions Ai have the following formulas:
  • the droplet release time t gou tteiettes increases when the mass fraction of dispersed phase increases.
  • the increase in the mass fraction of dispersed phase brings the droplets closer together.
  • the interactions between droplets are more important, and the disintegration of the nanoemulsion is more difficult.
  • the droplet release time t gov tteiettes is also influenced by the nature of the co-surfactant used.
  • the droplet release time is:
  • the droplet release time related to the release time of the lipophilic and hydrophilic agents of interest, by adjusting the mass fraction in dispersed phase and / or the nature of the co-surfactant, more specifically the number of polyoxyethylene units.
  • increasing the mass fraction of dispersed phase amounts to increasing the density of the droplets, thus favoring the approximation between droplets and therefore the interactions between them.
  • increasing the length of the polyalkoxylated chains at the surface makes it possible to increase the droplet / continuous phase (water) interactions, and thus facilitates the redispersion of the droplets from the nanoemulsion to the continuous phase in the form of a diluted dispersion.
  • Example 2b Influence of the dispersed phase mass fraction and the size of the
  • the results are grouped together in FIG. 5.
  • the curve with the triangles corresponds to the results obtained with the nanoemulsions A1, that is to say nanoemulsions comprising droplets with a diameter of 120 nm when the mass fraction in dispersed phase is 40. %.
  • the curve with the squares corresponds to the results obtained with the nanoemulsions Bi, that is to say nanoemulsions comprising droplets with a diameter of 80 nm when the mass fraction in the dispersed phase is 40%.
  • the curve with the diamonds corresponds to the results obtained with the nanoemulsions Ci, that is to say nanoemulsions comprising droplets with a diameter of 50 nm when the mass fraction in the dispersed phase is 40%. For a mass fraction in dispersed phase greater than 45%, the droplets have a diameter which increases progressively with the mass fraction.
  • the droplet release time t gou tteiettes increases when the mass fraction of dispersed phase increases, as observed in Example 2a.
  • Droplets of release time t gov tteiettes is also influenced by the mean droplet diameter of the dispersed phase. More the average droplet diameter, the smaller the droplet release time t gou tteiettes is high. Indeed, with mass fraction in constant dispersed phase, when the average diameter of the droplets decreases, the surfaces of the droplets increase, and the surface effects are greater, especially because the interactions between the polyalkylene chains oxidize co-surfactants droplets adjacent ones are more numerous: the nanoemulsion disintegrates more difficultly.
  • EXAMPLE 3 Nanoemulsion comprising a polyvaloxylated co-surfactant having a terminal group capable of forming hydrogen bonds.
  • the nanoemulsions were prepared following the same protocol as that of Example 1.
  • nanoemulsion permits the simultaneous delivery of a hydrophilic agent of interest and droplets comprising an agent of lipophilic interest, and that the release times of the agents of interest can be modulated by adjusting the nature and the proportions. components of the nanoemulsion.
  • a nanoemulsion comprising 255 mg of Suppocire ® NC (Gattefosse) (solubilising lipid), 85 mg of soybean oil (Sigma Aldrich) (oil), 345 mg of Myrj52 ® (ICI Americas Inc) (cosurfactant), 65 mg Lipoid ® 75 (lecithin, amphiphilic lipid) and a phosphate buffer (PBS) was prepared following the protocol of Example 1.
  • EXAMPLE 4B Demonstration of the absence of crystallization in the droplets by differential scanning calorimetry.
  • a nanoemulsion comprising 150 mg of Suppocire ® NC (Gattefosse) (solubilising lipid), soybean oil (50 mg, Sigma Aldrich) (oil), 228 mg of Myrj53 ® (ICI Americas Inc) (cosurfactant), 100 mg Lipoid ® 75 (lecithin, amphiphilic lipid) and a phosphate buffer (PBS) was prepared following the protocol of Example 1.
  • thermograms obtained by differential scanning calorimetry analysis of the nanoemulsion after preparation show that no melting peak is observed after manufacture, nor after storage at room temperature for 4 months, which indicates that the droplets are not crystallized.
  • EXAMPLE 4C Evidence of the influence of the composition of the nanoemulsions on their phvsigue stability.
  • Three nanoemulsions comprising 228 mg of Myrj53 ® (ICI Americas Inc) (cosurfactant), 100 mg of Lipoid ® s75 (lecithin, amphiphilic lipid), 1600 ⁇ phosphate buffer (PBS) of Suppocire ® NC (Gattefosse) (lipid solubilizer) and soybean oil (Sigma Aldrich) (oil) in the amounts specified in Table 5 were prepared following the protocol of Example 1.
  • Table 5 Quantities of Suppocire ® NC and soybean oil in nanoemulsions.
  • the emulsions E1 to E4 obtained have an oily dispersed phase mass fraction of 10, 35, 40 and 45% respectively.
  • Solubilizing lipids Suppocire ® NC (mg) 255 255 255 255 255 255 255 EXAMPLE 5A: Viscosity of nanoemulsions under flow according to the mass fraction of the dispersed oily phase
  • the viscosity of the nanoemulsions E1 to E4 was first studied by flow measurement.
  • the nanoemulsion changes from liquid, very fluid forms to frozen, frozen forms.
  • the measurement of the viscosity of the nanoemulsions in flow makes it possible to highlight this difference in behavior.
  • the nanoemulsions E1 and E2 whose mass fraction of the dispersed oily phase is less than 40%, have a viscosity close to that of water (approximately 1 mPa.s at 25 ° C.).
  • the nanoemulsions E3 and E4 whose mass fraction is greater than 40%, have viscosities that may exceed 10 Pa.s.
  • These viscosity values are characteristic of galenic forms of cream or paste type.
  • a limiting mass fraction of 35% therefore defines the transition from a liquid state to a liquid-viscous state in the case of nanoemulsions E1 to E4.
  • Oscillating shear dynamic measurement provides further information on the rheological behavior of nanoemulsions. These measurements are performed in the region of linear viscoelastic behavior, by scanning the oscillation frequency ( ⁇ ) to a deformation corresponding to the zone of non-destruction of the static structure of the sample. It is thus possible to obtain information on the elastic and viscous behavior of the samples.
  • the shear conservation module G ' measures the elastic behavior, while the loss module G' gives information on the viscous behavior.
  • Figure 12 shows the modules G 'and G "measured under oscillating shear of increasing frequencies (0.1 ⁇ ⁇ 100 rad.s), and shows the impact of the mass fraction.
  • the nanoemulsion is a viscous liquid.
  • the nanoemulsion has a viscoelastic character.
  • the nanoemulsion is an elastic solid. Beyond 65%, the nanoemulsion comprises a bicontinuous phase and no longer has a macroscopically homogeneous structure.
  • the mass fraction values indicated for the transitions may vary according to various parameters, in particular as a function of the length of the polyalkoxylated chains of the co-surfactant. In the emulsions exemplified above, these chains have 40 alkoxyl units. When these chains are longer, it is assumed that the transitions will be shifted to lower mass fractions.
  • g 0 uttteiiettese are time-related to disintegration of the nanoemulsion three-dimensional network and through this to the state of the emulsion.
  • the release time of the hydrophilic agent and the droplets are non-zero.
  • the release time of the agent hydrophilic, t hy drophiie is not zero and the release time of the droplets, t utteiettes g0, is greater than that of the hydrophilic agent, t hy drophiie.
  • the release time of the lipophilic agent is greater than that of the hydrophilic agent. It is therefore possible to vary the release time of the agents of interest as a function of the mass fraction of the dispersed oily phase relative to the total weight of the nanoemulsion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne une nanoémulsion sous forme de gel comprenant une phase aqueuse continue et au moins une phase huileuse dispersée, dans laquelle : la phase aqueuse comprend : au moins un co-tensioactif comportant au moins une chaîne polyalcoxylée composée de motifs d'oxyde d'éthylène ou d'oxyde d'éthylène et d'oxyde de propylène, et au moins un agent d'intérêt hydrophile, et la phase huileuse comprend : au moins un lipide amphiphile, au moins un lipide solubilisant consistant en un mélange de glycérides d'acides gras saturés comportant : au moins 10% en poids d'acides gras en C12, au moins 5% en poids d'acides gras en C14, au moins 5% en poids d'acides gras en C16, et au moins 5% en poids d'acides gras en C18, au moins un agent d'intérêt lipophile, lesdits agents d'intérêt hydrophile et lipophile étant indépendamment choisis parmi : un agent thérapeutique, un agent optique choisi parmi un colorant, un chromophore, un fluorophore, et un agent physique choisi parmi un isotope radioactif et un photo-sensibilisateur. Elle a également pour objet un procédé de préparation et l'utilisation de cette nanoémulsion pour la délivrance d'au moins deux agents d'intérêt.

Description

NANOEMULSION POUR LA DELIVRANCE D'AU MOINS DEUX AGENTS D'INTERET
La présente invention concerne une nanoémulsion pour l'administration simultanée d'au moins deux agents d'intérêt de solubilité différente.
[Etat de la technique]
La nanomédecine constitue un champ nouveau créé par la fusion de la nanotechnologie et de la médecine, et est aujourd'hui l'une des voies les plus prometteuses pour le développement de thérapies ciblées efficaces, notamment pour l'oncologie.
En effet, des nanoparticules chargées d'agents d'intérêt constituent une solution idéale pour surmonter la faible sélectivité des médicaments, notamment des médicaments anticancéreux, en permettant grâce à un ciblage passif et/ou actif le ciblage des tissus cancéreux, et ainsi de réduire les effets secondaires sévères.
La demande FR 08 55589 décrit une formulation d'un agent thérapeutique sous forme de nanoémulsion, comprenant une phase aqueuse continue et au moins une phase huileuse dispersée, dans laquelle la phase aqueuse comporte au moins un co-tensioactif polyalcoxylé et dans laquelle la phase huileuse comprend outre l'agent thérapeutique au moins un lipide amphiphile et au moins un lipide solubilisant consistant en un mélange de glycérides d'acides gras saturés et son utilisation pour l'administration de cet agent thérapeutique, chez l'homme ou chez l'animal. Toutefois, un seul agent thérapeutique est administré.
Certains traitements nécessitent l'administration de plusieurs agents d'intérêt, parfois de solubilités différentes, ce qui implique alors plusieurs administrations, une gêne et une perte de temps accrue pour les patients. En outre, il est souvent préférable que les différents agents d'intérêt ne soient pas tous libérés au même moment, voire pas tous au même endroit.
Le développement de formulations permettant la délivrance de plusieurs agents d'intérêt est donc souhaitable.
[Problème technique]
La présente invention concerne une formulation pour la délivrance en une seule application d'au moins un agent d'intérêt hydrophile et d'au moins un agent d'intérêt lipophile. [Résumé de l'invention]
La présente invention concerne une nanoémulsion sous forme de gel comprenant au moins un agent d'intérêt hydrophile essentiellement présent dans la phase aqueuse continue et au moins un agent d'intérêt lipophile essentiellement présent dans la phase huileuse dispersée de la nanoémulsion.
Ainsi, selon un premier aspect, l'invention concerne une nanoémulsion sous forme de gel comprenant une phase aqueuse continue et au moins une phase huileuse dispersée, dans laquelle :
- la phase aqueuse comprend :
- au moins un co-tensioactif polyalcoxylé, et
- au moins un agent d'intérêt hydrophile, et
- la phase huileuse comprend :
- au moins un lipide amphiphile,
- au moins un lipide solubilisant,
- au moins un agent d'intérêt lipophile.
De préférence, le lipide amphiphile est un phospholipide.
Avantageusement, le lipide solubilisant comprend au moins un glycéride d'acides gras, par exemple un glycéride d'acides gras saturés comportant 12 à 18 atomes de carbone.
La phase huileuse peut comporter en outre au moins une huile, de préférence une huile présentant une balance hydrophile-lipophile (HLB) comprise entre 3 et 10, notamment une huile d'origine naturelle biocompatible, telle que l'huile de soja.
De préférence, le co-tensioactif comporte au moins une chaîne composée de motifs d'oxyde d'éthylène ou d'oxyde d'éthylène et d'oxyde de propylène. Il peut être choisi en particulier parmi les composés conjugués polyéthylèneglycol /phosphatidyl- éthanolamine (PEG-PE), les éthers d'acide gras et de polyéthylèneglycol, les esters d'acide gras et de polyéthylèneglycol et les copolymères blocs d'oxyde d'éthylène et d'oxyde de propylène.
Les agents d'intérêt peuvent être notamment des agents thérapeutiques, tel que des principes actifs pharmaceutiques ou des photosensibilisateurs.
La nanoémulsion selon l'invention permet de fournir en une seule application deux agents d'intérêts ou plus, généralement à des temps de libération différents. Au moins un agent d'intérêt hydrophile est libéré à un temps thydrophiie et au moins un agent d'intérêt lipophile est libéré à un temps .ϊψορ^β différent de thydrophiie- En effet, l'agent d'intérêt hydrophile est essentiellement situé dans la phase aqueuse continue de la nanoémulsion. Il est piégé entre les gouttelettes de la phase huileuse dispersée. Lorsque la nanoémulsion est administrée, la nanoémulsion entre en contact avec des fluides physiologiques (sang, plasma...) et va alors se désagréger progressivement, c'est-à-dire que le réseau tridimensionnel formé par les gouttelettes de la phase dispersée se désagrège, les gouttelettes s'éloignant les unes des autres, libérant ainsi l'agent d'intérêt hydrophile. Le temps de libération de l'agent d'intérêt hydrophile thydrophiie est lié au temps de désintégration du réseau tridimensionnel de la nanoémulsion, c'est-à-dire au temps de libération des gouttelettes tg0utteiette, mais aussi au temps de diffusion de l'agent d'intérêt hydrophile à travers la nanoémulsion.
Par ailleurs, l'agent d'intérêt lipophile est essentiellement situé dans la phase huileuse dispersée de la nanoémulsion, soit à l'intérieur des gouttelettes, soit en surface des gouttelettes. Le temps de libération de l'agent d'intérêt lipophile
Figure imgf000005_0001
est lié au temps de diffusion de l'agent d'intérêt lipophile vers l'extérieur de la gouttelette, au temps de dégradation des gouttelettes et parfois au temps de libération des gouttelettes tgoutteiette- Les localisations de libération des agents d'intérêt hydrophiles Lhydrophi|e et lipophiles L|ip0phi|e peuvent également être différentes, notamment lorsque la désintégration de la nanoémulsion liée à la libération de l'agent d'intérêt hydrophile n'a pas lieu au même endroit que la libération de l'agent d'intérêt lipophile hors des gouttelettes. En particulier, lorsque la nanoémulsion se désagrège à l'endroit où elle a été administrée, l'agent d'intérêt hydrophile étant alors libéré à la localisation d'administration et les gouttelettes libérées de la nanoémulsion sont emportées par le fluide physiologique (sang, plasma), vers un autre endroit du sujet, où sera libéré l'agent thérapeutique lipophile.
Ainsi, en adaptant la composition de la nanoémulsion selon l'invention (nature des constituants, fraction massique des constituants, taille des gouttelettes...) en fonction des propriétés physicochimiques des agents, comme explicité ci-après, il est avantageusement possible de modifier ces temps de libération thydrophiie et t|i pophiie et localisations Lhydrophj|e et L|jp0phj|e.
Bien sûr, si la nanoémulsion comporte plus d'un agent d'intérêt hydrophile et/ou plus d'un agent d'intérêt lipophile, il est possible d'adapter la composition de la nanoémulsion pour ajuster les temps de libération de chaque agent, et que ceux-ci diffèrent les uns des autres. On pourra notamment agir sur les paramètres de la composition de la nanoémulsion influençant la diffusion de l'agent d'intérêt à travers le réseau tridimensionnel de la nanoémulsion (pour un agent d'intérêt hydrophile) ou à travers les gouttelettes (pour un agent d'intérêt lipophile) pour que thydrophiie 1 diffère de thydrophiie 2 et/ou que tiipophïie 1 diffère de t|ipophiie 2, comme explicité ci-dessous. Les différentes localisations des libérations des agents peuvent également être influencées et différer les unes des autres. Grâce à sa formulation, la nanoémulsion selon l'invention est stable. Les nanoémulsions présentent comme avantage notamment une excellente stabilité au stockage (> 3 mois voire 8 mois).
Selon un deuxième aspect, l'invention concerne un procédé de préparation de cette nanoémulsion, comportant les étapes consistant à :
(i) préparer la phase huileuse comprenant l'agent d'intérêt lipophile, au moins un lipide amphiphile et au moins un lipide solubilisant;
(ii) préparer une phase aqueuse comprenant un co-tensioactif polyalcoxylé et un agent d'intérêt lipophile;
(iii) disperser la phase huileuse dans la phase aqueuse sous l'action d'un cisaillement suffisant pour former une nanoémulsion; et
(iv) récupérer la nanoémulsion ainsi formé.
De préférence, l'action de cisaillement est exercée par sonification.
Le procédé de fabrication selon l'invention permet d'obtenir des nanoémulsions comprenant une phase dispersée dont les gouttelettes sont de très faible taille et monodisperse de façon simple, rapide et peu coûteuse. Le procédé peut être facilement réalisé à l'échelle industrielle. Par ailleurs, il n'utilise pas ou très peu de solvants organiques et peut être mis en œuvre avec des produits autorisés pour un usage chez l'homme. Enfin, il ne nécessite qu'un chauffage modéré et est donc envisageable pour des agents d'intérêt fragiles. Par chauffage modéré, on entend un chauffage à une température inférieure à 80 °C, et préférentiellement inférieure à 70 °C voire 60 °C.
Selon un troisième aspect, l'invention concerne une nanoémulsion dans laquelle l'agent d'intérêt hydrophile est un agent thérapeutique hydrophile et l'agent d'intérêt lipophile est un agent thérapeutique lipophile pour son utilisation pour l'administration d'au moins un agent thérapeutique hydrophile et d'au moins un agent thérapeutique lipophile à l'homme ou à l'animal pour traiter ou prévenir une maladie.
[Description de l'invention]
[Définitions]
La nanoémulsion selon l'invention est sous forme de gel.
On entend par le terme « gel «habituellement un système biphasique solide-liquide thermodynamiquement stable, constitué d'un double réseau interpénétré continu tridimensionnel, l'un solide et le second liquide. Un tel gel est un système biphasique liquide-solide dont le réseau solide retient une phase liquide. Bien que les gels puissent être considérés comme solides, ils présentent des propriétés propres aux solides (rigidité structurelle, élasticité à la déformation) comme aux liquides (pression de vapeur, de compressibilité et conductivité électrique).
On distingue généralement deux grandes familles de gels: les gels chimiques et les gels physiques. La cohésion des gels dits chimiques est assurée par des liaisons covalentes entre les unités du réseau tridimensionnel. Les gels dits physiques reposent quant à eux sur des interactions plus faibles de type forces de Van der Waals, liaisons hydrogène, interactions électrostatique, rapprochements de zones hydrophobes ou encore des enchevêtrements de chaînes polymériques avec éventuellement des zones de cristallisation.
Dans le cas d'une nanoémulsion sous forme de gel, le réseau tridimensionnel est formé par les gouttelettes les interstices entre gouttelettes étant remplis de phase continue. Les liaisons entre les unités du réseau, à savoir les gouttelettes, reposent généralement sur des interactions non covalentes de type liaison hydrogène, interactions de Van der Waals ou encore interactions électrostatiques (paires d'ions). Ces interactions existent principalement entre les co-tensioactifs de gouttelettes adjacentes. Ces nanoémulsions sous forme de gel peuvent donc être rapprochées des gels physiques.
Une nanoémulsion sous forme de gel montre donc une résistance à la pression et est capable de maintenir une forme définie.
Pour mettre en évidence que la nanoémulsion est sous forme de gel, on peut réaliser des études rhéologiques permettant d'évaluer les propriétés viscoélastiques, et/ou des études plus structurelles montrant les liaisons entre les gouttelettes formant le réseau tridimensionnel (diffraction aux rayons X, neutrons...).
En effet, une nanoémulsion sous forme de gel possède une viscosité et un coefficient d'élasticité plus important qu'une nanoémulsion liquide.
La nanoémulsion sous forme de gel peut, en fonction de la concentration de gouttelettes et donc de la fraction massique en phase dispersée, se trouver à l'état de liquide visqueux, de solide viscoélastique ou de solide élastique.
Par rapport à la phase dispersante aqueuse, dont viscosité est proche de celle de l'eau (1 mPa.s à 25^), la nanoémulsion est considérée comme un liquide visqueux lorsque sa viscosité est 10 fois plus élevée que celle de l'eau, soit > 10 mPa.s à 25°C.
Par ailleurs, lorsque l'on procède à la mesure rhéologique des modules de G' et G", on considère que la nanoémulsion est sous forme d'un liquide visqueux lorsque G" >G'. Lorsque G' devient proche de G", la nanoémulsion est à l'état de solide viscoélastique. Lorsque G" < G', on est à l'état de solide élastique. La nanoémulsion se présente de préférence à l'état liquide visqueux ou de solide viscoélastique, car la viscosité est suffisamment modérée dans ces états pour permettre des applications impliquant une administration par injection.
Les émulsions à l'état de solide visqueux, de solide viscoélastique et de solide élastique sont caractérisées par la présence d'un nombre croissant de gouttelettes et leur interaction progressive qui en résulte. Les différents états se distinguent en particulier par leur comportement rhéologique, notamment au niveau de la viscosité, mais aussi au niveau de la déformation du matériau soumis à une contrainte (module de conservation G' et modules de perte G").
La viscosité et le coefficient d'élasticité peuvent être mesurés par un rhéomètre cône-plan ou par un rhéomètre Couette. La viscosité d'une nanoémulsion liquide est généralement inférieure à 1 poise, voire même souvent inférieure à 0.01 poise. La nanoémulsion selon l'invention a généralement une viscosité supérieure à 1 poise, et pourra avoir une viscosité allant jusqu'à celle d'un solide (plus de 1000 poises). La nanoémulsion de la présente invention a généralement une viscosité de 1 à 1000 poises, préférentiellement de 1 à 500 poises et encore plus préférentiellement entre 1 et 200, ces valeurs étant données à 25 'Ό. Une viscosité supérieure à 1 poise est en effet adaptée pour que les gouttelettes de la phase dispersée forment un réseau tridimensionnel à l'intérieur de la phase continue. En effet, il a été constaté que en dessous de 1 poise, les gouttelettes ne sont généralement pas assez proches les unes des autres, l'agent d'intérêt hydrophile n'est pas suffisamment piégé entre les gouttelettes et sa libération hors de la nanoémulsion est trop rapide. Au dessus de 1000 poises, on obtient un système quasi-solide. La nanoémulsion est alors trop visqueuse ce qui rend son utilisation difficile. De même, alors que le coefficient d'élasticité est généralement inférieur à 10 dans le cas d'une nanoémulsion liquide, le coefficient d'élasticité d'une nanoémulsion sous forme de gel est généralement supérieur à 10.
Les études structurelles, notamment les diffractions aux rayons X ou aux neutrons, permettent également de différencier l'organisation d'une nanoémulsion liquide, de l'organisation d'une nanoémulsion sous forme de gel. En effet, les pics du diffractogramme obtenu pour une nanoémulsion liquide sont caractéristiques de la structure des gouttelettes de phase dispersée (grand angles de diffraction caractéristiques de distances courtes), alors que les pics du diffractogramme d'une nanoémulsion sous forme de gel sont caractéristiques non seulement de la structure des gouttelettes (grand angles de diffraction caractéristiques de distances courtes) mais aussi de l'organisation de ces gouttelettes en réseau tridimensionnel (faibles angles de diffraction caractéristiques de distances plus grandes). La nanoémulsion selon l'invention est avantageusement sous forme de gel dispersible, c'est-à-dire que les gouttelettes formant le réseau tridimensionnel peuvent être relarguées dans la phase continue sous certaines conditions par « dégélification » du système gel, également dénommée « désagrégation » dans la présente demande. La désagrégation est observée par ajout de phase continue au gel ou par augmentation de la température.
En effet, ajouter de la phase continue entraîne une différence de pression osmotique entre l'intérieur du gel et la phase continue. Le système tendra donc à diminuer, jusqu'à annuler, cette différence de pression osmotique en libérant les gouttelettes dans l'excès de phase continue, jusqu'à obtenir une concentration en gouttelettes homogène dans l'ensemble du volume de phase continue.
De même augmenter suffisamment la température du système revient à donner aux différentes gouttelettes une énergie thermique supérieure aux énergies mises en jeu dans les liaisons, par exemple les liaisons hydrogène, et ainsi à rompre ces liaisons et libérer les gouttelettes du réseau tridimensionnel. Pour une nanoémulsion sous forme de gel selon la présente invention, des températures de transition sol-gel (passage nanoémulsion sous forme de gel à une nanoémulsion liquide) supérieures à 60 'C sont observées. Ces températures dépendent de la composition du gel et plus particulièrement de la taille des gouttelettes et de la longueur des chaînes polyalcoxylées du co-tensioactif.
La désagrégation de la nanoémulsion sous forme de gel peut être suivie par diffraction aux rayons X, par calorimétrie différentielle à balayage (DSC) ou par résonance magnétique nucléaire (RMN).
En suivant par diffraction aux rayons X la désagrégation de la nanoémulsion sous forme de gel, on observe une évolution du spectrogramme, c'est-à-dire une diminution de l'intensité des angles faibles (caractéristiques de l'organisation des gouttelettes en réseau tridimensionnel) (comme décrit dans Matija Tomsic, Florian Prossnigg, Otto Glatter 'Journal of Colloid and Interface Science' Volume 322, Issue 1 , 1 June 2008, Pages 41 - 50).
La désagrégation peut également être suivie par DSC. Un pic apparaît sur le thermogramme lors de la transition nanoémulsion sous forme de gel / nanoémulsion liquide en montée en température.
Enfin, une étude RMN peut aussi permettre de suivre la désagrégation par mesure du coefficient de diffusion associé à chaque gouttelette en distinguant une nanoémulsion liquide d'une nanoémulsion sous forme de gel. En effet, le coefficient de diffusion est très significativement diminué dans le cas d'une nanoémulsion sous forme de gel (il est alors généralement inférieur à 0.0^m2/s), où le système est figé. (WESTRIN B. A.; AXELSSON A.; ZACCHI G. 'Diffusion measurement in gels', Journal of controlled release 1994, vol. 30, n°3, pp. 189-199).
La phase huileuse dispersée de la nanoémulsion (éventuelle huile/lipide solubilisant/lipide amphiphile/co-tensioactif/agent d'intérêt lipophile) représente entre 30 et 90% en poids par rapport au poids total de la nanoémulsion, c'est-à-dire par rapport au poids des phases aqueuse continue et huileuse dispersée.
Le terme « gouttelette » englobe à la fois les gouttelettes d'huile liquide proprement dites ainsi que les particules solides issues d'émulsions de type huile-dans- eau dans lesquelles la phase huileuse est solide.
Les gouttelettes de la nanoémulsion sont avantageusement monodisperses. L'écart type entre les diamètres minimum et maximum des gouttelettes par rapport au diamètre moyen est généralement inférieur ou égal à 30%, de préférence 15%. Le diamètre moyen des gouttelettes de la phase dispersée est de préférence de 20 à 200 nm, notamment de 40 à 150 nm et en particulier de 50 à 120 nm. Ces diamètres sont mesurés par diffusion de la lumière. On peut également obtenir la taille de gouttelettes par microscopie électronique en transmission (TEM), par cryomicroscopie électronique en transmission (cryoTEM) ou encore par microscopie à force atomique (AFM). Des diamètres inférieurs à 20 nm et supérieurs à 200 nm sont difficiles à atteindre en pratique. En effet, plus le diamètre des gouttelettes est faible, plus la surface spécifique des gouttelettes est élevée, plus l'agent d'intérêt hydrophile compris entre les gouttelettes est piégé dans le réseau tridimensionnel de la nanoémulsion et plus le temps de libération de l'agent d'intérêt hydrophile augmente.
La nanoémulsion permet donc une excellente libération de l'agent d'intérêt lipophile dans les cellules, notamment grâce au faible diamètre moyen des gouttelettes de la phase dispersée comprenant l'agent thérapeutique lipophile, qui pénètrent facilement les membranes cellulaires. De plus, la nanoémulsion peut être formulée de manière à ce que la surface de la phase dispersée présente un potentiel zêta faible, idéalement compris entre -25 mV et + 25 mV, voire nul. En effet, les chaînes polyalcoxylées du co-tensioactif, hydratées et non chargées, couvrant la surface des gouttelettes, écrantent les charges apportées par les lipides amphiphiles à la surface solide des gouttelettes (figure 2). On se trouve donc dans le cas d'une stabilisation stérique des gouttelettes, et non une stabilisation électrostatique. Le potentiel zêta est un paramètre clé qui influe sur les interactions avec les milieux biologiques Les nanoparticules possédant une charge de surface très positive, c'est-à-dire supérieure à 25 mV, sont généralement plus cytotoxiques que des nanoparticules de potentiel zeta négatif ou neutre. Le terme « lipide » désigne dans le cadre de cet exposé l'ensemble des corps gras ou des substances contenant des acides gras présents dans les graisses d'origine animales et dans les huiles végétales. Ce sont de molécules hydrophobes ou amphiphiles principalement constituées de carbone, d'hydrogène et d'oxygène et ayant une densité inférieure à celle de l'eau. Les lipides peuvent être à l'état solide à température ambiante (25^), comme dans les cires, ou liquide, comme dans les huiles.
Le terme «amphiphile» désigne une molécule possédant une partie hydrophobe et une partie hydrophile, par exemple une partie apolaire hydrophobe et une partie polaire hydrophile.
Le terme « phospholipide » vise des lipides possédant un groupe phosphate, notamment les phosphoglycérides. Le plus souvent, les phospholipides comportent une extrémité hydrophile formée par le groupe phosphate éventuellement substitué et deux extrémités hydrophobes formées par des chaînes d'acides gras. Parmi les phospholipides, on citera en particulier la phosphatidylcholine, la phosphatidyl éthanolamine, la phophatidyl inositol, la phosphatidyl sérine et la sphingomyéline.
Le terme « lécithine » désigne la phosphatidylcholine, c'est-à-dire un lipide formé à partir d'une choline, d'un phosphate, d'un glycérol et de deux acides gras. Il couvre de manière plus large les phospholipides extraits du vivant, d'origine végétale ou animale, dans la mesure où ils sont majoritairement constitués de phosphatidylcholine. Ces lécithines constituent généralement des mélanges de lécithines portant différents acides gras.
On entend par le terme « acide gras » désigner des acides carboxyliques aliphatiques présentant une chaîne carbonée d'au moins 4 atomes de carbone. Les acides gras naturels possèdent une chaîne carbonée de 4 à 28 atomes de carbone (généralement un nombre pair). On parle d'acide gras à longue chaîne pour une longueur de 14 à 22 carbones et à très longue chaîne s'il y a plus de 22 carbones.
On entend par le terme « tensioactif » des composés à structure amphiphile qui leur confère une affinité particulière pour les interfaces de type huile/eau et eau/huile ce qui leur donne la capacité d'abaisser l'énergie libre de ces interfaces et de stabiliser des systèmes dispersés.
On entend par le terme « co-tensioactif » un tensioactif agissant en plus d'un tensioactif pour abaisser davantage l'énergie de l'interface.
On entend par le terme « agent d'intérêt », une molécule organique ou inorganique, une macromolécule organique ou inorganique, un composé métallique organique ou inorganique ou un nanocristal organique ou inorganique de diamètre inférieur ou égal à 10 nm ayant une propriété : - thérapeutique (agent thérapeutique),
- bactéricide, tel qu'un antibiotique, un antimicrobien, un antiseptique, un antiparasitaire, par exemple des métaux Cu, Zn, Ag sous forme particulaire ou moléculaire, ou encore des molécules organiques telles que les quinolones, les aminosides ou encore les betalactamides.
- optique tel que un colorant, un chromophore, un fluorophore, par exemple le perchlorate 1 ,1 '-dioctadecyl 3,3,3',3'-tetramethylindodicarbocyanine (DiD), le iodure de 1 ,1 '-dioctadecyl 3,3,3',3'-tetramethylindotricarbocyanine (DiR), vert d'indocyanine (ICG), ou encore des composants ayant des propriétés optoélectronique, tels que les saturants ou les absorbants optiques.
- phytosanitaire, tel qu'une substance minérale (ex : sulfate de cuivre) ou organique (ex : carbamate de type carbofuran, furadan... ), naturelle( ex : Bt) ou issue de la chimie de synthèse (ex : glyphosate).
- de masquage de goût/odeur, tel qu'une substance gustative et/ou odorante, comme le menthol ou la cinnamaldéhyde, pour un usage pharmaceutique
(galénique) ou agroalimentaire.
- de catalyse, tel qu'un catalyseur métallique ou organométallique.
On entend par le terme « agent thérapeutique » désigner tout composé utile pour le traitement d'une pathologie, qu'il agisse par voie chimique comme les principes actifs pharmaceutiques, par voie physique ou par voie biologique, mais à l'exception des agents de diagnostic.
On entend par agent d'intérêt « lipophile », un agent d'intérêt qui se situe majoritairement, de préférence totalement, dans la phase huileuse dispersée, à l'intérieur ou en surface des gouttelettes. Un agent d'intérêt lipophile a des affinités pour des composés huileux (graisses, huiles, cires...) et solvants apolaires (toluène, hexane...). Les forces permettant la solubilisation de l'agent d'intérêt lipophile sont majoritairement des forces de London (interactions de Van der Waals). Un agent d'intérêt lipophile présente un coefficient de partage huile/eau élevé.
On entend par agent d'intérêt « hydrophile », un agent d'intérêt qui se situe majoritairement, de préférence totalement, dans la phase aqueuse continue. Sa solubilité dans l'eau est généralement supérieure à 1 % en poids. La solubilisation dans l'eau des agents d'intérêt hydrophile provient généralement de liaisons hydrogène et/ou ioniques entre les agents d'intérêt hydrophile et l'eau.
On entend par le terme « ligand biologique » toute molécule qui reconnaît de façon spécifique un récepteur généralement situé à la surface des cellules. [Nanoémulsion]
Selon un premier aspect, l'invention concerne une nanoémulsion sous forme de gel comprenant une phase aqueuse continue et au moins une phase huileuse dispersée, dans laquelle :
- la phase aqueuse comprend :
- au moins un co-tensioactif polyalcoxylé, et
- au moins un agent d'intérêt hydrophile, et
- la phase huileuse comprend :
- au moins un lipide amphiphile,
- au moins un lipide solubilisant,
au moins un agent d'intérêt lipophile.
La nanoémulsion est donc une émulsion de type huile dans l'eau. Elle peut être simple ou multiple, notamment en comportant dans la phase dispersée une seconde phase aqueuse.
De préférence, les agents d'intérêt sont des agents thérapeutiques.
Les agents thérapeutiques susceptibles d'être encapsulés dans la nanoémulsion selon l'invention comprennent en particulier les principes actifs agissant par voie chimique, biologique ou physique. Ainsi, il peut s'agir de principes actifs pharmaceutiques ou d'agents biologiques tels que de l'ADN, des protéines, peptides ou anticorps encore des agents utiles pour des thérapies physiques tels que des composés utiles pour la thermothérapie, les composés relarguant de l'oxygène singulet lorsqu'ils sont excités par une lumière utiles pour la photothérapie et des agents radioactifs. De préférence, il s'agit de principes actifs à administrer par voie d'injection.
Le au moins un agent d'intérêt hydrophile est situé dans la phase aqueuse continue.
Le au moins un agent d'intérêt lipophile est situé dans la phase huileuse dispersée. Il peut notamment être encapsulé dans les gouttelettes de la phase dispersée ou se situer à l'interface des phases aqueuses et huileuses sur la surface des gouttelettes, selon son affinité lipophile ou amphiphile.
Outre la nécessité d'être soluble ou dispersable dans la phase considérée, la nature des agents d'intérêt dans la nanoémulsion n'est pas particulièrement limitée. L'agent d'intérêt hydrophile et/ou lipophile de la nanoémulsion est typiquement un agent thérapeutique hydrophile et/ou lipophile, tel qu'un principe actif pharmaceutique ou un photosensibilateur. Du fait des conditions douces du procédé de préparation, la nanoémulsion décrite est particulièrement intéressante pour des agents d'intérêt qui se dégradent à température élevée.
Parmi les principes actifs pharmaceutiques intéressants comme agents thérapeutiques, on peut citer en particulier les agents utilisés dans le traitement du SIDA, les agents utilisés dans le traitement des maladies cardiaques, les analgésiques, les anesthésiques, les anorexigènes, les anthelmintiques, les antiallergiques, les antiangineux, les antiarythmisants, les anticholinergiques, les anticoagulants, les antidépresseurs, les antidiabétiques, les antidiurétiques, les antiémétiques, les anticonvulsivants, les antifongiques, les antihistaminiques, les antihypertenseurs, les antiinflammatoires, les anti-migraineux, les antimuscariniques, les antimycobactériens, les anticancéreux y compris les antiparkinsoniens, les antithyroïdiens, les antiviraux, les astringents, les agents bloquants, les produits sanguins, les substituts sanguins, les agents inotropes cardiaques, les agents cardiovasculaires, les agents du système nerveux central, les chélateurs, les agents de chimiothérapie, les facteurs de croissance hématopoïétiques, les corticostéroïdes, les antitussifs, les agents dermatologiques, les diurétiques, les dopaminergiques, les inhibiteurs de l'élastase, les agents endocrines, les alkaloïdes de l'ergot, les expectorants, les agents gastro-intestinaux, les agents génito- urinaires, le facteur de déclenchement de l'hormone de croissance, les hormones de croissance, les agents hématologiques, les agents hématopoïétiques, les hémostatiques, les hormones, les agents immunologiques, les immunosuppresseurs, les interleukines, les analogues d'interleukines, les agents de régulation des lipides, la gonadolibérine, les myorelaxants, les antagonistes narcotiques, les nutriments, les agents nutritifs, les thérapies oncologiques, les nitrates organiques, les vagomimétiques, les prostaglandines, les antibiotiques, les agents rénaux, les agents respiratoires, les sédatifs, les hormones sexuelles, les stimulants, les sympathomimétiques, les anti-infectieux systémiques, le tacrolimus, les agents thrombolytiques, les agents thyroïdiens, les traitements pour les troubles de l'attention, les vaccins, les vasodilatateurs, les xanthines, les agents diminuant le cholestérol, les cicatrisants. Particulièrement visés sont les anticancéreux tels que le paclitaxel, la doxorubicine et le cisplatine.
Parmi les agents physiques, on peut citer notamment les isotopes radioactifs et les photo-sensibilisateurs.
Parmi les photo-sensibilisateurs, on peut citer notamment ceux appartenant à la classe des tétrapyrroles comme les porphyrines, les bactériochlorines, les phtalocyanines, les chlorines, les purpurines, les porphycènes, les phéophorbides, ou encore ceux appartenant à la classe des texaphyrines ou des hypericines. On peut également citer les dérivés de l'acide 5-aminolévulique et ses dérivés d'esters, ces composants étant connus comme précurseurs métabolique de la Protoporphyrine IX. Parmi les photosensibilisateurs de première génération, on peut mentionner l'hémato-porphyrine et un mélange de dérivés d'hémato-porphyrine (HpD) (vendu sous la marque commerciale Photofrin® par Axcan Pharma). Parmi les photo-sensibilisateurs de seconde génération, on peut mentionner le méta-tetra-hydroxyphenyl chlorine (mTHPC ; nom commercial Foscan®, Biolitec AG) et le dérivé monoacide du cycle A de la benzoporphyrine (BPD-MA vendu sous la marque commerciale Visudyne® par QLT et Novartis Opthalmics). Les formulations des photo-sensibilisateurs de seconde génération qui associent à ces photo- sensibilisateurs une molécule (lipide, peptide, sucre etc..) qualifiée de transporteur qui permet leur acheminement sélectif au niveau du tissu tumoral sont appelées photosensibilisateurs de troisième génération.
Parmi les agents biologiques, on peut mentionner les oligonucléotides, de l'ADN, de l'ARN, les SiRNA, les microRNA, les peptides et les protéines.
Bien entendu, les agents thérapeutiques peuvent être formulés directement sous leur forme active ou sous forme de prodrug.
Les quantités d'agent d'intérêt dépendent de l'application visée ainsi que de la nature des agents. Toutefois, lorsque les agents d'intérêt sont des agents thérapeutiques, on cherchera généralement à formuler la nanoémulsion avec une concentration maximale en agent d'intérêt, afin de limiter le volume et/ou la durée d'application, notamment le volume et/ou la durée d'administration au patient.
Or, il a été constaté que la présence du lipide solubilisant dans la phase huileuse permet d'incorporer une quantité importante d'agent d'intérêt. Le lipide solubilisant facilite en effet l'incorporation dans le cœur des gouttelettes des agents d'intérêt liposolubles. Les agents d'intérêt amphiphiles sont principalement incorporés dans la membrane des gouttelettes.
La formulation selon l'invention contiendra le plus souvent une quantité de 0,001 à 30% en poids, de préférence 0,01 à 20% en poids, et encore préférée 0,1 à 10% en poids d'agents d'intérêt.
Selon l'invention, la phase huileuse de la nanoémulsion comporte au moins un lipide amphiphile et au moins un lipide solubilisant.
Afin de former une nanoémulsion stable, il est généralement nécessaire d'inclure dans la nanoémulsion au moins un lipide amphiphile à titre de tensioactif. La nature amphiphile du tensioactif assure la stabilisation des gouttelettes d'huile au sein de la phase continue aqueuse. Les lipides amphiphiles comportent une partie hydrophile et une partie lipophile. Ils sont généralement choisis parmi les composés dont la partie lipophile comprend une chaîne saturée ou insaturée, linéaire ou ramifiée, ayant de 8 à 30 atomes de carbone. Ils peuvent être choisis parmi les phospholipides, les cholestérols, les lysolipides, les sphingomyélines, les tocophérols (non estérifiés), les glucolipides, stéarylamines, les cardiolipines d'origine naturelle ou synthétique ; les molécules composées d'un acide gras couplé à un groupement hydrophile par une fonction éther ou ester tels que les esters de sorbitan comme par exemple les monooléate et monolaurate de sorbitan vendus sous les dénominations Span® par la société Sigma; les lipides polymérisés ; les lipides conjugués à de courtes chaînes d'oxyde de polyéthylène (PEG) tels que les tensioactifs non- ioniques vendus sous les dénominations commerciales Tween® par la société ICI Americas, Inc. et Triton® par la société Union Carbide Corp.; les esters de sucre tels que les mono- et di-laurate, mono- et di-palmitate, mono- et distéarate de saccharose; lesdits tensioactifs pouvant être utilisés seuls ou en mélanges.
Les phospholipides sont des lipides amphiphiles particulièrement préférés, notamment les phospholipides choisies parmi la phosphatidylcholine, la phosphatidylethanolamine, la phosphatidylsérine, le phosphatidylglycérol, le phosphatidylinositol, le phosphatidyl-acide phosphatidique non-hydrogéné ou hydrogéné, notamment vendu par la société Lipoid.
La lécithine est le lipide amphiphile préféré.
Généralement, la phase huileuse comportera de 0.01 à 99% en poids, de préférence de 5 à 75% en poids, en particulier de 10 à 60% et tout particulièrement de 20 à 45% en poids de lipide amphiphile.
La quantité de lipide amphiphile contribue avantageusement à contrôler la taille de la phase dispersée de la nanoémulsion obtenue.
L'émulsion selon l'invention comprend par ailleurs un lipide solubilisant. Ce composé a pour mission principale de solubiliser l'agent d'intérêt lipophile. L'utilisation d'un lipide solubilisant permet aussi d'augmenter la stabilité physicochimique de la nanoémulsion et d'améliorer le contrôle du relargage des agents d'intérêt lipophiles encapsulés dans les gouttelettes.
De préférence, le lipide solubilisant est solide à température ambiante (20 °C). Le liquide solubilisant peut notamment être constitué de dérivés du glycérol, et en particulier de glycérides obtenues par estérification de glycérol avec des acides gras, notamment dans le cas où le lipide amphiphile est un phospholipide.
Les lipides solubilisants préférés, en particulier pour les phospholipides, sont les glycérides d'acides gras, notamment d'acides gras saturés, et en particulier d'acides gras saturés comportant 8 à 18 atomes de carbone, encore préféré 12 à 18 atomes de carbone. Avantageusement, le lipide solubilisant est constitué d'un mélange complexe de différents glycérides. Par « mélange complexe », on entend un mélange de mono, di et triglycérides, comprenant des chaînes grasses de différentes longueurs, les dites longueurs s'étendant préférentiellement de C8 à C18, par exemple, en association, des chaînes en C8, C10, C12, C14, C16 et C18, ou de C10 à C18, comprenant par exemple en association, chaînes en C10, C12, C14, C16 et C18.
Selon un mode de réalisation, lesdites chaînes grasses peuvent contenir une ou plusieurs insaturations.
De préférence, le lipide solubilisant est constitué d'un mélange de glycérides d'acides gras saturés comportant au moins 10% en poids d'acides gras en C12, au moins 5% en poids d'acides gras en C14, au moins 5% en poids d'acides gras en C16 et au moins 5% en poids d'acides gras en C18.
De préférence, le lipide solubilisant est constitué d'un mélange de glycérides d'acides gras saturés comportant 0% à 20% en poids d'acides gras en C8, 0% à 20% en poids d'acides gras en C10, 10% à 70% en poids d'acides gras en C12, 5% à 30% en poids d'acides gras en C14, 5% à 30% en poids d'acides gras en C16 et 5% à 30% en poids d'acides gras en C18.
Les mélanges des glycérides semi-synthétiques solides à température ambiante vendus sous la dénomination commerciale Suppocire®NC par la société Gattefossé et approuvé pour un usage chez l'homme sont des lipides solubilisants particulièrement préférés. Les Suppocire® de type N sont obtenues par estérification directe d'acides gras et de glycérol. Il s'agit de glycérides hémi-synthétiques d'acides gras saturés de C8 à C18, donc la composition quali-quantitative est indiquée dans le tableau ci-dessous.
Tableau : Composition en acides gras du Suppocire NC de Gattefossé
Figure imgf000017_0001
Les lipides solubilisants précités permettent d'obtenir une nanoémulsion avantageusement stable. Sans vouloir être lié à une théorie particulière, il est supposé que les lipides solubilisants précités permettent d'obtenir des gouttelettes dans la nanoémulsion présentant un cœur amorphe. Le cœur ainsi obtenu présente une viscosité interne élevée sans pour autant présenter de cristallinité. Or, la cristallisation est néfaste pour la stabilité de la nanoémulsion car elle conduit généralement à une agrégation des gouttelettes et/ou à une expulsion de l'agent d'intérêt lipophile à l'extérieur des gouttelettes. Ces propriétés physiques favorisent la stabilité physique de la nanoémulsion.
La quantité de lipide solubilisant peut varier largement en fonction de la nature et de la quantité de lipide amphiphile présent dans la phase huileuse. Généralement, la phase huileuse comportera de 1 à 99% en poids, de préférence de 5 à 80% en poids et tout particulièrement de 30 à 75% en poids de lipide solubilisant.
La phase huileuse peut comporter par ailleurs une ou plusieurs autres huiles.
Les huiles utilisées présentent de préférence une balance hydrophile-lipophile (HLB) inférieure à 10 et encore plus préférentiellement comprise entre 3 et 9 Avantageusement, les huiles sont utilisées sans modification chimique ou physique préalablement à la formation de l'émulsion.
Selon les applications envisagées, les huiles peuvent être choisies parmi les huiles biocompatibles, et en particulier parmi les huiles d'origine naturelle (végétale ou animale) ou synthétique. Parmi de telles huiles, on peut notamment citer les huiles d'origine naturelle végétale parmi lesquelles figurent notamment les huiles de soja, de lin, de palme, d'arachide, d'olives, de sésame, de pépin de raisins et de tournesol ; les huiles synthétiques parmi lesquelles figurent notamment les triglycérides, di glycérides et les mono glycérides. Ces huiles peuvent être de premières expressions, raffinées ou inter- estérifiées.
L'huile préférée est l'huile de soja.
Généralement, si présente, l'huile sera contenue dans la phase huileuse dans une proportion allant de 1 à 80% en poids, de préférence entre 5 et 50 % en poids et tout particulièrement 10 à 30% en poids par rapport au poids total de la phase huileuse.
Par ailleurs, la phase huileuse peut également comporter des agents d'imagerie, notamment pour l'IRM (imagerie par résonance magnétique), le PET (en anglais Positron Emission Tomography), le SPECT (Single Photon Emission Computed Tomography), l'échographie ultrasonore, la radiographie, la tomographie X et l'imagerie optique (fluorescence, bioluminescence, diffusion...).
La phase aqueuse mise en œuvre dans le procédé selon l'invention est de préférence constituée d'eau et/ou d'un tampon tel qu'un tampon phosphate comme par exemple du PBS ("Phosphate Buffer Saline") ou d'une solution saline, notamment de chlorure de sodium. Généralement, le pH de la phase aqueuse est de l'ordre du pH physiologique. La phase aqueuse comporte au moins un agent d'intérêt hydrophile et au moins un co-tensioactif polyalcoxylé. Ce co-tensioactif permet de stabiliser la nanoémulsion.
Les co-tensioactifs utilisables dans les nanoémulsions selon la présente invention sont de préférence des co-tensioactifs hydrophiles.
Les co-tensioactifs comportent de préférence au moins une chaîne polyalcoxylée composée de motifs d'oxyde d'éthylène (PEO ou PEG) ou d'oxyde d'éthylène et d'oxyde de propylène.
Dans la nanoémulsion, les chaînes polyalcoxylées du co-tensioactif sont situées majoritairement à la surface des gouttelettes et s'orientent vers l'extérieur de la gouttelette. Des interactions par liaisons hydrogène existent :
- d'une part entre les chaînes polyalcoxylée des co-tensioactifs et l'eau de la phase aqueuse continue, ces interactions favorisant la dispersion des gouttelettes et la désagrégation de la nanoémulsion, et
- d'autre part entre chaînes polyalcoxylée des co-tensioactifs de gouttelettes adjacentes, ces interactions favorisant la cohésion de la nanoémulsion.
La chaîne polyalcoxylée du co-tensioactif de la nanoémulsion comprend généralement de 10 à 200, typiquement de 10 à 150, notamment de 20 à 100, de préférence de 30 à 80, motifs oxyde d'éthylène/oxyde de propylène. En dessous de 10 motifs, la nanoémulsion est inhomogène car la phase dispersée comprend des gouttelettes polydisperses, ne permettant pas le contrôle du temps de libération de l'agent d'intérêt lipophile. Au-delà de 200 motifs, d'une part la nanoémulsion est inhomogène car la phase dispersée comprend des gouttelettes polydisperses, ne permettant pas le contrôle du temps de libération de l'agent d'intérêt lipophile, d'autre part le temps de libération de l'agent d'intérêt lipophile est très court et l'administration d'une telle nanoémulsion n'est donc pas intéressante.
A titre d'exemple de co-tensioactifs, on peut en particulier citer les composés conjugués à base de polyéthylèneglycol/phosphatidyl-éthanolamine (PEG-PE), les éthers d'acide gras et de polyéthylèneglycol tels que les produits vendus sous les dénominations commerciales Brij® (par exemple Brij® 35, 58, 78 ou 98) par la société ICI Americas Inc., les esters d'acide gras et de polyéthylèneglycol tels que les produits vendus sous les dénominations commerciales Myrj® par la société ICI Americas Inc. (par exemple Myrj® s20, s40 ou s100, anciennemnent nommés 49, 52 ou 59) et les copolymères blocs d'oxyde d'éthylène et d'oxyde de propylène tels que les produits vendus sous les dénominations commerciales Pluronic® par la société BASF AG (par exemple Pluronic® F68, F127, L64, L61 , 10R4, 17R2, 17R4, 25R2 ou 25R4 ) ou les produits vendus sous la dénomination commerciale Synperonic® par la société Unichema Chemie BV (par exemple Synperonic® PE/F68, PE/L61 ou PE/L64).
La phase aqueuse comporte de 0.01 à 50% en poids, de préférence de 1 à 30% en poids et tout particulièrement de 5 à 20% en poids de co-tensioactif.
Généralement, la fraction massique de l'ensemble [co-tensioactif/lipide amphiphile] par rapport au poids total du cœur des gouttelettes [huile éventuelle/lipide solubilisant/ co- tensioactif/lipide amphiphile/agent(s) d'intérêt lipophile(s)] est inférieur ou égal 2, de préférence inférieure ou égale à 1 . Ceci permet d'obtenir un système physiquement stable, ne subissant pas les effets de la déstabilisation due au mûrissement d'Ostwald ou à la coalescence (séparation des phases aqueuse et huileuse)
Généralement, la fraction massique de lipide amphiphile par rapport au poids de co- tensioactif est de 0,005 % à 10 %, notamment de 0,01 % à 2 %, de préférence de 0,1 % à 0,6 %. En effet, en dessous de 0,005 % et au delà de 10 %, les gouttelettes de la phase dispersée ne sont souvent pas suffisamment stables et coalescent en quelques heures et il est souvent difficile d'obtenir des gouttelettes de diamètre inférieur à 200 nm.
Généralement, la nanoémulsion ne comporte pas de tensioactifs supplémentaires : les seuls tensioactifs de la nanoémulsion sont le lipide amphiphile et le co-tensioactif. De même, la viscosité du système est conférée directement par les composants de la nanoémulsion et il n'est généralement pas nécessaire des agents rhéoépaississants supplémentaires dans la phase continue.
Dans un mode de réalisation, le co-tensioactif polyalcoxylé comporte un groupe terminal capable de former des liaisons non covalentes, par exemple une liaison hydrogène, hydrophobe (interaction de Van der Waals) ou électrostatique, notamment ionique.
De préférence le co-tensioactif polyalcoxylé comporte un groupe terminal capable de former des liaisons hydrogène.
Par « terminal », on entend que le groupe se situe à une extrémité de la ou des chaînes polyalcoxylée(s) du co-tensioactif. Le groupe capable de former des liaisons hydrogène avec l'eau est un groupe comprenant un ou plusieurs hydrogène acide, par exemple les hydrogènes d'une fonction aminé ou alcool, et/ou une plusieurs groupes accepteur d'hydrogène acide, tel qu'un atome de fluor, d'oxygène, de soufre ou d'azote. Typiquement, le groupe terminal de la chaîne polyalcoxylée du co-tensioactif est un groupe hydroxyle. Un co-tensioactif polyalcoxylé comportant un autre groupe terminal, tel qu'un groupe N-hydroxysuccinimide, maléimide, -NH2, -COOH ou -SH, peut être utilisé. Par exemple, des co-tensioactif de formule :
DSPE-PEG-X dans laquelle DSPE représente un distéarylphosphatidyléthanolamine, PEG représente une chaîne poly(oxyde d'éthylène), comportant généralement de 10 à 200 motifs oxyéthylène, de préférence de 20 à 100 motifs oxyéthylène, et X représente un groupe choisi parmi un groupe N-hydroxysuccinimide, maléimide, -OH, -NH2, -COOH ou -SH, de préférence N-hydroxysuccinimide ou maléimide (figure 2). Ce groupe capable de former des liaisons hydrogène favorise les interactions par liaisons hydrogène entre chaînes polyalcoxylée des co-tensioactifs de gouttelettes adjacentes, et favorise la cohésion de la nanoémulsion. Les temps de libération des agents d'intérêt hydrophile et lipophile sont donc augmentés.
Dans un mode de réalisation, le co-tensioactif polyalcoxylé comporte un composé d'intérêt greffé. Typiquement, le composé d'intérêt a été greffé par liaison chimique, généralement covalente, au co-tensioactif tel que défini ci-dessus. Le greffage peut être réalisé avant ou après la formation de la nanoémulsion. Le dernier cas peut être préconisé lorsque les réactions chimiques employées sont compatibles avec la stabilité de la nanoémulsion, notamment en termes de pH. De préférence, le pH lors de la réaction de greffage est compris entre 5 et 1 1 .
Généralement, ce greffage a été effectué à une extrémité de la ou des chaînes polyalcoxylée(s) du co-tensioactif, et le composé d'intérêt est ainsi situé à la surface des gouttelettes de la phase huileuse dispersée de la nanoémulsion.
Les composés d'intérêt peuvent être par exemple :
- des ligands biologiques de ciblage tels que des anticorps, peptides, saccharides, aptamères, oligonucléotides ou des composés comme l'acide folique ; lors de la libération des gouttelettes de la nanoémulsion, ce ligand biologique sera reconnu de manière spécifique par certaines cellules (par exemple de cellules tumorales comme décrit par exemple dans l'article de S. Achilefu, Technology in Cancer Research & Treatment, 2004, 3, 393-408) ou de certains organes que l'on souhaite cibler, ce qui permet de contrôler la localisation de la libération de l'agent d'intérêt lipophile ;
- un agent de furtivité : une entité ajoutée afin de conférer à la nanoémulsion une furtivité vis-à-vis du système immunitaire, d'augmenter son temps de circulation dans l'organisme, et de ralentir son élimination.
Selon un mode de réalisation préféré, la phase continue comporte également un agent épaississant tel qu'un glycérol, un saccharide, oligosaccharide ou polysaccharide, une gomme ou encore une protéine, de préférence du glycérol. En effet, l'utilisation d'une phase continue de viscosité plus élevée facilite l'émulsification et permet de ce fait de réduire le temps de sonication. La phase aqueuse comporte avantageusement de 0 à 50% en poids, de préférence de 1 à 30% en poids et tout particulièrement de 5 à 20% en poids d'agent épaississant.
Bien entendu, la phase aqueuse peut contenir en outre d'autres additifs tels que des colorants, stabilisants et conservateurs en quantité appropriée.
La phase huileuse dispersée de la nanoémulsion (éventuelle huile/lipide solubilisant/lipide amphiphile/co-tensioactif/agent d'intérêt lipophile) représente entre 30 et 90% en poids, notamment entre 35 et 65% en poids, de préférence entre 45 et 64% en poids par rapport au poids total de la nanoémulsion, c'est-à-dire par rapport au poids des phases aqueuse continue et huileuse dispersée. La formation d'une nanoémulsion dépend bien sûr de la composition des phases aqueuse et huileuse. Toutefois, pour la plupart des compositions en phases aqueuse/huileuse (mais pas pour toutes), il est difficile d'obtenir une nanoémulsion sous forme de gel lorsque la phase huileuse dispersée représente moins de 30% en poids. De plus, plus la fraction massique en phase huileuse dispersée augmente, plus la viscosité de la nanoémulsion augmente. Il a en effet été constaté qu'augmenter la fraction massique de phase dispersée revient à augmenter la densité des gouttelettes, favorisant ainsi le rapprochement entre gouttelettes et donc les interactions entre-elles. Des fractions massiques en phase huileuse inférieures à 90%, voire inférieures à 65%, sont préférées. Généralement, une augmentation de la fraction massique en phase huileuse dispersée est corrélée à une augmentation du diamètre des gouttelettes de la phase dispersée.
[Procédé de préparation]
La nanoémulsion telle que décrite peut être préparée aisément par dispersion de quantités appropriées de phase huileuse et de phase aqueuse sous l'effet d'un cisaillement.
Ainsi, l'invention concerne un procédé de préparation de la nanoémulsion précitée, comportant les étapes consistant à :
(i) préparer la phase huileuse comprenant l'agent d'intérêt lipophile, au moins un lipide amphiphile et au moins un lipide solubilisant;
(ii) préparer une phase aqueuse comprenant un co-tensioactif polyalcoxylé et un agent d'intérêt lipophile;
(iii) disperser la phase huileuse dans la phase aqueuse sous l'action d'un cisaillement suffisant pour former une nanoémulsion; et
(iv) récupérer la nanoémulsion ainsi formé.
Ce procédé permet avantageusement la fabrication directe d'une nanoémulsion sous forme de gel sans nécessiter, à la suite de l'étape de dispersion décrite dans l'étape (iii) ci-dessus, une étape intermédiaire de concentration ou d'ajout d'agent rhéoépaississant
Dans le cadre du procédé selon l'invention, on mélange d'abord les différents constituants huileux et l'agent d'intérêt lipophile pour préparer un pré-mélange huileux pour la phase dispersée de la nanoémulsion. Le mélange des différents constituants huileux et de l'agent d'intérêt lipophile peut éventuellement être facilité par mise en solution d'un des constituants ou du mélange complet dans un solvant organique approprié et évaporation subséquente du solvant, pour obtenir un pré-mélange huileux homogène pour la phase dispersée. Le choix du solvant organique dépend de la solubilité de chaque agent d'intérêt lipophile. Les solvants employés peuvent être par exemple le méthanol, l'éthanol, le chloroforme, le dichlorométhane, l'hexane, le cyclohexane, le DMSO, le DMF ou encore le toluène. Lorsqu'il s'agit d'une émulsion pour l'administration d'agents thérapeutiques, il s'agit de préférence de solvants organiques volatils et/ou non toxiques pour l'homme.
Par ailleurs, il est préféré de réaliser le pré-mélange à une température à laquelle l'ensemble des ingrédients est liquide.
Avantageusement, la phase huileuse est dispersée dans la phase aqueuse à l'état liquide. Si l'une des phases se solidifie à température ambiante, il est préférable de réaliser le mélange avec l'une ou de préférence les deux phases chauffées à une température supérieure ou égale à la température de fusion, les deux phases étant chauffées à une température de préférence inférieure à 80 °C, et encore préférentiellement inférieure à 70 °C, et encore préférentiellement inférieure à 60 'C.
L'émulsification sous l'effet de cisaillement est de préférence réalisée à l'aide d'un sonificateur ou d'un microfluidiseur. De préférence, la phase aqueuse puis la phase huileuse sont introduites dans les proportions souhaitées dans un récipient cylindrique approprié puis le sonificateur est plongé dans le milieu et mis en marche pendant une durée suffisante pour obtenir une nanoémulsion, le plus souvent quelques minutes.
On obtient alors une nanoémulsion homogène dans laquelle le diamètre moyen des gouttelettes est supérieur à 20 nm et inférieur à 200 nm, notamment de 50 à 120 nm.
De préférence, le potentiel zêta de la nanoémulsion est inférieur à 25 mV en valeur absolue, c'es-à-dire compris entre ~25mV et 25 mV.
Avant conditionnement, l'émulsion peut être diluée et/ou stérilisée, par exemple par filtration ou dialyse. Cette étape permet d'éliminer les éventuels agrégats qui pourraient s'être formés au cours de la préparation de l'émulsion.
La nanoémulsion ainsi obtenue est prête à l'emploi, le cas échéant après dilution. [Utilisation de la nanoémulsion]
Selon un troisième aspect, l'invention concerne la nanoémulsion précitée dans laquelle l'agent d'intérêt hydrophile est un agent thérapeutique hydrophile et l'agent d'intérêt lipophile est un agent thérapeutique lipophile, pour son utilisation pour l'administration d'au moins un agent thérapeutique hydrophile et d'au moins un agent thérapeutique lipophile à l'homme ou à l'animal pour traiter ou prévenir une maladie.
Comme la nanoémulsion peut être préparé exclusivement à partir de constituants approuvés pour l'homme, il est particulièrement intéressant pour une administration par voie parentérale. Cependant, il est également possible d'envisager une administration par d'autres voies, notamment par voie orale ou par voie topique.
Les temps de libération de l'agent thérapeutique hydrophile thydrophiie et de libération de l'agent thérapeutique lipophile t|i pophiie sont liés au temps de libération des gouttelettes tgoutteiette, qui correspond au temps de désintégration du réseau tridimensionnel de la nanoémulsion.
Le temps de libération de l'agent thérapeutique hydrophile thydrophiie est lié au temps de désintégration du réseau tridimensionnel de la nanoémulsion, c'est-à-dire au temps de libération des gouttelettes tgoutteiette, mais aussi au temps de diffusion de l'agent thérapeutique hydrophile à travers la nanoémulsion. Le temps de libération de l'agent thérapeutique hydrophile thydrophiie dépend de la composition de la nanoémulsion, en particulier:
- de la fraction massique de la phase huileuse dispersée par rapport au poids total de la nanoémulsion,
- du nombre d'unités alcoxylées du co-tensioactif alcoxylé (et donc de la longueur de la chaîne alcoxylée du co-tensioactif alcoxylé),
- du diamètre des gouttelettes, et/ou
- de la présence de groupes capables de former des liaisons hydrogène avec l'eau sur le co-tensioactif polyalcoxylé.
Le temps de libération de l'agent thérapeutique lipophile
Figure imgf000024_0001
est lié au temps de diffusion de l'agent thérapeutique lipophile vers l'extérieur de la gouttelette et au temps de libération des gouttelettes tgoutteiette- Le temps de libération de l'agent thérapeutique lipophile ίΜρ0ρ Μβ dépend :
du diamètre moyen des gouttelettes, comme décrit notamment dans Williams, Y. et al. Small (2009); 5(22):2581 -8, Choi, H. S. et al. Nanoletters (2009) 9(6):2354-9 et Massignani, M. et al. Small. (2009) 5(21 ):2424-32. Les gouttelettes de la nanoémulsion selon l'invention sont avantageusement monodisperses pour permettre une libération homogène dans le temps de l'agent thérapeutique lipophile.
de la nature des composants de la phase huileuse, notamment du lipide solubilisant, des caractéristiques physicochimiques de l'agent thérapeutique lipophile (Nel, A. E. et al. Nature Materials 8 (2009) pp543-557), notamment de son log P, qui influe sur la localisation de l'agent thérapeutique lipophile à l'intérieur ou en surface de la gouttelette.
Un agent thérapeutique très lipophile reste dans la gouttelette et n'est libéré que lorsque celle-ci est dégradée par dégradation chimique (par hydrolyse des composants des gouttelettes suite à une augmentation ou diminution importante du milieu, par exemple si les gouttelettes sont internalisées à l'intérieur des cellules en passant par les lysosomes) ou par dégradation enzymatique par des lipases (Olbrich, C. et al. International Journal of Pharmaceutics 237 (2002) pp 1 19-128 et Olbrich, C. International Journal of Pharmaceutics 180 (1999) pp31 -39).
Généralement, le temps de l'agent thérapeutique hydrophile thydrophiie est inférieur au temps de libération de l'agent thérapeutique lipophile
Figure imgf000025_0001
La localisation de la libération de l'agent thérapeutique hydrophile Lhydrophiie est généralement la localisation d'administration de la nanoémulsion.
La localisation de la libération de l'agent thérapeutique lipophile L|ipophiie est soit la localisation d'administration (dans ce cas, Lhydrophiie et L|ipophiie sont généralement identiques), soit un autre endroit du corps de l'homme / de l'animal, notamment lorsque les gouttelettes libérées de la nanoémulsion sont emportées par le fluide physiologique (liquide interstitiel, liquide lymphatique, sang) vers un autre endroit, ce qui est généralement observé lorsque les gouttelettes de la phase dispersée de la nanoémulsion ont un diamètre inférieur à 150 nm. Bien sûr, la localisation de la libération de l'agent thérapeutique lipophile dépend également des propriétés physicochimiques
- de la zone d'administration de la nanoémulsion, notamment de la densité des tissus et de la présence ou non de barrières physiologiques, et
- de la nature et des propriétés physicochimiques de l'agent thérapeutique lipophile lui même. Ainsi, lorsque plus d'un agent thérapeutique lipophile est utilisé dans la nanoémulsion, chaque agent thérapeutique lipophile a une localisation de la libération qui lui est propre.
Il est notamment possible de moduler L|ip0phi|e en utilisant dans la nanoémulsion un co- tensioactif polyalcoxylé comporte un ligand biologique de ciblage greffé, qui va permettre que les gouttelettes, et donc l'agent thérapeutique lipophile, soient dirigées vers la cible désirée. La nanoémulsion selon l'invention a donc de nombreuses applications.
Par exemple, un des agents thérapeutique peut être un principe actif pharmaceutique pour le traitement de la maladie visée, et l'autre peut être un agent thérapeutique permettant de diminuer les effets secondaires, notamment ceux associés audit principe actif pharmaceutique.
Une nanoémulsion selon l'invention dans laquelle l'agent thérapeutique hydrophile est un agent cicatrisant, antibactérien ou anti-inflammatoire et l'agent thérapeutique lipophile est un anticancéreux peut notamment être utilisé pour le traitement post-exérèse d'une tumeur. Cette nanoémulsion est appliquée suite à une opération d'exérèse de tumeur sur le site d'excision de la tumeur.
L'agent thérapeutique cicatrisant, antibactérien ou anti-inflammatoire hydrophile est libéré rapidement pour diminuer les effets secondaires de l'exérèse et favoriser la cicatrisation.
L'agent thérapeutique anticancéreux lipophile est libéré plus tardivement, généralement durant les premières heures suivant l'application de la nanoémulsion, et traite les amas de cellules tumorales restants n'ayant pas été excisés. Il est en effet souvent difficile de curer complètement l'ensemble de la tumeur lors de l'exérèse. La nanoémulsion permet ainsi un traitement complet de la zone tumorale.
Les gouttelettes comprenant l'agent anticancéreux lipophile de la phase dispersée peuvent également rejoindre la circulation lymphatique et sanguine et traiter les éventuelles cellules cancéreuses circulant dans le système circulatoire et étant à l'origine de métastases.
En particulier, le co-tensioactif de la nanoémulsion peut comporter un ligand biologique de ciblage des cellules cancéreuses pour pouvoir cibler plus efficacement les cellules cancéreuses.
De plus, une nanoémulsion selon l'invention dans laquelle l'agent thérapeutique hydrophile est un agent stimulant le système immunitaire et l'agent thérapeutique lipophile est un anticancéreux peut notamment être utilisé pour le traitement post-cryogénie d'une tumeur.
La cryogénie de tumeur consiste en l'injection d'un liquide cryogénique dans un tumeur à l'aide d'une seringue. Les cellules tumorales sont tuées par ce traitement, et restent à l'intérieur du corps du sujet traité.
La nanoémulsion précitée peut augmenter l'efficacité du traitement. L'agent hydrophile stimulant le système immunitaire est libéré rapidement pour activer le système immunitaire et l'agent anticancéreux lipophile est libéré plus tardivement, et permet d'éliminer les cellules tumorales encore vivantes. Là encore, les gouttelettes comprenant l'agent anticancéreux lipophile de la phase dispersée peuvent rejoindre la circulation lymphatique et sanguine et traiter les éventuelles cellules cancéreuses circulant dans le système circulatoire et étant à l'origine de métastases. De plus, le co-tensioactif de la nanoémulsion peut comporter un ligand biologique de ciblage des cellules cancéreuses pour pouvoir cibler plus efficacement les cellules cancéreuses.
L'administration de la nanoémulsion peut être effectuée selon toute méthode connue. Par exemple, la nanoémulsion peut être administré par l'intermédiaire d'une seringue ou d'un timbre transdermique (« patch » en anglais), cette formulation étant particulièrement adaptée car la nanoémulsion présente un caractère collant. Après diffusion dans la peau de l'agent thérapeutique hydrophile puis des gouttelettes de la phase dispersée, la nanoémulsion perd ce caractère et le timbre transdermique comprenant la nanoémulsion se décolle tout seul à la fin du traitement.
Une méthode de traitement thérapeutique comprenant l'administration chez un mammifère, de préférence un humain, qui en a besoin d'une quantité efficace sur le plan thérapeutique de la nanoémulsion telle que définie ci-dessus est également un des objets de la présente invention.
L'invention sera décrite plus en détail au moyen des exemples et figures en annexe, lesquelles montrent :
Figure 1 : Schéma de principe de la libération d'un agent d'intérêt hydrophile (3) et d'un agent d'intérêt hydrophile (4). (1 ) : libération des gouttelettes de la phase huileuse dispersée de la nanoémulsion, liée à la libération des agents d'intérêt hydrophiles (3) -
(2) : libération des agents d'intérêt lipophiles (4) des gouttelettes.
Figure 2 : Schéma représentatif d'une gouttelette de la phase dispersée. 1 : lipide solubilisant et éventuelle huile - 2 : lipide amphiphile - 3 : co-tensioactif - 4 : chaîne polyalcoxylée du co-tensioactif - 5 : groupement capable de former des liaisons hydrogène.
Figure 3 : Intensité de fluorescence (en UA) en fonction du temps (en minutes) d'une solution aqueuse placée en contact avec la nanoémulsion de l'exemple 1 . La courbe avec les carrés correspond à la libération de la molécule hydrophile fluorescéine. La courbe avec les losanges correspond à la libération des gouttelettes de phase dispersé comprenant la molécule lipophile Nile Red.
Figure 4 : Temps de libération des gouttelettes de la phase dispersée des nanoémulsions de l'exemple 2a en minutes en fonction de la fraction massique en phase dispersée par rapport au poids total de la nanoémulsion. La courbe avec les triangles correspond à une nanoémulsion comprenant un co-tensioactif Myrj® s20. La courbe avec les carrés correspond à une nanoémulsion comprenant un co-tensioactif Myrj® s100. La courbe avec les losanges correspond à une nanoémulsion comprenant un co-tensioactif Myrj® s40.
Figure 5 : Temps de libération des gouttelettes de la phase dispersée des nanoémulsions de l'exemple 2b en minutes en fonction de la fraction massique en phase dispersée par rapport au poids total de la nanoémulsion. La courbe avec les triangles correspond à une nanoémulsion comprenant des gouttelettes de diamètre de 120 nm lorsque la fraction massique en phase dispersée est de 40%. La courbe avec les carrés correspond à une nanoémulsion comprenant des gouttelettes de diamètre de 80 nm lorsque la fraction massique en phase dispersée est de 40%. La courbe avec les losanges correspond à une nanoémulsion comprenant des gouttelettes de diamètre de 50 nm lorsque la fraction massique en phase dispersée est de 40%.
Figure 6 : Temps de libération des gouttelettes de la phase dispersée des nanoémulsions de l'exemple 3 en minutes en fonction de la fraction massique de co- tensioactif comportant un groupe maléimide terminal par rapport à la masse de co- tensioactif Myrj® s40.
Figure 7 : Deux spectres RMN H des nanoémulsions après fabrication pour des températures de T= 10 <C et de T=60°C (exemple 4).
Figure 8 : Thermogramme (flux de chaleur (W/g) en fonction de la température (en 'C) obtenu par calorimétrie différentielle à balayage (en anglais, Differential Scanning Calorimetry ou DSC) des nanoémulsions après fabrication avec un appareil Universal V3.8B TA (exemple 4).
Figure 9 : Thermogramme (flux de chaleur (W/g) en fonction de la température (en 'C) obtenu par calorimétrie différentielle à balayage (en anglais, Differential Scanning Calorimetry ou DSC) des nanoémulsions après 4 mois de stockage à température ambiante (b) avec un appareil Universal V3.8B TA (exemple 4).
Figure 10 : L'évolution de la taille des gouttelettes (en nm) de la nanoémulsion en fonction du temps (en jours) pour trois nanoémulsions à 40 °C. Les losanges représentent une nanoémulsion exempte de lipide solubilisant et comprenant de l'huile, les triangles représentent une nanoémulsion comprenant un mélange 50/50 de lipide solubilisant et d'huile et les ronds représentent une nanoémulsion exempte d'huile et comprenant du lipide solubilisant (exemple 4).
Figure 1 1 : Viscosité (en Pa s) des nanoémulsions E1 à E4 de l'exemple 5 en fonction de la fraction massique (%m/m) de la phase huileuse dispersée.
Figure 12 : Modules G' et G" des nanoémulsions C1 à C4 de l'exemple 2 mesurés sous cisaillement oscillant de fréquence croissante (0,1 < ω < 100 rad.s). EXEMPLES
Pour démontrer la faisabilité de la libération d'agents d'intérêt par la nanoémulsion selon l'invention, des expériences ont été réalisées en encapsulant les agents d'intérêt de la nanoémulsion par deux molécules fluorescentes, l'une étant hydrophile (fluorescéine - l°g(P)=1 ) et donc située dans la phase aqueuse continue de la nanoémulsion, l'autre étant hydrophobe (Nile Red - log(P)=4,5) et donc située dans les gouttelettes de la phase dispersée de la nanoémulsion.
EXEMPLE 1 : Méthode de détermination du temps de libération de l'agent d'intérêt hydrophile. La nanoémulsion utilisé avait la composition suivante :
Figure imgf000029_0001
été préparée par dissolution du co-tensioactif du tampon phosphate à 60 'C, puis ajout de la fluorescéine. La phase huileuse a été préparée par dissolution du Lipoid s75 et du Nile Red dans le mélange huile/ Suppocire® NC / chloroforme à 60 'C. Le mélange obtenu a ensuite été évaporée sous pression réduite et séché à ôO 'C pour évaporer le chloroforme. La phase huileuse obtenue se présentait sous la forme d'une huile visqueuse qui se solidifie en refroidissant. La phase huileuse a alors été émulsifiée dans la phase aqueuse par ultrasonification pendant 20 min, en alternant des durées de 10 s de sonication et de 30 s de repos (soit 5 min de sonication réelle au total sur les 20 min) à une puissance de 25% sur sonicateur AV505 équipé d'une sonde conique de 3mm (Sonics, Newtown). Pour être utilisée, la nanoémulsion obtenue a été prélevée à chaud (T>40qC) à l'aide d'une seringue 1 ml surmontée d'une aiguille (1 ,2 x 40mm).
300 μΙ_ de nanoémulsion ont été déposés au fond d'une cuvette spectroscopie en plastique transparent 4 faces. Un cache opaque a été monté sur le contour de la cuve à hauteur de 1 cm pour cacher la nanoémulsion. 3 ml_ d'une solution aqueuse (tampon phosphate PBS) ont alors été ajouté à la cuvette et ainsi mis en contact de la nanoémulsion. La libération dans la phase aqueuse de la molécule hydrophile d'une part et des gouttelettes comprenant la molécule lipophile d'autre part a été suivie par fluorescence. Les résultats sont représentés sur la figure 3. Le temps t = 0 correspond au moment où la solution aqueuse a été ajoutée à la cuvette.
Lorsque les molécules fluorescentes sont libérées dans la solution aqueuse, l'intensité de fluorescence croît jusqu'à atteindre un palier maximum. Ce palier montre que le système (nanoémulsion / solution aqueuse) a atteint un équilibre : la nanoémulsion a été complètement désagrégée dans le tampon aqueux. La courbe avec les carrés correspond à la libération de la molécule hydrophile fluorescéine. Le temps de libération de la fluorescéine escéine est de 25 minutes. La courbe avec les losanges correspond à la libération des gouttelettes de phase dispersée comprenant la molécule lipophile Nile Red (et non pas à la libération du Nile Red). Le temps de libération des gouttelettes tgoutteiettes est de 75 min.
EXEMPLE 2 : Influence de la composition de la nanoémulsion sur le temps de
Figure imgf000030_0001
Pour étudier l'influence de la composition de la nanoémulsion sur tgoutteiettes, des nanoémulsions selon l'exemple 1 ont été préparées en variant la nature et la concentration de co-tensioactif.
Les nanoémulsions Ai (i = 1 à 10) diffèrent les uns des autres par la quantité de phase aqueuse et la nature du co-tensioactif. En conservant les quantités de composants de la phase dispersée mentionnées dans le tableau 1 , une nanoémulsion comprenant 40 % de phase dispersée par rapport au poids total de la nanoémulsion comporte des gouttelettes de diamètre moyen de 120 nm. Tableau 1 : compositions des nanoémulsions Ai
Figure imgf000031_0001
* stéarate de PEG possédant 20 unités PEG
** stéarate de PEG possédant 40 unités PEG
*** stéarate de PEG possédant 100 unités PEG
* nanoémulsion de viscosité inférieure à 1 poise formée.
Les nanoémulsions Bi (i = 1 à 5) diffèrent les uns des autres par la quantité de phase aqueuse. La nanoémulsion B1 comprenant 40 % de phase dispersée par rapport au poids total de la nanoémulsion comporte des gouttelettes de diamètre moyen de 80 nm.
Tableau 2 : compositions des nanoémulsions Bi
Figure imgf000031_0002
* : nanoémulsion non redispersible de viscosité supérieure à 1000 poises Les nanoémulsions Ci (i = 1 à 3) diffèrent les uns des autres par la quantité de phase aqueuse. La nanoémulsion C1 comprenant 40 % de phase dispersée par rapport au poids total de la nanoémulsion comporte des gouttelettes de diamètre moyen de 50 nm.
Tableau 3 : compositions des nanoémulsions Ci
Figure imgf000032_0002
Exemple 2a : Influence de la fraction massique en phase dispersée et du nombre de motifs polvoxyéthylène du co-tensioactif sur ίπη, ,^ι^
Les co-tensioactifs Myrj® s20, s40 et s100 utilisés dans les nanoémulsions Ai ont les formules suivantes :
Figure imgf000032_0001
Les résultats sont regroupés sur la figure 4.
Le temps de libération des gouttelettes tgoutteiettes augmente lorsque la fraction massique en phase dispersée augmente. L'augmentation de la fraction massique de phase dispersée provoque le rapprochement des gouttelettes entres-elles. Les interactions entre gouttelettes sont plus importantes, et la désagrégation de la nanoémulsion est plus difficile.
Le temps de libération des gouttelettes tgoutteiettes est également influencé par la nature du co-tensioactif utilisé. Ainsi, le temps de libération des gouttelettes est :
- le plus élevé lorsque le co-tensioactif Myrj® s40 est utilisé,
- intermédiaire lorsque le co-tensioactif Myrj® s100 est utilisé,
- le plus faible lorsque le co-tensioactif Myrj® s20 est utilisé.
Lorsque la longueur de la chaîne polyoxyéthylène augmente, d'une part les interactions par liaison hydrogène entre cette chaîne polyoxyéthylène et l'eau de la phase aqueuse continue augmentent, ce qui favorise la dispersion des gouttelettes et la désagrégation de la nanoémulsion, et d'autre part, les interactions par liaison hydrogène existant entre les chaînes polyalkylène oxyde des co-tensioactifs de gouttelettes adjacentes sont plus nombreuses, ce qui défavorise la désagrégation de la nanoémulsion. Le temps de libération des gouttelettes tgoutteiettes le plus élevé est donc observé pour le co- tensioactif ayant un nombre d'unités polyoxyéthylène (et donc une longueur de chaîne) intermédiaire.
Il est donc possible d'ajuster le temps de libération des gouttelettes, lié au temps de libération des agents d'intérêt lipophiles et hydrophiles, en ajustant la fraction massique en phase dispersée et/ou la nature du co-tensioactif, plus précisément le nombre de motifs polyoxyéthylène. En effet, augmenter la fraction massique de phase dispersée revient à augmenter la densité des gouttelettes, favorisant ainsi le rapprochement entre gouttelettes et donc les interactions entre-elles. Au contraire, augmenter la longueur des chaînes polyalcoxylées en surface permet d'augmenter les interactions gouttelettes/phase continue (eau), et donc facilite la redispersion des gouttelettes depuis la nanoémulsion vers la phase continue sous forme de dispersion diluée.
Exemple 2b : Influence de la fraction massique en phase dispersée et de la taille des
Figure imgf000033_0001
Les résultats sont regroupés sur la figure 5. La courbe avec les triangles correspond aux résultats obtenus avec les nanoémulsions Ai, c'est-à-dire des nanoémulsions comprenant des gouttelettes de diamètre de 120 nm lorsque la fraction massique en phase dispersée est de 40%. La courbe avec les carrés correspond aux résultats obtenus avec les nanoémulsions Bi, c'est-à-dire des nanoémulsions comprenant des gouttelettes de diamètre de 80 nm lorsque la fraction massique en phase dispersée est de 40%. La courbe avec les losanges correspond aux résultats obtenus avec les nanoémulsions Ci, c'est-à-dire des nanoémulsions comprenant des gouttelettes de diamètre de 50 nm lorsque la fraction massique en phase dispersée est de 40%. Pour une fraction massique en phase dispersée supérieure à 45%, les gouttelettes ont un diamètre qui augmente progressivement avec la fraction massique.
Le temps de libération des gouttelettes tgoutteiettes augmente lorsque la fraction massique en phase dispersée augmente, comme observé à l'exemple 2a.
Le temps de libération des gouttelettes tgoutteiettes est également influencé par le diamètre moyen des gouttelettes de la phase dispersée. Plus le diamètre moyen des gouttelettes est faible, plus le temps de libération des gouttelettes tgoutteiettes est élevé. En effet, à fraction massique en phase dispersée constante, lorsque le diamètre moyen des gouttelettes diminue, les surfaces des gouttelettes augmentent, et les effets de surface sont plus importants, notamment car les interactions existant entre les chaînes polyalkylène oxyde des co-tensioactifs de gouttelettes adjacentes sont plus nombreuses: la nanoémulsion se désagrège plus difficilement. EXEMPLE 3 : Nanoémulsion comprenant un co-tensioactif polvalcoxylé à groupe terminal capable de former des liaisons hydrogène.
Le co-tensioactif polyalcoxylé comportant un groupe terminal maléimide de formule suivante a été utilisé :
Figure imgf000034_0001
Les nanoémulsions Di (i=1 -4) utilisées avaient les compositions suivantes :
Tableau 4 : compositions des nanoémulsions Di
Figure imgf000034_0002
Les nanoémulsions ont été préparées en suivant le même protocole que celui de l'exemple 1 .
Les résultats sont regroupés sur la figure 6. On constate que la présence d'un groupe maléimide capable de former des liaisons hydrogène sur la chaîne polyoxyalkylée du co-tensioactif engendre une augmentation du temps de libération des gouttelettes tgouttelettes-
Ces exemples démontrent que la nanoémulsion permet la délivrance simultanée d'un agent d'intérêt hydrophile et des gouttelettes comprenant un agent d'intérêt lipophile, et que les temps de libération des agents d'intérêt peuvent être modulés en ajustant la nature et les proportions des composants de la nanoémulsion.
EXEMPLE 4 : Mise en évidence de la stabilité de la nanoémulsion
Les expériences ci-après ont été réalisées pour démontrer la stabilité conférée aux nanoémulsions par le lipide solubilisant. EXEMPLE 4A : Mise en évidence de la haute viscosité du coeur des gouttelettes par RMN.
Une nanoémulsion comprenant 255 mg de Suppocire® NC (Gattefossé) (lipide solubilisant), 85 mg d'huile de soja (Sigma Aldrich) (huile), 345 mg de Myrj52® (ICI Americas Inc) (co-tensioactif), 65 mg de Lipoid® s75 (lécithine, lipide amphiphile) et un tampon phosphate (PBS) a été préparé en suivant le protocole de l'exemple 1 .
Des analyses de la nanoémulsion à l O 'C et à 60 °C ont été réalisées par résonance magnétique nucléaire du proton. Les pics associés aux composants de cœur des gouttelettes de la nanoémulsion (huile / lipide solubilisant et lipide amphiphile) (0.9 ; 1 .5 ; 1 .6 ; 2.0 ; 2.2 ; 4.1 ; 4.2 ppm) observés sur les spectres RMN H sont élargis par rapport à la référence (acide 4,4-diméthyl-4-silapentane-1 -sulfonique DSS à 0 ppm), et ce d'autant plus que la température est basse, ce qui met en évidence la haute viscosité interne des gouttelettes. Les pics associés au co-tensioactif Myrj53® (3.7 ppm) ne subissent quand à eux aucun élargissement, ce qui indique que le co-tensioactif reste en surface des gouttelettes, les chaînes polyoxyéthylène étant solubilisées dans le tampon aqueux (figure 7).
EXEMPLE 4B : Mise en évidence de l'absence de cristallisation dans les gouttelettes par calorimétrie différentielle à balayage.
Une nanoémulsion comprenant 150 mg de Suppocire® NC (Gattefossé) (lipide solubilisant), 50 mg d'huile de soja (Sigma Aldrich) (huile), 228 mg de Myrj53® (ICI Americas Inc) (co-tensioactif), 100 mg de Lipoid® s75 (lécithine, lipide amphiphile) et un tampon phosphate (PBS) a été préparé en suivant le protocole de l'exemple 1 .
Les thermogrammes obtenus par analyse par calorimétrie différentielle à balayage de la nanoémulsion après préparation (figure 8) et après 4 mois de stockage à température ambiante (figure 9) montrent qu'aucun pic de fusion n'est observé après fabrication, ni après stockage à température ambiante pendant 4 mois, ce qui indique que les gouttelettes ne sont pas cristallisées. EXEMPLE 4C : Mise en évidence de l'influence de la composition des nanoémulsions sur leur stabilité phvsigue.
Trois nanoémulsions comprenant 228 mg de Myrj53® (ICI Americas Inc) (co- tensioactif), 100 mg de Lipoid® s75 (lécithine, lipide amphiphile), 1600 μί de tampon phosphate (PBS), du Suppocire® NC (Gattefossé) (lipide solubilisant) et de l'huile de soja (Sigma Aldrich) (huile) dans les quantités précisées au tableau 5 ont été préparées en suivant le protocole de l'exemple 1 . Tableau 5: quantités de Suppocire® NC et d'huile de soja dans les nanoémulsions.
Figure imgf000036_0001
Un test de stabilité accélérée à 40 °C a été réalisé sur les trois nanoémulsions obtenues. Le suivi de la taille/polydispersité des nanoémulsions au cours du temps a permis de mettre en évidence l'effet stabilisateur du lipide solubilisant. Alors que la taille des nanoémulsions exempte de lipide solubilisant augmente considérablement après près de 170 jours à 40°C, les nanoémulsions contenant du lipide solubilisant ne présente aucune déviation significative de la taille des gouttelettes (figure 10). Les résultats montrent que l'ajout de lipide solubilisant dans la composition des nanoémulsions permet de conférer aux gouttelettes et à la nanoémulsion une meilleure stabilité physique.
EXEMPLE 5 : Mise en évidence de l'influence de la fraction massique de la phase huileuse dans les nanoémulsions sur leur comportement rhéoloqique
Quatre nanoémulsions comprenant 345 mg de Myrjs40® (ICI Americas Inc) (co- tensioactif), 65 mg de Lipoid® s75 (lécithine, lipide amphiphile), 25 mg de Suppocire® NC (Gattefossé) (lipide solubilisant) et 85mg d'huile de soja (Sigma Aldrich) (huile) et du tampon phosphate (PBS), dans les quantités précisées au tableau 6 ci-dessous ont été préparées en suivant le protocole de l'exemple 1 .
Les émulsions E1 à E4 obtenues présentent une fraction massique en phase dispersée huileuse de 10, 35, 40 et 45 % respectivement.
Tableau 6 : compositions des nanoémulsions Ei nanoémulsions Ei E1 E2 E3 E4
Fraction massique en phase dispersée (%) 10 35 40 45
Phase aqueuse (mL) Tampon phosphate PBS 1 X 3,0 1 ,40 1 ,10 0,90
Co-tensioactif Myrj® s40 (mg) 345 345 345 345
Huile Super Refined Soybean oil (mg) 85 85 85 85
Lipide solubilisant Suppocire® NC (mg) 255 255 255 255 EXEMPLE 5A : Viscosité des nanoémulsions sous écoulement selon la fraction massique de la phase huileuse dispersée
La viscosité des nanoémulsions E1 à E4 a tout d'abord été étudiée par mesure en écoulement.
En raison de l'augmentation de la fraction massique de la phase huileuse dispersée (Φ), la nanoémulsion passe de formes liquides, très fluides, à des formes gels, figées. La mesure de la viscosité des nanoémulsions en écoulement permet de mettre en évidence cette différence de comportement.
Comme illustré sur la figure 1 1 , les nanoémulsions E1 et E2, dont la fraction massique de la phase huileuse dispersée est inférieure à 40%, présentent une viscosité proche de celle de l'eau (environ I mPa.s à 25°C). En revanche, les nanoémulsions E3 et E4, dont la fraction massique est supérieure à 40%, possèdent des viscosités pouvant dépasser les 10 Pa.s. Ces valeurs de viscosité sont caractéristiques de formes galéniques de type crème ou pâte. Une fraction massique limite de 35 % définit donc la transition d'un état liquide à un état liquide-visqueux dans le cas des nanoémulsions E1 à E4.
EXEMPLE 5B : Détermination des composantes visqueuse et élastique du module de cisaillement
La mesure dynamique sous cisaillement oscillant permet d'obtenir de plus amples informations sur le comportement rhéologique des nanoémulsions. Ces mesures sont effectuées dans la région de comportement viscoélastique linéaire, par balayage de la fréquence d'oscillation (ω) à une déformation correspondant à la zone de non-destruction de la structure statique de l'échantillon. On peut ainsi obtenir des informations sur le comportement élastique et visqueux des échantillons. Le module de conservation en cisaillement G' mesure le comportement élastique, alors que le module de perte G" donne des informations sur le comportement visqueux.
Ainsi, lors du balayage de la fréquence d'oscillation (ω),
- lorsque G' est inférieur à G" (courbe de G' en dessous de celle de G"), le milieu est un liquide visqueux,
- lorsque les courbes de G' et G" se croisent, le milieu est viscoélastique,
- lorsque G' est supérieur à G" (courbe de G' au dessus de celle de G"), le milieu est un solide élastique. La figure 12 présente les modules G' et G" mesurés sous cisaillement oscillant de fréquences croissante (0,1 < ω < 100 rad.s), et montre l'impact de la fraction massique.
Plus précisément, la dispersion de faible fraction massique (Φ=35%) présente des modules G' et G" très faibles (0,1 -1 Pa), peu dépendant de ω et G" est supérieur à G' sur le domaine considéré. Ces caractéristiques sont typiques d'un liquide faiblement visqueux et corroborent la mesure de viscosité obtenue pour la figure 1 1 .
L'augmentation de la fraction massique entraîne l'augmentation significative des modules G' et G" et l'apparition d'une dépendance en ω. Deux comportements sont observés pour des fractions massiques intermédiaires (Φ = 40 et 45%): G' et G" augmente tout d'abord significativement avec ω, jusqu'à atteindre un plateau à forte fréquence. Dans la zone G">G', le comportement est de type liquide plastique, alors que dans la zone G'>G", le comportement est élastique. Le système présente ainsi un comportement viscoélastique. Cette transition s'effectue à une fréquence caractéristique, dite de relaxation, qui diminue fortement avec la fraction massique. Enfin, lorsqu'elle est en deçà du domaine de fréquence considéré, l'échantillon adopte un comportement rhéologique très peu dépendant de la fréquence d'oscillation et présente un module de conservation supérieur au module de perte sur toute la gamme de fréquence étudiée. Le système présente ainsi des caractéristiques de semi-solide, de type solide élastique (cas de Φ=50%).
En conclusion, à des fractions massiques en phase dispersée de 35 à 40%, la nanoémulsion est un liquide visqueux. A des fractions massiques en phase dispersée de 40 à 50%, la nanoémulsion a un caractère viscoélastique. Entre 50% et 65%, la nanoémulsion est un solide élastique. Au-delà de 65%, la nanoémulsion comprend une phase bicontinue et n'a plus une structure homogène macroscopiquement.
Les valeurs de fractions massiques indiquées pour les transitions peuvent varier en fonction de différents paramètres, notamment en fonction de la longueur des chaînes polyalcoxylés du co-surfactant. Dans les émulsions exemplifiées ci-dessus, ces chaînes comptent 40 unités alcoxyle. Lorsque ces chaînes sont plus longues, on suppose que les transitions seront décalées à des fractions massiques plus faibles.
Le temps de libération de l'agent hydrophile thydrophiie et des gouttellettes t|g0uttteiiettese sont liés au temps de désintégration du réseau tridimensionnel de la nanoémulsion et par ce biais à l'état de l'émulsion.
Dès que la nanoémulsion passe de l'état liquide à l'état de liquide visqueux, soit lorsque la fraction massique est supérieure à 35%, le temps de libération de l'agent hydrophile et des gouttelettes sont non nuls. Dès que l'on est dans un état viscoélastique, soit une fraction massique comprise entre 40 et 50 %, le temps de relargage de l'agent hydrophile, thydrophiie est non nul et le temps de relargage des gouttelettes, tg0utteiettes, est supérieur à celui de l'agent hydrophile, thydrophiie. Dès l'état visqueux, le temps de libération de l'agent lipophile est supérieur à celui de l'agent hydrophile. Il est donc possible de faire varier le temps de libération des agents d'intérêt en fonction de la fraction massique de la phase huileuse dispersée par rapport au poids total de la nanoémulsion.

Claims

REVENDICATIONS
1 . Nanoémulsion sous forme de gel comprenant une phase aqueuse continue et au moins une phase huileuse dispersée, dans laquelle :
- la phase aqueuse comprend :
- au moins un co-tensioactif comportant au moins une chaîne polyalcoxylée composée de motifs d'oxyde d'éthylène ou d'oxyde d'éthylène et d'oxyde de propylène, et
- au moins un agent d'intérêt hydrophile, et
- la phase huileuse comprend :
- au moins un lipide amphiphile,
- au moins un lipide solubilisant consistant en un mélange de glycérides d'acides gras saturés comportant :
- au moins 10% en poids d'acides gras en C12,
- au moins 5% en poids d'acides gras en C14,
- au moins 5% en poids d'acides gras en C16, et
- au moins 5% en poids d'acides gras en C18,
- au moins un agent d'intérêt lipophile,
lesdits agents d'intérêt hydrophile et lipophile étant indépendamment choisis parmi : - un agent thérapeutique,
- un agent optique choisi parmi un colorant, un chromophore, un fluorophore, et
- un agent physique choisi parmi un isotope radioactif et un photo-sensibilisateur.
2. Nanoémulsion selon la revendication 1 , dans laquelle l'agent solubilisant consiste en un mélange de glycérides d'acides gras saturés comportant :
- 0% à 20% en poids d'acides gras en C8,
- 0% à 20% en poids d'acides gras en C10,
- 10% à 70% en poids d'acides gras en C12,
- 5% à 30% en poids d'acides gras en C14,
- 5% à 30% en poids d'acides gras en C16 et
- 5% à 30% en poids d'acides gras en C18
3. Nanoémulsion selon la revendication 1 ou 2, dont la viscosité est de 1 poise à 1000 poises à 25qC.
4. Nanoémulsion selon l'une quelconque des revendications 1 à 3, dans laquelle le lipide amphiphile est un phospholipide.
5. Nanoémulsion selon l'une quelconque des revendications 1 à 4, dans laquelle la phase huileuse dispersée représente de 30 à 90% en poids par rapport au poids total de la nanoémulsion.
6. Nanoémulsion selon l'une des revendications 1 à 5, dans laquelle la phase huileuse comporte en outre au moins une huile.
7. Nanoémulsion selon l'une quelconque des revendications 1 à 6, dans laquelle le co-tensioactif est choisi parmi les composés conjugués polyéthylèneglycol / phosphatidyl- éthanolamine (PEG-PE), les éthers d'acide gras et de polyéthylèneglycol, les esters d'acide gras et de polyéthylèneglycol et les copolymères blocs d'oxyde d'éthylène et d'oxyde de propylène.
8. Nanoémulsion selon la revendication 7, dans laquelle la chaîne polyalcoxylée comprend de 10 à 200 motifs alcoxylé.
9. Nanoémulsion selon l'une quelconque des revendications 1 à 8, dans laquelle le co-tensioactif polyalcoxylé comporte un groupe terminal capable de former des liaisons non covalentes, de préférence des liaisons hydrogène.
10. Nanoémulsion selon l'une quelconque des revendications 1 à 9, dans laquelle l'agent d'intérêt hydrophile est un agent thérapeutique hydrophile et/ou l'agent d'intérêt lipophile est un agent thérapeutique lipophile.
1 1 . Procédé de préparation d'une nanoémulsion selon l'une quelconque des revendications 1 à 10, comportant les étapes consistant à :
(i) préparer la phase huileuse comprenant l'agent d'intérêt lipophile, au moins un lipide amphiphile et au moins un lipide solubilisant;
(ii) préparer une phase aqueuse comprenant un co-tensioactif polyalcoxylé et un agent d'intérêt lipophile;
(iii) disperser la phase huileuse dans la phase aqueuse sous l'action d'un cisaillement suffisant pour former une nanoémulsion; et
(iv) récupérer la nanoémulsion ainsi formé.
12. Nanoémulsion selon la revendication 10 pour son utilisation pour l'administration d'au moins un agent thérapeutique hydrophile et d'au moins un agent thérapeutique lipophile à l'homme ou à l'animal pour traiter ou prévenir une maladie.
13. Nanoémulsion pour son utilisation selon la revendication 12, dans laquelle l'agent thérapeutique hydrophile est un agent cicatrisant, antibactérien ou antiinflammatoire et l'agent thérapeutique lipophile est un anticancéreux pour le traitement post-exérèse d'une tumeur.
14. Nanoémulsion pour son utilisation selon la revendication 12, dans laquelle l'agent thérapeutique hydrophile est un agent stimulant le système immunitaire et l'agent thérapeutique lipophile est un anticancéreux pour le traitement post-cryogénie d'une tumeur.
15. Méthode de traitement thérapeutique comprenant l'administration chez un mammifère qui en a besoin d'une quantité efficace sur le plan thérapeutique de la nanoémulsion selon la revendication 10.
PCT/FR2011/050343 2010-02-17 2011-02-17 Nanoémulsion pour la délivrance d'au moins deux agents d'intérêt WO2011101602A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/883,915 US20130251629A1 (en) 2010-02-17 2011-02-17 Nanoemulsion for the delivery of at least two agents of interest

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051134 2010-02-17
FR1051134A FR2956320B1 (fr) 2010-02-17 2010-02-17 Nanoemulsion pour la delivrance d'au moins deux agents d'interet

Publications (1)

Publication Number Publication Date
WO2011101602A1 true WO2011101602A1 (fr) 2011-08-25

Family

ID=43016586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050343 WO2011101602A1 (fr) 2010-02-17 2011-02-17 Nanoémulsion pour la délivrance d'au moins deux agents d'intérêt

Country Status (3)

Country Link
US (1) US20130251629A1 (fr)
FR (1) FR2956320B1 (fr)
WO (1) WO2011101602A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644190A1 (fr) * 2012-03-30 2013-10-02 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Formulation pour l'hormonothérapie
WO2013144369A1 (fr) 2012-03-30 2013-10-03 Commissariat à l'énergie atomique et aux énergies alternatives Materiau, son procede de preparation et ses utilisations
EP2861217A4 (fr) * 2012-06-13 2016-05-04 Univ Queensland Nanoémulsions
EP3103485A1 (fr) 2015-06-11 2016-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Matériau comprenant un polymère susceptible de former un hydrogel et des nanoparticules
EP3103482A1 (fr) 2015-06-11 2016-12-14 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Matériau comprenant du collagène dont les fibres sont revêtues de nanoparticules

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2980972B1 (fr) 2011-10-05 2014-02-28 Commissariat Energie Atomique Formulations pour le diagnostic et le traitement de cancers hormonodependants et de cancers des organes de synthese d'hormones steroidiennes.
PL3225112T3 (pl) * 2016-04-01 2022-01-03 Trioptotec Gmbh Dyspersja fotouczulacza i jej zastosowanie
CA3153179A1 (fr) * 2019-10-16 2021-04-22 Immunovaccine Technologies Inc. Formulations d'emulsion a phase continue aqueuse pour l'administration d'agents actifs ou therapeutiques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005298A1 (fr) * 1992-08-28 1994-03-17 Pharmos Corporation Emulsion sous-micronique comme vehicule pour l'administration oculaire d'un medicament
US5662932A (en) * 1993-05-18 1997-09-02 Pharmos Corporation Solid fat nanoemulsions
WO2000061113A1 (fr) * 1999-04-12 2000-10-19 Phares Pharmaceuticals Research N.V. Compositions formant des agregats lipidiques, et leurs utilisations
WO2002009764A1 (fr) * 2000-07-13 2002-02-07 Ashmont Holdings Limited Compositions combinees
WO2008102065A1 (fr) * 2007-02-14 2008-08-28 Commissariat A L'energie Atomique Emulsions fluorescentes pour l'imagerie optique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005298A1 (fr) * 1992-08-28 1994-03-17 Pharmos Corporation Emulsion sous-micronique comme vehicule pour l'administration oculaire d'un medicament
US5662932A (en) * 1993-05-18 1997-09-02 Pharmos Corporation Solid fat nanoemulsions
WO2000061113A1 (fr) * 1999-04-12 2000-10-19 Phares Pharmaceuticals Research N.V. Compositions formant des agregats lipidiques, et leurs utilisations
WO2002009764A1 (fr) * 2000-07-13 2002-02-07 Ashmont Holdings Limited Compositions combinees
WO2008102065A1 (fr) * 2007-02-14 2008-08-28 Commissariat A L'energie Atomique Emulsions fluorescentes pour l'imagerie optique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE PHILP J ET AL: "Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs.", PHARMACEUTICAL RESEARCH, vol. 20, no. 2, February 2003 (2003-02-01), pages 264 - 269, XP002609835, ISSN: 0724-8741 *
TEXIER ISABELLE ET AL: "Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging.", JOURNAL OF BIOMEDICAL OPTICS, vol. 14, no. 5, 54005, September 2009 (2009-09-01), pages 1 - 11, XP002609836, ISSN: 1560-2281 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644190A1 (fr) * 2012-03-30 2013-10-02 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Formulation pour l'hormonothérapie
WO2013144369A1 (fr) 2012-03-30 2013-10-03 Commissariat à l'énergie atomique et aux énergies alternatives Materiau, son procede de preparation et ses utilisations
FR2988608A1 (fr) * 2012-03-30 2013-10-04 Commissariat Energie Atomique Materiau, son procede de preparation et ses utilisations
FR2988609A1 (fr) * 2012-03-30 2013-10-04 Commissariat Energie Atomique Formulation pour l'hormonotherapie
US20150057374A1 (en) * 2012-03-30 2015-02-26 Commissariat à l'énergie atomique et aux énergies alternatives Material, method for preparing same, and uses thereof
US9463248B2 (en) 2012-03-30 2016-10-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Material, method for preparing same, and uses thereof
EP2861217A4 (fr) * 2012-06-13 2016-05-04 Univ Queensland Nanoémulsions
US9554995B2 (en) 2012-06-13 2017-01-31 The University Of Queensland Nanoemulsions
EP3103485A1 (fr) 2015-06-11 2016-12-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Matériau comprenant un polymère susceptible de former un hydrogel et des nanoparticules
EP3103482A1 (fr) 2015-06-11 2016-12-14 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Matériau comprenant du collagène dont les fibres sont revêtues de nanoparticules
WO2016198237A1 (fr) 2015-06-11 2016-12-15 Commissariat à l'énergie atomique et aux énergies alternatives Matériau comprenant du collagène dont les fibres sont revêtues de nanoparticules
WO2016198238A1 (fr) 2015-06-11 2016-12-15 Commissariat à l'énergie atomique et aux énergies alternatives Matériau comprenant un polymère capable de former un hydrogel et des nanoparticules

Also Published As

Publication number Publication date
US20130251629A1 (en) 2013-09-26
FR2956320B1 (fr) 2013-12-20
FR2956320A1 (fr) 2011-08-19

Similar Documents

Publication Publication Date Title
WO2011101602A1 (fr) Nanoémulsion pour la délivrance d&#39;au moins deux agents d&#39;intérêt
JP5981139B2 (ja) 親油性または両親媒性治療薬のナノエマルションへの封入
EP2129455B1 (fr) Procédé de préparation de nano-émulsions
EP2890364B1 (fr) Formulation pour la delivrance de sequences nucleotidiques susceptibles de moduler des mecanismes endogenes d&#39;arn interferents
EP2644190A1 (fr) Formulation pour l&#39;hormonothérapie
FR2840532A1 (fr) Nanocapsules lipidiques furtives, procede de preparation et utilisation comme vecteur de principes(s) actif(s)
FR2934954A1 (fr) Emulsion fluorescente de vert d&#39;indocyanine
JP5642676B2 (ja) ナノ結晶のナノエマルション
EP2830591B1 (fr) Materiau, son procede de preparation et ses utilisations
EP2763656B1 (fr) Formulations pour le diagnostic et le traitement de cancers hormonodépendants et de cancers des organes de synthèse d&#39;hormones stéroïdiennes.
EP3999520B1 (fr) Complexe hybride htiarn / nanoparticule et son utilisation pour traitement d&#39;une maladie du système digestif
EP4312989A1 (fr) Formulation pour la délivrance d&#39;arn messager
EP0726760A1 (fr) Formulation auto-emulsionnable formant une huile dans eau
EP3302421A1 (fr) Compositions comprenant au moins un principe actif disperse et des microcapsules lipidiques
PL197939B1 (pl) Liposomowy preparat zawierający przeciwnowotworową substancję aktywną, sposób jego wytwarzania i zawierająca go kompozycja farmaceutyczna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11712601

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11712601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011712601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883915

Country of ref document: US