WO2011099218A1 - Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver - Google Patents

Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver Download PDF

Info

Publication number
WO2011099218A1
WO2011099218A1 PCT/JP2010/072010 JP2010072010W WO2011099218A1 WO 2011099218 A1 WO2011099218 A1 WO 2011099218A1 JP 2010072010 W JP2010072010 W JP 2010072010W WO 2011099218 A1 WO2011099218 A1 WO 2011099218A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage capacitor
pixel
line
signal
potential
Prior art date
Application number
PCT/JP2010/072010
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤 裕一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011099218A1 publication Critical patent/WO2011099218A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays

Definitions

  • the present invention relates to an active matrix substrate having a storage capacitor wiring and a liquid crystal display device using the same.
  • a storage capacitor wiring signal (CS signal) is supplied to the storage capacitor wiring (CS line) to raise or lower the pixel electrode potential (pixel potential).
  • CS signal storage capacitor wiring signal
  • FIG. 51 is a plan view schematically showing the form of the display device 1000 of Patent Document 1.
  • the sustain signal generation circuits (retention capacitor line drive circuits) 700a and 700b set the voltage of the sustain signal (CS signal) to each pixel for a predetermined time immediately after the application of the data signal to the same pixel is completed. Change by the time.
  • the sustain signal voltage is changed from a low level to a high level
  • the sustain signal voltage is changed from a high level to a low level.
  • the potential of the pixel electrode can be pushed up or pushed down, the power consumption of the data driver 500 can be reduced.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-107831 (Publication Date: May 8, 2008)”
  • the conventional configuration has a problem that the display quality of the liquid crystal display device is lowered.
  • the pixel electrode has a storage capacitor formed between the CS line and a slight potential difference between the target potential and the reaching potential affects the pixel potential and the desired display gradation. This is because cannot be obtained.
  • the ultimate potential of the CS line is the side closer to the CS driver in one CS line.
  • a distribution is generated on the far side, and this distribution becomes a distribution of pixel potentials. Finally, it is visually recognized as luminance unevenness in the liquid crystal display device, causing a reduction in display quality.
  • the output potential of each CS driver is Due to a slight difference or a difference in distance from each CS driver, for example, a periodic luminance change is generated for each line, which is visually recognized as luminance unevenness, causing a reduction in display quality.
  • an object of the present invention is to improve the display quality of a liquid crystal display device.
  • An active matrix substrate comprising a data signal line, a scanning signal line, a transistor connected to the data signal line and the scanning signal line, a pixel electrode included in a pixel, and a storage capacitor line forming a storage capacitor , Each storage capacitor line is supplied with a storage capacitor line signal for driving the storage capacitor line from both ends thereof.
  • each storage capacitor wiring is supplied with a storage capacitor wiring signal (CS signal) simultaneously from both ends thereof, for example, compared with the conventional configuration in which a CS signal is supplied from one side,
  • the arrival time of the CS signal in the storage capacitor wiring can be reduced (up to about 75% reduction). Accordingly, the distribution (non-uniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one storage capacitor wiring can be reduced, so that display quality can be improved.
  • a plurality of storage capacitor wiring drive circuits that output the storage capacitor wiring signal may be monolithically formed on a glass substrate.
  • a plurality of storage capacitor line drive circuits that output the storage capacitor line signals and the scanning signal line drive circuit may be monolithically formed.
  • a plurality of storage capacitor lines are connected to the storage capacitor wiring trunk, and the storage capacitor wiring trunk is connected to the outside outside the display area (peripheral area of the liquid crystal panel).
  • An electric capacity (hereinafter simply referred to as “capacitance”) loaded on such a storage capacitor wiring trunk includes a capacitance formed by the storage capacitor wiring trunk itself with other electrodes and wiring in the liquid crystal panel, and a storage capacitor wiring.
  • Each storage capacitor wiring connected to the trunk is a total of the capacitance formed with other electrodes and wirings, and is particularly affected by the number of storage capacitor wirings connected to the storage capacitor wiring trunk. Therefore, when the number of storage capacitor lines connected to one storage capacitor line trunk increases, the capacity loaded on the storage capacitor line trunk becomes very large.
  • the storage capacitor wiring trunk extends long in the column direction.
  • the signal potential from the outside is not quickly transmitted to the storage capacitor wiring trunk and the storage capacitor wiring, and there is a problem that in-plane distribution occurs in the pixel potential and display quality is deteriorated.
  • a method of reducing the electrical resistance (hereinafter simply referred to as “resistance”) of the storage capacitor wiring trunk by increasing the wiring width of the storage capacitor wiring trunk can be considered. Therefore, the area size of the storage capacitor wiring trunk in the peripheral area of the liquid crystal panel is increased.
  • the display quality deteriorates particularly due to signal delay in the storage capacitor wiring trunk.
  • the storage capacitor line driving circuit is formed monolithically on the glass substrate, or formed monolithically on the IC substrate together with the scanning signal line driving circuit. Therefore, since the storage capacitor wiring trunk can be omitted, the frame area of the liquid crystal panel can be reduced and the display quality can be prevented from being lowered.
  • the storage capacitor line driving circuit for driving the storage capacitor line supplies the storage capacitor line signal to the storage capacitor line that forms the pixel electrode and the storage capacitor, thereby supplying the storage capacitor line signal from the data signal line.
  • a configuration in which the pixel potential written to the pixel electrode is changed in a direction corresponding to the polarity of the pixel potential may be employed.
  • each storage capacitor formed between each pixel electrode and a storage capacitor line corresponding to the pixel electrode may be different from each other.
  • the storage capacitor is formed between the plurality of pixel electrodes and the storage capacitor wiring corresponding to the pixel electrode, for example, after writing data signals to the two pixel electrodes.
  • the pixel potentials of the pixel electrodes are made different from each other. Can do.
  • the sub-pixel including one pixel electrode can be a bright sub-pixel
  • the sub-pixel including the other pixel electrode can be a dark sub-pixel. In other words, a pixel division type liquid crystal display device can be realized.
  • each storage capacitor formed between each pixel electrode and the storage capacitor wiring corresponding to the pixel electrode is different from each other in one pixel region, the size of each storage capacitor is adjusted. By doing so, it is possible to appropriately adjust the size of the push-up or push-down of each pixel electrode potential, thereby enabling an efficient pixel electrode layout.
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
  • One storage capacitor line driving internal circuit may be configured to supply the storage capacitor line signal to at least one storage capacitor line.
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
  • the retention capacitor line drive internal circuit is provided every other retention capacitor line, In two adjacent storage capacitor lines, one storage capacitor line is supplied with the storage capacitor line signal output from the storage capacitor line driving internal circuit, and the other storage capacitor line is output from an external signal source. It is also possible to adopt a configuration in which the processed signal is supplied.
  • the number of storage capacitor line drive internal circuits can be reduced as compared with a configuration in which one storage capacitor line drive internal circuit is provided corresponding to one storage capacitor line.
  • the frame area can be reduced.
  • the first and second pixel electrodes, and first and second transistors connected to the scanning signal line In one pixel region, the first and second pixel electrodes, and first and second transistors connected to the scanning signal line, The first pixel electrode is connected to the data signal line through the first transistor and forms the storage capacitor line and the first storage capacitor, and the second pixel electrode is connected through the second transistor.
  • the storage capacitor line and the second storage capacitor may be formed while being connected to the data signal line.
  • each data signal line is the column direction
  • the first and second pixel regions are arranged in this order in the column direction, and in each pixel region, the first and second pixel electrodes are arranged in this order in the column direction,
  • the second pixel electrode in the first pixel region and the first pixel electrode in the second pixel region are adjacent to each other, and each pixel electrode forms the same storage capacitor line and storage capacitor. It can also be set as the structure which is.
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line, Retention target signal is input to each retention capacitor wiring drive internal circuit, When the scanning signal supplied to the scanning signal line corresponding to the subsequent pixel after the own stage becomes active, the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it. And It is also possible to supply the output of the storage capacitor line driving internal circuit corresponding to the pixel of the own stage as the storage capacitor line signal to the storage capacitor line corresponding to the pixel of the own stage.
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line, Retention target signal is input to each retention capacitor wiring drive internal circuit,
  • the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it.
  • the output of the storage capacitor wiring driving internal circuit corresponding to the pixel of the own stage is transferred to the storage capacitor wiring corresponding to the pixel of the own stage and the storage capacitor wiring corresponding to the pixel of the previous stage before the own stage. It can also be set as the structure supplied as.
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line, Retention target signal is input to each retention capacitor wiring drive internal circuit,
  • the storage capacitor wiring drive internal circuit corresponding to its own stage is A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal,
  • the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active the storage capacitor line having a high level potential Output signal
  • the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active the storage capacitor line having a low level potential Output signal
  • the potential of the holding target signal input to the second and / or third input unit may be held
  • the storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line, Retention target signal is input to each retention capacitor wiring drive internal circuit,
  • the storage capacitor wiring drive internal circuit corresponding to its own stage is A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal, When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal, When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal, When the scanning signal input to the first input unit becomes inactive and a scanning signal supplied to a scanning signal line corresponding to a pixel after the subsequent pixel becomes
  • a fourth and a fifth input unit for inputting the second holding target signal When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal, When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal, When the scanning signal input to the first input unit becomes inactive and the scanning signal supplied to the scanning signal line corresponding to the pixel after the subsequent pixel becomes active, the first signal is input. Configuration for lowering the potential of the holding target signal input to and held in the second input unit and / or the third input unit by the second holding target signal input to the four input unit and / or the fifth input unit It can also be.
  • the pixel regions including a plurality of pixel electrodes are arranged in the row and column directions with the extending direction of each data signal line as the column direction, and first and second data signal lines are provided corresponding to one pixel region column.
  • One scanning signal line is provided corresponding to one pixel region row, A data signal line connected via a transistor to each pixel electrode included in one of two pixel areas adjacent in the column direction, and a pixel signal connected via a transistor to each pixel electrode included in the other of the two pixel areas.
  • Different data signal lines can be used.
  • the active matrix substrate may be configured to select two adjacent scanning signal lines simultaneously.
  • data signals having opposite polarities can be supplied to the first data signal line and the second data signal line.
  • Two pixel electrodes are provided in one pixel region, One pixel electrode may surround the other pixel electrode.
  • One pixel area is composed of two sub-pixels,
  • the subpixel including the one pixel electrode may be a dark subpixel having a relatively low luminance, and the subpixel including the other pixel electrode may be a bright subpixel having a relatively high luminance.
  • One pixel electrode is provided in one pixel region, In one pixel region, a storage capacitor may be formed between the pixel electrode and a storage capacitor line corresponding to the pixel electrode.
  • the storage capacitor line includes a first storage capacitor line group driven by a first storage capacitor line signal output from a storage capacitor line driving circuit that drives the storage capacitor line, and an external
  • a second storage capacitor wiring group driven by a second storage capacitor wiring signal output from the signal source can also be used.
  • the (k-2) -th storage capacitor line and the k-th storage capacitor line are supplied with a storage capacitor line signal output from the k-th storage capacitor line driving internal circuit, A signal output from an external signal source is supplied to the storage capacitor line in the (k-3) th row and the storage capacitor line in the (k-1) th row, A scanning signal supplied to the (k + 3) -th scanning signal line may be input to the k-th storage capacitor line driving internal circuit.
  • the signal output from the external signal source can be a common electrode potential.
  • the second storage capacitor wiring signal can be a common electrode potential.
  • a liquid crystal display device Comprising any of the above active matrix substrates, By simultaneously supplying a storage capacitor wiring signal for driving the storage capacitor wiring from both ends thereof to each storage capacitor wiring, the pixel potential written from the data signal line to the pixel electrode is changed to the pixel potential. The display is performed by changing the direction according to the polarity.
  • This liquid crystal panel includes the above active matrix substrate.
  • the present television receiver includes the above-described liquid crystal display device and a tuner unit that receives a television broadcast.
  • a storage capacitor wiring signal for driving the storage capacitor wiring is supplied to each storage capacitor wiring simultaneously from both ends thereof. Therefore, the display quality of the liquid crystal display device can be improved.
  • FIG. 3 is a cross-sectional view showing a specific example of a cross section AB in FIG. 2.
  • FIG. 3 is a cross-sectional view showing a specific example of a cross section AC of FIG. 2.
  • FIG. 5 is a cross-sectional view showing another specific example of the cross section AB in FIG. 2.
  • FIG. 7 is a cross-sectional view showing a specific example of a cross section AB in FIG. 6.
  • FIG. 11 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver of FIG. 10. 11 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 10 is a timing chart showing various signal waveforms in the pixel Pi of FIG. 9. 10 is a timing chart showing various signal waveforms in the pixel Pi + 1 in FIG. 9.
  • FIG. 10 is a circuit diagram showing a configuration of a gate / CS driver in Modification 1.
  • FIG. 12 is a timing chart showing various signal waveforms of a pixel Pi in Modification 1.
  • 12 is a timing chart showing various signal waveforms of a pixel Pi + 1 in Modification 1.
  • 12 is a timing chart showing various signal waveforms of a pixel Pi in Modification 2.
  • 12 is a timing chart showing various signal waveforms of a pixel Pi + 1 in Modification 2.
  • It is a circuit diagram which shows the structural example 2 of the gate and CS driver in the liquid crystal display device of this invention.
  • FIG. 21 is a timing chart showing various signal waveforms of a pixel Pi in the configuration example 2 of FIG. 20.
  • FIG. 21 is a timing chart showing various signal waveforms of a pixel Pi in the configuration example 2 of FIG. 20.
  • FIG. 21 is a timing chart showing various signal waveforms of a pixel Pi + 1 in the configuration example 2 of FIG. 20. It is a circuit diagram which shows the structural example 3 of the gate and CS driver in the liquid crystal display device of this invention.
  • 24 is a timing chart showing various signal waveforms of a pixel Pp + 2, a pixel Pp + 3, and a pixel Pp + 4 in the configuration example 3 of FIG.
  • It is a top view which shows typically one Embodiment of the liquid crystal display device of this invention.
  • It is a circuit diagram which shows the structural example 4 of the gate and CS driver in the liquid crystal display device of this invention.
  • FIG. 27 is a circuit diagram illustrating a specific example of a holding circuit configuring the CS driver in the configuration example 4 of FIG.
  • FIG. 26. 27 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 26.
  • (A) And (b) is a figure for demonstrating the operation
  • (A) And (b) is a graph which shows the operation
  • FIG. 27 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG.
  • FIG. 35 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver in Configuration Example 5 of FIG. 34.
  • FIG. 35 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 34.
  • FIG. 6 The relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG. 35 is shown.
  • FIG. 6 shows the structural example 6 of the gate and CS driver in the liquid crystal display device of this invention.
  • 39 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver in Configuration Example 6 of FIG. 38.
  • 40 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 39 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG.
  • It is an equivalent circuit diagram which shows a part of structural example 7 of the liquid crystal panel of this invention. It is a top view which shows the structural example 7 of the liquid crystal panel of this invention. It is an equivalent circuit diagram which shows a part of structural example 8 of the liquid crystal panel of this invention. It is a top view which shows the structural example 8 of the liquid crystal panel of this invention.
  • FIG. 11 is a plan view schematically showing the form of the display device of Patent Document 1.
  • the extending direction of the scanning signal lines is referred to as a row direction
  • the extending direction of the data signal lines is referred to as a column direction.
  • the scanning signal line may extend in the horizontal direction or in the vertical direction. Needless to say, it is good.
  • the alignment regulating structure is appropriately omitted.
  • FIG. 8 is a plan view schematically showing one embodiment of the liquid crystal display device 110 of the present invention.
  • the liquid crystal display device 110 mainly uses an active matrix substrate 111, a counter substrate (color filter substrate) 112 bonded to the active matrix substrate 111 using a sealant (not shown), and SOF (system on film) technology.
  • the gate driver 9 and the source driver 11 are mounted on the polyimide films 8 and 10 and the external substrate 12.
  • the counter substrate 112 is shown using a dotted line in FIG. Note that an alignment film, an alignment control structure, and a liquid crystal material are held between the active matrix substrate 111 and the counter substrate 112, which are omitted in FIG.
  • the liquid crystal display device 110 includes an optical film such as a polarizing film, a backlight, other optical components, circuit components, a bezel for holding these components in a predetermined position, and the like. Is omitted.
  • the active matrix substrate 111 shown in FIG. 8 includes a glass substrate 1, a scanning signal line 2, a storage capacitor line 3, a data signal line 4, and a pixel electrode 5 formed on the glass substrate 1.
  • the region on the active matrix substrate 111 can be divided into a display region 6 having a plurality of pixels and a peripheral region 7 around it.
  • the peripheral region 7 is provided with a gate terminal 9 a and a source terminal 11 a, and outputs from the gate driver 9 and the source driver 11 are input to the peripheral regions 7 through wirings in the polyimide films 8 and 10, respectively.
  • An external substrate 12 is mounted on the polyimide film 10.
  • the peripheral region 7 further includes a CS driver (retention capacitor wiring drive circuit) 13 provided on the glass substrate 1. Control signals and power sources for driving the gate driver 9, the source driver 11, and the CS driver 13 are supplied from the external substrate 12 or the like via wirings (not shown) on the polyimide films 8, 10 and the glass substrate 1. Supplied.
  • the gate driver 9 and the CS driver 13 are arranged in rows at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 8) as shown in FIG. Is provided. Both ends of each scanning signal line 2 are connected to different gate drivers 9, respectively, and both ends of each storage capacitor line 3 are connected to different CS drivers 13, respectively.
  • each storage capacitor wiring 3 is simultaneously supplied with a storage capacitor wiring signal (CS signal) for driving the storage capacitor wiring 3 from both ends thereof.
  • the storage capacitor wiring signal supplied by the CS driver 13 may have a slight time shift, and a time shift that is not affected by the display quality is allowed.
  • the potential change of the storage capacitor wiring signal supplied by each CS driver 13 at both ends has a characteristic that varies in the same polarity direction.
  • the gate driver 9 and the CS driver 13 may be monolithically formed on the glass substrate 1 or the same IC substrate.
  • FIG. 1 is an equivalent circuit diagram showing a part of a liquid crystal panel 113a in the configuration example 1 of the liquid crystal panel of the present invention.
  • the liquid crystal panel 113a includes data signal lines 4x and 4X extending in the column direction (up and down direction on the paper surface), scanning signal lines 2cd, 2ab, 2ef extending in the row direction (left and right direction on the paper surface), rows, and Pixels (pixel regions) 100 to 105 arranged in the column direction, storage capacitor lines 3w, 3x, 3y, and 3z, and a common electrode (counter electrode) com are included, and the structure of each pixel is the same.
  • the pixel column including the pixels 100 to 102 and the pixel column including the pixels 103 to 105 are adjacent to each other.
  • one data signal line and one scanning signal line are provided corresponding to one pixel, and a storage capacitor wiring shared by both pixels is provided between pixels adjacent in the column direction.
  • Two pixel electrodes 5c and 5d provided in the pixel 100, two pixel electrodes 5a and 5b provided in the pixel 101, and two pixel electrodes 5e and 5f provided in the pixel 102 are arranged in a line, respectively.
  • Both the two pixel electrodes 5C and 5D provided on the pixel 103, the two pixel electrodes 5A and 5B provided on the pixel 104, and the two pixel electrodes 5E and 5F provided on the pixel 105 are arranged in a line.
  • the pixel electrodes 5c and 5C, the pixel electrodes 5d and 5D, the pixel electrodes 5a and 5A, the pixel electrodes 5b and 5B, the pixel electrodes 5e and 5E, and the pixel electrodes 5f and 5F are adjacent to each other in the row direction.
  • each pixel Since the structure of each pixel is the same, the following description will be given mainly using the pixel 101 as an example.
  • the pixel electrode 5a (first pixel electrode) is connected to the data signal line 4x via the transistor 15a (first transistor) connected to the scanning signal line 2ab, and the pixel electrode 5b (second pixel electrode).
  • the storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor line 3x
  • the pixel electrode 5b and the storage A storage capacitor Chb is formed between the capacitor wirings 3y
  • a liquid crystal capacitor Cla is formed between the pixel electrode 5a and the common electrode com
  • a liquid crystal capacitor Clb is formed between the pixel electrode 5b and the common electrode com.
  • each of the pixel electrodes 5a and 5b is connected to the same data signal line 4x via the respective transistors 15a and 15b connected to the same scanning signal line 2ab, and thus the pixel electrodes 5a and 5b.
  • the same signal potential (data signal) can be directly supplied to each through the transistors 15a and 15b. Since each of the pixel electrodes 5a and 5b forms a different storage capacitor line 3x and 3y and a storage capacitor Cha and Chb, for example, the pixel electrode 5a is set with the potential of the scanning signal line 2ab selected (high level).
  • a sub-pixel including the pixel electrode 5a is a bright sub-pixel (a pixel having a relatively high luminance)
  • a sub-pixel including the pixel electrode 5b is a dark sub-pixel (a pixel having a relatively low luminance).
  • FIG. 2 shows a specific configuration of the liquid crystal panel 113a in the first configuration example.
  • FIG. 2 is a plan view showing a configuration example 1 of the liquid crystal panel 113a.
  • the data signal line 4x is provided along the pixel 100 and the pixel 101
  • the data signal line 4X is provided along the pixel 103 and the pixel 104.
  • a storage capacitor wiring 3w is provided so as to overlap with one side
  • a storage capacitor wiring 3x is provided so as to overlap with the other of the edge portions of the pixels 100 and 103 and one of the edge portions of the pixels 101 and 104.
  • a storage capacitor wiring 3y is provided so as to overlap the other of the portions.
  • a scanning signal line 2cd is arranged so as to cross the central part of the pixels 100, 103
  • a scanning signal line 2ab is arranged so as to cross the central part of the pixels 101, 104.
  • the pixel electrodes 5c and 5d are arranged in the column direction between the storage capacitor lines 3w and 3x, and in the pixel 101, the pixel electrodes 5a and 5b are arranged between the storage capacitor lines 3x and 3y.
  • the pixel electrodes 5C and 5D are arranged in the column direction between the storage capacitor lines 3w and 3x.
  • the pixel electrodes 5A and 5B are arranged in the column direction between the storage capacitor lines 3x and 3y.
  • the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2ab.
  • the source electrode 16ab is connected to the data signal line 4x also serving as both source electrodes of the transistors 15a and 15b.
  • the drain electrode 17a is connected to the drain lead wire 18a
  • the drain lead wire 18a is connected to the capacitor electrode 19a
  • the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a.
  • the drain electrode 17b is connected to the drain lead wire 18b
  • the drain lead wire 18b is connected to the capacitor electrode 19b
  • the capacitor electrode 19b is connected to the pixel electrode 5b through the contact hole 20b.
  • the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film
  • the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Cha (see FIG. 1) is formed.
  • the capacitor electrode 19b overlaps the storage capacitor wiring 3y via the gate insulating film
  • the pixel electrode 5b overlaps the storage capacitor wiring 3y via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Chb (see FIG. 1) is formed.
  • the liquid crystal panel 113 a includes an active matrix substrate 111, a color filter substrate (counter substrate) 112 facing the active matrix substrate 111, and a liquid crystal layer 114 disposed between the substrates 111 and 112.
  • scanning signal lines 2ab and storage capacitor wirings 3x and 3y are formed on the glass substrate 1, and a gate insulating film 21 made of silicon nitride which is an inorganic material is formed so as to cover them.
  • the gate electrode of the transistor is formed integrally with the scanning signal line 2ab, and a part of the scanning signal line 2ab on the glass substrate 1 serves as the gate electrode of the transistors 15a and 15b.
  • the semiconductor layer 22ab On the gate insulating film 21 in the transistors 15a and 15b, the semiconductor layer 22ab, the source electrode 16ab in contact with the semiconductor layer 22ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b are formed.
  • An interlayer insulating film 23 is formed so as to cover it.
  • the semiconductor layer 22ab includes an intrinsic amorphous silicon layer (i layer) and an n + type amorphous silicon layer (n + layer) doped with phosphorus.
  • the n + layer has a role of a contact layer for electrical connection between a semiconductor material such as an i layer and a metal material such as a source electrode 16ab and drain electrodes 17a and 17b.
  • the interlayer insulating film 23 is made of silicon nitride which is an inorganic material.
  • pixel electrodes 5a and 5b made of ITO (indium tin oxide) are formed, and an alignment film (not shown) is formed so as to cover the pixel electrodes 5a and 5b.
  • the contact holes 20a and 20b the interlayer insulating film 23 is penetrated, whereby the pixel electrode 5a and the capacitor electrode 19a are electrically connected, and the pixel electrode 5b and the capacitor electrode 19b are connected. Electrically connected.
  • a black matrix 32 and a colored layer 33 are formed on a glass substrate 31, and a common electrode (com) 34 is formed thereon, and an alignment film (not shown) is formed so as to cover this. Is formed.
  • This manufacturing method is the same as the manufacturing method of a general active matrix substrate including an amorphous silicon transistor.
  • titanium (Ti), aluminum (Al), and titanium (Ti) are sequentially deposited on a transparent insulating substrate (glass substrate 1 in FIG. 3) such as glass or plastic by sputtering using argon (Ar) gas.
  • a gate metal film (not shown) which is a Ti / Al / Ti laminated film is formed.
  • the film thickness of titanium is, for example, 100 nm (common to the upper layer side and the lower layer side), and the film thickness of aluminum is, for example, 300 nm.
  • the temperature of the glass substrate 1 when forming the gate metal film is set to 200 to 300.degree.
  • the gate metal film is used to form each transistor.
  • a scanning signal line 2ab that also functions as a gate electrode, storage capacitor lines 3x, 3y, and the like are formed.
  • a dry etching method mainly using a chlorine gas (Cl 2 ) gas is used.
  • the resist pattern film is removed using a stripping solution containing organic alkali.
  • the gate metal film is made of indium tin oxide (ITO), tungsten (W), copper (Cu), chromium (Cr), molybdenum (Mo), aluminum (Al), titanium ( It may be a simple metal such as Ti) or a material containing nitrogen, oxygen, or another metal.
  • the gate metal film may be a single layer using the above materials or may have a stacked structure.
  • the scanning signal line may be a Ti / Cu / Ti laminated film made of titanium and copper, or a Mo / Cu / Mo laminated film made of copper and molybdenum.
  • an evaporation method or the like can be used in addition to the sputtering method.
  • the thickness of the gate metal film is not particularly limited.
  • the etching method of the gate metal film is not limited to the dry etching method described above, and a wet etching method using an etchant such as an acid can also be used.
  • a silicon nitride (SiNx) film that becomes the gate insulating film 21, an amorphous silicon film that becomes the intrinsic amorphous silicon layer (i layer), and an n + type amorphous silicon film that becomes the n + type amorphous silicon layer (n + layer) are formed by plasma CVD ( The film is continuously formed by a chemical vapor deposition method or the like.
  • the film thickness of the silicon nitride film is, for example, 400 nm
  • the film thickness of the amorphous silicon film is, for example, 200 nm
  • the film thickness of the n + type amorphous silicon film is, for example, 50 nm.
  • the temperature of the glass substrate 1 when these films are formed is 200 to 300 ° C.
  • the gas for film formation is silane (SiH 4 ), ammonia (NH 3 ), hydrogen (H 2 ) and nitrogen (N 2 ). ) Etc. are used in appropriate combinations.
  • the silicon nitride film, the amorphous silicon film, and the n + type amorphous silicon film are patterned into a predetermined shape by photolithography, and the gate insulating film 21, the primary processed amorphous silicon film, and the n + type amorphous silicon film are formed.
  • a dry etching method using, for example, an appropriate combination of chlorine gas (Cl 2 ) gas, carbon tetrachloride (CF 4 ) gas, and oxygen (O 2 ) gas is used.
  • the resist pattern film is removed using a stripping solution containing organic alkali.
  • the gate metal film titanium (Ti), aluminum (Al), and titanium (Ti) are sequentially deposited to form a source metal film (not shown) that is a Ti / Al / Ti laminated film.
  • the film thickness of titanium is, for example, 100 nm (common to the upper layer side and the lower layer side)
  • the film thickness of aluminum is, for example, 300 nm.
  • the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b are formed from the source metal film by using the photolithography method. Form.
  • the resist pattern film (not shown) used in the photolithography method is left without being removed for the next step.
  • the material of the source metal film may also be composed of other materials similar to the gate metal film.
  • the amorphous silicon film and the n + type amorphous silicon film are etched again (channel etching) to obtain an intrinsic amorphous silicon layer (i layer) and an n + type amorphous silicon layer (n + layer), and the semiconductor layer 22ab Get. That is, the resist pattern film used to form the pattern of the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, etc. is used as a mask, and an n + type amorphous silicon film and an amorphous silicon film are formed by dry etching. A part of the surface is etched. Thereby, separation between the source electrode 16ab and the drain electrodes 17a and 17b is performed.
  • the partial surface of the amorphous silicon film is etched for reasons such as removing the n + type amorphous silicon film surely by over-etching.
  • a silicon nitride film to be the interlayer insulating film 23 is formed so as to cover the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b.
  • the temperature of the glass substrate 1 when the silicon nitride film is formed by plasma CVD is set to 200 to 300 ° C.
  • the gas for film formation includes silane (SiH 4 ), ammonia (NH 3 ), Hydrogen (H 2 ), nitrogen (N 2 ), and the like are used in appropriate combination.
  • the film thickness of the silicon nitride film is, for example, 300 nm.
  • the silicon nitride film to be the interlayer insulating film 23 is etched into a predetermined pattern to form the interlayer insulating film 23 and contact holes 20a and 20b. At this time, a method similar to the etching of silicon nitride to be the gate insulating film 21 can be used.
  • an ITO (indium tin oxide) film is formed with a film thickness of about 100 nm by sputtering or the like, and is patterned into a necessary shape by photolithography.
  • Pixel electrodes 5a and 5b are formed in the pixel region.
  • oxalic acid (HOOC-COOH) or ferric chloride solution can be used for etching the ITO film.
  • a solution containing an alignment film material is applied by an inkjet method or the like so as to cover the pixel electrodes 5a and 5b, thereby forming an alignment film (not shown).
  • the above-described manufacturing method of the active matrix substrate 111 can be applied to a liquid crystal panel described later.
  • the description is abbreviate
  • FIG. 5 is a cross-sectional view taken along line AB in another configuration of the liquid crystal panel 113 shown in FIG.
  • a thick gate insulating film 21p and a thin gate insulating film 21q are formed on the glass substrate 1, and a thick interlayer insulating film 23p and a thin interlayer insulating film 23q are formed below the pixel electrode 5a.
  • the gate insulating film 21p is removed in the vicinity of the transistor 15a and the capacitor electrode 19a.
  • the interlayer insulating film 23p and the interlayer insulating film 23q have substantially the same planar shape, and the contact holes 20a and 20b are removed.
  • the film thickness of the gate insulating film 21p can be, for example, 1000 nm
  • the film thickness of the gate insulating film 21q can be, for example, 400 nm
  • the film thickness of the interlayer insulating film 23p can be, for example, 2500 to 3000 nm
  • the film thickness of the interlayer insulating film 23q can be, for example, 300 nm.
  • the interlayer insulating film 23p is made of an organic material, and the film thickness has a distribution reflecting the underlying unevenness.
  • the interlayer insulating film 23q and the gate insulating film 21q are silicon nitride films using a plasma CVD method.
  • the gate insulating film 21p of FIG. 5 may be a silicon nitride film or a silicon oxide film using a plasma CVD method as in the case of the gate insulating film 21q, but an insulating film made of an SOG (spin-on-glass) material. It may be.
  • the interlayer insulating film 23p, the interlayer insulating film 23q, and the contact holes 20a and 20b in FIG. 5 can be formed as follows. That is, after forming the transistor 15a, the process up to forming a silicon nitride film to be the interlayer insulating film 23q by plasma CVD is the same as in the case of FIG. 3 and FIG. First, a photosensitive acrylic resin film is formed by a photolithography method using a resist material that contains the resist material, and the silicon nitride film is etched using the photosensitive acrylic resin film as a mask to form an interlayer insulating film 23p, an interlayer insulating film 23q, and a contact hole 20a, 20b can be obtained.
  • the photosensitive acrylic resin film is not removed, and is used as it is as the interlayer insulating film 23p after heat treatment or the like. Etching of the silicon nitride film at this time can be performed in the same manner as in FIGS.
  • the gate insulating film 21p in FIG. 5 is an insulating film formed from an SOG (spin-on-glass) material, and a film obtained by applying a solution containing the SOG material, heat treatment, or the like is patterned using a photolithography method. Is obtained.
  • SOG spin-on-glass
  • the interlayer insulating film 23p may be an insulating film formed of, for example, an SOG (spin-on glass) material, and an acrylic resin, an epoxy resin, or a polyimide is added to the gate insulating film 21p or the interlayer insulating film 23p. At least one of a resin, a polyurethane resin, a novolac resin, and a siloxane resin may be included.
  • FIG. 6 is a plan view showing a configuration example 2 of the liquid crystal panel of the present invention.
  • contact electrodes 26a and 26b and contact holes 27a and 27b are further provided with respect to the liquid crystal panel 113a of the configuration example 1 of FIG.
  • the contact electrodes 26a and 26b are formed in the same layer as the drain lead wires 18a and 18b.
  • the drain electrode 17a of the transistor 15a is connected to the pixel electrode 5a through the drain lead-out wiring 18a and the contact hole 27a, and the pixel electrode 5a is connected to the capacitor electrode 19a through the contact hole 20a.
  • the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film
  • the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film.
  • the drain electrode 17b of the transistor 15b is connected to the pixel electrode 5b via the drain lead line 18b and the contact hole 27b, and the pixel electrode 5b is further connected to the capacitor electrode 19b via the contact hole 20b.
  • the capacitor electrode 19b overlaps with the storage capacitor line 3y via the gate insulating film, and the pixel electrode 5b overlaps with the storage capacitor line 3y via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Chb (see FIG. 1) is formed.
  • FIG. 7 is a cross-sectional view taken along the line AB of FIG.
  • the capacitor electrode 19a is formed in the same layer as the drain lead wire 18a and the contact electrode 26a, overlaps the storage capacitor wire 3x via the gate insulating film 21, and the pixel electrode 5a via the contact hole 20a. Connected to.
  • the capacitor electrode 19d of the pixel 100 overlaps the storage capacitor wiring 3x via the gate insulating film 21, and is connected to the pixel electrode 5d via the contact hole 20d.
  • a storage capacitor Cha (see FIG. 1) is formed between the capacitor electrode 19a and the storage capacitor line 3x
  • a storage capacitor Chd is formed between the capacitor electrode 19d and the storage capacitor line 3x.
  • the drain lead-out wirings 18a, 18b and the like do not cross over the entire pixel electrodes 5a, 5b, so that the aperture ratio as a liquid crystal display device is improved. Is particularly suitable.
  • FIG. 9 is a diagram for explaining a basic electrical driving method of the liquid crystal display device 110 shown in FIG.
  • the liquid crystal display device 110 includes a display unit 41, a display control circuit 42, a source driver (data signal line driving circuit) 43, and a gate / CS driver (scanning signal line / holding capacity wiring driving circuit) 44.
  • the display unit 41 includes n source lines (data signal lines), m gate lines (scanning signal lines), m + 1 CS lines (retention capacitor lines), and m ⁇ n pixels. Is provided.
  • FIG. 1 data signal line driving circuit
  • m + 1 CS lines retention capacitor lines
  • the display control circuit 42 receives a data signal DAT and a timing control signal TS sent from the outside, receives a digital video signal DV, a source start pulse signal SSP for controlling the timing of displaying an image on the display unit 41, and a source A source control signal SCTL such as a clock signal, a gate start pulse signal GSP, and a gate control signal GCTL such as a gate clock signal are output.
  • the source driver 43 receives the digital video signal DV, the source start pulse signal SSP for controlling the timing of displaying an image on the display unit 41, and the source control signal SCTL such as the source clock signal from the display control circuit 42, In order to charge the liquid crystal capacitance of each pixel in the display unit 41, a driving data signal is supplied to each source line SL1 to SLn.
  • the gate / CS driver 44 receives the gate start pulse signal GSP and the gate control signal GCTL output from the display control circuit 42, supplies a gate signal (scanning signal) to each gate line, and supplies a CS signal to each CS line. (Holding capacity wiring signal) is supplied.
  • the gate line and the CS line are driven sequentially, and no interlaced scanning is performed. That is, the gate lines are sequentially driven in order from GL1 to GLm.
  • the gate / CS driver 44 is provided in a row at both ends of the liquid crystal display device 110 (in FIG. 9, the left and right ends of the drawing). Therefore, the gate signal is input to both ends of the gate line GLi, and the CS signal is input to both ends of the CS line CLi.
  • FIG. 9 schematically shows driving of the liquid crystal display device 110 by the source driver 43, the gate / CS driver 44, and the display control circuit 42 included in the liquid crystal display device 110.
  • the power supply, wiring, and other control signals for driving are omitted. Further, wiring for applying a signal potential to the common electrode (com) is also omitted.
  • FIG. 10 is a circuit diagram showing a configuration example 1 of the gate / CS driver 44 in the liquid crystal display device 110 of the present invention.
  • the gate driver 45 is mounted on a polyimide film (not shown) using SOF (system on film) technology.
  • the polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing.
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 46 is formed integrally (monolithic) on the glass substrate 1. That is, the CS driver 46 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor.
  • the gate driver 45 and the CS driver 46 are provided in a row at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 10). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 46 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 46 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 46 will be described below.
  • the gate driver 45 receives the gate start pulse signal GSP and the gate control signal GCTL output from the display control circuit 42, and outputs a drive voltage signal (gate signal) to each of the gate lines GL1 to GLm + 2.
  • the gate lines GLm + 1 and GLm + 2 are gate lines (dummy gate lines) not directly related to the charge control of the pixels, and the gate line GLm + 2 transmits a necessary signal to the CS driver 46.
  • m in the figure is an even number, that is, in the present configuration example 1, the gate lines excluding the dummy gate lines are an even number.
  • the present invention is not limited to this.
  • the number of gate lines excluding dummy gate lines may be an odd number. In that case, the configuration of FIG. The number of gate lines and dummy gate lines may be adjusted.
  • An even-numbered CS line (second holding capacitor wiring group) such as CSL0, CSL2, CSLi-2, CSLi, CSLi + 2, CSLm-2, CSLm has a signal COM (second holding capacitor) supplied to the capacitor wiring trunk 47.
  • Wiring signal is supplied by wiring branches.
  • An output signal (first holding capacitor wiring signal) of an internal circuit (holding capacitor wiring driving internal circuit; hereinafter also referred to as “holding circuit”) constituting 46 is supplied.
  • the holding circuit is provided corresponding to every other line (odd row) for all the CS lines.
  • the holding circuit may be provided corresponding to every other line (even rows) for all CS lines.
  • the output signal of the holding circuit is the “first holding capacitor wiring signal”
  • the CS line to which the first holding capacitor wiring signal is input is the “first holding capacitor wiring group”
  • the external A signal output from the first signal source and supplied to the capacitor wiring trunk 47 is expressed as a “second storage capacitor wiring signal”
  • a CS line to which the second storage capacitor wiring signal is input is expressed as a “second storage capacitor wiring group”. it can.
  • the holding circuit CSDi-1 or the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
  • the CS driver 46 includes a plurality of holding circuits, includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b,
  • the above signals are received through the potential side power supply line 46H and the low potential side power supply line 46L, and the output (gate signal) of the gate driver 45 is received.
  • the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a and a selection wiring.
  • the above signals are received through the high potential side power supply line 46H and the low potential side power supply line 46L.
  • the holding circuit CSDi-1 includes an input terminal s.
  • the input terminal s is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45.
  • the output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
  • a terminal here refers to the point on a circuit, and in the actual device form, the corresponding terminal shape for a connection may be provided, and it does not need to be provided.
  • the term “terminal” as used herein may be a single point on the corresponding wiring. In this specification, the term terminal is used in the same manner.
  • the CS signal CSli-1 output from each holding circuit CSDi-1 is simultaneously supplied to both ends of the CS line CSLi-1, and the display control circuit 42 is connected to both ends of the CS line CSLi-1.
  • the CS line CSLi + 1 are simultaneously supplied to both ends of the CS line CSLi + 1. Therefore, the arrival time of the CS signal on the CS line can be reduced as compared with the conventional configuration (see FIG. 51) in which the CS signal is supplied from one end side. Accordingly, the distribution (non-uniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one CS line can be reduced, so that display quality can be improved.
  • the CS line has to give more importance to the potential reached than the gate line. This is because the pixel potential is subject to fluctuations mainly due to the capacitance Cgd (capacitance between the gate and drain (pixel electrodes)) parasitic to the transistor, but this fluctuation can usually be stabilized by providing a CS line. This is because the fluctuation of the pixel potential due to the above does not become a big problem.
  • Cgd capacitance between the gate and drain (pixel electrodes)
  • FIG. 11 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 46.
  • the holding circuit CSDi-1 includes four transistors MS1, MS2, MG, and MH.
  • these transistors are amorphous silicon TFTs formed on a glass substrate.
  • the terminals s (first input unit), sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are external signals S, SEL1 (holding target signals), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
  • the transistor MS1 has a gate electrode connected to the terminal s of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1.
  • the transistor MG has a gate electrode connected to the node netC1, a source electrode connected to the terminal vdd, and a drain electrode connected to the output terminal cs.
  • the transistor MS2 has a gate electrode connected to the terminal s of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
  • the transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
  • FIG. 12 is a timing chart showing various signals input / output in the holding circuit CSDi-1.
  • the holding circuit CSDi-1 in FIG. 10 is cited as an example of the holding circuit.
  • the horizontal axis represents time
  • the vertical axis represents potential
  • the upper side of the paper represents the positive direction.
  • vertical lines are inserted every 1H (horizontal scanning period) as an indication of timing.
  • the GND level as the reference potential
  • the COM as the potential of the common electrode (com) are also shown. The same description applies to timing charts described later.
  • the liquid crystal display device 110 of the present embodiment is driven at a frame rate of 120 Hz, for example, 1H (horizontal scanning period) is 7.4 ⁇ s, 2H is 14.8 ⁇ s, and 1F (frame, vertical scanning period) is 8 Although the time is 3 ms, the present invention is not limited to this.
  • FIG. 12 shows waveforms of signals S, SEL1, SEL2, VDD, VSS, netC1, netC2, and CS.
  • V (netC1) and V (netC2) represent the potentials of the nodes netC1 and netC2, respectively
  • CS represents the CS signal output from the terminal cs of the holding circuit CSDi-1.
  • the signal S represents a signal branched from the gate line GLi + 2 and input to the terminal s.
  • the wiring and the node name are enclosed in parentheses and V is added in front. May be expressed.
  • the waveform of the signal S changes with a period of one frame (vertical scanning period).
  • the high potential state is set once per frame for a period of 2H (horizontal scanning period). In other periods, the potential is low.
  • the potential at the high potential is expressed as Vgh
  • the potential at the low potential is expressed as Vgl.
  • the signal waveforms of SEL1 and SEL2 alternately repeat a high potential state and a low potential state every frame. In SEL1 and SEL2, the potential when the potential is high is Vselh, and the potential when the potential is low is Vsell. SEL1 and SEL2 are 180 degrees out of phase with each other.
  • the timing at which the potentials of SEL1 and SEL2 are changed is desirably set in a blanking period, which is a period during which no potential is written to the pixel electrode so as not to affect the display.
  • the potentials of VDD and VSS are constant, and the respective values are expressed as Vcsh and Vcsl.
  • the CS signal varies between values Vcsh and Vcsl.
  • S plays the role of a start pulse of the holding circuit CSDi-1, and the gate line GLi + 2 corresponding to the pixel at the latter stage after the own stage.
  • the signal potential gate signal
  • the potential of the signal S rises from Vgl to Vgh
  • the transistors MS1 and MS2 are turned on
  • the potentials of the nodes netC1 and netC2 are SEL1 and SEL2, respectively.
  • one of the nodes netC1 and netC2 has a high state (selected state) and the other has a low state (non-selected state).
  • one of the transistors MG and MH is selected and the other is not selected.
  • the potential of the output CS signal changes according to the potentials of the nodes netC1 and netC2, but since the terminal cs is connected to the CS line of the display unit and charging takes time, the change is more gradual than the nodes netC1 and netC2. Become.
  • the potential of the CS signal is substantially stabilized in the vicinity of the potential of Vcsh or Vcsl after a predetermined time has elapsed according to the selection / non-selection state of the transistors MG and MH. Since the nodes netC1 and netC2 function as holding units, even if the potentials of SEL1 and SEL2 change, the potentials are held until the next change of the potential of S, that is, for approximately one frame time. As a result, the CS signal Is maintained.
  • the transistors MS1 and MS2 are turned on, the terminal sel1 and the node netC1 become conductive, and the node netC1 Increases, the terminal sel2 and the node netC2 become conductive, and the potential of the node netC2 decreases.
  • the transistor MG is turned on by the high potential of the node netC1
  • the transistor MH is turned off by the low potential of the node netC2, so that the potential of the CS signal approaches the potential Vcsh of VDD.
  • the transistors MS1 and MS2 are turned on, the terminal sel1 and the node netC1 are turned on, the potential of the node netC1 is lowered, the terminal sel2 and the node netC2 are turned on, and the node The potential of netC2 increases.
  • the transistor MG is turned off by the low potential of the node netC1
  • the transistor MH is turned on by the high potential of the node netC2, so that the potential of the CS signal approaches the potential Vcsl of VSS.
  • the holding circuit CSDi-1 repeats the operations of the first and second frames alternately.
  • the potentials of the nodes netC1 and netC2 are both in the range of the values Vselh and Vsel, but depending on the circuit configuration and transistor characteristics, the potentials of the nodes netC1 and netC2 completely reach Vselh and Vsel. There are things that do not. In particular, when the transistor is an amorphous silicon TFT, the charging capability is insufficient due to low mobility, and the potentials of the nodes netC1 and netC2 may not reach sufficiently.
  • FIG. 13 is a timing chart showing various signal waveforms in the pixel Pi shown in FIG. 9, and corresponds to the even-numbered gate lines GLi.
  • FIG. 14 is a timing chart showing various signal waveforms in the pixel Pi + 1, which corresponds to the odd-numbered gate line GLi + 1. Note that i is an even number.
  • the potential GND as the reference potential
  • the COM as the potential of the common electrode (com) are also shown. The same applies to the subsequent timing charts.
  • (time t2) (time t1-2H).
  • V (GLi) indicates the potential of the gate line GLi
  • V (SLj) indicates the potential of the source line SLj
  • V (CSLi-1) indicates the potential of the CS line CSLi-1
  • V (CSLi-1). ) Indicates the potential of the CS line CSLi
  • V (PAi) and V (PBi) indicate the pixel potentials of the sub-pixels PAi and PBi, respectively.
  • the charge of the pixel Pi having the sub-pixels PAi and PBi is controlled by the gate line GLi, the source line SLj, and the CS lines CSLi-1 and CSLi.
  • the source line SLj may be an arbitrary line, and j can be arbitrarily determined in the range of 1 to n.
  • the potential (gate signal) of the gate line GLi rises at time t2.
  • the potential (data signal) of the source line SLj is switched between a higher potential side and a lower potential side than COM for each frame on the basis of the potential COM of the common electrode (com), but a detailed potential is a video signal to be displayed. It depends on.
  • the first frame shows a case where the potential of the source line SLj is on the positive side (plus polarity) from COM. Since the holding circuit CSDLi-1 starts operation at the timing when the gate line GLi + 2 becomes active (selected state) (see FIG.
  • the potential of the CS line CSLi-1 changes to the positive side.
  • the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is directly written. After time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, and charging / discharging is not performed. That is, the subpixel PAi is in a floating state.
  • the storage capacitor is formed (capacitive coupling) between the pixel electrode and the CS line CSLi-1, the potential of the sub-pixel PAi is turned off by the transistor.
  • ⁇ V (Vcsh ⁇ Vcsl) ⁇ K.
  • K CCS / (CCS + CLC)
  • CCS and CLC are respectively the pixel electrode of the corresponding sub-pixel (here, PAi), the CS line (here, CSLi-1), and the common electrode (com) )
  • the capacitor that is substantially formed means that, for example, the CS line has a capacitor electrode, and a storage capacitor may be formed between the pixel electrode and the CS line via the capacitor electrode. It is. The same applies to K in the equation described later.
  • a storage capacitor is formed between the pixel electrode and the CS line CSLi.
  • the potential of the CS line CSLi is constant, in the floating state after time t2 + 2H (after the transistor is turned off). The pixel potential does not change.
  • the potential of the gate line GLi rises at time t2 + 1F.
  • the potential of the source line SLj is more negative (minus polarity) than COM.
  • the potential of the CS line CSLi-1 changes to the negative side.
  • the subpixel PBi In the subpixel PBi, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, the subpixel PBi is in a floating state after time t2 + 1F + 2H (after the transistor is turned off). The pixel potential does not change.
  • the write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
  • the potentials of the subpixels PAi and PBi can be made different from each other even though the data signals are supplied to the subpixels PAi and PBi from the same source line SLj at the same timing. Therefore, in the display mode in which the liquid crystal display device is normally black, the subpixel PAi can be the bright subpixel and the subpixel PBi can be the dark subpixel due to the potential difference with the potential COM of the common electrode (com). Thus, a pixel division type liquid crystal display device can be realized.
  • V (GLi + 1) indicates the potential of the gate line GLi + 1
  • V (SLj) indicates the potential of the source line SLj
  • V (CSLi) indicates the potential of the CS line CSLi
  • V (CSLi + 1) indicates the CS line.
  • CSLi + 1 indicates the potential
  • V (PAi + 1) and V (PBi + 1) indicate the pixel potentials of the sub-pixels PAi + 1 and PBi + 1, respectively.
  • the pixel Pi + 1 having the sub-pixels PAi + 1 and PBi + 1 is controlled to be charged by the gate line GLi + 1, the source line SLj, and the CS lines CSLi and CSLi + 1.
  • j can be arbitrarily determined in the range of 1 to n.
  • the first frame shows a case where the potential (data signal) of the source line SLj is on the positive side (positive polarity) with respect to COM.
  • the holding circuit CSDLi + 1 Since the holding circuit CSDLi + 1 starts operating at the timing when the gate line GLi + 4 becomes active (selected state), the potential of the CS line CSLi + 1 starts to change at time t2 + 4H.
  • the potential of SEL1 input to the holding circuit CSLi + 1 since the potential of SEL1 input to the holding circuit CSLi + 1 is high, the potential of the CS line CSLi + 1 changes to the positive side.
  • the potential of the gate line GLi + 1 rises at time t2 + 1F + 1H.
  • the potential of the source line SLj is more negative (minus polarity) than COM.
  • the potential of the CS line CSLi + 1 changes to the negative side.
  • the write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
  • the potentials of the subpixels PAi + 1 and PBi + 1 can be made different from each other even though the data signal is supplied to the subpixels PAi + 1 and PBi + 1 at the same timing from the same source line SLj. Therefore, in the display mode in which the liquid crystal display device is normally black, the subpixel PAi + 1 can be a dark subpixel and the subpixel PBi + 1 can be a bright subpixel due to a potential difference with the potential COM of the common electrode (com). Thus, a pixel division type liquid crystal display device can be realized.
  • the liquid crystal panel 113a is provided on the glass substrate 1 with a CS driver (holding capacity wiring driving circuit) composed of a plurality of holding circuits (holding capacity wiring driving internal circuits), and holding.
  • the CS line retention capacitor line
  • the CS line has an output from the holding circuit or an output obtained by dividing a signal supplied to the retention capacitor line trunk at the same time. Input as a storage capacitor wiring signal).
  • the storage capacitor wiring trunk is DC driven with a constant potential (for example, COM) input from the outside, and is not AC driven. Therefore, the storage capacitor wiring trunk can reduce the wiring width. This is because the signal delay in the storage capacitor wiring trunk and the storage capacitor wiring hardly affects the display. Further, since the holding circuit can be constituted by four TFTs as shown in FIG. 11, the circuit configuration of the CS driver can be simplified. Furthermore, since the wiring for transmitting the signals SEL1, SEL2, VDD, and VSS for driving the holding circuit may be thin, the area occupied by the CS driver on the active matrix substrate can be reduced.
  • a constant potential for example, COM
  • the potential (scanning signal) of the gate line GLi is set to a high potential (Vgh) only during the period of 2H (horizontal scanning period), and the data signal is supplied to the corresponding pixel.
  • the high potential period may be set to, for example, 1H or 3H or more according to standards such as the required size, resolution, and frame rate of the liquid crystal display device.
  • the high potential period is set to 1H, a pixel division type liquid crystal display device can be realized even if the gate signal input to the holding circuit CSDi-1 is GLi + 1.
  • FIG. 15 is a circuit diagram of the gate / CS driver showing this configuration
  • FIGS. 16 and 17 are timing charts showing various signal waveforms in the pixels Pi and Pi + 1 when the gate / CS driver of FIG. 15 is applied. It is.
  • the potential of the sub-pixel PAi changes in the potential of the CS line CSLi-1 at time t2 + 1H (low potential ⁇ high potential) in the first frame.
  • the magnitude of ⁇ V rises to the positive side by the magnitude of ⁇ V, and is affected by the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi-1 at time t2 + 1F + 1H in the second frame. Just go down to the negative side.
  • the potential of the sub-pixel PBi does not change in the floating state after the transistor is turned off, as in FIG. Thereby, the subpixel PAi can be a bright subpixel and the subpixel PBi can be a dark subpixel.
  • the potential of the sub-pixel PBi + 1 is affected by the potential fluctuation (low potential ⁇ high potential) of the CS line CSLi + 1 at time t2 + 3H in the first frame, and the magnitude of ⁇ V It rises to the positive side, and in the second frame, it is affected by the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi + 1 at time t2 + 1F + 3H, and falls to the negative side by the magnitude of ⁇ V.
  • the potential of the subpixel PAi + 1 does not change in the floating state after the transistor is turned off, as in FIG. Thereby, the subpixel PAi + 1 can be a dark subpixel, and the subpixel PBi + 1 can be a bright subpixel.
  • the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is subpixel PAi.
  • PBi is directly written, and after time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, and charging / discharging is not performed and the floating state is entered.
  • the subpixel PAi is in a floating state, the potential of the subpixel PAi drops to the negative side by the magnitude of ⁇ V due to the influence of the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi-1.
  • a storage capacitor is formed between the pixel electrode and the CS line CSLi.
  • the potential of the CS line CSLi is constant, in the floating state after time t2 + 2H (after the transistor is turned off). The pixel potential does not change.
  • the potential of the subpixel PAi is changed after the transistor is turned off. Under the influence of (low potential ⁇ high potential), it rises to the positive side by the magnitude of ⁇ V. In the sub-pixel PBi, the pixel potential does not change because the potential of the CS line CSLi is constant as in the first frame.
  • the write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
  • the subpixel PAi can be a dark subpixel and the subpixel PBi can be a bright subpixel.
  • the potential of the gate line GLi + 1 is high (Vgh) from time t2 + 1H to t2 + 3H, the potential (data signal) of the source line SLj is subpixel PAi + 1.
  • PBi + 1 is directly written, and after time t2 + 3H, the potential of the gate line GLi + 1 becomes a low potential (Vgl), so that the corresponding transistor is turned off, charging and discharging are not performed, and the floating state is entered.
  • the potential of the sub-pixel PBi + 1 is pushed down to the negative side by the magnitude of ⁇ V due to the influence of the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi + 1.
  • a storage capacitor is formed between the pixel electrode and the CS line CSLi.
  • the potential of the CS line CSLi is constant, in the floating state after time t2 + 3H (after the transistor is turned off). The pixel potential does not change.
  • the high and low levels of the potentials of the source line SLj and the CS line CSLi + 1 are reversed from those in the first frame. Therefore, the potential of the subpixel PBi + 1 is changed after the transistor is turned off. Under the influence of (high potential), it pushes up to the positive side by ⁇ V. In the sub-pixel PAi + 1, the pixel potential does not change because the potential of the CS line CSLi is constant as in the first frame.
  • the write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
  • the subpixel PAi + 1 can be a bright subpixel and the subpixel PBi + 1 can be a dark subpixel.
  • the amplitude of the potential (data signal) of the source line SLj in FIG. 14 must be increased on average, which may increase the heat generation of the source driver.
  • the heat resistance of the source driver against heat generation it becomes disadvantageous in manufacturing a large-sized liquid crystal display device, and the power consumption of the liquid crystal display device increases. Therefore, in order to improve the display quality of the liquid crystal display device and reduce the frame, in addition to achieving heat resistance and low power consumption, the above-described configurations of FIGS. 13 and 14 are preferable.
  • the arrival time of the CS signal in the CS line can be shortened, so that the distribution of the pixel potential due to the difference between the target potential and the arrival potential in one CS line (Non-uniformity) can be reduced, and display quality can be improved. Further, since a circuit and wiring for supplying a signal to the CS line can be manufactured with a small occupied area, the frame of the liquid crystal display device can be reduced.
  • the transistors constituting the transistors 15a and 15b and the CS driver 13 on the glass substrate 1 use amorphous silicon as the semiconductor layer.
  • the present invention is not limited to this, and the above semiconductor layer may include a microcrystalline silicon film, another crystalline silicon film, or a metal oxide semiconductor film.
  • the semiconductor layer described above may have a two-layer structure or a multilayer structure of an intrinsic layer and a low-resistance contact layer as in the case of an amorphous silicon TFT.
  • the microcrystalline silicon film is a silicon film having a mixed state of a crystalline phase composed of microcrystalline grains and an amorphous phase.
  • a polycrystalline silicon film is composed of a crystal phase and a few crystal grain boundaries between them, and has a very high crystallization rate.
  • the metal oxide semiconductor film is specifically a Zn—O based semiconductor (ZnO) film, an In—Ga—Zn—O based semiconductor (IGZO) film, an In—Zn—O based semiconductor (IZO) film,
  • ZTO Zn—Ti—O based semiconductor
  • ZTO Zn—Ti—O based semiconductor
  • a transistor having higher mobility than that of an amorphous silicon transistor can be formed. Therefore, if a CS driver like the present invention is formed on a glass substrate as in the present invention, the frame of the liquid crystal display device can be formed. This is useful because it can be made smaller. In particular, it is desirable for the present invention to use a high mobility TFT having a saturation mobility of 1 cm 2 / V ⁇ s or more.
  • the CS driver 46 of Configuration Example 1 and Modifications 1 and 2 thereof may be formed integrally (monolithically) on the glass substrate 1 together with the gate driver.
  • FIG. 20 is a circuit diagram showing a configuration example 2 of the gate / CS driver 48 in the liquid crystal display device 110 of the present invention.
  • the gate driver 45 is mounted on the polyimide film using SOF (system on film) technology.
  • the polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing.
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 49 is integrally formed (monolithic) on the glass substrate 1. That is, the CS driver 49 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. Unlike the configuration example 1, the gate / CS driver 48 of the configuration example 2 does not include a capacitor wiring trunk. In FIG. 20, i is described as an even number.
  • the gate driver 45 and the CS driver 49 are provided in a row at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 20).
  • the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 49 may be integrally formed (monolithic) on the IC substrate. Since the two gate drivers 45 and the CS drivers 49 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 49 will be described below.
  • the CS driver 49 includes a plurality of holding circuits CSD0 to CSDm individually provided corresponding to all the CS lines CSL0 to CSLm. It is configured to include.
  • the holding circuit CSDi-1 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
  • the CS driver 49 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and each of the above-described components via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L.
  • a signal is received and an output (gate signal) of the gate driver 45 is received.
  • the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a and a selection wiring.
  • the above signals are received through the high potential side power supply line 46H and the low potential side power supply line 46L.
  • the holding circuit CSDi-1 includes an input terminal s.
  • the input terminal s is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45.
  • the output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
  • the CS line CSLi-1 has both ends connected to the holding circuits CSDi-1 of the CS drivers 49 provided at both ends of the liquid crystal display device 100, respectively. Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
  • the even-numbered holding circuit and the odd-numbered holding circuit are alternately switched between the input SEL1 and SEL2.
  • i is described as an even number
  • the signal SEL2 is input to the terminal sel1 and the signal SEL1 is input to the terminal sel2.
  • the even-stage holding circuit CSDi the signal SEL1 is input to the terminal sel1, and the signal SEL2 is input to the terminal sel2.
  • Other circuit configurations such as the size and connection of the transistors constituting the holding circuit are the same as those in the first configuration example.
  • FIGS. 21 and 22 are timing charts showing various signal waveforms in the pixels Pi and Pi + 1 when the CS signal is used.
  • the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is subpixel. Directly written in PAi and PBi, and after time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, charging and discharging are not performed, and a floating state is entered.
  • the potential of the subpixel PAi rises by the magnitude of ⁇ V to the positive side due to the influence of the potential fluctuation (low potential ⁇ high potential) of the CS line CSLi-1.
  • the potential of the sub-pixel PBi is pushed down by the magnitude of ⁇ V to the negative side due to the influence of the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi.
  • the high and low levels of the potentials of the source line SLj and the CS lines CSLi-1 and CSLi are reversed from those in the first frame, so that the potential of the sub-pixel PAi is set to the level of the CS line CSLi-1 after the transistor is turned off.
  • the potential fluctuation high potential ⁇ low potential
  • the voltage drops to the negative side by the magnitude of ⁇ V
  • the potential of the sub-pixel PBi becomes the potential fluctuation (low potential ⁇ high potential) of the CS line CSLi after the transistor is turned off.
  • the write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
  • the subpixel PAi can be a bright subpixel and the subpixel PBi can be a dark subpixel.
  • the potential of the sub-pixel PAi + 1 When the pixel PAi + 1 is in a floating state, the potential of the sub-pixel PAi + 1 is pushed down by the magnitude of ⁇ V to the negative side due to the influence of the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi. On the other hand, when the pixel PBi + 1 is in a floating state, the potential of the sub-pixel PBi + 1 rises by the magnitude of ⁇ V to the positive side due to the influence of the potential fluctuation (low potential ⁇ high potential) of the CS line CSLi + 1.
  • the potential of the subpixel PAi + 1 is the potential of the CS line CSLi after the transistor is turned off. Under the influence of the fluctuation (low potential ⁇ high potential), it rises to the positive side by ⁇ V.
  • the potential of the sub-pixel PBi + 1 is affected by the potential fluctuation (high potential ⁇ low potential) of the CS line CSLi + 1 after the transistor is turned off, and falls to the negative side by the magnitude of ⁇ V.
  • the write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
  • the sub-pixel PAi + 1 can be a dark sub-pixel and the sub-pixel PBi + 1 can be a bright sub-pixel.
  • the liquid crystal panel 113a has a CS driver (retention capacitor line drive circuit) including a plurality of retention circuits (retention capacitor line drive internal circuits) on the glass substrate 1, and each CS line (retention capacitor).
  • CS driver retention capacitor line drive circuit
  • outputs from the holding circuits are input to the wiring) as CS signals (retention capacitor wiring signals).
  • the holding circuit can be configured by four TFTs as shown in FIG. 11, the circuit configuration can be simplified.
  • the wiring for transmitting the signals SEL1, SEL2, VDD, and VSS for driving the holding circuit may be thin, an area occupied on the substrate of the holding circuit can be reduced.
  • the reason why these wirings may be thin is that, due to the circuit configuration, the line capacitance of the selection wiring 46a and the selection wiring 46b for transmitting the signals SEL1 and SEL2 can be reduced, and the signals SEL1 and SEL2 are in the blanking period. This is because the potential is changed only in the case of VDD and VSS may be constant.
  • the circuit and the wiring for supplying the CS signal to the CS line can be manufactured with a small occupied area, the frame of the liquid crystal display device can be reduced.
  • the CS driver 49 of Configuration Example 2 and the CS driver 46 of Configuration Example 1 described above are formed integrally (monolithically) on the glass substrate 1.
  • the holding circuit (CSDi-1 or the like) constituting the CS driver includes a transistor having a large channel width, a defect such as a film residue is more likely to occur than a pixel transistor. Easy to influence rate.
  • the CS driver 46 of the configuration example 1 described above has a smaller number of holding circuits than the CS driver 49 of the configuration example 2, the reduction in the yield rate in the manufacturing process due to the provision of the CS driver is suppressed. And the area occupied by the CS driver can be reduced. For this reason, the liquid crystal display device 110 of the present invention is more advantageous for narrowing the frame than the CS driver 49 of Configuration Example 2 provided with the CS driver 46 of Configuration Example 1.
  • the CS driver 49 of the configuration example 2 and the CS driver 46 of the configuration example 1 described above are formed and integrated with the gate driver on a semiconductor substrate or the like for forming the gate driver.
  • the gate / CS driver may be mounted on a polyimide film. According to this configuration, the non-defective rate of the gate / CS driver is hardly affected by the number of holding circuits in the CS driver, and compared with the case where the CS driver is formed on the glass substrate, the non-defective rate of manufacturing the liquid crystal panel. Can be improved. Therefore, in addition to improving the display quality of the liquid crystal display device and narrowing the frame, it is preferable to adopt the above-described configuration in order to improve the manufacturing quality rate of the liquid crystal panel. In particular, the above configuration is suitable for the CS driver 49 like the present configuration example 2 having a large number of holding circuits.
  • FIG. 23 is a circuit diagram showing a configuration example 3 of the gate / CS driver 50 in the liquid crystal display device 110 of the present invention.
  • the gate driver 45 is mounted on the polyimide film using SOF (system on film) technology.
  • the polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing.
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 51 is integrally formed on the glass substrate 1. That is, the CS driver 51 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor.
  • the gate driver 45 and the CS driver 51 are provided in a row at both ends of the liquid crystal display device 110 (in FIG. 23, the left and right ends of the drawing). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 51 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 51 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 51 will be described below.
  • the CS driver 51 of the configuration example 3 includes a plurality of holding circuits provided every four CS lines, and one holding circuit is connected to two CS lines. Further, every other CS line is connected to the capacitor wiring trunk 47. Specifically, as shown in FIG. 23, the CS line CSLp is connected to the capacitor wiring trunk 47, the CS line CSLp + 1 is connected to the holding circuit CSDp + 3, the CS line CSLp + 2 is connected to the capacitor wiring trunk 47, and the CS line CSLp + 3.
  • the CS line CSLp + 4 is connected to the capacitor wiring trunk 47
  • the CS line CSLp + 5 is connected to the holding circuit CSDp + 7
  • the CS line CSLp + 6 is connected to the capacitor wiring trunk 47
  • the CS line CSLp + 7 is connected to the holding circuit CSDp + 7. It is connected to the.
  • Each CS line is connected to the holding circuit or the capacitor wiring trunk 47 at both ends.
  • a holding circuit CSDp + 3 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
  • FIG. 24 is a timing chart showing various signal waveforms in the pixel Pp + 1, the pixel Pp + 2, the pixel Pp + 3, and the pixel Pp + 4.
  • p is a multiple of 4.
  • the potential written in the active period of the gate line GLp + 1 is held.
  • the potential of the gate line GLp + 1 rises at time t2 + 1H, a positive side (plus polarity) data signal is supplied, and the potential of the subpixel PAp + 1 becomes plus polarity.
  • the subpixel PBp + 1 When the potential of the gate line GLp + 1 falls at time t2 + 3H, the subpixel PBp + 1 enters a floating state, and then the potential of the gate line GLp + 6 rises, and the potential of the CS line CSLp + 1 changes to the high potential Vcsh. , Push up to the positive side. Thereby, the subpixel PAp + 1 is a dark subpixel, and the subpixel PBp + 1 is a bright subpixel.
  • the sub-pixel PAp + 2 becomes a bright sub-pixel
  • the sub-pixel PBp + 2 becomes a dark sub-pixel
  • the subpixel PBp + 3 When the potential of the gate line GLp + 3 falls at the time t2 + 5H, the subpixel PBp + 3 enters a floating state, and then the potential of the gate line GLp + 6 rises, and the potential of the CS line CSLp + 3 changes to the high potential Vcsh. , Push up to the positive side. Thereby, the sub-pixel PAp + 3 is a dark sub-pixel, and the sub-pixel PBp + 3 is a bright sub-pixel.
  • the subpixel PAp + 4 in the pixel Pp + 4 when the potential of the gate line GLp + 4 rises at time t2 + 4H, a positive-side (plus polarity) data signal is supplied, and the potential of the subpixel PAp + 4 becomes plus polarity.
  • the sub-pixel PAp + 4 enters a floating state, and then the potential of the gate line GLp + 6 rises and the potential of the capacitively coupled CS line CSLp + 3 changes to the high potential Vcsh.
  • the subpixel PAp + 4 is pushed up to the positive side.
  • the sub-pixel PAp + 4 becomes a bright sub-pixel
  • the sub-pixel PBp + 4 becomes a dark sub-pixel
  • the CS driver 51 of the configuration example 3 includes a plurality of holding circuits provided every four CS lines, and one holding circuit is connected to two CS lines.
  • the CS driver 51 may have one holding circuit connected to two or more CS lines.
  • the CS driver 51 of the configuration example 3 is formed integrally (monolithically) on the glass substrate 1, but as a first modification, the CS driver 51 is formed on a semiconductor substrate or the like for forming a gate driver.
  • the driver 51 is formed integrally with a gate driver, and the integrated gate / CS driver may be mounted on a polyimide film.
  • FIG. 25 shows an embodiment of the liquid crystal display device 110b according to the first modification of the third configuration example.
  • the gate / CS driver 50 b is formed integrally (monolithically) on the same semiconductor substrate and mounted on the polyimide film 8.
  • An output terminal (not shown) of the CS driver 51b in the gate / CS driver 50b is connected to the plurality of storage capacitor wirings 3 by a lead wiring 91 having a branch. This branching is performed in the peripheral area 7 in the vicinity of the display area 6.
  • the lead-out wiring 91 has a branch, the number of the lead-out wirings 91 can be reduced, and the frame of the liquid crystal display device 110b can be effectively reduced. Since the yield rate of the gate / CS driver 50b using the semiconductor process is high, the yield rate of the liquid crystal display device can be improved as compared with the case where the CS driver is formed on the glass substrate.
  • the first modification of the configuration example 3 as described above has the effect of improving the display quality, narrowing the frame, and improving the good manufacturing rate of the liquid crystal display device in the pixel division type liquid crystal display device using the capacitive coupling method. This is particularly useful.
  • FIG. 26 is a circuit diagram showing a configuration example 4 of the gate / CS driver 52 in the liquid crystal display device 110 of the present invention.
  • the gate driver 45 is mounted on the polyimide film using SOF (system on film) technology.
  • the polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing.
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 53 is integrally formed on the glass substrate 1. That is, the CS driver 53 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor.
  • the gate driver 45 and the CS driver 53 are provided in a row at both ends (the left and right ends in FIG. 26) of the liquid crystal display device 110, respectively.
  • the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1.
  • the gate driver 45 and the CS driver 53 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and the CS driver 53 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 53 will be described below.
  • i is described as an even number
  • the signal COM supplied to the capacitor wiring trunk 47 is wired to the CS lines of even rows such as CSL0, CSL2, CSLi, and CSLm.
  • the odd number CS lines such as CSL1, CSL3, CSLi-1, and CSLm-1 have an internal circuit constituting the CS driver 53 represented by CSD1, CSD3, CSDi-1, CSDm-1, etc. Circuit; hereinafter, also referred to as “holding circuit”) is supplied simultaneously from both ends. That is, the holding circuit is provided corresponding to every other line (odd row) for all the CS lines.
  • the holding circuit may be provided corresponding to every other line (even rows) for all CS lines.
  • the holding circuit CSDi-1 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
  • the CS driver 53 includes a plurality of holding circuits, and includes terminals for receiving external signals SEL1, SEL2, SEL3, SEL4, VDD, and VSS, and includes a selection wiring 46a, a selection wiring 46b, and a selection wiring 46c.
  • the above signals are received through the selection wiring 46d, the high potential side power supply line 46H, and the low potential side power supply line 46L, and the output (gate signal) of the gate driver 45 is received.
  • the holding circuit CSDi-1 includes terminals sel1 to sel4 (generically referred to as sel in FIG.
  • the holding circuit CSDi-1 includes input terminals s1 and s2.
  • the input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45.
  • the input terminal s2 is connected to the gate line GLi + 4 and receives the output (gate signal) of the gate driver 45.
  • the output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
  • FIG. 27 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 53 in the present configuration example 4.
  • the holding circuit CSDi-1 includes six transistors MS1, MS2, MT1, MT2, MG, and MH.
  • it is an amorphous silicon TFT formed on a glass substrate.
  • Terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), sel3 (fourth input unit), sel4 (fifth input unit), vdd of the holding circuit CSDi-1 , Vss are input signals S1, S2, SEL1 (holding target signal), SEL2 (holding target signal), SEL3 (second holding target signal), SEL4 (second holding target signal), VDD, and VSS, respectively. Then, the CS signal is output from the terminal cs.
  • the transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1.
  • the transistor MG has a gate electrode connected to the node netC1, a source electrode connected to the terminal vdd, and a drain electrode connected to the output terminal cs.
  • the transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
  • the transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
  • the transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel3 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1.
  • the transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel4 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
  • FIG. 28 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
  • S2 in FIG. 28 is a signal delayed by 2H from S1.
  • the input signals SEL3 and SEL4 added in the present configuration example 4 have the same phase as SEL1 and SEL2, respectively, and alternately repeat a high potential state and a low potential state for each frame.
  • the high potential in SEL1 and SEL2 is Vselh1
  • the low potential is Vsel1
  • Vselh2 the high potential in SEL3 and SEL4
  • it is desirable that the timings at which the potentials of SEL3 and SEL4 change are set during a blanking period, which is a period during which no potential is written to the pixel electrode.
  • the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached.
  • the potential of S1 becomes Vgl and the potential of S2 becomes Vgh, so that the transistors MS1 and MS2 are turned off, the transistors MT1 and MT2 are turned on, and the signals SEL3 and SEL4 are applied to the nodes netC1 and netC2. Entered.
  • the potential of the node netC1 is lowered from Vselh1 to Vselh2 and held.
  • the change in the potentials of the nodes netC1 and netC2 is related to the operation reliability (threshold stability) of the transistors in the CS driver.
  • FIG. 30 is a graph showing the operational reliability of the amorphous silicon TFT (a-Si TFT) used in this embodiment.
  • the test method used here is generally called a transistor bias temperature stress test (BTS test).
  • BTS test transistor bias temperature stress test
  • As a test method a method of alternately applying a long-time stress application and a short-time characteristic measurement under a predetermined environmental temperature was adopted.
  • the stress application as shown in FIG. 29A, the stress voltage applied to the gate electrode G of the transistor is DC (direct current), the drain electrode D is 0 V (GND), and the source electrode S is 0.1 V in voltage. A voltage of V stress was applied to the gate electrode.
  • the characteristic measurement as shown in FIG.
  • the drain electrode D was set to 0 V (GND)
  • the source electrode S was swept at a voltage of 10 V
  • FIG. 30 shows the result of examining the threshold shift of the transistor, which is particularly remarkable in the amorphous silicon TFT.
  • 30A shows the result in the case of positive bias stress (positive bias applied to the gate electrode)
  • FIG. 30B shows the result in the case of negative bias stress (negative bias applied to the gate electrode).
  • the horizontal axis represents the stress time (sec: second)
  • the vertical axis represents the threshold shift amount (change amount) (V) from before the stress application.
  • V threshold shift is particularly noticeable in the case of a positive bias stress.
  • V stress is +5 V
  • the shift amount is smaller than the others, but as the V stress increases, the shift amount increases. The larger the threshold shift amount, the lower the operation reliability.
  • the gate electrodes of the transistors MG and MH provided in the holding circuit in the CS driver are connected to the nodes netC1 and netC2, respectively, and are alternately set to a constant high potential state every 1F (frame time) ( The positive bias state) and the low potential state (negative bias state) are repeated.
  • the CS drivers in the above configuration examples 1 to 3 and the present configuration example 4 as well since amorphous silicon TFTs are used as transistors, it is necessary to consider the operational reliability especially in consideration of the potentials of the nodes netC1 and netC2.
  • the potentials of the nodes netC1 and netC2 are two stages, and these potentials are lowered from the middle.
  • the output from the holding circuit (CS signal) reaches a predetermined voltage to some extent, the potential is lowered in the middle to lower the average potential of the nodes netC1 and netC2 in each positive bias state, and the operation of the CS driver Reliability can be increased. This was verified by circuit simulation (SPICE simulation) using an electronic computer.
  • FIG. 31 is a diagram for explaining the outline of the simulation circuit.
  • the simulation circuit 61 includes a circuit unit 62 that generates a voltage source and a signal source, a holding circuit unit 63, and a load unit 64.
  • the load section 64 has a resistance R0 of 50 ⁇ and a capacitance C0 of 50 pF connected in 10 stages as shown in the figure, and assumes a value assuming a CS line of a large liquid crystal display device.
  • R0 resistance
  • C0 capacitance
  • S1 and S2 are models that linearly change from 0% to 100% or from 100% to 0% in 1 ⁇ s as shown in FIG.
  • Other main simulation conditions are as follows. Similar numerical values were used in the simulation of the configuration example 1 as a reference (REF).
  • REF reference
  • the characteristics of the amorphous silicon TFT produced by the method shown in the configuration example 1 of the present invention are used by making a SPICE model.
  • the saturation mobility of the amorphous silicon TFT used here is about 0.4 cm 2 / Vs.
  • FIG. 33 shows the relationship between the average potential of the nodes netC1 and netC2 and the arrival time of the output potential.
  • the potential changes of the nodes netC1 and netC2 are 180 ° out of phase with each other, and the positive bias state and the negative bias state are alternately switched every 1F (frame time).
  • FIG. 33 shows the relationship between the average potential and the output potential arrival time when the node netC1 or netC2 is in the positive bias state.
  • the average potential is a value obtained by averaging the potential of the node netC1 or netC2 over a time period during which a positive bias is applied to the node netC1 or netC2 (approximately one frame time).
  • the arrival time is defined as the time required for the potential of the output CS signal to reach 99% from COM (the potential of the counter electrode).
  • Vcsh ⁇ Vcom ⁇ 0.99 + Vcom (netC1)
  • Vcsl ⁇ Vcom ⁇ 0.99 + Vcom (netC2) Defined as the time to become.
  • the output signal CS moves in a direction in which the potential is increased.
  • the CS signal moves in a state in which the potential is lowered. Is different. Note that Vcom is COM (the potential of the counter electrode). The CS signal is monitored immediately after the output of the holding circuit 63 in FIG.
  • FIG. 33 shows the relationship between the configuration example 4 and the configuration example 1 for each of the nodes netC1 and netC2.
  • the configuration example 4 is better for both the nodes netC1 and netC2.
  • the average voltage of the node netC1 or the netC2 is lowered with respect to the predetermined arrival time.
  • the average voltage of the node netC1 or netC2 can be lowered by about 1 V in the configuration example 4 compared to the configuration example 1 even when the arrival time is 200 ⁇ s.
  • the average voltage of the nodes netC1 and netC2 can be lowered in this way because the potentials of the nodes netC1 and netC2 are lowered in the middle in the respective positive bias states.
  • a relatively high potential is applied to the nodes netC1 and netC2 in order to change the CS signal quickly.
  • the arrival time can be shortened efficiently. Therefore, even in the same arrival time, the average potential of the nodes netC1 and netC2 in each positive bias state can be lowered, and the operation reliability of the holding circuit and the CS driver can be improved.
  • FIG. 34 is a circuit diagram showing Configuration Example 5 of the gate / CS driver 54 in the liquid crystal display device 110 of the present invention.
  • the configuration example 5 differs from the configuration example 4 in a mechanism for lowering the potentials of the nodes netC1 and netC2 in the plus bias state.
  • the gate driver 45 is mounted on the polyimide film using SOF (system on film) technology.
  • SOF system on film
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 55 is integrally formed on the glass substrate 1. That is, the CS driver 55 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor.
  • Each of the gate driver 45 and the CS driver 55 is provided in a row at both ends of the liquid crystal display device 110 (in FIG. 34, left and right ends on the paper surface).
  • the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 55 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 55 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 55 will be described below.
  • the CS driver 55 includes a plurality of holding circuits provided every other line (even rows or odd rows).
  • the CS driver 55 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and each of the above-described components via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L.
  • the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b, a high-potential side power supply line 46H, The above signals are received via the potential side power supply line 46L.
  • the holding circuit CSDi-1 includes input terminals s1 and s2.
  • the input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45.
  • the input terminal s2 is connected to the gate line GLi + 4 and receives the output (gate signal) of the gate driver 45.
  • the output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
  • the CS line CSLi-1 has both ends connected to the holding circuits CSDi-1 of the CS drivers 55 provided at both ends of the liquid crystal display device 100, respectively. Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
  • FIG. 35 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 55 in the present configuration example 5.
  • the holding circuit CSDi-1 includes eight transistors MS1, MS2, MG, MH, MT1, MT2, MU1, and MU2.
  • it is an amorphous silicon TFT formed on a glass substrate.
  • the terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are respectively supplied with external signals S1, S2, and SEL1 (holding).
  • Target signal), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
  • the transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1.
  • the transistor MG has a gate electrode connected to the node netC1, a source electrode connected to vdd, and a drain electrode connected to the output terminal cs.
  • the transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
  • the transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
  • the transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1 and the source electrode of the transistor MU1. .
  • the transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2 and the source electrode of the transistor MU2. .
  • the transistor MU1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT1 and the node netC1, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
  • the transistor MU2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT2 and the node netC2, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
  • FIG. 36 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
  • the transistors MT1, MT2, MU1, and MU2 are turned on when S2 is in a high potential state at a time delayed by 2H from S1, thereby the nodes netC1, An operation of lowering the potential of netC2 is performed.
  • the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached.
  • S2 becomes Vgh at time t1 + 2H
  • the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS.
  • the potential of the node netC1 is lowered from Vselh1 to Vselh1 'and held.
  • the simulation in Configuration Example 5 was performed in the same manner as in Configuration Example 4.
  • the simulation conditions in Configuration Example 5 are as follows.
  • FIG. 37 shows the relationship between the average potentials of the nodes netC1 and netC2 and the output potential arrival time, as in FIG.
  • FIG. 37 shows the relationship between the configuration examples 5 and REF (configuration example 1) for each of the nodes netC1 and netC2.
  • configuration example 1 configuration example 1
  • the case of the configuration example 5 is shown.
  • the average voltage of the node netC1 or netC2 can be lowered by about 1 V in the configuration example 5 compared to the configuration example 1 even when the arrival time is 200 ⁇ s.
  • the operational reliability of the CS driver can be improved as in the above configuration example 4. Further, in the present configuration example 5, since SEL3 and SEL4 that are necessary in the configuration example 4 are not required as signals input to the holding circuit, the frame in the liquid crystal display device can be further reduced. Therefore, even when an amorphous silicon TFT is used as a transistor, display quality and operation reliability can be improved, and the frame of the liquid crystal display device can be reduced.
  • FIG. 38 is a circuit diagram showing Configuration Example 6 of the gate / CS driver 56 in the liquid crystal display device 110 of the present invention.
  • the configuration example 6 differs from the configuration example 5 in the timing of lowering the potentials of the nodes netC1 and netC2 in the plus bias state.
  • the gate driver 45 is mounted on the polyimide film using SOF (system on film) technology.
  • SOF system on film
  • the gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG.
  • the CS driver 57 is integrally formed on the glass substrate 1. That is, the CS driver 57 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor.
  • the gate driver 45 and the CS driver 57 are provided in a row at both ends of the liquid crystal display device 110 (in FIG. 38, the left and right ends of the page).
  • the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 57 may be integrally formed (monolithic) on the IC substrate. Since the two gate drivers 45 and the CS driver 57 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 57 will be described below.
  • the CS driver 57 includes a plurality of holding circuits provided every other line (even rows or odd rows).
  • the CS driver 57 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside.
  • the CS driver 57 is connected via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L.
  • the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b, a high-potential side power supply line 46H, The above signals are received via the potential side power supply line 46L.
  • the holding circuit CSDi-1 includes input terminals s1 and s2.
  • the input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45.
  • the input terminal s2 is connected to the gate line GLi + 6 and receives the output (gate signal) of the gate driver 45.
  • the output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
  • the CS line CSLi-1 is connected to the holding circuit CSDi-1 of each CS driver 57 provided at both ends of the liquid crystal display device 100, respectively, so that the CS line CSLi-1 Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
  • FIG. 39 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 57 in the present configuration example 6.
  • the holding circuit CSDi-1 includes eight transistors MS1, MS2, MG, MH, MT1, MT2, MU1, and MU2.
  • it is an amorphous silicon TFT formed on a glass substrate.
  • the terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are respectively supplied with external signals S1, S2, and SEL1 (holding).
  • Target signal), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
  • the transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1.
  • the transistor MG has a gate electrode connected to the node netC1, a source electrode connected to vdd, and a drain electrode connected to the output terminal cs.
  • the transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
  • the transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
  • the transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1 and the source electrode of the transistor MU1. .
  • the transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2 and the source electrode of the transistor MU2. .
  • the transistor MU1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT1 and the node netC1, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
  • the transistor MU2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT2 and the node netC2, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
  • FIG. 40 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
  • the transistors MT1, MT2, MU1, and MU2 are turned on when S2 becomes a high potential state at a time delayed by 2H from S1, thereby the nodes netC1, An operation of lowering the potential of netC2 is performed.
  • the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached.
  • the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS. As a result, the potential of the node netC1 is lowered from Vselh1 to Vselh1 'and held.
  • Table 3 summarizes the results of simulations under conditions of the channel widths of the transistors MT1 and MT2 and the channel widths of the transistors MU1 and MU2.
  • FIG. 41 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time, as in FIG.
  • the simulation conditions in the configuration example 6 are the same as those in the configuration example 5.
  • FIG. 41 shows the relationship between the configuration examples 6 and REF (configuration example 1) for each of the nodes netC1 and netC2.
  • configuration example 1 configuration example 1
  • the case of the configuration example 6 is shown.
  • the average voltage of the node netC1 or netC2 can be reduced by about 2V in the configuration example 6 compared to the configuration example 1 even when the arrival time is 200 ⁇ s.
  • the operational reliability of the CS driver can be improved as in the above configuration examples 4 and 5. Further, in the present configuration example 6, compared to the configuration examples 4 and 5, the average voltage of the node netC1 or netC2 can be lowered even in the same arrival time, and thus the reliability of the CS driver is further improved.
  • the potential drop timings of the nodes netC1 and netC2 are delayed by 2H from the case of the configuration example 5.
  • the high potential period of the nodes netC1 and netC2 immediately after the nodes netC1 and netC2 are in the positive bias state is lengthened, and the arrival time of the output potential is shortened.
  • the influence on the average potential at this time is only slightly increased because the time of one frame is very long. Therefore, the same arrival time can be obtained with a lower average potential. Therefore, according to the present configuration example 6, the operational reliability of the CS driver can be improved as compared with the configuration example 5. Therefore, even when an amorphous silicon TFT is used as a transistor, display quality and operation reliability can be improved, and the frame of the liquid crystal display device can be reduced.
  • the timing for lowering the potentials of the nodes netC1 and netC2 can be arbitrarily determined within a predetermined range.
  • the potentials of the nodes netC1 and netC2 in the plus bias state may be lowered in multiple stages or continuously, instead of in two stages, and the holding circuit, CS The operation reliability of the driver can be improved.
  • each CS driver described above is not limited to the liquid crystal panel (configuration example 1) as shown in FIGS. 1 and 2, but can be applied to various forms of liquid crystal panels. Can do.
  • other configuration examples (configuration examples 7 and 8) of the present liquid crystal panel will be described.
  • FIG. 42 is an equivalent circuit diagram showing a part of the liquid crystal panel 113c in the configuration example 7 of the liquid crystal panel of the present invention.
  • the difference between the liquid crystal panel 113c of FIG. 42 and the liquid crystal panel 113a of FIG. 1 is that two data signal lines are provided corresponding to one pixel column, and pixels adjacent to each other in the column direction are connected to different data signal lines. The other points are the same. Further, in the present liquid crystal panel 113c, one data signal line and one scanning signal line are provided corresponding to one pixel, and a storage capacitor line shared between adjacent pixels in the column direction is provided. have.
  • each pixel will be described using the pixel 101 as an example.
  • the pixel electrode 5a (first pixel electrode) is connected to the data signal line 4y (second data signal line) via the transistor 15a (first transistor) connected to the scanning signal line 2ab.
  • 5b (second pixel electrode) is connected to the data signal line 4y (second data signal line) via the transistor 15b (second transistor) connected to the scanning signal line 2ab, and the pixel electrode 5a and the storage capacitor line 3x.
  • a storage capacitor Cha is formed between the pixel electrode 5b and the storage capacitor wiring 3y
  • a storage capacitor Chb is formed between the pixel electrode 5a and the common electrode com
  • a liquid crystal capacitor Cla is formed between the pixel electrode 5b and the common electrode com.
  • a liquid crystal capacitor Clb is formed.
  • each pixel electrode 5c, 5d, 5e 5f is connected to the data signal line 4x (first data signal line) via the respective transistors 15c, 15d, 15e, and 15f. In this way, the data signal lines to be connected are alternately switched in pixels adjacent in the column direction.
  • each of the pixel electrodes 5a and 5b of the pixel 101 forms a different storage capacitor wiring 3x and 3y and a storage capacitor Cha and Chb, respectively. Therefore, for example, after writing respective data signals to the pixel electrodes 5a and 5b, different holding capacitor wiring signals are supplied to the holding capacitor wirings 3x and 3y to increase the pixel electrode potential (pixel potential) by capacitive coupling or By performing the push-down, the pixel potentials (effective voltages) of the pixel electrodes 5a and 5b can be made different.
  • a subpixel including the pixel electrode 5a can be a positive subpixel having a positive polarity
  • a subpixel including the pixel electrode 5b can be a dark subpixel having a negative polarity.
  • a pixel division type liquid crystal display device can be realized.
  • the polarity of the data signal supplied to the data signal line is inverted every frame period, and two data signals corresponding to the same pixel column are used in the same horizontal scanning period. If a data signal having a reverse polarity is supplied to the two adjacent data signal lines 4y and 4X while supplying a data signal having a reverse polarity to the lines 4x and 4y, the column direction (up and down direction on the paper surface), the row direction (paper surface) Since the polarities of pixels adjacent to each other in the left-right direction are opposite to each other, so-called dot inversion driving is performed to improve display quality.
  • the polarity arrangement of the signal of the data signal line may be any.
  • FIG. 43 shows a specific configuration of the liquid crystal panel 113c in Configuration Example 7.
  • FIG. 43 is a plan view showing Configuration Example 7 of the liquid crystal panel 113c. 43, data signal lines 4x and 4y are provided along the left and right of the pixel 100 and the pixel 101, and data signal lines 4X and 4Y are provided along the left and right of the pixel 103 and the pixel 104.
  • a storage capacitor wiring 3w is provided so as to overlap with one of the edge portions of the pixels 100 and 103, and a storage capacitor wiring 3x is provided so as to overlap with the other of the edge portions of the pixels 100 and 103 and one of the edge portions of the pixels 101 and 104.
  • the storage capacitor wiring 3y is provided so as to overlap the other of the edge portions of the pixels 101 and 104.
  • a scanning signal line 2cd is arranged so as to cross the central part of the pixels 100, 103
  • a scanning signal line 2ab is arranged so as to cross the central part of the pixels 101, 104.
  • the pixel electrodes 5c and 5d are arranged in the column direction between the storage capacitor lines 3w and 3x, and in the pixel 101, the pixel electrodes 5a and 5b are arranged between the storage capacitor lines 3x and 3y.
  • the pixel electrodes 5C and 5D are arranged in the column direction between the storage capacitor lines 3w and 3x.
  • the pixel electrodes 5A and 5B are arranged in the column direction between the storage capacitor lines 3x and 3y.
  • the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2ab.
  • the source electrode 16ab is connected to the data signal line 4y also serving as both source electrodes of the transistors 15a and 15b.
  • the drain electrode 17a is connected to the drain lead wire 18a
  • the drain lead wire 18a is connected to the capacitor electrode 19a
  • the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a.
  • the drain electrode 17b is connected to the drain lead wire 18b
  • the drain lead wire 18b is connected to the capacitor electrode 19b
  • the capacitor electrode 19b is connected to the pixel electrode 5b through the contact hole 20b.
  • the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film
  • the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Cha (see FIG. 42) is formed.
  • the capacitor electrode 19b overlaps the storage capacitor wiring 3y via the gate insulating film
  • the pixel electrode 5b overlaps the storage capacitor wiring 3y via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Chb (see FIG. 42) is formed.
  • the configuration of other pixels is the same as that of the pixel 101. However, as described above, the connection between the data signal line and the pixel electrode is either left or right. .
  • the CS driver and the holding circuit may be any of the CS driver and the holding circuit in the above configuration examples 1 to 6, respectively.
  • the present liquid crystal panel 113c is suitable for a high-speed driving panel having a frame rate of 240 Hz (4 ⁇ speed), 360 Hz (6 ⁇ speed), and the like, and is also suitable for a 3D liquid crystal display device that performs 3D (stereoscopic) image display using the panel.
  • the arrangement of pixel electrodes and data signal lines as shown in FIG. 42 or FIG. 43 that is, two data signal lines are provided for one pixel column arranged in the column direction, and adjacent pixels in the column direction are alternately left and right.
  • the arrangement in which the data signal is obtained from the data signal line is selected by selecting two scanning signal lines at the same time in driving and sequentially scanning, so that each pixel is compared with the case where the scanning signal lines are sequentially scanned one by one. It is known that the time for charging the electrode to the potential of the data signal line (pixel charging time) can be doubled. Therefore, the pixel is not insufficiently charged, and such an arrangement of the pixel electrode and the data signal line is suitable for the above-described high-speed drive panel.
  • the configuration example 7 is particularly effective in reducing the frame.
  • FIG. 44 is an equivalent circuit diagram showing a part of the liquid crystal panel 113d in the configuration example 8 of the liquid crystal panel of the present invention.
  • data signal lines 4x and 4X extending in the column direction (up and down direction in the figure)
  • scanning signal lines 2c and 2a extending in the row direction (left and right direction in the figure)
  • rows extending in the row direction (left and right direction in the figure)
  • one data signal line, one scanning signal line, and one storage capacitor line are provided corresponding to one pixel.
  • one pixel includes two pixel electrodes, one of which surrounds the other, the pixel 100 includes a pixel electrode 5d and a pixel electrode 5c surrounding the pixel electrode, and the pixel 101 includes the pixel electrode 5b and A pixel electrode 5a surrounding the pixel electrode 5a and a pixel electrode 5C surrounding the pixel electrode 5D are provided.
  • the pixel 104 includes a pixel electrode 5B and a pixel electrode 5A surrounding the pixel electrode 5A. .
  • each pixel Since the structure of each pixel is the same, the following description will be given mainly using the pixel 101 as an example.
  • the pixel electrode 5a is connected to the data signal line 4x via the transistor 15a connected to the scanning signal line 2a
  • the pixel electrode 5b is connected to the data signal via the transistor 15b connected to the scanning signal line 2a.
  • the storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor wiring 3a
  • the liquid crystal capacitor Cla is formed between the pixel electrode 5a and the common electrode com
  • the liquid crystal capacitor is connected between the pixel electrode 5b and the common electrode com. Clb is formed.
  • each of the pixel electrodes 5a and 5b is connected to the same data signal line 4x via the respective transistors 15a and 15b connected to the same scanning signal line 2ab, and thus the pixel electrodes 5a and 5b.
  • the same signal potential (data signal) can be directly supplied to each through the transistors 15a and 15b. Since the pixel electrode 5a forms the storage capacitor line 3a and the storage capacitor Cha, for example, after writing a data signal to the pixel electrodes 5a and 5b, the storage capacitor line signal is changed, thereby causing capacitive coupling. By raising or lowering the pixel electrode potential (pixel potential), the pixel potentials of the pixel electrodes 5a and 5b can be made different.
  • the sub-pixel including the pixel electrode 5a can be a dark sub-pixel
  • the sub-pixel including the pixel electrode 5b can be a bright sub-pixel.
  • a pixel division type liquid crystal display device can be realized.
  • FIG. 45 shows a specific configuration of the liquid crystal panel 113d in the present configuration example 8.
  • FIG. 45 is a plan view showing Configuration Example 8 of the liquid crystal panel 113d.
  • transistors 15a and 15b are arranged in the vicinity of the intersection of the data signal line 4x and the scanning signal line 2a, and a rectangular pixel electrode is formed in the pixel region defined by the data signal lines 4x and 4X.
  • 5b and a rectangular pixel electrode 5a surrounding the same are arranged, and the storage capacitor wiring 3a extends in the row direction across the pixel electrode 5a.
  • the shape of the pixel electrodes 5a and 5b is not particularly limited as long as one pixel electrode surrounds the other pixel electrode.
  • the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2a.
  • the source electrode 16ab is connected to the data signal line 4x also serving as both source electrodes of the transistors 15a and 15b.
  • the drain electrode 17a is connected to the drain lead wire 18a
  • the drain lead wire 18a is connected to the capacitor electrode 19a
  • the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a.
  • the drain electrode 17b is connected to the drain lead wiring 18b
  • the drain lead wiring 18b is connected to the pixel electrode 5b through the contact hole 20b.
  • the capacitor electrode 19a overlaps the storage capacitor wiring 3a via the gate insulating film
  • the pixel electrode 5a overlaps the storage capacitor wiring 3a via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Cha (see FIG. 44) is formed.
  • the pixel electrode 5b is not provided with a capacitor electrode or a storage capacitor wire, and is not provided with a storage capacitor by the storage capacitor wire. Since the pixel electrode 5b is a bright pixel, considering the VT curve (liquid crystal applied voltage-panel transmittance curve) of the liquid crystal panel, even if the potential of the pixel electrode 5b slightly changes between frames, the influence of the display luminance change Is difficult to appear. Further, in the present configuration example 8, since the storage capacitor using the storage capacitor wiring is not provided for one of the sub-pixels, the number of CS driver outputs (CS signals) can be reduced and the configuration of the CS driver can be simplified. It is more advantageous to narrow the frame.
  • each of the liquid crystal panels shown in the configuration examples 1 to 7 has a configuration in which each of a plurality of pixel electrodes formed in one pixel region forms a storage capacitor line and a storage capacitor.
  • the present invention is not limited to this, and as shown in Structural Example 8, it is sufficient that at least one pixel electrode in one pixel electrode forms a storage capacitor line and a storage capacitor.
  • at least one pixel electrode in one pixel electrode forms a storage capacitor line and a storage capacitor.
  • only one pixel electrode (5a) forms a storage capacitor line and a storage capacitor.
  • a storage capacitor wiring signal is supplied to the storage capacitor wiring to raise or lower the pixel electrode potential (pixel potential) by capacitive coupling.
  • the pixel potential of the pixel electrode (5a) can be changed. Therefore, since one pixel can be composed of a bright subpixel and a dark subpixel, a pixel division type liquid crystal display device can be realized.
  • a storage capacitor wiring shared by both pixels is provided between pixels adjacent in the column direction, but this embodiment is not limited thereto. Instead, in each of the liquid crystal panels of the present invention shown in Structural Examples 1 to 7, a storage capacitor wiring that is substantially shared by both pixels may be provided between pixels adjacent in the column direction. In other words, in the present invention, it is sufficient if there is a storage capacitor wiring that is substantially shared and has a feature such that the same signal is given to both pixels corresponding to pixels adjacent in the column direction. It may consist of books.
  • FIG. 46 is an equivalent circuit diagram showing a part of the liquid crystal panel 113e in the configuration example 9 of the liquid crystal panel of the present invention.
  • the data signal lines 4x and 4X extending in the column direction (vertical direction in the figure), and the scanning signal lines 2c, 2d, and 2a extending in the row direction (horizontal direction in the figure).
  • 2b pixels 100 to 107 arranged in the row and column directions, storage capacitor lines 3c, 3d, 3a, and 3b, and a common electrode (counter electrode) com, and the structure of each pixel is the same.
  • one data signal line, one scanning signal line, one storage capacitor line, and one pixel electrode are provided corresponding to one pixel. Since the structure of each pixel is the same, the following description will be given mainly using the pixel 102 as an example.
  • the pixel electrode 5a is connected to the data signal line 4x via the transistor 15a connected to the scanning signal line 2a, a storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor line 3a, and the pixel electrode 5a.
  • a liquid crystal capacitor Cla is formed between the common electrodes com.
  • FIG. 47 shows a specific configuration of the liquid crystal panel 113e in the present configuration example 9.
  • FIG. 47 is a plan view showing Configuration Example 9 of the liquid crystal panel 113e.
  • the transistor 15a is disposed near the intersection of the data signal line 4x and the scanning signal line 2a, and the pixel electrode 5a is disposed in the pixel region defined by the data signal lines 4x and 4X.
  • the storage capacitor line 3a extends in the row direction across the pixel electrode 5a.
  • the semiconductor layer 22a, the source electrode 16a of the transistor 15a, and the drain electrode 17a are formed on the scanning signal line 2a.
  • the drain electrode 17a is connected to the drain lead wire 18a
  • the drain lead wire 18a is connected to the capacitor electrode 19a
  • the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a.
  • the capacitor electrode 19a overlaps the storage capacitor wiring 3a via the gate insulating film
  • the pixel electrode 5a overlaps the storage capacitor wiring 3a via the gate insulating film and the interlayer insulating film.
  • a storage capacitor Cha (see FIG. 46) is formed.
  • the pixel electrode 5a forms the storage capacitor line 3a and the storage capacitor Cha, for example, after writing the data signal to the pixel electrode 5a, the storage capacitor line signal is changed,
  • the pixel electrode potential (pixel potential) can be pushed up or pushed down by capacitive coupling. Therefore, since the drive voltage of the source driver 11 (see FIG. 8) can be lowered, the power consumption of the liquid crystal display device 110 can be reduced.
  • the “polarity of the potential” in the present application means a potential not less than a reference potential (plus) or not more than a reference potential (minus).
  • the reference potential may be Vcom (common potential) which is the potential of the common electrode (counter electrode) or any other potential.
  • Vcom common potential
  • the polarity arrangement of a large number of data signal lines may be any arrangement, and all adjacent data signal lines may have opposite polarities.
  • the polarity of the data signal lines may be reversed every two lines, and the effect of the present invention is not affected by the polarity arrangement of the data signal lines. There is an effect.
  • FIG. 48 is a block diagram showing a configuration of a liquid crystal display device 800 for a television receiver.
  • the liquid crystal display device 800 includes a liquid crystal display unit 84, a Y / C separation circuit 80, a video chroma circuit 81, an A / D converter 82, a liquid crystal controller 83, a backlight drive circuit 85, a backlight 86, A microcomputer 87 and a gradation circuit 88 are provided.
  • the liquid crystal display unit 84 includes a liquid crystal panel and a source driver and a gate driver for driving the liquid crystal panel.
  • a composite color video signal Scv as a television signal is input from the outside to the Y / C separation circuit 80, where it is separated into a luminance signal and a color signal.
  • These luminance signals and color signals are converted into analog RGB signals corresponding to the three primary colors of light by the video chroma circuit 81, and further, the analog RGB signals are converted into digital RGB signals by the A / D converter 82. .
  • This digital RGB signal is input to the liquid crystal controller 83.
  • the Y / C separation circuit 80 also extracts horizontal and vertical synchronization signals from the composite color video signal Scv input from the outside, and these synchronization signals are also input to the liquid crystal controller 83 via the microcomputer 87.
  • the liquid crystal display unit 84 receives a digital RGB signal from the liquid crystal controller 83 at a predetermined timing together with a timing signal based on the synchronization signal.
  • the gradation circuit 88 generates gradation potentials for the three primary colors R, G, and B for color display, and these gradation potentials are also supplied to the liquid crystal display unit 84.
  • the backlight drive is performed under the control of the microcomputer 87.
  • the circuit 85 drives the backlight 86, so that light is irradiated to the back surface of the liquid crystal panel.
  • the microcomputer 87 controls the entire system including the above processing.
  • the video signal (composite color video signal) input from the outside includes not only a video signal based on television broadcasting but also a video signal captured by a camera, a video signal supplied via an Internet line, and the like.
  • the liquid crystal display device 800 can display images based on various video signals.
  • a tuner unit 90 is connected to the liquid crystal display device 800, whereby the present television receiver 601 is configured.
  • the tuner unit 90 extracts a signal of a channel to be received from a received wave (high frequency signal) received by an antenna (not shown), converts it to an intermediate frequency signal, and detects the intermediate frequency signal, thereby detecting the television signal.
  • a composite color video signal Scv as a signal is taken out.
  • the composite color video signal Scv is input to the liquid crystal display device 800 as described above, and an image based on the composite color video signal Scv is displayed by the liquid crystal display device 800.
  • FIG. 50 is an exploded perspective view showing an example of the configuration of the present television receiver.
  • the present television receiver 601 includes a first casing 801 and a second casing 806 in addition to the liquid crystal display device 800 as its constituent elements. It is configured to be sandwiched between one housing 801 and a second housing 806.
  • the first housing 801 is formed with an opening 801a through which an image displayed on the liquid crystal display device 800 is transmitted.
  • the second housing 806 covers the back side of the liquid crystal display device 800, is provided with an operation circuit 805 for operating the liquid crystal display device 800, and a support member 808 is attached below. Yes.
  • the present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge and combinations thereof are also included in the embodiments of the present invention.
  • the active matrix substrate and the liquid crystal panel including the active matrix substrate of the present invention are suitable for a liquid crystal television, for example.

Abstract

Disclosed is an active matrix substrate which is provided with: a data signal line; a scanning signal line (GLi); a transistor connected to the data signal line and the scanning signal line (GLi); and retention capacity wiring (CSLi) which forms a retention capacity with a pixel electrode included in a pixel. Retention capacity wiring signals (CS signals) for driving the retention capacity wiring (CSLi) are supplied to the retention capacity wiring (CSLi) from both the end portions of the retention capacity wiring. Thus, display qualities of a liquid crystal display device are improved.

Description

アクティブマトリクス基板、液晶パネル、液晶表示装置、テレビジョン受像機Active matrix substrate, liquid crystal panel, liquid crystal display device, television receiver
 本発明は、保持容量配線を備えたアクティブマトリクス基板およびこれを用いた液晶表示装置に関する。 The present invention relates to an active matrix substrate having a storage capacitor wiring and a liquid crystal display device using the same.
 従来、液晶表示装置において、画素電極にデータ信号を書き込んだ後に、保持容量配線(CSライン)に保持容量配線信号(CS信号)を供給して、画素電極電位(画素電位)の突き上げまたは突き下げを行う技術が提案されている(例えば特許文献1参照)。 Conventionally, in a liquid crystal display device, after a data signal is written to a pixel electrode, a storage capacitor wiring signal (CS signal) is supplied to the storage capacitor wiring (CS line) to raise or lower the pixel electrode potential (pixel potential). The technique which performs is proposed (for example, refer patent document 1).
 図51は、特許文献1の表示装置1000の形態を模式的に示す平面図である。この表示装置1000では、維持信号生成回路(保持容量配線駆動回路)700a、700bが、各画素に対する維持信号(CS信号)の電圧を、同じ画素に対するデータ信号の印加が終了した直後から所定時間が経過するまでに変化させる。データ信号が正極性である場合は、維持信号の電圧を低レベルから高レベルに変化させ、データ信号が負極性である場合は、維持信号の電圧を高レベルから低レベルに変化させる。 FIG. 51 is a plan view schematically showing the form of the display device 1000 of Patent Document 1. FIG. In this display device 1000, the sustain signal generation circuits (retention capacitor line drive circuits) 700a and 700b set the voltage of the sustain signal (CS signal) to each pixel for a predetermined time immediately after the application of the data signal to the same pixel is completed. Change by the time. When the data signal is positive, the sustain signal voltage is changed from a low level to a high level, and when the data signal is negative, the sustain signal voltage is changed from a high level to a low level.
 これにより、画素電極の電位の突き上げまたは突き下げを行うことができるため、データ駆動部500の消費電力を低減することができる。 Thereby, since the potential of the pixel electrode can be pushed up or pushed down, the power consumption of the data driver 500 can be reduced.
日本国公開特許公報「特開2008-107831号公報(公開日:2008年5月8日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2008-107831 (Publication Date: May 8, 2008)”
 しかしながら、上記従来の構成では、液晶表示装置の表示品位が低下するという問題が生じる。 However, the conventional configuration has a problem that the display quality of the liquid crystal display device is lowered.
 一般に、CSラインでは、設定された規定時間以内に、目標となる電位(目標電位)に到達することが重要である。これは、画素電極がCSラインとの間に形成される保持容量を有しているため、目標電位および到達電位の間にわずかでも電位差が生じると、画素電位に影響を与え、所望の表示諧調が得られないためである。 Generally, in the CS line, it is important to reach the target potential (target potential) within the set specified time. This is because the pixel electrode has a storage capacitor formed between the CS line and a slight potential difference between the target potential and the reaching potential affects the pixel potential and the desired display gradation. This is because cannot be obtained.
 ここで、図51の表示装置では、CSラインの一端がCSドライバ(保持容量配線駆動回路)に接続されているため、CSラインの到達電位は、1本のCSラインにおいてCSドライバに近い側と遠い側とで分布が生じ、この分布が画素電位の分布となり、最終的には液晶表示装置において輝度ムラとして視認され、表示品位の低下を引き起こす。 In the display device of FIG. 51, since one end of the CS line is connected to a CS driver (retention capacitor line driving circuit), the ultimate potential of the CS line is the side closer to the CS driver in one CS line. A distribution is generated on the far side, and this distribution becomes a distribution of pixel potentials. Finally, it is visually recognized as luminance unevenness in the liquid crystal display device, causing a reduction in display quality.
 また、図51に示すように、CSドライバが表示装置の両端部に配置され、隣り合うCSラインのそれぞれが、互いに異なる側のCSドライバに接続されている構成では、各CSドライバの出力電位のわずかな違い、あるいは、各CSドライバからの距離の違いにより、例えば1ライン毎に周期的な輝度変化が生じ、輝度ムラとして視認され、表示品位の低下を引き起こす。 Further, as shown in FIG. 51, in the configuration in which the CS drivers are arranged at both ends of the display device and the adjacent CS lines are connected to the CS drivers on different sides, the output potential of each CS driver is Due to a slight difference or a difference in distance from each CS driver, for example, a periodic luminance change is generated for each line, which is visually recognized as luminance unevenness, causing a reduction in display quality.
 本発明は、上記問題点に鑑み、液晶表示装置の表示品位の向上を図ることを目的とする。 In view of the above problems, an object of the present invention is to improve the display quality of a liquid crystal display device.
 本発明に係るアクティブマトリクス基板は、上記課題を解決するために、
 データ信号線と、走査信号線と、上記データ信号線および走査信号線に接続されたトランジスタと、画素に含まれる画素電極と保持容量を形成する保持容量配線とを備えたアクティブマトリクス基板であって、
 各保持容量配線には、その両端部から、該保持容量配線を駆動するための保持容量配線信号が供給されることを特徴とする。
In order to solve the above problems, an active matrix substrate according to the present invention is provided.
An active matrix substrate comprising a data signal line, a scanning signal line, a transistor connected to the data signal line and the scanning signal line, a pixel electrode included in a pixel, and a storage capacitor line forming a storage capacitor ,
Each storage capacitor line is supplied with a storage capacitor line signal for driving the storage capacitor line from both ends thereof.
 上記の構成によれば、各保持容量配線は、その両端部から例えば同時に保持容量配線信号(CS信号)が供給されるため、一方側からCS信号が供給される従来の構成と比較して、保持容量配線におけるCS信号の到達時間を減少(最大約75%減少)させることができる。よって、1本の保持容量配線における目標電位および到達電位の差に起因する画素電位の分布(不均一)を低減することができるため、表示品位を向上させることができる。 According to the above configuration, each storage capacitor wiring is supplied with a storage capacitor wiring signal (CS signal) simultaneously from both ends thereof, for example, compared with the conventional configuration in which a CS signal is supplied from one side, The arrival time of the CS signal in the storage capacitor wiring can be reduced (up to about 75% reduction). Accordingly, the distribution (non-uniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one storage capacitor wiring can be reduced, so that display quality can be improved.
 また、上記アクティブマトリクス基板では、上記保持容量配線信号を出力する複数の保持容量配線駆動回路が、ガラス基板上にモノリシックに形成されている構成とすることもできる。 In the active matrix substrate, a plurality of storage capacitor wiring drive circuits that output the storage capacitor wiring signal may be monolithically formed on a glass substrate.
 また、上記アクティブマトリクス基板では、上記保持容量配線信号を出力する複数の保持容量配線駆動回路と、走査信号線駆動回路とが、モノリシックに形成されている構成とすることもできる。 In the active matrix substrate, a plurality of storage capacitor line drive circuits that output the storage capacitor line signals and the scanning signal line drive circuit may be monolithically formed.
 ここで、従来、保持容量配線は複数本ごとに保持容量配線幹に接続され、保持容量配線幹が、表示領域外(液晶パネルの周辺領域)において、外部に接続されている。 Here, conventionally, a plurality of storage capacitor lines are connected to the storage capacitor wiring trunk, and the storage capacitor wiring trunk is connected to the outside outside the display area (peripheral area of the liquid crystal panel).
 保持容量配線幹の本数(N)は、求める表示性能に応じて決定され、Nが小さい方が額縁サイズを小さくできるが、表示性能の観点から、N=12程度とした液晶表示装置が多く量産されている。 The number of storage capacitor wiring trunks (N) is determined according to the required display performance. The smaller the N, the smaller the frame size, but from the viewpoint of display performance, many liquid crystal display devices with N = 12 are mass-produced. Has been.
 このような保持容量配線幹に負荷される電気容量(以下、単に「容量」と称す)は、液晶パネル内において、保持容量配線幹自体が他の電極および配線と形成する容量と、保持容量配線幹に接続された各保持容量配線が他の電極および配線と形成する容量との合計になり、特に保持容量配線幹に接続される保持容量配線の本数に大きな影響を受ける。そのため、1本の保持容量配線幹に接続される保持容量配線の本数が多くなると、該保持容量配線幹に負荷される容量は非常に大きくなる。また、保持容量配線幹は、列方向に長く延伸している。このような構成では、外部からの信号電位が保持容量配線幹および保持容量配線内に速やかに伝わらず、画素電位に面内分布が生じ、表示品位が低下するという問題がある。また、このような問題を防ぐために、保持容量配線幹の配線幅を太くして保持容量配線幹の電気抵抗(以下、単に「抵抗」と称す)を小さくする方法が考えられるが、この方法では、液晶パネルの周辺領域に占める保持容量配線幹の面積サイズが大きくなってしまう。特にアクティブマトリクス基板を高速駆動液晶パネルに用いる場合、特に保持容量配線幹内の信号遅延による表示品位の低下が顕著に現れていた。 An electric capacity (hereinafter simply referred to as “capacitance”) loaded on such a storage capacitor wiring trunk includes a capacitance formed by the storage capacitor wiring trunk itself with other electrodes and wiring in the liquid crystal panel, and a storage capacitor wiring. Each storage capacitor wiring connected to the trunk is a total of the capacitance formed with other electrodes and wirings, and is particularly affected by the number of storage capacitor wirings connected to the storage capacitor wiring trunk. Therefore, when the number of storage capacitor lines connected to one storage capacitor line trunk increases, the capacity loaded on the storage capacitor line trunk becomes very large. The storage capacitor wiring trunk extends long in the column direction. In such a configuration, the signal potential from the outside is not quickly transmitted to the storage capacitor wiring trunk and the storage capacitor wiring, and there is a problem that in-plane distribution occurs in the pixel potential and display quality is deteriorated. In order to prevent such a problem, a method of reducing the electrical resistance (hereinafter simply referred to as “resistance”) of the storage capacitor wiring trunk by increasing the wiring width of the storage capacitor wiring trunk can be considered. Therefore, the area size of the storage capacitor wiring trunk in the peripheral area of the liquid crystal panel is increased. In particular, when an active matrix substrate is used for a high-speed drive liquid crystal panel, the display quality deteriorates particularly due to signal delay in the storage capacitor wiring trunk.
 この点、上記の構成によれば、保持容量配線駆動回路は、ガラス基板上にモノリシックに形成されている、あるいは、走査信号線駆動回路とともにIC基板上にモノリシックに形成されている。そのため、上記保持容量配線幹を省略することができるため、液晶パネルの額縁面積を小さくするとともに、表示品位の低下を防ぐことができる。 In this respect, according to the above configuration, the storage capacitor line driving circuit is formed monolithically on the glass substrate, or formed monolithically on the IC substrate together with the scanning signal line driving circuit. Therefore, since the storage capacitor wiring trunk can be omitted, the frame area of the liquid crystal panel can be reduced and the display quality can be prevented from being lowered.
 また、上記アクティブマトリクス基板では、上記保持容量配線を駆動する保持容量配線駆動回路は、画素電極と保持容量を形成する保持容量配線に上記保持容量配線信号を供給することによって、データ信号線から該画素電極に書き込まれた画素電位を該画素電位の極性に応じた向きに変化させる構成とすることもできる。 In the active matrix substrate, the storage capacitor line driving circuit for driving the storage capacitor line supplies the storage capacitor line signal to the storage capacitor line that forms the pixel electrode and the storage capacitor, thereby supplying the storage capacitor line signal from the data signal line. A configuration in which the pixel potential written to the pixel electrode is changed in a direction corresponding to the polarity of the pixel potential may be employed.
 また、上記アクティブマトリクス基板では、
 1つの画素領域内に複数の画素電極が設けられ、
 1つの画素領域内において、各画素電極と該画素電極に対応する保持容量配線との間に形成される各保持容量が、互いに異なっている構成とすることもできる。
In the active matrix substrate,
A plurality of pixel electrodes are provided in one pixel region,
In one pixel region, each storage capacitor formed between each pixel electrode and a storage capacitor line corresponding to the pixel electrode may be different from each other.
 上記の構成によれば、複数の画素電極と該画素電極に対応する保持容量配線との間に保持容量が形成されるため、例えば、2つの画素電極にデータ信号を書き込んだ後に、それぞれの画素電極に対応する保持容量配線に互いに異なる保持容量配線信号を供給して、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことにより、各画素電極の画素電位を互いに異ならせることができる。これにより、一方の画素電極を含む副画素を明副画素、他方の画素電極を含む副画素を暗副画素とすることができる。すなわち、画素分割方式の液晶表示装置を実現できる。なお、1つの画素領域内において、各画素電極と該画素電極に対応する保持容量配線との間に形成される各保持容量が、互いに異なっている構成とすれば各保持容量の大きさを調整することで、各画素電極電位の突き上げまたは突き下げの大きさを適宜調整して、効率的な画素電極レイアウトが可能になる。 According to the above configuration, since the storage capacitor is formed between the plurality of pixel electrodes and the storage capacitor wiring corresponding to the pixel electrode, for example, after writing data signals to the two pixel electrodes, By supplying different holding capacitor wiring signals to the holding capacitor wirings corresponding to the electrodes and raising or lowering the pixel electrode potential (pixel potential) by capacitive coupling, the pixel potentials of the pixel electrodes are made different from each other. Can do. Thereby, the sub-pixel including one pixel electrode can be a bright sub-pixel, and the sub-pixel including the other pixel electrode can be a dark sub-pixel. In other words, a pixel division type liquid crystal display device can be realized. In addition, if each storage capacitor formed between each pixel electrode and the storage capacitor wiring corresponding to the pixel electrode is different from each other in one pixel region, the size of each storage capacitor is adjusted. By doing so, it is possible to appropriately adjust the size of the push-up or push-down of each pixel electrode potential, thereby enabling an efficient pixel electrode layout.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 1つの保持容量配線駆動内部回路は、少なくとも1本の保持容量配線に上記保持容量配線信号を供給する構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
One storage capacitor line driving internal circuit may be configured to supply the storage capacitor line signal to at least one storage capacitor line.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 上記保持容量配線駆動内部回路は、全ての保持容量配線に対して、1本おきに設けられ、
 隣り合う2本の保持容量配線において、一方の保持容量配線には上記保持容量配線駆動内部回路から出力された上記保持容量配線信号が供給され、他方の保持容量配線には外部の信号源から出力された信号が供給される構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
The retention capacitor line drive internal circuit is provided every other retention capacitor line,
In two adjacent storage capacitor lines, one storage capacitor line is supplied with the storage capacitor line signal output from the storage capacitor line driving internal circuit, and the other storage capacitor line is output from an external signal source. It is also possible to adopt a configuration in which the processed signal is supplied.
 これにより、1本の保持容量配線に対応して1つの保持容量配線駆動内部回路が設けられている構成と比較して、保持容量配線駆動内部回路の数を減らすことができるため、液晶パネルの額縁面積を小さくすることができる。 As a result, the number of storage capacitor line drive internal circuits can be reduced as compared with a configuration in which one storage capacitor line drive internal circuit is provided corresponding to one storage capacitor line. The frame area can be reduced.
 また、上記アクティブマトリクス基板では、
 1つの画素領域内に、第1および第2画素電極と、上記走査信号線に接続された第1および第2トランジスタとを備え、
 上記第1画素電極は、上記第1トランジスタを介して上記データ信号線に接続されるとともに、上記保持容量配線と第1保持容量を形成し、上記第2画素電極は、上記第2トランジスタを介して上記データ信号線に接続されるとともに、上記保持容量配線と第2保持容量を形成している構成とすることもできる。
In the active matrix substrate,
In one pixel region, the first and second pixel electrodes, and first and second transistors connected to the scanning signal line,
The first pixel electrode is connected to the data signal line through the first transistor and forms the storage capacitor line and the first storage capacitor, and the second pixel electrode is connected through the second transistor. In addition, the storage capacitor line and the second storage capacitor may be formed while being connected to the data signal line.
 また、上記アクティブマトリクス基板では、
 各データ信号線の延伸方向を列方向として、
 第1および第2画素領域がこの順に列方向に並べられるとともに、各画素領域内において、第1および第2画素電極がこの順に列方向に並べられ、
 上記第1画素領域内の上記第2画素電極と上記第2画素領域内の上記第1画素電極とが隣り合っており、それぞれの画素電極が、同一の保持容量配線と保持容量を形成している構成とすることもできる。
In the active matrix substrate,
The extending direction of each data signal line is the column direction,
The first and second pixel regions are arranged in this order in the column direction, and in each pixel region, the first and second pixel electrodes are arranged in this order in the column direction,
The second pixel electrode in the first pixel region and the first pixel electrode in the second pixel region are adjacent to each other, and each pixel electrode forms the same storage capacitor line and storage capacitor. It can also be set as the structure which is.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 各保持容量配線駆動内部回路に保持対象信号が入力され、
 自段よりも後の後段の画素に対応する走査信号線に供給される走査信号がアクティブになると、自段の画素に対応する保持容量配線駆動内部回路が上記保持対象信号を取り込んでこれを保持し、
 自段の画素に対応する保持容量配線駆動内部回路の出力を、自段の画素に対応する保持容量配線に、上記保持容量配線信号として供給する構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
Retention target signal is input to each retention capacitor wiring drive internal circuit,
When the scanning signal supplied to the scanning signal line corresponding to the subsequent pixel after the own stage becomes active, the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it. And
It is also possible to supply the output of the storage capacitor line driving internal circuit corresponding to the pixel of the own stage as the storage capacitor line signal to the storage capacitor line corresponding to the pixel of the own stage.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 各保持容量配線駆動内部回路に保持対象信号が入力され、
 自段よりも後の後段の画素に対応する走査信号線に供給される走査信号がアクティブになると、自段の画素に対応する保持容量配線駆動内部回路が上記保持対象信号を取り込んでこれを保持し、
 自段の画素に対応する保持容量配線駆動内部回路の出力を、自段の画素に対応する保持容量配線および自段よりも前の前段の画素に対応する保持容量配線に、上記保持容量配線信号として供給する構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
Retention target signal is input to each retention capacitor wiring drive internal circuit,
When the scanning signal supplied to the scanning signal line corresponding to the subsequent pixel after the own stage becomes active, the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it. And
The output of the storage capacitor wiring driving internal circuit corresponding to the pixel of the own stage is transferred to the storage capacitor wiring corresponding to the pixel of the own stage and the storage capacitor wiring corresponding to the pixel of the previous stage before the own stage. It can also be set as the structure supplied as.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 各保持容量配線駆動内部回路に保持対象信号が入力され、
 自段に対応する保持容量配線駆動内部回路は、
 自段よりも後の後段の画素に対応する走査信号線に供給される走査信号を入力する第1入力部と、上記保持対象信号を入力する第2および第3入力部と、上記保持容量配線信号を出力する出力部とを備え、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号が非アクティブの期間では、上記第2および/または第3入力部に入力された上記保持対象信号の電位を保持する構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
Retention target signal is input to each retention capacitor wiring drive internal circuit,
The storage capacitor wiring drive internal circuit corresponding to its own stage is
A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal,
When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
In the period when the scanning signal input to the first input unit is inactive, the potential of the holding target signal input to the second and / or third input unit may be held.
 また、上記アクティブマトリクス基板では、
 上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
 各保持容量配線駆動内部回路に保持対象信号が入力され、
 自段に対応する保持容量配線駆動内部回路は、
 自段よりも後の後段の画素に対応する走査信号線に供給される走査信号を入力する第1入力部と、上記保持対象信号を入力する第2および第3入力部と、上記保持容量配線信号を出力する出力部とを備え、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号が非アクティブになり、かつ、上記後段の画素よりも後の画素に対応する走査信号線に供給される走査信号がアクティブになったときに、上記第2入力部および/または第3入力部に入力され保持されている上記保持対象信号の電位を引き下げる構成とすることもできる。
In the active matrix substrate,
The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
Retention target signal is input to each retention capacitor wiring drive internal circuit,
The storage capacitor wiring drive internal circuit corresponding to its own stage is
A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal,
When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
When the scanning signal input to the first input unit becomes inactive and a scanning signal supplied to a scanning signal line corresponding to a pixel after the subsequent pixel becomes active, A configuration in which the potential of the signal to be held input and held in the second input unit and / or the third input unit is lowered may be employed.
 また、上記アクティブマトリクス基板では、
 第2保持対象信号を入力する第4および第5入力部をさらに備え、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
 上記第1入力部に入力された上記走査信号が非アクティブになり、かつ、上記後段の画素よりも後の画素に対応する走査信号線に供給される走査信号がアクティブになったときに上記第4入力部および/または第5入力部に入力される上記第2保持対象信号により、上記第2入力部および/または第3入力部に入力され保持されている上記保持対象信号の電位を引き下げる構成とすることもできる。
In the active matrix substrate,
A fourth and a fifth input unit for inputting the second holding target signal;
When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
When the scanning signal input to the first input unit becomes inactive and the scanning signal supplied to the scanning signal line corresponding to the pixel after the subsequent pixel becomes active, the first signal is input. Configuration for lowering the potential of the holding target signal input to and held in the second input unit and / or the third input unit by the second holding target signal input to the four input unit and / or the fifth input unit It can also be.
 また、上記アクティブマトリクス基板では、
 各データ信号線の延伸方向を列方向として、複数の画素電極を含む画素領域が行および列方向に並べられ、1つの画素領域列に対応して第1および第2データ信号線が設けられるとともに、1つの画素領域行に対応して1本の走査信号線が設けられ、
 列方向に隣り合う2つの画素領域の一方に含まれる各画素電極にトランジスタを介して接続されるデータ信号線と、該2つの画素領域の他方に含まれる各画素電極にトランジスタを介して接続されるデータ信号線とが異なる構成とすることもできる。
In the active matrix substrate,
The pixel regions including a plurality of pixel electrodes are arranged in the row and column directions with the extending direction of each data signal line as the column direction, and first and second data signal lines are provided corresponding to one pixel region column. One scanning signal line is provided corresponding to one pixel region row,
A data signal line connected via a transistor to each pixel electrode included in one of two pixel areas adjacent in the column direction, and a pixel signal connected via a transistor to each pixel electrode included in the other of the two pixel areas. Different data signal lines can be used.
 また、上記アクティブマトリクス基板では、隣り合う走査信号線を2本ずつ同時に選択する構成とすることもできる。 Also, the active matrix substrate may be configured to select two adjacent scanning signal lines simultaneously.
 また、上記アクティブマトリクス基板では、上記第1データ信号線および上記第2データ信号線には、互いに逆極性のデータ信号が供給される構成とすることもできる。 In the active matrix substrate, data signals having opposite polarities can be supplied to the first data signal line and the second data signal line.
 また、上記アクティブマトリクス基板では、
 1つの画素領域内に2つの画素電極を備え、
 一方の画素電極が他方の画素電極を取り囲んでいる構成とすることもできる。
In the active matrix substrate,
Two pixel electrodes are provided in one pixel region,
One pixel electrode may surround the other pixel electrode.
 また、上記アクティブマトリクス基板では、
 1つの画素領域は、2つの副画素で構成されており、
 上記一方の画素電極を含む副画素が相対的に輝度の低い暗副画素となり、上記他方の画素電極を含む副画素が相対的に輝度の高い明副画素となる構成とすることもできる。
In the active matrix substrate,
One pixel area is composed of two sub-pixels,
The subpixel including the one pixel electrode may be a dark subpixel having a relatively low luminance, and the subpixel including the other pixel electrode may be a bright subpixel having a relatively high luminance.
 また、上記アクティブマトリクス基板では、
 1つの画素領域内に、1つの画素電極が設けられ、
 1つの画素領域内において、上記画素電極と該画素電極に対応する保持容量配線との間に保持容量が形成されている構成とすることもできる。
In the active matrix substrate,
One pixel electrode is provided in one pixel region,
In one pixel region, a storage capacitor may be formed between the pixel electrode and a storage capacitor line corresponding to the pixel electrode.
 また、上記アクティブマトリクス基板では、上記保持容量配線は、該保持容量配線を駆動する保持容量配線駆動回路から出力された第1保持容量配線信号により駆動される第1保持容量配線群と、外部の信号源から出力された第2保持容量配線信号により駆動される第2保持容量配線群とで構成することもできる。 In the active matrix substrate, the storage capacitor line includes a first storage capacitor line group driven by a first storage capacitor line signal output from a storage capacitor line driving circuit that drives the storage capacitor line, and an external A second storage capacitor wiring group driven by a second storage capacitor wiring signal output from the signal source can also be used.
 また、上記アクティブマトリクス基板では、
 (k-2)行目の保持容量配線およびk行目の保持容量配線には、k段目の保持容量配線駆動内部回路から出力される保持容量配線信号が供給され、
 (k-3)行目の保持容量配線および(k-1)行目の保持容量配線には、外部の信号源から出力される信号が供給され、
 上記k段目の保持容量配線駆動内部回路には、(k+3)行目の走査信号線に供給される走査信号が入力される構成とすることもできる。
In the active matrix substrate,
The (k-2) -th storage capacitor line and the k-th storage capacitor line are supplied with a storage capacitor line signal output from the k-th storage capacitor line driving internal circuit,
A signal output from an external signal source is supplied to the storage capacitor line in the (k-3) th row and the storage capacitor line in the (k-1) th row,
A scanning signal supplied to the (k + 3) -th scanning signal line may be input to the k-th storage capacitor line driving internal circuit.
 また、上記アクティブマトリクス基板では、上記外部の信号源から出力される信号は、共通電極電位とすることもできる。 In the active matrix substrate, the signal output from the external signal source can be a common electrode potential.
 また、上記アクティブマトリクス基板では、上記第2保持容量配線信号は、共通電極電位とすることもできる。 In the active matrix substrate, the second storage capacitor wiring signal can be a common electrode potential.
 本発明に係る液晶表示装置は、上記課題を解決するために、
 上記いずれかのアクティブマトリクス基板を備え、
 各保持容量配線に、その両端部から同時に、該保持容量配線を駆動するための保持容量配線信号を供給することによって、上記データ信号線から該画素電極に書き込まれた画素電位を該画素電位の極性に応じた向きに変化させて表示を行うことを特徴とする。
In order to solve the above problems, a liquid crystal display device according to the present invention is provided.
Comprising any of the above active matrix substrates,
By simultaneously supplying a storage capacitor wiring signal for driving the storage capacitor wiring from both ends thereof to each storage capacitor wiring, the pixel potential written from the data signal line to the pixel electrode is changed to the pixel potential. The display is performed by changing the direction according to the polarity.
 本液晶パネルは、上記アクティブマトリクス基板を備えることを特徴とする。本テレビジョン受像機は、上記液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とする。 This liquid crystal panel includes the above active matrix substrate. The present television receiver includes the above-described liquid crystal display device and a tuner unit that receives a television broadcast.
 以上のように、本アクティブマトリクス基板を用いた液晶表示装置では、各保持容量配線には、その両端部から同時に、該保持容量配線を駆動するための保持容量配線信号が供給される。よって、液晶表示装置の表示品位の向上を図ることができる。 As described above, in the liquid crystal display device using the present active matrix substrate, a storage capacitor wiring signal for driving the storage capacitor wiring is supplied to each storage capacitor wiring simultaneously from both ends thereof. Therefore, the display quality of the liquid crystal display device can be improved.
本発明の液晶パネルの構成例1における液晶パネル113aの一部を示す等価回路図である。It is an equivalent circuit diagram which shows a part of liquid crystal panel 113a in the structural example 1 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例1を示す平面図である。It is a top view which shows the structural example 1 of the liquid crystal panel of this invention. 図2のA-B断面の具体例を示す断面図である。FIG. 3 is a cross-sectional view showing a specific example of a cross section AB in FIG. 2. 図2のA-C断面の具体例を示す断面図である。FIG. 3 is a cross-sectional view showing a specific example of a cross section AC of FIG. 2. 図2のA-B断面の他の具体例を示す断面図である。FIG. 5 is a cross-sectional view showing another specific example of the cross section AB in FIG. 2. 本発明の液晶パネルの構成例2を示す平面図である。It is a top view which shows the structural example 2 of the liquid crystal panel of this invention. 図6のA-B断面の具体例を示す断面図である。FIG. 7 is a cross-sectional view showing a specific example of a cross section AB in FIG. 6. 本発明の液晶表示装置の実施の一形態を模式的に示す平面図である。It is a top view which shows typically one Embodiment of the liquid crystal display device of this invention. 本発明の液晶表示装置の基本的な電気的駆動方法を説明するための図である。It is a figure for demonstrating the basic electric drive method of the liquid crystal display device of this invention. 本発明の液晶表示装置におけるゲート・CSドライバの構成例1を示す回路図である。It is a circuit diagram which shows the structural example 1 of the gate and CS driver in the liquid crystal display device of this invention. 図10のCSドライバを構成する保持回路の具体例を示す回路図である。FIG. 11 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver of FIG. 10. 図10の保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。11 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 図9の画素Piにおける各種の信号波形を示すタイミングチャートである。10 is a timing chart showing various signal waveforms in the pixel Pi of FIG. 9. 図9の画素Pi+1における各種の信号波形を示すタイミングチャートである。10 is a timing chart showing various signal waveforms in the pixel Pi + 1 in FIG. 9. 変形例1におけるゲート・CSドライバの構成を示す回路図である。10 is a circuit diagram showing a configuration of a gate / CS driver in Modification 1. FIG. 変形例1における画素Piの各種の信号波形を示すタイミングチャートである。12 is a timing chart showing various signal waveforms of a pixel Pi in Modification 1. 変形例1における画素Pi+1の各種の信号波形を示すタイミングチャートである。12 is a timing chart showing various signal waveforms of a pixel Pi + 1 in Modification 1. 変形例2における画素Piの各種の信号波形を示すタイミングチャートである。12 is a timing chart showing various signal waveforms of a pixel Pi in Modification 2. 変形例2における画素Pi+1の各種の信号波形を示すタイミングチャートである。12 is a timing chart showing various signal waveforms of a pixel Pi + 1 in Modification 2. 本発明の液晶表示装置におけるゲート・CSドライバの構成例2を示す回路図である。It is a circuit diagram which shows the structural example 2 of the gate and CS driver in the liquid crystal display device of this invention. 図20の構成例2における画素Piの各種の信号波形を示すタイミングチャートである。FIG. 21 is a timing chart showing various signal waveforms of a pixel Pi in the configuration example 2 of FIG. 20. 図20の構成例2における画素Pi+1の各種の信号波形を示すタイミングチャートである。FIG. 21 is a timing chart showing various signal waveforms of a pixel Pi + 1 in the configuration example 2 of FIG. 20. 本発明の液晶表示装置におけるゲート・CSドライバの構成例3を示す回路図である。It is a circuit diagram which shows the structural example 3 of the gate and CS driver in the liquid crystal display device of this invention. 図23の構成例3における、画素Pp+2、画素Pp+3、画素Pp+4の各種の信号波形を示すタイミングチャートである。24 is a timing chart showing various signal waveforms of a pixel Pp + 2, a pixel Pp + 3, and a pixel Pp + 4 in the configuration example 3 of FIG. 本発明の液晶表示装置の実施の一形態を模式的に示す平面図である。It is a top view which shows typically one Embodiment of the liquid crystal display device of this invention. 本発明の液晶表示装置におけるゲート・CSドライバの構成例4を示す回路図である。It is a circuit diagram which shows the structural example 4 of the gate and CS driver in the liquid crystal display device of this invention. 図26の構成例4におけるCSドライバを構成する保持回路の具体例を示す回路図である。FIG. 27 is a circuit diagram illustrating a specific example of a holding circuit configuring the CS driver in the configuration example 4 of FIG. 26. 図26の保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。27 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 26. (a)および(b)は、本実施の形態におけるアモルファスシリコンTFT(a-SiTFT)の動作信頼性の評価方法を説明するための図である。(A) And (b) is a figure for demonstrating the operation | movement reliability evaluation method of the amorphous silicon TFT (a-SiTFT) in this Embodiment. (a)および(b)は、本実施の形態におけるアモルファスシリコンTFT(a-SiTFT)の動作信頼性を示すグラフである。(A) And (b) is a graph which shows the operation | movement reliability of the amorphous silicon TFT (a-SiTFT) in this Embodiment. 本発明の液晶表示装置におけるCSドライバの動作信頼性を検証するためのシミュレーション回路の概略を説明する図である。It is a figure explaining the outline of the simulation circuit for verifying the operation reliability of CS driver in the liquid crystal display device of the present invention. シミュレーション回路に入力する信号の波形を示す図である。It is a figure which shows the waveform of the signal input into a simulation circuit. 図27の保持回路におけるノードnetC1、netC2の平均電位と出力電位到達時間の関係を示す。27 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG. 本発明の液晶表示装置におけるゲート・CSドライバの構成例5を示す回路図である。It is a circuit diagram which shows the structural example 5 of the gate and CS driver in the liquid crystal display device of this invention. 図34の構成例5におけるCSドライバを構成する保持回路の具体例を示す回路図である。FIG. 35 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver in Configuration Example 5 of FIG. 34. 図34の保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。FIG. 35 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 34. FIG. 図35の保持回路におけるノードnetC1、netC2の平均電位と出力電位到達時間の関係を示す。The relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG. 35 is shown. 本発明の液晶表示装置におけるゲート・CSドライバの構成例6を示す回路図である。It is a circuit diagram which shows the structural example 6 of the gate and CS driver in the liquid crystal display device of this invention. 図38の構成例6におけるCSドライバを構成する保持回路の具体例を示す回路図である。FIG. 39 is a circuit diagram showing a specific example of a holding circuit constituting the CS driver in Configuration Example 6 of FIG. 38. 図38の保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。40 is a timing chart showing various signals input / output in the holding circuit CSDi-1 in FIG. 図39の保持回路におけるノードnetC1、netC2の平均電位と出力電位到達時間の関係を示す。39 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time in the holding circuit of FIG. 本発明の液晶パネルの構成例7の一部を示す等価回路図である。It is an equivalent circuit diagram which shows a part of structural example 7 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例7を示す平面図である。It is a top view which shows the structural example 7 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例8の一部を示す等価回路図である。It is an equivalent circuit diagram which shows a part of structural example 8 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例8を示す平面図である。It is a top view which shows the structural example 8 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例9の一部を示す等価回路図である。It is an equivalent circuit diagram which shows a part of structural example 9 of the liquid crystal panel of this invention. 本発明の液晶パネルの構成例9を示す平面図である。It is a top view which shows the structural example 9 of the liquid crystal panel of this invention. 本発明の液晶表示装置の機能を説明するブロック図である。It is a block diagram explaining the function of the liquid crystal display device of this invention. 本発明のテレビジョン受像機の機能を説明するブロック図である。It is a block diagram explaining the function of the television receiver of this invention. 本発明のテレビジョン受像機の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the television receiver of this invention. 特許文献1の表示装置の形態を模式的に示す平面図ある。FIG. 11 is a plan view schematically showing the form of the display device of Patent Document 1.
 本実施の形態を、図面を用いて説明すれば、以下のとおりである。なお、説明の便宜のため、以下では、走査信号線の延伸方向を行方向とし、データ信号線の延伸方向を列方向とする。ただし、本液晶パネル(あるいはこれに用いられるアクティブマトリクス基板)を備えた液晶表示装置の利用(視聴)状態において、その走査信号線が横方向に延伸していても縦方向に延伸していてもよいことはいうまでもない。なお、液晶パネルを示す図面では、配向規制用構造物を適宜省略して記載している。 This embodiment will be described below with reference to the drawings. For convenience of explanation, hereinafter, the extending direction of the scanning signal lines is referred to as a row direction, and the extending direction of the data signal lines is referred to as a column direction. However, in the use (viewing) state of the liquid crystal display device provided with the present liquid crystal panel (or the active matrix substrate used therein), the scanning signal line may extend in the horizontal direction or in the vertical direction. Needless to say, it is good. In the drawing showing the liquid crystal panel, the alignment regulating structure is appropriately omitted.
 図8は、本発明の液晶表示装置110の実施の一形態を模式的に示す平面図である。液晶表示装置110は、主としてアクティブマトリクス基板111と、アクティブマトリクス基板111にシール材(図示せず)を用いて貼り合わされた対向基板(カラーフィルタ基板)112と、SOF(システムオンフィルム)技術を用いてゲートドライバ9およびソースドライバ11が実装されたポリイミドフィルム8、10と、外部基板12とからなる。ここで、対向基板112は、図8において点線を用いて示されている。なお、アクティブマトリクス基板111と対向基板112との間には、配向膜、配向制御構造および液晶材料が保持されているが、図8では省略している。また、液晶表示装置110は、このほかに偏光フィルムなどの光学フィルム、バックライト、その他光学部品、回路部品、これらの部品を所定の位置に保持するためのベゼルなどを備えるが、これらも図8では省略している。 FIG. 8 is a plan view schematically showing one embodiment of the liquid crystal display device 110 of the present invention. The liquid crystal display device 110 mainly uses an active matrix substrate 111, a counter substrate (color filter substrate) 112 bonded to the active matrix substrate 111 using a sealant (not shown), and SOF (system on film) technology. The gate driver 9 and the source driver 11 are mounted on the polyimide films 8 and 10 and the external substrate 12. Here, the counter substrate 112 is shown using a dotted line in FIG. Note that an alignment film, an alignment control structure, and a liquid crystal material are held between the active matrix substrate 111 and the counter substrate 112, which are omitted in FIG. In addition, the liquid crystal display device 110 includes an optical film such as a polarizing film, a backlight, other optical components, circuit components, a bezel for holding these components in a predetermined position, and the like. Is omitted.
 図8に示すアクティブマトリクス基板111は、ガラス基板1と、ガラス基板1上に形成された、走査信号線2と、保持容量配線3と、データ信号線4と、画素電極5とを有する。アクティブマトリクス基板111上の領域は、複数の画素を有する表示領域6と、その周囲の周辺領域7とに分けることができる。周辺領域7には、ゲート端子9a、ソース端子11aが設けられ、それぞれにはゲートドライバ9、ソースドライバ11からの出力等が、ポリイミドフィルム8、10内の配線を介して入力される。また、ポリイミドフィルム10には、外部基板12が実装されている。周辺領域7には、さらに、ガラス基板1上に設けられるCSドライバ(保持容量配線駆動回路)13を有する。なお、ゲートドライバ9、ソースドライバ11、およびCSドライバ13を駆動するための制御信号や電源は、外部基板12等から、ポリイミドフィルム8、10およびガラス基板1上の配線(図示せず)を介して供給される。 The active matrix substrate 111 shown in FIG. 8 includes a glass substrate 1, a scanning signal line 2, a storage capacitor line 3, a data signal line 4, and a pixel electrode 5 formed on the glass substrate 1. The region on the active matrix substrate 111 can be divided into a display region 6 having a plurality of pixels and a peripheral region 7 around it. The peripheral region 7 is provided with a gate terminal 9 a and a source terminal 11 a, and outputs from the gate driver 9 and the source driver 11 are input to the peripheral regions 7 through wirings in the polyimide films 8 and 10, respectively. An external substrate 12 is mounted on the polyimide film 10. The peripheral region 7 further includes a CS driver (retention capacitor wiring drive circuit) 13 provided on the glass substrate 1. Control signals and power sources for driving the gate driver 9, the source driver 11, and the CS driver 13 are supplied from the external substrate 12 or the like via wirings (not shown) on the polyimide films 8, 10 and the glass substrate 1. Supplied.
 なお、本発明の液晶表示装置110では、ゲートドライバ9およびCSドライバ13は、図8に示されたとおり、液晶表示装置110の両端部(図8では、紙面左右端部)に列をなして設けられている。各走査信号線2の両端は、それぞれ、互いに異なるゲートドライバ9に接続され、各保持容量配線3の両端は、それぞれ、互いに異なるCSドライバ13に接続されている。 In the liquid crystal display device 110 of the present invention, the gate driver 9 and the CS driver 13 are arranged in rows at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 8) as shown in FIG. Is provided. Both ends of each scanning signal line 2 are connected to different gate drivers 9, respectively, and both ends of each storage capacitor line 3 are connected to different CS drivers 13, respectively.
 ここでは、各保持容量配線3には、その両端部から同時に、該保持容量配線3を駆動するための保持容量配線信号(CS信号)が供給されているが、実際には、両端部の各CSドライバ13が供給するその保持容量配線信号は実質上、多少の時間的ずれがあってもよく、表示品位に影響されない程度の時間的ずれは許容される。ただし、両端部の各CSドライバ13が供給するその保持容量配線信号の電位変化は、同一極性方向に変動する特性を有する。 Here, each storage capacitor wiring 3 is simultaneously supplied with a storage capacitor wiring signal (CS signal) for driving the storage capacitor wiring 3 from both ends thereof. The storage capacitor wiring signal supplied by the CS driver 13 may have a slight time shift, and a time shift that is not affected by the display quality is allowed. However, the potential change of the storage capacitor wiring signal supplied by each CS driver 13 at both ends has a characteristic that varies in the same polarity direction.
 また、ゲートドライバ9およびCSドライバ13は、ガラス基板1上あるいは同一のIC基板上にモノリシックに形成されていてもよい。 Further, the gate driver 9 and the CS driver 13 may be monolithically formed on the glass substrate 1 or the same IC substrate.
 (液晶パネルの構成例1)
 図1は本発明の液晶パネルの構成例1における液晶パネル113aの一部を示す等価回路図である。図1に示すように、液晶パネル113aは、列方向(紙面上下方向)に延伸するデータ信号線4x、4X、行方向(紙面左右方向)に延伸する走査信号線2cd、2ab、2ef、行および列方向に並べられた画素(画素領域)100~105、保持容量配線3w、3x、3y、3z、および共通電極(対向電極)comを備え、各画素の構造は同一の構成である。また、図1に示すように、画素100~102が含まれる画素列と、画素103~105が含まれる画素列とが隣接している。
(Configuration example 1 of liquid crystal panel)
FIG. 1 is an equivalent circuit diagram showing a part of a liquid crystal panel 113a in the configuration example 1 of the liquid crystal panel of the present invention. As shown in FIG. 1, the liquid crystal panel 113a includes data signal lines 4x and 4X extending in the column direction (up and down direction on the paper surface), scanning signal lines 2cd, 2ab, 2ef extending in the row direction (left and right direction on the paper surface), rows, and Pixels (pixel regions) 100 to 105 arranged in the column direction, storage capacitor lines 3w, 3x, 3y, and 3z, and a common electrode (counter electrode) com are included, and the structure of each pixel is the same. Further, as shown in FIG. 1, the pixel column including the pixels 100 to 102 and the pixel column including the pixels 103 to 105 are adjacent to each other.
 液晶パネル113aでは、1つの画素に対応してデータ信号線および走査信号線それぞれが1本ずつ設けられるとともに、列方向に隣り合う画素の間に、両画素で共用する保持容量配線が設けられている。画素100に設けられた2つの画素電極5c、5d、画素101に設けられた2つの画素電極5a、5b、および画素102に設けられた2つの画素電極5e、5fが、それぞれ一列に配されるともに、画素103に設けられた2つの画素電極5C、5D、画素104に設けられた2つの画素電極5A、5B、および画素105に設けられた2つの画素電極5E、5Fが、それぞれ一列に配されている。また、画素電極5cと5C、画素電極5dと5D、画素電極5aと5A、画素電極5bと5B、および画素電極5eと5E、画素電極5fと5Fが、それぞれ行方向に隣接している。 In the liquid crystal panel 113a, one data signal line and one scanning signal line are provided corresponding to one pixel, and a storage capacitor wiring shared by both pixels is provided between pixels adjacent in the column direction. Yes. Two pixel electrodes 5c and 5d provided in the pixel 100, two pixel electrodes 5a and 5b provided in the pixel 101, and two pixel electrodes 5e and 5f provided in the pixel 102 are arranged in a line, respectively. Both the two pixel electrodes 5C and 5D provided on the pixel 103, the two pixel electrodes 5A and 5B provided on the pixel 104, and the two pixel electrodes 5E and 5F provided on the pixel 105 are arranged in a line. Has been. The pixel electrodes 5c and 5C, the pixel electrodes 5d and 5D, the pixel electrodes 5a and 5A, the pixel electrodes 5b and 5B, the pixel electrodes 5e and 5E, and the pixel electrodes 5f and 5F are adjacent to each other in the row direction.
 各画素の構造は同一であるため、以下では、主に画素101を例に挙げて説明する。 Since the structure of each pixel is the same, the following description will be given mainly using the pixel 101 as an example.
 画素101では、画素電極5a(第1画素電極)が、走査信号線2abに接続されたトランジスタ15a(第1トランジスタ)を介してデータ信号線4xに接続され、画素電極5b(第2画素電極)が、走査信号線2abに接続されたトランジスタ15b(第2トランジスタ)を介してデータ信号線4xに接続され、画素電極5aおよび保持容量配線3x間に保持容量Chaが形成され、画素電極5bおよび保持容量配線3y間に保持容量Chbが形成され、画素電極5aおよび共通電極com間に液晶容量Claが形成され、画素電極5bおよび共通電極com間に液晶容量Clbが形成されている。 In the pixel 101, the pixel electrode 5a (first pixel electrode) is connected to the data signal line 4x via the transistor 15a (first transistor) connected to the scanning signal line 2ab, and the pixel electrode 5b (second pixel electrode). Is connected to the data signal line 4x via the transistor 15b (second transistor) connected to the scanning signal line 2ab, the storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor line 3x, and the pixel electrode 5b and the storage A storage capacitor Chb is formed between the capacitor wirings 3y, a liquid crystal capacitor Cla is formed between the pixel electrode 5a and the common electrode com, and a liquid crystal capacitor Clb is formed between the pixel electrode 5b and the common electrode com.
 このように、画素電極5a、5bそれぞれは、同一の走査信号線2abに接続されたそれぞれのトランジスタ15a、15bを介して、同一のデータ信号線4xに接続されているため、画素電極5a、5bそれぞれに対して、同一の信号電位(データ信号)を、トランジスタ15a、15bそれぞれを介して直接供給することができる。そして、画素電極5a、5bそれぞれは、異なる保持容量配線3x、3yそれぞれと保持容量Cha、Chbを形成しているため、例えば、走査信号線2abの電位を選択状態(ハイレベル)として画素電極5a、5bにデータ信号を書き込んだ後に、保持容量配線3x、3yに互いに異なる保持容量配線信号を供給して、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことによって、画素電極5a、5bそれぞれの画素電位を異ならせることができる。このような方法を用いて、例えば、画素電極5aを含む副画素を明副画素(相対的に輝度の高い画素)、画素電極5bを含む副画素は暗副画素(相対的に輝度の低い画素)とすることができる。これにより、画素分割方式の液晶表示装置を実現できる。 Thus, each of the pixel electrodes 5a and 5b is connected to the same data signal line 4x via the respective transistors 15a and 15b connected to the same scanning signal line 2ab, and thus the pixel electrodes 5a and 5b. The same signal potential (data signal) can be directly supplied to each through the transistors 15a and 15b. Since each of the pixel electrodes 5a and 5b forms a different storage capacitor line 3x and 3y and a storage capacitor Cha and Chb, for example, the pixel electrode 5a is set with the potential of the scanning signal line 2ab selected (high level). After the data signal is written to 5b, different holding capacitor wiring signals are supplied to the holding capacitor wires 3x and 3y, and the pixel electrode potential (pixel potential) is pushed up or pushed down by capacitive coupling, whereby the pixel electrode The pixel potentials of 5a and 5b can be made different. Using such a method, for example, a sub-pixel including the pixel electrode 5a is a bright sub-pixel (a pixel having a relatively high luminance), and a sub-pixel including the pixel electrode 5b is a dark sub-pixel (a pixel having a relatively low luminance). ). Thus, a pixel division type liquid crystal display device can be realized.
 本構成例1における液晶パネル113aの具体的な構成を図2に示す。図2は、液晶パネル113aの構成例1を示す平面図である。図2の液晶パネル113aでは、画素100および画素101に沿うようにデータ信号線4xが設けられ、画素103および画素104に沿うようにデータ信号線4Xが設けられ、画素100、103のエッジ部の一方と重なるように保持容量配線3wが設けられ、画素100、103のエッジ部の他方および画素101、104のエッジ部の一方と重なるように保持容量配線3xが設けられ、画素101、104のエッジ部の他方と重なるように保持容量配線3yが設けられている。また、画素100、103の中央部を横切るように走査信号線2cdが配され、画素101、104の中央部を横切るように走査信号線2abが配されている。 FIG. 2 shows a specific configuration of the liquid crystal panel 113a in the first configuration example. FIG. 2 is a plan view showing a configuration example 1 of the liquid crystal panel 113a. In the liquid crystal panel 113a of FIG. 2, the data signal line 4x is provided along the pixel 100 and the pixel 101, and the data signal line 4X is provided along the pixel 103 and the pixel 104. A storage capacitor wiring 3w is provided so as to overlap with one side, and a storage capacitor wiring 3x is provided so as to overlap with the other of the edge portions of the pixels 100 and 103 and one of the edge portions of the pixels 101 and 104. A storage capacitor wiring 3y is provided so as to overlap the other of the portions. In addition, a scanning signal line 2cd is arranged so as to cross the central part of the pixels 100, 103, and a scanning signal line 2ab is arranged so as to cross the central part of the pixels 101, 104.
 また、平面的に視て、画素100では、保持容量配線3w、3x間に画素電極5c、5dが列方向に並べられ、画素101では、保持容量配線3x、3y間に画素電極5a、5bが列方向に並べられ、画素103では、保持容量配線3w、3x間に画素電極5C、5Dが列方向に並べられ、画素104では、保持容量配線3x、3y間に画素電極5A、5Bが列方向に並べられている。 Further, in a plan view, in the pixel 100, the pixel electrodes 5c and 5d are arranged in the column direction between the storage capacitor lines 3w and 3x, and in the pixel 101, the pixel electrodes 5a and 5b are arranged between the storage capacitor lines 3x and 3y. In the pixel 103, the pixel electrodes 5C and 5D are arranged in the column direction between the storage capacitor lines 3w and 3x. In the pixel 104, the pixel electrodes 5A and 5B are arranged in the column direction between the storage capacitor lines 3x and 3y. Are listed.
 画素101では、走査信号線2ab上には、トランジスタ15aのソース電極16abおよびドレイン電極17aと、トランジスタ15bのソース電極16abおよびドレイン電極17bとが形成されている。このように、ソース電極16abは、トランジスタ15a、15bの両方のソース電極を兼ねてデータ信号線4xに接続される。ドレイン電極17aはドレイン引き出し配線18aに接続され、ドレイン引き出し配線18aは容量電極19aに接続され、容量電極19aはコンタクトホール20aを介して画素電極5aに接続される。ドレイン電極17bはドレイン引き出し配線18bに接続され、ドレイン引き出し配線18bは容量電極19bに接続され、容量電極19bはコンタクトホール20bを介して画素電極5bに接続される。 In the pixel 101, the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2ab. In this manner, the source electrode 16ab is connected to the data signal line 4x also serving as both source electrodes of the transistors 15a and 15b. The drain electrode 17a is connected to the drain lead wire 18a, the drain lead wire 18a is connected to the capacitor electrode 19a, and the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a. The drain electrode 17b is connected to the drain lead wire 18b, the drain lead wire 18b is connected to the capacitor electrode 19b, and the capacitor electrode 19b is connected to the pixel electrode 5b through the contact hole 20b.
 ここで、容量電極19aがゲート絶縁膜を介して保持容量配線3xに重なるとともに、画素電極5aがゲート絶縁膜および層間絶縁膜を介して保持容量配線3xに重なっており、これらの重なりの両方によって保持容量Cha(図1参照)が形成されている。同様に、容量電極19bがゲート絶縁膜を介して保持容量配線3yに重なるとともに、画素電極5bがゲート絶縁膜および層間絶縁膜を介して保持容量配線3yに重なっており、これらの重なりの両方によって保持容量Chb(図1参照)が形成されている。 Here, the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film, and the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film. A storage capacitor Cha (see FIG. 1) is formed. Similarly, the capacitor electrode 19b overlaps the storage capacitor wiring 3y via the gate insulating film, and the pixel electrode 5b overlaps the storage capacitor wiring 3y via the gate insulating film and the interlayer insulating film. A storage capacitor Chb (see FIG. 1) is formed.
 なお、他の画素の構成(各部材の形状および配置並びに接続関係)は画素101のそれと同じである。 Note that the configuration of other pixels (the shape and arrangement of each member and the connection relationship) is the same as that of the pixel 101.
 図3は図2のA-B断面図であり、図4は図2のA-C断面図である。これらの図に示すように、液晶パネル113aは、アクティブマトリクス基板111と、これに対向するカラーフィルタ基板(対向基板)112と、両基板111、112間に配される液晶層114とを備える。 3 is a cross-sectional view taken along the line AB in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line AC in FIG. As shown in these drawings, the liquid crystal panel 113 a includes an active matrix substrate 111, a color filter substrate (counter substrate) 112 facing the active matrix substrate 111, and a liquid crystal layer 114 disposed between the substrates 111 and 112.
 アクティブマトリクス基板111では、ガラス基板1上に走査信号線2abおよび保持容量配線3x、3yが形成され、これらを覆うように無機材料である窒化シリコンからなるゲート絶縁膜21が形成されている。トランジスタ15a、15bにおいては、トランジスタのゲート電極が走査信号線2abと一体となって形成され、ガラス基板1上の走査信号線2abの一部がトランジスタ15a、15bのゲート電極の役割を果たす。トランジスタ15a、15bにおけるゲート絶縁膜21上には、半導体層22ab、半導体層22abに接するソース電極16ab、ドレイン電極17a、17b、ドレイン引き出し配線18a、18b、容量電極19a、19bが形成され、これらを覆うように層間絶縁膜23が形成されている。半導体層22abは、図示していないが、真性アモルファスシリコン層(i層)と、リンがドーピングされたn+型アモルファスシリコン層(n+層)とからなる。n+層はi層等の半導体材料とソース電極16ab、ドレイン電極17a、17b等の金属材料との間で電気的接続を行うコンタクト層の役割を有している。なお、ソース電極16abおよびドレイン電極17a、17bと重ならない半導体層22ab(典型的にはトランジスタのチャネル部)は、n+層がエッチング等により除去され、i層のみとなっている。層間絶縁膜23は無機材料である窒化シリコンからなる。層間絶縁膜23上にはITO(インジウム錫酸化物)からなる画素電極5a、5bが形成され、さらに、画素電極5a、5bを覆うように配向膜(図示せず)が形成されている。ここで、コンタクトホール20a、20bでは、それぞれ、層間絶縁膜23が刳り貫かれており、これによって、画素電極5aと容量電極19aとが電気的に接続され、画素電極5bと容量電極19bとが電気的に接続される。 In the active matrix substrate 111, scanning signal lines 2ab and storage capacitor wirings 3x and 3y are formed on the glass substrate 1, and a gate insulating film 21 made of silicon nitride which is an inorganic material is formed so as to cover them. In the transistors 15a and 15b, the gate electrode of the transistor is formed integrally with the scanning signal line 2ab, and a part of the scanning signal line 2ab on the glass substrate 1 serves as the gate electrode of the transistors 15a and 15b. On the gate insulating film 21 in the transistors 15a and 15b, the semiconductor layer 22ab, the source electrode 16ab in contact with the semiconductor layer 22ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b are formed. An interlayer insulating film 23 is formed so as to cover it. Although not shown, the semiconductor layer 22ab includes an intrinsic amorphous silicon layer (i layer) and an n + type amorphous silicon layer (n + layer) doped with phosphorus. The n + layer has a role of a contact layer for electrical connection between a semiconductor material such as an i layer and a metal material such as a source electrode 16ab and drain electrodes 17a and 17b. Note that in the semiconductor layer 22ab (typically, the channel portion of the transistor) that does not overlap with the source electrode 16ab and the drain electrodes 17a and 17b, the n + layer is removed by etching or the like, and only the i layer is formed. The interlayer insulating film 23 is made of silicon nitride which is an inorganic material. On the interlayer insulating film 23, pixel electrodes 5a and 5b made of ITO (indium tin oxide) are formed, and an alignment film (not shown) is formed so as to cover the pixel electrodes 5a and 5b. Here, in the contact holes 20a and 20b, the interlayer insulating film 23 is penetrated, whereby the pixel electrode 5a and the capacitor electrode 19a are electrically connected, and the pixel electrode 5b and the capacitor electrode 19b are connected. Electrically connected.
 一方、カラーフィルタ基板112では、ガラス基板31上にブラックマトリクス32および着色層33が形成され、その上層に共通電極(com)34が形成され、さらにこれを覆うように配向膜(図示せず)が形成されている。 On the other hand, in the color filter substrate 112, a black matrix 32 and a colored layer 33 are formed on a glass substrate 31, and a common electrode (com) 34 is formed thereon, and an alignment film (not shown) is formed so as to cover this. Is formed.
 ここで、アクティブマトリクス基板111の製造方法の一例を説明する。なお、この製造方法は、アモルファスシリコントランジスタを含んだ一般的なアクティブマトリクス基板の製造方法と同様である。 Here, an example of a method for manufacturing the active matrix substrate 111 will be described. This manufacturing method is the same as the manufacturing method of a general active matrix substrate including an amorphous silicon transistor.
 まず、アルゴン(Ar)ガスを用いたスパッタ法により、ガラス、プラスチック等の透明絶縁性基板(図3ではガラス基板1)上にチタン(Ti)、アルミニウム(Al)、チタン(Ti)を順に堆積して、Ti/Al/Ti積層膜であるゲート金属膜(図示せず)を形成する。このとき、チタンの膜厚は例えば100nm(上層側、下層側共通)とし、アルミニウムの膜厚は例えば300nmとする。ゲート金属膜を形成する際のガラス基板1の温度は200~300℃とする。 First, titanium (Ti), aluminum (Al), and titanium (Ti) are sequentially deposited on a transparent insulating substrate (glass substrate 1 in FIG. 3) such as glass or plastic by sputtering using argon (Ar) gas. Then, a gate metal film (not shown) which is a Ti / Al / Ti laminated film is formed. At this time, the film thickness of titanium is, for example, 100 nm (common to the upper layer side and the lower layer side), and the film thickness of aluminum is, for example, 300 nm. The temperature of the glass substrate 1 when forming the gate metal film is set to 200 to 300.degree.
 続いて、フォトリソグラフィー法、すなわち対象となる膜上にフォトレジスト材料によるレジストパターン膜を形成し、このレジストパターン膜をマスクとして膜のパターニングを行う方法を用いて、ゲート金属膜から、各トランジスタのゲート電極としても機能する走査信号線2ab、保持容量配線3x、3y等を形成する。ゲート金属膜のエッチングには例えば塩素ガス(Cl)ガスを主に用いたドライエッチング法を用いる。エッチング終了後、レジストパターン膜を有機アルカリを含む剥離液を用いて除去する。 Subsequently, using a photolithography method, that is, a method of forming a resist pattern film of a photoresist material on the target film and patterning the film using the resist pattern film as a mask, the gate metal film is used to form each transistor. A scanning signal line 2ab that also functions as a gate electrode, storage capacitor lines 3x, 3y, and the like are formed. For the etching of the gate metal film, for example, a dry etching method mainly using a chlorine gas (Cl 2 ) gas is used. After completion of the etching, the resist pattern film is removed using a stripping solution containing organic alkali.
 ゲート金属膜の材料は、アルミニウム、チタンの他に、インジウム錫酸化物(ITO)や、タングステン(W)、銅(Cu)、クロム(Cr)、モリブデン(Mo)、アルミニウム(Al)、チタン(Ti)等の単体金属、またはそれらに窒素、酸素、あるいは他の金属を含有させた材料であってもよい。ゲート金属膜は、上記材料を用いた単一の層であってもよいし、積層構造を有していてもよい。例えば、走査信号線は、チタンおよび銅によるTi/Cu/Ti積層膜、あるいは銅およびモリブデンによるMo/Cu/Mo積層膜であってもよい。 In addition to aluminum and titanium, the gate metal film is made of indium tin oxide (ITO), tungsten (W), copper (Cu), chromium (Cr), molybdenum (Mo), aluminum (Al), titanium ( It may be a simple metal such as Ti) or a material containing nitrogen, oxygen, or another metal. The gate metal film may be a single layer using the above materials or may have a stacked structure. For example, the scanning signal line may be a Ti / Cu / Ti laminated film made of titanium and copper, or a Mo / Cu / Mo laminated film made of copper and molybdenum.
 ゲート金属膜の形成方法としては、スパッタ法の他、蒸着法等を用いることもできる。ゲート金属膜の厚さも特に限定されない。また、ゲート金属膜のエッチング方法も、上述したドライエッチング法に限定されず、酸などのエッチャントを用いたウェットエッチング法等を用いることもできる。 As a method for forming the gate metal film, an evaporation method or the like can be used in addition to the sputtering method. The thickness of the gate metal film is not particularly limited. Also, the etching method of the gate metal film is not limited to the dry etching method described above, and a wet etching method using an etchant such as an acid can also be used.
 次いで、ゲート絶縁膜21となる窒化シリコン(SiNx)膜、真性アモルファスシリコン層(i層)となるアモルファスシリコン膜、n+型アモルファスシリコン層(n+層)となるn+型アモルファスシリコン膜を、プラズマCVD(化学的気相成長)法等により連続して成膜する。このとき、窒化シリコン膜の膜厚は例えば400nm、アモルファスシリコン膜の膜厚は例えば200nm、n+型アモルファスシリコン膜の膜厚は50nmとする。これらの膜を形成する際のガラス基板1の温度は200~300℃とし、成膜用のガスとしては、シラン(SiH)、アンモニア(NH)、水素(H)及び窒素(N)等を適宜組み合わせて用いる。 Next, a silicon nitride (SiNx) film that becomes the gate insulating film 21, an amorphous silicon film that becomes the intrinsic amorphous silicon layer (i layer), and an n + type amorphous silicon film that becomes the n + type amorphous silicon layer (n + layer) are formed by plasma CVD ( The film is continuously formed by a chemical vapor deposition method or the like. At this time, the film thickness of the silicon nitride film is, for example, 400 nm, the film thickness of the amorphous silicon film is, for example, 200 nm, and the film thickness of the n + type amorphous silicon film is, for example, 50 nm. The temperature of the glass substrate 1 when these films are formed is 200 to 300 ° C., and the gas for film formation is silane (SiH 4 ), ammonia (NH 3 ), hydrogen (H 2 ) and nitrogen (N 2 ). ) Etc. are used in appropriate combinations.
 続いて、フォトリソグラフィー法により窒化シリコン膜、アモルファスシリコン膜、n+型アモルファスシリコン膜を所定の形状にパターニングを行って、ゲート絶縁膜21と、一次加工されたアモルファスシリコン膜およびn+型アモルファスシリコン膜を得る。このときのエッチングには、例えば塩素ガス(Cl)ガス、四塩化炭素(CF)ガス、酸素(O)ガスを適宜組み合わせて用いたドライエッチング法を用いる。エッチング終了後、レジストパターン膜を、有機アルカリを含む剥離液を用いて除去する。 Subsequently, the silicon nitride film, the amorphous silicon film, and the n + type amorphous silicon film are patterned into a predetermined shape by photolithography, and the gate insulating film 21, the primary processed amorphous silicon film, and the n + type amorphous silicon film are formed. obtain. For this etching, a dry etching method using, for example, an appropriate combination of chlorine gas (Cl 2 ) gas, carbon tetrachloride (CF 4 ) gas, and oxygen (O 2 ) gas is used. After the etching is completed, the resist pattern film is removed using a stripping solution containing organic alkali.
 次いで、ゲート金属膜の場合と同様に、チタン(Ti)、アルミニウム(Al)、チタン(Ti)を順に堆積して、Ti/Al/Ti積層膜であるソース金属膜(図示せず)を形成する。このとき、チタンの膜厚は例えば100nm(上層側、下層側共通)とし、アルミニウムの膜厚は例えば300nmとする。ゲート金属膜の場合と同様に、フォトリソグラフィー法を用いて、ソース金属膜からデータ信号線4x、ソース電極16ab、ドレイン電極17a、17b、ドレイン引き出し配線18a、18b、および容量電極19a、19b等を形成する。ここで、フォトリソグラフィー法で用いたレジストパターン膜(図示せず)は、次工程のため、除去せずに残しておく。ソース金属膜の材料についても、ゲート金属膜と同様の他の材料から構成されてもよい。 Next, as in the case of the gate metal film, titanium (Ti), aluminum (Al), and titanium (Ti) are sequentially deposited to form a source metal film (not shown) that is a Ti / Al / Ti laminated film. To do. At this time, the film thickness of titanium is, for example, 100 nm (common to the upper layer side and the lower layer side), and the film thickness of aluminum is, for example, 300 nm. As in the case of the gate metal film, the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b are formed from the source metal film by using the photolithography method. Form. Here, the resist pattern film (not shown) used in the photolithography method is left without being removed for the next step. The material of the source metal film may also be composed of other materials similar to the gate metal film.
 次いで、アモルファスシリコン膜、n+型アモルファスシリコン膜に対して再度エッチング加工(チャネルエッチング)を行って、真性アモルファスシリコン層(i層)、n+型アモルファスシリコン層(n+層)を得て、半導体層22abを得る。すなわち、データ信号線4x、ソース電極16ab、およびドレイン電極17a、17b等のパターンを形成するために用いたレジストパターン膜をマスクにし、ドライエッチング法にてn+型アモルファスシリコン膜と、アモルファスシリコン膜の一部表面をエッチングする。これによって、ソース電極16abとドレイン電極17a、17bとの間の分離を行う。なお、ここで、アモルファスシリコン膜の一部表面をエッチングするのは、オーバーエッチングによって確実にn+型アモルファスシリコン膜を取り除くため等の理由による。 Next, the amorphous silicon film and the n + type amorphous silicon film are etched again (channel etching) to obtain an intrinsic amorphous silicon layer (i layer) and an n + type amorphous silicon layer (n + layer), and the semiconductor layer 22ab Get. That is, the resist pattern film used to form the pattern of the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, etc. is used as a mask, and an n + type amorphous silicon film and an amorphous silicon film are formed by dry etching. A part of the surface is etched. Thereby, separation between the source electrode 16ab and the drain electrodes 17a and 17b is performed. Here, the partial surface of the amorphous silicon film is etched for reasons such as removing the n + type amorphous silicon film surely by over-etching.
 次いで、層間絶縁膜23となる窒化シリコン膜を、データ信号線4x、ソース電極16ab、ドレイン電極17a、17b、ドレイン引き出し配線18a、18b、および容量電極19a、19bを覆うように形成する。ここでは、プラズマCVD法を用いて、窒化シリコン膜を形成する際のガラス基板1の温度は200~300℃とし、成膜用のガスとしては、シラン(SiH)、アンモニア(NH)、水素(H)及び窒素(N)等を適宜組み合わせて用いる。窒化シリコン膜の膜厚は、例えば300nmである。 Next, a silicon nitride film to be the interlayer insulating film 23 is formed so as to cover the data signal line 4x, the source electrode 16ab, the drain electrodes 17a and 17b, the drain lead wires 18a and 18b, and the capacitor electrodes 19a and 19b. Here, the temperature of the glass substrate 1 when the silicon nitride film is formed by plasma CVD is set to 200 to 300 ° C., and the gas for film formation includes silane (SiH 4 ), ammonia (NH 3 ), Hydrogen (H 2 ), nitrogen (N 2 ), and the like are used in appropriate combination. The film thickness of the silicon nitride film is, for example, 300 nm.
 次いで、フォトリソグラフィー法を用いて、層間絶縁膜23となる窒化シリコン膜を所定のパターンとなるようエッチングして、層間絶縁膜23とコンタクトホール20a、20bを形成する。このときの、ゲート絶縁膜21となる窒化シリコンのエッチングと同様の手法を用いることができる。 Next, using a photolithography method, the silicon nitride film to be the interlayer insulating film 23 is etched into a predetermined pattern to form the interlayer insulating film 23 and contact holes 20a and 20b. At this time, a method similar to the etching of silicon nitride to be the gate insulating film 21 can be used.
 次いで、層間絶縁膜23上に、例えば、ITO(インジウム錫酸化物)膜を、スパッタリング法等により100nm程度の膜厚で成膜し、これをフォトリソグラフィー法にて必要な形状にパターニングすることによって画素領域に画素電極5a、5bを形成する。ITO膜のエッチングには蓚酸(HOOC-COOH)または塩化第2鉄液等を用いることができる。 Next, on the interlayer insulating film 23, for example, an ITO (indium tin oxide) film is formed with a film thickness of about 100 nm by sputtering or the like, and is patterned into a necessary shape by photolithography. Pixel electrodes 5a and 5b are formed in the pixel region. For etching the ITO film, oxalic acid (HOOC-COOH) or ferric chloride solution can be used.
 次いで、画素電極5a、5bを覆うように、インクジェット法等により配向膜材料を含んだ溶液を塗布し、配向膜(図示せず)を形成する。 Next, a solution containing an alignment film material is applied by an inkjet method or the like so as to cover the pixel electrodes 5a and 5b, thereby forming an alignment film (not shown).
 上述したアクティブマトリクス基板111の製造方法は、後述する液晶パネルにおいても適用可能である。以下では、説明の便宜上、その説明を省略する。 The above-described manufacturing method of the active matrix substrate 111 can be applied to a liquid crystal panel described later. Below, the description is abbreviate | omitted for convenience of explanation.
 ところで、図2のA-B断面を図5のように構成することもできる。図5は、図2に示す液晶パネル113の他の構成におけるA-B断面図である。図5の液晶パネルでは、ガラス基板1上に厚いゲート絶縁膜21pと薄いゲート絶縁膜21qとを形成し、画素電極5aの下層に厚い層間絶縁膜23pと薄い層間絶縁膜23qとを形成する。ゲート絶縁膜21pは、トランジスタ15aと、容量電極19aの付近では取り除かれている。また、層間絶縁膜23pおよび層間絶縁膜23qは、互いに略同一の平面形状であり、コンタクトホール20a、20bの部分が取り除かれている。こうすれば、各種寄生容量の低減や配線同士の短絡防止の効果が得られる。ゲート絶縁膜21pの膜厚は例えば1000nm、ゲート絶縁膜21qの膜厚は例えば400nm、層間絶縁膜23pの膜厚は例えば2500~3000nm、層間絶縁膜23qの膜厚は例えば300nmとすることができる。ここで、層間絶縁膜23pは有機材料からなり、膜厚は下地凹凸を反映して分布をもつ。また、層間絶縁膜23qおよびゲート絶縁膜21qはプラズマCVD法を用いた窒化シリコン膜である。 Incidentally, the cross section AB in FIG. 2 may be configured as shown in FIG. FIG. 5 is a cross-sectional view taken along line AB in another configuration of the liquid crystal panel 113 shown in FIG. In the liquid crystal panel of FIG. 5, a thick gate insulating film 21p and a thin gate insulating film 21q are formed on the glass substrate 1, and a thick interlayer insulating film 23p and a thin interlayer insulating film 23q are formed below the pixel electrode 5a. The gate insulating film 21p is removed in the vicinity of the transistor 15a and the capacitor electrode 19a. The interlayer insulating film 23p and the interlayer insulating film 23q have substantially the same planar shape, and the contact holes 20a and 20b are removed. By doing so, the effects of reducing various parasitic capacitances and preventing short-circuiting between wirings can be obtained. The film thickness of the gate insulating film 21p can be, for example, 1000 nm, the film thickness of the gate insulating film 21q can be, for example, 400 nm, the film thickness of the interlayer insulating film 23p can be, for example, 2500 to 3000 nm, and the film thickness of the interlayer insulating film 23q can be, for example, 300 nm. . Here, the interlayer insulating film 23p is made of an organic material, and the film thickness has a distribution reflecting the underlying unevenness. The interlayer insulating film 23q and the gate insulating film 21q are silicon nitride films using a plasma CVD method.
 図5のゲート絶縁膜21pは、ゲート絶縁膜21qと同様にプラズマCVD法を用いた窒化シリコン膜や、あるいは酸化シリコン膜であってもよいが、SOG(スピンオンガラス)材料から作成される絶縁膜であってもよい。 The gate insulating film 21p of FIG. 5 may be a silicon nitride film or a silicon oxide film using a plasma CVD method as in the case of the gate insulating film 21q, but an insulating film made of an SOG (spin-on-glass) material. It may be.
 図5の層間絶縁膜23p、層間絶縁膜23qおよびコンタクトホール20a、20bは例えば、以下のようにして形成することができる。すなわち、トランジスタ15aを形成した後、プラズマCVD法によって、層間絶縁膜23qとなる窒化シリコン膜を成膜するところまでは図3および図4の場合と同様であり、次に、感光性アクリル樹脂を含むレジスト材料を用いたフォトリソグラフィー法によって、まず感光性アクリル樹脂膜を形成し、感光性アクリル樹脂膜をマスクとして窒化シリコン膜をエッチングし、層間絶縁膜23p、層間絶縁膜23qおよびコンタクトホール20a、20bを得ることができる。ここで、感光性アクリル樹脂膜は除去されず、熱処理等を加えてそのまま層間絶縁膜23pとして用いる。このときの窒化シリコン膜のエッチングは、図3および図4の場合と同様に行うことができる。 For example, the interlayer insulating film 23p, the interlayer insulating film 23q, and the contact holes 20a and 20b in FIG. 5 can be formed as follows. That is, after forming the transistor 15a, the process up to forming a silicon nitride film to be the interlayer insulating film 23q by plasma CVD is the same as in the case of FIG. 3 and FIG. First, a photosensitive acrylic resin film is formed by a photolithography method using a resist material that contains the resist material, and the silicon nitride film is etched using the photosensitive acrylic resin film as a mask to form an interlayer insulating film 23p, an interlayer insulating film 23q, and a contact hole 20a, 20b can be obtained. Here, the photosensitive acrylic resin film is not removed, and is used as it is as the interlayer insulating film 23p after heat treatment or the like. Etching of the silicon nitride film at this time can be performed in the same manner as in FIGS.
 図5のゲート絶縁膜21pは、SOG(スピンオンガラス)材料から形成される絶縁膜であって、SOG材料を含んだ溶液の塗布と熱処理等によって得られた膜を、フォトリソグラフィー法を用いてパターニングして得られる。 The gate insulating film 21p in FIG. 5 is an insulating film formed from an SOG (spin-on-glass) material, and a film obtained by applying a solution containing the SOG material, heat treatment, or the like is patterned using a photolithography method. Is obtained.
 なお、層間絶縁膜23pも同様に、例えば、SOG(スピンオンガラス)材料から形成される絶縁膜であってもよく、また、ゲート絶縁膜21pや層間絶縁膜23pに、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂、ノボラック樹脂、およびシロキサン樹脂の少なくとも1つが含まれていてもよい。 Similarly, the interlayer insulating film 23p may be an insulating film formed of, for example, an SOG (spin-on glass) material, and an acrylic resin, an epoxy resin, or a polyimide is added to the gate insulating film 21p or the interlayer insulating film 23p. At least one of a resin, a polyurethane resin, a novolac resin, and a siloxane resin may be included.
 (液晶パネルの構成例2)
 ここで、保持容量Cha、Chbは、図6に示す構成により形成されていてもよい。図6は、本発明の液晶パネルの構成例2を示す平面図である。図6の液晶パネル113bでは、画素101において、図2の構成例1の液晶パネル113aに対してさらにコンタクト電極26a、26b、およびコンタクトホール27a、27bが設けられている。ここで、コンタクト電極26a、26bは、ドレイン引き出し配線18a、18bと同層に形成される。トランジスタ15aのドレイン電極17aは、ドレイン引き出し配線18aおよびコンタクトホール27aを介して画素電極5aに接続され、さらに画素電極5aは、コンタクトホール20aを介して容量電極19aに接続される。ここで、容量電極19aがゲート絶縁膜を介して保持容量配線3xと重なっており、画素電極5aがゲート絶縁膜および層間絶縁膜を介して保持容量配線3xと重なっており、これらの重なりの両方によって保持容量Cha(図1参照)が形成されている。
(Configuration example 2 of liquid crystal panel)
Here, the holding capacitors Cha and Chb may be formed by the configuration shown in FIG. FIG. 6 is a plan view showing a configuration example 2 of the liquid crystal panel of the present invention. In the liquid crystal panel 113b of FIG. 6, in the pixel 101, contact electrodes 26a and 26b and contact holes 27a and 27b are further provided with respect to the liquid crystal panel 113a of the configuration example 1 of FIG. Here, the contact electrodes 26a and 26b are formed in the same layer as the drain lead wires 18a and 18b. The drain electrode 17a of the transistor 15a is connected to the pixel electrode 5a through the drain lead-out wiring 18a and the contact hole 27a, and the pixel electrode 5a is connected to the capacitor electrode 19a through the contact hole 20a. Here, the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film, and the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film. Thus, a holding capacitor Cha (see FIG. 1) is formed.
 同様に、トランジスタ15bのドレイン電極17bは、ドレイン引き出し配線18bおよびコンタクトホール27bを介して画素電極5bに接続され、さらに画素電極5bは、コンタクトホール20bを介して容量電極19bに接続される。そして、容量電極19bがゲート絶縁膜を介して保持容量配線3yと重なっており、画素電極5bがゲート絶縁膜および層間絶縁膜を介して保持容量配線3yと重なっており、これらの重なりの両方によって保持容量Chb(図1参照)が形成されている。 Similarly, the drain electrode 17b of the transistor 15b is connected to the pixel electrode 5b via the drain lead line 18b and the contact hole 27b, and the pixel electrode 5b is further connected to the capacitor electrode 19b via the contact hole 20b. The capacitor electrode 19b overlaps with the storage capacitor line 3y via the gate insulating film, and the pixel electrode 5b overlaps with the storage capacitor line 3y via the gate insulating film and the interlayer insulating film. A storage capacitor Chb (see FIG. 1) is formed.
 図7は、図6のA-B断面図である。図7に示すように、容量電極19aは、ドレイン引き出し配線18aおよびコンタクト電極26aと同層に形成され、ゲート絶縁膜21を介して保持容量配線3xに重なり、コンタクトホール20aを介して画素電極5aに接続される。また、画素100の容量電極19dが、同様に、ゲート絶縁膜21を介して保持容量配線3xに重なり、コンタクトホール20dを介して画素電極5dに接続される。これにより、容量電極19aと保持容量配線3xとの間に保持容量Cha(図1参照)が形成され、容量電極19dと保持容量配線3xとの間に保持容量Chd(図1参照)が形成される。この構成によれば、図2に示した構成例1と比べて、ドレイン引き出し配線18a、18b等が、画素電極5a、5bの全体にわたって横切ることがないので、液晶表示装置としての開口率の向上を図ることができ、特に適する。 FIG. 7 is a cross-sectional view taken along the line AB of FIG. As shown in FIG. 7, the capacitor electrode 19a is formed in the same layer as the drain lead wire 18a and the contact electrode 26a, overlaps the storage capacitor wire 3x via the gate insulating film 21, and the pixel electrode 5a via the contact hole 20a. Connected to. Similarly, the capacitor electrode 19d of the pixel 100 overlaps the storage capacitor wiring 3x via the gate insulating film 21, and is connected to the pixel electrode 5d via the contact hole 20d. As a result, a storage capacitor Cha (see FIG. 1) is formed between the capacitor electrode 19a and the storage capacitor line 3x, and a storage capacitor Chd (see FIG. 1) is formed between the capacitor electrode 19d and the storage capacitor line 3x. The According to this configuration, compared to the configuration example 1 shown in FIG. 2, the drain lead-out wirings 18a, 18b and the like do not cross over the entire pixel electrodes 5a, 5b, so that the aperture ratio as a liquid crystal display device is improved. Is particularly suitable.
 次に、本発明の液晶表示装置110の駆動方法について説明する。図9は、図8に示した液晶表示装置110の基本的な電気的駆動方法を説明するための図である。液晶表示装置110は、表示部41と、表示制御回路42と、ソースドライバ(データ信号線駆動回路)43と、ゲート・CSドライバ(走査信号線・保持容量配線駆動回路)44とを備えている。表示部41には、n本のソースライン(データ信号線)と、m本のゲートライン(走査信号線)と、m+1本のCSライン(保持容量配線)と、m×n個の画素とが設けられている。図9では、代表としてソースラインSL1、SLj(jは1以上n以下の整数)、SLj+1、SLnと、ゲートラインGL1、GL2、GLi(iは1以上m以下の整数)、GLi+1、GLmと、ソースラインおよびゲートラインの交差部に対応して配される画素P1、P2、Pi、Pi+1、Pmと、CSラインCSL0、CSL1、CSLi-1、CSLi、CSLi+1、CSLm-1、CSLm等を記載している。また、図9のように、画素Piは、副画素PAiと副画素PBiの2つの副画素からなる。画素P1、P2、Pi+1、Pmも同様である。なお、液晶表示装置110では、例えばm=1080、n=5760であるが、これに限定されるわけではない。さらに、液晶表示装置110は、容量配線幹47(後述)を備える場合があるが、ここでは図示していない。 Next, a driving method of the liquid crystal display device 110 of the present invention will be described. FIG. 9 is a diagram for explaining a basic electrical driving method of the liquid crystal display device 110 shown in FIG. The liquid crystal display device 110 includes a display unit 41, a display control circuit 42, a source driver (data signal line driving circuit) 43, and a gate / CS driver (scanning signal line / holding capacity wiring driving circuit) 44. . The display unit 41 includes n source lines (data signal lines), m gate lines (scanning signal lines), m + 1 CS lines (retention capacitor lines), and m × n pixels. Is provided. In FIG. 9, source lines SL1, SLj (j is an integer from 1 to n), SLj + 1, SLn, gate lines GL1, GL2, GLi (i is an integer from 1 to m), GLi + 1, GLm, The pixels P1, P2, Pi, Pi + 1, Pm arranged corresponding to the intersection of the source line and the gate line, and the CS lines CSL0, CSL1, CSLi-1, CSLi, CSLi + 1, CSLm-1, CSLm, etc. are described. ing. Further, as shown in FIG. 9, the pixel Pi is composed of two subpixels, a subpixel PAi and a subpixel PBi. The same applies to the pixels P1, P2, Pi + 1, and Pm. In the liquid crystal display device 110, for example, m = 1080 and n = 5760, but the present invention is not limited to this. Further, the liquid crystal display device 110 may include a capacitor wiring trunk 47 (described later), which is not shown here.
 表示制御回路42は、外部から送られるデータ信号DATとタイミング制御信号TSとを受け取り、デジタル映像信号DVと、表示部41に画像を表示するタイミングを制御するためのソーススタートパルス信号SSPと、ソースクロック信号などのソース制御信号SCTLと、ゲートスタートパルス信号GSPと、ゲートクロック信号などのゲート制御信号GCTLとを出力する。 The display control circuit 42 receives a data signal DAT and a timing control signal TS sent from the outside, receives a digital video signal DV, a source start pulse signal SSP for controlling the timing of displaying an image on the display unit 41, and a source A source control signal SCTL such as a clock signal, a gate start pulse signal GSP, and a gate control signal GCTL such as a gate clock signal are output.
 ソースドライバ43は、表示制御回路42からデジタル映像信号DVと、表示部41に画像を表示するタイミングを制御するためのソーススタートパルス信号SSPと、ソースクロック信号などのソース制御信号SCTLとを受け取り、表示部41内の各画素の液晶容量を充電するために、駆動用のデータ信号を各ソースラインSL1~SLnに供給する。 The source driver 43 receives the digital video signal DV, the source start pulse signal SSP for controlling the timing of displaying an image on the display unit 41, and the source control signal SCTL such as the source clock signal from the display control circuit 42, In order to charge the liquid crystal capacitance of each pixel in the display unit 41, a driving data signal is supplied to each source line SL1 to SLn.
 ゲート・CSドライバ44は、表示制御回路42から出力されたゲートスタートパルス信号GSPと、ゲート制御信号GCTLとを受け取り、各ゲートラインにゲート信号(走査信号)を供給し、各CSラインにCS信号(保持容量配線信号)を供給する。ここで、ゲートラインおよびCSラインは順次駆動される方式であって、飛び越しの走査は行なわれない。すなわち、ゲートラインはGL1からGLmの順に順次駆動される。 The gate / CS driver 44 receives the gate start pulse signal GSP and the gate control signal GCTL output from the display control circuit 42, supplies a gate signal (scanning signal) to each gate line, and supplies a CS signal to each CS line. (Holding capacity wiring signal) is supplied. Here, the gate line and the CS line are driven sequentially, and no interlaced scanning is performed. That is, the gate lines are sequentially driven in order from GL1 to GLm.
 また、本実施の形態では、ゲート・CSドライバ44が、液晶表示装置110の両端部(図9では、紙面左右側端部)に列をなして設けられている。そのため、ゲートラインGLiには、その両端からゲート信号が入力され、CSラインCLiには、その両端からCS信号が入力される。 In the present embodiment, the gate / CS driver 44 is provided in a row at both ends of the liquid crystal display device 110 (in FIG. 9, the left and right ends of the drawing). Therefore, the gate signal is input to both ends of the gate line GLi, and the CS signal is input to both ends of the CS line CLi.
 なお、図9では、液晶表示装置110が有するソースドライバ43、ゲート・CSドライバ44、表示制御回路42による液晶表示装置110の駆動の概略を示しており、ソースドライバ43、ゲート・CSドライバ44等を駆動するための電源や配線等、およびその他の制御信号は省略している。また、共通電極(com)に信号電位を与えるための配線等も省略している。 9 schematically shows driving of the liquid crystal display device 110 by the source driver 43, the gate / CS driver 44, and the display control circuit 42 included in the liquid crystal display device 110. The source driver 43, the gate / CS driver 44, and the like. The power supply, wiring, and other control signals for driving are omitted. Further, wiring for applying a signal potential to the common electrode (com) is also omitted.
 (CSドライバの構成例1)
 図9に示される2つのゲート・CSドライバ44は同様の構成であるため、以下では、このうちの1つを例に挙げて説明する。図10は、本発明の液晶表示装置110におけるゲート・CSドライバ44の構成例1を示す回路図である。ゲートドライバ45は、SOF(システムオンフィルム)技術を用いて、ポリイミドフィルム(図示せず)上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ46は、ガラス基板1上に一体化(モノリシック化)されて形成されている。すなわち、CSドライバ46は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。ゲートドライバ45およびCSドライバ46は、それぞれ、液晶表示装置110の両端部(図10では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ46が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ46は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ46について説明する。
(Configuration example 1 of CS driver)
Since the two gate / CS drivers 44 shown in FIG. 9 have the same configuration, one of them will be described below as an example. FIG. 10 is a circuit diagram showing a configuration example 1 of the gate / CS driver 44 in the liquid crystal display device 110 of the present invention. The gate driver 45 is mounted on a polyimide film (not shown) using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 46 is formed integrally (monolithic) on the glass substrate 1. That is, the CS driver 46 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. The gate driver 45 and the CS driver 46 are provided in a row at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 10). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 46 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 46 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 46 will be described below.
 図10では、i、mは偶数として記載している。ゲートドライバ45は表示制御回路42から出力されたゲートスタートパルス信号GSPとゲート制御信号GCTLとを受け取り、各ゲートラインGL1~GLm+2へ駆動電圧信号(ゲート信号)を出力する。ここで、ゲートラインGLm+1、GLm+2は画素の充電制御には直接関係しないゲートライン(ダミーゲートライン)であって、ゲートラインGLm+2はCSドライバ46に必要な信号を伝送する。また、図中のmは偶数であり、すなわち本構成例1では、ダミーゲートラインを除いたゲートラインは偶数本からなる。ただし、本発明はこれに限定されるわけではなく、別の構成例として、ダミーゲートラインを除いたゲートラインが奇数本からなっていてもよく、その場合は、図10の構成において必要に応じてゲートラインおよびダミーゲートラインの本数の調整を行えばよい。 In FIG. 10, i and m are shown as even numbers. The gate driver 45 receives the gate start pulse signal GSP and the gate control signal GCTL output from the display control circuit 42, and outputs a drive voltage signal (gate signal) to each of the gate lines GL1 to GLm + 2. Here, the gate lines GLm + 1 and GLm + 2 are gate lines (dummy gate lines) not directly related to the charge control of the pixels, and the gate line GLm + 2 transmits a necessary signal to the CS driver 46. Further, m in the figure is an even number, that is, in the present configuration example 1, the gate lines excluding the dummy gate lines are an even number. However, the present invention is not limited to this. As another configuration example, the number of gate lines excluding dummy gate lines may be an odd number. In that case, the configuration of FIG. The number of gate lines and dummy gate lines may be adjusted.
 CSL0、CSL2、CSLi-2、CSLi、CSLi+2、CSLm-2、CSLm等の偶数行のCSライン(第2保持容量配線群)には、容量配線幹47に供給される信号COM(第2保持容量配線信号)が配線の分岐によって供給される。CSL1、CSL3、CSLi-1、CSLi+1、CSLm-1等の奇数行のCSライン(第1保持容量配線群)には、CSD1、CSD3、CSDi-1、CSDi+1、CSDm-1等で表す、CSドライバ46を構成する内部回路(保持容量配線駆動内部回路;以下、「保持回路」ともいう)の出力信号(第1保持容量配線信号)が供給される。すなわち、保持回路は、全てのCSラインに対して、1ラインおき(奇数行)に対応して設けられている。ただし、別の形態として、保持回路は、全てのCSラインに対して、1ラインおき(偶数行)に対応して設けられていてもよい。なお、以下の各CSドライバの構成においても、保持回路の出力信号を「第1保持容量配線信号」、第1保持容量配線信号が入力されるCSラインを「第1保持容量配線群」、外部の信号源から出力され容量配線幹47に供給される信号を「第2保持容量配線信号」、第2保持容量配線信号が入力されるCSラインを「第2保持容量配線群」と表すことができる。以下の説明では、本発明の保持回路の代表として保持回路CSDi-1等を例に挙げて説明するが、他の段の保持回路についても同様である。 An even-numbered CS line (second holding capacitor wiring group) such as CSL0, CSL2, CSLi-2, CSLi, CSLi + 2, CSLm-2, CSLm has a signal COM (second holding capacitor) supplied to the capacitor wiring trunk 47. Wiring signal) is supplied by wiring branches. CS drivers represented by CSD1, CSD3, CSDi-1, CSDi + 1, CSDm-1, etc. for odd-numbered CS lines (first storage capacitor wiring group) such as CSL1, CSL3, CSLi-1, CSLi + 1, CSLm-1 An output signal (first holding capacitor wiring signal) of an internal circuit (holding capacitor wiring driving internal circuit; hereinafter also referred to as “holding circuit”) constituting 46 is supplied. That is, the holding circuit is provided corresponding to every other line (odd row) for all the CS lines. However, as another form, the holding circuit may be provided corresponding to every other line (even rows) for all CS lines. In each CS driver configuration described below, the output signal of the holding circuit is the “first holding capacitor wiring signal”, the CS line to which the first holding capacitor wiring signal is input is the “first holding capacitor wiring group”, and the external A signal output from the first signal source and supplied to the capacitor wiring trunk 47 is expressed as a “second storage capacitor wiring signal”, and a CS line to which the second storage capacitor wiring signal is input is expressed as a “second storage capacitor wiring group”. it can. In the following description, the holding circuit CSDi-1 or the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
 図10に示すように、CSドライバ46は、複数の保持回路を含んで構成され、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子を備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取るとともに、ゲートドライバ45の出力(ゲート信号)を受け取る。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子sel1、sel2、vdd、vssを備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。また、保持回路CSDi-1は入力端子sを備え、入力端子sは、ゲートラインGLi+2に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。保持回路CSDi-1の出力(CS信号)は、出力端子csを介してCSラインCSLi-1に入力される。なお、ここでいう端子とは、回路上の点を指し、実デバイス形態においては該当する接続用の端子形状が設けられていてもよいし、設けられなくてもよい。ここでいう端子とは、該当する単なる配線上の一点であってもよい。本明細書において、端子という語は、同様に用いることとする。 As shown in FIG. 10, the CS driver 46 includes a plurality of holding circuits, includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b, The above signals are received through the potential side power supply line 46H and the low potential side power supply line 46L, and the output (gate signal) of the gate driver 45 is received. As an example, the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a and a selection wiring. The above signals are received through the high potential side power supply line 46H and the low potential side power supply line 46L. The holding circuit CSDi-1 includes an input terminal s. The input terminal s is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45. The output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs. In addition, a terminal here refers to the point on a circuit, and in the actual device form, the corresponding terminal shape for a connection may be provided, and it does not need to be provided. The term “terminal” as used herein may be a single point on the corresponding wiring. In this specification, the term terminal is used in the same manner.
 上記の構成によれば、CSラインCSLi-1では、その両端部に、各保持回路CSDi-1から出力されたCS信号が同時に供給され、CSラインCSLiでは、その両端部に、表示制御回路42から出力された信号(COM)が同時に供給され、CSラインCSLi+1では、その両端部に、各保持回路CSDi+1から出力されたCS信号が同時に供給される。そのため、一端側からCS信号を供給する従来の構成(図51参照)と比較して、CSラインにおけるCS信号の到達時間を減少させることができる。よって、1本のCSラインにおける目標電位および到達電位の差に起因する画素電位の分布(不均一)を低減することができるため、表示品位を向上させることができる。 According to the above configuration, the CS signal CSli-1 output from each holding circuit CSDi-1 is simultaneously supplied to both ends of the CS line CSLi-1, and the display control circuit 42 is connected to both ends of the CS line CSLi-1. Are simultaneously supplied to the CS line CSLi + 1, and CS signals output from the holding circuits CSDi + 1 are simultaneously supplied to both ends of the CS line CSLi + 1. Therefore, the arrival time of the CS signal on the CS line can be reduced as compared with the conventional configuration (see FIG. 51) in which the CS signal is supplied from one end side. Accordingly, the distribution (non-uniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one CS line can be reduced, so that display quality can be improved.
 なお、ゲートラインについてもCSラインと同様の問題(輝度ムラ)が生じると考えられるが、CSラインは、ゲートラインよりも到達電位をより重視しなければならない。これは、画素電位は、主にトランジスタに寄生する容量Cgd(ゲート、ドレイン(画素電極)間容量)によって変動を受けるが、通常この変動は、CSラインを設けることにより安定させることができ、Cgdに起因する画素電位の変動は大きな問題とならないためである。 In addition, although it is thought that the same problem (brightness nonuniformity) as a CS line arises also about a gate line, the CS line has to give more importance to the potential reached than the gate line. This is because the pixel potential is subject to fluctuations mainly due to the capacitance Cgd (capacitance between the gate and drain (pixel electrodes)) parasitic to the transistor, but this fluctuation can usually be stabilized by providing a CS line. This is because the fluctuation of the pixel potential due to the above does not become a big problem.
 図11は、CSドライバ46を構成する保持回路の具体例を示す回路図である。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、4つのトランジスタMS1、MS2、MG、MHにより構成される。ここでは、これらのトランジスタはガラス基板上に形成されたアモルファスシリコンTFTである。 FIG. 11 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 46. As shown in FIG. Taking the holding circuit CSDi-1 as an example, the holding circuit CSDi-1 includes four transistors MS1, MS2, MG, and MH. Here, these transistors are amorphous silicon TFTs formed on a glass substrate.
 保持回路CSDi-1の端子s(第1入力部)、sel1(第2入力部)、sel2(第3入力部)、vdd、vssにはそれぞれ外部からの信号S、SEL1(保持対象信号)、SEL2(保持対象信号)、VDD、VSSが入力され、端子csからCS信号が出力される。 The terminals s (first input unit), sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are external signals S, SEL1 (holding target signals), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
 トランジスタMS1は、ゲート電極が保持回路CSDi-1の端子sに接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1に接続されている。トランジスタMGは、ゲート電極がノードnetC1に接続され、ソース電極が端子vddに接続され、ドレイン電極が出力端子csに接続されている。 The transistor MS1 has a gate electrode connected to the terminal s of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1. The transistor MG has a gate electrode connected to the node netC1, a source electrode connected to the terminal vdd, and a drain electrode connected to the output terminal cs.
 トランジスタMS2は、ゲート電極が保持回路CSDi-1の端子sに接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2に接続されている。トランジスタMHは、ゲート電極がノードnetC2に接続され、ソース電極が出力端子csに接続され、ドレイン電極が端子vssに接続されている。 The transistor MS2 has a gate electrode connected to the terminal s of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2. The transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
 図12は、保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。ここでも、保持回路の一例として図10の保持回路CSDi-1を挙げている。図12では横軸を時間とし縦軸を電位とし、紙面上側を正方向とする。特に横軸である時間に関しては、1H(水平走査期間)の時間おきの縦線を入れ、タイミングを示す目安としている。縦軸である電位については、基準電位となるGNDレベル、および共通電極(com)の電位となるCOMを、あわせて示している。後述のタイミングチャートでもこれと同様の記載とする。なお、本実施の形態の液晶表示装置110では、例えば、120Hzのフレームレートで駆動し、1H(水平走査期間)は7.4μs、2Hは14.8μs、1F(フレーム、垂直走査期間)は8.3msの時間であるが、本発明はこれに限定されるわけではない。 FIG. 12 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the holding circuit CSDi-1 in FIG. 10 is cited as an example of the holding circuit. In FIG. 12, the horizontal axis represents time, the vertical axis represents potential, and the upper side of the paper represents the positive direction. In particular, with respect to the time on the horizontal axis, vertical lines are inserted every 1H (horizontal scanning period) as an indication of timing. Regarding the potential on the vertical axis, the GND level as the reference potential and the COM as the potential of the common electrode (com) are also shown. The same description applies to timing charts described later. The liquid crystal display device 110 of the present embodiment is driven at a frame rate of 120 Hz, for example, 1H (horizontal scanning period) is 7.4 μs, 2H is 14.8 μs, and 1F (frame, vertical scanning period) is 8 Although the time is 3 ms, the present invention is not limited to this.
 図12には信号S、SEL1、SEL2、VDD、VSS、netC1、netC2、CSの波形を示している。同図において、V(netC1)、V(netC2)はそれぞれノードnetC1、netC2の電位を表し、CSは、保持回路CSDi-1の端子csから出力されるCS信号を表す。また、信号Sは、ゲートラインGLi+2から分岐して端子sに入力された信号を表す。なお、以下の説明においては、netC1、netC2の場合と同様に、配線、ノード等の特定部位の信号、電位を表すときに、その配線、ノード名を()で囲み、前にVを付して表すことがある。 FIG. 12 shows waveforms of signals S, SEL1, SEL2, VDD, VSS, netC1, netC2, and CS. In the figure, V (netC1) and V (netC2) represent the potentials of the nodes netC1 and netC2, respectively, and CS represents the CS signal output from the terminal cs of the holding circuit CSDi-1. The signal S represents a signal branched from the gate line GLi + 2 and input to the terminal s. In the following description, as in the case of netC1 and netC2, when a signal or potential of a specific part such as a wiring or a node is expressed, the wiring and the node name are enclosed in parentheses and V is added in front. May be expressed.
 信号Sの波形は1フレーム(垂直走査期間)の周期で変化する。ここでは1フレームに1回、2H(水平走査期間)の期間だけ高電位の状態になる。その他の期間では低電位の状態となる。高電位のときの電位をVgh、低電位のときの電位をVglと表す。SEL1、SEL2の信号波形は、1フレーム毎に高電位の状態と低電位の状態を交互に繰り返す。SEL1、SEL2は、高電位のときの電位をVselh、低電位のときの電位をVsellとする。SEL1、SEL2は、位相が互いに180°ずれている。なお、図示していないが、SEL1、SEL2がそれぞれ電位を変化させるタイミングは、表示に影響を及ぼさないように画素電極へ電位の書き込みが行なわれない期間である帰線期間に行なわれることが望ましい。VDD、VSSの電位は一定であり、それぞれの値をVcsh、Vcslと表す。CS信号は、図12に示すように、値Vcsh、Vcslの間で変動する。 The waveform of the signal S changes with a period of one frame (vertical scanning period). Here, the high potential state is set once per frame for a period of 2H (horizontal scanning period). In other periods, the potential is low. The potential at the high potential is expressed as Vgh, and the potential at the low potential is expressed as Vgl. The signal waveforms of SEL1 and SEL2 alternately repeat a high potential state and a low potential state every frame. In SEL1 and SEL2, the potential when the potential is high is Vselh, and the potential when the potential is low is Vsell. SEL1 and SEL2 are 180 degrees out of phase with each other. Although not shown in the drawing, the timing at which the potentials of SEL1 and SEL2 are changed is desirably set in a blanking period, which is a period during which no potential is written to the pixel electrode so as not to affect the display. . The potentials of VDD and VSS are constant, and the respective values are expressed as Vcsh and Vcsl. As shown in FIG. 12, the CS signal varies between values Vcsh and Vcsl.
 ここで、図11も参照して保持回路CSDi-1の動作を説明すると、Sは保持回路CSDi-1のスタートパルスの役割を担い、自段よりも後の後段の画素に対応するゲートラインGLi+2の信号電位(ゲート信号)がアクティブ(選択状態)になると、信号Sの電位がVglからVghに上がり、トランジスタMS1、MS2はオン状態となって、ノードnetC1、netC2の電位が、それぞれSEL1、SEL2の電位へ近づく。SがVghになってから2H経過後、再びSの電位がVglに下がると、トランジスタMS1、MS2はオフ状態となり、ノードnetC1、netC2の電位は、SEL1、SEL2の電位に関わらず、トランジスタMS1、MS2がオフしたときの電位に保持される。 Here, the operation of the holding circuit CSDi-1 will be described with reference to FIG. 11 as well. S plays the role of a start pulse of the holding circuit CSDi-1, and the gate line GLi + 2 corresponding to the pixel at the latter stage after the own stage. When the signal potential (gate signal) becomes active (selected), the potential of the signal S rises from Vgl to Vgh, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 are SEL1 and SEL2, respectively. Approaches the potential of. When 2H elapses after S becomes Vgh, when the potential of S again decreases to Vgl, the transistors MS1 and MS2 are turned off, and the potentials of the nodes netC1 and netC2 are the transistors MS1, MS2 regardless of the potentials of SEL1 and SEL2. It is held at the potential when MS2 is turned off.
 SEL1、SEL2の位相が180°ずれているため、ノードnetC1、netC2の電位は、一方が高い状態(選択状態)となり、他方が低い状態(非選択状態)となる。それに対応して、トランジスタMG、MHも、一方が選択状態となり、他方が非選択状態となる。出力されるCS信号の電位は、ノードnetC1、netC2の電位に応じて変化するが、端子csが表示部のCSラインにつながり充電に時間がかかるため、その変化はノードnetC1、netC2よりも緩やかになる。CS信号の電位は、トランジスタMG、MHの選択/非選択の状態に応じて、一定時間経過すると、VcshまたはVcslの電位付近でほぼ安定する。ノードnetC1、netC2は保持部として機能するため、SEL1、SEL2の電位が変化したとしても、次にSの電位が変化するまで、すなわちほぼ1フレームの時間は電位が保持され、その結果、CS信号の電位が保持される。 Since the phases of SEL1 and SEL2 are shifted by 180 °, one of the nodes netC1 and netC2 has a high state (selected state) and the other has a low state (non-selected state). Correspondingly, one of the transistors MG and MH is selected and the other is not selected. The potential of the output CS signal changes according to the potentials of the nodes netC1 and netC2, but since the terminal cs is connected to the CS line of the display unit and charging takes time, the change is more gradual than the nodes netC1 and netC2. Become. The potential of the CS signal is substantially stabilized in the vicinity of the potential of Vcsh or Vcsl after a predetermined time has elapsed according to the selection / non-selection state of the transistors MG and MH. Since the nodes netC1 and netC2 function as holding units, even if the potentials of SEL1 and SEL2 change, the potentials are held until the next change of the potential of S, that is, for approximately one frame time. As a result, the CS signal Is maintained.
 具体例を挙げると、連続する第1、第2フレームにおいて、第1フレームでは、時刻t1においてSがVghになると、トランジスタMS1、MS2がオン状態となり、端子sel1およびノードnetC1が導通し、ノードnetC1の電位が上がるとともに、端子sel2およびノードnetC2が導通し、ノードnetC2の電位が下がる。ノードnetC1の高電位によりトランジスタMGがオン状態となり、ノードnetC2の低電位によりトランジスタMHがオフ状態となり、これによりCS信号の電位がVDDの電位Vcshに近づく。 As a specific example, in the first and second frames that are continuous, in the first frame, when S becomes Vgh at time t1, the transistors MS1 and MS2 are turned on, the terminal sel1 and the node netC1 become conductive, and the node netC1 Increases, the terminal sel2 and the node netC2 become conductive, and the potential of the node netC2 decreases. The transistor MG is turned on by the high potential of the node netC1, and the transistor MH is turned off by the low potential of the node netC2, so that the potential of the CS signal approaches the potential Vcsh of VDD.
 第2フレームでは、時刻t1+1FにおいてSがVghになると、トランジスタMS1、MS2がオン状態となり、端子sel1およびノードnetC1が導通し、ノードnetC1の電位が下がるとともに、端子sel2およびノードnetC2が導通し、ノードnetC2の電位が上がる。ノードnetC1の低電位によりトランジスタMGがオフ状態となり、ノードnetC2の高電位によりトランジスタMHがオン状態となり、これによりCS信号の電位がVSSの電位Vcslに近づく。 In the second frame, when S becomes Vgh at time t1 + 1F, the transistors MS1 and MS2 are turned on, the terminal sel1 and the node netC1 are turned on, the potential of the node netC1 is lowered, the terminal sel2 and the node netC2 are turned on, and the node The potential of netC2 increases. The transistor MG is turned off by the low potential of the node netC1, and the transistor MH is turned on by the high potential of the node netC2, so that the potential of the CS signal approaches the potential Vcsl of VSS.
 保持回路CSDi-1では、上記の第1、第2フレームの動作を交互に繰り返す。 The holding circuit CSDi-1 repeats the operations of the first and second frames alternately.
 なお、より正確には、ノードnetC1、netC2の電位は、ともに値Vselh、Vsellの範囲内であるが、回路構成やトランジスタの特性によっては、ノードnetC1、netC2の電位はVselh、Vsellに完全に到達しないことがある。特にトランジスタがアモルファスシリコンTFTの場合、移動度が低いなどの理由で充電能力が不足し、ノードnetC1、netC2の電位は十分に到達しないこともある。 More precisely, the potentials of the nodes netC1 and netC2 are both in the range of the values Vselh and Vsel, but depending on the circuit configuration and transistor characteristics, the potentials of the nodes netC1 and netC2 completely reach Vselh and Vsel. There are things that do not. In particular, when the transistor is an amorphous silicon TFT, the charging capability is insufficient due to low mobility, and the potentials of the nodes netC1 and netC2 may not reach sufficiently.
 図13は、図9において示される画素Piにおける各種の信号波形を示すタイミングチャートであり、偶数段のゲートラインGLiに対応する。また、図14は、画素Pi+1における各種の信号波形を示すタイミングチャートであり、奇数段のゲートラインGLi+1に対応する。なお、iは偶数とする。図13および図14においても図12と同様に、特に横軸である時間に関しては、1H(水平走査期間)の時間おきの縦線を入れ、タイミングを示す目安としている。縦軸である電位については、基準電位となる電位GNDおよび共通電極(com)の電位となるCOMを、あわせて示している。以降のタイミングチャートでも同様である。また、図13、図14の第1、第2フレームは、それぞれ図12の第1、第2フレームと対応しており、時刻t2は時刻t1よりも2H前の時刻である。すなわち(時刻t2)=(時刻t1-2H)の関係にある。なお、以下では、画素Pi、画素Pi+1およびその周辺における信号変化について例を示すが、他の段の画素およびその周辺についても、各段の順次走査による全体的なタイミングのずれを除いて同様である。 FIG. 13 is a timing chart showing various signal waveforms in the pixel Pi shown in FIG. 9, and corresponds to the even-numbered gate lines GLi. FIG. 14 is a timing chart showing various signal waveforms in the pixel Pi + 1, which corresponds to the odd-numbered gate line GLi + 1. Note that i is an even number. In FIG. 13 and FIG. 14, as in FIG. 12, especially with respect to the time on the horizontal axis, vertical lines are inserted every 1H (horizontal scanning period) as an indication of timing. Regarding the potential on the vertical axis, the potential GND as the reference potential and the COM as the potential of the common electrode (com) are also shown. The same applies to the subsequent timing charts. The first and second frames in FIGS. 13 and 14 correspond to the first and second frames in FIG. 12, respectively, and time t2 is a time 2H before time t1. That is, (time t2) = (time t1-2H). In the following, an example of signal changes in the pixel Pi, the pixel Pi + 1 and the periphery thereof will be described, but the same applies to the pixels in the other stages and the periphery thereof except for the overall timing shift due to the sequential scanning of each stage. is there.
 図13において、V(GLi)はゲートラインGLiの電位を示し、V(SLj)はソースラインSLjの電位を示し、V(CSLi-1)はCSラインCSLi-1の電位を示し、V(CSLi)はCSラインCSLiの電位を示し、V(PAi)、V(PBi)はそれぞれ、副画素PAi、PBiの画素電位を示している。副画素PAi、PBiを有する画素Piは、図9に示すように、ゲートラインGLiと、ソースラインSLjと、CSラインCSLi-1、CSLiとにより充電制御される。なお、ソースラインSLjは任意のラインであってよく、jは1~nの範囲で任意に決めることができる。 In FIG. 13, V (GLi) indicates the potential of the gate line GLi, V (SLj) indicates the potential of the source line SLj, V (CSLi-1) indicates the potential of the CS line CSLi-1, and V (CSLi-1). ) Indicates the potential of the CS line CSLi, and V (PAi) and V (PBi) indicate the pixel potentials of the sub-pixels PAi and PBi, respectively. As shown in FIG. 9, the charge of the pixel Pi having the sub-pixels PAi and PBi is controlled by the gate line GLi, the source line SLj, and the CS lines CSLi-1 and CSLi. The source line SLj may be an arbitrary line, and j can be arbitrarily determined in the range of 1 to n.
 まず、図13の第1フレームについて説明する。ゲートラインGLiの電位(ゲート信号)は、時刻t2で立ち上がるとする。ソースラインSLjの電位(データ信号)は、共通電極(com)の電位COMを基準として、フレーム毎にCOMより高電位側、低電位側とに切り替わるが、詳細な電位は表示しようとする映像信号によって変化する。第1フレームでは、ソースラインSLjの電位がCOMよりも正側(プラス極性)にある場合を示している。保持回路CSDLi-1は、ゲートラインGLi+2がアクティブ(選択状態)となるタイミングで動作を開始するため(図12参照)、CSラインCSLi-1の電位は、時刻t2+2H(=時刻t1)において電位変化を開始する。ここでは、図12に示すように、保持回路CSDLi-1に入力されるSEL1の電位が高電位であるため、CSラインCSLi-1の電位が正側に変化する。 First, the first frame in FIG. 13 will be described. It is assumed that the potential (gate signal) of the gate line GLi rises at time t2. The potential (data signal) of the source line SLj is switched between a higher potential side and a lower potential side than COM for each frame on the basis of the potential COM of the common electrode (com), but a detailed potential is a video signal to be displayed. It depends on. The first frame shows a case where the potential of the source line SLj is on the positive side (plus polarity) from COM. Since the holding circuit CSDLi-1 starts operation at the timing when the gate line GLi + 2 becomes active (selected state) (see FIG. 12), the potential of the CS line CSLi-1 changes in potential at time t2 + 2H (= time t1). To start. Here, as shown in FIG. 12, since the potential of SEL1 input to the holding circuit CSDLi-1 is a high potential, the potential of the CS line CSLi-1 changes to the positive side.
 なお、図10に示すように、CSラインCSLiは容量配線幹47と接続し、一定の電位(COM)が供給されているため、CSラインCSLiの電位変化はない。 As shown in FIG. 10, since the CS line CSLi is connected to the capacitor wiring trunk 47 and a constant potential (COM) is supplied, there is no potential change of the CS line CSLi.
 副画素PAiでは、時刻t2からt2+2HまではゲートラインGLiの電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が直接書き込まれる。時刻t2+2H以降は、ゲートラインGLiの電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われない。すなわち、副画素PAiは、フローティング状態となる。ここで、図9に示すように、副画素PAiは、画素電極とCSラインCSLi-1との間に保持容量が形成(容量結合)されるため、副画素PAiの電位は、トランジスタがオフした後に、CSラインCSLi-1の電位変動(低電位→高電位)の影響を受け、正側へ突き上がる。このような、容量結合駆動による画素電位の変化の大きさΔVは、ΔV=(Vcsh-Vcsl)×Kで与えられる。ここで、K=CCS/(CCS+CLC)であって、CCS、CLCは、それぞれ、該当する副画素(ここではPAi)の有する画素電極と、CSライン(ここではCSLi-1)および共通電極(com)のそれぞれとの間に実質的に形成される容量(それぞれ、保持容量、液晶容量)である。ここで、実質的に形成される容量としているのは、例えばCSラインが容量電極を有し、この容量電極を介して画素電極とCSラインとの間で保持容量が形成されてもよいということである。後述する式のKも同様である。 In the sub-pixel PAi, since the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is directly written. After time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, and charging / discharging is not performed. That is, the subpixel PAi is in a floating state. Here, as shown in FIG. 9, in the sub-pixel PAi, since the storage capacitor is formed (capacitive coupling) between the pixel electrode and the CS line CSLi-1, the potential of the sub-pixel PAi is turned off by the transistor. Later, under the influence of the potential fluctuation (low potential → high potential) of the CS line CSLi-1, it rises to the positive side. The magnitude ΔV of the change in the pixel potential due to the capacitive coupling drive is given by ΔV = (Vcsh−Vcsl) × K. Here, K = CCS / (CCS + CLC), and CCS and CLC are respectively the pixel electrode of the corresponding sub-pixel (here, PAi), the CS line (here, CSLi-1), and the common electrode (com) ) Are substantially formed (retention capacitors and liquid crystal capacitors, respectively). Here, the capacitor that is substantially formed means that, for example, the CS line has a capacitor electrode, and a storage capacitor may be formed between the pixel electrode and the CS line via the capacitor electrode. It is. The same applies to K in the equation described later.
 なお、副画素PBiでは、画素電極とCSラインCSLiとの間に保持容量が形成されるが、CSラインCSLiの電位が一定であるため、時刻t2+2H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 In the sub-pixel PBi, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, in the floating state after time t2 + 2H (after the transistor is turned off). The pixel potential does not change.
 次に、第2フレームについて説明する。ゲートラインGLiの電位は、時刻t2+1Fで立ち上がる。第2フレームでは、ソースラインSLjの電位は、COMよりも負側(マイナス極性)となる。また、図12に示すように、保持回路CSDLi-1に入力されるSEL2の電位が高電位であるため、CSラインCSLi-1の電位は負側に変化する。 Next, the second frame will be described. The potential of the gate line GLi rises at time t2 + 1F. In the second frame, the potential of the source line SLj is more negative (minus polarity) than COM. Further, as shown in FIG. 12, since the potential of SEL2 input to the holding circuit CSDLi-1 is a high potential, the potential of the CS line CSLi-1 changes to the negative side.
 なお、図10に示すように、CSラインCSLiは容量配線幹47と接続し、一定の電位(COM)が供給されているため、CSラインCSLiの電位変化はない。 As shown in FIG. 10, since the CS line CSLi is connected to the capacitor wiring trunk 47 and a constant potential (COM) is supplied, there is no potential change of the CS line CSLi.
 時刻t2+1Fからt2+1F+2HまではゲートラインGLiの電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が副画素PAi、PBiに直接書き込まれる。時刻t2+1F+2H以降は、ゲートラインGLiの電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われない。すなわち、副画素PAiはフローティング状態となる。ここで、図9に示すように、副画素PAiは、画素電極とCSラインCSLi-1との間に保持容量が形成(容量結合)されるため、副画素PAiの電位は、トランジスタがオフした後に、CSラインCSLi-1の電位変動(高電位→低電位)の影響を受け、負側に突き下がる。このときの副画素PAiの電位の変化の大きさΔVは、第1フレームと同様、(Vcsh-Vcsl)×Kで与えられる。 From time t2 + 1F to t2 + 1F + 2H, since the potential of the gate line GLi is high (Vgh), the potential (data signal) of the source line SLj is directly written into the sub-pixels PAi and PBi. After time t2 + 1F + 2H, since the potential of the gate line GLi becomes a low potential (Vgl), the corresponding transistor is turned off and charging / discharging is not performed. That is, the subpixel PAi is in a floating state. Here, as shown in FIG. 9, in the sub-pixel PAi, since the storage capacitor is formed (capacitive coupling) between the pixel electrode and the CS line CSLi-1, the potential of the sub-pixel PAi is turned off by the transistor. Later, under the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi-1, it falls to the negative side. The magnitude ΔV of the change in potential of the sub-pixel PAi at this time is given by (Vcsh−Vcsl) × K, as in the first frame.
 なお、副画素PBiでは、画素電極とCSラインCSLiとの間に保持容量が形成されるが、CSラインCSLiの電位が一定であるため、時刻t2+1F+2H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 In the subpixel PBi, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, the subpixel PBi is in a floating state after time t2 + 1F + 2H (after the transistor is turned off). The pixel potential does not change.
 画素Piにおけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
 上記の動作によれば、同一のソースラインSLjから同一のタイミングで副画素PAi、PBiにデータ信号を供給しているにもかかわらず、副画素PAi、PBiの電位を互いに異ならせることができる。そのため、液晶表示装置がノーマリーブラックである表示モードの場合、共通電極(com)の電位COMとの電位差により、副画素PAiを明副画素、副画素PBiを暗副画素とすることができる。これにより、画素分割方式の液晶表示装置を実現できる。 According to the above operation, the potentials of the subpixels PAi and PBi can be made different from each other even though the data signals are supplied to the subpixels PAi and PBi from the same source line SLj at the same timing. Therefore, in the display mode in which the liquid crystal display device is normally black, the subpixel PAi can be the bright subpixel and the subpixel PBi can be the dark subpixel due to the potential difference with the potential COM of the common electrode (com). Thus, a pixel division type liquid crystal display device can be realized.
 次に、奇数段のゲートラインGLi+1に対応する画素Pi+1における電位変化ついて、図14を用いて説明する。 Next, the potential change in the pixel Pi + 1 corresponding to the odd-numbered gate line GLi + 1 will be described with reference to FIG.
 図14において、V(GLi+1)はゲートラインGLi+1の電位を示し、V(SLj)はソースラインSLjの電位を示し、V(CSLi)はCSラインCSLiの電位を示し、V(CSLi+1)はCSラインCSLi+1の電位を示し、V(PAi+1)、V(PBi+1)はそれぞれ、副画素PAi+1、PBi+1の画素電位を示している。 In FIG. 14, V (GLi + 1) indicates the potential of the gate line GLi + 1, V (SLj) indicates the potential of the source line SLj, V (CSLi) indicates the potential of the CS line CSLi, and V (CSLi + 1) indicates the CS line. CSLi + 1 indicates the potential, and V (PAi + 1) and V (PBi + 1) indicate the pixel potentials of the sub-pixels PAi + 1 and PBi + 1, respectively.
 図9に示すように、副画素PAi+1、PBi+1を有する画素Pi+1は、ゲートラインGLi+1と、ソースラインSLjと、CSラインCSLi、CSLi+1とにより充電制御される。なお、jは1~nの範囲で任意に決めることができる。 As shown in FIG. 9, the pixel Pi + 1 having the sub-pixels PAi + 1 and PBi + 1 is controlled to be charged by the gate line GLi + 1, the source line SLj, and the CS lines CSLi and CSLi + 1. Note that j can be arbitrarily determined in the range of 1 to n.
 第1フレームでは、ソースラインSLjの電位(データ信号)がCOMよりも正側(プラス極成)にある場合を示している。 The first frame shows a case where the potential (data signal) of the source line SLj is on the positive side (positive polarity) with respect to COM.
 保持回路CSDLi+1は、ゲートラインGLi+4がアクティブ(選択状態)となるタイミングで動作を開始するため、CSラインCSLi+1の電位は、時刻t2+4Hにおいて電位変化を始める。ここで、図12に示すように、保持回路CSLi+1に入力されるSEL1の電位が高電位であるため、CSラインCSLi+1の電位が正側に変化する。 Since the holding circuit CSDLi + 1 starts operating at the timing when the gate line GLi + 4 becomes active (selected state), the potential of the CS line CSLi + 1 starts to change at time t2 + 4H. Here, as shown in FIG. 12, since the potential of SEL1 input to the holding circuit CSLi + 1 is high, the potential of the CS line CSLi + 1 changes to the positive side.
 なお、上述したように、CSラインCSLiは容量配線幹47と接続し、一定の電位(COM)が供給されているため、CSラインCSLiの電位変化はない。 As described above, since the CS line CSLi is connected to the capacitor wiring trunk 47 and is supplied with a constant potential (COM), there is no potential change of the CS line CSLi.
 時刻t2+1Hからt2+3HまではゲートラインGLi+1の電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が副画素PAi+1、PBi+1に直接書き込まれる。時刻t2+3H以降は、ゲートラインGLi+1の電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われない。すなわち、副画素PBi+1は、フローティング状態となる。ここで、図9に示すように、副画素PBi+1は、画素電極とCSラインCSLi+1との間に保持容量が形成(容量結合)されるため、副画素PBi+1の電位は、トランジスタがオフした後に、時刻t2+4HにおけるCSラインCSLi+1の電位変動(低電位→高電位)の影響を受け、正側に突き上がる。このときの副画素PBi+1の電位の変化の大きさΔVは、ΔV=(Vcsh-Vcsl)×Kで与えられる。 From time t2 + 1H to t2 + 3H, since the potential of the gate line GLi + 1 is high (Vgh), the potential (data signal) of the source line SLj is directly written into the sub-pixels PAi + 1 and PBi + 1. After the time t2 + 3H, the potential of the gate line GLi + 1 becomes a low potential (Vgl), so that the corresponding transistor is turned off and charging / discharging is not performed. That is, the subpixel PBi + 1 is in a floating state. Here, as shown in FIG. 9, in the subpixel PBi + 1, since a storage capacitor is formed (capacitive coupling) between the pixel electrode and the CS line CSLi + 1, the potential of the subpixel PBi + 1 is changed after the transistor is turned off. Under the influence of the potential fluctuation (low potential → high potential) of the CS line CSLi + 1 at the time t2 + 4H, it rises to the positive side. The magnitude ΔV of the potential change of the sub-pixel PBi + 1 at this time is given by ΔV = (Vcsh−Vcsl) × K.
 なお、副画素PAi+1では、画素電極とCSラインCSLiとの間に保持容量が形成されるが、CSラインCSLiの電位が一定であるため、時刻t2+3H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 Note that in the subpixel PAi + 1, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, in the floating state after time t2 + 3H (after the transistor is turned off). The pixel potential does not change.
 次に、第2フレームについて説明する。ゲートラインGLi+1の電位は、時刻t2+1F+1Hで立ち上がる。第2フレームでは、ソースラインSLjの電位は、COMよりも負側(マイナス極性)となる。図12に示すように、保持回路CSDLi+1に入力されるSEL2の電位が高電位であるため、CSラインCSLi+1の電位は負側に変化する。 Next, the second frame will be described. The potential of the gate line GLi + 1 rises at time t2 + 1F + 1H. In the second frame, the potential of the source line SLj is more negative (minus polarity) than COM. As shown in FIG. 12, since the potential of SEL2 input to the holding circuit CSDLi + 1 is a high potential, the potential of the CS line CSLi + 1 changes to the negative side.
 なお、上述したように、CSラインCSLiは容量配線幹47と接続し、一定の電位(COM)が供給されているため、CSラインCSLiの電位変化はない。 As described above, since the CS line CSLi is connected to the capacitor wiring trunk 47 and is supplied with a constant potential (COM), there is no potential change of the CS line CSLi.
 時刻t2+1F+1Hからt2+1F+3HまではゲートラインGLi+1の電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が副画素PAi+1、PBi+1に直接書き込まれる。時刻t2+1F+3H以降は、ゲートラインGLi+1の電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われない。すなわち、副画素PBi+1はフローティング状態となる。ここで、図9に示すように、副画素PBi+1は、画素電極とCSラインCSLi+1との間に保持容量が形成(容量結合)されるため、副画素PBi+1の電位は、トランジスタがオフした後に、CSラインCSLi+1の電位変動(高電位→低電位)の影響を受け、負側に突き下がる。このときの副画素PBi+1の電位の変化の大きさΔVは、第1フレームと同様、(Vcsh-Vcsl)×Kで与えられる。 From time t2 + 1F + 1H to t2 + 1F + 3H, since the potential of the gate line GLi + 1 is high (Vgh), the potential (data signal) of the source line SLj is directly written to the subpixels PAi + 1 and PBi + 1. After time t2 + 1F + 3H, the potential of the gate line GLi + 1 is low (Vgl), so that the corresponding transistor is turned off and charging / discharging is not performed. That is, the subpixel PBi + 1 is in a floating state. Here, as shown in FIG. 9, in the subpixel PBi + 1, since a storage capacitor is formed (capacitive coupling) between the pixel electrode and the CS line CSLi + 1, the potential of the subpixel PBi + 1 is changed after the transistor is turned off. Under the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi + 1, it falls to the negative side. The magnitude ΔV of the change in potential of the sub-pixel PBi + 1 at this time is given by (Vcsh−Vcsl) × K, as in the first frame.
 なお、副画素PAi+1では、画素電極とCSラインCSLi+1との間に保持容量が形成されるが、CSラインCSLi+1の電位が一定であるため、時刻t2+1F+3H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 Note that in the subpixel PAi + 1, a storage capacitor is formed between the pixel electrode and the CS line CSLi + 1. However, since the potential of the CS line CSLi + 1 is constant, in the floating state after the time t2 + 1F + 3H (after the transistor is turned off). The pixel potential does not change.
 画素Pi+1におけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
 上記の動作によれば、同一のソースラインSLjから同一のタイミングで、副画素PAi+1、PBi+1にデータ信号を供給しているにもかかわらず、副画素PAi+1、PBi+1の電位を異ならせることができる。そのため、液晶表示装置がノーマリーブラックである表示モードの場合、共通電極(com)の電位COMとの電位差により、副画素PAi+1を暗副画素、副画素PBi+1を明副画素とすることができる。これにより、画素分割方式の液晶表示装置を実現できる。 According to the above operation, the potentials of the subpixels PAi + 1 and PBi + 1 can be made different from each other even though the data signal is supplied to the subpixels PAi + 1 and PBi + 1 at the same timing from the same source line SLj. Therefore, in the display mode in which the liquid crystal display device is normally black, the subpixel PAi + 1 can be a dark subpixel and the subpixel PBi + 1 can be a bright subpixel due to a potential difference with the potential COM of the common electrode (com). Thus, a pixel division type liquid crystal display device can be realized.
 以上に示したとおり、本発明の液晶表示装置110では、液晶パネル113aはガラス基板1上に複数の保持回路(保持容量配線駆動内部回路)からなるCSドライバ(保持容量配線駆動回路)と、保持容量配線幹とを有し、CSライン(保持容量配線)には、その両端部から同時に、保持回路からの出力、または、保持容量配線幹に供給される信号を分割した出力が、CS信号(保持容量配線信号)として入力される。この構成によれば、CSラインにおけるCS信号の到達時間を減少させることができるため、1本のCSラインにおける目標電位および到達電位の差に起因する画素電位の分布(不均一)を低減することができ、表示品位を向上させることができる。 As described above, in the liquid crystal display device 110 of the present invention, the liquid crystal panel 113a is provided on the glass substrate 1 with a CS driver (holding capacity wiring driving circuit) composed of a plurality of holding circuits (holding capacity wiring driving internal circuits), and holding. The CS line (retention capacitor line) has an output from the holding circuit or an output obtained by dividing a signal supplied to the retention capacitor line trunk at the same time. Input as a storage capacitor wiring signal). According to this configuration, since the arrival time of the CS signal in the CS line can be reduced, the distribution (nonuniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one CS line can be reduced. Display quality can be improved.
 ここで、保持容量配線幹は一定の電位(例えばCOM)が外部から入力されてDC駆動されており、AC駆動されていない。したがって、保持容量配線幹は、その配線幅を細くすることができる。これは、保持容量配線幹と保持容量配線内での信号遅延が表示に影響しにくいからである。また、保持回路は、図11に示すように4つのTFTで構成できるため、CSドライバの回路構成を簡素化することができる。さらに、保持回路を駆動するための信号SEL1、SEL2、VDD、VSSを伝送する配線は細くてもよいため、アクティブマトリクス基板上におけるCSドライバの占有面積を小さくすることができる。なお、これらの配線が細くてもよい理由は、回路構成上、信号SEL1、SEL2を伝達する選択用配線46a、選択用配線46bの有するライン容量を小さくできるとともに、信号SEL1、SEL2が帰線期間でのみ電位を変動させ、VDD、VSSは一定の電位でよいからである。したがって、上記構成によれば、CSラインにCS信号を与えるための回路および配線を、小さな占有面積で作製できるので、液晶パネルおよびこれを備える液晶表示装置の額縁を小さくすることができる。 Here, the storage capacitor wiring trunk is DC driven with a constant potential (for example, COM) input from the outside, and is not AC driven. Therefore, the storage capacitor wiring trunk can reduce the wiring width. This is because the signal delay in the storage capacitor wiring trunk and the storage capacitor wiring hardly affects the display. Further, since the holding circuit can be constituted by four TFTs as shown in FIG. 11, the circuit configuration of the CS driver can be simplified. Furthermore, since the wiring for transmitting the signals SEL1, SEL2, VDD, and VSS for driving the holding circuit may be thin, the area occupied by the CS driver on the active matrix substrate can be reduced. The reason why these wirings may be thin is that, due to the circuit configuration, the line capacitance of the selection wiring 46a and the selection wiring 46b for transmitting the signals SEL1 and SEL2 can be reduced, and the signals SEL1 and SEL2 are in the blanking period. This is because the potential is changed only in the case of VDD and VSS may be constant. Therefore, according to the above configuration, since a circuit and a wiring for supplying a CS signal to the CS line can be manufactured with a small occupied area, the frame of the liquid crystal panel and the liquid crystal display device including the liquid crystal panel can be reduced.
 (変形例1)
 次に、上記構成例1のゲート・CSドライバ44の変形例1を説明する。上記構成例1では、ゲートラインGLiの電位(走査信号)を2H(水平走査期間)の期間だけ高電位(Vgh)にして、対応する画素にデータ信号を供給する構成としているが、これに限定されるものではなく、求める液晶表示装置のサイズ、解像度、フレームレート等の規格に応じて、高電位期間を、例えば、1Hあるいは3H以上としてもよい。高電位期間を1Hとした場合には、保持回路CSDi-1に入力するゲート信号を、GLi+1としても画素分割方式の液晶表示装置が実現できる。図15はこの構成を示すゲート・CSドライバの回路図であり、図16および図17はそれぞれ、図15のゲート・CSドライバを適用した場合の画素Pi、Pi+1における各種の信号波形を示すタイミングチャートである。
(Modification 1)
Next, a first modification of the gate / CS driver 44 of the first configuration example will be described. In the above configuration example 1, the potential (scanning signal) of the gate line GLi is set to a high potential (Vgh) only during the period of 2H (horizontal scanning period), and the data signal is supplied to the corresponding pixel. However, the high potential period may be set to, for example, 1H or 3H or more according to standards such as the required size, resolution, and frame rate of the liquid crystal display device. In the case where the high potential period is set to 1H, a pixel division type liquid crystal display device can be realized even if the gate signal input to the holding circuit CSDi-1 is GLi + 1. FIG. 15 is a circuit diagram of the gate / CS driver showing this configuration, and FIGS. 16 and 17 are timing charts showing various signal waveforms in the pixels Pi and Pi + 1 when the gate / CS driver of FIG. 15 is applied. It is.
 この変形例1の構成によれば、画素Piについては、図16に示すように、副画素PAiの電位が、第1フレームにおいて、時刻t2+1HでCSラインCSLi-1の電位変動(低電位→高電位)の影響を受け、ΔVの大きさだけ正側に突き上がり、第2フレームにおいて、時刻t2+1F+1HでCSラインCSLi-1の電位変動(高電位→低電位)の影響を受け、ΔVの大きさだけ負側に突き下がる。なお、副画素PBiの電位は、図13と同様、トランジスタがオフした後のフローティング状態において変化しない。これにより、副画素PAiを明副画素、副画素PBiを暗副画素とすることができる。 According to the configuration of the first modification, for the pixel Pi, as shown in FIG. 16, the potential of the sub-pixel PAi changes in the potential of the CS line CSLi-1 at time t2 + 1H (low potential → high potential) in the first frame. The magnitude of ΔV rises to the positive side by the magnitude of ΔV, and is affected by the potential fluctuation (high potential → low potential) of the CS line CSLi-1 at time t2 + 1F + 1H in the second frame. Just go down to the negative side. Note that the potential of the sub-pixel PBi does not change in the floating state after the transistor is turned off, as in FIG. Thereby, the subpixel PAi can be a bright subpixel and the subpixel PBi can be a dark subpixel.
 また、画素Pi+1については、図17に示すように、副画素PBi+1の電位が、第1フレームにおいて、時刻t2+3HでCSラインCSLi+1の電位変動(低電位→高電位)の影響を受け、ΔVの大きさだけ正側に突き上がり、第2フレームにおいて、時刻t2+1F+3HでCSラインCSLi+1の電位変動(高電位→低電位)の影響を受け、ΔVの大きさだけ負側に突き下がる。なお、副画素PAi+1の電位は、図13と同様、トランジスタがオフした後のフローティング状態において変化しない。これにより、副画素PAi+1を暗副画素、副画素PBi+1を明副画素とすることができる。 For the pixel Pi + 1, as shown in FIG. 17, the potential of the sub-pixel PBi + 1 is affected by the potential fluctuation (low potential → high potential) of the CS line CSLi + 1 at time t2 + 3H in the first frame, and the magnitude of ΔV It rises to the positive side, and in the second frame, it is affected by the potential fluctuation (high potential → low potential) of the CS line CSLi + 1 at time t2 + 1F + 3H, and falls to the negative side by the magnitude of ΔV. Note that the potential of the subpixel PAi + 1 does not change in the floating state after the transistor is turned off, as in FIG. Thereby, the subpixel PAi + 1 can be a dark subpixel, and the subpixel PBi + 1 can be a bright subpixel.
 (変形例2)
 次に、上記構成例1のゲート・CSドライバ44の変形例2を説明する。変形例2では、図12に示す信号SEL1(保持対象信号)、SEL2(保持対象信号)の電位を反転させている。すなわち、第1フレームおいて、SEL1を低電位(Vsell)、SEL2を高電位(Vselh)とし、第2フレームにおいて、SEL1を高電位(Vselh)、SEL2を低電位(Vsell)とする。これにより、図示はしないが、図12に示すCS信号の電位変化が逆転する。図18および図19はそれぞれ、上記のCS信号を用いた場合の画素Pi、Pi+1における各種の信号波形を示すタイミングチャートである。
(Modification 2)
Next, a second modification of the gate / CS driver 44 of the first configuration example will be described. In the second modification, the potentials of the signals SEL1 (holding target signal) and SEL2 (holding target signal) shown in FIG. 12 are inverted. That is, in the first frame, SEL1 is set to a low potential (Vsel), SEL2 is set to a high potential (Vselh), and in the second frame, SEL1 is set to a high potential (Vselh), and SEL2 is set to a low potential (Vsel). Thereby, although not shown, the potential change of the CS signal shown in FIG. 12 is reversed. 18 and 19 are timing charts showing various signal waveforms in the pixels Pi and Pi + 1 when the CS signal is used.
 画素Piについて、第1フレームでは、図18に示すように、時刻t2からt2+2HまではゲートラインGLiの電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が副画素PAi、PBiに直接書き込まれ、時刻t2+2H以降は、ゲートラインGLiの電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われずフローティング状態となる。副画素PAiがフローティング状態のときに、CSラインCSLi-1の電位変動(高電位→低電位)の影響を受け、副画素PAiの電位は、ΔVの大きさだけ負側へ突き下がる。なお、副画素PBiでは、画素電極とCSラインCSLiとの間に保持容量が形成されるが、CSラインCSLiの電位が一定であるため、時刻t2+2H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 Regarding the pixel Pi, in the first frame, as shown in FIG. 18, since the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is subpixel PAi. , PBi is directly written, and after time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, and charging / discharging is not performed and the floating state is entered. When the subpixel PAi is in a floating state, the potential of the subpixel PAi drops to the negative side by the magnitude of ΔV due to the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi-1. In the sub-pixel PBi, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, in the floating state after time t2 + 2H (after the transistor is turned off). The pixel potential does not change.
 第2フレームでは、ソースラインSLjおよびCSラインCSLi-1の電位の高低レベルが第1フレームとは逆転するため、副画素PAiの電位は、トランジスタがオフした後に、CSラインCSLi-1の電位変動(低電位→高電位)の影響を受け、ΔVの大きさだけ正側に突き上がる。なお、副画素PBiでは、第1フレームと同様、CSラインCSLiの電位が一定であるため、画素電位は変化しない。 In the second frame, since the high and low levels of the potentials of the source line SLj and the CS line CSLi-1 are reversed from those in the first frame, the potential of the subpixel PAi is changed after the transistor is turned off. Under the influence of (low potential → high potential), it rises to the positive side by the magnitude of ΔV. In the sub-pixel PBi, the pixel potential does not change because the potential of the CS line CSLi is constant as in the first frame.
 画素Piにおけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
 上記の動作によれば、副画素PAiを暗副画素、副画素PBiを明副画素とすることができる。 According to the above operation, the subpixel PAi can be a dark subpixel and the subpixel PBi can be a bright subpixel.
 画素Pi+1について、第1フレームでは、図19に示すように、時刻t2+1Hからt2+3HまではゲートラインGLi+1の電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が副画素PAi+1、PBi+1に直接書き込まれ、時刻t2+3H以降は、ゲートラインGLi+1の電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われずフローティング状態となる。画素PBi+1がフローティング状態のときに、CSラインCSLi+1の電位変動(高電位→低電位)の影響を受け、副画素PBi+1の電位は、ΔVの大きさだけ負側へ突き下がる。なお、副画素PAi+1では、画素電極とCSラインCSLiとの間に保持容量が形成されるが、CSラインCSLiの電位が一定であるため、時刻t2+3H以降(トランジスタがオフした後)のフローティング状態において、画素電位は変化しない。 For the pixel Pi + 1, in the first frame, as shown in FIG. 19, since the potential of the gate line GLi + 1 is high (Vgh) from time t2 + 1H to t2 + 3H, the potential (data signal) of the source line SLj is subpixel PAi + 1. , PBi + 1 is directly written, and after time t2 + 3H, the potential of the gate line GLi + 1 becomes a low potential (Vgl), so that the corresponding transistor is turned off, charging and discharging are not performed, and the floating state is entered. When the pixel PBi + 1 is in the floating state, the potential of the sub-pixel PBi + 1 is pushed down to the negative side by the magnitude of ΔV due to the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi + 1. Note that in the subpixel PAi + 1, a storage capacitor is formed between the pixel electrode and the CS line CSLi. However, since the potential of the CS line CSLi is constant, in the floating state after time t2 + 3H (after the transistor is turned off). The pixel potential does not change.
 第2フレームでは、ソースラインSLjおよびCSラインCSLi+1の電位の高低レベルが第1フレームとは逆転するため、副画素PBi+1の電位は、トランジスタがオフした後に、CSラインCSLi+1の電位変動(低電位→高電位)の影響を受け、正側にΔVの大きさだけ突き上がる。なお、副画素PAi+1では、第1フレームと同様、CSラインCSLiの電位が一定であるため、画素電位は変化しない。 In the second frame, the high and low levels of the potentials of the source line SLj and the CS line CSLi + 1 are reversed from those in the first frame. Therefore, the potential of the subpixel PBi + 1 is changed after the transistor is turned off. Under the influence of (high potential), it pushes up to the positive side by ΔV. In the sub-pixel PAi + 1, the pixel potential does not change because the potential of the CS line CSLi is constant as in the first frame.
 画素Pi+1におけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
 これにより、副画素PAi+1を明副画素、副画素PBi+1を暗副画素とすることができる。 Thereby, the subpixel PAi + 1 can be a bright subpixel and the subpixel PBi + 1 can be a dark subpixel.
 なお、上記の構成では、明副画素、暗副画素における画素電位を、図13および図14に示した駆動による明副画素、暗副画素における画素電位と同レベルにするためには、図13および図14におけるソースラインSLjの電位(データ信号)の振幅を平均的に大きくしなければならず、ソースドライバの発熱が増加するおそれがある。そして、ソースドライバの発熱に対する耐熱性に起因して、大型の液晶表示装置の作製上不利になる他、液晶表示装置の消費電力が増大する。よって、液晶表示装置の表示品位の向上および狭額縁化に加えて耐熱性および低消費電力を図る上では、上述した図13および図14の構成とすることが好ましい。 In the above configuration, in order to set the pixel potentials in the bright subpixel and the dark subpixel to the same level as the pixel potentials in the bright subpixel and the dark subpixel by the driving shown in FIGS. Further, the amplitude of the potential (data signal) of the source line SLj in FIG. 14 must be increased on average, which may increase the heat generation of the source driver. Further, due to the heat resistance of the source driver against heat generation, it becomes disadvantageous in manufacturing a large-sized liquid crystal display device, and the power consumption of the liquid crystal display device increases. Therefore, in order to improve the display quality of the liquid crystal display device and reduce the frame, in addition to achieving heat resistance and low power consumption, the above-described configurations of FIGS. 13 and 14 are preferable.
 以上に示した変形例1および2の構成においても、CSラインにおけるCS信号の到達時間を短縮させることができるため、1本のCSラインにおける目標電位および到達電位の差に起因する画素電位の分布(不均一)を低減することができ、表示品位を向上させることができる。また、CSラインに信号を与えるための回路および配線を、小さな占有面積で作製できるので、液晶表示装置の額縁を小さくすることができる。 Also in the configurations of the first and second modifications shown above, the arrival time of the CS signal in the CS line can be shortened, so that the distribution of the pixel potential due to the difference between the target potential and the arrival potential in one CS line (Non-uniformity) can be reduced, and display quality can be improved. Further, since a circuit and wiring for supplying a signal to the CS line can be manufactured with a small occupied area, the frame of the liquid crystal display device can be reduced.
 (変形例3)
 上述した構成例1やその変形例1、2では、ガラス基板1上のトランジスタ15a、15bおよびCSドライバ13を構成するトランジスタは、その半導体層としてアモルファスシリコンを用いていた。しかし、本発明はこれに限定されず、上述の半導体層は、微結晶シリコン膜や、他結晶シリコン膜、金属酸化物半導体膜を含んでもよい。また、上述の半導体層は、アモルファスシリコンTFTの場合と同様、真性層と低抵抗なコンタクト層の2層構造あるいは多層構造であってもよい。
(Modification 3)
In the configuration example 1 and the modifications 1 and 2 described above, the transistors constituting the transistors 15a and 15b and the CS driver 13 on the glass substrate 1 use amorphous silicon as the semiconductor layer. However, the present invention is not limited to this, and the above semiconductor layer may include a microcrystalline silicon film, another crystalline silicon film, or a metal oxide semiconductor film. Further, the semiconductor layer described above may have a two-layer structure or a multilayer structure of an intrinsic layer and a low-resistance contact layer as in the case of an amorphous silicon TFT.
 ここで、微結晶シリコン膜は、内部に微結晶粒からなる結晶相とアモルファス相との混合状態を有しているシリコン膜である。多結晶シリコン膜は、結晶相とその間にあるわずかな結晶粒界からなり、非常に結晶化率の高い膜である。また、金属酸化物半導体膜は、具体的には、Zn-O系半導体(ZnO)膜、In-Ga-Zn-O系半導体(IGZO)膜、In-Zn-O系半導体(IZO)膜、Zn-Ti-O系半導体(ZTO)膜などの金属酸化物半導体膜が知られ、構成金属元素として、亜鉛(Zn)や、インジウム(In)や、ガリウム(Ga)等を主成分として含むことが多い。 Here, the microcrystalline silicon film is a silicon film having a mixed state of a crystalline phase composed of microcrystalline grains and an amorphous phase. A polycrystalline silicon film is composed of a crystal phase and a few crystal grain boundaries between them, and has a very high crystallization rate. The metal oxide semiconductor film is specifically a Zn—O based semiconductor (ZnO) film, an In—Ga—Zn—O based semiconductor (IGZO) film, an In—Zn—O based semiconductor (IZO) film, A metal oxide semiconductor film such as a Zn—Ti—O based semiconductor (ZTO) film is known and contains zinc (Zn), indium (In), gallium (Ga) or the like as a main component as a constituent metal element. There are many.
 これらの材料を用いた場合、アモルファスシリコントランジスタよりも高移動度のトランジスタが作成できるので、本発明のようにガラス基板上に本発明のようなCSドライバを作成すれば、液晶表示装置の額縁をより小さくすることができるので有用である。特に飽和移動度が1cm/V・s以上の移動度を有する高移動度TFTを用いることが本発明には望ましい。 When these materials are used, a transistor having higher mobility than that of an amorphous silicon transistor can be formed. Therefore, if a CS driver like the present invention is formed on a glass substrate as in the present invention, the frame of the liquid crystal display device can be formed. This is useful because it can be made smaller. In particular, it is desirable for the present invention to use a high mobility TFT having a saturation mobility of 1 cm 2 / V · s or more.
 なお、本構成例1やその変形例1、2のCSドライバ46は、ガラス基板1上にゲートドライバとともに、一体化(モノリシック化)されて形成されていてもよい。特に本変形例3においては、飽和移動度が1cm/V・s以上の移動度を有する高移動度TFTを用いてゲート・CSドライバを形成することが望ましく、このような場合、ゲートドライバとCSドライバとが、駆動に必要な信号線あるいは、内部回路、内部ノードを共有するため、また、ポリイミドフィルム上のゲートドライバを実装するための端子が不要になるため、さらに狭額縁化を図ることができる。 Note that the CS driver 46 of Configuration Example 1 and Modifications 1 and 2 thereof may be formed integrally (monolithically) on the glass substrate 1 together with the gate driver. In particular, in the third modification, it is desirable to form a gate / CS driver using a high mobility TFT having a saturation mobility of 1 cm 2 / V · s or more. Since the CS driver shares the signal line, internal circuit, and internal node necessary for driving, and the terminal for mounting the gate driver on the polyimide film is not required, the frame is further narrowed. Can do.
 これらは以下の構成例やその変形例においても同様である。 These are the same in the following configuration examples and variations thereof.
 (CSドライバの構成例2)
 図20は、本発明の液晶表示装置110におけるゲート・CSドライバ48の構成例2を示す回路図である。便宜上、上記構成例1と同様の構成要素には同じ符号を付し、その説明を省略する。ゲートドライバ45はSOF(システムオンフィルム)技術を用いてポリイミドフィルム上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ49は、ガラス基板1上に一体化(モノリシック化)されて形成されている。すなわち、CSドライバ49は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。本構成例2のゲート・CSドライバ48は、構成例1とは異なり、容量配線幹を備えていない。なお、図20ではiを偶数として記載している。ゲートドライバ45およびCSドライバ49は、それぞれ、液晶表示装置110の両端部(図20では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ49が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ49は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ49について説明する。
(CS driver configuration example 2)
FIG. 20 is a circuit diagram showing a configuration example 2 of the gate / CS driver 48 in the liquid crystal display device 110 of the present invention. For convenience, the same reference numerals are given to the same components as those in the first configuration example, and the description thereof is omitted. The gate driver 45 is mounted on the polyimide film using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 49 is integrally formed (monolithic) on the glass substrate 1. That is, the CS driver 49 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. Unlike the configuration example 1, the gate / CS driver 48 of the configuration example 2 does not include a capacitor wiring trunk. In FIG. 20, i is described as an even number. The gate driver 45 and the CS driver 49 are provided in a row at both ends of the liquid crystal display device 110 (the left and right ends in FIG. 20). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 49 may be integrally formed (monolithic) on the IC substrate. Since the two gate drivers 45 and the CS drivers 49 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 49 will be described below.
 CSドライバ49は、図10に示された構成例1のゲート・CSドライバ44とは異なり、全てのCSラインCSL0~CSLmのそれぞれに対応して個別に設けられた複数の保持回路CSD0~CSDmを含んで構成されている。なお、以下の説明では、本発明の保持回路の代表として保持回路CSDi-1等を例に挙げて説明するが、他の段の保持回路についても同様である。 Unlike the gate / CS driver 44 of the configuration example 1 shown in FIG. 10, the CS driver 49 includes a plurality of holding circuits CSD0 to CSDm individually provided corresponding to all the CS lines CSL0 to CSLm. It is configured to include. In the following description, the holding circuit CSDi-1 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
 CSドライバ49は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子を備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取るとともに、ゲートドライバ45の出力(ゲート信号)を受け取る。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子sel1、sel2、vdd、vssを備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。また、保持回路CSDi-1は入力端子sを備え、入力端子sは、ゲートラインGLi+2に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。保持回路CSDi-1の出力(CS信号)は、出力端子csを介してCSラインCSLi-1に入力される。なお、CSラインCSLi-1は、その両端部がそれぞれ、液晶表示装置100の両端部に設けられた各CSドライバ49の保持回路CSDi-1のそれぞれに接続されているため、CSラインCSLi-1には、その両端部から各保持回路CSDi-1の出力(CS信号)が同時に供給される。 The CS driver 49 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and each of the above-described components via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L. A signal is received and an output (gate signal) of the gate driver 45 is received. As an example, the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a and a selection wiring. The above signals are received through the high potential side power supply line 46H and the low potential side power supply line 46L. The holding circuit CSDi-1 includes an input terminal s. The input terminal s is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45. The output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs. Note that the CS line CSLi-1 has both ends connected to the holding circuits CSDi-1 of the CS drivers 49 provided at both ends of the liquid crystal display device 100, respectively. Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
 また、偶数段の保持回路と奇数段の保持回路とは、入力されるSEL1、SEL2が交互に入れ替わる。例えば、図20ではiを偶数として記載されており、奇数段の保持回路CSDi-1では、端子sel1に信号SEL2が入力され、端子sel2に信号SEL1が入力される。偶数段の保持回路CSDiでは、端子sel1に信号SEL1が入力され、端子sel2に信号SEL2が入力される。その他の、保持回路を構成するトランジスタのサイズや接続などの回路構成は、上記構成例1と同じである。 Also, the even-numbered holding circuit and the odd-numbered holding circuit are alternately switched between the input SEL1 and SEL2. For example, in FIG. 20, i is described as an even number, and in the odd-stage holding circuit CSDi-1, the signal SEL2 is input to the terminal sel1 and the signal SEL1 is input to the terminal sel2. In the even-stage holding circuit CSDi, the signal SEL1 is input to the terminal sel1, and the signal SEL2 is input to the terminal sel2. Other circuit configurations such as the size and connection of the transistors constituting the holding circuit are the same as those in the first configuration example.
 図21および図22はそれぞれ、上記のCS信号を用いた場合の画素Pi、Pi+1における各種の信号波形を示すタイミングチャートである。 FIGS. 21 and 22 are timing charts showing various signal waveforms in the pixels Pi and Pi + 1 when the CS signal is used.
 画素Piについて、第1フレームでは、図21に示すように、時刻t2からt2+2HまではゲートラインGLiの電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が、副画素PAi、PBiに直接書き込まれ、時刻t2+2H以降は、ゲートラインGLiの電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われずフローティング状態となる。副画素PAiがフローティング状態のときに、CSラインCSLi-1の電位変動(低電位→高電位)の影響を受け、副画素PAiの電位は、正側へΔVの大きさだけ突き上がる。一方、副画素PBiがフローティング状態のときに、CSラインCSLiの電位変動(高電位→低電位)の影響を受け、副画素PBiの電位は、負側へΔVの大きさだけ突き下がる。 Regarding the pixel Pi, in the first frame, as shown in FIG. 21, since the potential of the gate line GLi is high (Vgh) from time t2 to t2 + 2H, the potential (data signal) of the source line SLj is subpixel. Directly written in PAi and PBi, and after time t2 + 2H, the potential of the gate line GLi becomes a low potential (Vgl), so that the corresponding transistor is turned off, charging and discharging are not performed, and a floating state is entered. When the subpixel PAi is in a floating state, the potential of the subpixel PAi rises by the magnitude of ΔV to the positive side due to the influence of the potential fluctuation (low potential → high potential) of the CS line CSLi-1. On the other hand, when the sub-pixel PBi is in a floating state, the potential of the sub-pixel PBi is pushed down by the magnitude of ΔV to the negative side due to the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi.
 第2フレームでは、ソースラインSLjおよびCSラインCSLi-1、CSLiの電位の高低レベルが第1フレームとは逆転するため、副画素PAiの電位は、トランジスタがオフした後に、CSラインCSLi-1の電位変動(高電位→低電位)の影響を受け、負側にΔVの大きさだけ突き下がり、副画素PBiの電位は、トランジスタがオフした後に、CSラインCSLiの電位変動(低電位→高電位)の影響を受け、正側にΔVの大きさだけ突き上がる。 In the second frame, the high and low levels of the potentials of the source line SLj and the CS lines CSLi-1 and CSLi are reversed from those in the first frame, so that the potential of the sub-pixel PAi is set to the level of the CS line CSLi-1 after the transistor is turned off. Under the influence of the potential fluctuation (high potential → low potential), the voltage drops to the negative side by the magnitude of ΔV, and the potential of the sub-pixel PBi becomes the potential fluctuation (low potential → high potential) of the CS line CSLi after the transistor is turned off. ) To the positive side by ΔV.
 画素Piにおけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi repeats the operations of the first and second frames.
 上記の動作によれば、副画素PAiを明副画素、副画素PBiを暗副画素とすることができる。 According to the above operation, the subpixel PAi can be a bright subpixel and the subpixel PBi can be a dark subpixel.
 画素Pi+1について、第1フレームでは、図22に示すように、時刻t2+1Hからt2+3HまではゲートラインGLiの電位が高電位(Vgh)であるため、ソースラインSLjの電位(データ信号)が、副画素PAi+1、PBi+1に直接書き込まれ、時刻t2+3H以降は、ゲートラインGLiの電位が低電位(Vgl)になるため、対応するトランジスタがオフ状態となり、充放電は行われずフローティング状態となる。画素PAi+1がフローティング状態のときに、CSラインCSLiの電位変動(高電位→低電位)の影響を受け、副画素PAi+1の電位は、負側へΔVの大きさだけ突き下がる。一方、画素PBi+1がフローティング状態のときに、CSラインCSLi+1の電位変動(低電位→高電位)の影響を受け、副画素PBi+1の電位は、正側へΔVの大きさだけ突き上がる。 Regarding the pixel Pi + 1, in the first frame, as shown in FIG. 22, since the potential of the gate line GLi is high (Vgh) from time t2 + 1H to t2 + 3H, the potential (data signal) of the source line SLj is subpixel. Directly written in PAi + 1 and PBi + 1, and after time t2 + 3H, since the potential of the gate line GLi becomes low potential (Vgl), the corresponding transistor is turned off, charging and discharging are not performed, and the floating state is entered. When the pixel PAi + 1 is in a floating state, the potential of the sub-pixel PAi + 1 is pushed down by the magnitude of ΔV to the negative side due to the influence of the potential fluctuation (high potential → low potential) of the CS line CSLi. On the other hand, when the pixel PBi + 1 is in a floating state, the potential of the sub-pixel PBi + 1 rises by the magnitude of ΔV to the positive side due to the influence of the potential fluctuation (low potential → high potential) of the CS line CSLi + 1.
 第2フレームでは、ソースラインSLj、CSラインCSLi、およびCSラインCSLi+1の電位の高低レベルが第1フレームとは逆転するため、副画素PAi+1の電位は、トランジスタがオフした後に、CSラインCSLiの電位変動(低電位→高電位)の影響を受け、正側にΔVの大きさだけ突き上がる。副画素PBi+1の電位は、トランジスタがオフした後に、CSラインCSLi+1の電位変動(高電位→低電位)の影響を受け、負側にΔVの大きさだけ突き下がる。 In the second frame, since the high and low levels of the potentials of the source line SLj, CS line CSLi, and CS line CSLi + 1 are reversed from those in the first frame, the potential of the subpixel PAi + 1 is the potential of the CS line CSLi after the transistor is turned off. Under the influence of the fluctuation (low potential → high potential), it rises to the positive side by ΔV. The potential of the sub-pixel PBi + 1 is affected by the potential fluctuation (high potential → low potential) of the CS line CSLi + 1 after the transistor is turned off, and falls to the negative side by the magnitude of ΔV.
 画素Pi+1におけるデータ信号電位の書き込み(充電)動作は、上記の第1、第2フレームの動作を繰り返す。 The write (charge) operation of the data signal potential in the pixel Pi + 1 repeats the operations of the first and second frames.
 これにより、副画素PAi+1を暗副画素、副画素PBi+1を明副画素とすることができる。 Thereby, the sub-pixel PAi + 1 can be a dark sub-pixel and the sub-pixel PBi + 1 can be a bright sub-pixel.
 本構成例2によれば、液晶パネル113aはガラス基板1上に複数の保持回路(保持容量配線駆動内部回路)からなるCSドライバ(保持容量配線駆動回路)を有し、各CSライン(保持容量配線)には、その両端部から同時に、各保持回路からの出力が、CS信号(保持容量配線信号)として入力される。この構成によれば、CSラインにおけるCS信号の到達時間を減少させることができるため、1本のCSラインにおける目標電位および到達電位の差に起因する画素電位の分布(不均一)を低減することができ、表示品位を向上させることができる。また、保持回路は、図11に示すように4つのTFTで構成できるため、回路構成を簡素化することができる。さらに、保持回路を駆動するための信号SEL1、SEL2、VDD、VSSを伝送する配線は細くてもよいため、保持回路の基板上の占有面積を小さくすることができる。なお、これらの配線が細くてもよい理由は、回路構成上、信号SEL1、SEL2を伝達する選択用配線46a、選択用配線46bの有するライン容量を小さくできるとともに、信号SEL1、SEL2が帰線期間でのみ電位を変動させ、VDD、VSSは一定の電位でよいからである。 According to the second configuration example, the liquid crystal panel 113a has a CS driver (retention capacitor line drive circuit) including a plurality of retention circuits (retention capacitor line drive internal circuits) on the glass substrate 1, and each CS line (retention capacitor). At the same time, outputs from the holding circuits are input to the wiring) as CS signals (retention capacitor wiring signals). According to this configuration, since the arrival time of the CS signal in the CS line can be reduced, the distribution (nonuniformity) of the pixel potential due to the difference between the target potential and the arrival potential in one CS line can be reduced. Display quality can be improved. Further, since the holding circuit can be configured by four TFTs as shown in FIG. 11, the circuit configuration can be simplified. Further, since the wiring for transmitting the signals SEL1, SEL2, VDD, and VSS for driving the holding circuit may be thin, an area occupied on the substrate of the holding circuit can be reduced. The reason why these wirings may be thin is that, due to the circuit configuration, the line capacitance of the selection wiring 46a and the selection wiring 46b for transmitting the signals SEL1 and SEL2 can be reduced, and the signals SEL1 and SEL2 are in the blanking period. This is because the potential is changed only in the case of VDD and VSS may be constant.
 したがって、本構成例2によれば、CSラインにCS信号を与えるための回路および配線を、小さな占有面積で作製できるので、液晶表示装置の額縁を小さくすることができる。 Therefore, according to the second configuration example, since the circuit and the wiring for supplying the CS signal to the CS line can be manufactured with a small occupied area, the frame of the liquid crystal display device can be reduced.
 なお、本構成例2のCSドライバ49および上述した構成例1のCSドライバ46は、ガラス基板1上に一体化(モノリシック化)されて形成されている。このような場合、CSドライバを構成する保持回路(CSDi-1等)は、チャネル幅が大きいトランジスタを含むため、膜残りなど不良が画素のトランジスタと比べて発生しやすいため、製造プロセス上の良品率に影響しやすい。この点、上述した構成例1のCSドライバ46では、本構成例2のCSドライバ49よりも保持回路の数が少ないため、CSドライバを設けたことによる製造プロセス上の良品率の低下を抑えることができるとともに、CSドライバの占有面積を減らすことができる。そのため、本発明の液晶表示装置110は、本構成例2のCSドライバ49よりも、構成例1のCSドライバ46を備えた方が狭額縁化には有利である。 Note that the CS driver 49 of Configuration Example 2 and the CS driver 46 of Configuration Example 1 described above are formed integrally (monolithically) on the glass substrate 1. In such a case, since the holding circuit (CSDi-1 or the like) constituting the CS driver includes a transistor having a large channel width, a defect such as a film residue is more likely to occur than a pixel transistor. Easy to influence rate. In this regard, since the CS driver 46 of the configuration example 1 described above has a smaller number of holding circuits than the CS driver 49 of the configuration example 2, the reduction in the yield rate in the manufacturing process due to the provision of the CS driver is suppressed. And the area occupied by the CS driver can be reduced. For this reason, the liquid crystal display device 110 of the present invention is more advantageous for narrowing the frame than the CS driver 49 of Configuration Example 2 provided with the CS driver 46 of Configuration Example 1.
 一方、本構成例2のCSドライバ49および上述した構成例1のCSドライバ46は、ゲートドライバを形成するための半導体基板等上において、ゲートドライバと一体化されて形成され、その一体化されたゲート・CSドライバが、ポリイミドフィルム上に実装されている構成としてもよい。この構成によれば、ゲート・CSドライバの良品率は、CSドライバ内に有する保持回路の数の影響をほとんど受けず、ガラス基板上にCSドライバを形成する場合に比べて液晶パネルの製造良品率を向上させることができる。したがって、液晶表示装置の表示品位の向上および狭額縁化に加えて、液晶パネルの製造良品率の向上を図る上では、上記の構成とすることが好ましい。特に、保持回路の数が多い本構成例2のようなCSドライバ49については、上記の構成が好適である。 On the other hand, the CS driver 49 of the configuration example 2 and the CS driver 46 of the configuration example 1 described above are formed and integrated with the gate driver on a semiconductor substrate or the like for forming the gate driver. The gate / CS driver may be mounted on a polyimide film. According to this configuration, the non-defective rate of the gate / CS driver is hardly affected by the number of holding circuits in the CS driver, and compared with the case where the CS driver is formed on the glass substrate, the non-defective rate of manufacturing the liquid crystal panel. Can be improved. Therefore, in addition to improving the display quality of the liquid crystal display device and narrowing the frame, it is preferable to adopt the above-described configuration in order to improve the manufacturing quality rate of the liquid crystal panel. In particular, the above configuration is suitable for the CS driver 49 like the present configuration example 2 having a large number of holding circuits.
 (CSドライバの構成例3)
 図23は、本発明の液晶表示装置110におけるゲート・CSドライバ50の構成例3を示す回路図である。便宜上、上記構成例1と同様の構成要素には同じ符号を付し、その説明を省略する。ゲートドライバ45はSOF(システムオンフィルム)技術を用いてポリイミドフィルム上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ51は、ガラス基板1上に一体化されて形成されている。すなわち、CSドライバ51は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。ゲートドライバ45およびCSドライバ51は、それぞれ、液晶表示装置110の両端部(図23では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ51が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ51は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ51について説明する。
(Configuration example 3 of CS driver)
FIG. 23 is a circuit diagram showing a configuration example 3 of the gate / CS driver 50 in the liquid crystal display device 110 of the present invention. For convenience, the same reference numerals are given to the same components as those in the first configuration example, and the description thereof is omitted. The gate driver 45 is mounted on the polyimide film using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 51 is integrally formed on the glass substrate 1. That is, the CS driver 51 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. The gate driver 45 and the CS driver 51 are provided in a row at both ends of the liquid crystal display device 110 (in FIG. 23, the left and right ends of the drawing). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 51 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 51 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 51 will be described below.
 本構成例3のCSドライバ51は、CSライン4本おきに設けられた複数の保持回路を含んで構成され、1つの保持回路が2本のCSラインと接続されている。また、CSラインは、1本おきに容量配線幹47に接続されている。具体的には、図23に示すように、CSラインCSLpは容量配線幹47に接続され、CSラインCSLp+1は保持回路CSDp+3に接続され、CSラインCSLp+2は容量配線幹47に接続され、CSラインCSLp+3は保持回路CSDp+3に接続され、CSラインCSLp+4は容量配線幹47に接続され、CSラインCSLp+5は保持回路CSDp+7に接続され、CSラインCSLp+6は容量配線幹47に接続され、CSラインCSLp+7は保持回路CSDp+7に接続されている。そして、各CSラインは、その両端部が、保持回路あるいは容量配線幹47に接続されている。 The CS driver 51 of the configuration example 3 includes a plurality of holding circuits provided every four CS lines, and one holding circuit is connected to two CS lines. Further, every other CS line is connected to the capacitor wiring trunk 47. Specifically, as shown in FIG. 23, the CS line CSLp is connected to the capacitor wiring trunk 47, the CS line CSLp + 1 is connected to the holding circuit CSDp + 3, the CS line CSLp + 2 is connected to the capacitor wiring trunk 47, and the CS line CSLp + 3. Is connected to the holding circuit CSDp + 3, the CS line CSLp + 4 is connected to the capacitor wiring trunk 47, the CS line CSLp + 5 is connected to the holding circuit CSDp + 7, the CS line CSLp + 6 is connected to the capacitor wiring trunk 47, and the CS line CSLp + 7 is connected to the holding circuit CSDp + 7. It is connected to the. Each CS line is connected to the holding circuit or the capacitor wiring trunk 47 at both ends.
 なお、以下の説明では、本発明の保持回路の代表として保持回路CSDp+3等を例に挙げて説明するが、他の段の保持回路についても同様である。 In the following description, a holding circuit CSDp + 3 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
 図24は、画素Pp+1、画素Pp+2、画素Pp+3、画素Pp+4、における各種の信号波形を示すタイミングチャートである。以下では、第1フレームにおける各画素電位の変化について説明する。図24においては、pは4の倍数としている。 FIG. 24 is a timing chart showing various signal waveforms in the pixel Pp + 1, the pixel Pp + 2, the pixel Pp + 3, and the pixel Pp + 4. Hereinafter, changes in the pixel potentials in the first frame will be described. In FIG. 24, p is a multiple of 4.
 画素Pp+1における副画素PAp+1では、容量結合されるCSラインCSLpの電位が一定(COM)であるため、ゲートラインGLp+1のアクティブ期間に書き込まれた電位が保持される。副画素PBp+1では、ゲートラインGLp+1の電位が時刻t2+1Hで立ち上がると、正側(プラス極性)のデータ信号が供給され、副画素PAp+1の電位は、プラス極性となる。ゲートラインGLp+1の電位が時刻t2+3Hで立ち下がると、副画素PBp+1はフローティング状態となり、その後、ゲートラインGLp+6の電位が立ち上がり、CSラインCSLp+1の電位が高電位Vcshに変化することにより、副画素PBp+1は、正側へ突き上がる。これにより、副画素PAp+1は暗副画素、副画素PBp+1は明副画素となる。 In the sub-pixel PAp + 1 in the pixel Pp + 1, since the potential of the CS line CSLp that is capacitively coupled is constant (COM), the potential written in the active period of the gate line GLp + 1 is held. In the subpixel PBp + 1, when the potential of the gate line GLp + 1 rises at time t2 + 1H, a positive side (plus polarity) data signal is supplied, and the potential of the subpixel PAp + 1 becomes plus polarity. When the potential of the gate line GLp + 1 falls at time t2 + 3H, the subpixel PBp + 1 enters a floating state, and then the potential of the gate line GLp + 6 rises, and the potential of the CS line CSLp + 1 changes to the high potential Vcsh. , Push up to the positive side. Thereby, the subpixel PAp + 1 is a dark subpixel, and the subpixel PBp + 1 is a bright subpixel.
 画素Pp+2における副画素PAp+2では、ゲートラインGLp+2の電位が時刻t2+2Hで立ち上がると、正側(プラス極性)のデータ信号が、ソースラインSLjを介して供給され、副画素PAp+2の電位はプラス極性となる。ゲートラインGLp+2の電位が時刻t2+4Hで立ち下がると、副画素PAp+2はフローティング状態となり、その後、時刻t2+6Hで、ゲートラインGLp+6の電位が立ち上がり、CSラインCSLp+1の電位が高電位Vcshに変化することにより、副画素PAp+2の電位は、正側へ突き上がる。副画素PBp+2では、CSラインCSLp+2の電位が一定であるため、ゲートラインGLp+2のアクティブ期間に書き込まれた電位が保持される。これにより、副画素PAp+2は明副画素、副画素PBp+2は暗副画素となる。 In the sub-pixel PAp + 2 in the pixel Pp + 2, when the potential of the gate line GLp + 2 rises at time t2 + 2H, a positive side (plus polarity) data signal is supplied via the source line SLj, and the potential of the sub-pixel PAp + 2 becomes plus polarity. . When the potential of the gate line GLp + 2 falls at time t2 + 4H, the sub-pixel PAp + 2 enters a floating state. Thereafter, at time t2 + 6H, the potential of the gate line GLp + 6 rises, and the potential of the CS line CSLp + 1 changes to the high potential Vcsh. The potential of the subpixel PAp + 2 rises to the positive side. In the subpixel PBp + 2, since the potential of the CS line CSLp + 2 is constant, the potential written in the active period of the gate line GLp + 2 is held. Thereby, the sub-pixel PAp + 2 becomes a bright sub-pixel, and the sub-pixel PBp + 2 becomes a dark sub-pixel.
 画素Pp+3における副画素PAp+3では、容量結合されるCSラインCSLp+2の電位が一定(COM)であるため、ゲートラインGLp+3のアクティブ期間に書き込まれた電位が保持される。副画素PBp+3では、ゲートラインGLp+3の電位が時刻t2+3Hで立ち上がると、正側(プラス極性)のデータ信号が供給され、副画素PBp+3の電位は、プラス極性となる。ゲートラインGLp+3の電位が時刻t2+5Hで立ち下がると、副画素PBp+3はフローティング状態となり、その後、ゲートラインGLp+6の電位が立ち上がり、CSラインCSLp+3の電位が高電位Vcshに変化することにより、副画素PBp+3は、正側へ突き上がる。これにより、副画素PAp+3は暗副画素、副画素PBp+3は明副画素となる。 In the sub-pixel PAp + 3 in the pixel Pp + 3, since the potential of the CS line CSLp + 2 that is capacitively coupled is constant (COM), the potential written in the active period of the gate line GLp + 3 is held. In the subpixel PBp + 3, when the potential of the gate line GLp + 3 rises at time t2 + 3H, a positive side (plus polarity) data signal is supplied, and the potential of the subpixel PBp + 3 becomes plus polarity. When the potential of the gate line GLp + 3 falls at the time t2 + 5H, the subpixel PBp + 3 enters a floating state, and then the potential of the gate line GLp + 6 rises, and the potential of the CS line CSLp + 3 changes to the high potential Vcsh. , Push up to the positive side. Thereby, the sub-pixel PAp + 3 is a dark sub-pixel, and the sub-pixel PBp + 3 is a bright sub-pixel.
 画素Pp+4における副画素PAp+4では、ゲートラインGLp+4の電位が時刻t2+4Hで立ち上がると、正側(プラス極性)のデータ信号が供給され、副画素PAp+4の電位は、プラス極性となる。ゲートラインGLp+4の電位が時刻t2+6Hで立ち下がると、副画素PAp+4はフローティング状態となり、その後、ゲートラインGLp+6の電位が立ち上がり、容量結合されるCSラインCSLp+3の電位が高電位Vcshに変化することにより、副画素PAp+4は、正側へ突き上がる。副画素PBp+4では、CSラインCSLp+4の電位が一定であるため、ゲートラインGLp+4のアクティブ期間に書き込まれた電位が保持される。これにより、副画素PAp+4は明副画素、副画素PBp+4は暗副画素となる。 In the subpixel PAp + 4 in the pixel Pp + 4, when the potential of the gate line GLp + 4 rises at time t2 + 4H, a positive-side (plus polarity) data signal is supplied, and the potential of the subpixel PAp + 4 becomes plus polarity. When the potential of the gate line GLp + 4 falls at time t2 + 6H, the sub-pixel PAp + 4 enters a floating state, and then the potential of the gate line GLp + 6 rises and the potential of the capacitively coupled CS line CSLp + 3 changes to the high potential Vcsh. The subpixel PAp + 4 is pushed up to the positive side. In the subpixel PBp + 4, since the potential of the CS line CSLp + 4 is constant, the potential written in the active period of the gate line GLp + 4 is held. Thereby, the sub-pixel PAp + 4 becomes a bright sub-pixel, and the sub-pixel PBp + 4 becomes a dark sub-pixel.
 したがって、本構成例3においても、CSラインに信号を与えるための回路および配線を、小さな占有面積で作製できるので、液晶パネルおよびこれを備える液晶表示装置の額縁を小さくすることができる。 Therefore, also in this configuration example 3, since the circuit and wiring for giving a signal to the CS line can be produced with a small occupied area, the frame of the liquid crystal panel and the liquid crystal display device including the same can be made small.
 なお、本構成例3のCSドライバ51は、CSライン4本おきに設けられた複数の保持回路を含んで構成され、1つの保持回路が2本のCSラインと接続されているが、本発明はこれに限定されず、CSドライバ51において、1つの保持回路が2本以上の複数のCSラインと接続されていてもよい。 The CS driver 51 of the configuration example 3 includes a plurality of holding circuits provided every four CS lines, and one holding circuit is connected to two CS lines. The CS driver 51 may have one holding circuit connected to two or more CS lines.
 さらに、本構成例3のCSドライバ51は、ガラス基板1上に一体化(モノリシック化)されて形成されているが、変形例1として、ゲートドライバを形成するための半導体基板等上において、CSドライバ51はゲートドライバと一体化されて形成され、その一体化されたゲート・CSドライバは、ポリイミドフィルム上に実装されていてもよい。 Further, the CS driver 51 of the configuration example 3 is formed integrally (monolithically) on the glass substrate 1, but as a first modification, the CS driver 51 is formed on a semiconductor substrate or the like for forming a gate driver. The driver 51 is formed integrally with a gate driver, and the integrated gate / CS driver may be mounted on a polyimide film.
 この本構成例3の変形例1における液晶表示装置110bの実施の一形態を図25に示す。同図に示すように、ゲート・CSドライバ50bは同一半導体基板上に一体化(モノリシック化)されて形成され、ポリイミドフィルム8上に実装されている。ゲート・CSドライバ50b内のCSドライバ51bの出力端子(図示せず)は、分岐を有する引き出し配線91によって、複数の保持容量配線3に接続される。この分岐は、表示領域6の近傍の周辺領域7で行われる。ここで、引き出し配線91は分岐を有するので、本数を減らすことができ、液晶表示装置110bの額縁を効果的に減らすことができる。半導体プロセスを用いたゲート・CSドライバ50bの良品率は高いので、ガラス基板上にCSドライバを形成する場合に比べて液晶表示装置の製造良品率を向上させることができる。 FIG. 25 shows an embodiment of the liquid crystal display device 110b according to the first modification of the third configuration example. As shown in the figure, the gate / CS driver 50 b is formed integrally (monolithically) on the same semiconductor substrate and mounted on the polyimide film 8. An output terminal (not shown) of the CS driver 51b in the gate / CS driver 50b is connected to the plurality of storage capacitor wirings 3 by a lead wiring 91 having a branch. This branching is performed in the peripheral area 7 in the vicinity of the display area 6. Here, since the lead-out wiring 91 has a branch, the number of the lead-out wirings 91 can be reduced, and the frame of the liquid crystal display device 110b can be effectively reduced. Since the yield rate of the gate / CS driver 50b using the semiconductor process is high, the yield rate of the liquid crystal display device can be improved as compared with the case where the CS driver is formed on the glass substrate.
 したがって、このような本構成例3の変形例1は、容量結合方式による画素分割方式の液晶表示装置において、表示品位の向上、狭額縁化および液晶表示装置の製造良品率の向上の効果を得ることができるので、特に有用である。 Therefore, the first modification of the configuration example 3 as described above has the effect of improving the display quality, narrowing the frame, and improving the good manufacturing rate of the liquid crystal display device in the pixel division type liquid crystal display device using the capacitive coupling method. This is particularly useful.
 (CSドライバの構成例4)
 図26は、本発明の液晶表示装置110におけるゲート・CSドライバ52の構成例4を示す回路図である。便宜上、上記構成例1と同様の構成要素には同じ符号を付し、その説明を省略する。ゲートドライバ45はSOF(システムオンフィルム)技術を用いてポリイミドフィルム上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ53は、ガラス基板1上に一体化されて形成されている。すなわち、CSドライバ53は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。ゲートドライバ45およびCSドライバ53は、それぞれ、液晶表示装置110の両端部(図26では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ53が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ53は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ53について説明する。
(Configuration example 4 of CS driver)
FIG. 26 is a circuit diagram showing a configuration example 4 of the gate / CS driver 52 in the liquid crystal display device 110 of the present invention. For convenience, the same reference numerals are given to the same components as those in the first configuration example, and the description thereof is omitted. The gate driver 45 is mounted on the polyimide film using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 53 is integrally formed on the glass substrate 1. That is, the CS driver 53 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. The gate driver 45 and the CS driver 53 are provided in a row at both ends (the left and right ends in FIG. 26) of the liquid crystal display device 110, respectively. Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 53 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and the CS driver 53 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 53 will be described below.
 上記構成例1と同様に、図26では、iを偶数として記載しており、CSL0、CSL2、CSLi、CSLm等の偶数行のCSラインには、容量配線幹47に供給される信号COMが配線の分岐によって、両端部から同時に供給される。CSL1、CSL3、CSLi-1、CSLm-1等の奇数行のCSラインには、CSD1、CSD3、CSDi-1、CSDm-1等で表す、CSドライバ53を構成する内部回路(保持容量配線駆動内部回路;以下、「保持回路」ともいう)の出力信号が、両端部から同時に供給される。すなわち、保持回路は、全てのCSラインに対して、1ラインおき(奇数行)に対応して設けられている。ただし、別の形態として、保持回路は、全てのCSラインに対して、1ラインおき(偶数行)に対応して設けられていてもよい。なお、以下の説明では、本発明の保持回路の代表として保持回路CSDi-1等を例に挙げて説明するが、他の段の保持回路についても同様である。 Similarly to the above configuration example 1, in FIG. 26, i is described as an even number, and the signal COM supplied to the capacitor wiring trunk 47 is wired to the CS lines of even rows such as CSL0, CSL2, CSLi, and CSLm. Are simultaneously supplied from both ends. The odd number CS lines such as CSL1, CSL3, CSLi-1, and CSLm-1 have an internal circuit constituting the CS driver 53 represented by CSD1, CSD3, CSDi-1, CSDm-1, etc. Circuit; hereinafter, also referred to as “holding circuit”) is supplied simultaneously from both ends. That is, the holding circuit is provided corresponding to every other line (odd row) for all the CS lines. However, as another form, the holding circuit may be provided corresponding to every other line (even rows) for all CS lines. In the following description, the holding circuit CSDi-1 and the like will be described as an example of the holding circuit of the present invention, but the same applies to holding circuits in other stages.
 CSドライバ53は、複数の保持回路を含んで構成され、外部からの信号SEL1、SEL2、SEL3、SEL4、VDD、VSSを受け取る端子を備え、選択用配線46a、選択用配線46b、選択用配線46c、選択用配線46d、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取るとともに、ゲートドライバ45の出力(ゲート信号)を受け取る。例えば保持回路CSDi-1は、外部からの信号SEL1~SEL4、VDD、VSSを受け取る端子sel1~4(図26ではselで総称)、vdd、vssを備え、選択用配線46a、選択用配線46b、選択用配線46c、選択用配線46d、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。また、保持回路CSDi-1は入力端子s1、s2を備え、入力端子s1は、ゲートラインGLi+2に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。入力端子s2は、ゲートラインGLi+4に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。保持回路CSDi-1の出力(CS信号)は、出力端子csを介してCSラインCSLi-1に入力される。 The CS driver 53 includes a plurality of holding circuits, and includes terminals for receiving external signals SEL1, SEL2, SEL3, SEL4, VDD, and VSS, and includes a selection wiring 46a, a selection wiring 46b, and a selection wiring 46c. The above signals are received through the selection wiring 46d, the high potential side power supply line 46H, and the low potential side power supply line 46L, and the output (gate signal) of the gate driver 45 is received. For example, the holding circuit CSDi-1 includes terminals sel1 to sel4 (generically referred to as sel in FIG. 26) for receiving signals SEL1 to SEL4, VDD and VSS from the outside, vdd and vss, a selection wiring 46a, a selection wiring 46b, The above signals are received via the selection wiring 46c, the selection wiring 46d, the high potential side power supply line 46H, and the low potential side power supply line 46L. The holding circuit CSDi-1 includes input terminals s1 and s2. The input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45. The input terminal s2 is connected to the gate line GLi + 4 and receives the output (gate signal) of the gate driver 45. The output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs.
 図27は、本構成例4におけるCSドライバ53を構成する保持回路の具体例を示す回路図である。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、6個のトランジスタMS1、MS2、MT1、MT2、MG、MHにより構成される。ここではガラス基板上に形成されたアモルファスシリコンTFTである。 FIG. 27 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 53 in the present configuration example 4. Taking the holding circuit CSDi-1 as an example, the holding circuit CSDi-1 includes six transistors MS1, MS2, MT1, MT2, MG, and MH. Here, it is an amorphous silicon TFT formed on a glass substrate.
 保持回路CSDi-1の端子s1(第1入力部)、s2、sel1(第2入力部)、sel2(第3入力部)、sel3(第4入力部)、sel4(第5入力部)、vdd、vssにはそれぞれ外部からの信号S1、S2、SEL1(保持対象信号)、SEL2(保持対象信号)、SEL3(第2保持対象信号)、SEL4(第2保持対象信号)、VDD、VSSが入力され、端子csからCS信号が出力される。 Terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), sel3 (fourth input unit), sel4 (fifth input unit), vdd of the holding circuit CSDi-1 , Vss are input signals S1, S2, SEL1 (holding target signal), SEL2 (holding target signal), SEL3 (second holding target signal), SEL4 (second holding target signal), VDD, and VSS, respectively. Then, the CS signal is output from the terminal cs.
 トランジスタMS1は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1に接続されている。トランジスタMGは、ゲート電極がノードnetC1に接続され、ソース電極が端子vddに接続され、ドレイン電極が出力端子csに接続されている。 The transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1. The transistor MG has a gate electrode connected to the node netC1, a source electrode connected to the terminal vdd, and a drain electrode connected to the output terminal cs.
 トランジスタMS2は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2に接続されている。トランジスタMHは、ゲート電極がノードnetC2に接続され、ソース電極が出力端子csに接続され、ドレイン電極が端子vssに接続されている。 The transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2. The transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
 トランジスタMT1は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel3に接続され、ドレイン電極がノードnetC1に接続されている。トランジスタMT2は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel4に接続され、ドレイン電極がノードnetC2に接続されている。 The transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel3 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1. The transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel4 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2.
 図28は、保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。ここでは、構成例1で示した図12との相違点を中心に説明する。 FIG. 28 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
 図28のS2は、S1より2Hだけ遅れた信号である。さらに本構成例4で追加されている入力信号のSEL3、SEL4は、それぞれ、SEL1、SEL2と同位相であり、1フレーム毎に高電位の状態と低電位の状態を交互に繰り返す。SEL1、SEL2における高電位をVselh1、低電位をVsell1とし、SEL3、SEL4における高電位をVselh2、低電位をVsell2としたとき、Vselh1>Vselh2、Vsell1=Vsell2を満たすように設定される。すなわち、SEL3、SEL4は、SEL1、SEL2と高電位状態での電位のみが異なっている。図示していないが、SEL3、SEL4がそれぞれ電位を変化させるタイミングは、画素電極へ電位の書き込みが行なわれない期間である帰線期間に行なわれることが望ましい。 S2 in FIG. 28 is a signal delayed by 2H from S1. Furthermore, the input signals SEL3 and SEL4 added in the present configuration example 4 have the same phase as SEL1 and SEL2, respectively, and alternately repeat a high potential state and a low potential state for each frame. When the high potential in SEL1 and SEL2 is Vselh1, the low potential is Vsel1, the high potential in SEL3 and SEL4 is Vselh2, and the low potential is Vsel2, Vselh1> Vselh2 and Vsel1 = Vcell2 are set. That is, SEL3 and SEL4 differ from SEL1 and SEL2 only in the potential in the high potential state. Although not shown, it is desirable that the timings at which the potentials of SEL3 and SEL4 change are set during a blanking period, which is a period during which no potential is written to the pixel electrode.
 本構成例4の保持回路では、概略的には、S1から2Hだけ遅れた時刻にS2が高電位状態となることでトランジスタMT1、MT2をオン状態とし、これにより、ノードnetC1、netC2の電位をそれぞれ、SEL3、SEL4の電位に引き下げる動作を行う。 In the holding circuit of Configuration Example 4, roughly, when S2 becomes a high potential state at a time delayed by 2H from S1, the transistors MT1 and MT2 are turned on, whereby the potentials of the nodes netC1 and netC2 are changed. The operation of reducing the potential to SEL3 and SEL4 is performed.
 具体的には、連続する第1、第2フレームにおいて、第1フレームでは、時刻t1において、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVselh1(高電位)、Vsell1(低電位)に向かい、電位到達後は状態が保持される。次に時刻t1+2Hにおいて、S1の電位がVglになるとともにS2の電位がVghになるため、トランジスタMS1、MS2がオフ状態、トランジスタMT1、MT2がオン状態となり、ノードnetC1、netC2に信号SEL3、SEL4が入力される。これにより、ノードnetC1の電位は、Vselh1からVselh2へ引き下げられて、保持される。 Specifically, in the first and second frames that are continuous, in the first frame, when the potential of S1 changes from Vgl to Vgh at time t1, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached. Next, at time t1 + 2H, the potential of S1 becomes Vgl and the potential of S2 becomes Vgh, so that the transistors MS1 and MS2 are turned off, the transistors MT1 and MT2 are turned on, and the signals SEL3 and SEL4 are applied to the nodes netC1 and netC2. Entered. As a result, the potential of the node netC1 is lowered from Vselh1 to Vselh2 and held.
 第2フレームでは、時刻t1+1Fにおいて、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVsell1(低電位)、Vselh1(高電位)に向かい、電位到達後は状態が保持される。次に時刻t1+1F+2Hにおいて、S1の電位がVglになるとともにS2の電位がVghになるため、トランジスタMS1、MS2がオフ状態、トランジスタMT1、MT2がオン状態となり、ノードnetC1、netC2に信号SEL3、SEL4が入力される。これにより、ノードnetC2の電位は、Vselh1からVselh2へ引き下げられて、保持される。 In the second frame, at time t1 + 1F, when the potential of S1 changes from Vgl to Vgh, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 are directed toward Vcell1 (low potential) and Vselh1 (high potential), respectively. The state is maintained after reaching the potential. Next, at time t1 + 1F + 2H, the potential of S1 becomes Vgl and the potential of S2 becomes Vgh, so that the transistors MS1 and MS2 are turned off, the transistors MT1 and MT2 are turned on, and the signals SEL3 and SEL4 are supplied to the nodes netC1 and netC2. Entered. As a result, the potential of the node netC2 is lowered from Vselh1 to Vselh2 and held.
 このようにノードnetC1、netC2の電位を変化させたのはCSドライバ内のトランジスタの動作信頼性(しきい値安定性)に関連する。 The change in the potentials of the nodes netC1 and netC2 is related to the operation reliability (threshold stability) of the transistors in the CS driver.
 図30は、本実施の形態で用いているアモルファスシリコンTFT(a-SiTFT)の動作信頼性を示すグラフである。ここで用いた試験の方法は、一般にトランジスタのバイアス温度ストレス試験(BTS試験)と呼ばれることもある。試験の方法は、所定の環境温度下で、長時間のストレス印加と短時間の特性測定を交互に与える方法を採った。ストレス印加では、図29の(a)に示すように、トランジスタのゲート電極Gに与えるストレス電圧はDC(直流)として、ドレイン電極Dを0V(GND)とし、ソース電極Sに0.1Vの電圧、ゲート電極にVstressの電圧を与えた。特性測定では、図29の(b)に示すように、ドレイン電極Dを0V(GND)とし、ソース電極Sに10Vの電圧、ゲート電極GをVg=-20~30Vの範囲で掃引した。なお、ストレス印加、特性測定はともに環境温度25℃下、暗室内で行った。 FIG. 30 is a graph showing the operational reliability of the amorphous silicon TFT (a-Si TFT) used in this embodiment. The test method used here is generally called a transistor bias temperature stress test (BTS test). As a test method, a method of alternately applying a long-time stress application and a short-time characteristic measurement under a predetermined environmental temperature was adopted. In the stress application, as shown in FIG. 29A, the stress voltage applied to the gate electrode G of the transistor is DC (direct current), the drain electrode D is 0 V (GND), and the source electrode S is 0.1 V in voltage. A voltage of V stress was applied to the gate electrode. In the characteristic measurement, as shown in FIG. 29B, the drain electrode D was set to 0 V (GND), the source electrode S was swept at a voltage of 10 V, and the gate electrode G was swept within a range of Vg = −20 to 30 V. Note that both stress application and characteristic measurement were performed in a dark room at an environmental temperature of 25 ° C.
 アモルファスシリコンTFTにおいて、特に顕著であるトランジスタのしきい値シフトを調べた結果が、図30に示されている。図30の(a)は、プラスバイアスストレス(ゲート電極にプラスのバイアス印加)の場合の結果を示し、(b)は、マイナスバイアスストレス(ゲート電極にマイナスのバイアス印加)の場合の結果をしている。両方とも、横軸はストレス時間(sec:秒)、縦軸はストレス印加前からのしきい値のシフト量(変化量)(V)である。しきい値シフトは特にプラスバイアスストレスのときに顕著であって、Vstressが+5Vのときにはシフト量の大きさは他と比べて小さいが、Vstressが大きくなるほどシフト量の大きさが大きくなっている。しきい値のシフト量が大きいほど動作信頼性が低いので、このことは、トランジスタのゲート電極に印加する電圧は平均的に低く抑えることが、トランジスタの動作信頼性を向上させることを示している。また、マイナスバイアスストレスではプラスバイアスストレスとは反対の方向にしきい値がシフトしているが、その大きさはプラスバイアスストレスよりもずいぶん小さい。このことは、アモルファスシリコンTFT(a-SiTFT)の動作信頼性は、マイナスバイアス印加よりも、プラスバイアス印加のほうが動作信頼性の低下を引き起こしやすいことを示している。 FIG. 30 shows the result of examining the threshold shift of the transistor, which is particularly remarkable in the amorphous silicon TFT. 30A shows the result in the case of positive bias stress (positive bias applied to the gate electrode), and FIG. 30B shows the result in the case of negative bias stress (negative bias applied to the gate electrode). ing. In both cases, the horizontal axis represents the stress time (sec: second), and the vertical axis represents the threshold shift amount (change amount) (V) from before the stress application. The threshold shift is particularly noticeable in the case of a positive bias stress. When V stress is +5 V, the shift amount is smaller than the others, but as the V stress increases, the shift amount increases. The larger the threshold shift amount, the lower the operation reliability. This indicates that suppressing the voltage applied to the gate electrode of the transistor on the average improves the operation reliability of the transistor. . Further, the threshold value shifts in the opposite direction to the positive bias stress in the negative bias stress, but the magnitude is much smaller than the positive bias stress. This indicates that the operation reliability of the amorphous silicon TFT (a-Si TFT) is more likely to cause a decrease in operation reliability when the plus bias is applied than when the minus bias is applied.
 上記構成例1~3では、CSドライバ内の保持回路に設けられるトランジスタMG、MHのゲート電極は、それぞれノードnetC1、netC2に接続され、1F(フレーム時間)毎に交互に一定の高電位状態(プラスバイアス状態)、低電位状態(マイナスバイアス状態)を繰り返す。上記構成例1~3および本構成例4におけるCSドライバについても、トランジスタとしてアモルファスシリコンTFTを用いているので、特にノードnetC1、netC2の電位を考えて動作信頼性を考慮する必要がある。 In the above configuration examples 1 to 3, the gate electrodes of the transistors MG and MH provided in the holding circuit in the CS driver are connected to the nodes netC1 and netC2, respectively, and are alternately set to a constant high potential state every 1F (frame time) ( The positive bias state) and the low potential state (negative bias state) are repeated. In the CS drivers in the above configuration examples 1 to 3 and the present configuration example 4 as well, since amorphous silicon TFTs are used as transistors, it is necessary to consider the operational reliability especially in consideration of the potentials of the nodes netC1 and netC2.
 図30に示した結果から、プラスバイアス状態では、トランジスタMG、MHのゲート電極の電位、すなわちノードnetC1、netC2の電位は低いほどCSドライバの動作信頼性はよくなるが、このような場合、出力信号CSが所定の電圧(VcshまたはVcsl)に到達する時間がより長くかかり、表示品位に影響を与える懸念がある。すなわち、CSドライバの動作信頼性と表示品位はトレードオフの関係にある。 From the result shown in FIG. 30, in the positive bias state, the lower the potential of the gate electrodes of the transistors MG and MH, that is, the potentials of the nodes netC1 and netC2, the better the reliability of operation of the CS driver. There is a concern that it takes longer time for CS to reach a predetermined voltage (Vcsh or Vcsl), which affects display quality. That is, the operational reliability and display quality of the CS driver are in a trade-off relationship.
 上記構成例4のCSドライバ53では、それぞれのプラスバイアス状態において、ノードnetC1、netC2の電位は2段階であって、この電位は途中から下げられている。保持回路からの出力(CS信号)が所定の電圧にある程度到達した段階で、電位を途中で下げることにより、それぞれのプラスバイアス状態におけるノードnetC1、netC2の平均的な電位を下げ、CSドライバの動作信頼性を高めることができる。このことを、電子計算機を用いた回路シミュレーション(SPICEシミュレーション)で検証した。 In the CS driver 53 of the above configuration example 4, in each positive bias state, the potentials of the nodes netC1 and netC2 are two stages, and these potentials are lowered from the middle. When the output from the holding circuit (CS signal) reaches a predetermined voltage to some extent, the potential is lowered in the middle to lower the average potential of the nodes netC1 and netC2 in each positive bias state, and the operation of the CS driver Reliability can be increased. This was verified by circuit simulation (SPICE simulation) using an electronic computer.
 図31は、シミュレーション回路の概略を説明する図である。シミュレーション回路61は、電圧源、信号源を発生させる回路部62と、保持回路部63と、負荷部64とからなる。負荷部64は、50Ωの抵抗R0、50pFの容量C0が図のように10段で連なり、大型の液晶表示装置の有するCSラインを想定した値としている。なお、このシミュレーションでは、保持回路部は1つしか設けられておらず、直接には、実際の液晶表示装置では片側の辺に保持回路部が設けられていることに対応する。しかしながら、本シミュレーションは、同一設定条件で種々の保持回路の信頼性を相対的に評価しているので、液晶表示装置の両側の辺に保持回路部がある場合でも適用できる。 FIG. 31 is a diagram for explaining the outline of the simulation circuit. The simulation circuit 61 includes a circuit unit 62 that generates a voltage source and a signal source, a holding circuit unit 63, and a load unit 64. The load section 64 has a resistance R0 of 50Ω and a capacitance C0 of 50 pF connected in 10 stages as shown in the figure, and assumes a value assuming a CS line of a large liquid crystal display device. In this simulation, only one holding circuit unit is provided, which directly corresponds to the fact that the holding circuit unit is provided on one side in an actual liquid crystal display device. However, since this simulation relatively evaluates the reliability of various holding circuits under the same setting conditions, it can be applied even when there are holding circuit portions on both sides of the liquid crystal display device.
 入力波形として、S1、S2は波形のなまりを考え、図32のように1μsで0%から100%または100%から0%へ直線的に変化するモデルとした。その他、主なシミュレーションの条件は以下のとおりである。リファレンス(REF)とする構成例1のシミュレーションでも同様の数値を用いた。TFT特性は本発明の構成例1で示した方法で作成したアモルファスシリコンTFTの特性をSPICEモデル化して用いている。なお、ここで用いているアモルファスシリコンTFTの飽和移動度は約0.4cm/Vsである。
<構成例4におけるシミュレーション条件>
・1H(水平走査期間):7.4μs
・1F(フレーム):8.3ms
・トランジスタMG、MH、MS1、MS2、MT1、MT2のチャネル長L:すべて4μm
・トランジスタMG、MHのチャネル幅:各7000μm
・トランジスタMS1、MS2のチャネル幅:各50μm
・トランジスタMT1、MT2のチャネル幅:各50μm
・Vselh1:35V
・Vsell1:-6V
・Vselh2:条件振り(ノードnetC1、netC2の平均電位に影響)
・Vsell2:-6V
・Vgh:35V
・Vgl:-6V
・Vcsh:9.7V
・Vcsl:5.7V
・COM(対向電極の電位):7.7V
<REF(構成例1)におけるシミュレーション条件>
・Vselh:条件振り(ノードnetC1、netC2の平均電位に影響)
・Vsell:-6V
・Vselh1、Vsell1、Vselh2、Vsell2は未使用
・その他は構成例4と同じ
 構成例4ではVselh2、REF(構成例1)ではVselhをそれぞれ条件振りしてシミュレーションを行った結果を表1にまとめる。
As the input waveforms, considering the rounding of waveforms, S1 and S2 are models that linearly change from 0% to 100% or from 100% to 0% in 1 μs as shown in FIG. Other main simulation conditions are as follows. Similar numerical values were used in the simulation of the configuration example 1 as a reference (REF). As the TFT characteristics, the characteristics of the amorphous silicon TFT produced by the method shown in the configuration example 1 of the present invention are used by making a SPICE model. The saturation mobility of the amorphous silicon TFT used here is about 0.4 cm 2 / Vs.
<Simulation conditions in Configuration Example 4>
1H (horizontal scanning period): 7.4 μs
1F (frame): 8.3 ms
-Channel length L of transistors MG, MH, MS1, MS2, MT1, MT2: all 4 μm
・ Channel width of transistors MG and MH: 7000 μm each
-Channel width of transistors MS1 and MS2: 50 μm each
-Channel width of transistors MT1 and MT2: 50 μm each
・ Vselh1: 35V
・ Vcell1: -6V
・ Vselh2: condition (influence on average potential of nodes netC1 and netC2)
・ Vcell2: -6V
・ Vgh: 35V
・ Vgl: -6V
・ Vcsh: 9.7V
・ Vcsl: 5.7V
COM (potential of counter electrode): 7.7V
<Simulation conditions in REF (Configuration Example 1)>
・ Vselh: condition (influence on average potential of nodes netC1 and netC2)
・ Vcell: -6V
Vselh1, Vsel1, Vselh2, and Vcell2 are not used. Others are the same as in Configuration Example 4. In Configuration Example 4, Vselh2 is used for Vselh2 and in REF (Configuration Example 1), and the results of simulation are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果を用いて、図33には、ノードnetC1、netC2の平均電位と出力電位の到達時間の関係を示している。ノードnetC1、netC2の電位変化は互いに位相が180°ずれており、1F(フレーム時間)毎に交互にプラスバイアス状態、マイナスバイアス状態を入れ替わる。 Using the results of Table 1, FIG. 33 shows the relationship between the average potential of the nodes netC1 and netC2 and the arrival time of the output potential. The potential changes of the nodes netC1 and netC2 are 180 ° out of phase with each other, and the positive bias state and the negative bias state are alternately switched every 1F (frame time).
 図33では、ノードnetC1またはnetC2がプラスバイアス状態になったときのその平均電位と出力電位到達時間の関係を示している。ここで、平均電位は、ノードnetC1またはnetC2にプラスバイアスが印加されている時間(おおむね1フレーム時間)にわたってノードnetC1またはnetC2の電位を平均した値である。到達時間は、出力されるCS信号の電位がCOM(対向電極の電位)から99%到達する時間として、
(Vcsh-Vcom)×0.99+Vcom  (netC1)
、または、
(Vcsl-Vcom)×0.99+Vcom  (netC2)
になる時間と定義した。ノードnetC1がプラスバイアス状態のときには出力信号CSは電位が高くなる方向に動き、ノードnetC2がプラスバイアス状態のときにはCS信号は電位が低くなる状態に動くため、設定している電位の値が両者で異なっている。なお、Vcomは、COM(対向電極の電位)である。また、CS信号は図31における保持回路部63の出力直後をモニターしている。
FIG. 33 shows the relationship between the average potential and the output potential arrival time when the node netC1 or netC2 is in the positive bias state. Here, the average potential is a value obtained by averaging the potential of the node netC1 or netC2 over a time period during which a positive bias is applied to the node netC1 or netC2 (approximately one frame time). The arrival time is defined as the time required for the potential of the output CS signal to reach 99% from COM (the potential of the counter electrode).
(Vcsh−Vcom) × 0.99 + Vcom (netC1)
Or
(Vcsl−Vcom) × 0.99 + Vcom (netC2)
Defined as the time to become. When the node netC1 is in the positive bias state, the output signal CS moves in a direction in which the potential is increased. When the node netC2 is in the positive bias state, the CS signal moves in a state in which the potential is lowered. Is different. Note that Vcom is COM (the potential of the counter electrode). The CS signal is monitored immediately after the output of the holding circuit 63 in FIG.
 図33には、ノードnetC1、netC2のそれぞれについて、上記構成例4および構成例1の場合の関係が示されているが、ノードnetC1、netC2のいずれの場合も、構成例4の場合の方が、構成例1の場合よりも左側にプロットされる傾向にあり、すなわち構成例4の場合の方が、所定の到達時間に対して、ノードnetC1あるいはnetC2の平均電圧は下げられることになる。例えば、到達時間200μsになるのに、ノードnetC1あるいはnetC2の平均電圧は、構成例4では構成例1と比べて1V程度下げることができる。 FIG. 33 shows the relationship between the configuration example 4 and the configuration example 1 for each of the nodes netC1 and netC2. However, the configuration example 4 is better for both the nodes netC1 and netC2. In the case of the configuration example 4, the average voltage of the node netC1 or the netC2 is lowered with respect to the predetermined arrival time. For example, the average voltage of the node netC1 or netC2 can be lowered by about 1 V in the configuration example 4 compared to the configuration example 1 even when the arrival time is 200 μs.
 本構成例4において、このようにノードnetC1、netC2の平均電圧を下げることができたのは、それぞれのプラスバイアス状態において、ノードnetC1、netC2の電位が途中から引き下げられているためである。ノードnetC1、netC2がプラスバイアス状態となった直後は、CS信号を速やかに変化させるため、ノードnetC1、netC2に比較的高い電位を与えて、CS信号の電位変化がある程度緩やかになったところで、ノードnetC1、netC2に比較的低い電位を与えることで、効率的に到達時間を短くすることができる。したがって、同じ到達時間でも、それぞれのプラスバイアス状態におけるノードnetC1、netC2の平均的な電位を下げ、保持回路、CSドライバの動作信頼性を高めることができる。よって、本構成例4のCSドライバの動作信頼性を向上させることができることが分かる。したがって、トランジスタとしてアモルファスシリコンTFTを用いた場合でも、表示品位および動作信頼性を向上させ、液晶表示装置の額縁を小さくすることができる。 In the fourth configuration example, the average voltage of the nodes netC1 and netC2 can be lowered in this way because the potentials of the nodes netC1 and netC2 are lowered in the middle in the respective positive bias states. Immediately after the nodes netC1 and netC2 are in the positive bias state, a relatively high potential is applied to the nodes netC1 and netC2 in order to change the CS signal quickly. By providing a relatively low potential to netC1 and netC2, the arrival time can be shortened efficiently. Therefore, even in the same arrival time, the average potential of the nodes netC1 and netC2 in each positive bias state can be lowered, and the operation reliability of the holding circuit and the CS driver can be improved. Therefore, it can be seen that the operational reliability of the CS driver of Configuration Example 4 can be improved. Therefore, even when an amorphous silicon TFT is used as a transistor, display quality and operation reliability can be improved, and the frame of the liquid crystal display device can be reduced.
 (CSドライバの構成例5)
 図34は、本発明の液晶表示装置110におけるゲート・CSドライバ54の構成例5を示す回路図である。本構成例5では、構成例4と比べ、プラスバイアス状態におけるノードnetC1、netC2の電位を引き下げるための機構が異なる。便宜上、上記構成例1~4と同様の構成要素には同じ符号を付し、その説明を省略する。ゲートドライバ45はSOF(システムオンフィルム)技術を用いてポリイミドフィルム上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ55は、ガラス基板1上に一体化されて形成されている。すなわち、CSドライバ55は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。ゲートドライバ45およびCSドライバ55は、それぞれ、液晶表示装置110の両端部(図34では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ55が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ55は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ55について説明する。
(CS Driver Configuration Example 5)
FIG. 34 is a circuit diagram showing Configuration Example 5 of the gate / CS driver 54 in the liquid crystal display device 110 of the present invention. The configuration example 5 differs from the configuration example 4 in a mechanism for lowering the potentials of the nodes netC1 and netC2 in the plus bias state. For convenience, the same reference numerals are given to the same components as those in the first to fourth configuration examples, and the description thereof is omitted. The gate driver 45 is mounted on the polyimide film using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 55 is integrally formed on the glass substrate 1. That is, the CS driver 55 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. Each of the gate driver 45 and the CS driver 55 is provided in a row at both ends of the liquid crystal display device 110 (in FIG. 34, left and right ends on the paper surface). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 55 may be formed integrally (monolithically) on the IC substrate. Since the two gate drivers 45 and CS drivers 55 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and CS driver 55 will be described below.
 CSドライバ55は、1ラインおき(偶数行または奇数行)に設けられた複数の保持回路を含んで構成されている。CSドライバ55は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子を備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。例えば保持回路CSDi-1は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子sel1、sel2、vdd、vssを備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。また、保持回路CSDi-1は入力端子s1、s2を備え、入力端子s1は、ゲートラインGLi+2に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。入力端子s2は、ゲートラインGLi+4に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。保持回路CSDi-1の出力(CS信号)は、出力端子csを介してCSラインCSLi-1に入力される。なお、CSラインCSLi-1は、その両端部がそれぞれ、液晶表示装置100の両端部に設けられた各CSドライバ55の保持回路CSDi-1のそれぞれに接続されているため、CSラインCSLi-1には、その両端部から各保持回路CSDi-1の出力(CS信号)が同時に供給される。 The CS driver 55 includes a plurality of holding circuits provided every other line (even rows or odd rows). The CS driver 55 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and each of the above-described components via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L. Receive a signal. For example, the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b, a high-potential side power supply line 46H, The above signals are received via the potential side power supply line 46L. The holding circuit CSDi-1 includes input terminals s1 and s2. The input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45. The input terminal s2 is connected to the gate line GLi + 4 and receives the output (gate signal) of the gate driver 45. The output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs. Note that the CS line CSLi-1 has both ends connected to the holding circuits CSDi-1 of the CS drivers 55 provided at both ends of the liquid crystal display device 100, respectively. Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
 図35は、本構成例5におけるCSドライバ55を構成する保持回路の具体例を示す回路図である。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、8個のトランジスタMS1、MS2、MG、MH、MT1、MT2、MU1、MU2により構成される。ここではガラス基板上に形成されたアモルファスシリコンTFTである。 FIG. 35 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 55 in the present configuration example 5. Taking the holding circuit CSDi-1 as an example, the holding circuit CSDi-1 includes eight transistors MS1, MS2, MG, MH, MT1, MT2, MU1, and MU2. Here, it is an amorphous silicon TFT formed on a glass substrate.
 保持回路CSDi-1の端子s1(第1入力部)、s2、sel1(第2入力部)、sel2(第3入力部)、vdd、vssにはそれぞれ外部からの信号S1、S2、SEL1(保持対象信号)、SEL2(保持対象信号)、VDD、VSSが入力され、端子csからCS信号が出力される。 The terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are respectively supplied with external signals S1, S2, and SEL1 (holding). Target signal), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
 トランジスタMS1は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1に接続されている。トランジスタMGは、ゲート電極がノードnetC1に接続され、ソース電極がvddに接続され、ドレイン電極が出力端子csに接続されている。 The transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1. The transistor MG has a gate electrode connected to the node netC1, a source electrode connected to vdd, and a drain electrode connected to the output terminal cs.
 トランジスタMS2は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2に接続されている。トランジスタMHは、ゲート電極がノードnetC2に接続され、ソース電極が出力端子csに接続され、ドレイン電極が端子vssに接続されている。 The transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2. The transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
 トランジスタMT1は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1およびトランジスタMU1のソース電極に接続されている。 The transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1 and the source electrode of the transistor MU1. .
 トランジスタMT2は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2およびトランジスタMU2のソース電極に接続されている。 The transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2 and the source electrode of the transistor MU2. .
 トランジスタMU1は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極がトランジスタMT1のドレイン電極およびノードnetC1に接続され、ドレイン電極がトランジスタMHのドレイン電極および端子vssに接続されている。 The transistor MU1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT1 and the node netC1, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
 トランジスタMU2は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極がトランジスタMT2のドレイン電極およびノードnetC2に接続され、ドレイン電極がトランジスタMHのドレイン電極および端子vssに接続されている。 The transistor MU2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT2 and the node netC2, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
 図36は、保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。ここでは、構成例1で示した図12との相違点を中心に説明する。 FIG. 36 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
 本構成例5の保持回路では、概略的には、S1から2Hだけ遅れた時刻にS2が高電位状態となることでトランジスタMT1、MT2、MU1、MU2をオン状態とし、これにより、ノードnetC1、netC2の電位を引き下げる動作を行う。 In the holding circuit of Configuration Example 5, generally, the transistors MT1, MT2, MU1, and MU2 are turned on when S2 is in a high potential state at a time delayed by 2H from S1, thereby the nodes netC1, An operation of lowering the potential of netC2 is performed.
 具体的には、連続する第1、第2フレームにおいて、第1フレームでは、時刻t1において、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVselh1(高電位)、Vsell1(低電位)に向かい、電位到達後は状態が保持される。次に、時刻t1+2Hにおいて、S2がVghになるため、トランジスタMT1、MT2、MU1、MU2がオン状態となり、ノードnetC1、netC2がVSSと導通する。これにより、ノードnetC1の電位が、Vselh1からVselh1’へ引き下げられて、保持される。 Specifically, in the first and second frames that are continuous, in the first frame, when the potential of S1 changes from Vgl to Vgh at time t1, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached. Next, since S2 becomes Vgh at time t1 + 2H, the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS. As a result, the potential of the node netC1 is lowered from Vselh1 to Vselh1 'and held.
 第2フレームでは、時刻t1+1Fにおいて、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVsell1(低電位)、Vselh1(高電位)に向かい、電位到達後は状態が保持される。次に、時刻t1+1F+2Hにおいて、S2がVghになるため、トランジスタMT1、MT2、MU1、MU2がオン状態となり、ノードnetC1、netC2がVSSと導通する。これにより、ノードnetC2の電位が、Vselh1からVselh1’へ引き下げられて、保持される。 In the second frame, at time t1 + 1F, when the potential of S1 changes from Vgl to Vgh, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 are directed toward Vcell1 (low potential) and Vselh1 (high potential), respectively. The state is maintained after reaching the potential. Next, at time t1 + 1F + 2H, since S2 becomes Vgh, the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS. As a result, the potential of the node netC2 is lowered from Vselh1 to Vselh1 'and held.
 本構成例5でのシミュレーションは構成例4と同様に行った。構成例5におけるシミュレーション条件を次に示す。
<構成例5におけるシミュレーション条件>
・1H(水平走査期間):7.4μs
・1F(フレーム):8.3ms
・トランジスタMG、MH、MS1、MS2、MT1、MT2、MU1、MU2のチャネル長L:すべて4μm
・トランジスタMG、MHのチャネル幅:各7000μm
・トランジスタMS1、MS2のチャネル幅:各50μm
・トランジスタMT1、MT2のチャネル幅:条件振り(ノードnetC1、netC2の平均電位に影響)
・トランジスタMU1、MU2のチャネル幅:条件振り(ノードnetC1、netC2の平均電位に影響)
・Vselh1:35V
・Vsell1:-6V
・Vgh:35V
・Vgl:-6V
・Vcsh:9.7V
・Vcsl:5.7V
・COM(対向電極の電位):7.7V
<REF(構成例1)におけるシミュレーション条件>
・Vselh:条件振り(ノードnetC1、netC2の平均電位に影響)
・Vsell:-6V
・Vselh1、Vsell1、Vselh2、Vsell2は未使用
・構成例4で示したREF(構成例1)と同様
 トランジスタMT1、MT2のチャネル幅、およびトランジスタMU1、MU2のチャネル幅を条件振りしてシミュレーションを行った結果を表2にまとめる。
The simulation in Configuration Example 5 was performed in the same manner as in Configuration Example 4. The simulation conditions in Configuration Example 5 are as follows.
<Simulation conditions in Configuration Example 5>
1H (horizontal scanning period): 7.4 μs
1F (frame): 8.3 ms
-Channel length L of transistors MG, MH, MS1, MS2, MT1, MT2, MU1, and MU2: all 4 μm
・ Channel width of transistors MG and MH: 7000 μm each
-Channel width of transistors MS1 and MS2: 50 μm each
-Channel widths of the transistors MT1 and MT2: conditions (influencing the average potential of the nodes netC1 and netC2)
-Channel widths of transistors MU1 and MU2: conditions (influence on average potential of nodes netC1 and netC2)
・ Vselh1: 35V
・ Vcell1: -6V
・ Vgh: 35V
・ Vgl: -6V
・ Vcsh: 9.7V
・ Vcsl: 5.7V
COM (potential of counter electrode): 7.7V
<Simulation conditions in REF (Configuration Example 1)>
・ Vselh: condition (influence on average potential of nodes netC1 and netC2)
・ Vcell: -6V
・ Vselh1, Vsel1, Vselh2, and Vcell2 are not used. ・ Similar to REF (Configuration Example 1) shown in Configuration Example 4. Simulation is performed by changing the channel width of transistors MT1 and MT2 and the channel width of transistors MU1 and MU2. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果を用いて、図37には、図33と同様、ノードnetC1、netC2の平均電位と出力電位到達時間の関係を示している。 Using the results in Table 2, FIG. 37 shows the relationship between the average potentials of the nodes netC1 and netC2 and the output potential arrival time, as in FIG.
 図37には、ノードnetC1、netC2のそれぞれについて、上記構成例5およびREF(構成例1)の場合の関係が示されているが、ノードnetC1、netC2のいずれの場合も、構成例5の場合の方が、構成例1の場合よりも左側にプロットされる傾向にあり、すなわち構成例5の場合の方が、所定の到達時間に対して、ノードnetC1あるいはnetC2の平均電圧は下げられることになる。例えば、到達時間200μsになるのに、ノードnetC1あるいはnetC2の平均電圧は、構成例5では構成例1と比べて1V程度下げることができる。 FIG. 37 shows the relationship between the configuration examples 5 and REF (configuration example 1) for each of the nodes netC1 and netC2. However, in both cases of the nodes netC1 and netC2, the case of the configuration example 5 is shown. Tends to be plotted on the left side of the configuration example 1, that is, in the case of the configuration example 5, the average voltage of the node netC1 or netC2 is lowered with respect to a predetermined arrival time. Become. For example, the average voltage of the node netC1 or netC2 can be lowered by about 1 V in the configuration example 5 compared to the configuration example 1 even when the arrival time is 200 μs.
 この図37に示すように、本構成例5によれば、上記構成例4と同様、CSドライバの動作信頼性を高めることができる。さらに、本構成例5では、保持回路に入力される信号として、構成例4で必要であったSEL3、SEL4が必要ないので、液晶表示装置における額縁をより小さくすることができる。したがって、トランジスタとしてアモルファスシリコンTFTを用いた場合でも、表示品位および動作信頼性を向上させ、液晶表示装置の額縁を小さくすることができる。 As shown in FIG. 37, according to the present configuration example 5, the operational reliability of the CS driver can be improved as in the above configuration example 4. Further, in the present configuration example 5, since SEL3 and SEL4 that are necessary in the configuration example 4 are not required as signals input to the holding circuit, the frame in the liquid crystal display device can be further reduced. Therefore, even when an amorphous silicon TFT is used as a transistor, display quality and operation reliability can be improved, and the frame of the liquid crystal display device can be reduced.
 (CSドライバの構成例6)
 図38は、本発明の液晶表示装置110におけるゲート・CSドライバ56の構成例6を示す回路図である。本構成例6では、構成例5と比べ、プラスバイアス状態におけるノードnetC1、netC2の電位を引き下げるタイミングが異なる。便宜上、上記構成例1~5と同様の構成要素には同じ符号を付し、その説明を省略する。ゲートドライバ45はSOF(システムオンフィルム)技術を用いてポリイミドフィルム上に実装されている。ポリイミドフィルムはガラス基板1(図8参照)にACF(異方性導電フィルム)で接続され、ポリイミドフィルム内の配線(図示せず)はガラス基板1上のゲート端子(図示せず)に接続されている。ゲートドライバ45はゲートドライバIC(図示せず)から構成され、図8のように、複数のポリイミドフィルム上に分割されて実装されていてもよい。CSドライバ57は、ガラス基板1上に一体化されて形成されている。すなわち、CSドライバ57は、アモルファスシリコンをトランジスタに用いたアクティブマトリクス基板111(図8参照)にモノリシックで作り込まれている。ゲートドライバ45およびCSドライバ57は、それぞれ、液晶表示装置110の両端部(図38では、紙面左右端部)に列をなして設けられている。なお、ゲートドライバ45についても、ガラス基板1上に一体化(モノリシック化)されて形成されていてもよい。また、ゲートドライバ45およびCSドライバ57が、IC基板上に一体化(モノリシック化)されて形成されていてもよい。液晶表示装置110の両端部に設けられた2つのゲートドライバ45およびCSドライバ57は、同一の構成であるため、以下では1つのゲートドライバ45およびCSドライバ57について説明する。
(Configuration example 6 of CS driver)
FIG. 38 is a circuit diagram showing Configuration Example 6 of the gate / CS driver 56 in the liquid crystal display device 110 of the present invention. The configuration example 6 differs from the configuration example 5 in the timing of lowering the potentials of the nodes netC1 and netC2 in the plus bias state. For convenience, the same reference numerals are given to the same components as those in the first to fifth configuration examples, and the description thereof is omitted. The gate driver 45 is mounted on the polyimide film using SOF (system on film) technology. The polyimide film is connected to the glass substrate 1 (see FIG. 8) with an ACF (anisotropic conductive film), and the wiring (not shown) in the polyimide film is connected to a gate terminal (not shown) on the glass substrate 1. ing. The gate driver 45 is composed of a gate driver IC (not shown), and may be divided and mounted on a plurality of polyimide films as shown in FIG. The CS driver 57 is integrally formed on the glass substrate 1. That is, the CS driver 57 is monolithically formed on an active matrix substrate 111 (see FIG. 8) using amorphous silicon as a transistor. The gate driver 45 and the CS driver 57 are provided in a row at both ends of the liquid crystal display device 110 (in FIG. 38, the left and right ends of the page). Note that the gate driver 45 may also be formed integrally (monolithically) on the glass substrate 1. Further, the gate driver 45 and the CS driver 57 may be integrally formed (monolithic) on the IC substrate. Since the two gate drivers 45 and the CS driver 57 provided at both ends of the liquid crystal display device 110 have the same configuration, only one gate driver 45 and the CS driver 57 will be described below.
 CSドライバ57は、1ラインおき(偶数行または奇数行)に設けられた複数の保持回路を含んで構成されている。CSドライバ57は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子を備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46L、を介して上記各信号を受け取る。例えば保持回路CSDi-1は、外部からの信号SEL1、SEL2、VDD、VSSを受け取る端子sel1、sel2、vdd、vssを備え、選択用配線46a、選択用配線46b、高電位側電源線46H、低電位側電源線46Lを介して上記各信号を受け取る。また、保持回路CSDi-1は入力端子s1、s2を備え、入力端子s1は、ゲートラインGLi+2に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。入力端子s2は、ゲートラインGLi+6に接続され、ゲートドライバ45の出力(ゲート信号)を受け取る。保持回路CSDi-1の出力(CS信号)は、出力端子csを介してCSラインCSLi-1に入力される。なお、CSラインCSLi-1は、その両端部がそれぞれ、液晶表示装置100の両端部に設けられた各CSドライバ57の保持回路CSDi-1のそれぞれに接続されているため、CSラインCSLi-1には、その両端部から各保持回路CSDi-1の出力(CS信号)が同時に供給される。 The CS driver 57 includes a plurality of holding circuits provided every other line (even rows or odd rows). The CS driver 57 includes terminals for receiving signals SEL1, SEL2, VDD, and VSS from the outside. The CS driver 57 is connected via the selection wiring 46a, the selection wiring 46b, the high potential side power supply line 46H, and the low potential side power supply line 46L. Receive each signal. For example, the holding circuit CSDi-1 includes terminals sel1, sel2, vdd, and vss for receiving signals SEL1, SEL2, VDD, and VSS from the outside, and includes a selection wiring 46a, a selection wiring 46b, a high-potential side power supply line 46H, The above signals are received via the potential side power supply line 46L. The holding circuit CSDi-1 includes input terminals s1 and s2. The input terminal s1 is connected to the gate line GLi + 2 and receives the output (gate signal) of the gate driver 45. The input terminal s2 is connected to the gate line GLi + 6 and receives the output (gate signal) of the gate driver 45. The output (CS signal) of the holding circuit CSDi-1 is input to the CS line CSLi-1 via the output terminal cs. The CS line CSLi-1 is connected to the holding circuit CSDi-1 of each CS driver 57 provided at both ends of the liquid crystal display device 100, respectively, so that the CS line CSLi-1 Are simultaneously supplied with the output (CS signal) of each holding circuit CSDi-1 from both ends thereof.
 図39は、本構成例6におけるCSドライバ57を構成する保持回路の具体例を示す回路図である。一例として保持回路CSDi-1を挙げると、保持回路CSDi-1は、8個のトランジスタMS1、MS2、MG、MH、MT1、MT2、MU1、MU2により構成される。ここではガラス基板上に形成されたアモルファスシリコンTFTである。 FIG. 39 is a circuit diagram showing a specific example of the holding circuit constituting the CS driver 57 in the present configuration example 6. Taking the holding circuit CSDi-1 as an example, the holding circuit CSDi-1 includes eight transistors MS1, MS2, MG, MH, MT1, MT2, MU1, and MU2. Here, it is an amorphous silicon TFT formed on a glass substrate.
 保持回路CSDi-1の端子s1(第1入力部)、s2、sel1(第2入力部)、sel2(第3入力部)、vdd、vssにはそれぞれ外部からの信号S1、S2、SEL1(保持対象信号)、SEL2(保持対象信号)、VDD、VSSが入力され、端子csからCS信号が出力される。 The terminals s1 (first input unit), s2, sel1 (second input unit), sel2 (third input unit), vdd, and vss of the holding circuit CSDi-1 are respectively supplied with external signals S1, S2, and SEL1 (holding). Target signal), SEL2 (holding target signal), VDD, and VSS are input, and a CS signal is output from the terminal cs.
 トランジスタMS1は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1に接続されている。トランジスタMGは、ゲート電極がノードnetC1に接続され、ソース電極がvddに接続され、ドレイン電極が出力端子csに接続されている。 The transistor MS1 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1. The transistor MG has a gate electrode connected to the node netC1, a source electrode connected to vdd, and a drain electrode connected to the output terminal cs.
 トランジスタMS2は、ゲート電極が保持回路CSDi-1の端子s1に接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2に接続されている。トランジスタMHは、ゲート電極がノードnetC2に接続され、ソース電極が出力端子csに接続され、ドレイン電極が端子vssに接続されている。 The transistor MS2 has a gate electrode connected to the terminal s1 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2. The transistor MH has a gate electrode connected to the node netC2, a source electrode connected to the output terminal cs, and a drain electrode connected to the terminal vss.
 トランジスタMT1は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel1に接続され、ドレイン電極がノードnetC1およびトランジスタMU1のソース電極に接続されている。 The transistor MT1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel1 of the holding circuit CSDi-1, and a drain electrode connected to the node netC1 and the source electrode of the transistor MU1. .
 トランジスタMT2は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極が保持回路CSDi-1の端子sel2に接続され、ドレイン電極がノードnetC2およびトランジスタMU2のソース電極に接続されている。 The transistor MT2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the terminal sel2 of the holding circuit CSDi-1, and a drain electrode connected to the node netC2 and the source electrode of the transistor MU2. .
 トランジスタMU1は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極がトランジスタMT1のドレイン電極およびノードnetC1に接続され、ドレイン電極がトランジスタMHのドレイン電極および端子vssに接続されている。 The transistor MU1 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT1 and the node netC1, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
 トランジスタMU2は、ゲート電極が保持回路CSDi-1の端子s2に接続され、ソース電極がトランジスタMT2のドレイン電極およびノードnetC2に接続され、ドレイン電極がトランジスタMHのドレイン電極および端子vssに接続されている。 The transistor MU2 has a gate electrode connected to the terminal s2 of the holding circuit CSDi-1, a source electrode connected to the drain electrode of the transistor MT2 and the node netC2, and a drain electrode connected to the drain electrode of the transistor MH and the terminal vss. .
 図40は、保持回路CSDi-1において入出力される各種信号を示すタイミングチャートである。ここでは、構成例1で示した図12との相違点を中心に説明する。 FIG. 40 is a timing chart showing various signals input / output in the holding circuit CSDi-1. Here, the difference from FIG. 12 shown in the configuration example 1 will be mainly described.
 本構成例6の保持回路では、概略的には、S1から2Hだけ遅れた時刻にS2が高電位状態となることでトランジスタMT1、MT2、MU1、MU2をオン状態とし、これにより、ノードnetC1、netC2の電位を引き下げる動作を行う。 In the holding circuit of Configuration Example 6, generally, the transistors MT1, MT2, MU1, and MU2 are turned on when S2 becomes a high potential state at a time delayed by 2H from S1, thereby the nodes netC1, An operation of lowering the potential of netC2 is performed.
 具体的には、連続する第1、第2フレームにおいて、第1フレームでは、時刻t1において、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVselh1(高電位)、Vsell1(低電位)に向かい、電位到達後は状態が保持される。次に、時刻t1+4Hにおいて、S2がVglからVghになるため、トランジスタMT1、MT2、MU1、MU2がオン状態となり、ノードnetC1、netC2がVSSと導通する。これにより、ノードnetC1の電位が、Vselh1からVselh1’へ引き下げられて、保持される。 Specifically, in the first and second frames that are continuous, in the first frame, when the potential of S1 changes from Vgl to Vgh at time t1, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 Are directed to Vselh1 (high potential) and Vcell1 (low potential), respectively, and the state is maintained after the potential is reached. Next, at time t1 + 4H, since S2 changes from Vgl to Vgh, the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS. As a result, the potential of the node netC1 is lowered from Vselh1 to Vselh1 'and held.
 第2フレームでは、時刻t1+1Fにおいて、S1の電位がVglからVghになるとトランジスタMS1、MS2がオン状態となって、ノードnetC1、netC2の電位がそれぞれVsell1(低電位)、Vselh1(高電位)に向かい、電位到達後は状態が保持される。次に、時刻t1+1F+4Hにおいて、S2がVglからVghになるため、トランジスタMT1、MT2、MU1、MU2がオン状態となり、ノードnetC1、netC2がVSSと導通する。これにより、ノードnetC2の電位が、Vselh1からVselh1’へ引き下げられて、保持される。 In the second frame, at time t1 + 1F, when the potential of S1 changes from Vgl to Vgh, the transistors MS1 and MS2 are turned on, and the potentials of the nodes netC1 and netC2 are directed toward Vcell1 (low potential) and Vselh1 (high potential), respectively. The state is maintained after reaching the potential. Next, at time t1 + 1F + 4H, since S2 changes from Vgl to Vgh, the transistors MT1, MT2, MU1, and MU2 are turned on, and the nodes netC1 and netC2 are electrically connected to VSS. As a result, the potential of the node netC2 is lowered from Vselh1 to Vselh1 'and held.
 トランジスタMT1、MT2のチャネル幅、およびトランジスタMU1、MU2のチャネル幅を条件振りしてシミュレーションを行った結果を表3にまとめる。 Table 3 summarizes the results of simulations under conditions of the channel widths of the transistors MT1 and MT2 and the channel widths of the transistors MU1 and MU2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果を用いて、図41には、図33と同様、ノードnetC1、netC2の平均電位と出力電位到達時間の関係を示している。構成例6におけるシミュレーション条件は構成例5と同様である。 Using the results in Table 3, FIG. 41 shows the relationship between the average potential of the nodes netC1 and netC2 and the output potential arrival time, as in FIG. The simulation conditions in the configuration example 6 are the same as those in the configuration example 5.
 図41には、ノードnetC1、netC2のそれぞれについて、上記構成例6およびREF(構成例1)の場合の関係が示されているが、ノードnetC1、netC2のいずれの場合も、構成例6の場合の方が、構成例1の場合よりも左側にプロットされる傾向にあり、すなわち構成例6の場合の方が、所定の到達時間に対して、ノードnetC1あるいはnetC2の平均電圧は下げられることになる。例えば、到達時間200μsになるのに、ノードnetC1あるいはnetC2の平均電圧は、構成例6では構成例1と比べて約2V程度下げることができる。 FIG. 41 shows the relationship between the configuration examples 6 and REF (configuration example 1) for each of the nodes netC1 and netC2. However, in both cases of the nodes netC1 and netC2, the case of the configuration example 6 is shown. Tends to be plotted on the left side of the configuration example 1, that is, in the case of the configuration example 6, the average voltage of the node netC1 or netC2 is lowered for a predetermined arrival time. Become. For example, the average voltage of the node netC1 or netC2 can be reduced by about 2V in the configuration example 6 compared to the configuration example 1 even when the arrival time is 200 μs.
 この図41に示すように、本構成例6によれば、上記構成例4、5と同様、CSドライバの動作信頼性を高めることができる。さらに、本構成例6では、構成例4、5に比べて、同じ到達時間でもノードnetC1あるいはnetC2の平均電圧は低くすることができるので、よりCSドライバの信頼性が向上する。 As shown in FIG. 41, according to the present configuration example 6, the operational reliability of the CS driver can be improved as in the above configuration examples 4 and 5. Further, in the present configuration example 6, compared to the configuration examples 4 and 5, the average voltage of the node netC1 or netC2 can be lowered even in the same arrival time, and thus the reliability of the CS driver is further improved.
 この理由として、構成例6では、ノードnetC1、netC2の電位低下のタイミングが、構成例5の場合よりも2H遅れている。これにより、ノードnetC1、netC2がプラスバイアス状態となった直後の、ノードnetC1、netC2の高電位の期間が長くなるため、出力電位の到達時間が早くなる。一方、このときの平均電位への影響は1フレームの時間が非常に長いため、平均としてはわずかに増える程度である。そのため、より低い平均電位で同じ到達時間が得られるようになる。よって、本構成例6によれば、CSドライバの動作信頼性を、構成例5よりも高めることができる。したがって、トランジスタとしてアモルファスシリコンTFTを用いた場合でも、表示品位および動作信頼性を向上させ、液晶表示装置の額縁を小さくすることができる。 For this reason, in the configuration example 6, the potential drop timings of the nodes netC1 and netC2 are delayed by 2H from the case of the configuration example 5. As a result, the high potential period of the nodes netC1 and netC2 immediately after the nodes netC1 and netC2 are in the positive bias state is lengthened, and the arrival time of the output potential is shortened. On the other hand, the influence on the average potential at this time is only slightly increased because the time of one frame is very long. Therefore, the same arrival time can be obtained with a lower average potential. Therefore, according to the present configuration example 6, the operational reliability of the CS driver can be improved as compared with the configuration example 5. Therefore, even when an amorphous silicon TFT is used as a transistor, display quality and operation reliability can be improved, and the frame of the liquid crystal display device can be reduced.
 本構成例6で示したように、プラスバイアス状態において、ノードnetC1、netC2の電位を引き下げるタイミングは、所定の範囲で任意に決めることができる。 As shown in the configuration example 6, in the positive bias state, the timing for lowering the potentials of the nodes netC1 and netC2 can be arbitrarily determined within a predetermined range.
 なお、構成例4~6の変形例として、プラスバイアス状態における、ノードnetC1、netC2の電位を2段階ではなく、多段階で、あるいは連続的に引き下げてもよく、より効率的に保持回路、CSドライバの動作信頼性を高めることができる。 Note that as a modification of the configuration examples 4 to 6, the potentials of the nodes netC1 and netC2 in the plus bias state may be lowered in multiple stages or continuously, instead of in two stages, and the holding circuit, CS The operation reliability of the driver can be improved.
 ところで、上述した各CSドライバの構成(構成例1~6)は、図1および図2に示したような液晶パネル(構成例1)に限定されず、様々な形態の液晶パネルに適用することができる。以下では、本液晶パネルの他の構成例(構成例7、8)について説明する。 By the way, the configuration (configuration examples 1 to 6) of each CS driver described above is not limited to the liquid crystal panel (configuration example 1) as shown in FIGS. 1 and 2, but can be applied to various forms of liquid crystal panels. Can do. Hereinafter, other configuration examples (configuration examples 7 and 8) of the present liquid crystal panel will be described.
 (液晶パネルの構成例7)
 図42は、本発明の液晶パネルの構成例7における液晶パネル113cの一部を示す等価回路図である。図42の液晶パネル113cと、図1の液晶パネル113aの違いは、1画素列に対応して2本のデータ信号線が設けられ、列方向に隣り合う画素では、互いに異なるデータ信号線に接続されている点であり、これ以外は同一である。また、本液晶パネル113cでは、1つの画素に対応して、1本のデータ信号線および1本の走査信号線が設けられるとともに、列方向に隣り合う画素の間で共用されている保持容量配線を有している。
(Configuration example 7 of liquid crystal panel)
FIG. 42 is an equivalent circuit diagram showing a part of the liquid crystal panel 113c in the configuration example 7 of the liquid crystal panel of the present invention. The difference between the liquid crystal panel 113c of FIG. 42 and the liquid crystal panel 113a of FIG. 1 is that two data signal lines are provided corresponding to one pixel column, and pixels adjacent to each other in the column direction are connected to different data signal lines. The other points are the same. Further, in the present liquid crystal panel 113c, one data signal line and one scanning signal line are provided corresponding to one pixel, and a storage capacitor line shared between adjacent pixels in the column direction is provided. have.
 各画素の構造について、まず、画素101を例に挙げて説明する。 First, the structure of each pixel will be described using the pixel 101 as an example.
 画素101では、画素電極5a(第1画素電極)が、走査信号線2abに接続されたトランジスタ15a(第1トランジスタ)を介してデータ信号線4y(第2データ信号線)に接続され、画素電極5b(第2画素電極)が、走査信号線2abに接続されたトランジスタ15b(第2トランジスタ)を介してデータ信号線4y(第2データ信号線)に接続され、画素電極5aおよび保持容量配線3x間に保持容量Chaが形成され、画素電極5bおよび保持容量配線3y間に保持容量Chbが形成され、画素電極5aおよび共通電極com間に液晶容量Claが形成され、画素電極5bおよび共通電極com間に液晶容量Clbが形成されている。 In the pixel 101, the pixel electrode 5a (first pixel electrode) is connected to the data signal line 4y (second data signal line) via the transistor 15a (first transistor) connected to the scanning signal line 2ab. 5b (second pixel electrode) is connected to the data signal line 4y (second data signal line) via the transistor 15b (second transistor) connected to the scanning signal line 2ab, and the pixel electrode 5a and the storage capacitor line 3x. A storage capacitor Cha is formed between the pixel electrode 5b and the storage capacitor wiring 3y, a storage capacitor Chb is formed between the pixel electrode 5a and the common electrode com, and a liquid crystal capacitor Cla is formed between the pixel electrode 5b and the common electrode com. A liquid crystal capacitor Clb is formed.
 次に、画素101と列方向(紙面上下方向)に隣接する画素100、102について説明すると、保持容量、液晶容量の形成は画素101と同様であるが、それぞれの画素電極5c、5d、5e、5fが、それぞれのトランジスタ15c、15d、15e、15fを介してデータ信号線4x(第1データ信号線)に接続されている。このように、列方向に隣接する画素において、接続されるデータ信号線が交互に入れ替わる構成となっている。 Next, the pixels 100 and 102 adjacent to the pixel 101 in the column direction (up and down direction on the paper surface) will be described. The formation of the storage capacitor and the liquid crystal capacitor is the same as that of the pixel 101, but each pixel electrode 5c, 5d, 5e 5f is connected to the data signal line 4x (first data signal line) via the respective transistors 15c, 15d, 15e, and 15f. In this way, the data signal lines to be connected are alternately switched in pixels adjacent in the column direction.
 また、画素101の画素電極5a、5bそれぞれは、異なる保持容量配線3x、3yそれぞれと保持容量Cha、Chbを形成している。そのため、例えば、画素電極5a、5bにそれぞれのデータ信号を書き込んだ後に、保持容量配線3x、3yに互いに異なる保持容量配線信号を供給して、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことにより、画素電極5a、5bそれぞれの画素電位(実効電圧)を異ならせることができる。このような方法を用いて、例えば、画素電極5aを含む副画素をプラス極性の明副画素、画素電極5bを含む副画素をマイナス極性の暗副画素とすることができる。これにより、画素分割方式の液晶表示装置を実現できる。 Further, each of the pixel electrodes 5a and 5b of the pixel 101 forms a different storage capacitor wiring 3x and 3y and a storage capacitor Cha and Chb, respectively. Therefore, for example, after writing respective data signals to the pixel electrodes 5a and 5b, different holding capacitor wiring signals are supplied to the holding capacitor wirings 3x and 3y to increase the pixel electrode potential (pixel potential) by capacitive coupling or By performing the push-down, the pixel potentials (effective voltages) of the pixel electrodes 5a and 5b can be made different. By using such a method, for example, a subpixel including the pixel electrode 5a can be a positive subpixel having a positive polarity, and a subpixel including the pixel electrode 5b can be a dark subpixel having a negative polarity. Thus, a pixel division type liquid crystal display device can be realized.
 なお、隣接するデータ信号線の信号については、データ信号線に供給するデータ信号の極性を1フレーム期間ごとに反転させるとともに、同一水平走査期間においては、同一画素列に対応する2本のデータ信号線4x、4yに逆極性のデータ信号を供給しつつ、隣り合う2本のデータ信号線4y、4Xにも逆極性のデータ信号を供給すれば、列方向(紙面上下方向)、行方向(紙面左右方向)に隣接する画素の極性は互いに逆になるので、いわゆるドット反転駆動となって、表示品位が向上する。しかしながら、基本的には本実施形態において、データ信号線の信号の極性配置はどのようなものであってもよい。 For the signals of adjacent data signal lines, the polarity of the data signal supplied to the data signal line is inverted every frame period, and two data signals corresponding to the same pixel column are used in the same horizontal scanning period. If a data signal having a reverse polarity is supplied to the two adjacent data signal lines 4y and 4X while supplying a data signal having a reverse polarity to the lines 4x and 4y, the column direction (up and down direction on the paper surface), the row direction (paper surface) Since the polarities of pixels adjacent to each other in the left-right direction are opposite to each other, so-called dot inversion driving is performed to improve display quality. However, basically, in this embodiment, the polarity arrangement of the signal of the data signal line may be any.
 本構成例7における液晶パネル113cの具体的な構成を図43に示す。図43は、液晶パネル113cの構成例7を示す平面図である。図43の液晶パネル113cでは、画素100および画素101の左右に沿うようにデータ信号線4x、4yが設けられ、画素103および画素104の左右に沿うようにデータ信号線4X、4Yが設けられ、画素100、103のエッジ部の一方と重なるように保持容量配線3wが設けられ、画素100、103のエッジ部の他方および画素101、104のエッジ部の一方と重なるように保持容量配線3xが設けられ、画素101、104のエッジ部の他方と重なるように保持容量配線3yが設けられている。また、画素100、103の中央部を横切るように走査信号線2cdが配され、画素101、104の中央部を横切るように走査信号線2abが配されている。 FIG. 43 shows a specific configuration of the liquid crystal panel 113c in Configuration Example 7. FIG. 43 is a plan view showing Configuration Example 7 of the liquid crystal panel 113c. 43, data signal lines 4x and 4y are provided along the left and right of the pixel 100 and the pixel 101, and data signal lines 4X and 4Y are provided along the left and right of the pixel 103 and the pixel 104. A storage capacitor wiring 3w is provided so as to overlap with one of the edge portions of the pixels 100 and 103, and a storage capacitor wiring 3x is provided so as to overlap with the other of the edge portions of the pixels 100 and 103 and one of the edge portions of the pixels 101 and 104. The storage capacitor wiring 3y is provided so as to overlap the other of the edge portions of the pixels 101 and 104. In addition, a scanning signal line 2cd is arranged so as to cross the central part of the pixels 100, 103, and a scanning signal line 2ab is arranged so as to cross the central part of the pixels 101, 104.
 また、平面的に視て、画素100では、保持容量配線3w、3x間に画素電極5c、5dが列方向に並べられ、画素101では、保持容量配線3x、3y間に画素電極5a、5bが列方向に並べられ、画素103では、保持容量配線3w、3x間に画素電極5C、5Dが列方向に並べられ、画素104では、保持容量配線3x、3y間に画素電極5A、5Bが列方向に並べられている。 Further, in a plan view, in the pixel 100, the pixel electrodes 5c and 5d are arranged in the column direction between the storage capacitor lines 3w and 3x, and in the pixel 101, the pixel electrodes 5a and 5b are arranged between the storage capacitor lines 3x and 3y. In the pixel 103, the pixel electrodes 5C and 5D are arranged in the column direction between the storage capacitor lines 3w and 3x. In the pixel 104, the pixel electrodes 5A and 5B are arranged in the column direction between the storage capacitor lines 3x and 3y. Are listed.
 画素101では、走査信号線2ab上には、トランジスタ15aのソース電極16abおよびドレイン電極17aと、トランジスタ15bのソース電極16abおよびドレイン電極17bとが形成されている。このように、ソース電極16abは、トランジスタ15a、15bの両方のソース電極を兼ねてデータ信号線4yに接続される。ドレイン電極17aはドレイン引き出し配線18aに接続され、ドレイン引き出し配線18aは容量電極19aに接続され、容量電極19aはコンタクトホール20aを介して画素電極5aに接続される。ドレイン電極17bはドレイン引き出し配線18bに接続され、ドレイン引き出し配線18bは容量電極19bに接続され、容量電極19bはコンタクトホール20bを介して画素電極5bに接続される。 In the pixel 101, the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2ab. In this way, the source electrode 16ab is connected to the data signal line 4y also serving as both source electrodes of the transistors 15a and 15b. The drain electrode 17a is connected to the drain lead wire 18a, the drain lead wire 18a is connected to the capacitor electrode 19a, and the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a. The drain electrode 17b is connected to the drain lead wire 18b, the drain lead wire 18b is connected to the capacitor electrode 19b, and the capacitor electrode 19b is connected to the pixel electrode 5b through the contact hole 20b.
 ここで、容量電極19aがゲート絶縁膜を介して保持容量配線3xに重なるとともに、画素電極5aがゲート絶縁膜および層間絶縁膜を介して保持容量配線3xに重なっており、これらの重なりの両方によって保持容量Cha(図42参照)が形成されている。同様に、容量電極19bがゲート絶縁膜を介して保持容量配線3yに重なるとともに、画素電極5bがゲート絶縁膜および層間絶縁膜を介して保持容量配線3yに重なっており、これらの重なりの両方によって保持容量Chb(図42参照)が形成されている。 Here, the capacitor electrode 19a overlaps the storage capacitor wiring 3x via the gate insulating film, and the pixel electrode 5a overlaps the storage capacitor wiring 3x via the gate insulating film and the interlayer insulating film. A storage capacitor Cha (see FIG. 42) is formed. Similarly, the capacitor electrode 19b overlaps the storage capacitor wiring 3y via the gate insulating film, and the pixel electrode 5b overlaps the storage capacitor wiring 3y via the gate insulating film and the interlayer insulating film. A storage capacitor Chb (see FIG. 42) is formed.
 なお、他の画素の構成(各部材の形状および配置並びに接続関係)は画素101のそれと同様であるが、上述したように、データ信号線と画素電極の接続は左右どちらかの2通りである。 The configuration of other pixels (the shape, arrangement, and connection relationship of each member) is the same as that of the pixel 101. However, as described above, the connection between the data signal line and the pixel electrode is either left or right. .
 なお、本実施の形態において、CSドライバ、保持回路は、それぞれ、上述の構成例1~6におけるCSドライバ、保持回路の何れであってもよい。 In the present embodiment, the CS driver and the holding circuit may be any of the CS driver and the holding circuit in the above configuration examples 1 to 6, respectively.
 本液晶パネル113cは、例えばフレームレートが240Hz(4倍速)、360Hz(6倍速)などの高速駆動パネルに適し、そのパネルを用いた3D(立体)画像表示を行う3D液晶表示装置にも適する。 The present liquid crystal panel 113c is suitable for a high-speed driving panel having a frame rate of 240 Hz (4 × speed), 360 Hz (6 × speed), and the like, and is also suitable for a 3D liquid crystal display device that performs 3D (stereoscopic) image display using the panel.
 図42あるいは図43にみられるような画素電極とデータ信号線の配置、すなわち列方向に並ぶ1つの画素列に対して2本のデータ信号線が設けられ、列方向に隣接する画素が左右交互のデータ信号線からデータ信号を得る配置は、駆動において走査信号線を2本ずつ同時に選択し、順次走査を行うことで、走査信号線を1本ずつ順次走査する場合に比べて、個々の画素電極をデータ信号線の電位まで充電する時間(画素充電時間)を2倍にできることが知られている。したがって、画素が充電不足になることがなく、このような画素電極とデータ信号線の配置は、上述の高速駆動パネルには適する配置である。 The arrangement of pixel electrodes and data signal lines as shown in FIG. 42 or FIG. 43, that is, two data signal lines are provided for one pixel column arranged in the column direction, and adjacent pixels in the column direction are alternately left and right. The arrangement in which the data signal is obtained from the data signal line is selected by selecting two scanning signal lines at the same time in driving and sequentially scanning, so that each pixel is compared with the case where the scanning signal lines are sequentially scanned one by one. It is known that the time for charging the electrode to the potential of the data signal line (pixel charging time) can be doubled. Therefore, the pixel is not insufficiently charged, and such an arrangement of the pixel electrode and the data signal line is suitable for the above-described high-speed drive panel.
 このような配置を、例えば容量分割方式による画素分割方式を有する液晶パネルに適用して高速駆動をしようとすれば、額縁が大幅に増大する。理由は、従来の容量分割方式では、保持容量配線幹には多数の保持容量配線が接続されて、AC(交流)信号が伝達されているため、保持容量配線幹における信号遅延が発生しやすく、それが表示に与える影響が大きく、さらに高速化に対応しようとすると保持容量配線幹の線幅を大幅に太くせざるを得ないためである。 If such an arrangement is applied to, for example, a liquid crystal panel having a pixel division method based on a capacitance division method, the frame is greatly increased. The reason is that in the conventional capacity division system, a large number of storage capacitor wirings are connected to the storage capacitor wiring trunk and an AC (alternating current) signal is transmitted, so that signal delay in the storage capacitor wiring trunk is likely to occur. This is because it has a large effect on display, and if it is intended to cope with higher speed, the line width of the storage capacitor wiring trunk must be significantly increased.
 しかしながら、本構成例7のように、複数の保持回路を有するCSドライバを用いて、容量分割方式による画素分割方式を有する液晶パネルを作製すれば、AC(交流)信号が伝達されるような保持容量配線幹を用いることがないので、額縁はほとんど大きくならない。したがって、高速駆動パネルにおいて、本構成例7は、特に額縁を小さくする効果が高い。 However, if a liquid crystal panel having a pixel division method based on a capacitive division method is manufactured using a CS driver having a plurality of holding circuits as in the present configuration example 7, the AC (alternating current) signal is held so as to be transmitted. Since no capacity wiring trunk is used, the frame is hardly enlarged. Therefore, in the high-speed drive panel, the configuration example 7 is particularly effective in reducing the frame.
 (液晶パネルの構成例8)
 図44は、本発明の液晶パネルの構成例8における液晶パネル113dの一部を示す等価回路図である。図44に示すように、本液晶パネル113dでは、列方向(図中上下方向)に延伸するデータ信号線4x、4X、行方向(図中左右方向)に延伸する走査信号線2c、2a、行および列方向に並べられた画素100、101、103、104、保持容量配線3a、3c、および共通電極(対向電極)comを備え、各画素の構造は同一である。
(Configuration example 8 of liquid crystal panel)
FIG. 44 is an equivalent circuit diagram showing a part of the liquid crystal panel 113d in the configuration example 8 of the liquid crystal panel of the present invention. As shown in FIG. 44, in the present liquid crystal panel 113d, data signal lines 4x and 4X extending in the column direction (up and down direction in the figure), scanning signal lines 2c and 2a extending in the row direction (left and right direction in the figure), and rows. And pixels 100, 101, 103, 104 arranged in the column direction, storage capacitor lines 3a, 3c, and a common electrode (counter electrode) com, and the structure of each pixel is the same.
 本液晶パネル113dでは、1つの画素に対応して1本のデータ信号線と1本の走査信号線と1本の保持容量配線とが設けられている。また、1画素に、2つの画素電極が、その一方が他方を取り囲むように設けられ、画素100に、画素電極5dとこれを取り囲む画素電極5cとが設けられ、画素101に、画素電極5bとこれを取り囲む画素電極5aとが設けられ、画素103に、画素電極5Dとこれを取り囲む画素電極5Cとが設けられ、画素104に、画素電極5Bとこれを取り囲む画素電極5Aとが設けられている。 In the present liquid crystal panel 113d, one data signal line, one scanning signal line, and one storage capacitor line are provided corresponding to one pixel. In addition, one pixel includes two pixel electrodes, one of which surrounds the other, the pixel 100 includes a pixel electrode 5d and a pixel electrode 5c surrounding the pixel electrode, and the pixel 101 includes the pixel electrode 5b and A pixel electrode 5a surrounding the pixel electrode 5a and a pixel electrode 5C surrounding the pixel electrode 5D are provided. The pixel 104 includes a pixel electrode 5B and a pixel electrode 5A surrounding the pixel electrode 5A. .
 各画素の構造は同一であるため、以下では、主に画素101を例に挙げて説明する。 Since the structure of each pixel is the same, the following description will be given mainly using the pixel 101 as an example.
 画素101では、画素電極5aが、走査信号線2aに接続されたトランジスタ15aを介してデータ信号線4xに接続され、画素電極5bが、走査信号線2aに接続されたトランジスタ15bを介してデータ信号線4xに接続され、画素電極5aおよび保持容量配線3a間に保持容量Chaが形成され、画素電極5aおよび共通電極com間に液晶容量Claが形成され、画素電極5bおよび共通電極com間に液晶容量Clbが形成されている。 In the pixel 101, the pixel electrode 5a is connected to the data signal line 4x via the transistor 15a connected to the scanning signal line 2a, and the pixel electrode 5b is connected to the data signal via the transistor 15b connected to the scanning signal line 2a. The storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor wiring 3a, the liquid crystal capacitor Cla is formed between the pixel electrode 5a and the common electrode com, and the liquid crystal capacitor is connected between the pixel electrode 5b and the common electrode com. Clb is formed.
 このように、画素電極5a、5bそれぞれは、同一の走査信号線2abに接続されたそれぞれのトランジスタ15a、15bを介して、同一のデータ信号線4xに接続されているため、画素電極5a、5bそれぞれに対して、同一の信号電位(データ信号)を、トランジスタ15a、15bそれぞれを介して直接供給することができる。そして、画素電極5aは、保持容量配線3aと保持容量Chaを形成しているため、例えば、画素電極5a、5bにデータ信号を書き込んだ後に、保持容量配線信号を変動させることで、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことにより、画素電極5a、5bそれぞれの画素電位を異ならせることができる。このような方法を用いて、例えば、画素電極5aを含む副画素を暗副画素、画素電極5bを含む副画素は明副画素とすることができる。これにより、画素分割方式の液晶表示装置を実現できる。 Thus, each of the pixel electrodes 5a and 5b is connected to the same data signal line 4x via the respective transistors 15a and 15b connected to the same scanning signal line 2ab, and thus the pixel electrodes 5a and 5b. The same signal potential (data signal) can be directly supplied to each through the transistors 15a and 15b. Since the pixel electrode 5a forms the storage capacitor line 3a and the storage capacitor Cha, for example, after writing a data signal to the pixel electrodes 5a and 5b, the storage capacitor line signal is changed, thereby causing capacitive coupling. By raising or lowering the pixel electrode potential (pixel potential), the pixel potentials of the pixel electrodes 5a and 5b can be made different. By using such a method, for example, the sub-pixel including the pixel electrode 5a can be a dark sub-pixel, and the sub-pixel including the pixel electrode 5b can be a bright sub-pixel. Thus, a pixel division type liquid crystal display device can be realized.
 本構成例8における液晶パネル113dの具体的な構成を図45に示す。図45は、液晶パネル113dの構成例8を示す平面図である。図45の液晶パネル113dでは、データ信号線4xおよび走査信号線2aの交差部近傍にトランジスタ15a、15bが配され、両データ信号線4x、4Xで画される画素領域に、矩形状の画素電極5bとこれを取り囲む矩形状の画素電極5aとが配され、保持容量配線3aが画素電極5aを横切って行方向に延伸している。なお、画素電極5a、5bの形状は、一方の画素電極が他方の画素電極を取り囲む形状であればよく、特に限定されるものではない。 FIG. 45 shows a specific configuration of the liquid crystal panel 113d in the present configuration example 8. FIG. 45 is a plan view showing Configuration Example 8 of the liquid crystal panel 113d. In the liquid crystal panel 113d of FIG. 45, transistors 15a and 15b are arranged in the vicinity of the intersection of the data signal line 4x and the scanning signal line 2a, and a rectangular pixel electrode is formed in the pixel region defined by the data signal lines 4x and 4X. 5b and a rectangular pixel electrode 5a surrounding the same are arranged, and the storage capacitor wiring 3a extends in the row direction across the pixel electrode 5a. The shape of the pixel electrodes 5a and 5b is not particularly limited as long as one pixel electrode surrounds the other pixel electrode.
 画素101では、走査信号線2a上には、トランジスタ15aのソース電極16abおよびドレイン電極17aと、トランジスタ15bのソース電極16abおよびドレイン電極17bとが形成されている。このように、ソース電極16abは、トランジスタ15a、15bの両方のソース電極を兼ねてデータ信号線4xに接続される。ドレイン電極17aはドレイン引き出し配線18aに接続され、ドレイン引き出し配線18aは容量電極19aに接続され、容量電極19aはコンタクトホール20aを介して画素電極5aに接続される。ドレイン電極17bはドレイン引き出し配線18bに接続され、ドレイン引き出し配線18bはコンタクトホール20bを介して画素電極5bに接続される。 In the pixel 101, the source electrode 16ab and the drain electrode 17a of the transistor 15a and the source electrode 16ab and the drain electrode 17b of the transistor 15b are formed on the scanning signal line 2a. In this manner, the source electrode 16ab is connected to the data signal line 4x also serving as both source electrodes of the transistors 15a and 15b. The drain electrode 17a is connected to the drain lead wire 18a, the drain lead wire 18a is connected to the capacitor electrode 19a, and the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a. The drain electrode 17b is connected to the drain lead wiring 18b, and the drain lead wiring 18b is connected to the pixel electrode 5b through the contact hole 20b.
 ここで、容量電極19aがゲート絶縁膜を介して保持容量配線3aに重なるとともに、画素電極5aがゲート絶縁膜および層間絶縁膜を介して保持容量配線3aに重なっており、これらの重なりの両方によって保持容量Cha(図44参照)が形成されている。 Here, the capacitor electrode 19a overlaps the storage capacitor wiring 3a via the gate insulating film, and the pixel electrode 5a overlaps the storage capacitor wiring 3a via the gate insulating film and the interlayer insulating film. A storage capacitor Cha (see FIG. 44) is formed.
 一方、画素電極5bには容量電極、保持容量配線は設けられず、保持容量配線による保持容量は設けられていない。画素電極5bを明画素としているので、液晶パネルのV-T曲線(液晶印加電圧-パネル透過率曲線)を考えれば、画素電極5bの電位がフレーム間で多少変わったとしても表示輝度変化の影響が現れにくい。また、本構成例8では、一方の副画素について保持容量配線を用いた保持容量を設けていないので、CSドライバの出力(CS信号)の本数を減らして、CSドライバの構成を簡略化できるので、狭額縁化により有利である。 On the other hand, the pixel electrode 5b is not provided with a capacitor electrode or a storage capacitor wire, and is not provided with a storage capacitor by the storage capacitor wire. Since the pixel electrode 5b is a bright pixel, considering the VT curve (liquid crystal applied voltage-panel transmittance curve) of the liquid crystal panel, even if the potential of the pixel electrode 5b slightly changes between frames, the influence of the display luminance change Is difficult to appear. Further, in the present configuration example 8, since the storage capacitor using the storage capacitor wiring is not provided for one of the sub-pixels, the number of CS driver outputs (CS signals) can be reduced and the configuration of the CS driver can be simplified. It is more advantageous to narrow the frame.
 なお、他の画素の構成(各部材の形状および配置並びに接続関係)は画素101のそれと同じである。 Note that the configuration of other pixels (the shape and arrangement of each member and the connection relationship) is the same as that of the pixel 101.
 ところで、構成例1~7に示した各液晶パネルは、1つの画素領域内に形成される複数の画素電極それぞれが、保持容量配線と保持容量を形成する構成であるが、本発明はこれに限定されるものではなく、構成例8で示したように、1つの画素電極内の少なくとも1つの画素電極が保持容量配線と保持容量を形成していれば良い。例えば、1つの画素領域内に2つの画素電極(5a、5b)が形成されている構成において、一方の画素電極(5a)のみが保持容量配線と保持容量を形成している構成である。この構成においても、一方の画素電極(5a)にデータ信号を書き込んだ後に、保持容量配線に保持容量配線信号を供給して、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことにより、画素電極(5a)の画素電位を変化させることができる。よって、1画素を明副画素および暗副画素で構成することができるため、画素分割方式の液晶表示装置を実現できる。 Incidentally, each of the liquid crystal panels shown in the configuration examples 1 to 7 has a configuration in which each of a plurality of pixel electrodes formed in one pixel region forms a storage capacitor line and a storage capacitor. The present invention is not limited to this, and as shown in Structural Example 8, it is sufficient that at least one pixel electrode in one pixel electrode forms a storage capacitor line and a storage capacitor. For example, in a configuration in which two pixel electrodes (5a, 5b) are formed in one pixel region, only one pixel electrode (5a) forms a storage capacitor line and a storage capacitor. Also in this configuration, after a data signal is written to one of the pixel electrodes (5a), a storage capacitor wiring signal is supplied to the storage capacitor wiring to raise or lower the pixel electrode potential (pixel potential) by capacitive coupling. Thus, the pixel potential of the pixel electrode (5a) can be changed. Therefore, since one pixel can be composed of a bright subpixel and a dark subpixel, a pixel division type liquid crystal display device can be realized.
 また、構成例1~7で示した本発明の各液晶パネルにおいて、列方向に隣り合う画素の間に、両画素で共用する保持容量配線が設けられているが、本実施形態はこれに限定されず、構成例1~7で示した本発明の各液晶パネルにおいて、列方向に隣り合う画素の間に、両画素で実質的に共用する保持容量配線が設けられていてもよい。すなわち、本発明において、列方向に隣り合う画素に対応して、両画素で同一信号が与えられるなどの特徴を有して実質上共用する保持容量配線があればよく、その保持容量配線が複数本からなっていてもよい。 Further, in each of the liquid crystal panels of the present invention shown in structural examples 1 to 7, a storage capacitor wiring shared by both pixels is provided between pixels adjacent in the column direction, but this embodiment is not limited thereto. Instead, in each of the liquid crystal panels of the present invention shown in Structural Examples 1 to 7, a storage capacitor wiring that is substantially shared by both pixels may be provided between pixels adjacent in the column direction. In other words, in the present invention, it is sufficient if there is a storage capacitor wiring that is substantially shared and has a feature such that the same signal is given to both pixels corresponding to pixels adjacent in the column direction. It may consist of books.
 (液晶パネルの構成例9)
 図46は、本発明の液晶パネルの構成例9における液晶パネル113eの一部を示す等価回路図である。図46に示すように、本液晶パネル113eでは、列方向(図中上下方向)に延伸するデータ信号線4x、4X、行方向(図中左右方向)に延伸する走査信号線2c、2d、2a、2b、行および列方向に並べられた画素100~107、保持容量配線3c、3d、3a、3b、および共通電極(対向電極)comを備え、各画素の構造は同一である。
(Configuration example 9 of liquid crystal panel)
FIG. 46 is an equivalent circuit diagram showing a part of the liquid crystal panel 113e in the configuration example 9 of the liquid crystal panel of the present invention. As shown in FIG. 46, in the present liquid crystal panel 113e, the data signal lines 4x and 4X extending in the column direction (vertical direction in the figure), and the scanning signal lines 2c, 2d, and 2a extending in the row direction (horizontal direction in the figure). 2b, pixels 100 to 107 arranged in the row and column directions, storage capacitor lines 3c, 3d, 3a, and 3b, and a common electrode (counter electrode) com, and the structure of each pixel is the same.
 本液晶パネル113eでは、1つの画素に対応して、1本のデータ信号線と1本の走査信号線と1本の保持容量配線と1個の画素電極が設けられている。各画素の構造は同一であるため、以下では、主に画素102を例に挙げて説明する。 In the present liquid crystal panel 113e, one data signal line, one scanning signal line, one storage capacitor line, and one pixel electrode are provided corresponding to one pixel. Since the structure of each pixel is the same, the following description will be given mainly using the pixel 102 as an example.
 画素102では、画素電極5aが、走査信号線2aに接続されたトランジスタ15aを介してデータ信号線4xに接続され、画素電極5aおよび保持容量配線3a間に保持容量Chaが形成され、画素電極5aおよび共通電極com間に液晶容量Claが形成されている。 In the pixel 102, the pixel electrode 5a is connected to the data signal line 4x via the transistor 15a connected to the scanning signal line 2a, a storage capacitor Cha is formed between the pixel electrode 5a and the storage capacitor line 3a, and the pixel electrode 5a. A liquid crystal capacitor Cla is formed between the common electrodes com.
 本構成例9における液晶パネル113eの具体的な構成を図47に示す。図47は、液晶パネル113eの構成例9を示す平面図である。図47の液晶パネル113eでは、データ信号線4xおよび走査信号線2aの交差部近傍にトランジスタ15aが配され、両データ信号線4x、4Xで画される画素領域に、画素電極5aが配され、保持容量配線3aが画素電極5aを横切って行方向に延伸している。 FIG. 47 shows a specific configuration of the liquid crystal panel 113e in the present configuration example 9. FIG. 47 is a plan view showing Configuration Example 9 of the liquid crystal panel 113e. In the liquid crystal panel 113e of FIG. 47, the transistor 15a is disposed near the intersection of the data signal line 4x and the scanning signal line 2a, and the pixel electrode 5a is disposed in the pixel region defined by the data signal lines 4x and 4X. The storage capacitor line 3a extends in the row direction across the pixel electrode 5a.
 画素102では、走査信号線2a上には、半導体層22a、トランジスタ15aのソース電極16aおよびドレイン電極17aが形成されている。ドレイン電極17aはドレイン引き出し配線18aに接続され、ドレイン引き出し配線18aは容量電極19aに接続され、容量電極19aはコンタクトホール20aを介して画素電極5aに接続される。 In the pixel 102, the semiconductor layer 22a, the source electrode 16a of the transistor 15a, and the drain electrode 17a are formed on the scanning signal line 2a. The drain electrode 17a is connected to the drain lead wire 18a, the drain lead wire 18a is connected to the capacitor electrode 19a, and the capacitor electrode 19a is connected to the pixel electrode 5a through the contact hole 20a.
 ここで、容量電極19aがゲート絶縁膜を介して保持容量配線3aに重なるとともに、画素電極5aがゲート絶縁膜および層間絶縁膜を介して保持容量配線3aに重なっており、これらの重なりの両方によって保持容量Cha(図46参照)が形成されている。 Here, the capacitor electrode 19a overlaps the storage capacitor wiring 3a via the gate insulating film, and the pixel electrode 5a overlaps the storage capacitor wiring 3a via the gate insulating film and the interlayer insulating film. A storage capacitor Cha (see FIG. 46) is formed.
 本構成例9によれば、画素電極5aが保持容量配線3aと保持容量Chaを形成しているため、例えば、画素電極5aにデータ信号を書き込んだ後に、保持容量配線信号を変動させることによって、容量結合による画素電極電位(画素電位)の突き上げまたは突き下げを行うことができる。よって、ソースドライバ11(図8参照)の駆動電圧を下げることができるため、液晶表示装置110の消費電力を低減することができる。 According to the present configuration example 9, since the pixel electrode 5a forms the storage capacitor line 3a and the storage capacitor Cha, for example, after writing the data signal to the pixel electrode 5a, the storage capacitor line signal is changed, The pixel electrode potential (pixel potential) can be pushed up or pushed down by capacitive coupling. Therefore, since the drive voltage of the source driver 11 (see FIG. 8) can be lowered, the power consumption of the liquid crystal display device 110 can be reduced.
 なお、本願でいう「電位の極性」とは、基準となる電位以上(プラス)あるいは基準となる電位以下(マイナス)を意味する。ここで、基準となる電位は、共通電極(対向電極)の電位であるVcom(コモン電位)であってもその他任意の電位であってもよい。また、構成例1~9で示した本発明の各液晶パネルにおいて、多数のデータ信号線の極性配置はどのような配置であってもよく、隣接するデータ信号線がすべて逆極性であってもよいし、同極性であってもよいし、データ信号線の極性配置は、2ラインおきに極性が反転してもよく、本発明の効果はこのようなデータ信号線の極性配置に影響されず効果を奏する。 It should be noted that the “polarity of the potential” in the present application means a potential not less than a reference potential (plus) or not more than a reference potential (minus). Here, the reference potential may be Vcom (common potential) which is the potential of the common electrode (counter electrode) or any other potential. Further, in each of the liquid crystal panels of the present invention shown in the configuration examples 1 to 9, the polarity arrangement of a large number of data signal lines may be any arrangement, and all adjacent data signal lines may have opposite polarities. The polarity of the data signal lines may be reversed every two lines, and the effect of the present invention is not affected by the polarity arrangement of the data signal lines. There is an effect.
 (テレビジョン受像機の構成例)
 最後に、本発明のテレビジョン受像機の構成例について説明する。以下では、本発明の液晶表示装置をテレビジョン受像機に適用するときの一構成例について説明する。なお、ここでは本液晶表示装置110、110bを、液晶表示装置800として表す。図48は、テレビジョン受像機用の液晶表示装置800の構成を示すブロック図である。液晶表示装置800は、液晶表示ユニット84と、Y/C分離回路80と、ビデオクロマ回路81と、A/Dコンバータ82と、液晶コントローラ83と、バックライト駆動回路85と、バックライト86と、マイコン(マイクロコンピュータ)87と、階調回路88とを備えている。なお、液晶表示ユニット84は、液晶パネルと、これを駆動するためのソースドライバおよびゲートドライバとで構成される。
(Example configuration of a television receiver)
Finally, a configuration example of the television receiver of the present invention will be described. Hereinafter, a configuration example when the liquid crystal display device of the present invention is applied to a television receiver will be described. Here, the liquid crystal display devices 110 and 110b are represented as a liquid crystal display device 800. FIG. 48 is a block diagram showing a configuration of a liquid crystal display device 800 for a television receiver. The liquid crystal display device 800 includes a liquid crystal display unit 84, a Y / C separation circuit 80, a video chroma circuit 81, an A / D converter 82, a liquid crystal controller 83, a backlight drive circuit 85, a backlight 86, A microcomputer 87 and a gradation circuit 88 are provided. The liquid crystal display unit 84 includes a liquid crystal panel and a source driver and a gate driver for driving the liquid crystal panel.
 上記構成の液晶表示装置800では、まず、テレビジョン信号としての複合カラー映像信号Scvが外部からY/C分離回路80に入力され、そこで輝度信号と色信号に分離される。これらの輝度信号と色信号は、ビデオクロマ回路81にて光の3原色に対応するアナログRGB信号に変換され、さらに、このアナログRGB信号はA/Dコンバータ82により、デジタルRGB信号に変換される。このデジタルRGB信号は液晶コントローラ83に入力される。また、Y/C分離回路80では、外部から入力された複合カラー映像信号Scvから水平および垂直同期信号も取り出され、これらの同期信号もマイコン87を介して液晶コントローラ83に入力される。 In the liquid crystal display device 800 configured as described above, first, a composite color video signal Scv as a television signal is input from the outside to the Y / C separation circuit 80, where it is separated into a luminance signal and a color signal. These luminance signals and color signals are converted into analog RGB signals corresponding to the three primary colors of light by the video chroma circuit 81, and further, the analog RGB signals are converted into digital RGB signals by the A / D converter 82. . This digital RGB signal is input to the liquid crystal controller 83. The Y / C separation circuit 80 also extracts horizontal and vertical synchronization signals from the composite color video signal Scv input from the outside, and these synchronization signals are also input to the liquid crystal controller 83 via the microcomputer 87.
 液晶表示ユニット84には、液晶コントローラ83からデジタルRGB信号が、上記同期信号に基づくタイミング信号と共に所定のタイミングで入力される。また、階調回路88では、カラー表示の3原色R、G、Bそれぞれの階調電位が生成され、それらの階調電位も液晶表示ユニット84に供給される。液晶表示ユニット84では、これらのRGB信号、タイミング信号および階調電位に基づき内部のソースドライバやゲートドライバ等により駆動用信号(データ信号=信号電位、走査信号等)が生成され、それらの駆動用信号に基づき、内部の液晶パネルにカラー画像が表示される。なお、この液晶表示ユニット84によって画像を表示するには、液晶表示ユニット内の液晶パネルの後方から光を照射する必要があり、この液晶表示装置800では、マイコン87の制御の下にバックライト駆動回路85がバックライト86を駆動することにより、液晶パネルの裏面に光が照射される。上記の処理を含め、システム全体の制御はマイコン87が行う。なお、外部から入力される映像信号(複合カラー映像信号)としては、テレビジョン放送に基づく映像信号のみならず、カメラにより撮像された映像信号や、インターネット回線を介して供給される映像信号なども使用可能であり、この液晶表示装置800では、様々な映像信号に基づいた画像表示が可能である。 The liquid crystal display unit 84 receives a digital RGB signal from the liquid crystal controller 83 at a predetermined timing together with a timing signal based on the synchronization signal. The gradation circuit 88 generates gradation potentials for the three primary colors R, G, and B for color display, and these gradation potentials are also supplied to the liquid crystal display unit 84. In the liquid crystal display unit 84, a driving signal (data signal = signal potential, scanning signal, etc.) is generated by an internal source driver, gate driver, or the like based on the RGB signal, timing signal, and gradation potential, and these driving signals are used. Based on the signal, a color image is displayed on the internal liquid crystal panel. In order to display an image by the liquid crystal display unit 84, it is necessary to irradiate light from behind the liquid crystal panel in the liquid crystal display unit. In the liquid crystal display device 800, the backlight drive is performed under the control of the microcomputer 87. The circuit 85 drives the backlight 86, so that light is irradiated to the back surface of the liquid crystal panel. The microcomputer 87 controls the entire system including the above processing. The video signal (composite color video signal) input from the outside includes not only a video signal based on television broadcasting but also a video signal captured by a camera, a video signal supplied via an Internet line, and the like. The liquid crystal display device 800 can display images based on various video signals.
 液晶表示装置800でテレビジョン放送に基づく画像を表示する場合には、図49に示すように、液晶表示装置800にチューナ部90が接続され、これによって本テレビジョン受像機601が構成される。このチューナ部90は、アンテナ(不図示)で受信した受信波(高周波信号)の中から受信すべきチャンネルの信号を抜き出して中間周波信号に変換し、この中間周波数信号を検波することによってテレビジョン信号としての複合カラー映像信号Scvを取り出す。この複合カラー映像信号Scvは、既述のように液晶表示装置800に入力され、この複合カラー映像信号Scvに基づく画像が液晶表示装置800によって表示される。 When an image based on television broadcasting is displayed on the liquid crystal display device 800, as shown in FIG. 49, a tuner unit 90 is connected to the liquid crystal display device 800, whereby the present television receiver 601 is configured. The tuner unit 90 extracts a signal of a channel to be received from a received wave (high frequency signal) received by an antenna (not shown), converts it to an intermediate frequency signal, and detects the intermediate frequency signal, thereby detecting the television signal. A composite color video signal Scv as a signal is taken out. The composite color video signal Scv is input to the liquid crystal display device 800 as described above, and an image based on the composite color video signal Scv is displayed by the liquid crystal display device 800.
 図50は、本テレビジョン受像機の一構成例を示す分解斜視図である。同図に示すように、本テレビジョン受像機601は、その構成要素として、液晶表示装置800の他に第1筐体801および第2筐体806を有しており、液晶表示装置800を第1筐体801と第2筐体806とで包み込むようにして挟持した構成となっている。第1筐体801には、液晶表示装置800で表示される画像を透過させる開口部801aが形成されている。また、第2筐体806は、液晶表示装置800の背面側を覆うものであり、液晶表示装置800を操作するための操作用回路805が設けられると共に、下方に支持用部材808が取り付けられている。 FIG. 50 is an exploded perspective view showing an example of the configuration of the present television receiver. As shown in the figure, the present television receiver 601 includes a first casing 801 and a second casing 806 in addition to the liquid crystal display device 800 as its constituent elements. It is configured to be sandwiched between one housing 801 and a second housing 806. The first housing 801 is formed with an opening 801a through which an image displayed on the liquid crystal display device 800 is transmitted. The second housing 806 covers the back side of the liquid crystal display device 800, is provided with an operation circuit 805 for operating the liquid crystal display device 800, and a support member 808 is attached below. Yes.
 本発明は上記の実施の形態に限定されるものではなく、上記実施の形態を技術常識に基づいて適宜変更したものやそれらを組み合わせて得られるものも本発明の実施の形態に含まれる。 The present invention is not limited to the above-described embodiments, and those obtained by appropriately modifying the above-described embodiments based on common general technical knowledge and combinations thereof are also included in the embodiments of the present invention.
 本発明のアクティブマトリクス基板及びこれを備えた液晶パネルは、例えば液晶テレビに好適である。 The active matrix substrate and the liquid crystal panel including the active matrix substrate of the present invention are suitable for a liquid crystal television, for example.
 5、5a~5f、5A~5F 画素電極
 6 表示領域
 7 周辺領域
 9、9a、45 ゲートドライバ(走査信号線駆動回路)
 11、43 ソースドライバ(データ信号線駆動回路)
 13、46、49、51、53、55、57 CSドライバ(保持容量配線駆動回路)
 44、48、50、52、54、56 ゲート・CSドライバ(走査信号線駆動回路・保持容量配線駆動回路)
 41 表示部
 42 表示制御回路
 CSD 保持回路(保持容量配線駆動内部回路)
 15a~15f、15A~12F トランジスタ
 4、4x、4X、4y、4Y ソースライン(データ信号線)
 4x、4X ソースライン(第1データ信号線)
 4y、4Y ソースライン(第2データ信号線)
 2、2ab、2cd、2ef、2a、2c ゲートライン(走査信号線)
 3、3w、3x、3y、3z、3a、3b、3c、3d CSライン(保持容量配線)
 111 アクティブマトリクス基板
 112 対向基板(カラーフィルタ基板)
 113a、113b、113c、113d 液晶パネル
 100~105 画素
 110 液晶表示装置
 601 テレビジョン受像機
 VDD 信号
 VSS 信号
 COM 共通電極電位(保持容量配線信号、第2保持容量配線信号)
 s、s1 端子(第1入力部)
 sel1 端子(第2入力部)
 sel2 端子(第3入力部)
 sel3 端子(第4入力部)
 sel4 端子(第5入力部)
 SEL、SEL1、SEL2 信号(保持対象信号)
 SEL3、SEL4 信号(第2保持対象信号)
 CS CS信号(保持容量配線信号、第1保持容量配線信号)
5, 5a to 5f, 5A to 5F Pixel electrode 6 Display area 7 Peripheral area 9, 9a, 45 Gate driver (scanning signal line drive circuit)
11, 43 Source driver (data signal line drive circuit)
13, 46, 49, 51, 53, 55, 57 CS driver (retention capacitor wiring drive circuit)
44, 48, 50, 52, 54, 56 Gate / CS driver (scanning signal line driving circuit / holding capacity wiring driving circuit)
41 Display unit 42 Display control circuit CSD holding circuit (holding capacity wiring drive internal circuit)
15a to 15f, 15A to 12F Transistor 4, 4x, 4X, 4y, 4Y Source line (data signal line)
4x, 4X source line (first data signal line)
4y, 4Y source line (second data signal line)
2, 2ab, 2cd, 2ef, 2a, 2c gate lines (scanning signal lines)
3, 3w, 3x, 3y, 3z, 3a, 3b, 3c, 3d CS line (retention capacitor wiring)
111 Active matrix substrate 112 Counter substrate (color filter substrate)
113a, 113b, 113c, 113d Liquid crystal panel 100 to 105 Pixel 110 Liquid crystal display device 601 Television receiver VDD signal VSS signal COM Common electrode potential (holding capacity wiring signal, second holding capacity wiring signal)
s, s1 terminals (first input section)
sel1 terminal (second input section)
sel2 terminal (3rd input part)
sel3 terminal (4th input part)
sel4 terminal (5th input part)
SEL, SEL1, SEL2 signals (holding target signals)
SEL3, SEL4 signal (second holding target signal)
CS CS signal (holding capacitor wiring signal, first holding capacitor wiring signal)

Claims (27)

  1.  データ信号線と、走査信号線と、上記データ信号線および走査信号線に接続されたトランジスタと、画素に含まれる画素電極と保持容量を形成する保持容量配線とを備えたアクティブマトリクス基板であって、
     各保持容量配線には、その両端部から、該保持容量配線を駆動するための保持容量配線信号が供給されることを特徴とするアクティブマトリクス基板。
    An active matrix substrate comprising a data signal line, a scanning signal line, a transistor connected to the data signal line and the scanning signal line, a pixel electrode included in a pixel, and a storage capacitor line forming a storage capacitor ,
    An active matrix substrate, wherein a storage capacitor wiring signal for driving the storage capacitor wiring is supplied to each storage capacitor wiring from both ends thereof.
  2.  上記保持容量配線信号を出力する複数の保持容量配線駆動回路が、ガラス基板上にモノリシックに形成されていることを特徴とする請求項1に記載のアクティブマトリクス基板。 2. The active matrix substrate according to claim 1, wherein the plurality of storage capacitor wiring drive circuits for outputting the storage capacitor wiring signal are monolithically formed on a glass substrate.
  3.  上記保持容量配線信号を出力する複数の保持容量配線駆動回路と、走査信号線駆動回路とが、モノリシックに形成されていることを特徴とする請求項1に記載のアクティブマトリクス基板。 2. The active matrix substrate according to claim 1, wherein the plurality of storage capacitor line drive circuits for outputting the storage capacitor line signals and the scanning signal line drive circuit are formed monolithically.
  4.  上記保持容量配線を駆動する保持容量配線駆動回路は、画素電極と保持容量を形成する保持容量配線に上記保持容量配線信号を供給することによって、データ信号線から該画素電極に書き込まれた画素電位を該画素電位の極性に応じた向きに変化させることを特徴とする請求項1に記載のアクティブマトリクス基板。 The storage capacitor wiring driving circuit that drives the storage capacitor wiring supplies the storage capacitor wiring signal to the storage capacitor wiring that forms the pixel electrode and the storage capacitor, thereby causing the pixel potential written from the data signal line to the pixel electrode. The active matrix substrate according to claim 1, wherein the direction is changed in a direction corresponding to the polarity of the pixel potential.
  5.  1つの画素領域内に複数の画素電極が設けられ、
     1つの画素領域内において、各画素電極と該画素電極に対応する保持容量配線との間に形成される各保持容量が、互いに異なっていることを特徴とする請求項1に記載のアクティブマトリクス基板。
    A plurality of pixel electrodes are provided in one pixel region,
    2. The active matrix substrate according to claim 1, wherein the storage capacitors formed between the pixel electrodes and the storage capacitor lines corresponding to the pixel electrodes are different from each other in one pixel region. .
  6.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     1つの保持容量配線駆動内部回路は、少なくとも1本の保持容量配線に上記保持容量配線信号を供給することを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    2. The active matrix substrate according to claim 1, wherein one storage capacitor line driving internal circuit supplies the storage capacitor line signal to at least one storage capacitor line.
  7.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     上記保持容量配線駆動内部回路は、全ての保持容量配線に対して、1本おきに設けられ、
     隣り合う2本の保持容量配線において、一方の保持容量配線には上記保持容量配線駆動内部回路から出力された上記保持容量配線信号が供給され、他方の保持容量配線には外部の信号源から出力された信号が供給されることを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    The retention capacitor line drive internal circuit is provided every other retention capacitor line,
    In two adjacent storage capacitor lines, one storage capacitor line is supplied with the storage capacitor line signal output from the storage capacitor line driving internal circuit, and the other storage capacitor line is output from an external signal source. The active matrix substrate according to claim 1, wherein the processed signal is supplied.
  8.  1つの画素領域内に、第1および第2画素電極と、上記走査信号線に接続された第1および第2トランジスタとを備え、
     上記第1画素電極は、上記第1トランジスタを介して上記データ信号線に接続されるとともに、上記保持容量配線と第1保持容量を形成し、上記第2画素電極は、上記第2トランジスタを介して上記データ信号線に接続されるとともに、上記保持容量配線と第2保持容量を形成していることを特徴とする請求項1に記載のアクティブマトリクス基板。
    In one pixel region, the first and second pixel electrodes, and first and second transistors connected to the scanning signal line,
    The first pixel electrode is connected to the data signal line through the first transistor and forms the storage capacitor line and the first storage capacitor, and the second pixel electrode is connected through the second transistor. 2. The active matrix substrate according to claim 1, wherein the active matrix substrate is connected to the data signal line and forms the storage capacitor line and the second storage capacitor.
  9.  各データ信号線の延伸方向を列方向として、
     第1および第2画素領域がこの順に列方向に並べられるとともに、各画素領域内において、第1および第2画素電極がこの順に列方向に並べられ、
     上記第1画素領域内の上記第2画素電極と上記第2画素領域内の上記第1画素電極とが隣り合っており、それぞれの画素電極が、同一の保持容量配線と保持容量を形成していることを特徴とする請求項1に記載のアクティブマトリクス基板。
    The extending direction of each data signal line is the column direction,
    The first and second pixel regions are arranged in this order in the column direction, and in each pixel region, the first and second pixel electrodes are arranged in this order in the column direction,
    The second pixel electrode in the first pixel region and the first pixel electrode in the second pixel region are adjacent to each other, and each pixel electrode forms the same storage capacitor line and storage capacitor. The active matrix substrate according to claim 1, wherein:
  10.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     各保持容量配線駆動内部回路に保持対象信号が入力され、
     自段よりも後の後段の画素に対応する走査信号線に供給される走査信号がアクティブになると、自段の画素に対応する保持容量配線駆動内部回路が上記保持対象信号を取り込んでこれを保持し、
     自段の画素に対応する保持容量配線駆動内部回路の出力を、自段の画素に対応する保持容量配線に、上記保持容量配線信号として供給することを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    Retention target signal is input to each retention capacitor wiring drive internal circuit,
    When the scanning signal supplied to the scanning signal line corresponding to the subsequent pixel after the own stage becomes active, the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it. And
    2. The active matrix according to claim 1, wherein an output of the storage capacitor line driving internal circuit corresponding to the pixel of the own stage is supplied as a storage capacitor line signal to the storage capacitor line corresponding to the pixel of the second stage. substrate.
  11.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     各保持容量配線駆動内部回路に保持対象信号が入力され、
     自段よりも後の後段の画素に対応する走査信号線に供給される走査信号がアクティブになると、自段の画素に対応する保持容量配線駆動内部回路が上記保持対象信号を取り込んでこれを保持し、
     自段の画素に対応する保持容量配線駆動内部回路の出力を、自段の画素に対応する保持容量配線および自段よりも前の前段の画素に対応する保持容量配線に、上記保持容量配線信号として供給することを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    Retention target signal is input to each retention capacitor wiring drive internal circuit,
    When the scanning signal supplied to the scanning signal line corresponding to the subsequent pixel after the own stage becomes active, the holding capacitor wiring driving internal circuit corresponding to the own pixel captures the above holding target signal and holds it. And
    The output of the storage capacitor wiring driving internal circuit corresponding to the pixel of the own stage is transferred to the storage capacitor wiring corresponding to the pixel of the own stage and the storage capacitor wiring corresponding to the pixel of the previous stage before the own stage. The active matrix substrate according to claim 1, wherein the active matrix substrate is supplied as:
  12.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     各保持容量配線駆動内部回路に保持対象信号が入力され、
     自段に対応する保持容量配線駆動内部回路は、
     自段よりも後の後段の画素に対応する走査信号線に供給される走査信号を入力する第1入力部と、上記保持対象信号を入力する第2および第3入力部と、上記保持容量配線信号を出力する出力部とを備え、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号が非アクティブの期間では、上記第2および/または第3入力部に入力された上記保持対象信号の電位を保持することを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    Retention target signal is input to each retention capacitor wiring drive internal circuit,
    The storage capacitor wiring drive internal circuit corresponding to its own stage is
    A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal,
    When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
    When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
    2. The potential of the hold target signal input to the second and / or third input unit is held during a period when the scanning signal input to the first input unit is inactive. An active matrix substrate as described in 1.
  13.  上記保持容量配線を駆動する保持容量配線駆動回路は、上記保持容量配線に上記保持容量配線信号を供給する複数の保持容量配線駆動内部回路を備え、
     各保持容量配線駆動内部回路に保持対象信号が入力され、
     自段に対応する保持容量配線駆動内部回路は、
     自段よりも後の後段の画素に対応する走査信号線に供給される走査信号を入力する第1入力部と、上記保持対象信号を入力する第2および第3入力部と、上記保持容量配線信号を出力する出力部とを備え、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号が非アクティブになり、かつ、上記後段の画素よりも後の画素に対応する走査信号線に供給される走査信号がアクティブになったときに、上記第2入力部および/または第3入力部に入力され保持されている上記保持対象信号の電位を引き下げることを特徴とする請求項1に記載のアクティブマトリクス基板。
    The storage capacitor line driving circuit for driving the storage capacitor line includes a plurality of storage capacitor line driving internal circuits for supplying the storage capacitor line signal to the storage capacitor line,
    Retention target signal is input to each retention capacitor wiring drive internal circuit,
    The storage capacitor wiring drive internal circuit corresponding to its own stage is
    A first input unit for inputting a scanning signal to be supplied to a scanning signal line corresponding to a subsequent pixel after the own stage; second and third input units for inputting the holding target signal; and the holding capacitor wiring An output unit for outputting a signal,
    When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
    When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
    When the scanning signal input to the first input unit becomes inactive and a scanning signal supplied to a scanning signal line corresponding to a pixel after the subsequent pixel becomes active, 2. The active matrix substrate according to claim 1, wherein the potential of the holding target signal input and held in the second input unit and / or the third input unit is lowered.
  14.  第2保持対象信号を入力する第4および第5入力部をさらに備え、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第2入力部に入力された上記保持対象信号の電位がハイレベルのときは、ハイレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号がアクティブになったときの上記第3入力部に入力された上記保持対象信号の電位がハイレベルのときは、ローレベルの電位の上記保持容量配線信号を出力し、
     上記第1入力部に入力された上記走査信号が非アクティブになり、かつ、上記後段の画素よりも後の画素に対応する走査信号線に供給される走査信号がアクティブになったときに上記第4入力部および/または第5入力部に入力される上記第2保持対象信号により、上記第2入力部および/または第3入力部に入力され保持されている上記保持対象信号の電位を引き下げることを特徴とする請求項13に記載のアクティブマトリクス基板。
    A fourth and a fifth input unit for inputting the second holding target signal;
    When the potential of the retention target signal input to the second input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a high level potential Output signal,
    When the potential of the retention target signal input to the third input unit when the scanning signal input to the first input unit becomes active, the storage capacitor line having a low level potential Output signal,
    When the scanning signal input to the first input unit becomes inactive and the scanning signal supplied to the scanning signal line corresponding to the pixel after the subsequent pixel becomes active, the first signal is input. The potential of the holding target signal input to and held in the second input unit and / or the third input unit is lowered by the second holding target signal input to the 4 input unit and / or the fifth input unit. The active matrix substrate according to claim 13.
  15.  各データ信号線の延伸方向を列方向として、複数の画素電極を含む画素領域が行および列方向に並べられ、1つの画素領域列に対応して第1および第2データ信号線が設けられるとともに、1つの画素領域行に対応して1本の走査信号線が設けられ、
     列方向に隣り合う2つの画素領域の一方に含まれる各画素電極にトランジスタを介して接続されるデータ信号線と、該2つの画素領域の他方に含まれる各画素電極にトランジスタを介して接続されるデータ信号線とが異なることを特徴とする請求項1に記載のアクティブマトリクス基板。
    The pixel regions including a plurality of pixel electrodes are arranged in the row and column directions with the extending direction of each data signal line as the column direction, and first and second data signal lines are provided corresponding to one pixel region column. One scanning signal line is provided corresponding to one pixel region row,
    A data signal line connected via a transistor to each pixel electrode included in one of two pixel areas adjacent in the column direction, and a pixel signal connected via a transistor to each pixel electrode included in the other of the two pixel areas. 2. The active matrix substrate according to claim 1, wherein the data signal line is different.
  16.  隣り合う走査信号線を2本ずつ同時に選択することを特徴とする請求項15に記載のアクティブマトリクス基板。 The active matrix substrate according to claim 15, wherein two adjacent scanning signal lines are simultaneously selected.
  17.  上記第1データ信号線および上記第2データ信号線には、互いに逆極性のデータ信号が供給されることを特徴とする請求項15に記載のアクティブマトリクス基板。 16. The active matrix substrate according to claim 15, wherein data signals having opposite polarities are supplied to the first data signal line and the second data signal line.
  18.  1つの画素領域内に2つの画素電極を備え、
     一方の画素電極が他方の画素電極を取り囲んでいることを特徴とする請求項1に記載のアクティブマトリクス基板。
    Two pixel electrodes are provided in one pixel region,
    The active matrix substrate according to claim 1, wherein one pixel electrode surrounds the other pixel electrode.
  19.  1つの画素領域は、2つの副画素で構成されており、
     上記一方の画素電極を含む副画素が相対的に輝度の低い暗副画素となり、上記他方の画素電極を含む副画素が相対的に輝度の高い明副画素となることを特徴とする請求項18に記載のアクティブマトリクス基板。
    One pixel area is composed of two sub-pixels,
    19. The sub-pixel including the one pixel electrode is a dark sub-pixel having a relatively low luminance, and the sub-pixel including the other pixel electrode is a bright sub-pixel having a relatively high luminance. An active matrix substrate as described in 1.
  20.  1つの画素領域内に、1つの画素電極が設けられ、
     1つの画素領域内において、上記画素電極と該画素電極に対応する保持容量配線との間に保持容量が形成されていることを特徴とする請求項1に記載のアクティブマトリクス基板。
    One pixel electrode is provided in one pixel region,
    2. The active matrix substrate according to claim 1, wherein a storage capacitor is formed between the pixel electrode and a storage capacitor line corresponding to the pixel electrode in one pixel region.
  21.  上記保持容量配線は、該保持容量配線を駆動する保持容量配線駆動回路から出力された第1保持容量配線信号により駆動される第1保持容量配線群と、外部の信号源から出力された第2保持容量配線信号により駆動される第2保持容量配線群とで構成されていることを特徴とする請求項1に記載のアクティブマトリクス基板。 The storage capacitor line includes a first storage capacitor line group driven by a first storage capacitor line signal output from a storage capacitor line driving circuit that drives the storage capacitor line, and a second storage capacitor line that is output from an external signal source. 2. The active matrix substrate according to claim 1, comprising a second storage capacitor wiring group driven by a storage capacitor wiring signal.
  22.  (k-2)行目の保持容量配線およびk行目の保持容量配線には、k段目の保持容量配線駆動内部回路から出力される保持容量配線信号が供給され、
     (k-3)行目の保持容量配線および(k-1)行目の保持容量配線には、外部の信号源から出力される信号が供給され、
     上記k段目の保持容量配線駆動内部回路には、(k+3)行目の走査信号線に供給される走査信号が入力されることを特徴とする請求項11に記載のアクティブマトリクス基板。
    The (k-2) -th storage capacitor line and the k-th storage capacitor line are supplied with a storage capacitor line signal output from the k-th storage capacitor line driving internal circuit,
    A signal output from an external signal source is supplied to the storage capacitor line in the (k-3) th row and the storage capacitor line in the (k-1) th row,
    12. The active matrix substrate according to claim 11, wherein a scanning signal supplied to a scanning signal line in the (k + 3) th row is input to the kth storage capacitor line driving internal circuit.
  23.  上記外部の信号源から出力される信号は、共通電極電位であることを特徴とする請求項7に記載のアクティブマトリクス基板。 The active matrix substrate according to claim 7, wherein the signal output from the external signal source is a common electrode potential.
  24.  上記第2保持容量配線信号は、共通電極電位であることを特徴とする請求項21に記載のアクティブマトリクス基板。 The active matrix substrate according to claim 21, wherein the second storage capacitor wiring signal is a common electrode potential.
  25.  請求項1~24のいずれか1項に記載のアクティブマトリクス基板を備え、
     各保持容量配線に、その両端部から同時に、該保持容量配線を駆動するための保持容量配線信号を供給することによって、上記データ信号線から該画素電極に書き込まれた画素電位を該画素電位の極性に応じた向きに変化させて表示を行うことを特徴とする液晶表示装置。
    An active matrix substrate according to any one of claims 1 to 24,
    By simultaneously supplying a storage capacitor wiring signal for driving the storage capacitor wiring from both ends thereof to each storage capacitor wiring, the pixel potential written from the data signal line to the pixel electrode is changed to the pixel potential. A liquid crystal display device, characterized in that display is performed by changing the orientation in accordance with the polarity.
  26.  請求項1~24のいずれか1項に記載のアクティブマトリクス基板を備えることを特徴とする液晶パネル。 A liquid crystal panel comprising the active matrix substrate according to any one of claims 1 to 24.
  27.  請求項25に記載の液晶表示装置と、テレビジョン放送を受信するチューナ部とを備えることを特徴とするテレビジョン受像機。 A television receiver comprising: the liquid crystal display device according to claim 25; and a tuner unit that receives a television broadcast.
PCT/JP2010/072010 2010-02-15 2010-12-08 Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver WO2011099218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030575 2010-02-15
JP2010-030575 2010-12-22

Publications (1)

Publication Number Publication Date
WO2011099218A1 true WO2011099218A1 (en) 2011-08-18

Family

ID=44367510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072010 WO2011099218A1 (en) 2010-02-15 2010-12-08 Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver

Country Status (1)

Country Link
WO (1) WO2011099218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076394B2 (en) 2010-02-15 2015-07-07 Sharp Kabushiki Kaisha Active matrix substrate, liquid crystal panel, liquid crystal display device, television receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354742A (en) * 2003-05-29 2004-12-16 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display,and driving method and manufacturing method of liquid crystal display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354742A (en) * 2003-05-29 2004-12-16 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display,and driving method and manufacturing method of liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076394B2 (en) 2010-02-15 2015-07-07 Sharp Kabushiki Kaisha Active matrix substrate, liquid crystal panel, liquid crystal display device, television receiver

Similar Documents

Publication Publication Date Title
JP5619787B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, television receiver
JP5116903B2 (en) Liquid crystal display
JP4932823B2 (en) Active matrix substrate, display device, and television receiver
US8471972B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
JP4277894B2 (en) Electro-optical device, drive circuit, and electronic device
US8421942B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
WO2009130919A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, and television receiver
WO2017000505A1 (en) Array substrate, display panel, display device and electronic device
JP5384633B2 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit, television receiver
JP2014142623A (en) Display device
WO2010024049A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, liquid crystal display unit and television receiving apparatus
JP4873882B2 (en) Liquid crystal display
WO2011104947A1 (en) Liquid crystal display device, television receiver and display method employed in liquid crystal display device
US20110063260A1 (en) Driving circuit for liquid crystal display
US9111503B2 (en) Display device and method for driving same
JP2005275056A (en) Liquid crystal display device and its manufacturing method
KR20180003703A (en) Display panel and display device using the same
JP4738055B2 (en) Liquid crystal display
WO2011099218A1 (en) Active matrix substrate, liquid crystal panel, liquid crystal display device, and television receiver
US8531445B2 (en) Device for controlling the gate drive voltage in liquid crystal display and influencing the turn-on voltage to have a similar ripple to a turn-off voltage
JP2009162983A (en) Electro-optical device, driving circuit, driving method, and electronic device
KR20220151434A (en) Display apparatus comprising bump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP