WO2011097757A1 - Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal - Google Patents

Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal Download PDF

Info

Publication number
WO2011097757A1
WO2011097757A1 PCT/CN2010/000194 CN2010000194W WO2011097757A1 WO 2011097757 A1 WO2011097757 A1 WO 2011097757A1 CN 2010000194 W CN2010000194 W CN 2010000194W WO 2011097757 A1 WO2011097757 A1 WO 2011097757A1
Authority
WO
WIPO (PCT)
Prior art keywords
prb
csi
super
shift
cell
Prior art date
Application number
PCT/CN2010/000194
Other languages
English (en)
Chinese (zh)
Inventor
张晓博
尤明礼
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to CN201080058435.1A priority Critical patent/CN102668629B/zh
Priority to PCT/CN2010/000194 priority patent/WO2011097757A1/fr
Publication of WO2011097757A1 publication Critical patent/WO2011097757A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management

Definitions

  • the present invention relates to a method and apparatus for ensuring orthogonality of channel state information reference signals between cells in a communication system. Background technique
  • the channel state information reference signal (CSI-RS) density is fixed. For 2, 4, and 8 ports, there is one resource element (Resource Element, RE) for each port of each PRB.
  • the pending issues for CSI-RS include specific location/mode and inter-eNB coordination.
  • the agreement does not have the same RS interval as the R8 CRS (cell-specific reference signal) - 6 REs (if the CSI-RS allocation is frequency-continuous, the agreement uses 12 RE's RS interval).
  • the CSI-RS duty cycle is typically much larger than one subframe, which further eliminates the possibility of multiplexing the R8 channel estimation filter.
  • CSI-RS which is one of the downlink reference signals, is mainly used for channel quality indicators (Channel Quality)
  • CQI CQI Measurement
  • PMI Precoding Matrix Indicator
  • CSI-RS assists in measuring Coordinate Multi-Point (CoMP) and heterogeneous networks, which means that cell/inter-network CSI-RS orthogonality should be guaranteed as much as possible.
  • CoMP Coordinate Multi-Point
  • Currently, direct solutions for technologies that guarantee orthogonality of small intervals include:
  • Time-frequency domain CSI-RS hopping includes providing more orthogonal modes than one-dimensional frequency domain shifting.
  • CSI-RS allocation should attempt to avoid OFDM symbols with DeModulation Reference Signal (DM RS) to provide maximum power boosting gain, and thus the hopping scheme has limitations.
  • DM RS DeModulation Reference Signal
  • Non-contiguous RB allocation can provide inter-cell CSI-RS orthogonality. However, the performance loss of channel estimation will be more obvious, especially considering the case of 1 RE per RB per port.
  • the present invention proposes a CSI-RS shifting scheme based on the super PRB.
  • a channel resource information reference signal CSI-RS shift mode determining method comprising: determining a single physical resource block according to a number of transmission resource particles and a number of REs available for CSI-RS a shift mode number N of the PRB for the CSI-RS; and determining a shift pattern of the super PRB for the CSI-RS according to the number N of shift patterns of the single PRB for the CSI-RS and the number M of PRBs constituting the super PRB
  • the number of available modes of the super PRB for the CSI-RS mode is N M , where N and M are natural numbers.
  • the method further includes: associating a cell ID of the base station with a shift mode of the super PRB for the CSI-RS, so that the user equipment can learn the cell ID associated with the cell ID according to the cell ID when the cell ID of the base station is learned.
  • the super PRB of the eNB is directed to a shift mode of the CSI-RS.
  • the number M of PRBs constituting the super PRB is determined according to the measurement requirements of the coordinated multi-point transmission CoMP and/or the heterogeneous network.
  • the number of shift patterns N of the single PRB for the CSI-RS is the number of resource particles/transport resource particles available for the CSI-RS, and when rounding is impossible, rounding down.
  • the number of the transmission resource particles is a multiple of the number of base station transmission antenna ports.
  • the M PRBs constituting the super PRB are continuous in the frequency domain.
  • the M PRBs constituting the super PRB are discontinuous in the frequency domain.
  • a channel resource information reference signal CSI-RS shift mode determining apparatus comprising: a physical resource block PRB shift mode number determining means, configured to transmit and use resource particles and Determining the number of shift patterns of the single physical resource block PRB for the CSI-RS by the number of REs of the CSI-RS:
  • the super-PRB constructing means for measuring the CoMP and/or the heterogeneous network according to the multipoint coordinated transmission needs
  • the M PRBs constitute a super PRB;
  • the super PRB shift mode determining means is configured to determine the super PRB for the CSI-RS according to the number of the CSI-RS shift mode number N and the number M of PRBs constituting the super PRB according to the single PRB Shift mode, wherein the number of available modes of the super PRB for the CSI-RS mode is N M , where N and M are natural numbers.
  • the device further includes: an association device, configured to target the cell ID of the base station and the super PRB to the CSI-RS
  • the shift mode is associated, so that when the user equipment knows the cell ID of the base station, the shift mode of the super-PRB for the CSI-RS of the eNB associated with the cell ID can be known according to the cell ID.
  • the number M of PRBs constituting the super PRB is determined according to the measurement requirements of the coordinated multi-point transmission CoMP and/or the heterogeneous network.
  • the number of shift patterns N of the single PRB for the CSI-RS is the number of resource particles/transport resource particles available for the CSI-RS, and when rounding is impossible, rounding down.
  • the number of the transmission resource particles is a multiple of the number of base station transmission antenna ports.
  • the M PRBs constituting the super PRB are continuous in the frequency domain.
  • the M PRBs constituting the super PRB are discontinuous in the frequency domain.
  • the present invention proposes a CPR-RS design scheme based on the super PRB to provide inter-cell orthogonality, and obtains better performance than the prior art.
  • the technical solution according to the invention exchanges the following two significant advantages with limited performance losses:
  • FIG. 1 illustrates an RB mode according to an exemplary embodiment of the present invention
  • FIG. 2 illustrates a structure of a super PRB including 3 PRBs according to an exemplary embodiment of the present invention
  • FIG. 3 illustrates a super PRB-based CSI-RS shift mode determining apparatus according to an exemplary embodiment of the present invention
  • FIG. 4 illustrates a super PRB based CSI-RS shift mode determining method according to an exemplary embodiment of the present invention. detailed description
  • the power boost may improve channel estimation performance under conditions where the CSI-RS location does not completely overlap with the CSI-RS of the neighboring cell.
  • the small interval CSI-RS orthogonal mode should be as much as possible.
  • Time-frequency shift see Rl-100498, "CSI-RS Inter-cell Design Aspects", NTT DOCOMO, which is incorporated herein by reference). It can provide 5 orthogonal modes, even if jump is considered. . Therefore, the present invention proposes a super PRB based CSI-RS shift scheme to provide as many CSI-RS patterns as possible for CoMP and/or HTN measurements.
  • the PRB is the minimum bandwidth unit allocated by the base station scheduler, and is used to describe the allocation of actual physical resources. If a PRB includes A consecutive OFDM symbols in the time domain and B consecutive subcarriers in the frequency domain, then one The PRB contains AXB REs, where 1 symbol X 1 subcarriers are defined as one RE.
  • a possible shift pattern of a PRB according to an exemplary embodiment of the present invention will be described below with reference to FIG.
  • the time T is the horizontal axis
  • the frequency F is the vertical axis
  • the small grid in each PRB mode represents the RE, according to the definition of 3GPP, Every 12 (number of subcarriers)
  • X 14 number of OFDM symbols
  • each PRB has three possible shift patterns, as shown in (1), (2), and (3) in Figure 1, respectively.
  • shifting means sliding to another position in the frequency domain.
  • the pattern in Figure 1 (2) is the offset of the pattern in Figure 1 (1). If more OFDM symbols can be used to transmit CSI-RS, for example, the 4th, 10th and 11th OFDM symbols available for free in this example are used to transmit CSI-RS, then each PRB can have more shifts. mode.
  • some idle OFDM symbols can also be used for PRB shifting.
  • each PRB has a different shift mode
  • the eNB does not utilize different shift modes of the PRB when allocating physical resources, that is, if the UE needs 100 PRBs, then the frequency domain
  • the shift patterns of the 100 PRBs (or consecutive or discontinuous) on the same are the same, which severely limits the number of orthogonal modes of inter-cell CSI-RS, as in this example, the small interval CSI-RS
  • the number of orthogonal modes is three.
  • the present invention proposes a super PRB based CSI-RS shift scheme to provide more orthogonal modes of inter-cell CSI-RS.
  • a super PRB is composed of more than one PRB that is continuous or discontinuous in the frequency domain. Multiple PRBs in the super PRB may adopt different CSI-RS modes to avoid or reduce collision of CSI-RS between neighboring cells or heterogeneous network cells.
  • the CSI-RS frequency domain duty cycle according to the present invention is referred to as a super PRB instead of a PRB.
  • the number of PRBs in the super PRB is determined according to the requirements of CoMP and/or heterogeneous network measurements. For example, each UE needs to detect at most 9 neighboring cells, and there are 3 heterogeneous networks. In total, 27 incomplete CSI-RS modes are required, and each PRB supports three CSI-RS shift modes.
  • the eNB may also form the first, sixth, and eleventh PRBs into one super PRB, and the second, seventh, and twelfth PRBs form a super PRB.
  • This type of push That is to say, more than one PRB constituting the super PRB may be continuous or discontinuous in the frequency domain.
  • the available CSI-RS pattern of each super PRB is N" where N is the number of shift patterns of a single PRB, M is the number of PRBs contained in each super PRB, and N and M are natural numbers.
  • the neighboring cell may adopt a CSI-RS mode based on the super PRB. If two or more super PRBs adopt the same CSI-RS mode on the same PRB, the PRB is called a conflict PRB. It should be noted that PRBs that use the same CSI-RS mode in the same Hyper-PRB are not conflicting PRBs.
  • Table 1 shows the number of available CSI-RS patterns vs. conflict PRB numbers.
  • the Hyper PRB basically falls back to the PRB. Then, there are a total of 27 alternative patterns that do not completely overlap. It should be noted that up to 27 CSI-RS modes do not mean that the UE should be equipped with 27 channel estimation filters (CEFs). In fact, FFT-based CEF (shared by 27 modes) can provide similar performance to MMSE filters.
  • CEFs channel estimation filters
  • the provided CSI-RS mode can be further extended to fully satisfy the requirements of CoMP/heterogeneous network measurement.
  • FIG. 3 illustrates a super PRB based CSI-RS shift mode determining apparatus 300 according to an exemplary embodiment of the present invention.
  • the apparatus 300 includes: a PRB shift mode number determining means 301, a super PRB forming means 303, a super PRB shift mode determining means 305, and an associating means 307.
  • the PRB shift mode number determining means 301 is based on the number of transmission resource particles (Tx RE ) and is available for
  • the RE number of the CSI-RS determines the number of shift patterns N for a single PRB for the CSI-RS.
  • the super PRB constructing means 303 constructs a super PRB per M PRBs according to the measurement requirements of the CoMP and/or the heterogeneous network. As described above, the M PRBs may be continuous in the frequency domain or may be discontinuous.
  • the super PRB shift mode determining means 305 determines a shift pattern of the super PRB for the CSI-RS according to the PRB for the CSI-RS shift pattern number N and the PRB number M in the super PRB, wherein the super PRB is for the CSI
  • the number of available modes for the -RS mode is N", where N and M are natural numbers.
  • the association device 307 associates the cell ID of the eNB with the shift mode of the super PRB for the CSI-RS, so that when the UE learns the cell ID of the eNB, the cell ID is associated with the cell ID.
  • the super PRB of the eNB is directed to the shift mode of the CSI-RS. In this way, the UE does not need to decode the CSI-RS mode, and only needs to detect the downlink synchronization signal, so that the shift mode of the super PRB of the eNB for the CSI-RS can be known.
  • the PRB shift mode number determining means 301 determines the shift mode number N of a single PRB for the CSI-RS based on the number of transmission resource particles (Tx RE) and the number of REs available for the CSI-RS.
  • the super PRB constructing means 303 constitutes one super PRB per M PRBs according to the measurement requirements of the CoMP and/or the heterogeneous network.
  • the M PRBs may be continuous in the frequency domain or may be discontinuous.
  • the super PRB shift mode determining means 305 determines a shift pattern of the super PRB for the CSI-RS according to the PRB for the CSI-RS shift mode number N and the PRB number M in the super PRB, wherein The number of available modes of the Super PRB for the CSI-RS mode is N M , where N and M are natural numbers.
  • step S407 the association device 307 associates the cell ID of the eNB with the shift mode of the super PRB for the CSI-RS, so that when the UE learns the cell ID of the eNB, the cell ID can be learned according to the cell ID.
  • the super-PRB of the associated eNB is directed to the shift mode of the CSI-RS. In this way, the UE does not need to decode the CSI-RS mode, and only needs to detect the downlink synchronization signal, so that the mode of the super-PRB for the CSI-RS of the eNB can be known, which reduces the downlink system overhead.
  • the present invention proposes a CPR-RS design scheme based on the super PRB to provide inter-cell orthogonality, and obtains better performance than the prior art.
  • the technical solution according to the invention exchanges the following two significant advantages with limited performance losses:
  • some embodiments also include a machine readable or computer readable program storage device (eg, a digital data storage medium) and encoding machine executable or computer executable program instructions, wherein the instructions perform some of the above methods or All steps.
  • the program storage device can be a digital memory, a magnetic storage medium (such as a magnetic disk and magnetic tape), a hardware or an optically readable digital data storage medium.
  • Embodiments also include a programming computer that performs the steps of the above method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

La présente invention se rapporte à un procédé pour la détermination de modes de décalage du signal de référence de données d'état de canal (CSI-RS). Le procédé selon l'invention comprend les étapes suivantes : le nombre N des modes de décalage du CSI-RS dans un seul bloc de ressources physiques (PRB) est déterminé sur la base du nombre d'éléments de ressources de transmission et sur la base du nombre d'éléments de ressources qui peuvent être utilisés pour le CSI-RS; les modes de décalage du CSI-RS dans un super PRB sont déterminés sur la base du nombre N des modes de décalage du CSI-RS dans un seul PRB et sur la base du nombre M des PRB qui composent le super PRB; le nombre de modes utilisables du CSI-RS dans le super PRB est égal à N; N et M sont des nombres naturels. La présente invention se rapporte également à un appareil pour la détermination des modes de décalage du CSI-RS.
PCT/CN2010/000194 2010-02-11 2010-02-11 Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal WO2011097757A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080058435.1A CN102668629B (zh) 2010-02-11 2010-02-11 基于超物理资源块的确定信道状态信息参考信号的移位模式的方法和设备
PCT/CN2010/000194 WO2011097757A1 (fr) 2010-02-11 2010-02-11 Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000194 WO2011097757A1 (fr) 2010-02-11 2010-02-11 Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal

Publications (1)

Publication Number Publication Date
WO2011097757A1 true WO2011097757A1 (fr) 2011-08-18

Family

ID=44367115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000194 WO2011097757A1 (fr) 2010-02-11 2010-02-11 Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal

Country Status (2)

Country Link
CN (1) CN102668629B (fr)
WO (1) WO2011097757A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992356B (zh) * 2015-02-05 2019-04-09 上海诺基亚贝尔股份有限公司 基于机器型通信的通信系统中分配子带的方法和装置
CN109474389B (zh) * 2017-09-08 2021-01-08 维沃移动通信有限公司 下行参考信号占用的处理方法、用户终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041770A2 (fr) * 2007-09-24 2009-04-02 Lg Electronics Inc. Procédé d'attribution de ressources dans un système de communication sans fil
CN101483455A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种在物理资源块中插入专用参考信号的方法和装置
CN101635950A (zh) * 2009-08-14 2010-01-27 中兴通讯股份有限公司 一种确定小区参考信号位置的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024533B2 (ja) * 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041770A2 (fr) * 2007-09-24 2009-04-02 Lg Electronics Inc. Procédé d'attribution de ressources dans un système de communication sans fil
CN101483455A (zh) * 2008-01-07 2009-07-15 大唐移动通信设备有限公司 一种在物理资源块中插入专用参考信号的方法和装置
CN101635950A (zh) * 2009-08-14 2010-01-27 中兴通讯股份有限公司 一种确定小区参考信号位置的方法及装置

Also Published As

Publication number Publication date
CN102668629B (zh) 2014-12-10
CN102668629A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
US11805434B2 (en) Systems and methods for reference signals and CSI feedback
CN102611524B (zh) 一种传输信息的方法、系统及设备
CN103347298B (zh) 参考信号配置方法和参考信号发送方法及相关设备
JP6114153B2 (ja) 基地局、移動局、参照信号送信方法及びチャネル品質測定方法
US9973311B2 (en) Method and apparatus for transmitting information on enhanced physical downlink control channel
US10187135B2 (en) Method and apparatus for generating CSI report
CN103250455B (zh) 基站装置、移动终端装置以及通信控制方法
JP2022003808A (ja) 復調用参照信号の密度を適応させるための方法
CN105490791B (zh) Srs信号发送及触发方法、装置、用户设备和基站
KR20150023673A (ko) 업링크 제어 채널 자원들을 결정하기 위한 방법 및 장치
CN103686861A (zh) 设备间d2d通信中传输参考信号的方法和装置
WO2012109901A1 (fr) Procédé pour envoyer un signal de référence sonore, procédé et système d'allocation de ressources, et station de base
US20130286966A1 (en) Method of allocating radio resources for control channel and method for receiving the control channel
JP2022058862A (ja) 端末、基地局、通信システム及び無線通信方法
CN102821472B (zh) 信息上报与触发信息上报的方法及设备
TWI746712B (zh) 傳輸信號的方法、網路設備和終端設備
JP5954335B2 (ja) 動的マルチポイント通信構成のサポート
TWI771466B (zh) 一種導頻配置方法、通道測量方法及通信設備
WO2011097757A1 (fr) Procédé et appareil basés sur un super-bloc de ressources physiques, pour la détermination de modes de décalage du signal de référence de données d'état de canal
CA2911048C (fr) Methode et appareil de transmission d'un canal de commande
CN103095443A (zh) 增强型pdcch实现方法及设备
WO2019085661A1 (fr) Procédé et appareil d'acquisition d'indice, support de stockage et processeur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058435.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845431

Country of ref document: EP

Kind code of ref document: A1